NASA Astrophysics Data System (ADS)
Verzhbitsky, E. V.; Kononov, M. V.; Byakov, A. F.; Dulub, V. P.
2006-12-01
The analysis of geological and geophysical data on the Hawaiian-Emperor seamount chain indicates that the commonly assumed origin of its lithosphere is inconsistent with the geothermal model of the oceanic-bottom formation. To reveal the nature of the Hawaiian-Emperor Ridge, the main tectonic units of the North Pacific were thoroughly analyzed and a map of geothermal data, magnetic anomalies, and bottom age in this region has been compiled. The subsidence rate of the lithosphere that was thermally rejuvenated by plume material after the passing of the Pacific plate over the Hawaiian hot spot was calculated with the aid of the bathymetric database for the World Ocean. The calculated parameters show that the lithosphere, which underwent thermal rejuvenation, subsides at a much lower rate than it spreads. The obtained empirical equation describes the abrupt uplifting and further subsidence of the oceanic floor during the passing of the Pacific Plate over the Hawaiian plume. The heat flow calculated in line with the thermophysical model of the thermally rejuvenated lithosphere is close to the heat flow measured at the surface of the Hawaiian-Emperor Seamounts. Thus, the proposed model is realistic. Paleogeodynamic reconstructions of the thermal regime during the formation of the Hawaiian-Emperor seamount chain were made in absolute coordinate system for the period 90-20 Ma on the basis of geological and geophysical data and the calculated distribution of bottom ages in the North Pacific.
Estimating lithospheric properties at Atla Regio, Venus
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1994-01-01
Magellan spehrical harmonic gravity and topography models are used to estimate lithospheric properties at Alta Regio, Venus, a proposed hotspot with dynamic support from mantle plume(s). Global spherical harmonic and local representations of the gravity field share common properties in the Atla region interms of their spectral behavior over a wavelength band from approximately 2100 to approximately 700 km. The estimated free-air admittance spectrum displays a rather featureless long-wavelength portion followed by a sharp rise at wavelengths shorter than about 1000 km. This sharp rise requires significant flexural support of short-wavelength structures. The Bouguer coherence also displays a sharp drop in this wavelength band, indicating a finite flexural rigidity of the lithosphere. A simple model for lithospheric loading from above and below is introduced (D. W. Forsyth, 1985) with four parameters: f, the ratio of bottom loading to top loading; z(sub m), crustal thickness; z(sub l) depth to bottom loading source; and T(sub e) elastic lithosphere thickness. A dual-mode compensation model is introduced in which the shorter wavelengths (lambda approximately less than 1000 km) might be explained best by a predominance of top loading by the large shield volcanoes Maat Mons, Ozza Mons, and Sapas Mons, and the longer wavelengths (lambda approximately greater than 1500 km) might be explained best by a deep depth of compensation, possibly representing bottom loading by a dynamic source. A Monte Carlo inversion technique is introduced to thoroughly search out the four-space of the model parameters and to examine parameter correlation in the solutions. Venus either is a considerabe deficient in heat sources relative to Earth, or the thermal lithosphere is overthickened in response to an earlier episode of significant heat loss from the planet.
NASA Astrophysics Data System (ADS)
Dugda, M. T.; Nyblade, A. A.; Rodgers, A.; Al-Amri, A.; Julia, J.
2006-12-01
Lithospheric structure beneath Eastern Africa (Ethiopia, Kenya, and Djibouti) and the Arabian Shield and Platform has been investigated using a joint inversion of receiver functions and surface wave dispersion measurements from 10 to 175 s. Our models help to constrain the extent of modification made to the lithosphere in the region by hotspot tectonism. Most of the data for this study come from three major sources: the Ethiopia and Kenya Broadband Seismic Experiments which were carried out between 2000-2002 and 2001-2002, respectively, and data from the Saudi Arabia National Digital Seismic Network (KACST). We find that there is little or no seismic lid under the Main Ethiopian Rift and Afar. The results for the Ethiopian Plateau show that there has been thinning of the lithosphere by about ~30 40 km from typical Mozambique Belt lithosphere under Tanzania, which was reported to be up to 120 km thick, and that there has been a reduction in maximum shear wave velocity of the lid by about 7%. Replacement of the bottom of the former Mozambique Belt lithosphere by warm plume material with a partial erosion of the lithosphere can explain both the thinning of the lithosphere and the reduction of maximum velocity. Preliminary results suggest similar lithospheric structure beneath the Arabian Shield. The results from Kenya are similar to that of the results for the Mozambique Belt Lithosphere in Tanzania, showing 100-120 km thick lithosphere.
Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system
NASA Astrophysics Data System (ADS)
Takeuchi, Nozomu; Kawakatsu, Hitoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki; Utada, Hisashi
2017-12-01
We recorded P and S waves traveling through the oceanic lithosphere-asthenosphere system (LAS) using broadband ocean-bottom seismometers in the northwest Pacific, and we quantitatively separated the intrinsic (anelastic) and extrinsic (scattering) attenuation effects on seismic wave propagation to directly infer the thermomechanical properties of the oceanic LAS. The strong intrinsic attenuation in the asthenosphere obtained at higher frequency (~3 hertz) is comparable to that constrained at lower frequency (~100 seconds) by surface waves and suggests frequency-independent anelasticity, whereas the intrinsic attenuation in the lithosphere is frequency dependent. This difference in frequency dependence indicates that the strong and broad peak dissipation recently observed in the laboratory exists only in the asthenosphere and provides new insight into what distinguishes the asthenosphere from the lithosphere.
A multilayer model of time dependent deformation following an earthquake on a strike-slip fault
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1981-01-01
A multilayer model of the Earth to calculate finite element of time dependent deformation and stress following an earthquake on a strike slip fault is discussed. The model involves shear properties of an elastic upper lithosphere, a standard viscoelastic linear solid lower lithosphere, a Maxwell viscoelastic asthenosphere and an elastic mesosphere. Systematic variations of fault and layer depths and comparisons with simpler elastic lithosphere over viscoelastic asthenosphere calculations are analyzed. Both the creep of the lower lithosphere and astenosphere contribute to the postseismic deformation. The magnitude of the deformation is enhanced by a short distance between the bottom of the fault (slip zone) and the top of the creep region but is less sensitive to the thickness of the creeping layer. Postseismic restressing is increased as the lower lithosphere becomes more viscoelastic, but the tendency for the width of the restressed zone to growth with time is retarded.
NASA Astrophysics Data System (ADS)
Dugda, M. T.; Nyblade, A. A.; Julia, J.
2007-12-01
Shear-wave velocity structure of the crust and upper mantle beneath Kenya has been investigated using joint inversion of receiver functions, and Rayleigh wave group and phase velocities. Most of the data for this study come from the Kenya broadband seismic experiment, conducted between 2001 and 2002. Shear velocity models obtained from the joint inversion show crustal thicknesses of 37 to 42 km beneath the East African Plateau in Kenya and near the edge of the Kenya Rift, and a crustal thickness of about 30 km beneath the Kenya Rift. These crustal parameters are consistent with crustal thicknesses published previously by different authors. A comparison has been made between the lithosphere under Kenya and other parts of the East African Plateau in Tanzania. A comparison between the lithosphere under Kenya and that under Ethiopia has also been made, specifically between the lithosphere under the Ethiopian Plateau and the Kenya Plateau, and between the lithosphere beneath the Main Ethiopian Rift (MER) and the Kenya (Gregory) Rift. The lithospheric mantle beneath the East African Plateau in Kenya has a maximum shear wave velocity of about 4.6 km/s, similar to the value obtained under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ~75 km. The average velocity of the mantle lithosphere under the East African Plateau in Kenya appears to be similar to the lithosphere under Tanzania away from the East African Rift System. The lithosphere under the Kenya Plateau is not perturbed as compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. The lithosphere under the Kenya Rift is perturbed as compared to the rest of the region but is not as perturbed as that under the Main Ethiopian Rift or the Afar. Though Kenya and Ethiopia have similar uplift, volcanism and rifting at the surface, they have different lithospheric structures at the bottom. The Afar Flood Basalt Volcanism (AFB) may be the cause of this striking difference in the two lithosphere.
Thermoelastic stress in oceanic lithosphere due to hotspot reheating
NASA Technical Reports Server (NTRS)
Zhu, Anning; Wiens, Douglas A.
1991-01-01
The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.
NASA Astrophysics Data System (ADS)
Mittelstaedt, E.; Ito, G.
2005-12-01
In many hot spot-ridge systems, changes in the ridge axis geometry occur between the hot spot centers and nearby mid-ocean ridges in the form of ridge jumps. Such ridge jumps likely occur as a result of anomalous lithospheric stresses associated with mantle plume-lithosphere interaction, as well as weakening of the hot spot lithosphere due to physical and thermal thinning caused by rising buoyant asthenosphere and magma transport through the lithosphere. In this study, we use numerical models to quantify the effects of excess magmatism through the near-ridge lithosphere. Hot spot magmatism can weaken the lithosphere both mechanically through fracturing and thermally through conduction and advection of heat into the plate. Here we focus on the effects of thermal weakening. Using a plane-strain approximation, we examine deformation in a 2-D cross section of a visco-elastic-plastic lithosphere with the finite element code FLAC. The model has isothermal top and bottom boundaries and a prescribed velocity equal to the half spreading rate is imposed on the sides to drive seafloor spreading. The initial condition, as predicted for normal mid-ocean ridges, is a square root of lithospheric age cooling curve with a corner flow velocity field symmetric about the ridge axis. A range of heat inputs are introduced at various plate ages and spreading rates to simulate off-axis magma transport. To reveal the physical conditions that allow for a ridge jump and control its timing, we vary 4 parameters: spreading rate, lithospheric age, crustal thickness and heat input. Results indicate that the heating rate required to produce a ridge jump increases as a function of lithospheric age at the location of magma intrusion. The time necessary for a ridge jump to develop in lithosphere of a particular age decreases with increasing crustal thicknesses. For magma fluxes comparable to those estimated for Galapagos and Iceland, lithospheric heating by the penetrating magma alone is sufficient to cause a ridge jump, even without the other effects.
NASA Astrophysics Data System (ADS)
Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F. C.; Collins, J. A.
2015-12-01
We present the first 3D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath Campbell and Challenger plateaus. Our model is constructed via linearized inversion of both teleseismic (18 -70 s period) and ambient noise-based (8 - 25 s period) Rayleigh wave dispersion measurements. We augment an array of 29 ocean-bottom instruments deployed off the South Island's east and west coasts in 2009-2010 with 28 New Zealand land-based seismometers. The ocean-bottom seismometers and 4 of the land seismometers were part of the Marine Observations of Anisotropy Near Aotearoa (MOANA) experiment, and the remaining land seismometers are from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs<4.3km/s) body extending to at least 75km depth beneath the Banks and Otago peninsulas, a high-velocity (Vs~4.7km/s) upper mantle anomaly underlying the Southern Alps to a depth of 100km, and discontinuous lithospheric velocity structure between eastern and western Challenger Plateau. Using the 4.5km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau is substantially greater than that of Campbell Plateau. The high-velocity anomaly we resolve beneath the central South Island exhibits strong spatial correlation with subcrustal earthquake hypocenters along the Alpine Fault (Boese et al., 2013). The ~400km-long low velocity zone we image beneath eastern South Island underlies Cenozoic volcanics and mantle-derived helium observations (Hoke et al., 2000) on the surface. The NE-trending low-velocity zone dividing Challenger Plateau in our model underlies a prominent magnetic discontinuity (Sutherland et al., 1999). The latter feature has been interpreted to represent a pre-Cretaceous crustal boundary, which our results suggest may involve the entire mantle lithosphere.
Subduction-driven recycling of continental margin lithosphere.
Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S
2014-11-13
Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.
NASA Astrophysics Data System (ADS)
Akuhara, T.; Nakahigashi, K.; Shinohara, M.; Yamada, T.; Yamashita, Y.; Shiobara, H.; Mochizuki, K.
2017-12-01
The Yamato Basin, located at the southeast of the Japan Sea, has been formed by the back-arc opening of the Japan Sea. Wide-angle reflection surveys have revealed that the basin has anomalously thickened crust compared with a normal oceanic crust [e.g., Nakahigashi et al., 2013] while deeper lithospheric structure has not known so far. Revealing the lithospheric structure of the Yamato Basin will lead to better understanding of the formation process of the Japan Sea and thus the Japanese island. In this study, as a first step toward understanding the lithospheric structure, we aim to detect the lithosphere-asthenosphere boundary (LAB) using receiver functions (RFs). We use teleseismic P waveforms recorded by broad-band ocean-bottom seismometers (BBOBS) deployed at the Yamato Basin. We calculated radial-component RFs using the data with the removal of water reverberations from the vertical-component records [Akuhara et al., 2016]. The resultant RFs are more complicated than those calculated at an on-land station, most likely due to sediment-related reverberations. This complexity does not allow either direct detection of a Ps conversion from the LAB or forward modeling by a simple structure composed of a handful number of layers. To overcome this difficulty, we conducted trans-dimensional Markov Chain Monte Carlo inversion of RFs, where we do not need to assume the number of layers in advance [e.g., Bodin et al., 2012; Sambridge et al., 2014]. Our preliminary results show abrupt velocity reduction at 70 km depth, far greater depth than the expected LAB depth from the age of the lithosphere ( 20 Ma, although still debated). If this low-velocity jump truly reflects the LAB, the anomalously thickened lithosphere will provide a new constraint on the complex formation history of the Japan Sea. Further study, however, is required to deny the possibility that the obtained velocity jump is an artificial brought by the overfitting of noisy data.
NASA Astrophysics Data System (ADS)
Rietbrock, A.; Harmon, N.; Goes, S. D. B.; Krueger, F.; Bie, L.; Collier, J.; Rychert, C.; Hicks, S. P.; Kendall, J. M.; Henstock, T.
2017-12-01
Subduction zones are the most important regions for the exchange of water between the Oceans and the solid Earth. Hydrated oceanic lithosphere is subducted into the deeper Earth and its bound water content is continuously released in a heterogeneous process as temperature and pressure rises with depth. As only small amounts of water can significantly alter the physical properties of materials at depth, water is believed to play a major role in the seismogenesis for both, the shallow megathrust responsible for large destructive earthquakes and the occurrence of Wadati-Benioff zone seismicity at intermediate depth. Up to now most of our observations have been made around the Circum-Pacific subduction were predominantly oceanic lithosphere generated at fast-spreading ridges is being subducted. Contrary, observations of dehydration processes occurring in subducting oceanic lithosphere generated at slow spreading ridges are limited. The Lesser Antilles subduction zone therefore provides the unique opportunity to study the linkage between seismicity and de-hydration reaction for subductiong lithosphere generated at a slow-spreading ridge. Between March 2016 and May 2017 34 Ocean Bottom Broadband Seismometers were deployed along the Lesser Antilles margin in the area 12°-18° N and 63.5°-59.5° W. The network consisted out of 24 DEPAS instruments with 120s Trillium compact sensors provided by the instrument pool of AWI (Germany) and 10 OBSIP instruments with Trillium 240s sensors provided by Scripps Institute of Oceanography (US). All instruments were recovered and only 2 OBSIP instruments did not collect any usable data. The remaining 32 instruments did record continuously all components and no clock timing issues were identified. Preliminary screening of the data shows a low noise level and numerous local/regional earthquakes with M<3 have been detected. We will present the recorded seismicity distribution and earthquake locations based on a refined 1D/2D velocity model.
Morphostructural Analysis and Seabed Shelf Typing
NASA Astrophysics Data System (ADS)
Nikiforov, S. L.; Sorokhtin, N. O.; Koshel', S. M.; Lobkovsky, L. I.
2018-03-01
Analysis of the morphometric characteristics from a study of the Barents Sea seabed has shown that the existing troughs are consistent with geodynamic conclusions, allowing morphological typing into structural slopes and reconstruction of their origin. Thus, the Norwegian-Mezenskaya rift system and Svyataya Anna and Victoria troughs were formed due to stretching of the lithosphere. The South Barents and Medvezinsko- Edzinskaya depressions formed at the generation stage of lithospheric plates due to the collision of several island arcs between outliers of the ancient oceanic crust. The choice of the geomorphic method for studying the seabed is because the science of geomorphology comprehensively studies bottom relief (morphology), its origin, and age. Adequate reconstruction of the causal relationships of exogenous and endogenous processes aids in substantiating the prediction of probable catastrophic seabed events. The results of mathematical calculations have confirmed the geodynamic conclusions within the Barents Sea region.
NASA Astrophysics Data System (ADS)
Rychert, C.; Harmon, N.; Kendall, J. M.; Agius, M. R.; Tharimena, S.
2017-12-01
Oceanic lithosphere is the simplest realization of the tectonic plate, yet there are several indications that the evolution of oceanic lithosphere is more complicated than simple half space cooling models, i.e. sharp seismic discontinuities at 60-80 km depth, flattening of bathymetry at > 80 My. A deeper understanding of the complexities of oceanic lithosphere requires in situ measurements, and to date much work has focused on the Pacific ocean. The PI-LAB (Passive Imaging of the Lithosphere-Asthenosphere Boundary) experiment deployed 39 ocean bottom seismometers and 39 ocean bottom magnetotelluric instruments around the equatorial Mid Atlantic ridge from 0-80 My old seafloor. We analysed Rayleigh wave dispersion at 18-143 s period using teleseismic events and Rayleigh wave and Love wave dispersion from 5-22 s period using ambient noise. We observe both fundamental mode and first higher mode Rayleigh waves at 5 - 18 s periods, with average phase velocities that range from 1.5 km/s at 5 s period to 4.31 km/s at 143 s, and fundamental mode Love waves, with average phase velocities ranging from 4.00 km/s at 5 s to 4.51 at 22 s. We invert these phase velocities for radially anisotropic shear velocity structure and find a 60 km thick fast lid for the region with velocities of 4.62 km/s, and x values up to 1.08 indicating radial anisotropy is required in the upper 200 km. We also examined the variation in phase velocity as function seafloor age across the region using the teleseismic Rayleigh wave dataset. From 25-81 s period we find low velocities beneath young seafloor ages. We find velocity systematically increases with seafloor age. At 40 My old seafloor, the phase velocities stop increasing and flatten out. At the longest periods (> 81 s) we observe no clear relationship with seafloor age, suggesting that lithospheric thickening ceases beneath seafloor > 50 My old.
NASA Astrophysics Data System (ADS)
Reyes Ortega, V.; Constable, S.; Bassett, D.
2017-12-01
The Lithosphere-Asthenosphere Boundary (LAB) is the largest plate boundary on Earth yet is still poorly understood, with temperature, hydration, composition, melting, strain rate, and anisotropy all candidates to explain the location and behavior of this transition from convecting asthenosphere to rigid lithosphere. Electrical conductivity, estimated from magnetotelluric (MT) data and combined with seismic measurements, is increasingly being seen as a way to improve our understanding of the LAB. The Integrated LAB (iLAB) experiment brings together three institutions from three countries to collect MT data along with passive and active seismic data in the central equatorial Atlantic, over lithosphere from 0 to 80 My old. Thirty-nine seafloor MT instruments were deployed alongside ocean-bottom seismometers for over one year, and recorded data for 70 to 100 days before the batteries expired. Good quality MT responses were obtained from 10 to nearly 100,000 seconds period, but many sites exhibited up to -180 degree phase shifts at the highest frequencies. Forward modeling shows that this behavior is consistent with a coast effect from the African coastline 500-1500 kilometers away. The conductive mid-ocean ridge system modifies the coast effect for sites west of the ridge. Inverting these data for LAB geology in the presence of such a strong coast effect presents a considerable challenge.
Inferring the thermal structure of the Panama Basin by seismic attenuation
NASA Astrophysics Data System (ADS)
Vargas-Jimenez, C. A.; Pulido, J. E.; Hobbs, R. W.
2017-12-01
Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we discriminate intrinsic and scattering attenuation processes in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modelled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at this ocean spreading center and show how interactions with regional fault systems cause contrasting attenuation anomalies.
Thermal structure of the Panama Basin by analysis of seismic attenuation
NASA Astrophysics Data System (ADS)
Vargas, Carlos A.; Pulido, José E.; Hobbs, Richard W.
2018-04-01
Using recordings of earthquakes on Oceanic Bottom Seismographs and onshore stations on the coastal margins of Colombia, Panama, and Ecuador, we estimate attenuation parameters in the upper lithosphere of the Panama Basin. The tomographic images of the derived coda-Q values are correlated with estimates of Curie Point Depth and measured and theoretical heat flow. Our study reveals three tectonic domains where magmatic/hydrothermal activity or lateral variations of the lithologic composition in the upper lithosphere can account for the modeled thermal structure and the anelasticity. We find that the Costa Rica Ridge and the Panama Fracture Zone are significant tectonic features probably related to thermal anomalies detected in the study area. We interpret a large and deep intrinsic attenuation anomaly as related to the heat source at the Costa Rica Ridge and show how interactions with regional fault systems cause contrasting attenuation anomalies.
NASA Astrophysics Data System (ADS)
Bredow, E.; Gassmöller, R.; Dannberg, J.; Steinberger, B.
2016-12-01
The Réunion mantle plume had a first impact on the Earth's surface when the plume head approached the base of the lithosphere around 67 million years ago and the first vigorous volcanic eruptions created the Deccan Traps in India, one of the largest flood basalt provinces in the world. During this period, the Indian plate may have been accelerated by the uprising plume head, leading to a northeastward plate motion with a unique velocity of up to 18 cm/year. The hotspot track, generally considered to be created by the plume tail impinging on the moving plates, comprises the volcanic chains of the Laccadives, Maldives and Chagos on the Indian plate and the Southern Mascarene Plateau on the African plate. It has been divided by seafloor spreading, since the Central Indian Ridge has passed over the plume approximately 50 million years ago, leading to intensive and continuing plume-ridge interaction. Considering the whole geodynamic history of the plume up to its currently active position underneath the island of Réunion, we set up three-dimensional regional convection models of the upper mantle using the mantle convection code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). In order to study this specific plume, we prescribe the global flow field from a coarser global model at the side boundaries and bottom of the box model and the reconstructed tectonic plate velocities at the uppermost 200 km while a plume inflow is enforced at the bottom. Furthermore, we extended the code to import varying lithosphere thickness values at the side boundaries to compare realistic lithosphere models with simple constant lithosphere thickness models. Finally, we compare the amount and pattern of the resulting crustal thickness produced by the plume with present-day topographic maps to constrain plume properties such as the excess temperature and buoyancy flux. Special focus is placed on how the ridge geometry helps generating the distinctive gap in the hotspot track between Chagos and the Maldives and on the origin of the Rodriguez Ridge, a volcanic lineament between the plume and the Central Indian Ridge, which has been suggested to be a sub-lithosphere melt channel by Morgan already in 1978 and can be observed in our models.
NASA Astrophysics Data System (ADS)
Mittelstaedt, E.; Ito, G.
2007-12-01
Interaction of mantle plumes and young lithosphere near mid-ocean ridges can lead to changes in spreading geometry by shifts of the ridge-axis toward the plume as seen at various hotspots, notably Iceland and the Galapagos. Previous work has shown that, with a sufficient magma flux, heating of the lithosphere by magmatism can significantly weaken the plate and, in some cases, could cause ridge jumps. Upwelling hot asthenosphere can also weaken the plate through thermal and mechanical thinning of the lithosphere. Using the finite element code CITCOM, we solve the equations of continuity, momentum and energy to examine deformation in near-ridge lithosphere associated with relatively hot upwelling asthenosphere and seafloor spreading. The mantle and lithosphere obey a non-Newtonian viscous rheology with plastic failure in the cold part of the lithosphere simulated by imposing an effective yield stress. Temperatures of the lithospheric thermal boundary region are initially given a square-root of age thermal profile while a hot patch is placed at the bottom to initiate a mantle-plume like upwelling. The effect of upwelling asthenosphere on ridge jumps is evaluated by varying three parameters: the plume excess temperature, the spreading rate and the distance of the plume from the ridge axis. Preliminary results show plume related thinning and weakening of the lithosphere over a wide area (100's of km's) with the rate of thinning increasing with the excess temperature of the plume. Initially, thinning occurs as the plume approaches the lithosphere and asthenospheric material is forced out of the way. As the plume material comes into contact with the lithosphere, thinning occurs through heating and mechanical removal of the thermal boundary layer. Thinning of the lithosphere is one of the primary factors in achieving a ridge jump. Another is large tensile stresses which can facilitate the initiation of rifting at this weakened location. Model stresses induced by the buoyant asthenosphere are significant fractions of the lithospheric yield strength near the plume and reach a maximum at the center of plume upwelling. Models predict that ridge jumps are not likely to occur by lithosphere interaction with the hot upwelling plume alone but require the added effects of magmatic weakening at the hotspot.
NASA Astrophysics Data System (ADS)
Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.
2015-12-01
The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a single plate as well as across the continental margin.
NASA Astrophysics Data System (ADS)
Levin, V. L.; Servali, A.; Dunham, B.; Klaser, M.
2015-12-01
A 1200 km long array of seismic observatories from James Bay to the Atlantic coast covers nearly 2 Ga in time, from the Archean Superior Province to the Paleozoic Appalachian Orogen. We use traditional (P-to-SV) receiver function analysis for detailed characterization of the lithospheric mantle along the array, focusing on the 5-15 s delay range where direct conversions from within the lithosphere and crustal multiples are expected.Superior craton sites show exceptionaly clear receiver functions dominated by the first crustal multiple. Also, a negative phase consistent with impedance decrease at the Mid-Lithospheric Discontinuity (~8 s delay) is observed north of 51°N, within the La Grande and Opinaca terranes of the Superior province. In the Opatica terrane further south we see a positive phase at similar delays instead. This implies a downward impedance increase 70-80 km deep within the lithosphere, consistent with the Hales discontinuity. In the Abitibi terrane just north of the Grenville Front we see evidence for two impedance drops in the 60-130 km depth range. Within the Proterozoic Grenvile province receiver functions vary with direction at individual sites, and lack regional consistency. Crustal multiples are noticeably weaker. South of 49°N we once again find negative phases in the 8-10 s delay range. While weak and directionally-dependent in the central Grenville province, these phases are clear near the Appalachian Front (AF), and are followed by positive phases, suggesting thin low-velocity layers in the lower part of the lithosphere. Similarity of receiver function signatures on opposite sides of the AF suggests continuity of the lithosphere beneath it.South of the AF and north of the Norumbega Fault Zone (NFZ) in Maine we find positive phases at ~10 s delays. The implied increase in impedance at ~75 km depth is puzzling. We also find previously-reported weak negative phases in the 6-8 s delay range. South of the NFZ a strong negative phase at ~9 s delay likely marks the bottom of the lithosphere.
Tomography images of the Alpine roots and surrounding upper mantle
NASA Astrophysics Data System (ADS)
Plomerova, Jaroslava; Babuska, Vladislav
2017-04-01
Teleseismic body-wave tomography represents powerful tool to study regional velocity structure of the upper mantle and to image velocity anomalies, such as subducted lithosphere plates in collisional zones. In this contribution, we recapitulate 3D models of the upper mantle beneath the Alps, which developed at a collision zone of the Eurasian and African plates. Seismic tomography studies indicate a leading role of the rigid mantle lithosphere that functioned as a major stress guide during the plate collisions. Interactions of the European lithosphere with several micro-plates in the south resulted in an arcuate shape of this mountain range on the surface and in a complicated geometry of the Alpine subductions in the mantle. Early models with one bended lithosphere root have been replaced with more advanced models showing two separate lithosphere roots beneath the Western and Eastern Alps (Babuska et al., Tectonophysics 1990; Lippitsch et al., JGR 2003). The standard isotropic velocity tomography, based on pre-AlpArray data (the currently performed passive seismic experiment in the Alps and surroundings) images the south-eastward dipping curved slab of the Eurasian lithosphere in the Western Alps. On the contrary, beneath the Eastern Alps the results indicate a very steep northward dipping root that resulted from the collision of the European plate with the Adriatic microplate. Dando et al. (2011) interpret high-velocity heterogeneities at the bottom of their regional tomographic model as a graveyard of old subducted lithospheres. High density of stations, large amount of rays and dense ray-coverage of the volume studied are not the only essential pre-requisites for reliable tomography results. A compromise between the amount of pre-processed data and the high-quality of the tomography input (travel-time residuals) is of the high importance as well. For the first time, the existence of two separate roots beneath the Alps has been revealed from carefully pre-processed, mostly the ISC-bulletin data (Babuska et al., Tectonophysics 1990). Calculated relative travel-time residuals have been assigned to source clusters and filtered relative to the residual mean of each cluster of events. We expect that future 3D studies of the mantle velocities and mantle fabrics with the use of body-wave anisotropic parameters from the AlpArray data will shed a new light on tectonic development of the complex Alpine region and its surroundings.
NASA Astrophysics Data System (ADS)
Sembroni, A.; Globig, J.; Rozel, A.; Faccenna, C.; Funiciello, F.; Fernandez, M.
2013-12-01
Density anomalies located beneath the lithosphere are thought to generate dynamic topography at the surface of the Earth. Tomographic models are often used to infer the later variations of the density field in the mantle. Surface topography can then be computed using analytical solutions or numerical simulations of mantle convection. It has been shown that the viscosity profile of the upper mantle has a strong influence on the magnitude and spectral signature of surface topography and uplift rate. Here we present results from analogue modeling of the interaction between a rising ball-shaped density anomaly and the lithosphere in an isoviscous, isothermal Newtonian mantle system. Preliminary data show that surface topography is strongly influenced not only by mantle viscosity but also by density and viscosity profiles of the lithosphere. Our apparatus consists of a plexiglass square box (40x40x50 cm3) filled with glucose syrup. From the bottom a silicon ball was free to rise up until impinging a silicon plate floating on top of the syrup, mimicking the lithosphere. In order to investigate the role of lithospheric thickness and layered continental crust on stress partitioning, maximum dynamic topography, uplift rate and signal wavelength, two different configurations were tested: homogeneous lithosphere and stratified lithosphere including a low-viscosity lower crust. The topographic evolution of the surface was tracked using a laser scanning the top of the apparatus. The rise of the density anomaly was recorded by a side camera. We observe that a thick and then more resistant lithosphere makes up to 2 times lower and laterally wider topographic signatures. Layered lithospheres including a decoupling lower crust decrease the equilibrium topography and its lateral extend by ~30% to 40%. Most importantly, the uplift rate is strongly affected by the choice of lithosphere model. Both lithosphere width and the presence of a decoupling lower crust may modify the uplift rate by a factor 3. Thus, depending on the lithosphere rheology, we show that uplift rate may vary by one order of magnitude, for the same density anomaly and mantle viscosity. This result shows that surface uplift rate can be used to infer the viscosity of the upper mantle in specific Earth regions only if the rheology of the lithosphere is well constrained. With respect to previous approaches, whether numerical or analog modeling of dynamic topography, our experiments represent a new attempt to investigate the propagation of normal stresses generated by mantle flow through a rheologically stratified lithosphere and its resulting topographic signal.
In-Situ Lithospheric Rheology Measurement Using Isostatic Response and Geophysical State
NASA Astrophysics Data System (ADS)
Lowry, A. R.; Becker, T. W.; Buehler, J. S.; ma, X.; Miller, M. S.; Perez-Gussinye, M.; Ravat, D.; Schutt, D.
2013-12-01
Measurements of effective elastic thickness, Te, from flexural isostatic modeling are sensitive to flow rheology of the lithosphere. Nevertheless, Te has not been widely used to estimate in-situ rheology. Past methodological controversies regarding Te measurement are partly to blame for under-utilization of isostatic response in rheology studies, but these controversies are now largely resolved. The remaining hurdles include uncertainties in properties of geophysical state such as temperature, lithology, and water content. These are ambiguous in their relative contributions to total strength, and the unknown state-of-stress adds to ambiguity in the rheology. Dense seismic and other geophysical arrays such as EarthScope's USArray are providing a wealth of new information about physical state of the lithosphere, however, and these data promise new insights into rheology and deformation processes. For example, new estimates of subsurface mass distributions derived from seismic data enable us to examine controversial assumptions about the nature of lithospheric loads. Variations in crustal lithology evident in bulk crustal velocity ratio, vP/vS, contribute a surprisingly large fraction of total loading. Perhaps the most interesting new information on physical state derives from imaging of uppermost mantle velocities using refracted mantle phases, Pn and Sn, and depths to negative velocity gradients imaged as converted phases in receiver functions (so-called seismic lithosphere-asthenosphere boundary, 'LAB', and mid-lithosphere discontinuity, 'MLD'). Imaging of the ~580°C isotherm associated with the phase transition from alpha- to beta-quartz affords another exciting new avenue for investigation, in part because the transition closely matches the Curie temperature thought to control magnetic bottom in some continental crust. Reconciling seismic estimates of temperature variations with measurements of Te and upper-mantle negative velocity gradients in the US requires that we invoke variations in lithology, water concentrations, and/or membrane stress. In deforming lithosphere, Te and Pn are best-reconciled using a wet quartz crustal lithology, wet olivine mantle lithology, and large membrane stress. More stable lithosphere to the east is best-modeled with a dry feldspar or pyroxene crustal lithology and dry olivine in the mantle. Greater crustal quartz abundance in deforming lithosphere (and in ancient orogens further east) is observed independently in measurements of bulk-crustal vP/vS. Independent evidence also supports the inference of variable water concentrations. Taken together, these lines of evidence suggest that lithology and water abundance are at least as important as temperature variation in determining rheological behavior of the lithosphere.
NASA Astrophysics Data System (ADS)
Du, J.; Chen, C.; Sun, S.; Zhang, Y.; Liang, Q.
2015-12-01
Lithospheric magnetic field characterizes response of magnetic properties of rocks, which are mainly dependent on mineral and temperature variations. Hence, lithospheric magnetic structure brings important information to understand tectonic and thermal processes in the crust and uppermost mantle. In particular, the reliable global geomagnetic field models with large-scales based on satellite magnetic measurements provide regional view of the lithospheric magnetic structure. Here, with smallest and flattest constraints we use the inversion method based on the single layer model to calculate the spatial distribution of apparent susceptibility of continental lithosphere in China and its surroundings. It should be noted that: (1) magnetic anomaly data we used has removed the effect of global oceanic remanent magnetization, (2) the error of magnetic anomaly data is estimated from statistical analysis among MF7, GRIMM_L120, CHAOS5 and CM5 models, (3) the magnetic layer is bounded by the bottom of sediment and the Moho from CRUST1.0 model and is discretized into ellipsoidal prisms with equal angles in latitude and longitude, and (4) an adaptive subdivision & Gauss-Legendre quadrature with fixed order is adopted to solve the forward problem and IGRF11 is utilized as inducing field model. Since the missing longest wavelength components in the lithospheric magnetic field models and the so-called magnetic annihilators, the Apparent Susceptibility Contrast (ASC) distribution is obtained. The ASC distribution has obvious variations and illustrates the mosaic continent with old blocks, orogenic belts, rework fragments and also earthquake regions/zones. Moreover, the ASC distribution provides new insights and evidences of the destruction of North China Craton and geodynamic processes of Tibetan plateau and Baikal rift etc. This study is supported by China Postdoctoral Science Foundation (Grant No.: 2015M572217) and Natural Science Fund of Hubei Province (Grant No.: 2015CFB361).
3D Thermo-Mechanical Models of Plume-Lithosphere Interactions: Implications for the Kenya rift
NASA Astrophysics Data System (ADS)
Scheck-Wenderoth, M.; Koptev, A.; Sippel, J.
2017-12-01
We present three-dimensional (3D) thermo-mechanical models aiming to explore the interaction of an active mantle plume with heterogeneous pre-stressed lithosphere in the Kenya rift region. As shown by the recent data-driven 3D gravity and thermal modeling (Sippel et al., 2017), the integrated strength of the lithosphere for the region of Kenya and northern Tanzania appears to be strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localization and propagation of rifting. In order to test this hypothesis, we have performed a series of ultra-high resolution 3D numerical experiments that include a coupled mantle/lithosphere system in a dynamically and rheologically consistent framework. In contrast to our previous studies assuming a simple and quasi-symmetrical initial condition (Koptev et al., 2015, 2016, 2017), the complex 3D distribution of rock physical properties inferred from geological and geophysical observations (Sippel et al., 2017) has been incorporated into the model setup that comprises a stratified three-layer continental lithosphere composed of an upper and lower crust and lithospheric mantle overlaying the upper mantle. Following the evidence of the presence of a broad low-velocity seismic anomaly under the central parts of the East African Rift system (e.g. Nyblade et al, 2000; Chang et al., 2015), a 200-km radius mantle plume has been seeded at the bottom of a 635 km-depth model box representing a thermal anomaly of 300°C temperature excess. In all model runs, results show that the spatial distribution of surface deformation is indeed strongly controlled by crustal structure: within the southern part of the model box, a localized narrow zone stretched in NS direction (i.e. perpendicularly to applied far-field extension) is aligned along a structural boundary within the lower crust, whereas in the northern part of the model domain, deformation is more diffused and its eastern limit coincides with the eastern side of a weaker unit within the upper crustal layer. This northward transition from more localized to more distributed strain bears some general similarity to the distribution of major faults within the studied area (Chorowicz, 2005).
NASA Astrophysics Data System (ADS)
Negredo, A. M.; Rodríguez-González, J.; Fullea, J.; Van Hunen, J.
2017-12-01
The close location between many hotspots and the edges of cratonic lithosphere has led to the hypothesis that these hotspots could be explained by small-scale mantle convection at the edge of cratons (Edge Driven Convection, EDC). The Canary Volcanic Province hotspot represents a paradigmatic example of this situation due to its close location to the NW edge of the African Craton. Geochemical evidence, prominent low seismic velocity anomalies in the upper and lower mantle, and the rough NE-SW age-progression of volcanic centers consistently point out to a deep-seated mantle plume as the origin of the Canary Volcanic Province. It has been hypothesized that the plume material could be affected by upper mantle convection caused by the thermal contrast between thin oceanic lithosphere and thick (cold) African craton. Deflection of upwelling blobs due to convection currents would be responsible for the broader and more irregular pattern of volcanism in the Canary Province compared to the Madeira Province. In this study we design a model setup inspired on this scenario to investigate the consequences of possible interaction between ascending mantle plumes and EDC. The Finite Element code ASPECT is used to solve convection in a 2D box. The compositional field and melt fraction distribution are also computed. Free slip along all boundaries and constant temperature at top and bottom boundaries are assumed. The initial temperature distribution assumes a small long-wavelength perturbation. The viscosity structure is based on a thick cratonic lithosphere progressively varying to a thin, or initially inexistent, oceanic lithosphere. The effects of assuming different rheologies, as well as steep or gradual changes in lithospheric thickness are tested. Modelling results show that a very thin oceanic lithosphere (< 30 km) is needed to generate partial melting by EDC. In this case partial melting can occur as far as 700 km away from the edge of the craton. The size of EDC cells is relatively small (diameter about 300 km) for lithosphere/asthenosphere viscosity contrasts of 1000. In contrast, models assuming temperature-dependent viscosity and large viscosity variations evolve to large-scale (upper mantle) convection cells, with upwelling of hot material being enhanced by cold downwellings at the edge of cratonic lithosphere.
Block structure and geodynamics of the continental lithosphere on plate boundaries
NASA Astrophysics Data System (ADS)
Gatinsky, Yu. G.; Prokhorova, T. V.; Romanyuk, T. V.; Vladova, G. L.
2009-04-01
Division of the Earth lithosphere on large plates must be considered only as the first and most general approximation in its structure hierarchy. Some transit zones or difuuse boundaries after other authors take place in lithosphere plate boundaries. The tectonic tension of plate interaction is transferred and relaxed within these zones, which consist of blocks limited by seismoactive faults. Vectors of block horizontal displacements often don't coincide with vectors of main plates and change together with changing block rigidity. As a rule the intensity the seismic energy at plate and transit zone boundaries decreases linearly with distancing from these boundaries and correlates with decreasing of velocities of block horizontal displacements. But sometimes the maximum of the energy manifestation takes place in inner parts of transit zones. Some relatively tight interblock zones established in central and east Asia are the most seismically active. They limited such blocks as Pamir, Tien Shan, Bayanhar, Shan, Japanese-Korean, as well as the north boundary of the Indian Plate. A seismic energy intensity of these zones can be compared with the energy of Pacific subduction zones. It is worthy to note that the majority catastrophic earthquakes took place in Central Asia just within interblock zones. A level of block displacement is situated mainly in the bottom or inside the Earth crust, more rare in the lithosphere mantle. Blocks with the most thick lithosphere roots (SE China, Amurian) are the most rigid and weakly deformed.
NASA Technical Reports Server (NTRS)
Smrekar, S. E.; Anderson, F. S.
2005-01-01
We have calculated admittance spectra using the spatio-spectral method [14] for Venus by moving the central location of the spectrum over a 1 grid, create 360x180 admittance spectra. We invert the observed admittance using top-loading (TL), hot spot (HS), and bottom loading (BL) models, resulting in elastic, crustal, and lithospheric thickness estimates (Te, Zc, and Zl) [0]. The result is a global map for interpreting subsurface structure. Estimated values of Te and Zc concur with previous TL local admittance results, but BL estimates indicate larger values than previously suspected.
Upper crustal structure of the Hawaiian Swell from seafloor compliance measurements
NASA Astrophysics Data System (ADS)
Doran, A. K.; Laske, G.
2017-12-01
We present new constraints on elastic properties of the marine sediments and crust surrounding the Hawaiian Islands derived from seafloor compliance measurements. We analyze long-period seismic and pressure data collected during the Plume-Lithosphere Undersea Mantle Experiment [Laske et al, 2009], a deployment consisting of nearly 70 broadband ocean-bottom seismometers with an array aperture of over 1000 kilometers. Our results are supported by previous reflection & refraction studies and by direct sampling of the crust from regional drilling logs. We demonstrate the importance of simultaneously modeling density, compressional velocity, and shear velocity, the former two of which are often ignored during compliance investigations. We find variable sediment thickness and composition across the Hawaiian Swell, with the thickest sediments located within the Hawaiian Moat. Improved resolution of near-surface structure of the Hawaiian Swell is crucially important to improve tomographic images of the underlying lithosphere and asthenosphere and to address outstanding questions regarding the size, source, and location of the hypothesized mantle plume.
Melt distribution along the axis of ultraslow spreading mid-ocean ridges
NASA Astrophysics Data System (ADS)
Schlindwein, V. S. N.; Schmid, F.; Meier, M.
2017-12-01
Ultraslow spreading mid-ocean ridges (<15 mm/y full spreading rate) differ from faster spreading ridges by their uneven melt distribution. Crustal thickness varies along axis from zero to more than 8 km at volcanic centers. These volcanic centers receive more melt than the regional average and may be sustained for millions of years. The segmentation pattern and active volcanism at ultraslow spreading ridges greatly differs from faster spreading ridges. Using networks of ocean bottom seismometers at three differing ridge segments, we could show that the maximum depth of brittle faulting, equivalent approximately to temperatures of 600-700°C, varies drastically along axis. Ridge sections that lack an igneous crust exhibit a thick lithosphere as evidenced by the deepest mid-ocean ridge earthquakes observed so far at more than 30 km depth. Beneath areas of basalt exposure, in particular beneath pronounced volcanic centers, the axial lithosphere may be more than 15 km thinner allowing for melt flow at the base of the lithosphere towards the volcanoes, a process that has been postulated to explain the uneven along-axis melt distribution. Spreading events at ultraslow spreading ridges are unusual as we found from two spreading episodes at 85°E Gakkel Ridge and Segment 8 volcano on the Southwest Indian Ridge. These eruptions were preceded or accompanied by large (M>5) and long-lasting earthquake swarms and active magmatism lasted over 3-16 years. A massive hydrothermal event plume and sounds from deep submarine explosive volcanism were observed at Gakkel Ridge. At the Segment 8 volcano, we imaged a melt reservoir extending to about 8 km depth below the volcano that potentially fed a sill intrusion recorded by an ocean bottom seismometers about 30 km away at a neighboring subordinate volcanic center. To better understand the segmentation and melt transport at ultraslow spreading rigdes, we recently conducted a segment-scale seismicity survey of Knipovich Ridge in the Norwegian-Greenland Sea. Here we deployed 28 ocean bottom seismometers along 160 km of ridge axis for one year, the currently largest mid-ocean ridge microseismicity experiment.
Correlation between elastic energy density and deep earthquakes distribution
NASA Astrophysics Data System (ADS)
Gunawardana, P. M.; Morra, G.
2017-05-01
The mechanism at the origin of the earthquakes below 30 km remains elusive as these events cannot be explained by brittle frictional processes. In this work we focus on the global total distribution of earthquakes frequency vs. depth from ∼50 km to 670 km depth. We develop a numerical model of self-driven subduction by solving the non-homogeneous Stokes equation using the ;Particle in cell method; in combination with a conservative finite difference scheme, here solved for the first time using Python and NumPy only. We show that most of the elastic energy is stored in the slab core and that it is strongly correlated with the earthquake frequency-depth distribution for a wide range of lithosphere and lithosphere-core viscosities. According to our results, we suggest that 1) slab bending at the bottom of the upper mantle causes the peak of the earthquake frequency-depth distribution that is observed at mantle transition depth; 2) the presence of a high viscous stiff core inside the lithosphere generates an elastic energy distribution that fits better with the exponential decay that is observed at intermediate depth.
Investigation of the Low Velocity Zone Beneath the Southern Basin and Range
NASA Astrophysics Data System (ADS)
Savage, B.; Helmberger, D. V.
2003-12-01
Following the work by Helmberger (1973), we use waveform recordings of P arrivals at distances from 6o to 20o to investigate the structure of the low velocity zone (LVZ) or asthenosphere. In contrast to the previous study, broadband data (TriNet and BDSN) is used at a much smaller station spacing providing higher along path and depth resolution. For this study, a well recorded earthquake in the central Gulf of California (Mw 6.3) produces transitions from PnL to P410 across all of California and western Nevada. The nature of these transitions indicates the thickness and gradients of the LVZ and the lithosphere. Initial findings show large variations of lithosphere and LVZ structure from east to west below California. By varying the lithosphere compressional velocity and depth of the LVZ in 1-D models, a database of synthetics waveforms is created to guide the development of realistic 2-D (along path) and 3-D (against azimuth) description of the lithosphere and asthenosphere. The character of the P arrivals changes dramatically near 9-11o with the emergence of a higher frequencies over-printing the longer-period PnL arrivals. Coastal California stations show these arrivals at the shortest distances, 9o indicating the lithosphere velocity and gradient below the LVZ are high. This is in opposition to those arrivals on the east which do not record the high frequency arrivals until 11o. As the distances reach 13o, a large amplitude, high frequency phase is present 10-15 seconds behind the initial P arrival. The emergence of the large secondary phase occurs at different distances across California with a pattern similar to before. At this distance, a change in the apparent velocity of the first arrival also occurs. Further in distance, the width of the initial P arrival and the energy following, or lack thereof, points to the shape of the underlying LVZ. Coastal stations and those in the central portion of California show larger amplitude arrivals following the initial P arrival than do those to the east. These large secondary arrivals may be due to larger than expected velocity jumps at the bottom of or just below the LVZ. Mapping the transition from the lithosphere to the asthenosphere, fine structure and lateral variation, should prove invaluable for tectonic reconstruction efforts, now in progress.
Oceanic-type accretion may begin before complete continental break-up
NASA Astrophysics Data System (ADS)
Geoffroy, L.; Zalan, P. V.; Viana, A. R.
2011-12-01
Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.
Geochemical constraints on the origin of serpentinization of oceanic mantle
NASA Astrophysics Data System (ADS)
Li, Z.; Lee, C. A.
2004-12-01
The lower seismic zone of double seismic zones in subducting oceanic lithosphere is suggested to be a result of serpentine or chlorite dehydration in the lithospheric mantle (Hacker et al., 2003). However, the mechanism by which oceanic lithospheric mantle is serpentinized is unclear. One way is through hydrothermal circulation where the lithospheric mantle represents part of the circuit through which seawater passes and then returns to the ocean. Another way is to inject seawater into the lithospheric mantle through fractures in the overlying crust without having a return path of water to the ocean. The two mechanisms differ in that the former is an open system process whereas the latter is a closed system process in which the mantle serves as a ¡°sponge¡± for water. Identifying the dominant process is important. For example, if the mantle is part of a hydrothermal circulation cell, the interaction of seawater with the mantle will influence the composition of seawater. This also has important implications for the heat flow out of seafloor. On the other hand, if serpentinization occurs by a closed system process, there will be no influence on seawater composition. Previous studies have suggested that serpentinization of ophiolite bodies was an isochemical process, hence closed system, but it was not clear in these studies whether serpentinization occurred in situ in the oceanic lithosphere. To better understand serpentinization processes in the oceanic lithosphere, we investigated a continuous transition zone of relatively unaltered harzburgite to completely serpentinized harzburgite in the Feather River Ophiolite in northern California. These samples are highly enriched in Na, K, Rb, Cs, U, and Sr, which strongly suggests that serpentinization occurred while the oceanic lithosphere was beneath the ocean. All samples (n=19) have Al2O3 contents ranging from 0.6 to 2.5 wt.% and have extremely depleted light rare-earth element abundances, indicating that these samples are cpx-free harzburgites, which have experienced roughly 20 to 35% melt extraction. The degree of serpentinization was quantified using the concentration of magnetite, a by-product of serpentinization. The lack of antigorite suggests that serpentinization occurred at temperatures lower than 300 C. By comparing Cr and Cr/Al systematics to that predicted from theoretical partial melting calculations and empirical relationships in unaltered peridotite xenoliths, it is shown that Cr and Al are immobile. Al content was thus used to determine the composition of the protolith, which allows us to estimate the amount of depletion/enrichment of a given element by processes other than melt depletion. Most of the harzburgites show no evidence for mantle metasomatism as evidenced by extreme depletions in LREE elements. Consistent with previous studies, we find no depletions in Mg, Fe, or Ca. As seawater is undersaturated in Mg-bearing minerals, an open system process would yield progressive depletion of Mg as is seen in abyssal peridotites, which have been weathered by seawater at the bottom of the seafloor (e.g., Snow et al. 1995). Collectively, this suggests that, except for the addition of seawater and its constituents, serpentinization of the Feather River Ophiolite, was a closed system process. By combining these observations with the results of our field mapping project, we suggest that serpentinization of the lithospheric mantle occurs by local introduction of seawater through fractures extending from the crust and into the mantle. We find no evidence that serpentinized zones in oceanic lithospheric mantle represents an extremely deep hydrothermal circulation cell.
Tsunami process: From upper mantle to atmosphere
NASA Astrophysics Data System (ADS)
Ershov, S.; Mikhaylovskaya, I.; Novik, O.
Earthquakes in near sea regions and/or tsunamis are manifestations of powerful geodynamic processes beneath the Ocean floor (75 % of the Earth' surface). An effective monitoring of these large-scale processes is not possible without satellites as well as without understanding of physical nature of signals accompanying these processes, e.g. connection between parameters of a seismic excitation in ocean lithosphere and electromagnetic (EM) signals in atmosphere. Basing on the theory of elasticity, electrodynamics, fluid dynamics and geophysical data we formulate a nonlinear mathematical model of generation and propagation of seismo-EM signals in the basin of a marginal sea including transfer of seismic and EM energy from upper mantle to hydrosphere and EM emission into atmosphere up to ionosphere domain D. For a model basin approximately similar to the central part of the Sea of Japan, we calculate signals caused by moderate elastic displacements (EDs): the ampl of a few cm, the main freq. 0.01-10 Hz and duration up to 10 sec (by runs with different acceptable data) which are supposed to be arising at the moment t=0 at the bottom of the upper mantle layer M. The EM signal appears near the bottom of the conductive (0.02 S/m) layer M and reaches for the sea bottom by t=3.5 sec with the ampl. Of 50 pT. This signal propagate in sea water (4 S/m) rather slowly and seems to be "frozen": its front is located near the sea bottom and is replicating the bottom's configuration up to the moment (t=5.2 sec) of the seismic P wave (from M) arrival at the sea bottom. The EM field is generated in seismically disturbed sea water in presence of the geomagnetic field" a specific structure of a seismo-hydrodynamic flow, a spatial break of the diffusive magnetic field, joining of its contours, and other details of the seismo-hydro-EM tsunami process are shown to clear out the out the physical nature of its signals. By the moderate EDs (above), the magnetic signal (freq. 0.01-10 Hz, i.e. the same as the EDs' freq.) is of order of a few hundreds of pT at the ocean-atmosphere interface and of order of a few tens of hydrodynamic wave's amplitude far from the shore is too small (20 cm) and EM observations are needed to discover this threatening wave. The computed signals' characteristics are of orders observed. The recommendations for the EM monitoring (at a sea bottom, surface, and atmosphere) of seismic excitations in ocean lithosphere and tsunamis are given.
Strength and Elastic thickness of the lithosphere and implication on ductile crustal flow in Europe
NASA Astrophysics Data System (ADS)
Tesauro, M.; Kaban, M. K.; Cloetingh, S. A. P. L.
2012-04-01
The strength and effective elastic thickness (Te) of the lithosphere control its response to tectonic and surface processes. We present the first global strength and effective elastic thickness maps, which are determined using physical properties from recent crustal and lithospheric models. We estimated the lithospheric temperature from inversion of a tomography model and we extrapolated the results to the surface using crustal isotherms for different tectonic provinces based on characteristic values of radiogenic heat production. We assumed different rheologies of the upper and lower crust for continental areas, on the base of the geological features distribution. The results obtained allow us to compare for the first time the lithospheric characteristics of the different tectonic areas. The Te estimated from the strength is compared with the Te obtained by flexural loading and spectral studies. Lithospheric strength is primarily controlled by the crust in young (Phanerozoic) geological provinces characterized by low Te (~25 km), high topography (>1000 m) and active seismicity. In contrast, the old (Achaean and Proterozoic) cratons of the continental plates show strength primarily in the lithospheric mantle, high Te (over 100 km), low topography (<1000 m) and very low seismicity. Using high resolution crustal thickness and density data provided by the EuCRUST-07 model we compute for the European continent the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
Deep Roots of Cratons From Surface-wave Tomography
NASA Astrophysics Data System (ADS)
Cara, M.; Debayle, E.; Lévêque, J. J.
Thanks to the application of multimode waveform inversion techniques to various sets of surface wave seismograms recorded on global networks of broad-band seismome- ters, either permanent (IRIS, Geoscope) or temporary (PASSCAL, INSU), unprece- dented lateral- and depth-resolution can be achieved in upper-mantle surface-wave tomography. With a depth-resolution around 50 km and a lateral resolution around 250 km in the upper mantle, Sv velocity models beneath Australia, South-America, Eurasia and East-Africa show fast velocity anomalies associated with shield generally confined to the uppermost 200 km of the mantle. We show on cross-sections taken across different continents that there is no evidence so far for "thermal and/or com- positional" lithospheric roots extending deeper than 300 km in the continental regions we have investigated. In addition, surface wave azimuthal anisotropy can be used as an indicator of the me- chanical thickness of the lithosphere when a clear change in the pattern of anisotropic directions is observed with depth. The fast moving Australian plate shows the clear- est example of such a change occuring at relatively shallow depths (150 km) within the high seismic velocity lid. This suggests that seismic anisotropy defines a "me- chanical" lithosphere that does not coincide with the "thermal and/or compositional" lithosphere probably imaged by velocity anomalies. However, beneath other slowly moving plates, such a change in pattern is less clear and there is a tendency of seismic anisotropy to disappear at the bottom of the lid.
Crustal and Mantle Structure beneath the Okavango and Malawi Rifts and Its Geodynamic Implications
NASA Astrophysics Data System (ADS)
Gao, S. S.; Liu, K. H.; Yu, Y.; Reed, C. A.; Mickus, K. L.; Moidaki, M.
2017-12-01
To investigate crustal and mantle structure beneath the young and incipient sections of the East African Rift System and provide constraints on rifting models, a total of 50 broadband seismic stations were placed along three profiles across the Okavango and Malawi rifts, with a total length of about 2500 km. Results to date suggest minor crustal thinning and nearly normal seismic velocities in the upper mantle beneath both rifts. The thickness of the mantle transition zone is comparable to the global average, suggesting the lack of thermal upwelling from the lower mantle beneath the rifts. In addition, shear-wave splitting analysis found no anomalies in either the fast polarization orientation or the splitting time associated with the rifts, and thus has ruled out the existence of small-scale mantle convection or plume-related mantle flow beneath the rifts. While the Okavango rift has long been recognized to be located in a Precambrian orogenic zone between the Kalahari and Congo cratons, our results suggest that the Malawi Rift is also developing along the western edge of a lithospheric block with relatively greater thickness relative to the surrounding area. Those seismological and gravity modeling results are consistent with a passive rifting model, in which rifts develop along pre-existing zones of lithospheric weakness, where rapid variations of lithospheric thickness is observed. Lateral variations of dragging stress applied to the bottom of the lithosphere are the most likely cause for the initiation and development of both rifts.
Lithospheric radial anisotropy beneath the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Chu, Risheng; Ko, Justin Yen-Ting; Wei, Shengji; Zhan, Zhongwen; Helmberger, Don
2017-05-01
The Lithosphere-Asthenosphere Boundary (LAB), where a layer of low viscosity asthenosphere decouples with the upper plate motion, plays an essential role in plate tectonics. Most dynamic modeling assumes that the shear velocity can be used as a surrogate for viscosity which provides key information about mantle flow. Here, we derive a shear velocity model for the LAB structure beneath the Gulf of Mexico allowing a detailed comparison with that beneath the Pacific (PAC) and Atlantic (ATL). Our study takes advantage of the USArray data from the March 25th, 2013 Guatemala earthquake at a depth of 200 km. Such data is unique in that we can observe a direct upward traveling lid arrival which remains the first arrival ahead of the triplications beyond 18°. This extra feature in conjunction with upper-mantle triplication sampling allows good depth control of the LAB and a new upper-mantle seismic model ATM, a modification of ATL, to be developed. ATM has a prominent low velocity zone similar to the structure beneath the western Atlantic. The model contains strong radial anisotropy in the lid where VSH is about 6% faster than VSV. This anisotropic feature ends at the bottom of the lithosphere at about the depth of 175 km in contrast to the Pacific where it extends to over 300 km. Another important feature of ATM is the weaker velocity gradient from the depth of 175 to 350 km compared to Pacific models, which may be related to differences in mantle flow.
NASA Astrophysics Data System (ADS)
Clouzet, P.; Masson, Y.; Romanowicz, B.
2018-06-01
The EarthScope Transpotable Array (TA) deployment provides dense array coverage throughout the continental United States and with it, the opportunity for high-resolution 3-D seismic velocity imaging of the stable part of the North American (NA) upper mantle. Building upon our previous long-period waveform tomographic modeling, we present a higher resolution 3-D isotropic and radially anisotropic shear wave velocity model of the NA lithosphere and asthenosphere. The model is constructed using a combination of teleseismic and regional waveforms down to 40 s period and wavefield computations are performed using the spectral element method both for regional and teleseismic data. Our study is the first tomographic application of `Box Tomography', which allows us to include teleseismic events in our inversion, while computing the teleseismic wavefield only once, thus significantly reducing the numerical computational cost of several iterations of the regional inversion. We confirm the presence of high-velocity roots beneath the Archean part of the continent, reaching 200-250 km in some areas, however the thickness of these roots is not everywhere correlated to the crustal age of the corresponding cratonic province. In particular, the lithosphere is thick (˜250 km) in the western part of the Superior craton, while it is much thinner (˜150 km) in its eastern part. This may be related to a thermomechanical erosion of the cratonic root due to the passage of the NA plate over the Great Meteor hotspot during the opening of the Atlantic ocean 200-110 Ma. Below the lithosphere, an upper-mantle low-velocity zone (LVZ) is present everywhere under the NA continent, even under the thickest parts of the craton, although it is less developed there. The depth of the minimum in shear velocity has strong lateral variations, whereas the bottom of the LVZ is everywhere relatively flat around 270-300 km depth, with minor undulations of maximum 30 km that show upwarping under the thickest lithosphere and downwarping under tectonic regions, likely reflecting residual temperature anomalies. The radial anisotropy structure is less well resolved, but shows distinct signatures in highly deformed regions of the lithosphere.
P wave velocity of Proterozoic upper mantle beneath central and southern Asia
NASA Astrophysics Data System (ADS)
Nyblade, Andrew A.; Vogfjord, Kristin S.; Langston, Charles A.
1996-05-01
P wave velocity structure of Proterozoic upper mantle beneath central and southern Africa was investigated by forward modeling of Pnl waveforms from four moderate size earthquakes. The source-receiver path of one event crosses central Africa and lies outside the African superswell while the source-receiver paths for the other events cross Proterozoic lithosphere within southern Africa, inside the African superswell. Three observables (Pn waveshape, PL-Pn time, and Pn/PL amplitude ratio) from the Pnl waveform were used to constrain upper mantle velocity models in a grid search procedure. For central Africa, synthetic seismograms were computed for 5880 upper mantle models using the generalized ray method and wavenumber integration; synthetic seismograms for 216 models were computed for southern Africa. Successful models were taken as those whose synthetic seismograms had similar waveshapes to the observed waveforms, as well as PL-Pn times within 3 s of the observed times and Pn/PL amplitude ratios within 30% of the observed ratio. Successful models for central Africa yield a range of uppermost mantle velocity between 7.9 and 8.3 km s-1, velocities between 8.3 and 8.5 km s-1 at a depth of 200 km, and velocity gradients that are constant or slightly positive. For southern Africa, successful models yield uppermost mantle velocities between 8.1 and 8.3 km s-1, velocities between 7.9 and 8.4 km s-1 at a depth of 130 km, and velocity gradients between -0.001 and 0.001 s-1. Because velocity gradients are controlled strongly by structure at the bottoming depths for Pn waves, it is not easy to compare the velocity gradients obtained for central and southern Africa. For central Africa, Pn waves turn at depths of about 150-200 km, whereas for southern Africa they bottom at ˜100-150 km depth. With regard to the origin of the African superswell, our results do not have sufficient resolution to test hypotheses that invoke simple lithospheric reheating. However, our models are not consistent with explanations for the African superswell invoking extensive amounts of lithospheric thinning. If extensive lithospheric thinning had occurred beneath southern Africa, as suggested previously, then upper mantle P wave velocities beneath southern Africa would likely be lower than those in our models.
Volcanic passive margins: another way to break up continents
Geoffroy, L.; Burov, E. B.; Werner, P.
2015-01-01
Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807
Gravity Anomalies and Isostasy Deduced From New Dense Gravimetry Around the Tsangpo Gorge, Tibet
NASA Astrophysics Data System (ADS)
Fu, Guangyu; She, Yawen
2017-10-01
We built the first dense gravity network including 107 stations around the Tsangpo Gorge, Tibet, one of the hardest places in the world to reach, and conducted a gravity and hybrid GPS observation campaign in 2016. We computed the Bouguer gravity anomalies (BGAs) and free-air gravity anomalies (FGAs) and increased the resolution of the FGAs by merging the in situ data with EIGEN-6C4 gravity model data. The BGAs around the Tsangpo Gorge are in general negative and gradually decrease from south (-360 mGal) to north (-480 mGal). They indicate a uniformly dipping Moho around the Tsangpo Gorge that sinks from south to north at an angle of 12°. We introduced a method to compute the vertical tectonic stress of the lithosphere, a quantitative expression of isostasy, using BGA and terrain data, and applied it to the area around the Tsangpo Gorge. We found that the lithosphere of the upstream of the Tsangpo Gorge is roughly in an isostatic state, but the lithosphere of the downstream exhibits vertical tectonic stress of 50 MPa, which indicates the loss of a large amount of surface material. This result does not support the deduction of the valley bottom before uplift of the Tsangpo Gorge by Wang et al. (2014).
Volcanic passive margins: another way to break up continents.
Geoffroy, L; Burov, E B; Werner, P
2015-10-07
Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.
Deep Seismic Structure of the Texas-Gulf of Mexico Passive Margin
NASA Astrophysics Data System (ADS)
Pulliam, J.; Gurrola, H.
2013-12-01
The Texas-Gulf of Mexico region has witnessed a wide range of tectonic processes, including deformation due to orogeny, continental collision and rifting. Artifacts of these processes are likely to remain at lithospheric depths beneath the region but, until recently, the tools needed to examine structures at mantle depths were not available. With the passage of the EarthScope's USArray stations and the completion of a targeted broadband deployment, new images of the region's lithosphere have emerged. These images reveal lithospheric-scale anomalies that correlate strongly with surface features, such as a large fast anomaly that corresponds to the southern extent of the Laurentia (or 'Great Plains') craton and a large slow anomaly associated with the Southern Oklahoma Aulacogen. Other features that would not have been expected based on surface tectonics include a slow layer that we interpret to be a shear zone at the base of the cratonic root and the transitional continental lithosphere, and a zone that is bounded at its top and bottom by discontinuities and high levels of seismic anisotropy. Additionally a high velocity body underlying the Gulf Coast Plains may mark delaminating lower crust. If true it provides indirect evidence that active rifting best describes the process that led to the opening of the Gulf of Mexico. These new results are based upon the analysis of 326 USArray broadband seismic stations and a 23-station broadband deployment across Texas' passive margin, from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, TX, on the relatively undisturbed Proterozoic crust of central Texas.
NASA Astrophysics Data System (ADS)
Lebedev, S.; Ravenna, M.; Adam, J.
2017-12-01
Seismic anisotropy provides essential information on the deformation of the lithosphere. Knowledge of anisotropy also allows us to isolate the isotropic-average seismic velocities, relatable to the lithospheric temperature and composition. We use Rayleigh and Love-wave phase velocities and their azimuthal anisotropy measured in broad period ranges across the footprint of the Southern Africa Seismic Experiment (SASE), from the Kaapvaal Craton to the Limpopo Belt. We invert the data using our recently developed, fully non-linear Markov Chain Monte Carlo method and determine, for the first time, both the isotropic-average S velocity and its radial and azimuthal anisotropy as a function of depth from the upper crust down to the asthenosphere. The probabilistic inversion provides a way to quantify non-uniqueness, using direct parameter-space sampling, and assess model uncertainties. The high-velocity anomaly indicative of the cold cratonic lithosphere bottoms at 200-250 km beneath the central and western Kaapvaal Craton, underlain by a low-velocity zone. Beneath northern Kaapvaal and Limpopo, by contrast, high velocities extend down to 300-350 km. Although this does not require a lithosphere that has maintained this thickness over a geologically long time, the data does require the mantle to be anomalously cold down to 300-350 km. Interestingly, topography correlates with the thickness of this high-velocity layer, with lower elevations where the lid is thicker. Radial shear-wave anisotropy is in the 2-5 percent range (Vsh > Vsv) from the lower crust down to 200 km, below which depth it decreases gradually. Radial variations in the amplitude of radial anisotropy show no clear relationship with those in the amplitude of azimuthal anisotropy or isotropic-average Vs anomalies. Azimuthal anisotropy changes the fast-propagation direction near the base of the lithosphere (200-300 km depth), from the laterally varying fast azimuths in the lower lithosphere to a spatially uniform, NNE-SSW azimuth in the asthenosphere, parallel to the absolute plate motion. A mid-lithospheric discontinuity in azimuthal anisotropy is detected at around 80 km depth, this depth likely to vary somewhat laterally. The orientations of anisotropy below and above the MLD prompt intriguing inferences on the early evolution of cratons.
NASA Astrophysics Data System (ADS)
Qiang, H.
2015-12-01
The lithospheric stress states and interlayer coupling interaction is of great significant in studying plate driven mechanism and seismogenic environment. The coupling relationship between mantle convection generated drag stress in the lithospheric base and seismogenic layer stress in the crust represents the lithospheric mechanical coupling intensity level. We calculate the lithospheric bottom mantle convection stress field of the southeastern Tibetan Plateau using 11~36 spherical harmonic coefficients of gravity model EGM2008. Meanwhile we collect and organize the focal mechanism of 1131 earthquakes that occurred from 2000 to now in Sichuan-Yunnan region. The current seismogenic layer stress and stress field before Lushan earthquake are calculated by the damping regional stress tensor inversion. We further analyze the correlation between the two kinds of stress fields, then discuss the relation between mechanics coupling situation and strong earthquakes in different regions. The results show that: (1) Most of Sichuan-Yunnan region is located in the coupling and decoupling intermediate zone. Coupling zones distribute on the basis of block, the eastern South China block has strong coupling, and the coupling phenomenon also exists in parts of the northern Tibet block, Balyanlkalla block in the northwest and southwest Yunnan block. The decoupling mainly occurs in Songpan-Ganzi block, connecting with the strong coupling South China block and Longmenshan fault zone is their boundary. (2) We have analyzed seismogenic mechanism, then proposed the border zone of strong and weak coupling relation between mantle convection stress and seismogenic layer stress exists high seismic risk. The current coupling situation shows that Longmenshan fault zone is still in the large varying gradient area of coupling intensity level, it has conditions to accumulate energy and develop earthquakes. Other dangerous areas are: Mingjiang, Xianshuihe, Anninghe, Zemuhe, the Red River, Nantinghe fault zone and their neighboring areas.
Ductile crustal flow in Europe's lithosphere
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2011-12-01
Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
NASA Astrophysics Data System (ADS)
Ball, Justin S.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi; Yeck, William L.; Collins, John A.
2016-05-01
We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18-70 s period) and ambient noise-based (8-25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs < 4.4 km/s) body extending from near surface to greater than 75 km depth beneath the Banks and Otago Peninsulas and high-velocity (Vs~4.7 km/s) mantle anomalies underlying the Southern Alps and off the northwest coast of the South Island. Using the 4.5 km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau and central South Island is substantially greater than that of the inner Campbell Plateau. The high-velocity anomaly we resolve at subcrustal depths (>50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.
NASA Astrophysics Data System (ADS)
Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio
2017-10-01
The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.
Preface to "Insights into the Earth's Deep Lithosphere"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M E
Dear Readers: I am pleased to present a special issue of Tectonophysics entitled 'Insights into the Earth's Deep Lithosphere.' This compilation sought to capture the flavor of the increasing number of studies that are emerging to investigate the complex lithospheric structure of the earth. This issue evolved out of a Fall 2007 AGU special session entitled 'Understanding the Earth's Deep Lithosphere' that I organized with Irina Artemieva from the University of Copenhagen. For that session, we solicited talks that discussed the increasing number of methods that have surfaced to study various aspects of the earth's deep lithosphere. These methods includemore » seismic, gravity, thermal, geochemical, and various combinations of these methods. The quality of the presentations (2 oral sessions with 16 talks and 23 associated poster presentations) was such that we felt that the emerging topic deserved a dedicated forum to address these questions in greater detail. The availability of new data sets has also improved the number and quality of lithospheric studies. With many new studies and methodologies, a better understanding of both continental and oceanic lithospheres is starting to emerge. Questions remain about the thickness and evolution of the lithosphere, the presence of lithospheric keels, the density and anisotropy of lithospheric roots, mechanisms of lithospheric thinning, and differences between mechanical, thermal and chemical boundary layers. While we did not get contributions on the full gamut of methods and regions, a lot of ground was covered in this issue's manuscripts. Like any collection of papers on the deep lithosphere, the topics are quite varied in methodology, geographic location, and what aspect of the lithosphere being studied. Still, the results highlight the rewarding aspects of earth structure, history, and evolution that can be gleaned. A brief synopsis of the papers contained in this issue is given.« less
NASA Astrophysics Data System (ADS)
Pascal, Christophe
2006-10-01
Gravitational potential stresses (GPSt) are known to play a first-order role in the state of stress of the Earth's lithosphere. Previous studies focussed mainly on crust elevation and structure and little attention has been paid to modelling GPSt using realistic lithospheric structures. The aim of the present contribution is to quantify gravitational potential energies and stresses associated with stable lithospheric domains. In order to model realistic lithosphere structures, a wide variety of data are considered: surface heat flow, chemical depletion of mantle lithosphere, crustal thickness and elevation. A numerical method is presented which involves classical steady-state heat equations to derive lithosphere thickness, geotherm and density distribution, but additionally requires the studied lithosphere to be isostatically compensated at its base. The impact of varying surface and crustal heat flow, topography, Moho depth and crust density on the signs and magnitudes of predicted GPSt is systematically explored. In clear contrast with what is assumed in most previous studies, modelling results show that the density structure of the mantle lithosphere has a significant impact on the value of the predicted GPSt, in particular in the case of thick lithospheres. Using independent information from the literature, the method was applied to get insights in the state of stress of continental domains with contrasting tectono-thermal ages. The modelling results suggest that in the absence of tectonic stresses Phanerozoic and Proterozoic lithospheres are spontaneously submitted to compression whereas Archean lithospheres are in a neutral to slightly tensile stress state. These findings are in general in good agreement with global stress measurements and observed geoid undulations.
NASA Astrophysics Data System (ADS)
Hawley, W. B.; Allen, R. M.; Richards, M. A.
2015-12-01
The Cascadia Initiative is a four-year (2011-2015) amphibious seismic deployment that covers the Juan de Fuca plate and the Cascadia Subduction Zone. It is comprised of 70 broadband ocean-bottom seismometers that occupy 120 sites in total, as well as 27 land-based stations. This array offers a unique opportunity to study the 3D structure of a subduction zone in unprecedented detail. We present the results of an inversion using teleseismic body waves recorded by the Cascadia Initiative, EarthScope, and other regional and temporary networks in the Pacific Northwest. A low-velocity feature is visible beneath the subducting slab at shallow depths. Previous studies report ponding of low-viscosity, buoyant material at the top of the asthenosphere, unable to rise through the impermeable lithospheric lid. We show that as the lithospheric lid descends into the mantle, this material is not advected with it; rather, due to its own weakness and buoyancy, it accumulates at the subduction zone. Such material could be partly responsible for the rapid uplift and volcanism in the Coast Range of California, in the wake of the northward migration of the Mendocino Triple Junction. This newly observed feature may play an important role in the structure of subduction zones, but understanding the extent of that role on a global scale will require amphibious seismic deployments in other subduction zones.
Constraints on Lithosphere Rheology from Observations of Volcano-induced Deformation
NASA Astrophysics Data System (ADS)
Zhong, S.; Watts, A. B.
2011-12-01
Mantle rheology at lithospheric conditions (i.e., temperature < 1200 oC) is important for understanding fundamental geodynamic problems including the dynamics of plate tectonics, subducted slabs, and lithosphere-mantle interaction. Laboratory studies suggest that the rheology at lithospheric conditions can be approximately divided into three different regimes: brittle or frictional sliding, semi-brittle, and plastic flow. In this study, we seek to constrain lithospheric rheology, using observations of deformation at seamounts and oceanic islands caused by volcanic loading. Volcano-induced surface deformation depends critically on lithospheric rheology at the time of seamount and oceanic island emplacement and while it changes rapidly on short time-scales it does not change significantly on long time-scales. In an earlier study [Watts and Zhong, 2000], we used the effective elastic thickness at seamounts and oceanic islands inferred from the observations of deformation and gravity to determine an effective activation energy of 120 KJ/mol for lithospheric mantle with Newtonian rheology. We have now expanded this study to incorporate non-Newtonian power-law and frictional sliding rheologies, and more importantly, to include realistic 3-D volcanic load geometries. We use the Hawaiian Islands as an example. We construct 3-D loads for the Hawaiian Islands by applying an appropriate median filter to remove Hawaiian swell topography and correcting for lithospheric age effect on the bathymetry. The loads are then used in 3-D finite element loading models with viscoelastic, non-Newtonian and frictional sliding rheologies to determine the lithospheric response including surface vertical motions and lithospheric stresses. Comparisons of our new model predictions to observations suggest that the activation energy of lithospheric mantle is significantly smaller than most experimentally determined values for olivine at high temperatures, but may be consistent with more recent experimental results at lithospheric temperatures. Seamounts and oceanic islands are therefore a 'natural laboratory', we believe, to study lithospheric rheology on both short and long time scales.
NASA Astrophysics Data System (ADS)
Zhong, S.; Watts, A. B.
2014-12-01
Lithospheric rheology and strength are important for understanding crust and lithosphere dynamics, and the conditions for plate tectonics. Laboratory studies suggest that lithospheric rheology is controlled by frictional sliding, semi-brittle, low-temperature plasticity, and high-temperature creep deformation mechanisms as pressure and temperature increase from shallow to large depths. Although rheological equations for these deformation mechanisms have been determined in laboratory settings, it is necessary to validate them using field observations. Here we present an overview of lithospheric rheology constrained by observations of seismic structure and load-induced flexure. Together with mantle dynamic modeling, rheological equations for high-temperature creep derived from laboratory studies (Hirth and Kohlstedt, 2003; Karato and Jung, 2003) satisfactorily explain the seismic structure of the Pacific upper mantle (Hunen et al., 2005) and Hawaiian swell topography (Asaadi et al., 2011). In a recent study that compared modeled surface flexure and stress induced by volcano loads in the Hawaiian Islands region with the observed flexure and seismicity, Zhong and Watts (2013) showed that the coefficient of friction is between 0.25 and 0.7, and is consistent with laboratory studies and also in-situ borehole measurements. However, this study indicated that the rheological equation for the low-temperature plasticity from laboratory studies (e.g., Mei et al., 2010) significantly over-predicts lithospheric strength and viscosity. Zhong and Watts (2013) also showed that the maximum lithospheric stress beneath Hawaiian volcano loads is about 100-200 MPa, which may be viewed as the largest lithospheric stress in the Earth's lithosphere. We show that the relatively weak lithospheric strength in the low-temperature plasticity regime is consistent with seismic observation of reactivated mantle lithosphere in the western US and the eastern North China. We discuss here the causes of this weakening in the context of the potential effects on laboratory studies of reduced grain size and Peierls stress on the low-temperature deformation regime.
NASA Astrophysics Data System (ADS)
Goncharov, A. G.; Ionov, D. A.; Doucet, L. S.; Pokhilenko, L. N.
2012-12-01
Oxygen fugacity (fO2) and temperature variations in a complete lithospheric mantle section (70-220 km) of the central Siberian craton are estimated based on 42 peridotite xenoliths in the Udachnaya kimberlite. Pressure and temperature (P-T) estimates for the 70-140 km depth range closely follow the 40 mW/m2 model conductive geotherm but show a bimodal distribution at greater depths. A subset of coarse garnet peridotites at 145-180 km plots near the "cold" 35 mW/m2 geotherm whereas the majority of coarse and sheared rocks at ≥145 km scatter between the 40 and 45 mW/m2 geotherms. This P-T profile may reflect a perturbation of an initially "cold" lithospheric mantle through a combination of (1) magmatic under-plating close to the crust-mantle boundary and (2) intrusion of melts/fluids in the lower lithosphere accompanied by shearing. fO2 values estimated from Fe3+/∑Fe in spinel and/or garnet obtained by Mössbauer spectroscopy decrease from +1 to -4 Δlog fO2 (FMQ) from the top to the bottom of the lithospheric mantle (˜0.25 log units per 10 km) due to pressure effects on Fe2+-Fe3+ equilibria in garnet. Garnet peridotites from Udachnaya appear to be more oxidized than those from the Kaapvaal craton but show fO2 distribution with depth similar to those in the Slave craton. Published fO2 estimates for Udachnaya xenoliths based on C-O-H fluid speciation in inclusions in minerals from gas chromatography are similar to our results at ≤120 km, but are 1-2 orders of magnitude higher for the deeper mantle, possibly due to uncertainties of fO2 estimates based on experimental calibrations at ≤3.5 GPa. Sheared peridotites containing garnets with u-shaped, sinusoidal and humped REE patterns are usually more oxidized than Yb, Lu-rich, melt-equilibrated garnets, which show a continuous decrease from heavy to light REE. This further indicates that mantle redox state may be related to sources and modes of metasomatism.
NASA Astrophysics Data System (ADS)
Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.
2017-12-01
Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.
VoiLA: A multidisciplinary study of Volatile recycling in the Lesser Antilles Arc
NASA Astrophysics Data System (ADS)
Collier, J.; Blundy, J. D.; Goes, S. D. B.; Henstock, T.; Harmon, N.; Kendall, J. M.; Macpherson, C.; Rietbrock, A.; Rychert, C.; Van Hunen, J.; Wilkinson, J.; Wilson, M.
2017-12-01
Project VoiLA will address the role of volatiles in controlling geological processes at subduction zones. The study area was chosen as it subducts oceanic lithosphere formed at the slow-spreading Mid Atlantic Ridge. This should result in a different level and pattern of hydration to compare with subduction zones in the Pacific which consume oceanic lithosphere generated at faster spreading rates. In five project components, we will test (1) where volatiles are held within the incoming plate; (2) where they are transported and released below the arc; (3) how the volatile distribution and pathways relate to the construction of the arc; and (4) their relationship to seismic and volcanic hazards and the fractionation of economic metals. Finally, (5) the behaviour of the Lesser Antilles arc will be compared with that of other well-studied systems to improve our wider understanding of the role of water in subduction processes. To address these questions the project will combine seismology; petrology and numerical modelling of wedge dynamics and its consequences on dehydration and melting. So-far island-based fieldwork has included mantle xenolith collection and installation of a temporary seismometer network. In 2016 and 2017 we conducted cruises onboard the RRS James Cook that collected a network of passive-recording and active-recording ocean-bottom seismometer data within the back-arc, fore-arc and incoming plate region. A total of 175 deployments and recoveries were made with the loss of only 6 stations. The presentation will present preliminary results from the project.
Lithosphere structure in Madagascar as revealed from receiver functions and surface waves analysis.
NASA Astrophysics Data System (ADS)
Rindraharisaona, E. J.; Tilmann, F. J.; Yuan, X.; Dreiling, J.; Priestley, K. F.; Barruol, G.; Wysession, M. E.
2017-12-01
The geological history of Madagascar makes it an ideal place to study the lithospheric structure and its evolution. It comprises Archean to Proterozoic units on the central eastern part, which is surrounded by a Triassic to Jurassic basin formation in the west and Cretaceous volcanics along the coasts. Quaternary volcanic rocks have been embedded in crystalline and sedimentary rocks. The aim of the present work is to characterize the crustal structure and determine the imprint of the dominant geodynamic events that have affected Madagascar: the Pan-African orogeny, the breakup of Gondwanaland and Neogene tectonic activity. From 2011 to 2014 different temporary seismic arrays were deployed in Madagascar. We based the current study mostly on SELASOMA project, which is composed of 50 seismic stations that were installed traversing southern Madagascar from the west to the east, sampling the different geological units. To measured seismic dispersion curves, one a wide period ranges using ambient noise, Rayleigh and Love surface waves. To compute the average crustal Vp/Vs ratio internal crustal structure and discontinuities in the mantle, we use both P- and S-waves receiver functions. To better resolve of the crustal structure, we jointly inverted P-wave receiver functions and Rayleigh wave group velocity.The crustal extension during the Carboniferous to Cenozoic has thinned the igneous crust down to 15 km in the western Morondava basin by removing much of the lower crust, while the thickness of the upper crust is nearly identical in the sedimentary basin and under Proterozoic and Archaean rocks of the eastern two thirds of Southern Madagascar. In general, the Archean crust is thicker than the Proterozoic, because mafic component is missing in the Proterozoic domain while it forms the bottom of the Archean crust. The lithosphere thickness in the southern part of Madagascar is estimated to be between 90 and 125 km.
NASA Astrophysics Data System (ADS)
Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio
2015-04-01
Unraveling the tectonic settings and processes involved in the annihilation of subcontinental mantle lithosphere is of paramount importance for our understanding of the endurance of continents through Earth history. Unlike ophiolites -- their oceanic mantle lithosphere counterparts -- the mechanisms of emplacement of the subcontinental mantle lithosphere in orogens is still poorly known. The emplacement of subcontinental lithospheric mantle peridotites is often attributed to extension in rifted passive margins or continental backarc basins, accretionary processes in subduction zones, or some combination of these processes. One of the most prominent features of the westernmost Mediterranean Alpine orogenic arcs is the presence of the largest outcrops worldwide of diamond facies, subcontinental mantle peridotite massifs; unveiling the mechanisms of emplacement of these massifs may provide important clues on processes involved in the destruction of continents. The western Mediterranean underwent a complex Alpine evolution of subduction initiation, slab fragmentation, and rollback within a context of slow convergence of Africa and Europe In the westernmost Mediterranean, the alpine orogeny ends in the Gibraltar tight arc, which is bounded by the Betic, Rif and Tell belts that surround the Alboran and Algero-Balearic basins. The internal units of these belts are mostly constituted of an allochthonous lithospheric domain that collided and overthrusted Mesozoic and Tertiary sedimentary rocks of the Mesozoic-Paleogene, South Iberian and Maghrebian rifted continental paleomargins. Subcontinental lithospheric peridotite massifs are intercalated between polymetamorphic internal units of the Betic (Ronda, Ojen and Carratraca massifs), Rif (Beni Bousera), and Tell belts. In the Betic chain, the internal zones of the allochthonous Alboran domain include, from bottom to top, polymetamorphic rock of the Alpujarride and Malaguide complexes. The Ronda peridotite massif -- the largest outcrop (> 300 km2) of subcontinental lithospheric mantle peridotite in westernmost Mediterranean -- occurs at the basal units of the western Alpujarride. Late, intrusive mantle, high-Mg pyroxenite dykes in the Ronda peridotite (Betic Cordillera, S. Spain) show geochemical signature akin to high-pressure (> 1 GPa) segregates of high-Mg andesite and boninite found in island arc terrains and ophiolite, where they usually witness nascent subduction and/or oceanic accretion in a forearc setting. These pyroxenites point to a suprasubduction environment prior to the intracrustal emplacement of subcontinental peridotites drawing some parallels between the crustal emplacement environment of some ophiolites and that of sublithospheric mantle in the westernmost Mediterranean. Here, we present new Sr-Nd-Pb-isotopic data from a variety of crustal rocks that might account for the crustal components seen in high-Mg Ronda pyroxenites. This data allows the origin of this crustal component to be unveiled, providing fundamentally constraints on the processes involved in the emplacement of large massifs of subcontinental mantle lithosphere in the westernmost Mediterranean. In order to test the hypothesis that the crustal component in Ronda high-Mg pyroxenites was acquired during the Alpine evolution of the Betic-Rif orogen, we selected samples from crustal sections that might have been underthrusted beneath the Alboran lithospheric mantle before the putative Miocene intra-crustal emplacement of peridotites. Samples are from the western Betics and comprise sediments from the Gibraltar Arc Flysch Trough units, which forms a fold-and-thrust belt between the Iberian paleomargin and the allochthonous Alboran domain, and metasedimentary rocks from the Jubrique and Blanca units of the Alpujarride complex, which underlie and overlie the Ronda peridotite and constitute the crustal section of the Alboran lithosphere domain to which the Ronda peridotite pertains. Sr-Nd-Pb systematic of sediments strongly support Alboran geodynamic models that envisage slab roll-back as the tectonic mechanism responsible for Miocene lithospheric thinning, and consistent with a scenario where back-arc inversion leading to subduction initiation of crustal units at the front of the Alboran wedge
Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt
Ravat, D.; Salem, A.; Abdelaziz, A.M.S.; Elawadi, E.; Morgan, P.
2011-01-01
Over 50 magnetic bottom depths derived from spectra of magnetic anomalies in Eastern Egypt along the Red Sea margin show variable magnetic bottoms ranging from 10 to 34. km. The deep magnetic bottoms correspond more closely to the Moho depth in the region, and not the depth of 580??C, which lies significantly deeper on the steady state geotherms. These results support the idea of Wasilewski and coworkers that the Moho is a magnetic boundary in continental regions. Reduced-to-pole magnetic highs correspond to areas of Younger Granites that were emplaced toward the end of the Precambrian. Other crystalline Precambrian units formed earlier during the closure of ocean basins are not strongly magnetic. In the north, magnetic bottoms are shallow (10-15. km) in regions with a high proportion of these Younger Granites. In the south, the shoaling of the magnetic bottom associated with the Younger Granites appears to be restricted to the Aswan and Ras Banas regions. Complexity in the variation of magnetic bottom depths may arise due to a combination of factors: i) regions of Younger (Precambrian) Granites with high magnetite content in the upper crust, leaving behind low Curie temperature titanomagnetite components in the middle and lower crust, ii) rise in the depth of 580??C isotherm where the crust may have been heated due to initiation of intense magmatism at the time of the Red Sea rifting (~. 20. Ma), and iii) the contrast of the above two factors with respect to the neighboring regions where the Moho and/or Curie temperature truncates lithospheric ferromagnetism. Estimates of fractal and centroid magnetic bottoms in the oceanic regions of the Red Sea are significantly below the Moho in places suggesting that oceanic uppermost mantle may be serpentinized to the depth of 15-30 km in those regions. ?? 2011 Elsevier B.V.
The mantle lithosphere and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2017-04-01
In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.
NASA Astrophysics Data System (ADS)
Bonadio, Raffaele; Geissler, Wolfram H.; Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas L.; Jokat, Wilfried; Jegen, Marion; Sens-Schönfelder, Christoph; Baba, Kiyoshi
2017-04-01
Tristan da Cunha is a volcanic island located above a hotspot in the South Atlantic. The deep mantle plume origin of the hotspot volcanism at the island is supported by anomalous geochemical data (Rohde et al., 2013 [1]) and global seismological evidences (French and Romanovicz, 2015 [2]). However, until recently, due to lack of local geophysical data in the South Atlantic and especially around Tristan da Cunha, the existence of a plume has not yet been confirmed. Therefore, an Ocean Bottom Seismometer experiment was carried out in 2012 and 2013 in the vicinity of the archipelago, with the aim of obtaining geophysical data that may help to get some more detailed insights into the structure of the upper mantle, possibly confirming the existence of a plume. In this work we study the shear wave velocity structure of the lithosphere-asthenosphere system beneath the Island. Rayleigh surface wave phase velocity dispersion curves have been obtained using a recent powerful implementation of the inter-station cross-correlation method (Meier et al., 2004 [3]; Soomro et al., 2016 [4]). The measured dispersion curves are used to invert for the 1D shear wave velocity structure beneath the study area and to obtain phase velocity tomographic maps. Our results show a pronounced low shear wave velocity anomaly between 70 and 120 km depth beneath the area; the lid shows high velocity, suggesting a cold, depleted and dehydrated shallow lithosphere, while the deeper lithosphere shows a velocity structure similar to young or rejuvenated Pacific oceanic lithosphere (Laske et al., 2011 [5]; Goes et al., 2012 [6]). Below the base of the lithosphere, shear wave velocities appear to be low, suggesting thermal effects and partial melting (as confirmed by petrological data). Decreasing velocities within the lithosphere south-westward reflect probably a thermal imprint of an underlying mantle plume. References [1] J.K. Rohde, P. van den Bogaard, K. Hoernle, F. Hauff, R. Werner, Evidence for an age progression along the Tristan-Gough volcanic track from new 40Ar/ 39Ar ages on phenocryst phases, Tectonophysics, Volume 604, p. 60-71 (2013). [2] S. French and B. Romanowicz, Broad plumes rooted at the base of the Earth's mantle beneath major hotspots, Nature, 525(7567), 95-99 (2015). [3] T. Meier, K. Dietrich, B. Stockhert and H. Harjes, One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Earth and Planetary Science Letters, 249(3), 415-424 (2004). [4] R.A. Soomro, C. Weidle, L. Cristiano, S. Lebedev, T. Meier and PASSEQ Working Group, Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements, Geophys. J. Int. (2016) 204, 517-534. [5] G. Laske, A. Markee, J.A. Orcutt, C.J. Wolfe, J.A. Collins and S.C. Solomon, R.S. Detrick, D. Bercovici and E.H. Hauri, Asymmetric shallow mantle structure beneath the Hawaiian Swell-evidence from Rayleigh waves recorded by the PLUME network, Geophys. J. Int. (2011) 187, 1725-1742. [6] S. Goes, J. Armitage, N. Harmon, H. Smith and R. Huismans, Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention, Journal of geophysical research, Vol. 117, B12403, (2012).
The Role of Water in the Stability of Cratonic Keels
NASA Technical Reports Server (NTRS)
Peslier, Anne H.; Woodland, Alan B.; Bell, David R.; Lazarov, Marina
2011-01-01
Cratons are typically underlain by large, deep, and old lithospheric keels (to greater than 200 km depth, greater than 2.5 Ga old) projecting into the asthenosphere (e.g., Jordan, 1978; Richardson et al., 1984). This has mystified Earth scientists as the dynamic and relatively hot asthenosphere should have eroded away these keels over time (e.g., Sleep, 2003; O'Neill et al., 2008; Karato, 2010). Three key factors have been invoked to explain cratonic root survival: 1) Low density makes the cratonic mantle buoyant (e.g., Poudjom Djomani et al., 2001). 2) Low temperatures (e.g., Pollack, 1986; Boyd, 1987), and 3) low water contents (e.g., Pollack, 1986), would make cratonic roots mechanically strong. Here we address the mechanism of the longevity of continental mantle lithosphere by focusing on the water parameter. Although nominally anhydrous , olivine, pyroxene and garnet can accommodate trace amounts of water in the form of H bonded to structural O in mineral defects (e.g., Bell and Rossman, 1992). Olivine softens by orders of magnitude if water (1-1000 ppm H2O) is added to its structure (e.g., Mackwell et al., 1985). Our recent work has placed constraints on the distribution of water measured in peridotite minerals in the cratonic root beneath the Kaapvaal in southern Africa (Peslier et al., 2010). At P greater than 5 GPa, the water contents of pyroxene remain relatively constant while those of olivine systematically decrease from 50 to less than 10 ppm H2O at 6.4 GPa. We hypothesized that at P greater than 6.4 GPa, i.e. at the bottom of the cratonic lithosphere, olivines are essentially dry (greater than 10 ppm H2O). As olivine likely controls the rheology of the mantle, we calculated that the dry olivines could be responsible for a contrast in viscosity between cratonic lithosphere and surrounding asthenosphere large enough to explain the resistance of cratonic root to asthenospheric delamination.
Extenstional terrain formation in icy satellites: Implications for ocean-surface interaction
NASA Astrophysics Data System (ADS)
Howell, Samuel M.; Pappalardo, Robert T.
2017-10-01
Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be “fossilized ocean,” ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. To explore the range in extensional terrains, we vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than specific mechanisms that are unique to each type of band, and discuss where in this spectrum ocean material incorporated at the bottom of the ice shell may be exposed on the satellite surface.
Extensional terrain formation on Europa and Ganymede: Implications for ocean-surface interaction
NASA Astrophysics Data System (ADS)
Howell, S. M.; Pappalardo, R. T.
2017-12-01
Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be "fossilized ocean," ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. We vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than any specific mechanism being unique to each type of band, and where in this spectrum ocean material incorporated at the bottom of the ice shell may be exposed on the satellite surface.
NASA Astrophysics Data System (ADS)
Nagihara, S.; Sclater, J. G.; Phillips, J. D.; Behrens, E. W.; Lewis, T.; Lawver, L. A.; Nakamura, Y.; Garcia-Abdeslem, J.; Maxwell, A. E.
1996-02-01
The seafloor depth of an oceanic basin reflects the average temperature of the lithosphere. Thus the western abyssal plain of the Gulf of Mexico, which has tectonically subsided much (>1 km) deeper than other basins of comparable ages (late Jurassic), should be underlain by an anomalously cold lithosphere. In order to examine this hypothesis, we made suites of high-accuracy heat flow measurements at 10 sites along a line connecting Deep Sea Drilling Project (DSDP) sites 90 and 91 in the Sigsbee abyssal plain. The new heat flow sites were initially surveyed by 3.5-kHz echo sounding, 4-channel seismic reflection, seismic refraction with eight ocean bottom seismometers, and nine piston cores. We occupied a total of 48 heat flow stations along the seismic survey line (3 to 6 at each site), including 28 where we measured in situ thermal conductivities over the practical depth interval (4 m) of the new multioutrigger bow heat flow probe. We determined the heat flow associated with the lithosphere by correcting the values measured at the seafloor (41 to 45 mW/m2) for (1) the thermal effect of the sedimentation and (2) the additional heat from the radioactive elements within the sediments. The sedimentation history, required for the first, was reconstructed at each heat flow site based on ages and thicknesses of the major seismic stratigraphical sequences, age data from the DSDP cores, 3.5-kHz subbottom reflectors, and correlation of turbidite units found in the piston cores. Radiogenic heat production was measured for 55 sediment samples from four DSDP holes in the gulf, whose age ranged from present to Early Cretaceous (0.83 μW/m3 on the average). This provided the correction for the second. The effects of these two secondary factors approximately cancel one another. The lithospheric heat flow under the abyssal plain thus estimated ranges from 40 to 47 mW/m2. These heat flow values are among the lowest in the Mesozoic ocean basins where highly reliable data (45 to 55 mW/m2) have been reported. Therefore the lithosphere under the gulf seems indeed colder than that under other old ocean basins. However, it is not as cold as expected from the large tectonic subsidence. The inconsistency between the depth and heat flow may imply an anomaly in the regional thermal isostasy.
Identifying mantle lithosphere inheritance in controlling intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-09-01
Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.
Lithospheric structure beneath Mainland China from ambient noise tomography
NASA Astrophysics Data System (ADS)
Huang, J.; Peng, J.; Liu, Z.
2017-12-01
The Chinese continent is composed of several Precambrian craton blocks and Phanerozoic orogenic belts. To better understand the complex geological structure and tectonic evolution, it is important to develop a high-resolution shear velocity model of the lithosphere. In this study, we try to use ambient noise tomography to image the lithospheric structure beneath mainland China. However, in contrast with most of the existing ambient noise tomography studies which focus on the surface wave at periods shorter than 60 s, we apply the technique of phase-weighted stack (PWS) (Schimmel et al., 2011) when stacking the cross-correlations of ambient noise. We could extract long-period ( 125 s) dispersions to image the high-resolution lithospheric structure. We collected continuous seismic records from the broadband stations of China Regional Seismic Networks and NECESSArray between Sept., 2009 and Aug., 2011. We constructed Rayleigh wave group and phase velocity maps on 0.25 ×0.25 degree grids, and then inverted a high-resolution lithospheric 3D shear velocity model up to 150 km depth. The results exhibited pronounced lateral heterogeneity of the lithospheric structure of the study area. It is obvious that the high velocities beneath the Ordos and Sichuan Basin exceeds 150 km, representing the strong and thick lithosphere. The lithospheric thickness gradually thins from west to east for the North China Craton (NCC) and the Yangtze Craton (YZC). The lithospheric thickness of the eastern NCC is about 80-90 km, and which beneath the Bohai Bay is thinnest, only 60-80 km. For the lower YZC and the Cathaysia block, the lithospheric thickness is about 70-80 km, slightly thinner than the eastern NCC. The observed thin lithosphere (about 60-80 km) beneath the eastern Northeast China is likely to be associated with the Tanlu fault and the Quaternary Changbaishan and Jingpohu volcano. The lithosphere thickness beneath the Tanlu fault is thin or absent, which possibly be related to the upwelling of the hot asthenosphere, and the fault provides channels. *This work was supported by National Key R&D Plan (Grant No. 2017YFC0601406). KEYWORDS: Ambient noise, Phase-weighted stack, Lithosphere, Shear velocity
Thermal Evolution of the North-Central Gulf Coast
NASA Astrophysics Data System (ADS)
Nunn, Jeffrey A.; Scardina, Allan D.; Pilger, Rex H., Jr.
1984-12-01
The subsidence history of the North Louisiana Salt Basin, determined from well data, indicates that the region underwent extension during rifting and has since passively subsided due to conductive cooling of the lithosphere. Timing of the rifting event is consistent with opening of the Gulf of Mexico during Late Triassic to Early Jurassic time. Crustal extension by a factor of 1.5 to 2 was computed from "tectonic" subsidence curves. However, data from the early subsidence history are insufficient to distinguish between uniform and nonuniform extension of the lithosphere. The magnitude of extension is in good agreement with total sediment and crustal thicknesses from seismic refraction data in the adjacent Central Mississippi Salt Basin. The temperature distribution within the sediments is calculated using a simple heat conduction model. Temperature and subsidence effects of thermal insulation by overlying sediments are included. The computed temperature distribution is in good agreement with bottom hole temperatures measured in deep wells. Temperature histories predicted for selected stratigraphic horizons within the North Louisiana Salt Basin suggest that thermal conditions have been favorable for hydrocarbon generation in the older stata. Results from a two-dimensional heat conduction model suggest that a probable cause for the early formation of the adjacent uplifts is lateral heat conduction from the basin. Rapid extension of the lithosphere underneath areas with horizontal dimensions of 50-100 km produces extremely rapid early subsidence due to lateral heat conduction. The moderate subsidence rate observed in the North Louisiana Salt Basin during the Jurassic and Early Cretaceous suggests slow extension over a long period of time.
NASA Astrophysics Data System (ADS)
Handy, M. R.; Ustaszewski, K. M.; Kissling, E. H.
2013-12-01
Kinematic reconstructions of the Alpine orogen from Late Cretaceous to present time reveal that slab tearing and switches of subduction polarity are related to two slab gaps presently imaged as low-velocity anomalies at the transition of the Eastern and Central Alps, and beneath the northern Dinarides. A lithosphere-scale transfer fault at the Alps-Dinarides join (ADT) linked S-directed subduction of the oceanic part of the European plate in the Alps with N-directed subduction of the continental part of the Adriatic plate in the Dinarides in Late Cretaceous to Paleogene time. Transfer faulting in the Dinarides was initially situated along a suture zone, then jumped westward no later than 40 Ma as thrusting and subduction affected more external units of the Alps and Dinarides. Late Eocene Alpine collision led to a slowing of Adria-Europe convergence and initial rupturing of the European and Adriatic slabs in Eocene-Oligocene time, when most of the oceanic lithosphere broke off. This thermally preconditioned the lithosphere for a radical reorganization of slabs and mantle flow in the Alpine domain beginning in early Miocene time. This included the onset of Carpathian rollback subduction, as well as counterclockwise rotation and N-ward subduction of Adriatic continental lithosphere into the space beneath the Eastern Alps that was vacated by foundering and renewed tearing of the European slab in Oligocene-early Miocene time. Our plate reconstructions indicate that this tear nucleated at the tip of a subducted sliver of European continental lithosphere coinciding with the present location of the narrow slab gap between the Eastern and Central Alps. This tear then propagated horizontally to the NE along the subducted boundary of the European margin and the Carpathian embayment of the Alpine Tethyan ocean. The surface response to slab tearing included peneplainization and uplift of part of the Eastern Alps. Transfer faulting along the ADT gave way to back-arc extension and strike-slip faulting behind the retreating Carpathian orogeny no later than 23 Ma. Continued NW-motion of the Adriatic microplate in Oligocene-Miocene time opened a gap along the former ADT which filled with upwelling asthenosphere. We speculate that this thermally eroded the Miocene slab beneath the northern Dinarides, giving rise to the present slab gap there. The forces governing motion of the Adriatic microplate changed both with time and the nature of the subducting lithosphere. From 84-35 Ma, the NW-retreat of the down-going European plate facilitated the independent motion of Adria at 1-2 cm/a with respect to Europe. Adria's motion may have been driven partly by suction behind this European slab which comprised mostly old oceanic lithosphere. With the onset of Alpine collision at c. 35 Ma, the slabs became gravitationally unstable and ruptured. N-ward subduction of a fragment of Adriatic continental lithosphere beneath the Eastern Alps in Miocene time was probably initiated by push from Africa and possibly enhanced by neutral to negative buoyancy of the slab itself which included dense lower crust of the Adriatic continental margin.
NASA Astrophysics Data System (ADS)
Muller, M. R.; Fullea, J.; Jones, A. G.
2010-12-01
Much of the long-running debate regarding the depth extent of the continental lithosphere beneath Archean shield areas has focussed on the Kaapvaal Craton of South Africa. Our recent magnetotelluric surveys across the Kaapvaal Craton, as part of the Southern African Magnetotelluric Experiment (SAMTEX), indicate a lithospheric thickness of the order of 220 km or greater for the central core of the craton. In contrast, a recently published S-wave receiver function study and several surface wave studies suggest that the Kaapvaal lithosphere is characterized by an approximately 160 km thick high-velocity “lid” underlain by a low-velocity layer that is between 65 - 150 km thick, with the base of the high-velocity lid inferred to represent the “lithosphere-asthenosphere boundary”. Other body-wave, surface wave and S-wave receiver function studies in the area suggest that the (high-velocity) lithosphere is substantially thicker, in excess of 250 km for the most part. Evidence from mantle xenolith pressure-temperature arrays derived from Mesozoic kimberlites found across the Kaapvaal Craton requires that the base of the lithosphere (i.e., the base of the thermal boundary layer above which a conductive geotherm is maintained) be at least 220 km deep, if observed mantle geotherms in the range 35 - 38 mWm-2 are to be accounted for. The presence of richly diamondiferous kimberlites across the Kaapvaal Craton is also impossible to reconcile with a 160 km lithospheric thickness: the top of the diamond (pressure-temperature) stability field is deeper than 160 km for the mantle geotherm associated with a 160 km lithospheric thickness. In the work presented here, we use the recently developed LitMOD software package to derive both seismic velocity and electrical resistivity models for the lithosphere that are fully chemically, petrologically and thermodynamically consistent, and assess whether these apparently disparate views of the Kaapvaal lithosphere - provided by seismic, magnetotelluric and xenolith studies - can be reconciled. We address directly several key issues: (i) whether a 160 km lithospheric thickness (and its associated temperature and pressure variation with depth) is “internally” consistent with the high (> 4.7 km/s) S-wave velocities predicted for the seismic high-velocity lid, given typical Kaapvaal geochemical compositions from xenolith analyses, (ii) whether a 160 km lithospheric thickness and its associated electrical resistivity variation with depth is consistent with observed magnetotelluric responses, and (iii) whether the observed (negative) mantle conversion event at 160 km depth in one S-wave receiver function study can be explained by compositional layering within the Kaapvaal Craton, given that the geochemistry of xenoliths from younger Group I kimberlites provides evidence for chemical refertilization of the lithosphere in the depth range 160 - 200 km.
NASA Astrophysics Data System (ADS)
Dziadek, R.; Ferraccioli, F.; Gohl, K.; Spiegel, C.; Kaul, N. E.
2017-12-01
The West Antarctic Rift System is one of the least understood rift systems on earth, but displays a unique coupled relationship between tectonic processes and ice sheet dynamics. Geothermal heat flux (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal heat flux for (paleo) ice sheet stability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 Ma to reach long-term thermal equilibrium. We discuss airborne, high-resolution magnetic anomaly data from the Amundsen Sea Sector, to provide additional insight into deeper crustal structures related to the West Antarctic Rift System in the Amundsen/Bellingshausen sector. With the depth-to-the-bottom of the magnetic source (DBMS) estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM thermal models in 2D and 3D.
NASA Astrophysics Data System (ADS)
Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.
2015-12-01
The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta block, the Perija Range, and the Merida Andes (Kellogg and Bonini, 1982). The steep descent of the CAR under Maracaibo implies that the CAR plate is torn somewhere between the Merida Andes and the Caribbean Sea, where it forms the ocean floor. An upcoming broadband seismic experiment will examine the CAR flat slab and the suspected slab tear in detail.
A global reference model of Moho depths based on WGM2012
NASA Astrophysics Data System (ADS)
Zhou, D.; Li, C.
2017-12-01
The crust-mantle boundary (Moho discontinuity) represents the largest density contrast in the lithosphere, which can be detected by Bouguer gravity anomaly. We present our recent inversion of global Moho depths from World Gravity Map 2012. Because oceanic lithospheres increase in density as they cool, we perform thermal correction based on the plate cooling model. We adopt a temperature Tm=1300°C at the bottom of lithosphere. The plate thickness is tested by varying by 5 km from 90 to 140 km, and taken as 130 km that gives a best-fit crustal thickness constrained by seismic crustal thickness profiles. We obtain the residual Bouguer gravity anomalies by subtracting the thermal correction from WGM2012, and then estimate Moho depths based on the Parker-Oldenburg algorithm. Taking the global model Crust1.0 as a priori constraint, we adopt Moho density contrasts of 0.43 and 0.4 g/cm3 , and initial mean Moho depths of 37 and 20 km in the continental and oceanic domains, respectively. The number of iterations in the inversion is set to be 150, which is large enough to obtain an error lower than a pre-assigned convergence criterion. The estimated Moho depths range between 0 76 km, and are averaged at 36 and 15 km in continental and oceanic domain, respectively. Our results correlate very well with Crust1.0 with differences mostly within ±5.0 km. Compared to the low resolution of Crust1.0 in oceanic domain, our results have a much larger depth range reflecting diverse structures such as ridges, seamounts, volcanic chains and subduction zones. Base on this model, we find that young(<5 Ma) oceanic crust thicknesses show dependence on spreading rates: (1) From ultraslow (<4mm/yr) to slow (4 45mm/yr) spreading ridges, the thicknesses increase dramatically; (2)From slow to fast (45 95mm/yr) spreading ridges , the thickness decreases slightly; (3) For the super-fast ridges (>95mm/yr) we observe relatively thicker crust. Conductive cooling of lithosphere may constrain the melting of the mantle at ultraslow spreading centers. Lower mantle temperatures indicated by deeper Curie depths at slow and fast spreading ridges may decrease the volume of magmatism and crustal thickness. This new global model of gravity-derived Moho depth, combined with geochemical and Curie point depth, can be used to investigate thermal evolution of lithosphere.
NASA Astrophysics Data System (ADS)
Mittelstaedt, E.; Soule, S.; Harpp, K.; Fornari, D.; McKee, C.; Tivey, M.; Geist, D.; Kurz, M. D.; Sinton, C.; Mello, C.
2012-05-01
Anomalous volcanism and tectonics between near-ridge mantle plumes and mid-ocean ridges provide important insights into the mechanics of plume-lithosphere interaction. We present new observations and analysis of multibeam, side scan sonar, sub-bottom chirp, and total magnetic field data collected during the R/V Melville FLAMINGO cruise (MV1007; May-June, 2010) to the Northern Galápagos Volcanic Province (NGVP), the region between the Galápagos Archipelago and the Galápagos Spreading Center (GSC) on the Nazca Plate, and to the region east of the Galápagos Transform Fault (GTF) on the Cocos Plate. The NGVP exhibits pervasive off-axis volcanism related to the nearby Galápagos hot spot, which has dominated the tectonic evolution of the region. Observations indicate that ˜94% of the excess volcanism in our survey area occurs on the Nazca Plate in three volcanic lineaments. Identified faults in the NGVP are consistent with normal ridge spreading except for those within a ˜60 km wide swath of transform-oblique faults centered on the GTF. These transform-oblique faults are sub-parallel to the elongation direction of larger lineament volcanoes, suggesting that lineament formation is influenced by the lithospheric stress field. We evaluate current models for lineament formation using existing and new observations as well as numerical models of mantle upwelling and melting. The data support a model where the lithospheric stress field controls the location of volcanism along the lineaments while several processes likely supply melt to these eruptions. Synthetic magnetic models and an inversion for crustal magnetization are used to determine the tectonic history of the study area. Results are consistent with creation of the GTF by two southward ridge jumps, part of a series of jumps that have maintained a plume-ridge separation distance of 145 km to 215 km since ˜5 Ma.
In-situ seismic record of potential sill intrusion at the ultraslow spreading Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Meier, M.; Schlindwein, V. S. N.
2017-12-01
Ultraslow spreading mid-ocean ridges with full spreading rates up to 15 mm/yr are described as the melt poor endmember of the entire mid-ocean ridge system. The melt supply along ultraslow spreading ridges is uneven resulting in the formation of volcanic centres and amagmatic segments. Amagmatic segments show thicker brittle lithosphere of up to 30 km, whereas magmatic segments have much thinner lithosphere of up to less than 15 km. It is supposed that melt travels along the lithosphere asthenosphere boundary from amagmatic segments to magmatic segments, where it can reach the seafloor and erupt. These spreading events are rare at ultraslow spreading ridges compared to faster spreading ridges and insitu observations hardly exist. During an ocean bottom seismometer (OBS) experiment at the eastern Southwest Indian Ridge two earthquake swarms were accidentally recorded. The swarms occurred in January and April 2013 and both lasted for a few days. The events of the earthquake swarms were relatively located with HypoDD for better spatial resolution. This unique dataset allowed for studying active spreading processes at an ultraslow spreading ridge. The earthquakes occurred in depths, where the magma chamber of the nearby Segment-8 volcano is located. This magma chamber potentially fed a sill intrusion, which was recorded as earthquake swarms. During the first hours of the first earthquake swarm a migration pattern was identified. The hypocentres migrated away from the Segment-8 volcanic centre and slightly downwards. Later events occurred more randomly in the active area. Simultaneously seismic tremor was recorded at the station closest to the swarm locations. The tremor lasted longer for the shorter earthquake swarm in April. During both tremor phases the signal was modulated with a 12 hour period. We speculate that a hydrothermal system was affected by the intrusion and fluid flow modulated by the tides produced the tremor signal.
Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A; Galli, Giulia
2013-04-23
Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth's deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones.
NASA Astrophysics Data System (ADS)
Suppe, J.; Wu, J.; Chen, Y. W.
2016-12-01
Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea nucleated as a small trench back-arc system along the East Asian Sea/Pacific boundary, adjacent to the Manus plume, somewhat analogous to the more recent nucleation of the Bismark Sea at the same Manus plume.
Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Tenzer, Robert
2017-07-01
In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).
Tear geometry at active STEPs: an analogue model approach
NASA Astrophysics Data System (ADS)
Broerse, Taco; Sokoutis, Dimitrios; Willingshofer, Ernst; Govers, Rob
2017-04-01
At the lateral end of a subduction zone, tearing of lithosphere is the result of subduction of oceanic lithosphere while adjacent buoyant continental lithosphere stays at the surface. The location of lithospheric tearing is called a Subduction-Transform-Edge-Propagator (STEP), which continuously extends the plate boundary between overriding plate and continental lithosphere. One of our areas of interest is the southern Caribbean where Atlantic lithosphere subducts below the Caribbean plate. Mantle tomography suggests a clear southern edge of the Lesser Antilles slab, which makes the boundary between the Caribbean and South America a clear STEP candidate. At the surface, the San Sebastián/El Pilar fault zone forms the plate boundary between the Caribbean and South America and the active STEP is located near Trinidad. For the deeper part of the damage/shear zone, some information is available from a recent 3D gravity study: significant lateral variability in densities of the lithospheric mantle to the south of the STEP fault zone. The low-density zone may result from higher sub-crustal temperatures, such as would arise from an asthenospheric window resulting from detachment. Interpreted in this way, the mantle part of the damage zone may be 200-250 km wide. So, while the location of the plate boundary at the surface is relatively well resolved, little is known about the deeper continuation of the active STEP in the mantle lithosphere. We study the evolution of the tearing process at a STEP using analogue models. In our models we use silicone putty (lithosphere) and glucose (asthenosphere). Solely gravitational forces resulting from density differences between oceanic lithosphere and asthenosphere drive our model. Lithospheric tearing commences after subduction has initiated. The geometry of the tear varies with the rheology of the lithosphere and asthenosphere, particularly Newtonian versus power-law. We investigate the dependence on model parameters of the width of the tearing zone and the depth at which tearing occurs.
NASA Astrophysics Data System (ADS)
Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.
2018-04-01
Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling studies as the steeper gradients of uplift predicted from the more realistic 3D model may promote stability in marine-grounded regions of West Antarctica. Including lateral variations in lithospheric thickness, at least to the level of considering West and East Antarctica separately, is important for capturing short wavelength deformation and it has the potential to provide a better fit to GPS observations as well as an improved GIA correction for GRACE data.
Deformation of island-arc lithosphere due to steady plate subduction
NASA Astrophysics Data System (ADS)
Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro
2016-02-01
Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction zones: a pair of topography and gravity anomalies, high in the arc and low around the trench, is observed without exceptions all over the world, while there are large variety in the amplitude and horizontal scale of the topography and gravity anomalies.
Different stages of collision zones on examples of Gujarat province (India) and Caucasus
NASA Astrophysics Data System (ADS)
Zabelina, Irina; Koulakov, Ivan; Ranjan Kayal, Jnana; Pratap Singh, Ajay; Kumar, Santosh; Kukarina, Ekaterina; Amanatashvili, Iason
2016-04-01
In this study we present seismic structures of the crust and upper mantle beneath two regions: Kachchh Gujarat region (India), and Caucasus that may represent different stages of the collisional processes. In both cases, the 3D seismic models were obtained based on tomography inversion of arrival times of P and S seismic waves from local and regional earthquakes. Collisional processes in the Caucasus region began 35 million years ago with the closure of the Tethys Ocean, and continues to this day. The rate of shortening between the Scythian and the Arabian plate is currently 1-2.2 mm/year. The tomography inversion used the dataset provided by several seismic agencies of the Caucasus region that contained 23,071 P- and 21,598 S-picks from 1374 events. The obtained P and S velocity models clearly delineate major tectonic units in the study area. A high velocity anomaly in Transcaucasian separating the Great and Lesser Caucasus possibly represents a rigid crustal block corresponding to the remnant oceanic lithosphere of Tethys. Another high-velocity pattern coincides with the southern edge of the Scythian Plate. Strongly deformed areas of Great and Lesser Caucasus are mostly associated with low-velocity patterns representing thickened felsic part of the crust and strong fracturing of rocks. Most Cenozoic volcanic centers of Caucasus match to the low-velocity seismic anomalies in the crust. We propose that the mantle part of the Arabian and Eurasian Plates has been delaminated due to the continental collision in the Caucasus region. As a result, overheated asthenosphere appeared nearly the bottom of the crust and facilitated melting of the crustal material that caused the origin of recent volcanism in Great and Lesser Caucasus. The Kachchh province, in contrast to the Caucasus, is far from any boundaries of major lithospheric plates. However, this area is one of the most seismically active in India. It is suggested that it may be a site of the lithosphere rupture and initiation of a new collision zone. For the tomography inversion of the Kachchh region we selected the data of 4105 earthquakes with arrival times 29660 P and 30278 S waves. Based on the obtained seismic anomalies, we identify the left-lateral displacement to approximately 70 km along a hidden fault. We suggest that this fault can be associated with a series of ridges having the SW-NE direction, which are clearly seen on the bathymetry of the Indian Ocean bottom. Northwards displacement of the Indo-Australian Plate and contraction with Asia causes strong compression deformations in the broad areas of the Indian Plate. The curved geometry of the western boundary of the Indo-Australian plate and orientations of the fracture zones presume both shear and compressional displacements along faults. The presence of both thrust and strike-slip mechanisms of earthquakes in the Kachchh province may support the existence of such combined deformations leading to initiation of a new collision belt.
In situ rheology of the oceanic lithosphere along the Hawaiian ridge
NASA Astrophysics Data System (ADS)
Pleus, A.; Ito, G.; Wessel, P.; Frazer, L. N.
2017-12-01
Much of our quantitative understanding of lithospheric rheology is based on rock deformation experiments carried out in the laboratory. The accuracy of the relationships between stress and lithosphere deformation, however, are subject to large extrapolations, given that laboratory strain rates (10-7 s-1) are much greater than geologic rates (10-15 to 10-12 s-1). In situ deformation experiments provide independent constraints and are therefore needed to improve our understanding of natural rheology. Zhong and Watts [2013] presented such a study around the main Hawaiian Islands and concluded that the lithosphere flexure requires a much weaker rheology than predicted by laboratory experiments. We build upon this study by investigating flexure around the older volcanoes of the Hawaiian ridge. The ridge is composed of a diversity of volcano sizes that loaded seafloor of nearly constant age (85+/-8 Ma); this fortunate situation allows for an analysis of flexural responses to large variations in applied loads at nearly constant age-dependent lithosphere thermal structure. Our dataset includes new marine gravity and multi-beam bathymetry data collected onboard the Schmidt Ocean Institute's R/V Falkor. These data, along with forward models of lithospheric flexure, are used to obtain a joint posterior probability density function for model parameters that control the lithosphere's flexural response to a given load. These parameters include the frictional coefficient constraining brittle failure in the shallow lithosphere, the activation energy for the low-temperature plasticity regime, and the geothermal gradient of the Hawaiian lithosphere. The resulting in situ rheological parameters may be used to verify or update those derived in the lab. Attaining accurate lithospheric rheological properties is important to our knowledge, not only of the evolution of the Hawaiian lithosphere, but also of other solid-earth geophysical problems, such as oceanic earthquakes, subduction dynamics, and coastal topographic response to sea level rise.
NASA Astrophysics Data System (ADS)
Janiszewski, Helen; Gaherty, James; Abers, Geoffrey; Gao, Haiying
2017-04-01
The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.
NASA Astrophysics Data System (ADS)
Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.
2016-12-01
The Cascadia subduction zone (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction zone and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-wave phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-wave phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh waves provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh waves; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.
High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.
Lin, Pei-Ying Patty; Gaherty, James B; Jin, Ge; Collins, John A; Lizarralde, Daniel; Evans, Rob L; Hirth, Greg
2016-07-28
Convective flow in the mantle and the motions of tectonic plates produce deformation of Earth's interior, and the rock fabric produced by this deformation can be discerned using the anisotropy of the seismic wave speed. This deformation is commonly inferred close to lithospheric boundaries beneath the ocean in the uppermost mantle, including near seafloor-spreading centres as new plates are formed via corner flow, and within a weak asthenosphere that lubricates large-scale plate-driven flow and accommodates smaller scale convection. Seismic models of oceanic upper mantle differ as to the relative importance of these deformation processes: seafloor spreading fabric is very strong just beneath the crust-mantle boundary (the Mohorovičić discontinuity, or Moho) at relatively local scales, but at the global and ocean-basin scales, oceanic lithosphere typically appears weakly anisotropic when compared to the asthenosphere. Here we use Rayleigh waves, recorded across an ocean-bottom seismograph array in the central Pacific Ocean (the NoMelt Experiment), to provide unique localized constraints on seismic anisotropy within the oceanic lithosphere-asthenosphere system in the middle of a plate. We find that azimuthal anisotropy is strongest within the high-seismic-velocity lid, with the fast direction coincident with seafloor spreading. A minimum in the magnitude of azimuthal anisotropy occurs within the middle of the seismic low-velocity zone, and then increases with depth below the weakest portion of the asthenosphere. At no depth does the fast direction correlate with the apparent plate motion. Our results suggest that the highest strain deformation in the shallow oceanic mantle occurs during corner flow at the ridge axis, and via pressure-driven or buoyancy-driven flow within the asthenosphere. Shear associated with motion of the plate over the underlying asthenosphere, if present, is weak compared to these other processes.
3D Integrated geophysical-petrological modelling of the Iranian lithosphere
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ardestani, Vahid E.; Ebbing, Jörg; Fullea, Javier
2016-04-01
The present-day Iranian Plateau is the result of complex tectonic processes associated with the Arabia-Eurasia Plate convergence at a lithospheric scale. In spite of previous mostly 2D geophysical studies, fundamental questions regarding the deep lithospheric and sub-lithospheric structure beneath Iran remain open. A robust 3D model of the thermochemical lithospheric structure in Iran is an important step toward a better understanding of the geological history and tectonic events in the area. Here, we apply a combined geophysical-petrological methodology (LitMod3D) to investigate the present-day thermal and compositional structure in the crust and upper mantle beneath the Arabia-Eurasia collision zone using a comprehensive variety of constraining data: elevation, surface heat flow, gravity potential fields, satellite gravity gradients, xenoliths and seismic tomography. Different mantle compositions were tested in our model based on local xenolith samples and global data base averages for different tectonothermal ages. A uniform mantle composition fails to explain the observed gravity field, gravity gradients and surface topography. A tectonically regionalized lithospheric mantle compositional model is able to explain all data sets including seismic tomography models. Our preliminary thermochemical lithospheric study constrains the depth to Moho discontinuity and intra crustal geometries including depth to sediments. We also determine the depth to Curie isotherm which is known as the base of magnetized crustal/uppermost mantle bodies. Discrepancies with respect to previous studies include mantle composition and the geometry of Moho and Lithosphere-Asthenosphere Boundary (LAB). Synthetic seismic Vs and Vp velocities match existing seismic tomography models in the area. In this study, depleted mantle compositions are modelled beneath cold and thick lithosphere in Arabian and Turan platforms. A more fertile mantle composition is found in collision zones. Based on our 3D thermochemical model we propose a new scenario to interpret the geodynamical history of area. In this context the present-day central Iran block would be as remain of the older and larger Iranian block present before the onset of Turan platform subduction beneath the Iranian Plateau. Further analysis of sub-lithospheric density anomalies (e.g., subducted slabs) is required to fully understand the geodynamics of the area.
NASA Astrophysics Data System (ADS)
Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun
2016-03-01
Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.
NASA Astrophysics Data System (ADS)
Oruç, Bülent; Gomez-Ortiz, David; Petit, Carole
2017-12-01
The Lithospheric structure of Eastern Anatolia and the surrounding region, including the northern part of the Arabian platform is investigated via the analysis and modeling of Bouguer anomalies from the Earth Gravitational Model EGM08. The effective elastic thickness of the lithosphere (EET) that corresponds to the mechanical cores of the crust and lithospheric mantle is determined from the spectral coherence between Bouguer anomalies and surface elevation data. Its average value is 18.7 km. From the logarithmic amplitude spectra of Bouguer anomalies, average depths of the lithosphere-asthenosphere boundary (LAB), Moho, Conrad and basement in the study area are constrained at 84 km, 39 km, 16 km and 7 km, respectively. The geometries of the LAB and Moho are then estimated using the Parker-Oldenburg inversion algorithm. We also present a lithospheric strength map obtained from the spatial variations of EET determined by Yield Stress Envelopes (YSE). The EET varies in the range of 12-23 km, which is in good agreement with the average value obtained from spectral analysis. Low EET values are interpreted as resulting from thermal and flexural lithospheric weakening. According to the lithospheric strength of the Eastern Anatolian region, the rheology model consists of a strong but brittle upper crust, a weak and ductile lower crust, and a weak lower part of the lithosphere. On the other hand, lithosphere strength corresponds to weak and ductile lower crust, a strong upper crust and a strong uppermost lithospheric mantle for the northern part of the Arabian platform.
NASA Astrophysics Data System (ADS)
Merz, D. K.; Caplan-Auerbach, J.; Thurber, C. H.
2013-12-01
The Island of Hawai';i is home to the most active volcanoes in the Hawaiian Islands. The island's isolated nature, combined with the lack of permanent offshore seismometers, creates difficulties in recording small magnitude earthquakes with accuracy. This background offshore seismicity is crucial in understanding the structure of the lithosphere around the island chain, the stresses on the lithosphere generated by the weight of the islands, and how the volcanoes interact with each other offshore. This study uses the data collected from a 9-month deployment of a temporary ocean bottom seismometer (OBS) network fully surrounding Lo';ihi volcano. This allowed us to widen the aperture of earthquake detection around the Big Island, lower the magnitude detection threshold, and better constrain the hypocentral depths of offshore seismicity that occurs between the OBS network and the Hawaii Volcano Observatory's land based network. Although this study occurred during a time of volcanic quiescence for Lo';ihi, it establishes a basis for background seismicity of the volcano. More than 480 earthquakes were located using the OBS network, incorporating data from the HVO network where possible. Here we present relocated hypocenters using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), as well as tomographic images for a 30 km square area around the summit of Lo';ihi. Illuminated by using the double-difference earthquake location algorithm HypoDD (Waldhauser & Ellsworth, 2000), offshore seismicity during this study is punctuated by events locating in the mantle fault zone 30-50km deep. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Wolfe et al., 2004; Pritchard et al., 2007). Tomography was performed using the double-difference seismic tomography method TomoDD (Zhang & Thurber, 2003) and showed overall velocities to be slower than the regional velocity model (HG50; Klein, 1989) in the shallow lithosphere above 16 km depth. This is likely a result of thick deposits of volcaniclastic sediments and fractured pillow basalts that blanket the southern submarine flank of Mauna Loa, upon which Lo';ihi is currently superimposing (Morgan et al., 2003). A broad, low-velocity anomaly was observed from 20-40 km deep beneath the area of Pahala, and is indicative of the central plume conduit that supplies magma to the active volcanoes. A localized high-velocity body is observed 4-6 km deep beneath Lo';ihi's summit, extending 10 km to the North and South. Oriented approximately parallel to Lo';ihi's active rift zones, this high-velocity body is suggestive of intrusion in the upper crust, similar to Kilauea's high-velocity rift zones.
Artemieva, I.M.; Thybo, H.; Kaban, M.K.; ,
2006-01-01
We present a summary of geophysical models of the subcrustal lithosphere of Europe. This includes the results from seismic (reflection and refraction profiles, P- and S-wave tomography, mantle anisotropy), gravity, thermal, electromagnetic, elastic and petrological studies of the lithospheric mantle. We discuss major tectonic processes as reflected in the lithospheric structure of Europe, from Precambrian terrane accretion and subduction to Phanerozoic rifting, volcanism, subduction and continent-continent collision. The differences in the lithospheric structure of Precambrian and Phanerozoic Europe, as illustrated by a comparative analysis of different geophysical data, are shown to have both a compositional and a thermal origin. We propose an integrated model of physical properties of the European subcrustal lithosphere, with emphasis on the depth intervals around 150 and 250 km. At these depths, seismic velocity models, constrained by body-and surface-wave continent-scale tomography, are compared with mantle temperatures and mantle gravity anomalies. This comparison provides a framework for discussion of the physical or chemical origin of the major lithospheric anomalies and their relation to large-scale tectonic processes, which have formed the present lithosphere of Europe. ?? The Geological Society of London 2006.
NASA Technical Reports Server (NTRS)
Stein, M.
1988-01-01
The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.
Plume-lithosphere interaction: Effects on the seismic anisotropy of the lithospheric mantle
NASA Astrophysics Data System (ADS)
Vauchez, A.; Tommasi, A.
2003-04-01
Interaction between a hot asthenospheric mantle and the base of the lithosphere above a mantle plume involves heat and mass transfer through melting and fluids percolation. These processes alter the mineralogy, microstructure and geochemical signature of the lithospheric mantle; altogether they lead to an asthenospherization, and thus to erosion of the lithosphere. Does this evolution modify or even erase the seismic anisotropy of the initial lithospheric mantle? In other words, is the structural memory of the lithospheric mantle preserved in such geodynamic situations? Insights on this process are provided by the measurement of the Lattice Preferred Orientation of rock-forming minerals and the computation of seismic properties of mantle rocks from the Ronda Peridotite Massif, and of xenoliths from Tanzania and Polynesia volcanoes. The Ronda massif displays clear microstructural and geochemical variations characterizing the limit between an ancient lithospheric mantle and its asthenospherized counterpart that has undergone partial melting and magmas percolation. The LPO measured in peridotites from both domains is quite similar and so are seismic properties, suggesting that the tectonic fabric inherited from previous deformation and the resulting seismic anisotropy are only slightly modified by asthenospherization. The Labait volcano in Tanzania sampled the Tanzania craton lithospheric mantle at depths between 150 km and less than 70 km. Although significant annealing and exaggerated grain growth of olivine occur between 70 km and 120 km the olivine LPO does not vary significantly, suggesting that the initial anisotropy of the lithospheric was preserved. Xenoliths from several Polynesian volcanoes display composition and geochemistry that suggest percolation of variable amounts of melt in the lithospheric mantle up to relatively shallow depths. Samples that have underwent the most percolation display very weak olivine LPO, and are almost seismically isotropic. Altogether the results of these studies suggest that asthenospherization does not necessarily erase the inherited seismic anisotropy of the older, previously structured, lithosphere. As far as melting and melt-rock interaction remain moderate the LPO of olivine, and thus the seismic anisotropy of the lithospheric mantle are largely preserved. However, when melt-rock interactions become large enough, then the lithospheric seismic anisotropy signature of the mantle may be erased.
NASA Astrophysics Data System (ADS)
Sun, Yujun; Fan, Taoyuan; Wu, Zhonghai
2018-05-01
Both of the southern and eastern margins of the Tibetan Plateau are bounded by the cratonic blocks (Indian plate and Sichuan basin). However, there are many differences in tectonic deformation, lithospheric structure and surface heat flow between these two margins. What dynamics cause these differences? With the constraints of the lithospheric structure and surface heat flow across the southern and eastern margins of Tibetan Plateau, we constructed 2-D thermal-mechanical finite-element models to investigate the dynamics across these two margins. The results show that the delamination of mantle lithosphere beneath the Lhasa terrane in Oligocene and the rheological contrast between the Indian and Tibetan crust are the two main factors that control the subduction of the Indian plate. The dynamics across the eastern margin of the Tibetan Plateau are different from the southern margin. During the lateral expansion of the Tibetan Plateau, pure shear thickening is the main deformation characteristic for the Songpan-Ganzi lithosphere. This thickening results in the reduction of geothermal gradient and surface heat flow. From this study, it can be seen that the delamination of the mantle lithosphere and the rheological contrast between the Tibetan Plateau and its bounding blocks are the two main factors that control the lithospheric deformation and surface heat flow.
NASA Astrophysics Data System (ADS)
Cui, Qinghui; Wei, Rongqiang; Zhou, Yuanze; Gao, Yajian; Li, Wenlan
2018-01-01
The lithosphere-asthenosphere boundary (LAB) is the seismic discontinuity with negative velocity contrasts in the upper mantle. Seismic detections on the LAB are of great significance in understanding the plate tectonics, mantle convection and lithospheric evolution. In this paper, we study the LAB in the Izu-Bonin subduction zone using four deep earthquakes recorded by the permanent and temporary seismic networks of the USArray. The LAB is clearly revealed with sP precursors (sdP) through the linear slant stacking. As illustrated by reflected points of the identified sdP phases, the depth of LAB beneath the Izu-Bonin Arc (IBA) is about 65 km with a range of 60-68 km. The identified sdP phases with opposite polarities relative to sP phases have the average relative amplitude of 0.21, which means a 3.7% velocity drop and implies partial melting in the asthenosphere. On the basis of the crustal age data, the lithosphere beneath the IBA is located at the 1100 °C isotherm calculated with the GDH1 model. Compared to tectonically stable areas, such as the West Philippine Basin (WPB) and Parece Vela Basin (PVB) in the Philippine Sea, the lithosphere beneath the Izu-Bonin area shows the obvious lithospheric thinning. According to the geodynamic and petrological studies, the oceanic lithospheric thinning phenomenon can be attributed to the strong erosion of the small-scale convection in the mantle wedge enriched in volatiles and melts.
Lithosphere thickness in the Gulf of California region
NASA Astrophysics Data System (ADS)
Fernández, Alejandra; Pérez-Campos, Xyoli
2017-11-01
The Gulf of California has a long tectonic history. Before the subduction of the Guadalupe and Magdalena plates ceased, extension of the Gulf began to the east, at the Basin and Range province. Later, it was focused west of the Sierra Madre Occidental and the opening of the Gulf started. Currently, the Gulf rifting has different characteristics to the north than to the south. In this study, we analyze the lithosphere thickness in the Gulf of California region by means of P-wave and S-wave receiver functions. We grouped our lithosphere-thickness estimates into five froups: 1) North of the Gulf, with a thin lithosphere ( 50 km) related to the extension observed in the Salton Through region; 2) the northwestern part of Baja California, with a thicker lithosphere ( 80 km), thinning towards the Gulf due to the extension and opening processes ( 65 km); 3) central Baja California, with no converted phase corresponding to the lithosphere-asthenosphere boundary but evidence of the presence of a slab remnant; 4) the southern Baja California peninsula, showing a shallow lithosphere-astenosphere boundary (LAB) (< 55 km) and a lithosphere thinning towards the Gulf; and 5) the eastern Gulf margin with lithosphere thinning towards the south. These groups can be further assembled into three regions: A) The northernmost Gulf, where both margins of the Gulf show a relatively constant lithosphere thickness, consistent with an old basement in Sonora and the presence of the Peninsular Ranges batholith in northern Baja California, thinning up towards the axis of the rift in the northernmost Gulf. B) Central and southern Gulf, where the lithosphere thickness in this region ranges from 40 to 55 km, which is consistent with the presence of a younger crust. C) Central Baja California peninsula, where LAB is not detected; but there is evidence of a slab remnant.
NASA Astrophysics Data System (ADS)
Robinson, A. H.; Peirce, C.; Funnell, M.; Watts, A. B.; Grevemeyer, I.
2016-12-01
Oceanic intraplate volcanoes (OIVs) represent a record of the modification of the oceanic crust by volcanism related to a range of processes including hot-spots, small scale mantle convection, and localised lithospheric extension. Geophysical studies of OIVs show a diversity in crustal and upper mantle structures, proposed to exist on a spectrum between two end-members where the main control is the age of the lithosphere at the time of volcanism. This hypothesis states that where the lithosphere is older, colder, and thicker it is more resistant to vertical magmatism than younger, hotter, thinner lithosphere. It is suggested that the Moho acts as a density filter, permitting relatively buoyant magma to vertically intrude the crust, but preventing denser magma from ascending to shallow levels. A key control may therefore be the melting depth, known to affect magma composition, and itself related to lithosphere age. Combined geophysical approaches allow us to develop robust models for OIV crustal structures with quantifiable resolution and uncertainty. As a case study, we present results from a multi-approach geophysical experiment at the Louisville Ridge Seamount Chain, believed to have formed on young (<10 Ma) lithosphere, which aimed at characterising the along-ridge crustal structure. The wide-angle seismic crustal model, generated by independent forward and inverse travel-time modelling of picked arrivals, is tested against reflection and gravity data. We compare our observations with studies of other OIVs to test whether lithospheric age controls OIV structure. Comparisons are limited by the temporal and spatial distribution of lithosphere and volcano ages, but suggest the hypothesis does not hold for all OIV features. While age may be the main control on OIV structure, as it determines lithosphere thermal and mechanical properties, other factors such as thermal rejuvenation, mechanical weakening, and volcano load size and distribution, may also come into play.
The importance of structural softening for the evolution and architecture of passive margins
Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.
2016-01-01
Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057
Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar
NASA Astrophysics Data System (ADS)
Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.
2017-12-01
The rheological structure of the lithosphere-asthenosphere system controls the degree in which the mantle drives surface motions. Seismic anisotropy is a proxy to infer information about previous tectonic events imprinted in lithospheric structures and/or asthenospheric flow pattern in regions absent of active volcanism, however, distinguishing between the shallow and deeper sources, respectively, remains ambiguous. Madagascar is an ideal natural laboratory to study the sources of anisotropy and the rheological implications for lithosphere-asthenosphere system because 1) active volcanism is minimal or absent, 2) there are well-exposed tectonic fabrics for comparison, and 3) numerous geological and geophysical observations provides evidence of present-day tectonic activities. Recent studies suggest new seismic anisotropy observations in southern Madagascar are sourced from both fossilized lithospheric structure and asthenospheric flow driven by rigid lithospheric plate motion. In this work we compare geodynamic simulations of the lithosphere-asthenosphere system with seismic anisotropy data set that includes all of Madagascar. We use the numerical code Advanced Solver for Problems in Earth's ConvecTion (ASPECT) to calculate instantaneous deformation in the lithosphere and edge-driven convective flow in the asthenosphere accounting for variations in buoyancy forces and temperature dependent viscosity. The initial temperature conditions are based on interpretations from high resolution regional surface wave tomography. We assume visco-plastic rheology for a uniform crust, dislocation creep for a laterally varying mantle lithospheric structure, and diffusion creep for the asthenosphere. To test for the source of anisotropy we compare our velocity solution azimuths with azimuths of anisotropy at 25 km depth intervals. Calculated asthenospheric flow aligns with measured seismic anisotropy with a 15° WRMS at 175 km depth and possibly down to 250 km suggesting the majority of the seismic anisotropy are due to sub-lithospheric asthenospheric flow beneath Madagascar. Our results suggest the dislocation creep regime extends beneath the lithosphere, which implies the rheology of the upper asthenosphere deforms by dislocation creep rather than diffusion creep.
NASA Astrophysics Data System (ADS)
Cunningham, E.; Lekic, V.
2017-12-01
Despite being on a passive margin for millions of years, the Southeastern United States (SEUS) contains numerous seismogenic zones with the ability to produce damaging earthquakes. However, mechanisms controlling these intraplate earthquakes are poorly understood. Recently, Biryol et al. 2016 use P-wave tomography suggest that upper mantle structures beneath the SEUS correlate with areas of seismicity and seismic quiescence. Specifically, thick and fast velocity lithosphere beneath North Carolina is stable and indicative of areas of low seismicity. In contrast, thin and slow velocity lithosphere is weak, and the transition between the strong and weak lithosphere may be correlated with seismogenic zones found in the SEUS. (eg. Eastern Tennessee seismic zone and the Central Virginia seismic zone) Therefore, I systematically map the heterogeneity of the mantle lithosphere using converted seismic waves and quantify the spatial correlation between seismicity and lithospheric structure. The extensive network of seismometers that makes up the Earthscope USArray combined with the numerous seismic deployments in the Southeastern United States allows for unprecedented opportunity to map changes in lithospheric structure across seismogenic zones and seismic quiescent regions. To do so, I will use both P-to-s and S-to-p receiver functions (RFS). Since RFs are sensitive to seismic wavespeeds and density discontinuities with depth, they particularly useful for studying lithospheric structure. Ps receiver functions contain high frequency information allowing for high resolution, but can become contaminated by large sediment signals; therefore, I removed sediment multiples and correct for time delays of later phases using the method of Yu et. al 2015 which will allow us to see later arriving phases associated with lithospheric discontinuities. S-to-p receiver functions are not contaminated by shallow layers, making them ideal to study deep lithospheric structures but they can suffer from low signal-to-noise levels. I compensate for this difficulty by using high quality deployments and stacking these data at common conversion points to increase lateral resolution.
NASA Astrophysics Data System (ADS)
Lezaeta, P.; Chave, A.; Evans, R.; Jones, A. G.; Ferguson, I.
2002-12-01
The Slave Craton, northwestern Canada, contains the oldest known rocks on Earth, with exposed outcrop over an area of about 600x400 km2. The discovery of economic diamondiferous kimberlite pipes during the early 1990s motivated extensive research in the region. Over the last six years, four types of deep-probing magnetotelluric (MT) surveys were conducted within the framework of diverse geoscientific programs, aimed at determining the regional-scale electrical structures of the craton. Two of the surveys involved novel acquisition; one through frozen lake ice along ice roads during winter, and the second deploying ocean-bottom instrumentation from float planes during summer. The latter surveys required one year of recording between summers, thus allowing long period transfer functions that lead to mantle penetration depths of over 300 km. Two-dimensional modeling of the MT data from along the winter road showed the existence of a high conductivity zone at depths of 80-120 km beneath the central Slave craton. This anomalous region is spatially coincident with an ultradepleted harzburgitic layer in the upper mantle that was interpreted by others to be related to a subducted slab emplaced during the mid-Archean. A 3-D electrical conductivity model of the Slave lithosphere has been obtained, by trial and error, to fit the magnetic transfer and MT response functions from the lake experiments. This 3-D model traces the central Slave conductor as a NE-SW oriented mantle structure. Its NE-SW orientation coincides with that of a late fold belt system, with the first phase of craton-wide plutonism at ca 2630-2590 Ma, three-part subdivision of the craton based on SKS results, and with a G10 (garnet) geochemical mantle boundaries. All of these highlight a NE-SW structural grain to the lithospheric mantle of the craton, in sharp contrast to the N-S grain of the crust. Constraints on the depth range and lateral extension of the electrical conductive structure are obtained through a sensitivity analysis to verify a recent hypothesis about tectonic imbrication of lithosphere emplaced at ca 2.6 Ga in which SE-NW subduction is proposed. If such subduction has taken place, and arc-related or oceanic lithosphere has been trapped in the system, then an enhanced conductivity in the mantle deepening to NW supports the tectonic model.
NASA Astrophysics Data System (ADS)
Muller, M. R.; Fullea, J.; Jones, A. G.; Adam, J.; Lebedev, S.; Piana Agostinetti, N.
2012-12-01
Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D seismic velocity, density, electrical resistivity and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB as defined above) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: new surface-wave dispersion data, published SRFs, MT responses, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 μWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model (consistent with mantle xenoliths), with lithospheric thickness in excess of 220 km, is required to match all geophysical constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs will assess whether this chemical transition may account for the reported S-to-P conversion event at 160 km depth. However, in this this instance the SRF conversion event would not represent the petrological/thermal LAB.
NASA Astrophysics Data System (ADS)
Muller, Mark; Fullea, Javier; Jones, Alan G.; Adam, Joanne; Lebedev, Sergei; Piana Agostinetti, Nicola
2013-04-01
Results from recent geophysical and mantle-xenolith geochemistry studies of the Kaapvaal Craton appear, at times, to provide disparate views of the physical, chemical and thermal structure of the lithosphere. Models from our recent SAMTEX magnetotelluric (MT) surveys across the Kaapvaal Craton indicate a resistive, 220-240 km thick lithosphere for the central core of the craton. One published S-wave receiver function (SRF) study and other surface-wave studies suggest a thinner lithosphere characterised by a ~160 km thick high-velocity "lid" underlain by a low-velocity zone (LVZ) of between 65-150 km in thickness. Other seismic studies suggest that the (high-velocity) lithosphere is thicker, in excess of 220 km. Mantle xenolith pressure-temperature arrays from Mesozoic kimberlites require that the base of the "thermal" lithosphere (i.e., the depth above which a conductive geotherm is maintained - the tLAB) is at least 220 km deep, to account for mantle geotherms in the range 35-38 mWm-2. Richly diamondiferous kimberlites across the Kaapvaal Craton require a lithospheric thickness substantially greater than 160 km - the depth of the top of the diamond stability field. In this paper we use the recently developed LitMod software code to derive, thermodynamically consistently, a range of 1-D electrical resistivity, seismic velocity, density and temperature models from layered geochemical models of the lithosphere based on mantle xenolith compositions. In our work, the "petrological" lithosphere-asthenosphere boundary (pLAB) (i.e., the top of the fertile asthenospheric-mantle) and the "thermal" LAB (tLAB) are coincident. Lithospheric-mantle models are found simultaneously satisfying all geophysical observables: MT responses, new surface-wave dispersion data, published SRFs, surface elevation and heat-flow. Our results show: 1. All lithospheric-mantle models are characterised by a seismic LVZ with a minimum velocity at the depth of the petrological/thermal LAB. The top of the LVZ does not correspond with the LAB. 2. Thin (~160 km-thick) lithospheric-mantle models are consistent with surface elevation and heat-flow observations only for unreasonably low average crustal heat production values (~0.4 µWm-3). However, such models are inconsistent both with the surface-wave dispersion data and youngest (Group I) palaeo-geotherms defined by xenolith P-T arrays. 3. A three-layered geochemical model, with lithospheric thickness in excess of 230 km, is required to match all geophysical and xenolith constraints. 4. The chemical transition from a depleted harzburgitic composition (above) to a refertilised high-T lherzolitic composition (below) at 160 km depth produces a sharp onset of the seismic LVZ and a sharp increase in density. Synthetic SRFs indicate that this chemical transition is able to account for the reported S-to-P conversion event at 160 km depth. In this this instance the 160 km deep SRF event does not represent the petrological/thermal LAB.
NASA Astrophysics Data System (ADS)
Hopper, E.; Gaherty, J. B.; Shillington, D. J.
2016-12-01
Continental extension comes in many guises, often described in terms of two endmembers. Narrow rifting is typified by a rift valley narrower than lithospheric thickness (50-100 km), presumed to result in steep lateral changes in crustal and lithospheric topography; wide rifting by a broad zone (<1000 km) of normal faulting associated with much smaller topographic gradients. A type example for the former is the East African Rift Valley; for the latter, the Basin and Range in the western U.S.A. An important control on rift development is the state of the lithosphere: for example, its strength and thickness. We analyse common conversion point stacked Sp converted wave images of the lithosphere beneath rift systems in the contiguous U.S., both the wide Basin and Range, and narrow rift systems such as the Rio Grande Rift and Salton Trough. We use Sp waves recorded by EarthScope's Transportable Array and other available permanent and temporary broadband stations. Beneath the Basin and Range, we observe a very strong, shallow velocity decrease (the lithosphere-asthenosphere boundary, or LAB) that is relatively uniform over 100s of km. The strength of this feature indicates melt has ponded at this transition. We have not observed a clear relationship between lithospheric thickness beneath the Basin and Range, and total degree of extension, current extension rate, or age since surface volcanism. Beneath narrow rifts in the western U.S., however, more localised thinning of the lithosphere has been observed. We also compare these observations with seismic images of the Malawi Rift, at the southern end of the Western Branch of the East African Rift System, using broadband data acquired as part of the Study of Extension and MaGmatism in Malawi aNd Tanzania (SEGMeNT) experiment. The Malawi Rift is extending slowly in a magma-poor region of relatively strong lithosphere. We constrain the pattern of plate-scale extension by observations of crustal thinning, and image complex variations in deeper lithospheric structure.
NASA Astrophysics Data System (ADS)
Hopper, E.; Gaherty, J. B.; Shillington, D. J.
2017-12-01
Continental extension comes in many guises, often described in terms of two endmembers. Narrow rifting is typified by a rift valley narrower than lithospheric thickness (50-100 km), presumed to result in steep lateral changes in crustal and lithospheric topography; wide rifting by a broad zone (<1000 km) of normal faulting associated with much smaller topographic gradients. A type example for the former is the East African Rift Valley; for the latter, the Basin and Range in the western U.S.A. An important control on rift development is the state of the lithosphere: for example, its strength and thickness. We analyse common conversion point stacked Sp converted wave images of the lithosphere beneath rift systems in the contiguous U.S., both the wide Basin and Range, and narrow rift systems such as the Rio Grande Rift and Salton Trough. We use Sp waves recorded by EarthScope's Transportable Array and other available permanent and temporary broadband stations. Beneath the Basin and Range, we observe a very strong, shallow velocity decrease (the lithosphere-asthenosphere boundary, or LAB) that is relatively uniform over 100s of km. The strength of this feature indicates melt has ponded at this transition. We have not observed a clear relationship between lithospheric thickness beneath the Basin and Range, and total degree of extension, current extension rate, or age since surface volcanism. Beneath narrow rifts in the western U.S., however, more localised thinning of the lithosphere has been observed. We also compare these observations with seismic images of the Malawi Rift, at the southern end of the Western Branch of the East African Rift System, using broadband data acquired as part of the Study of Extension and MaGmatism in Malawi aNd Tanzania (SEGMeNT) experiment. The Malawi Rift is extending slowly in a magma-poor region of relatively strong lithosphere. We constrain the pattern of plate-scale extension by observations of crustal thinning, and image complex variations in deeper lithospheric structure.
Thermal anomalies and magmatism due to lithospheric doubling and shifting
NASA Astrophysics Data System (ADS)
Vlaar, N. J.
1983-11-01
We present some thermal and magmatic consequences of the processes of lithospheric doubling and lithospheric shifting. Lithospheric doubling concerns the obduction of a cold continental or old oceanic lithospheric plate over a young and hot oceanic lithosphere/upper mantle system, including an oceanic ridge. Lithospheric shifting concerns the translation and rotation of a lithospheric plate relative to the upper mantle. In both cases the resulting thermal state of the upper mantle below the obducting or shifting lithosphere may be perturbed relative to a "normal" continental or oceanic geothermal situation. The perturbed geothermal state gives rise to a density inversion at depth and thus induces a vertical gravitational instability which favours magmatism. We speculate about the magmatic consequences of this situation and infer that in the case of lithospheric doubling our model may account for the petrology and geochemistry of the resulting magma. The original layering and composition of the overridden young oceanic lithosphere may strongly influence magmatic processes. We dwell shortly on the genesis of kimberlites within the framework of our lithospheric doubling model and on magmatism in general. Lithospheric recycling is inherent to the mechanism of lithospheric doubling.
Characterizing Lithospheric Thickness in Australia using Ps and Sp Scattered Waves
NASA Astrophysics Data System (ADS)
Ford, H. A.; Fischer, K. M.; Rychert, C. A.
2008-12-01
The purpose of this study is to constrain the morphology of the lithosphere-asthenosphere boundary throughout Australia using scattered waves. Prior surface wave studies have shown a correlation between lithospheric thickness and the three primary geologic provinces of Australia, with the shallowest lithosphere located beneath the Phanerozoic province to the east, and the thicker lithosphere located beneath the Proterozoic and Archean regions. To determine lithospheric thickness, waveform data from twenty permanent broadband stations spanning mainland Australia and the island of Tasmania were analyzed using Ps and Sp migration techniques. Waveform selection for each station was based on epicentral distance (35° to 80° for Ps and 55° to 80° for Sp), and event depth (no greater than 300 km for Sp). For both Ps and Sp a simultaneous deconvolution was performed on the data for each of the twenty stations, and the resulting receiver function for each station was migrated to depth. Data were binned with epicentral distance to differentiate direct discontinuity phases from crustal reverberations (for Ps) and other teleseismic arrivals (for Sp). Early results in both Ps and Sp show a clear Moho discontinuity at most stations in addition to sharp, strong crustal reverberations seen in many of the Ps images. In the eastern Phanerozoic province, a strong negative phase at 100-105 km is evident in Ps for stations CAN and EIDS. The negative phase lies within a depth range that corresponds to the negative velocity gradient between fast lithosphere and slow asthenosphere imaged by surface waves. We therefore think that it is the lithosphere- asthenosphere boundary. On the island of Tasmania, a negative phase at 70-75 km in Ps images at stations TAU and MOO also appears to be the lithosphere-asthenosphere boundary. In the Proterozoic and Archean regions of the Australian continent, initial results for both Ps and Sp migration indicate clear crustal phases, but significantly more complicated signals at mantle depths. However, at some stations along the southern edge of the thick sub-cratonic lithosphere (previously imaged by surface waves) phases exist which may represent a lithosphere-asthenosphere boundary at depths of 110-115 km. Constraining the relationship of lithospheric thickness to the age and tectonic history of the overlying crust in Australia is important for better understanding the long term evolution of the continent.
NASA Astrophysics Data System (ADS)
Bessat, Annelore; Pilet, Sébastien; Duretz, Thibault; Schmalholz, Stefan M.
2017-04-01
Petit-spot volcanoes were discovered fifteen years ago by Japanese researchers at the top of the down going plate in front of Japan (1). The location of these small lava flows is unusual, and seems related to the plate flexure in front of the subduction zone. Their formation seems, therefore, not to correspond to any classical type of volcanism such as MORB generation at mid ocean ridges, arc volcanism in subduction zones or intraplate volcanoes classically associated to deep mantle plumes. The discovery of petit-spot volcanoes is of great significance as it demonstrates, for the first time, that tectonic processes could generate intraplate volcanism and supports the existence of small-degree melts at the base of the lithosphere. First models for the formation of petit-spot volcanoes suggest that plate bending produces extension at the base of the lithosphere, thus allowing large cracks to propagate across the lithosphere. These cracks promote the extraction of low degree melts from the base of the lithosphere (2). However, the study of petit-spot mantle xenoliths from Japan (3) demonstrates that low degree melts are not directly extracted to the surface, but percolate and metasomatize the oceanic lithosphere. The aim of this study is to better understand the physical processes associated with the formation of petit-spot volcanoes. These thermo-mechanical processes will be studied using upper-mantle scale numerical simulations based on a 2D finite difference code. The numerical model considers viscoelastoplastic deformation; combination of laboratory-derived flow laws (e.g. diffusion and dislocation creep, Peierls creep) and heat transfer. The first step is to quantify the deformation processes that occur in the lithosphere and at the Lithosphere-Asthenosphere Boundary (LAB). The aims are to investigate, in particular, extensional deformation at the base of the lithosphere which is induced by plate flexure in front of a subduction zone. This study focuses on quantifying stresses, strain rates, and viscosities to evaluate the thermo-mechanical conditions which are important for the percolation of melt initially stocked at the base of the lithosphere. References (1) Hirano et al., 2006. Science 313, 1426-1428. (2) Yamamoto et al., 2014, Geology 42, 967-970. (3) Pilet et al., 2016, Nature Geoscience 9, 898-903.
NASA Astrophysics Data System (ADS)
Chen, Chen; Gilbert, Hersh; Fischer, Karen M.; Andronicos, Christopher L.; Pavlis, Gary L.; Hamburger, Michael W.; Marshak, Stephen; Larson, Timothy; Yang, Xiaotao
2018-01-01
Seismic discontinuities between the Moho and the inferred lithosphere-asthenosphere boundary (LAB) are known as mid-lithospheric discontinuities (MLDs) and have been ascribed to a variety of phenomena that are critical to understanding lithospheric growth and evolution. In this study, we used S-to-P converted waves recorded by the USArray Transportable Array and the OIINK (Ozarks-Illinois-Indiana-Kentucky) Flexible Array to investigate lithospheric structure beneath the central U.S. This region, a portion of North America's cratonic platform, provides an opportunity to explore how terrane accretion, cratonization, and subsequent rifting may have influenced lithospheric structure. The 3D common conversion point (CCP) volume produced by stacking back-projected Sp receiver functions reveals a general absence of negative converted phases at the depths of the LAB across much of the central U.S. This observation suggests a gradual velocity decrease between the lithosphere and asthenosphere. Within the lithosphere, the CCP stacks display negative arrivals at depths between 65 km and 125 km. We interpret these as MLDs resulting from the top of a layer of crystallized melts (sill-like igneous intrusions) or otherwise chemically modified lithosphere that is enriched in water and/or hydrous minerals. Chemical modification in this manner would cause a weak layer in the lithosphere that marks the MLDs. The depth and amplitude of negative MLD phases vary significantly both within and between the physiographic provinces of the midcontinent. Double, or overlapping, MLDs can be seen along Precambrian terrane boundaries and appear to result from stacked or imbricated lithospheric blocks. A prominent negative Sp phase can be clearly identified at 80 km depth within the Reelfoot Rift. This arrival aligns with the top of a zone of low shear-wave velocities, which suggests that it marks an unusually shallow seismic LAB for the midcontinent. This boundary would correspond to the top of a region of mechanically and chemically rejuvenated mantle that was likely emplaced during late Precambrian/early Cambrian rifting. These observations suggest that the lithospheric structure beneath the Reelfoot Rift may be an example of a global phenomenon in which MLDs act as weak zones that facilitate the removal of cratonic lithosphere that lies beneath.
Rheology of the lithosphere and the folding caused by horizontal compression
NASA Astrophysics Data System (ADS)
Birger, B. I.
2015-05-01
The laboratory tests of rock specimens show that transient creep, at which deformations increase with time whereas strain rate decreases occurs when creep strains are sufficiently small. Since plate tectonics only permits small deformations in the lithospheric plates, the creep of the lithosphere is transient (non-steady-state). In this work, we study how the rheology of the lithosphere that possesses elasticity, brittleness (pseudo-plasticity), and creep affects the folding in the Earth's crust. Folding is caused by horizontal compression that results from the collision between the lithospheric plates. The effective viscosity characterizing the transient creep is lower than in the case of a steady-state creep and depends on the characteristic time of the considered process. The allowance for transient creep gives the distribution of the rheological properties of the horizontally compressed lithosphere in which the upper crust is brittle, whereas the lower crust and mantle lithosphere are dominated by transient creep. It is shown that the flows that arise in the lithosphere due to the instability under horizontal compression and cause folding are small-scale. These flows are concentrated in the upper brittle crust, they determine the short-wave Earth's surface topography, penetrate into the lower, creep-dominated crust to a shallow depth, and do not penetrate into the mantle. Therefore, these flows do not deform the Moho.
Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data.
Ohira, Akane; Kodaira, Shuichi; Nakamura, Yasuyuki; Fujie, Gou; Arai, Ryuta; Miura, Seiichi
2017-11-17
The interactions of the lithospheric plates that form the Earth's outer shell provide much of the evidentiary basis for modern plate tectonic theory. Seismic discontinuities in the lithosphere arising from mantle convection and plate motion provide constraints on the physical and chemical properties of the mantle that contribute to the processes of formation and evolution of tectonic plates. Seismological studies during the past two decades have detected seismic discontinuities within the oceanic lithosphere in addition to that at the lithosphere-asthenosphere boundary (LAB). However, the depth, distribution, and physical properties of these discontinuities are not well constrained, which makes it difficult to use seismological data to examine their origin. Here we present new active-source seismic data acquired along a 1,130 km profile across an old Pacific plate (148-128 Ma) that show oceanic mid-lithosphere discontinuities (oceanic MLDs) distributed 37-59 km below the seafloor. The presence of the oceanic MLDs suggests that frozen melts that accumulated at past LABs have been preserved as low-velocity layers within the current mature lithosphere. These observations show that long-offset, high-frequency, active-source seismic data can be used to image mid-lithospheric structure, which is fundamental to understanding the formation and evolution of tectonic plates.
NASA Astrophysics Data System (ADS)
Escobar, L.; Weeraratne, D. S.; Kohler, M. D.
2013-05-01
The Pacific-North America plate boundary, located in Southern California, presents an opportunity to study a unique tectonic process that has been shaping the plate tectonic setting of the western North American and Mexican Pacific margin since the Miocene. This is one of the few locations where the interaction between a migrating oceanic spreading center and a subduction zone can be studied. The rapid subduction of the Farallon plate outpaced the spreading rate of the East Pacific Rise rift system causing it to be subducted beneath southern California and northern Mexico 30 Ma years ago. The details of microplate capture, reorganization, and lithospheric deformation on both the Pacific and North American side of this boundary is not well understood, but may have important implications for fault activity, stresses, and earthquake hazard analysis both onshore and offshore. We use Rayleigh waves recorded by an array of 34 ocean bottom seismometers deployed offshore southern California for a 12 month duration from August 2010 to 2011. Our array recorded teleseismic earthquakes at distances ranging from 30° to 120° with good signal-to-noise ratios for magnitudes Mw ≥ 5.9. The events exhibit good azimuthal distribution and enable us to solve simultaneously for Rayleigh wave phase velocities and azimuthal anisotropy. Fewer events occur at NE back-azimuths due to the lack of seismicity in central North America. We consider seismic periods between 18 - 90 seconds. The inversion technique considers non-great circle path propagation by representing the arriving wave field as two interfering plane waves. This takes advantage of statistical averaging of a large number of paths that travel offshore southern California and northern Mexico allowing for improved resolution and parameterization of lateral seismic velocity variations at lithospheric and sublithospheric depths. We present phase velocity results for periods sampling mantle structure down to 150 km depth along the west coast margin. With this study, we seek to understand the strength and deformation of the Pacific oceanic lithosphere resulting from plate convergence and subduction beneath Southern California 30 Ma as well as translational stresses present today. We also test for predictions of several geodynamic models which describe the kinematic mantle flow that accompanies plate motion within this area including passive mantle drag due to Pacific plate motion and toroidal flow in the western U.S. region that may extend offshore.
NASA Astrophysics Data System (ADS)
Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.
Destruction of the North China Craton: Lithosphere folding-induced removal of lithospheric mantle?
NASA Astrophysics Data System (ADS)
Zhang, Kai-Jun
2012-01-01
High heat flow, high surface topography, and widespread volcanism indicate that the lithospheric mantle of typical cratonic character of the North China Craton has been seriously destroyed in its eastern half. However, the mechanism of this process remains open to intense debate. Here lithosphere folding-induced lithospheric mantle removal is proposed as a new mechanism for the destruction of the craton. Four main NNE-SSW-striking lithospheric-scale anticlines and synclines are recognized within North China east of the Helan fold-and-thrust belt. The lithosphere folding occurred possibly during the Late Triassic through Jurassic when the Yangzi Craton collided with the North China Craton. It was accompanied or followed by lithospheric dripping, and could have possibly induced the lithosphere foundering of the North China Craton. The lithosphere folding would have modified the lithosphere morphology, creating significant undulation in the lithospheric base and thus causing variations of the patterns of the small-scale convection. It also could have provoked the formation of new shear zones liable to impregnation of magma, producing linear incisions at the cratonic base and resulting in foundering of lithospheric mantle blocks. Furthermore, it generated thickening of the lithosphere or the lower crust and initiated the destabilization and subsequent removal of the lithospheric mantle.
NASA Astrophysics Data System (ADS)
Chen, Ling; Wei, Zigen; Jiang, Mingming; Ling, Yuan
2016-04-01
Mid-lithospheric discontinuity and its roles in the dynamic evolution of the craton - example from the North China Craton Ling Chen1,2, Zigen Wei3, Mingming Jiang1, Yuan Ling1 1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing100101, China 3. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China Detailed knowledge of lithospheric structure is essential for understanding the long-term evolution and dynamics of continents. We present an integrated lithospheric structural image along an E-W profile across the North China Craton (NCC) derived from the teleseismic data recorded at two dense seismic arrays in combination with other geophysical and geological observations. Our S- and P-receiver function images show substantial undulations of the lithosphere-asthenosphere boundary (LAB), from 60-100 km in the eastern NCC to ~160-200 km in the central-western NCC, and <150-km in the Qilian orogenic belt further to the west, accompanying marked lithospheric structural variations. This agrees with previous studies that suggest the occurrence of fundamental destruction in the eastern NCC but localized lithospheric thinning and modifications in the central-western NCC. A negative velocity discontinuity is identified at the depth of ~80-100 km within the thick lithosphere of the central-western NCC, spatially coincident with the top interface of a relatively low velocity layer in the overall high velocity mantle root imaged by surface wave tomography. Detailed data analyses show that this mid- or intra-lithospheric discontinuity has considerably larger S-to-P and P-to-S conversion amplitudes than the LAB below, which provides observational constraints to further decipher the origin of the discontinuity. Our imaging results corroborate recent seismic studies that reveal similar discontinuities at ~100 km depth under stable continental regions worldwide, suggesting the common presence of vertical heterogeneities and layering in the sub-continental lithospheric mantle (SCLM). The ~100-km depth discontinuity and the corresponding velocity decrease in the SCLM may indicate an ancient, mechanically weak layer within the overall strong cratonic lithosphere, which probably also existed beneath the eastern NCC before its Mesozoic destruction. The presence of such a weak layer could have facilitated simultaneous lithospheric modification at the base and in the middle of the lithosphere in the eastern NCC, especially under the strong influence of the Mesozoic Pacific subduction, eventually leading to the severe lithospheric thinning and destruction recorded in this part of the craton. The weak layer probably did not strongly affect the stability and evolution of the central and western NCC and other cratonic regions where effects from plate boundary processes were weak. Our seismic images, integrated with geological data, provide new insights into structural heterogeneities in the subcontinental lithospheric mantle and their roles in the dynamic evolution of continents.
NASA Astrophysics Data System (ADS)
Chen, Ming; Fang, Jian; Cui, Ronghua
2018-02-01
This work aims to investigate the crustal and lithospheric mantle thickness of the South China Sea (SCS) and adjacent regions. The crust-mantle interface, average crustal density, and lithospheric mantle base are calculated from free-air gravity anomaly and topographic data using an iterative inversion method. We construct a three-dimensional lithospheric model with different hierarchical layers. The satellite-derived gravity is used to invert the average crustal density and Moho (crust-mantle interface) undulations. The average crustal density and LAB (lithosphere-asthenosphere boundary) depths are further adjusted by topographic data under the assumption of local isostasy. The average difference in Moho depths between this study and the seismic measurement results is <1.5 km. The results show that in oceanic regions, the Moho depths are 7.5-30 km and the LAB depths are 65-120 km. The lithospheric thickness of the SCS basin and the adjacent regions increases from the sea basin to the continental margin with a large gradient in the ocean-continent transition zones. The Moho depths of conjugate plots during the opening of SCS, Zhongsha Islands and Reed Bank, reveal the asymmetric spreading pattern of SCS seafloor spreading. The lithospheric thinning pattern indicate two different spreading directions during seafloor spreading, which changed from N-S to NW-SE after the southward transition of the spreading axis. The lithosphere of the SCS basin and adjacent regions indicate that the SCS basin is a young basin with a stable interior lithosphere.
Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain
NASA Astrophysics Data System (ADS)
Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine
2015-12-01
The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.
Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction
NASA Astrophysics Data System (ADS)
Pilet, S.; Müntener, O.; Jean, G.; Schoene, B.; Schaltegger, U.
2016-12-01
The temporal coincidence between LIPs and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic and Pliensbachian-Toarcian boundaries combined with geochronological data demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. As current hypothesis for LIPs seems unable to produce these successive climatic changes, we evaluate an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. Even in presence of abnormal potential mantle temperature, the presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. Various studies on Kaapvaal craton have shown that sulfide minerals are enclosed in the basal part of the cratonic lithosphere. We argue that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere causing global cooling and eustatic regression, which was followed by warming/transgression associated with the progressive increase of CO2 in the atmosphere associated to LIPs emission. We suggest that the nature of the underlying lithosphere during large LIP eruption exerts an important control on the consequences at the Earth's surface. This model offers an explanation for why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.
The rheological structure of the lithosphere in the Eastern Marmara region, Turkey
NASA Astrophysics Data System (ADS)
Oruç, Bülent; Sönmez, Tuba
2017-05-01
The aim of this work is to propose the geometries of the crustal-lithospheric mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) and the 1D thermal structure of the lithosphere, in order to establish a rheological model of the Eastern Marmara region. The average depths of Moho and LAB are respectively 35 km and 51 km from radially averaged amplitude spectra of EGM08 Bouguer anomalies. The geometries of Moho and LAB interfaces are estimated from the Parker-Oldenburg gravity inversion algorithm. Our results show the Moho depth varies from 31 km at the northern part of North Anatolian Fault Zone (NAFZ) to 39 km below the mountain belt in the southern part of the NAFZ. The depth to the LAB beneath the same parts of the region ranges from 45 km to 55 km. Having lithospheric strength and thermal boundary layer structure, we analyzed the conditions of development of lithosphere thinning. A two-dimensional strength profile has been estimated for rheology model of the study area. Thus we suggest that the rheological structure consists of a strong upper crust, a weak lower crust, and a partly molten upper lithospheric mantle.
NASA Astrophysics Data System (ADS)
Yinshuang, A.; Zhang, Y.; Chen, L.
2016-12-01
The central and western NCC(CWNCC) only experienced localized lithospheric modification and has remained relatively stable since the Pre-Cambrian in contrast to the fundamental destruction in the east. For better unraveling the tectonic evolution and dynamics of CWNCC, detailed knowledge of lithospheric structure is thus important. However, most of the available seismological observations are dominated by regional seismic tomography and the resolutions are rather low due to the limited data coverage or intrinsic limitation of the methods. S receiver function(RF) contains information from deep velocity discontinuities and is free from the interference of crustal multiples, so it is widely used in subcontinental lithospheric structural studies. We collected teleseismic data from 340 broadband stations in CWNCC, and adopted 2-D wave equation-based poststack migration method to do S-receiver function CCP imaging. Finally, we get 8 migrated profile images in CWNCC and adjacent areas and integrate them for an overview. The most prominent feature of the LAB beneath central NCC is an sudden subsidence to 160km in the southern portion, and the dimension and extension of this deep anomaly is correlated to the lithosphere in Ordos, so we interpret it as a remnant cratonic mantle root. The LAB beneath western NCC can extend to the depth of 150-180 km but appears laterally variable. Western Ordos becomes shallower than its eastern counterpart and there are two obvious deep anomalies beneath the eastern Ordos, divided by a geological boundary at 37°N, which reflects that the lithosphere of Ordos is not so homogeneous or rigid as people thought before. Furthermore, a negative velocity discontinuity is widely identified at the depth of 80- 110 km within the thick lithosphere of CWNCC, and the location is spatially coincide with the modified LAB in ENCC. Although the cause of this mid-lithospheric discontinuity(MLD) is still controversial, mechanically, it may indicate an ancient, weak layer within the overall strong cratonic lithosphere. Our result is broadly consistent with the previous tomography studies, but shows more detailed information of lithospheric variations,. Moreover, it corroborates the existence of the similar discontinuities at 100 km depth under stable continental regions worldwide.
NASA Astrophysics Data System (ADS)
Liu, X.; Currie, C. A.
2017-12-01
The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.
Effect of Upper Mantle Heterogeneities on Lithosphere Stresses and Topography
NASA Astrophysics Data System (ADS)
Osei Tutu, A.; Steinberger, B.; Rogozhina, I.; Sobolev, S. V.
2016-12-01
The orientation and magnitude of lithosphere stresses give us knowledge about most of the processes within the Earth that are not easy to observe. It has been established (Steinberger, Schmeling, and Marquart 2001) that large contribution of the forces producing lithosphere stresses have their source origination from the buoyancies of both the upper and lower mantle acting beneath the lithosphere. The contribution of the crustal thickness to the stresses has been estimated to be less than 10% (Steinberger et al. 2001) in most region and increases in areas with high gravitational potential energy like the Himalayas. In most of these studies, the effect of the crust was determined separately by computing the gravitational potential energy from the crust (Ghosh et al. 2013) and applied as correction. (Artyushkov 1973) showed that the inhomogeneous nature of the crust contribute to the stresses observed as against using constant lithosphere thickness in most studies, due to the complexities for implementing a variable lithosphere. We seek extend the approach of Ghosh et al. (2013) by coupling the Crust 1.0 (Laske et al. 2013) to a varaible lithosphere thickness in our numerical method. Using a 3D global lithosphere-asthenosphere model (Popov and Sobolev 2008) with visco-elasto-plastic rheology, coupled at 300 km depth to a mantle modeled with a spectral technique (Hager and O'Connell, 1981), we compute lithosphere stresses and topography. we compare our model with observations; the World Stress Map, Global Strain Rate Map and the observed topgraphy. We use S40RTS seismic tomography below 300 km depth, with radial viscosity distribution (Steinberger et al 2006). To account for all the heterogeneities in the upper mantle (300 km) we used different 3D temperatures models setups. The first model is the thermal lithosphere model (Artemieva and Mooney, 2001) in continental regions and assumes half-space cooling of sea floor with age (Müller et al. 2008) for oceans. For the second model we inferred temperatures from seismic tomography SL2013sv (Schaeffer and Lebedev 2013) for separate stress predictions. We investigate the effect of Newtonian and power law rheology on stresse and also look at different deformation mechanisms; diffusion and dislocation creeps in the upper mantle on lithosphere stresses.
Lithospheric structure of Africa: insights from its effective elastic thickness variations.
NASA Astrophysics Data System (ADS)
Pérez-Gussinyé, M.; Metois, M.; Fernández, M.; Vergés, J.; Fullea, J.
2009-04-01
Detailed images of lithospheric structure can help understand how surface deformation is related to Earth's deep structure. A proxy for lithospheric structure is its effective elastic thickness, Te, which mainly depends on its thermal state and composition. We present a new effective elastic thickness, Te, map of the African lithosphere estimated using the coherence function between topography and Bouguer anomaly. The Bouguer anomaly used in this study derives from the EGM 2008 model, which constitutes the highest resolution gravity database over Africa, allowing a significant improvement on lateral resolution in Te. Our map shows that Te is high > 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari presents the thinnest elastic thicknesses and, based on additional seismic and mineral physics studies, we suggest this may reflect modification of the lithosphere by anomalously hot mantle beneath the lithosphere. The effective elastic thickness is lowest beneath the Afar and Main Ethiopian rifts, where the maximum extension and thinnest lithosphere of Africa occur. The Tanzania craton appears as two rigid blocks separated by a relatively low Te area located southwest of lake Victoria. This coincides with the centre of seismic radial anisotropy beneath the craton, suggested to be the Victoria plume head by Weertrane et al. [2003]. Along the eastern branch of the East African rift Te is low and increases abruptly at 2 to 3 degrees South, coinciding with a deepening of earthquake depocenter and a change from narrow to wide rifting. These and other considerations suggest that the southern part of the eastern branch is underlain by thick, rigid cratonic lithosphere. Finally, the northern part of Africa is characterised by low Te on the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces, suggesting that the underlying lithospheric mantle has been thermally thinned. Corridors of low Te connect these volcanic provinces, supporting the idea that hot mantle flows between them. However, a thin corridor between these volcanic provinces and the Afar hot-spot is less obvious.
Controls of Lithospheric Mechanical Strength on the Deformation Pattern of Tien Shan
NASA Astrophysics Data System (ADS)
Li, Y.; Xiong, X.; Zheng, Y.; Hu, X.; Zhang, Y.
2015-12-01
The Tien Shan is an outstanding example of intracontinental mountain belt, which was built rapidly and formed far away from plate boundaries. It exhibits 300~500 km in width and extends ~2000 km EW, located in central Asia. The Tien Shan is a key area for solution of the problems relating to intracontinental geodynamics. During last decades, despite a large amount of results based on various geological, geophysical and geodetic data about the Tien Shan, however, deformation mechanism remains controversial and other several principal problems related to its structure and evolution also have not been completely resolved. As for patterns of continental deformation, they are always controlled by both the forces applied to the lithosphere and by lithospheric resistance to the forces. The latter is often measured by the mechanical strength of lithosphere. The lateral variation of strength of lithosphere has been recognized to be an important factor controlling the spatial construction and temporal evolution of continent. In this study, we investigate the mechanical strength (Te) of lithosphere in the Tien Shan using wavelet coherency between Bouguer anomaly and topography. The patterns of Te variations are closely related to major tectonic boundaries and blocks. Mechanical strength exhibits a weak zone (Te~5-20km) beneath the Tien Shan while its surrounding blocks including Tarim Basin, Junggar Basin and Kazakh platform are characterized by a strong lithosphere (Te>40km). The lateral variations in mechanical strength and velocity field of horizontal movement with GPS demonstrate that strain localization appears at the margins of Tarim Basin, which is also the strong lithospheric domain. It is suggested that the weak lithosphere allows the crustal stress accumulation and the strong lithosphere helps to stress transfer. There is also a good agreement between mechanical strength and shear wave velocity structure in upper mantle. It indicates a strong domain located in the lower crust and lithospheric mantle. Combined with results of analog models, the location and style of deformation are preliminary determined and thus the related topography evolution in the Tien Shan is mainly controlled by the lateral and depth variation in lithospheric mechanical strength of surrounding areas.
Inelastic models of lithospheric stress - I. Theory and application to outer-rise plate deformation
Mueller, S.; Choy, G.L.; Spence, W.
1996-01-01
Outer-rise stress distributions determined in the manner that mechanical engineers evaluate inelastic stress distributions within conventional materials are contrasted with those predicted using simple elastic-plate models that are frequently encountered in studies of outer-rise seismicity. This comparison indicates that the latter are inherently inappropriate for studies of intraplate earthquakes, which are a direct manifestation of lithospheric inelasticity. We demonstrate that the common practice of truncating elastically superimposed stress profiles so that they are not permitted to exceed laboratory-based estimates of lithospheric yield strength will result in an accurate characterization of lithospheric stress only under relatively restrictive circumstances. In contrast to elastic-plate models, which predict that lithospheric stress distributions depend exclusively upon the current load, inelastic plate models predict that stress distributions are also significantly influenced by the plate-loading history, and, in many cases, this influence is the dominant factor in determining the style of potential seismicity (e.g. thrust versus normal faulting). Numerous 'intuitive' interpretations of outer-rise earthquakes have been founded upon the implicit assumption that a unique relationship exists between a specified combination of plate curvature and in-plane force, and the resulting lithospheric stress distribution. We demonstrate that the profound influence of deformation history often invalidates such interpretations. Finally, we examine the reliability of 'yield envelope' representations of lithospheric strength that are constructed on the basis of empirically determined frictional sliding relationships and silicate plastic-flow laws. Although representations of this nature underestimate the strength of some major interplate faults, such as the San Andreas, they appear to represent a reliable characterization of the strength of intraplate oceanic lithosphere.
Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting
NASA Astrophysics Data System (ADS)
Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart
2017-06-01
We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by pressure-temperature variations during the thermo-mechanical evolution of the conjugate passive margin system. Effects of melting included in the model account for thermal effects, causing viscosity reduction due to host rock heating, and mechanical effects, due to cohesion loss. Our study provides better understanding on how presence of melts can influence the evolution of rifting. Here we focus particularly on the role of melting for the temporal and spatial evolution of passive margin geometry and rift migration. Depending on the lithospheric structure, melt presence may have a significant impact on the characteristics of areas affected by lithospheric extension. Pre-existing lithosphere heterogeneities determine the location of initial breakup, but in presence of plumes the subsequent evolution is more difficult to predict. For small distances between plume and area of initial rifting, the development of symmetric passive margins is favored, whereas increasing the distance promotes asymmetry. For a plume-rifting distance large enough to prevent interaction, the effect of plumes on the overlying lithosphere is negligible and the rift persists at the location of the initial lithospheric weakness. When the melt effect is included, the development of asymmetric passive continental margins is fostered. In this case, melt-induced lithospheric weakening may be strong enough to cause rift jumps toward the plume location.
NASA Astrophysics Data System (ADS)
Piccardo, Giovanni; Ranalli, Giorgio
2015-04-01
Direct field/laboratory, structural/petrologic investigations of mantle lithosphere from orogenic peridotites in Alpine-Apennine ophiolites provide significant constraints to the rift evolution of the Jurassic Ligurian Tethys ocean (Piccardo et al., 2014, and references therein). These studies have shown that continental extension and passive rifting were characterized by an important syn-rift "hidden" magmatic event, pre-dating continental break-up and sea-floor spreading. Occurrence of km-scale bodies of reactive spinel-harzburgites and impregnated plagioclase-peridotites, formed by melt/peridotite interaction, and the lack of any extrusive counterpart, show that the percolating magmas remained stored inside the mantle lithosphere. Petrologic-geochemical data/modelling and mineral Sm/Nd age constraints evidence that the syn-rift melt infiltration and reactive porous-flow percolation through the lithosphere were induced by MORB-type parental liquids formed by decompression melting of the passively upwelling asthenosphere. Melt thermal advection through, and melt stagnation within the lithosphere, heated the mantle column to temperatures close to the dry peridotite solidus ("asthenospherization" of mantle lithosphere). Experimental results of numerical/analogue modelling of the Ligurian rifting, based on field/laboratory constraints, show that: (1) porous flow percolation of asthenospheric melts resulted in considerable softening of the mantle lithosphere, decreasing total strength TLS from 10 to 1 TN m-1 as orders of magnitude (Ranalli et al. 2007), and (2) the formation of an axial lithospheric mantle column, with softened rheological characteristics (Weakened Lithospheric Mantle - WLM), induced necking instability in the extending lithosphere and subsequent active upwelling of the asthenosphere inside the WLM zone (Corti et al., 2007). Therefore, the syn-rift hidden magmatism (melt thermo-chemical-mechanical erosion, melt thermal advection and melt storage) caused important compositional and rheological modifications in the mantle lithosphere and played a fundamental role in the evolution of rifting, favouring, in particular, faster divergence of future continental margins and active upwelling of deeper/hotter asthenosphere. Active divergent forces probably changed the extension regime from passive to active rifting (as envisaged by Huismans et al., 2001). Accordingly, melt thermal advection and melt storage, and the rheological modifications induced in the mantle lithosphere, had a fundamental role in the evolution of the Ligurian rifting (Piccardo, 2014; Piccardo et al., 2014). Observations from the natural laboratory are pivotal when interpreting modelling results on the formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading. The rheological characteristics of the melt-modified mantle lithosphere can provide natural constraints for the interpretation of variously termed components ("oceanic lithosphere, Huismans & Beaumont, 2014; "oceanic and syn-rift lithospheric mantle", Whitmarsh & Manatschal, 2012), located in some models at non-oceanic, sub-continental settings, either below the extending continental crust or between the sub-continental lithosphere and the upwelling asthenosphere. Corti, G., Piccardo, G.B., Ranalli, G., et al., 2007. J. Geodynamics, 43, 465-483. Huismans, R.S., Beaumont, C., 2014. EPSL, 407, 148-162. Huismans, R.S., Podladchikov, Y.Y., Cloetingh, S., 2001, J. Geophys. Res. 106(11), 271-291. Piccardo, G.B., 2014. Geol. Soc. London, Spec. Publ., online 413, http://dx.doi.org/10.1144/SP413.7. Piccardo, G.B., et al., 2014. Earth-Science Reviews, http://dx.doi.org/10.1016/j.earscirev.2014.07.002. Ranalli, G., Piccardo, G.B., Corona-Chavez, P., 2007. J. Geodynamics, 43, 450-464. Whitmarsh, R.B., Manatschal, G., 2012. Roberts & Bally (eds), http://eprints.soton.ac.uk/id/eprint/358832.
NASA Astrophysics Data System (ADS)
Göğüş, Oğuz H.; Ueda, Kosuke
2018-06-01
Geodynamical models investigate the rheological and physical properties of the lithosphere that peels back (delaminates) from the upper-middle crust. Meanwhile, model predictions are used to relate to a set of observations in the geological context to the test the validity of delamination. Here, we review numerical and analogue models of delamination from these perspectives and provide a number of first-order topics which future modeling studies may address. Models suggest that the presence of the weak lower crust that resides between the strong mantle lithosphere (at least 100 times more viscous/stronger) and the strong upper crust is necessary to develop delamination. Lower crustal weakening may be induced by melt infiltration, shear heating or it naturally occurs through the jelly sandwich type strength profile of the continental lithosphere. The negative buoyancy of the lithosphere required to facilitate the delamination is induced by the pre-existing ocean subduction and/or the lower crustal eclogitization. Surface expression of the peeling back lithosphere has a distinct transient and migratory imprint on the crust, resulting in rapid surface uplift/subsidence, magmatism, heating and shortening/extension. New generation of geodynamical experiments can explain how different types of melting (e.g hydrated, dry melting) occurs with delamination. Reformation of the lithosphere after removal, three dimensional aspects, and the termination of the process are key investigation areas for future research. The robust model predictions, as with other geodynamic modeling studies should be reconciled with observations.
Subduction Drive of Plate Tectonics
NASA Astrophysics Data System (ADS)
Hamilton, W. B.
2003-12-01
Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection drive. Subduction hinges (which are under, not in front of, thin leading parts of arcs and overriding plates) roll back into subducting plates. The Pacific shrinks because bounding hinges roll back into it. Colliding arcs, increasing arc curvatures, back-arc spreading, and advance of small arcs into large plates also require rollback. Forearcs of overriding plates commonly bear basins which preclude shortening of thin plate fronts throughout periods recorded by basin strata (100 Ma for Cretaceous and Paleogene California). This requires subequal rates of advance and rollback, and control of both by subduction. Convergence rate is equal to rates of rollback and advance in many systems but is greater in others. Plate-related circulation probably is closed above 650 km. Despite the popularity of concepts of plumes from, and subduction into, lower mantle, there is no convincing evidence for, and much evidence against, penetration of the 650 in either direction. That barrier not only has a crossing-inhibiting negative Clapeyron slope but also is a compositional boundary between fractionated (not "primitive"), sluggish lower mantle and fertile, mobile upper mantle. Slabs sink more steeply than they dip. Slabs older than about 60 Ma when their subduction began sink to, and lie down on and depress, the 650-km discontinuity, and are overpassed, whereas younger slabs become neutrally buoyant in mid-upper mantle, into which they are mixed as they too are overpassed. Broadside-sinking old slabs push all upper mantle, from base of oceanic lithosphere down to the 650, back under shrinking oceans, forcing rapid Pacific spreading. Slabs suck forward overriding arcs and continental lithosphere, plus most subjacent mantle above the transition zone. Changes in sizes of oceans result primarily from transfer of oceanic lithosphere, so backarcs and expanding oceans spread only slowly. Lithosphere parked in, or displaced from, the transition zone, or mixed into mid-upper mantle, is ultimately recycled, and regional variations in age of that submerged lithosphere may account for some regional contrasts in MORB. Plate motions make no kinematic sense in either the "hotspot" reference frame (HS; the notion of fixed plumes is easily disproved) or the no-net-rotation frame (NNR) In both, for example, many hinges roll forward, impossible with gravity drive. Subduction-drive predictions are fulfilled, and paleomagnetic data are satisfied (as they are not in HS and NNR), in the alternative framework of propulsionless Antarctica fixed relative to sluggish lower mantle. Passive ridges migrate away from Antarctica on all sides, and migration of these and other ridges permits tapping fresh asthenosphere. (HS and NNR tend to fix ridges). Ridge migration and spreading rates accord with subduction drive. All trenches roll back when allowance is made for back-arc spreading and intracontinental deformation. Africa rotates slowly toward subduction systems in the NE, instead of moving rapidly E as in HS and NNR. Stable NW Eurasia is nearly stationary, instead of also moving rapidly, and S and E Eurasian deformation relates to subduction and rollback. The Americas move Pacificward at almost the full spreading rates of passive ridges behind them. Lithosphere has a slow net westward drift. Reference: W.B. Hamilton, An alternative Earth, GSA Today, in press.
The history and fate of three families of lithosphere on Earth
NASA Astrophysics Data System (ADS)
Lee, C. T.
2016-12-01
Based on compilations of surface heat flux to constrain the thermal boundary layer thickness, lithosphere thickness can be shown to have a trimodal distribution. In ocean basins, lithosphere thickness ranges from thin (<10 km) beneath young ocean basins, which dominate, to thick (<100 km) beneath old ocean basins, which are rare due to subduction. Continents have thicker lithospheres and define two additional peaks: 30%, reflecting most of the Archean cratons, are 180-220 km thick and 60% are 90-140 km thick. While ocean basins subduct after their lithospheres grow thick, continents do not, despite their thicker lithospheres. The insubductibility of continents is because the buoyancy of thick crust compensates for the thick cold lithosphere and because continental thermal boundary layers do not grow indefinitely. Lithospheric growth is understood to be limited by the onset of small-scale convective instabilities, but why then do continental lithospheres have two different critical thicknesses? Initial thickness, at the time of formation, is critical. Continental lithospheres less than 120 km thick are subject to magmatic modification (refertilization) in the form of thermo-chemical erosion, which gradually thins the lithosphere. Lithospheres greater than 120 km appear to be relatively immune to significant lithospheric thinning. This may in part be because refertilization-driven destabilization does not occur since deep melting is suppressed beneath thick lithosphere. To resist thermal thinning, it seems necessary that anomalously thick lithospheres were born with intrinsic strength, widely hypothesized to have been imparted by the unusual petrogenesis of cratonic mantle, wherein high degrees of melting early in Earth's history resulted in the formation of a dehydrated and strong chemical boundary layer. Another possibility is that cratonic mantle is characterized by the strengthening effects of larger grain size, owing to the high degrees of melting that decrease the number of clinopyroxene pinning points. In summary, a lithosphere's fate depends on the nature of its origin. Continental lithospheres born thick will have long, boring lives, continental lithospheres born thin will be forever tormented, and oceanic lithospheres are fated to have calm but brief lives at the Earth's surface.
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta Tuji
Crust and upper mantle structure beneath eastern Africa has been investigated using receiver functions and surface wave dispersion measurements to understand the impact of the hotspot tectonism found there on the lithospheric structure of the region. In the first part of this thesis, I applied H-kappa stacking of receiver functions, and a joint inversion of receiver functions and Rayleigh wave group velocities to determine the crustal parameters under Djibouti. The two methods give consistent results. The crust beneath the GEOSCOPE station ATD has a thickness of 23+/-1.5 km and a Poisson's ratio of 0.31+/-0.02. Previous studies give crustal thickness beneath Djibouti to be between 8 and 10 km. I found it necessary to reinterprete refraction profiles for Djibouti from a previous study. The crustal structure obtained for ATD is similar to adjacent crustal structure in many other parts of central and eastern Afar. The high Poisson's ratio and Vp throughout most of the crust indicate a mafic composition, suggesting that the crust in Afar consists predominantly of new igneous rock emplaced during the late synrift stage where extension is accommodated within magmatic segments by diking. In the second part of this thesis, the seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Crustal structure from the joint inversion for Ethiopia and Djibouti is similar to previously published models. Beneath the Main Ethiopian Rift (MER) and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the lithosphere beneath the Ethiopian Plateau can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30--50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure. In the final part of this thesis, the shear-wave velocity structure of the crust and upper mantle beneath Kenya has been obtained from a joint inversion of receiver functions, and Rayleigh wave group and phase velocities. The crustal structure from the joint inversion is consistent with crustal structure published previously by different authors. The lithospheric mantle beneath the East African Plateau in Kenya is similar to the lithosphere under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ˜75 km. The lithosphere under the Kenya Plateau is not perturbed when compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. On the other hand, the lithosphere under the Kenya Rift is perturbed as compared to the Kenya Plateau or the rest of the East African Plateau, but is not as perturbed as the lithosphere beneath the Main Ethiopian Rift or the Afar. Although Kenya and Ethiopia have similar uplift and rifting histories, they have different volcanic histories. Much of Ethiopia has been affected by the Afar Flood Basalt volcanism, which may be the cause of this difference in lithospheric structure between these two regions.
The Central Eurasia collision zone: insights from a neotectonic study
NASA Astrophysics Data System (ADS)
Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume
2017-04-01
In this study, we explore the neotectonic deformation in the whole Central Eurasia, including both the India-Eurasia and the Arabia-Eurasia collision zones, by using the thin-sheet approach in which the lithosphere strength is calculated from the lithosphere structure and thermal regime. We investigate the relative contributions of the lithospheric structure, rheology, boundary conditions, and friction coefficient on faults on the predicted velocity and stress fields. The resulting models have been evaluated by comparing the predictions with available data on seismic deformation, stress directions and GPS velocities. A first order approximation of the velocity and stress directions is obtained, reproducing the counter-clockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults within Tibet a weaker lithosphere is required, provided by a change in the rheological parameters or a reduction of the lithosphere thickness in NE-Tibet. The temperature increase generated by the lithospheric thinning below the Tibetan Plateau would also allow reconciling the model with the high heat flow and low mantle seismic velocities observed in the area. Besides the large scale, this study offers a coherent result in regions with little or no data coverage, as in the case of the Arabia-India inter-collision zone, over large areas of Pakistan and entire Afghanistan. The study is supported by MITE (CGL2014-59516-P) and WE-ME (PIE-CSIC-201330E111) projects.
NASA Astrophysics Data System (ADS)
Farmer, G. Lang; Bailley, Treasure; Elkins-Tanton, Linda T.
2008-04-01
Voluminous intermediate to silicic composition volcanic rocks were generated throughout the southern Rocky Mountains, western U.S., during the mid-Tertiary "ignimbrite flare-up", principally at the San Juan and Mogollon-Datil volcanic fields. At both volcanic centers, radiogenic isotope data have been interpreted as evidence that 50% or more of the volcanic rocks (by mass) were derived from mantle-derived, mafic parental magmas, but no consensus exists as to whether melting was largely of lithospheric or sub-lithospheric mantle. Recent xenolith studies, however, have revealed that thick (> 100 km), fertile, and hydrated continental lithosphere was present beneath at least portions of the southern Rocky Mountains during the mid-Tertiary. The presence of such thick mantle lithosphere, combined with an apparent lack of syn-magmatic extension, leaves conductive heating of lithospheric mantle as a plausible method of generating the mafic magmas that fueled the ignimbrite flare-up in this inland region. To further assess this possibility, we estimated the minimum volume of mantle needed to generate the mafic magmas parental to the preserved mid-Tertiary igneous rocks. Conservative estimates of the mantle source volumes that supplied the Mogollon-Datil and San Juan volcanic fields are ˜ 2 M km 3 and ˜ 7 M km 3, respectively. These volumes could have comprised only lithospheric mantle if at least the lower ˜ 20 km of the mantle lithosphere beneath the entire southern Rocky Mountains region underwent partial melting during the mid-Tertiary and if the resulting mafic magmas were drawn laterally for distances of up to ˜ 300 km into each center. Such widespread melting of lithospheric mantle requires that the lithospheric mantle have been uniformly fertile and primed for melting in the mid-Tertiary, a possibility if the lithospheric mantle had experienced widespread hydration and refrigeration during early Tertiary low angle subduction. Exposure of the mantle lithosphere to hot, upwelling sub-lithospheric mantle during mid-Tertiary slab roll back could have then triggered the mantle melting. While a plausible source for mid-Tertiary basaltic magmas in the southern Rocky Mountains, lithospheric mantle could not have been the sole source for mafic magmas generated to the south in that portion of the ignimbrite flare-up now preserved in the Sierra Madre Occidental of northern Mexico. The large mantle source volumes (> 45 M km 3) required to fuel the voluminous silicic ignimbrites deposited in this region (> 400 K km 3) are too large to have been accommodated within the lithospheric mantle alone, implying that melting in sub-lithospheric mantle must have played a significant role in generating this mid-Tertiary magmatic event.
Lithospheric thinning beneath rifted regions of Southern California.
Lekic, Vedran; French, Scott W; Fischer, Karen M
2011-11-11
The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.
NASA Astrophysics Data System (ADS)
Babuska, V.; Plomerova, J.; Karato, S. I.
2012-04-01
Although many studies indicate that subduction-related accretion, subduction-driven magmatism and tectonic stacking are major crustal-growth mechanisms, how the mantle lithosphere forms remains enigmatic. Cook (AGU Geod. Series 1986) published a model of continental 'shingling' based on seismic reflection data indicating dipping structures in the deep crust of accreted terranes. Helmstaedt and Gurney (J. Geoch. Explor. 1995) and Hart et al. (Geology 1997) suggest that the Archean continental lithosphere consists of alternating layers of basalt and peridotite derived from subducted and obducted Archean oceanic lithosphere. Peridotite xenoliths from the Mojavian mantle lithosphere (Luffi et al., JGR 2009), as well as xenoliths of eclogites underlying the Sierra Nevada batholith in California (Horodynskij et al., EPSL 2007), are representative for oceanic slab fragments successively attached to the continent. Recent seismological findings also seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or by stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Aust. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- (or D-) type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered almost a half century ago (Hess, Nature 1964). Though it is difficult to determine seismic anisotropy within an active subducting slab (e.g., Healy et al., EPSL 2009; Eberhart-Phillips and Reyners, JGR 2009), field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved there to a depth of at least 200-300 km. Dipping anisotropic fabrics in domains of the European mantle lithosphere were interpreted as systems of 'frozen' paleosubductions (Babuska and Plomerova, PEPI 2006), and the lithosphere base as a boundary between a fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010). Deep dipping reflectors in the Slave Craton were modelled as tops of a fossil oceanic lithosphere (Bostock, Lithos 1999). Using S-wave receiver functions, Miller and Eaton (GRL 2010) also interpreted mid-lithosphere discontinuities beneath British Columbia as remnant oceanic slabs. Strong radial anisotropy from global surface-wave data (Babuska et al., PAGEOPH 1998; Khan et al., JGR 2011), as well as differences between body-wave tomography images from SH and SV waves (Eken et al., Tectonophys. 2010), both showing strong anisotropy only down to ~200 km, are in agreement with the models of inclined olivine fabrics found in Phanerozoic and Precambrian mantle lithosphere (Plomerova et al., Solid Earth 2011). Models of assemblages of microplates with their own inclined fossil fabrics do not support a lithosphere growth by simple cooling processes, which should result in horizontal fabrics. The models with dipping fabrics also contribute to mapping boundaries of individual blocks building the continental lithosphere.
Lithosphere mantle density of the North China Craton based on gravity data
NASA Astrophysics Data System (ADS)
Xia, B.; Artemieva, I. M.; Thybo, H.
2017-12-01
Based on gravity, seismic and thermal data we constrained the lithospheric mantle density at in-situ and STP condition. The gravity effect of topography, sedimentary cover, Moho and Lithosphere-Asthenosphere Boundary variation were removed from free-air gravity anomaly model. The sedimentary covers with density range from 1.80 g/cm3 with soft sediments to 2.40 g/cm3 with sandstone and limestone sediments. The average crustal density with values of 2.70 - 2.78 g/cm3 which corresponds the thickness and density of the sedimentary cover. Based on the new thermal model, the surface heat flow in original the North China Craton including western block is > 60 mW/m2. Moho temperature ranges from 450 - 600 OC in the eastern block and in the western block is 550 - 650 OC. The thermal lithosphere is 100 -140 km thick where have the surface heat flow of 60 - 70 mW/m2. The gravity effect of surface topography, sedimentary cover, Moho depth are 0 to +150 mGal, - 20 to -120 mGal and +50 to -200 mGal, respectively. By driving the thermal lithosphere, the gravity effect of the lithosphere-asthenosphere boundary ranges from 20 mGal to +200 mGal which shows strong correction with the thickness of the lithosphere. The relationship between the gravity effect of the lithosphere-asthenosphere boundary and the lithosphere thickness also for the seismic lithosphere, and the value of gravity effect is 0 to +220 mGal. The lithospheric mantle residual gravity which caused by lithospheric density variation range from -200 to +50 mGal by using the thermal lithosphere and from -250 to +100 mGal by driving the seismic lithosphere. For thermal lithosphere, the lithospheric mantle density with values of 3.21- 3.26 g/cm3 at in-situ condition and 3.33 - 3.38 g/cm3 at STP condition. Using seismic lithosphere, density of lithosphere ranges from 3.20 - 3.26 g/cm3 at in-situ condition and 3.31 - 3.41 g/cm3 at STP condition. The subcontinental lithosphere of the North China Craton is highly heterogeneous with Archean lithosphere at the southwestern of the Eastern Block, major the Trans-North China Orogen and western part of the Western Block. The lithospheric mantle beneath the northern part of the Eastern Block, central segment of the Trans-North China Craton and the eastern margin of the Western Block have experienced modification and replacement.
On the Yield Strength of Oceanic Lithosphere
NASA Astrophysics Data System (ADS)
Jain, C.; Korenaga, J.; Karato, S. I.
2017-12-01
The origin of plate tectonic convection on Earth is intrinsically linked to the reduction in the strength of oceanic lithosphere at plate boundaries. A few mechanisms, such as deep thermal cracking [Korenaga, 2007] and strain localization due to grain-size reduction [e.g., Ricard and Bercovici, 2009], have been proposed to explain this reduction in lithospheric strength, but the significance of these mechanisms can be assessed only if we have accurate estimates on the strength of the undamaged oceanic lithosphere. The Peierls mechanism is likely to govern the rheology of old oceanic lithosphere [Kohlstedt et al., 1995], but the flow-law parameters for the Peierls mechanism suggested by previous studies do not agree with each other. We thus reanalyze the relevant experimental deformation data of olivine aggregates using Markov chain Monte Carlo inversion, which can handle the highly nonlinear constitutive equation of the Peierls mechanism [Korenaga and Karato, 2008; Mullet et al., 2015]. Our inversion results indicate nontrivial nonuniqueness in every flow-law parameter for the Peierls mechanism. Moreover, the resultant flow laws, all of which are consistent with the same experimental data, predict substantially different yield stresses under lithospheric conditions and could therefore have different implications for the origin of plate tectonics. We discuss some future directions to improve our constraints on lithospheric yield strength.
NASA Astrophysics Data System (ADS)
Mareschal, J.; Jaupart, C. P.
2013-12-01
Most of the variations in surface heat flux in stable continents are caused by variations in crustal heat production, with an almost uniform heat flux at the base of the crust ( 15+/-3 mW/m2). Such relatively small differences in Moho heat flux cannot be resolved by heat flow data alone, but they lead to important lateral variations in lithospheric temperatures and thicknesses. In order to better constrain temperatures in the lower lithosphere, we have combined surface heat flow and heat production data from the southern Superior Province in Canada with vertical shear wave velocity profiles obtained from surface wave inversion. We use the Monte-Carlo method to generate lithospheric temperature profiles from which shear wave velocity can be calculated for a given mantle composition. We eliminate thermal models which yield lithospheric and sub-lithospheric velocities that do not fit the shear wave velocity profile. Surface heat flux being constrained, the free parameters of the thermal model are: the mantle heat flux, the mantle heat production, the crustal differentiation index (ratio of surface to bulk crustal heat production) and the temperature of the mantle isentrope. Two conclusions emerge from this study. One is that, for some profiles, the vertical variations in shear wave velocities cannot be accounted for by temperature alone but also require compositional changes within the lithosphere. The second is that there are long wavelength horizontal variations in mantle temperatures (~80-100K) at the base of the lithosphere and in the mantle below
NASA Astrophysics Data System (ADS)
Schlömer, Antje; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion
2017-12-01
Earthquake locations along the southern Mid-Atlantic Ridge have large uncertainties due to the sparse distribution of permanent seismological stations in and around the South Atlantic Ocean. Most of the earthquakes are associated with plate tectonic processes related to the formation of new oceanic lithosphere, as they are located close to the ridge axis or in the immediate vicinity of transform faults. A local seismological network of ocean-bottom seismometers and land stations on and around the archipelago of Tristan da Cunha allowed for the first time a local earthquake survey for 1 year. We relate intraplate seismicity within the African oceanic plate segment north of the island partly to extensional stresses induced by a bordering large transform fault and to the existence of the Tristan mantle plume. The temporal propagation of earthquakes within the segment reflects the prevailing stress field. The strong extensional stresses in addition with the plume weaken the lithosphere and might hint at an incipient ridge jump. An apparently aseismic zone coincides with the proposed location of the Tristan conduit in the upper mantle southwest of the islands. The margins of this zone describe the transition between the ductile and the surrounding brittle regime. Moreover, we observe seismicity close to the islands of Tristan da Cunha and nearby seamounts, which we relate to ongoing tectono-magmatic activity.
Lithospheric Shear Stresses Over And Around Africa
NASA Astrophysics Data System (ADS)
Greff-Lefftz, M.; Jean, B.; Vicente De Gouveia, S.
2017-12-01
We use a simple model for mantle dynamics combining contributions of subducted lithosphere, domes at the bottom of the mantle and upwelling plumes. A dominant feature of plate tectonics is the quasi permanence of a girdle of subductions around the Pacific ocean (or its ancestor), which creates large-wavelength positive topography anomaly within the ring they form. The superimposition of the resultant extension with the one induced by the dome leads to a permanent extensional regime over Africa and the future Indian ocean which creates faults with azimuth directions depending on the direction of the most active part of the ring of subductions. We thus obtain fractures with NW-SE azimuth during the period 275-165 Ma parallel to the strike of the subduction zone of the West South American active margin, which appears to be very active during this period. Between 155-95 Ma, subduction became more active along the Eastern Australian coast involving a change in the direction of the faults toward an E-W direction, in agreement with the observed fault systems between Africa and India, Antartica and Australia. During the Mesozoic and the Cenozoic, we correlate the permanent extensional regime over Africa and Indian ocean with the observed rift systems.Finally we emphasize the role of three primary hotspots as local additional contributors to the stress field imposed by our proposed subduction-doming system, which help in the opening of Indian and South Atlantic oceans.
NASA Astrophysics Data System (ADS)
Minakov, A.; Medvedev, S.
2017-12-01
Analysis of lithospheric stresses is necessary to gain understanding of the forces that drive plate tectonics and intraplate deformations and the structure and strength of the lithosphere. A major source of lithospheric stresses is believed to be in variations of surface topography and lithospheric density. The traditional approach to stress estimation is based on direct calculations of the Gravitational Potential Energy (GPE), the depth integrated density moment of the lithosphere column. GPE is highly sensitive to density structure which, however, is often poorly constrained. Density structure of the lithosphere may be refined using methods of gravity modeling. However, the resulted density models suffer from non-uniqueness of the inverse problem. An alternative approach is to directly estimate lithospheric stresses (depth integrated) from satellite gravimetry data. Satellite gravity gradient measurements by the ESA GOCE mission ensures a wealth of data for mapping lithospheric stresses if a link between data and stresses or GPE can be established theoretically. The non-uniqueness of interpretation of sources of the gravity signal holds in this case as well. Therefore, the data analysis was tested for the North Atlantic region where reliable additional constraints are supplied by both controlled-source and earthquake seismology. The study involves comparison of three methods of stress modeling: (1) the traditional modeling approach using a thin sheet approximation; (2) the filtered geoid approach; and (3) the direct utilization of the gravity gradient tensor. Whereas the first two approaches (1)-(2) calculate GPE and utilize a computationally expensive finite element mechanical modeling to calculate stresses, the approach (3) uses a much simpler numerical treatment but requires simplifying assumptions that yet to be tested. The modeled orientation of principal stresses and stress magnitudes by each of the three methods are compared with the World Stress Map.
NASA Astrophysics Data System (ADS)
Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.
2007-02-01
We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.
NASA Astrophysics Data System (ADS)
Burov, E.; Guillou-Frottier, L.
2005-05-01
Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.
Evolution of passive continental margins and initiation of subduction zones
NASA Astrophysics Data System (ADS)
Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.
1982-05-01
Although the initiation of subduction is a key element in plate tectonic schemes for evolution of lithospheric plates, the underlying mechanisms are not well understood. Plate rupture is an important aspect of the process of creating a new subduction zone, as stresses of the order of kilobars are required to fracture oceanic lithosphere1. Therefore initiation of subduction could take place preferentially at pre-existing weakness zones or in regions where the lithosphere is prestressed. As such, transform faults2,3 and passive margins4,5 where the lithosphere is downflexed under the influence of sediment loading have been suggested. From a model study of passive margin evolution we found that ageing of passive margins alone does not make them more suitable sites for initiation of subduction. However, extensive sediment loading on young lithosphere might be an effective mechanism for closure of small ocean basins.
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta T.; Nyblade, Andrew A.; Julia, Jordi
2007-08-01
The seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Most of the data for this study come from the Ethiopia broadband seismic experiment, conducted between 2000 and 2002. Shear velocity models obtained from the joint inversion show crustal structure that is similar to previously published models, with crustal thicknesses of 35 to 44 km beneath the Ethiopian Plateau, and 25 to 35 km beneath the Main Ethiopian Rift (MER) and the Afar. The lithospheric mantle beneath the Ethiopian Plateau has a maximum shear wave velocity of about 4.3 km/s and extends to a depth of ˜70-80 km. Beneath the MER and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the Ethiopian Plateau lithosphere can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30-50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure.
Numerical simulations of the mantle lithosphere delamination
NASA Astrophysics Data System (ADS)
Morency, C.; Doin, M.-P.
2004-03-01
Sudden uplift, extension, and increased igneous activity are often explained by rapid mechanical thinning of the lithospheric mantle. Two main thinning mechanisms have been proposed, convective removal of a thickened lithospheric root and delamination of the mantle lithosphere along the Moho. In the latter case, the whole mantle lithosphere peels away from the crust by the propagation of a localized shear zone and sinks into the mantle. To study this mechanism, we perform two-dimensional (2-D) numerical simulations of convection using a viscoplastic rheology with an effective viscosity depending strongly on temperature, depth, composition (crust/mantle), and stress. The simulations develop in four steps. (1) We first obtain "classical" sublithospheric convection for a long time period (˜300 Myr), yielding a slightly heterogeneous lithospheric temperature structure. (2) At some time, in some simulations, a strong thinning of the mantle occurs progressively in a small area (˜100 km wide). This process puts the asthenosphere in direct contact with the lower crust. (3) Large pieces of mantle lithosphere then quickly sink into the mantle by the horizontal propagation of a detachment level away from the "asthenospheric conduit" or by progressive erosion on the flanks of the delaminated area. (4) Delamination pauses or stops when the lithospheric mantle part detaches or when small-scale convection on the flanks of the delaminated area is counterbalanced by heat diffusion. We determine the parameters (crustal thicknesses, activation energies, and friction coefficients) leading to delamination initiation (step 2). We find that delamination initiates where the Moho temperature is the highest, as soon as the crust and mantle viscosities are sufficiently low. Delamination should occur on Earth when the Moho temperature exceeds ˜800°C. This condition can be reached by thermal relaxation in a thickened crust in orogenic setting or by corner flow lithospheric erosion in the overriding lithosphere of subduction zones.
Southern hemisphere craton modification by plume-lithosphere interaction
NASA Astrophysics Data System (ADS)
Hu, J.; Liu, L.; Faccenda, M.; Zhou, Q.; Fischer, K. M.; Marshak, S.; Lundstrom, C.
2017-12-01
The longevity of cratons is generally attributed to neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Large portions of the cratonic lithospheres in South America and Africa, however, have experienced significant modification since the Mesozoic, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We show that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered lithosphere deformation and deep lithospheric loss during Late Cretaceous to early Tertiary, as further evidenced by positive lithosphere residual topography, negative lithosphere residual gravity and the realignment of seismic anisotropy in the cratonic roots. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow and high seismic velocities. We conclude that lowermost cratonic lithospheres is compositionally denser than the asthenospheric mantle and can be episodically removed when perturbed by underlying mantle dynamics, while the shallower buoyant lithosphere helps to stabilize cratonic crust over billions of years. We further propose that zones where lithosphere was lost would take tens of millions of years to recover thermally, but the density of the new thermal root would remain less than that of the intact root.
Cascade Mountain Range in Oregon
Sherrod, David R.
2016-01-01
Along its Oregon segment, the Cascade Range is almost entirely volcanic in origin. The volcanoes and their eroded remnants are the visible magmatic expression of the Cascadia subduction zone, where the offshore Juan de Fuca tectonic plate is subducted beneath North America. Subduction occurs as two lithospheric plates collide, and an underthrusted oceanic plate is commonly dragged into the mantle by the pull of gravity, carrying ocean-bottom rock and sediment down to where heat and pressure expel water. As this water rises, it lowers the melting temperature in the overlying hot mantle rocks, thereby promoting melting. The molten rock supplies the volcanic arcs with heat and magma. Cascade Range volcanoes are part of the Ring of Fire, a popular term for the numerous volcanic arcs that encircle the Pacific Ocean.
Bounds on Lithospheric Thickness on Venus from Magellan Gravity and Topography Data
NASA Technical Reports Server (NTRS)
Johnson, Catherine L.; Sandwell, David
1997-01-01
The primary objective of the work executed under NAGW-4784 is to provide constraints on the thermal and tectonic evolution of Venus. Establishing thermal and tectonic evolution models requires not only geological, but geophysical constraints, in particular the nature of temporal and spatial variations in crustal and lithospheric thickness. The major topics of study completed under NAGW-4784 (described more fully below) are: (1) detailed analyses of the resolution of Magellan Line-Of-Site (LOS) Doppler data to establish the minimum resolvable wavelength in the gravity data; (2) calculations of the global strain field in the venusian lithosphere and comparisons with global strain patterns from geological mapping; (3) study of the geological history of coronae at E. Eistla Regio; (4) estimation of crustal and lithospheric thickness by modeling of topography at asymmetric and symmetric rift-like chasmata; (5) preliminary investigations of spatial versus temporal variations in lithospheric thickness. Both the PI and Co-I have presented papers based on these topics at national and international meetings (American Geophysical Union Meetings, Lunar and Planetary Science Conferences, Chapman Conference on the Geodynamics of Venus).
NASA Astrophysics Data System (ADS)
Kelly, Sean; Butler, Jared P.; Beaumont, Christopher
2016-12-01
Many collisional orogens contain exotic terranes that were accreted to either the subducting or overriding plate prior to terminal continent-continent collision. The ways in which the physical properties of these terranes influence collision remain poorly understood. We use 2D thermomechanical finite element models to examine the effects of prior 'soft' terrane accretion to a continental upper plate (retro-lithosphere) on the ensuing continent-continent collision. The experiments explore how the style of collision changes in response to variations in the density and viscosity of the accreted terrane lithospheric mantle, as well as the density of the pro-lithospheric mantle, which determines its propensity to subduct or compress the accreted terrane and retro-lithosphere. The models evolve self-consistently through several emergent phases: breakoff of subducted oceanic lithosphere; pro-continent subduction; shortening of the retro-lithosphere accreted terrane, sometimes accompanied by lithospheric delamination; and, terminal underthrusting of pro-lithospheric mantle beneath the accreted terrane crust or mantle. The modeled variations in the properties of the accreted terrane lithospheric mantle can be interpreted to reflect metasomatism during earlier oceanic subduction beneath the terrane. Strongly metasomatized (i.e., dense and weak) mantle is easily removed by delamination or entrainment by the subducting pro-lithosphere, and facilitates later flat-slab underthrusting. The models are a prototype representation of the Himalayan-Tibetan orogeny in which there is only one accreted terrane, representing the Lhasa terrane, but they nonetheless exhibit processes like those inferred for the more complex Himalayan-Tibetan system. Present-day underthrusting of the Tibetan Plateau crust by Indian mantle lithosphere requires that the Lhasa terrane lithospheric mantle has been removed. Some of the model results support previous conceptual interpretations that Tibetan lithospheric mantle was removed by convective coupling to the pro-lithosphere. They can also be interpreted to suggest that delamination beneath Tibet was facilitated by densification and weakening of the plateau lithosphere, perhaps owing to long-lived pre- to syn-collisional subduction-related metasomatism beneath the Asian margin.
Viscoelastic Lithosphere Response and Stress Memory of Tectonic Force History (Invited)
NASA Astrophysics Data System (ADS)
Kusznir, N. J.
2009-12-01
While great attention is often paid to the details of creep deformation mechanisms, brittle failure and their compositional controls when predicting the response of lithosphere to tectonic forces, the lithosphere’s elastic properties are usually neglected; a viscous rheology alone is often used to predict the resulting distribution of stress with depth or to determine lithosphere strength. While this may simplify geodynamic modelling of lithosphere response to tectonic processes, the omission of the elastic properties can often give misleading or false predictions. The addition of the elastic properties of lithosphere material in the form of a visco-elastic rheology results is a fundamentally different lithosphere response. This difference can be illustrated by examining the application of horizontal tectonic force to a section of lithosphere incorporating the brittle-visco-elastic response of each infinitesimal lithosphere layer with temperature and stress dependent viscous rheology. The transient response of a visco-elastic lithosphere to a constant applied tectonic force and the resulting distribution of stress with depth are substantially different from that predicted by a viscous lithosphere model, with the same lithosphere composition and temperature structure, subjected to a constant lateral strain rate. For visco-elastic lithosphere subject to an applied horizontal tectonic force, viscous creep in the lower crust and mantle leads to stress decay in these regions and to stress amplification in the upper lithosphere through stress redistribution. Cooling of lithosphere with a visco-elastic rheology results in thermal stresses which, as a consequence of stress dissipation by creep and brittle failure, results in a complex and sometimes counter-intuitive distribution of stress with depth. This can be most clearly illustrated for the cooling of oceanic lithosphere, however similar or more complex behaviour can be expected to occur for continental lithosphere. The application of changes in applied tectonic force with time to a visco-elastic lithosphere model results in reversals in the sign of stress with depth as a consequence of the “memory” of past stress dissipation by creep and brittle deformation. Because of this “memory”, locally stress polarity may be opposite to that of the current applied tectonic force. A lithosphere with viscous rheology displays no such “memory” of the applied tectonic stress history. The stress “memory” of lithosphere with visco-elastic rheology to its history of applied tectonic force, heating and cooling adds to its effective rheological complexity, particularly for continental lithosphere.
Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2015-04-01
The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with regards to past and future North American intraplate deformation are also discussed. Our results indicate that there exists a number of tectonic environments that can be produced relating to continental accretion, and that specific observational constraints to the local area (e.g., geological, geophysical, geodetic) are required to be integrated directly into the analyses for better interpretation. The models shown here find that although rheological changes to the lithosphere can produce a range of deformation during continental convergence (i.e., crustal thickening, thinning, and folding), mantle weak zones from ancient subduction can generate more localized deformation and topography.
NASA Astrophysics Data System (ADS)
She, Yawen; Fu, Guangyu; Wang, Zhuohua; Liu, Tai; Xu, Changyi; Jin, Honglin
2016-10-01
The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. These new FGAs show pairs of positive and negative anomalies along the eastern edges of the Tibetan Plateau. The FGAs are used to calculate effective elastic thickness ( T e) and load ratios ( F) of the lithosphere. Admittance analysis indicates the T e of Longmen Shan (LMS) to be 6 km, and profile analysis indicates that the T e of the Sichuan Basin excesses 30 km. The load ratio ( F 1 = 1) confirms that the lithospheric flexure of the LMS area can be attributed solely to the surface load of the crust. [Figure not available: see fulltext. Caption: The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. With the new FGAs data, the lithospheric strength of the study area is studied by the authors, and they also give a combined model to illustrate the uplift mechanism of this area.
NASA Astrophysics Data System (ADS)
Hamblock, J.; Anthony, E.; Omenda, P.; Chesley, J.
2003-04-01
We report chemical analyses for tholeiites from the axial region of the EARS and tholeiites and basanites from the Chyulu Hills Volcanic Province (CHVP), located on the SE flank of the Kenya Rift. The purpose of the study is to: i) explore contrasts in lithospheric composition from the axial region, where seismic velocities imply high temperatures and presence of melt at shallow depths, to the flanks, where geophysical studies indicate thick lithosphere and a zone of partial melt centered under the CHVP (Ritter and Kaspar, 1997, Tectonophysics 278, 149-169). ii) investigate plume components and plume-lithosphere interactions in the different settings. This study complements the characterization of lithosphere along the axis of the Rift by MacDonald et al. (2001, J. Petrol. 42, 877-900) and the study of temporal evolution of the CHVP by Späth et al. (2001, J. Petrol. 42, 765-787). Basanites within the CHVP are similar to OIB in their trace-element patterns, but with a pronounced negative K-anomaly. Späth et al. attribute this anomaly to melting of a lithospheric mantle source containing amphibole. They postulate, based on radiogenic isotopes (Sr, Pb, Nd), recent metasomatism due to interaction of the lithosphere with the EARS plume. High La/Yb suggests a source within the garnet-peridotite field. Tholeiites from the CHVP are distinct in trace-element chemistry from basanites, with flatter multi-element patterns and generally lower elemental concentrations. The CHVP tholeiites have La/Yb indicative of a spinel peridotite source. The role of crustal contamination for tholeiites remains open; however, substantial evidence exists for lithospheric heterogeneity beneath the CHVP. Axial lavas show similar elemental behavior as the CHVP: basanites have negative K-anomalies (MacDonald et al., 2001), whereas tholeiites do not. Tholeiites have flat multi-element patterns with low overall concentrations, similar to those from the CHVP, with one significant difference tholeiites from the axial region have variable and high concentrations of Ba, K, and Ta, which may represent a more pervasive plume component. The Mg-number of lavas from the axial region are significantly lower than lavas in the CHVP, suggesting greater degrees of crystal fractionation and potentially longer residence times in crustal magma chambers. In conclusion, evidence exists in both areas for lithospheric mantle heterogeneity, but in both areas the elemental signature is highly correlated to silica saturation. For a given group of lavas of similar silica saturation, the elemental patterns are similar from the axis to the flank. This observation implies that there are not strong lateral contrasts in lithospheric composition across the EARS.
Integrating shear velocity observations of the Hudson Bay
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.
2013-12-01
Hudson Bay is the core of the Laurentia craton of North America. This region contains some of the thickest lithosphere globally, reaching 250-300 km depth. Previous studies have shown that much of this region is composed of amalgamated proto-continents including the Western Churchill and Superior provinces and that much of the structure of these constituents has been retained since the Trans-Hudson Orogen at 1.8 Ga. Using the Hudson Bay Lithospheric Experiment (HuBLE) and other permanent and POLARIS broadband seismic data, we image the region with S to P receiver functions, joint inversion of P to S receiver functions with surface waves, and teleseismic S and P wave travel-times. The receiver function imaging reveals a persistent mid-lithospheric layer at ~80 km depth under all stations, but a variable lithospheric thickness. The teleseismic S delay times show a pattern of early arrivals around the center of the network, beneath Hudson Bay where the lithosphere is thickest, while the P delay times are early in the Superior province relative to the Western Churchill province. This suggests higher Vp/Vs ratios in the Superior province, which is evidence that stacked oceanic plates formed this province. The relatively flat Moho imaged by earlier receiver function studies and the lower mantle Vp/Vs of the Western Churchill province provides evidence of formation by plume head extraction. The joint inversion shows an LAB that is typically a broad discontinuity spanning ~20-30 km at ~220 km depth suggesting a primarily thermal boundary zone. The mid-lithospheric layer is composed of increasing velocity from the ~40 km depth Moho defined by H-k stacking of PRFs to a broad, constant velocity lithospheric lid spanning 80-200 km depth. We suggest this mid-lithospheric layer represents the mantle lithosphere of the proto-continents prior to collision and the lid formed due to post-collisional cooling. The integration of these seismic datasets furthers our understanding of plate tectonic and non-tectonic processes during the Archean formation of Laurentia craton.
NASA Astrophysics Data System (ADS)
Xiong, X.; Shan, B.; Li, Y.
2017-12-01
The North China Craton (NCC) has undergone significant lithospheric rejuvenation in late Mesozoic and Cenozoic, one feature of which is the widespread extension and rifting. The extension is distinct between the two parts of NCC: widespread rifting in the eastern NCC and localized narrow rifting in the west. The mechanism being responsible for this difference is uncertain and highly debated. Since lithospheric deformation can be regarded as the response of lithosphere to various dynamic actions, the rheological properties of lithosphere must have a fundamental influence on its tectonics and deformation behavior. In this study, we investigated the 3D thermal and rheological structure of NCC by developing a model integrating several geophysical observables (such as surface heatflow, regional elevation, gravity and geoid anomalies, and seismic tomography models). The results exhibit obvious lateral variation in rheological structure between the eastern and western NCC. The overall lithospheric strength is higher in the western NCC than in the east. Despite of such difference in rheology, both parts of NCC are characterized by mantle dominated strength regime, which facilitates the development of narrow rifting. Using ancient heatflow derived from mantle xenoliths studies, and taking the subduction-related dehydration reactions during Mesozoic into account, we constructed the thermal and rheological structure of NCC in Ordovician, early Cretaceous and early Cenozoic. Combining the evidence from numerical simulations, we proposed an evolution path of the rifting in NCC. The lithosphere of NCC in Ordovician was characterized by a normal craton features: low geotherm, high strength and mantle dominated regime. During Jurassic and Cretaceous, the mantle lithosphere in the eastern NCC was hydrated by fluid released by the suduction of the Pacific plate, resulting in weakening of the lithosphere and a transition from mantle dominated to crust dominated regime, which facilitated the development of metamorphic core complex extension. The rifting in eastern NCC experienced a further transition to the wide rifting style under a low strain rate environment during early Cenozoic. In contrast, the western NNC has been kept mantle dominated regime, leading to a localized narrow rifting.
Application of MAGSAT to lithospheric modeling in South America
NASA Technical Reports Server (NTRS)
Keller, G. R.; Lidiak, E. G. (Principal Investigator)
1983-01-01
Progress in the determination of relations of MAGSAT anomalies to lithospheric structures is reported. The prime emphasis was on a Rayleigh wave study and the determination of both group and phase velocity dispersion.
Overturned Alboran slab beneath westernmost Mediterranean
NASA Astrophysics Data System (ADS)
Sun, D.; Miller, M. S.
2017-12-01
The geological evolution of the westernmost Mediterranean holds an important piece of the puzzle of how whole western Mediterranean evolved due to the convergence of Africa with Eurasia. The idea of continuous slab roll back acting a prominent force in this region is strongly supported by tomographic images with near vertical high velocity structure connecting the surface beneath the Alboran domain [Spakman and Wortel, 2004; Bezada et al., 2013]. However, the slab shape, width, and sharpness of its edges are not well resolved. Here, we use the waveforms recorded from the PICASSO (XB) array and IberArray (IA) for the deep 2010 earthquake beneath Granada to study the detailed Alboran slab structure. We found: (1) A low velocity structure (7 km thickness, δVs = -20%) surrounding the earthquake to explain the second arrivals observed in many stations at Spain. (2) A thin low velocity layer sits on the bottom of the high velocity slab-like structure to explain the high frequency second arrivals and long coda after the P and S arrivals on stations in the Rif Mountains of Morocco. The most feasible explanation of the low velocity structure is the dehydrated surface of the slab lithosphere extending from the 600 km to the shallow mantle. However, such geometry is contradictory with our observation, which the low velocity layer is at the bottom of the slab. We proposed that the Albora slab had undergone significant "roll-over" movement, which overturned the slab surface.
NASA Astrophysics Data System (ADS)
Santimano, T. N.; Adiban, P.; Pysklywec, R.
2017-12-01
The primary controls of deformation in the lithosphere are related to its rheological properties. In addition, recent work reveals that inherited zones of weakness in the deep lithosphere are prevalent and can also define tectonic activity. To understand how deformation is genetically related to rheology and/or pre-existing structures, we compare a set of physical analogue models with the presence and absence of a fault in the deep lithosphere. The layered lithosphere scaled models of a brittle upper crust, viscous lower crust and viscous mantle lithosphere are deformed in a convergent setting. Deformation of the model is recorded using high spatial and temporal stereoscopic cameras. We use Particle Image Velocimetry (PIV) to acquire a time-series dataset and study the velocity field and subsequently strain in the model. The finished model is also cut into cross-section revealing the finite internal structures that are then compared to the topography of the model. Preliminary results show that deformation in models with an inherited fault in the mantle lithosphere is accommodated by displacement along the fault plane that propagates into the overlying viscous lower crust and brittle upper crust. Here, the majority of the deformation is localized along the fault in a brittle manner. This is in contrast to the model absent of a fault that also displays significant amounts of deformation. In this setting, ductile deformation is accommodated by folding and thickening of the viscous layers and flexural shearing of the brittle upper crust. In these preliminary experiments, the difference in the strength profile between the mantle lithosphere and the lower crust is within the same order of magnitude. Future experiments will include models where the strength difference is an order of magnitude. This systematic study aids in understanding the role of rheology and deep structures particularly in transferring stress over time to the surface and is therefore fundamental in understanding intraplate tectonics and orogenesis.
Lithospheric thermal-rheological structure of the Ordos Basin and its geodynamics
NASA Astrophysics Data System (ADS)
Pan, J.; Huang, F.; He, L.; Wu, Q.
2015-12-01
The study on the destruction of the North China Craton has always been one of the hottest issues in earth sciences.Both mechanism and spatial variation are debated fiercely, still unclear.However, geothermal research on the subject is relatively few. Ordos Basin, located in the west of the North China Craton, is a typical intraplate. Based on two-dimensional thermal modeling along a profile across Ordos Basin from east to west, obtained the lithospheric thermal structure and rheology. Mantle heat flow in different regions of Ordos Basin is from 21.2 to 24.5 mW/m2. In the east mantle heat flow is higher while heat flow in western region is relatively low. But mantle heat flow is smooth and low overall, showing a stable thermal background. Ratio of crustal and mantle heat flow is between 1.51 and 1.84, indicating that thermal contribution from shallow crust is lower than that from the mantle. Rheological characteristics along the profile are almost showed as "jelly sandwich" model and stable continental lithosphere structure,which is represent by a weak crust portion but a strong lithospheric mantle portion in vertical strength profile. Based on above , both thermal structure and lithospheric rheology of Ordos Basin illustrate that tectonic dynamics environment in the west of North China Craton is relatively stable. By the study on lithospheric thermal structure, we focus on the disparity in thickness between the thermal lithosphere and seismic lithosphere.The difference in western Ordos Basin is about 140km, which decreases gradually from Fenwei graben in the eastern Ordos Basin to the Bohai Bay Basin.That is to say the difference decreases gradually from the west to the east of North China Craton.The simulation results imply that viscosity of the asthenosphere under North China Craton also decreases gradually from west to east, confirming that dehydration of the Pacific subduction is likely to have great effect on the North China Craton.
Seismic investigation of an ocean-continent transition zone in the northern South China Sea
NASA Astrophysics Data System (ADS)
Zhu, J.; Qiu, X.; Xu, H.; Zhan, W.; Sun, Z.
2011-12-01
Rifted continental margins and basins are mainly formed by the lithospheric extension. Thined lithosphere of passive continental margins results in decompression melt of magma and created oceanic crust and thined ocean-continent transition (OCT) zone. Two refraction profiles used ocean bottom seismometers deployed in the broad continental shelf and three multi-channel seismic reflection lines in the northern South China Sea, acquired by the ship "Shiyan 2" of the South China Sea Institute of Oceanology, Chinese Academy of Sciences in 2010, are processed and interpreted in this study. Seismic reflection lines cut through the Dongsha rise, Zhu-1 and Zhu-2 depression within a Tertiary basin, Pear River Mouth basin (called as Zhujiangkou basin). These tectonic features are clear imaged in the seismic reflection records. Numerous normal faults, cutted through the basement and related to the stretch of the northern South China Sea margin, are imaged and interpreted. Reflection characteristics of the ocean-continent transition (OCT) zone are summaried and outlined. The COT zone is mainly divided into the northern syn-rift subsidence zone, central volcano or buried volcano uplift zone and tilt faulted block near the South Chia Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the segmentation range of the OCT zone is outlined, from width of about 225 km in the northeastern South China Sea , of 160 km in the central to of 110 km in the north-central South China Sea. Based on the epicenter distribution of sporadic and large than 6 magnitude earthquakes, it suggests the OCT zone in the northern South China Sea at present is still an active seismic zone.
Global maps of the magnetic thickness and magnetization of the Earth's lithosphere
NASA Astrophysics Data System (ADS)
Vervelidou, Foteini; Thébault, Erwan
2015-10-01
We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth's lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth's lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho.
Thermal regime of the continental lithosphere
NASA Technical Reports Server (NTRS)
Morgan, P.; Sass, J. H.
1984-01-01
From studies of the global heat flow data set, it has been generalized, with respect to the continental lithosphere, that there is a negative correlation between heat flow and the lithosphere's tectonic edge, and that the lithosphere's thermal evolution is similar to that of the ocean basins, resulting in a 'stable geotherm' in both environments. It is presently noted that a regional study perspective for heat flow data leads to doubts concerning the general applicability of either statement. Rao et al. (1982) have demonstrated that the data are not normally distributed, and that it is not possible to establish a negative correlation between heat flow and age in a rigorous statistical fashion. While some sites of stable continental blocks may have a geotherm that is by chance similar to that for old ocean basins, this need not hold true generally, and many stable continental terranes will be characterized by geotherms very different from those for old ocean basins.
Understanding lithospheric stresses in Arctic: constraints and models
NASA Astrophysics Data System (ADS)
Medvedev, Sergei; Minakov, Alexander; Lebedeva-Ivanova, Nina; Gaina, Carmen
2016-04-01
This pilot project aims to model stress patterns and analyze factors controlling lithospheric stresses in Arctic. The project aims to understand the modern stresses in Arctic as well as to define the ways to test recent hypotheses about Cenozoic evolution of the region. The regions around Lomonosov Ridge and Barents Sea are of particular interest driven by recent acquisition of high-resolution potential field and seismic data. Naturally, the major contributor to the lithospheric stress distribution is the gravitational potential energy (GPE). The study tries to incorporate available geological and geophysical data to build reliable GPE. In particular, we use the recently developed integrated gravity inversion for crustal thickness which incorporates up-to-date compilations of gravity anomalies, bathymetry, and sedimentary thickness. The modelled lithosphere thermal structure assumes a pure shear extension and the ocean age model constrained by global plate kinematics for the last ca. 120 Ma. The results of this approach are juxtaposed with estimates of the density variation inferred from the upper mantle S-wave velocity models based on previous surface wave tomography studies. Although new data and interpretations of the Arctic lithosphere structure become available now, there are areas of low accuracy or even lack of data. To compensate for this, we compare two approaches to constrain GPE: (1) one that directly integrates density of modelled lithosphere and (2) one that uses geoid anomalies which are filtered to account for density variations down to the base of the lithosphere only. The two versions of GPE compared to each other and the stresses calculated numerically are compared with observations. That allows us to optimize GPE and understand density structure, stress pattern, and factors controlling the stresses in Arctic.
Thermal thickness and evolution of Precambrian lithosphere: A global study
Artemieva, I.M.; Mooney, W.D.
2001-01-01
The thermal thickness of Precambrian lithosphere is modeled and compared with estimates from seismic tomography and xenolith data. We use the steady state thermal conductivity equation with the same geothermal constraints for all of the Precambrian cratons (except Antarctica) to calculate the temperature distribution in the stable continental lithosphere. The modeling is based on the global compilation of heat flow data by Pollack et al. [1993] and more recent data. The depth distribution of heat-producing elements is estimated using regional models for ???300 blocks with sizes varying from 1?? ?? 1?? to about 5?? ?? 5?? in latitude and longitude and is constrained by laboratory, seismic and petrologic data and, where applicable, empirical heat flow/heat production relationships. Maps of the lateral temperature distribution at depths 50, 100, and 150 km are presented for all continents except Antarctica. The thermal thickness of the lithosphere is calculated assuming a conductive layer overlying the mantle with an adiabat of 1300??C. The Archean and early Proterozoic lithosphere is found to have two typical thicknesses, 200-220 km and 300-350 km. In general, thin (???220 km) roots are found for Archean and early Proterozoic cratons in the Southern Hemisphere (South Africa, Western Australia, South America, and India) and thicker (>300 km) roots are found in the Northern Hemisphere (Baltic Shield, Siberian Platform, West Africa, and possibly the Canadian Shield). We find that the thickness of continental lithosphere generally decreases with age from >200 km beneath Archean cratons to intermediate values of 200 ?? 50 km in early Proterozoic lithosphere, to about 140 ?? 50 km in middle and late Proterozoic cratons. Using known crustal thickness, our calculated geotherms, and assuming that isostatic balance is achieved at the base of the lithosphere, we find that Archean and early Proterozoic mantle lithosphere is 1.5% less dense (chemically depleted) than the underlying asthenosphere, while middle and late Proterozoic subcrustal lithosphere should be depleted by ???0.6-0.7%. Our results suggest three contrasting stages of lithosphere formation at the following ages: >2.5 Ga, 2.5-1.8 Ga, and <1.8 Ga. Ages of komatiites, greenstone belts, and giant dike swarms broadly define similar stages and apparently reflect secular changes in mantle temperature and, possibly, convection patterns.
NASA Astrophysics Data System (ADS)
Gozzard, S. P.; Kusznir, N.; Goodliffe, A.; Manatschal, G.
2007-12-01
Understanding how the continental crust and lithosphere thins at the propagating tip of sea-floor spreading is the key to understanding the continental breakup process. The Woodlark Basin, a young ocean basin located in the Western Pacific to the east of Papua New Guinea, commenced formation at approximately 8.4Ma and is propagating westwards at a rate of approximately 140km/Myr. Immediately to the west of the most recent segment of sea-floor spreading propagation, in the vicinity of the Moresby Seamount, evidence from bathymetry, subsidence and seismic Moho depth suggests that continental lithosphere is being thinned. In this study we have determined lithosphere thinning in the vicinity of the Moresby Seamount at the level of the whole lithosphere, the whole crust and the upper crust. Whole lithosphere thinning factors have been determined from subsidence analysis; whole continental crustal thinning factors have been determined from gravity inversions and upper crustal thinning factors have been determined from fault analysis. Three 2D seismic profiles surrounding the Moresby Seamount have been flexurally backstripped to the base of the syn-rift sediments to determine the water loaded subsidence. Using the McKenzie lithosphere extension model, modified to include volcanic addition at high thinning factors, whole thinning factors for the lithosphere have been determined from the water loaded subsidence. Results show that thermal subsidence alone cannot account for the observed subsidence, and that an additional initial subsidence is needed. Whole lithosphere thinning factors increase from an average of 0.5 to 0.8 across the Moresby Seamount eastwards towards the propagating tip. A satellite gravity inversion incorporating a lithosphere thermal gravity anomaly correction has been used to determine Moho depth, crustal thickness and thinning factors for the propagating tip in the Woodlark Basin. Moho depths are consistent with depths obtained from receiver function analysis (Ferris et al. 2006). Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thinning factors in the vicinity of the Moresby Seamount are similar to those observed for the whole lithosphere. Fault analysis of the three 2D profiles have been used to determine upper crustal thinning factors. Upper crustal thinning factors between 0.1 to 0.2 are observed for the vicinity of the Moresby Seamount, substantially lower than thinning factors predicted for the whole lithosphere and continental crust, suggesting depth-dependent lithosphere thinning. Crustal thicknesses predicted from gravity inversion immediately to the east of the Moresby Seamount are substantially greater than would be expected for oceanic lithosphere in this region, while highly thinned, has not completely ruptured.
Depth to Curie temperature or magnetic sources bottom in the Lesser Antilles Arc volcanic area
NASA Astrophysics Data System (ADS)
Gailler, Lydie-Sarah; Martelet, Guillaume; Thinon, Isabelle; Münch, Philippe; Arcay, Diane
2015-04-01
In the continuation of the innovative study carried out at the scale of La Réunion Island to generalize Curie Point Depth (CPD) determinations at the scale of oceanic volcanic islands, we present here a similar work at the scale of the Lesser Antilles Arc. Assuming that magnetic anomalies are concentrated within the oceanic crust and using the growing assumption of a magnetized upper mantle, the Curie depth should become deeper as the oceanic lithosphere becomes older (i.e. thicker). We use the magnetic anomaly map computed by Gailler et al. (2013), completed and extended with the global Earth Magnetic Anomaly Grid (EMAG2) (Maus et al., 2007). The calculated magnetic sources bottom lies at depths between 18 and 32 km and exhibits a complex topography, presumably caused by the combination of various magmatic and tectonic crustal structures in this complex subduction context. The correlations between our depth to magnetic sources bottom and the large scale bathymetric and geophysical studies provide an interesting overview of the Lesser Antilles Arc structuring. The Inner Arc is mainly associated with a deepening of the depth to magnetic sources bottom. On the contrary, a huge doming appears along the central Lesser Antilles Arc, consistent with the seismic imaging (Kopp et al., 2011). This uprise of our calculated magnetic surface extents southeastern to the Guadeloupe Island in the direction of the Tiburon Ridge following the abnormal transverse component of the subduction in the N130°E direction defined by Gailler et al. (2013). A strong lateral narrowing of this doming is evidenced southern of Dominique Island where the two arcs converge. In this central area, the averaged depth of the magnetic sources bottom is also larger than expected in the case of classical oceanic crust. This is in agreement with previous interpretation of an original oceanic crust thickened by deep magmatic processes and underplating prior to the evolution of the Lesser Antilles Arc (Diebold, 2009). To the NE, the five main axis of deformation imaged from geophysical and bathymetric studies are well correlated with the larger bulged area of the magnetic sources bottom which also seems to underline the large scale deformation and faulting of the Outer arc. Along this latter, our map is correlated with the accretionary prism, the subduction trench, and the large scale gravity scheme. We also perform 2D thermo-mechanical simulations of the Lesser Antilles subduction zone to model the thermal structure of the fore-arc/arc domain at steady-state. Water transfers associated to slab dehydration and overlying rock hydration are modeled, including a simple hydrous strength weakening law. Simulations show that asthenospheric flows are strongly enhanced in the hydrated mantle wedge, yielding a significant reheating of the fore-arc domain, consistent with what is suggested by magnetic data.
Contributions to the geodynamics of western Canada
NASA Astrophysics Data System (ADS)
Fluck, Paul
Western Canada exhibits a large variation in continental lithosphere from very old rocks in the Canadian Shield across the younger Cordillera to the current accretion of the Yakutat Terrane in the Gulf of Alaska. The geodynamics are driven by the Pacific-North America plate motion resulting in deformation, seismicity, and mountain building across the Canadian Cordillera. The way the lithosphere reacts to deformation or loading depends on its thickness and strength. The effective elastic thickness of the lithosphere, Te , has been estimated in this thesis study using a coherence analysis of Bouguer gravity and topography. There is very thick and strong lithosphere in the old Canadian Shield (Te > 100 km) and thin and weak lithosphere in the Cordillera (Te = 20--30 km). Lithospheric temperature, derived from surface heat flow and upper crust radioactive heat generation, is the most important control on the strength of the lithosphere. Calculated temperatures at the base of the crust are high in the young and hot Cordillera (˜900--1000°C) and very low in the old and cold Craton (˜400--450°C). The depths to the thermally controlled brittle-ductile transition are in general agreement with the Te estimates. The high temperatures in the lower crust and upper mantle of the Cordillera reduce the density by thermal expansion. This thermal isostasy explains the surprising observation of high topography over thin crust. The estimated lithospheric temperatures are used to calculate lithospheric strength profiles. In agreement with the Te estimates, the Cordillera has a weak zone in the lower crust facilitating detachment of the upper crust. Analysis of GPS continuous and campaign data show that the Northern Cordillera is moving at ˜5--10 mm/y in a northward direction driven by the collision of the Yakutat Block in the Gulf of Alaska and is overthrusting the strong lithosphere of the Canadian Shield.* *This dissertation is multimedia (contains text and other applications not available in printed format). The CD requires the following system applications: Internet Browser; Adobe Acrobat; Microsoft Office.
NASA Astrophysics Data System (ADS)
Piccardo, Giovanni; Ranalli, Giorgio
2017-04-01
Orogenic peridotites from Alpine-Apennine ophiolite Massifs (Lanzo, Voltri, External and Internal Ligurides, - NW Italy, and Mt. Maggiore - Corsica) derive from the mantle lithosphere of the Ligurian Tethys. Field/structural and petrologic/geochemical studies provide constraints on the evolution of the lithospheric mantle during pre-oceanic passive rifting of the late Jurassic Ligurian Tethys ocean. Continental rifting by far-field tectonic forces induced extension of the lithosphere by means of km-scale extensional shear zones that developed before infiltration of melts from the asthenosphere (Piccardo and Vissers, 2007). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent spinel-facies decompression melting along the axial zone of the extensional system. Silica-undersaturated melt fractions percolated through the lithospheric mantle via diffuse/focused porous flow and interacted with the host peridotite through pyroxenes-dissolving/olivine-precipitating melt/rock reactions. Pyroxene dissolution and olivine precipitation modified the composition of the primary silica-undersaturated melts into derivative silica-saturated melts, while the host lithospheric spinel lherzolites were transformed into pyroxene-depleted/olivine-enriched reactive spinel harzburgites and dunites. The derivative liquids interacted through olivine-dissolving/orthopyroxene+plagioclase-crystallizing reactions with the host peridotites that were impregnated and refertilized (Piccardo et al., 2015). The saturated melts stagnated and crystallized in the shallow mantle lithosphere (as testified by diffuse interstitial crystallization of euhedral orthopyroxene and anhedral plagioclase) and locally ponded, forming orthopyroxene-rich/olivine-free gabbro-norite pods (Piccardo and Guarnieri, 2011). Reactive and impregnated peridotites are characterized by high equilibration temperatures (up to 1250 °C) even at low pressure, plagioclase-peridotite facies conditions. This indicates that thermal advection by percolation of hot asthenospheric melts significantly heated the lithospheric mantle column above the melting asthenosphere. Numerical and analogue models show that infiltration of melts results in considerable softening of mantle rocks. Total ithospheric strength can be decreased from 10 to 1 TN m-1 as orders of magnitude and the sin-rift thermo-mechanical erosion of the lithospheric mantle induces significant rheological softening along the axial zone of extension (Corti et al., 2007; Ranalli et al., 2007). Softening of the lithospheric mantle may lead to whole lithospheric failure and consequently to transition from continental extension to oceanic spreading. Therefore, rheological softening caused destabilization of the lithospheric mantle between the future continental margins (Piccardo et al., 2014; Piccardo, 2016) of the Ligurian Tethys. The wedge of destabilized lithosphere favored faster divergence of the continental blocks and enhanced doming and thermal buoyancy of deeper/hotter asthenosphere that rose between the future continental margins and originated aggregated MORB melts (i.e., the oceanic magmatism that formed olivine-gabbro intrusions and pillowed basalt extrusions). Lithosphere destabilization by melt percolation can play a fundamental role in the geodynamic evolution of lithosphere extension causing transition from continental extension to continental break-up to oceanic spreading. Corti, G., Bonini, M., Innocenti, F., Manetti, P., Piccardo, G.B., Ranalli, G., 2007. Journal of Geodynamics, 43, 465-483. Piccardo, G.B., Padovano, M., Guarnieri, L. 2014. Earth-Science Reviews, 138, 409-434. Piccardo, G.B., 2016. Gondwana Research, 39, 230-249. Piccardo, G.B., Vissers, R.L.M., 2007. Journal of Geodynamics, 43, 417-449. Piccardo, G.B., Guarnieri, L., 2011. Lithos, 124, 210-214. Ranalli, G., Piccardo, G.B., Corona-Chavez, P., 2007. Journal of Geodynamics, 43, 450-464.
Cool seafloor hydrothermal springs reveal global geochemical fluxes
NASA Astrophysics Data System (ADS)
Wheat, C. Geoffrey; Fisher, Andrew T.; McManus, James; Hulme, Samuel M.; Orcutt, Beth N.
2017-10-01
We present geochemical data from the first samples of spring fluids from Dorado Outcrop, a basaltic edifice on 23 M.y. old seafloor of the Cocos Plate, eastern Pacific Ocean. These samples were collected from the discharge of a cool hydrothermal system (CHS) on a ridge flank, where typical reaction temperatures in the volcanic crust are low (2-20 °C) and fluid residence times are short. Ridge-flank hydrothermal systems extract 25% of Earth's lithospheric heat, with a global discharge rate equivalent to that of Earth's river discharge to the ocean; CHSs comprise a significant fraction of this global flow. Upper crustal temperatures around Dorado Outcrop are ∼15 °C, the calculated residence time is <3 y, and the composition of discharging fluids is only slightly altered from bottom seawater. Many of the major ions concentrations in spring fluids are indistinguishable from those of bottom seawater; however, concentrations of Rb, Mo, V, U, Mg, phosphate, Si and Li are different. Applying these observed differences to calculated global CHS fluxes results in chemical fluxes for these ions that are ≥15% of riverine fluxes. Fluxes of K and B also may be significant, but better analytical resolution is required to confirm this result. Spring fluids also have ∼50% less dissolved oxygen (DO) than bottom seawater. Calculations of an analytical model suggest that the loss of DO occurs primarily (>80%) within the upper basaltic crust by biotic and/or abiotic consumption. This calculation demonstrates that permeable pathways within the upper crust can support oxic water-rock interactions for millions of years.
Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Ito, Garrett; van Hunen, Jeroen
2011-01-01
Repeated shifts, or jumps, of mid-ocean ridge segments toward nearby hot spots can produce large, long-term changes to the geometry and location of the tectonic plate boundaries. Ridge jumps associated with hot spot-ridge interaction are likely caused by several processes including shear on the base of the plate due to expanding plume material as well as reheating of lithosphere as magma passes through it to feed off-axis volcanism. To study how these processes influence ridge jumps, we use numerical models to simulate 2-D (in cross section) viscous flow of the mantle, viscoplastic deformation of the lithosphere, and melt migration upward from the asthenospheric melting zone, laterally along the base of the lithosphere, and vertically through the lithosphere. The locations and rates that magma penetrates and heats the lithosphere are controlled by the time-varying accumulation of melt beneath the plate and the depth-averaged lithospheric porosity. We examine the effect of four key parameters: magmatic heating rate of the lithosphere, plate spreading rate, age of the seafloor overlying the plume, and the plume-ridge migration rate. Results indicate that the minimum value of the magmatic heating rate needed to initiate a ridge jump increases with plate age and spreading rate. The time required to complete a ridge jump decreases with larger values of magmatic heating rate, younger plate age, and faster spreading rate. For cases with migrating ridges, models predict a range of behaviors including repeating ridge jumps, much like those exhibited on Earth. Repeating ridge jumps occur at moderate magmatic heating rates and are the result of changes in the hot spot magma flux in response to magma migration along the base of an evolving lithosphere. The tendency of slow spreading to promote ridge jumps could help explain the observed clustering of hot spots near the Mid-Atlantic Ridge. Model results also suggest that magmatic heating may significantly thin the lithosphere, as has been suggested at Hawaii and other hot spots.
NASA Astrophysics Data System (ADS)
Mancilla, Flor de Lis; Heit, Benjamin; Morales, Jose; Yuan, Xiaohui; Stich, Daniel; Molina-Aguilera, Antonio; Azañon, Jose Miguel; Martín, Rosa
2018-03-01
We study the crustal and lithospheric mantle structure under central Betics in the westernmost Mediterranean region by migrating P-receiver functions along a dense seismic profile (∼2 km interstation distance). The profile, North-South oriented, probes the crustal structure of different geological units, from the Alboran domain in the south with metamorphic rocks, through the External Zones with sedimentary rocks to the Variscan terrains of the Iberian Massif in the north. From north to south, the Moho depth increases from ∼30 km to ∼46 km underneath the Guadix basin, due to the underthrusting of the Iberian crust below the Alboran crust, and suddenly shallows to ∼30 km underneath the Internal Zones with a step of 17 km. This sharp Moho step correlates well with a lithospheric step of ∼40 km, where the thickness of the lithosphere changes abruptly from ∼100 km in the north to ∼50 km in the south. We interpret this sharp and prominent lithospheric step as the termination of the Iberian lithosphere caused by a near-vertical STEP (Subduction-Transform-Edge-Propagator) fault that continues towards the surface as a positive flower tectonic structure of crustal scale. This STEP fault is located at the northern edge of the narrow Westernmost Mediterranean subduction system facilitating the slab rollback motion towards the west. The sharp termination of the Iberian lithosphere occurs under the contact between the Alpujarride and the Nevado-Filabride complexes of the Alboran domain in an ENE-WSW right-lateral transpressive shear zone. The thickest crust and lithosphere do not correlate with the highest topography along the profile suggesting that this high topography is a combined effect of the positive flower structure, and the push up of the asthenosphere produced by the removal of the Iberian lithosphere.
Crustal and uppermost mantle structure and deformation in east-central China
NASA Astrophysics Data System (ADS)
Li, H.; Yang, X.; Ouyang, L.; Li, J.
2017-12-01
We conduct a non-linear joint inversion of receiver functions and Rayleigh wave dispersions to obtain the crustal and upper mantle velocity structure in east-central China. In the meanwhile, the lithosphere and upper mantle deformation beneath east-central China is also evaluated with teleseismic shear wave splitting measurements. The resulting velocity model reveals that to the east of the North-South Gravity Lineament, the crust and the lithosphere are significantly thinned. Furthermore, three extensive crustal/lithospheric thinning sub-regions are clearly identified within the study area. This indicates that the modification of the crust and lithosphere in central-eastern China is non-uniform due to the heterogeneity of the lithospheric strength. Extensive crustal and lithospheric thinning could occur in some weak zones such as the basin-range junction belts and large faults. The structure beneath the Dabie orogenic belt is complex due to the collision between the North and South China Blocks during the Late Paleozoic-Triassic. The Dabie orogenic belt is generally delineated by a thick crust with a mid-crust low-velocity zone and a two-directional convergence in the lithospheric scale. Obvious velocity contrast exhibits in the crust and upper mantle at both sides of the Tanlu fault, which suggests the deep penetration of this lithospheric-scale fault. Most of our splitting measurements show nearly E-W trending fast polarization direction which is slightly deviating from the direction of plate motion. The similar present-day lithosphere structure and upper mantle deformation may imply that the eastern NCC and the eastern SCB were dominated by a common dynamic process after late Mesozoic, i.e., the westward subduction of Pacific plate and the retreat of the subduction plate. The westward subduction of the Philippine plate and the long-range effects of the collision between the Indian plate and Eurasia plate during Cenozoic may have also contributed to the present velocity structure and stress environment of eastern China.
NASA Astrophysics Data System (ADS)
Yang, A.; Yongtao, F.
2016-12-01
The effective elastic thickness (Te) is an important parameter that characterizes the long term strength of the lithosphere, which has great significance on understanding the mechanical properties and evolution of the lithosphere. In contrast with many controversies regarding elastic thickness of continent lithosphere, the Te of oceanic lithosphere is thought to be in a simple way that is dependent on the age of the plate. However, rescent studies show that there is no simple relationship between Te and age at time of loading for both seamounts and subduction zones. As subsurface loading is very importand and has large influence in the estimate of Te for continent lithosphere, and many oceanic features such as subduction zones also have considerable subsurface loading. We introduce the method to estimate the effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads by using free-air gravity anomaly and bathymetric data, together with a moving window admittance technique (MWAT). We use the multitaper spectral estimation method to calculate the power spectral density. Through tests with synthetic subduction zone like bathymetry and gravity data show that the Te can be recovered in an accurance similar to that in the continent and there is also a trade-off between spatial resolution and variance for different window sizes. We estimate Te of many subduction zones (Peru-Chile trench, Middle America trench, Caribbean trench, Kuril-Japan trench, Mariana trench, Tonga trench, Java trench, Ryukyu-Philippine trench) with an age range of 0-160 Myr to reassess the relationship between elastic thickness and the age of the lithosphere at the time of loading. The results do not show a simple relationship between Te and age.
Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun
2012-01-01
A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.
Crustal and upper-mantle structure of South China from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
Shan, B.; Xiong, X.; Zhao, K. F.; Xie, Z. J.; Zheng, Y.; Zhou, L.
2017-03-01
In this study, we image the crust and upper-mantle seismic velocity structures in South China using teleseismic Rayleigh waves recorded at 354 stations from the Chinese provincial networks (CEArray). We process Rayleigh wave data from 1087 teleseismic events and construct phase velocity maps at periods of 40-150 s. By combining dispersion curves at 6-70 s from Zhou et al. and at 40-150 s from the teleseismic surface wave tomography of this study, we construct a 3-D shear velocity model of the crust and upper mantle of South China. Distinct seismic structures are revealed from the eastern part of South China (including the South China Fold System and the eastern Yangtze Craton) to the western Yangtze Craton. The South China Fold System and eastern Yangtze Craton are characterized by lower velocities and shallow lithosphere-asthenosphere boundary (∼90 km), which are similar to the lithospheric thermal and seismic velocity structures of the North China basin. These observations may imply that the lithospheric destruction and thinning occurred not only beneath the North China Craton, but also beneath the eastern part of South China. The western Yangtze Craton, including the Sichuan Basin and Jiangnan Orogen, is underlain by a thicker and colder lithosphere with high velocities. The contrast of the lithosphere structure between the western Yangtze Craton and other parts of South China indicates that the lithospheric destruction and thinning of the east and southeast parts of South China may terminate at the boundary of the Jiangnan Orogen.
NASA Astrophysics Data System (ADS)
Kashubin, S.
2013-12-01
Integrated geological and geophysical studies of the Earth's crust and upper mantle (the Russian project 'Arctic-2012') were carried out in 2012 in the Mendeleev Rise, central Arctic. The set of studies included wide-angle seismic observations along the line crossing the Mendeleev Rise in its southern part. The DSS seismic survey was aimed at the determination of the Mendeleev Rise crust type. A high-power air gun (120 liters or 7320 cu.in) and ocean stations with multi-component recording (X, Y, Z geophone components and a hydrophone) were used for the DSS. The line was studied using a dense system of observation: bottom station spacing was from 10 to 20 km, excitation point spacing (seismic traces interval) was 315 m. Observation data were obtained in 27 location points of bottom stations, the distance between the first and the last stations was 480 km, the length of the excitation line was 740 km. In DSS wave fields, in the first and later arrivals, there are refracted and reflected waves associated with boundaries in the sedimentary cover, with the top of the basement, and with boundaries in the consolidated crust, including its bottom (Moho discontinuity). The waves could be traced for offsets up to 170-240 km. The DSS line coincides with the near-vertical CMP line worked out with the use of a 4500-m-long seismic streamer and with a 50 m shot point interval that allowed essential detalization of the upper part of the section and taking it into account in the construction of a deep crust model. The deep velocity model was constructed using ray-trace modeling of compressional, shear, and converted waves with the use of the SeisWide program. Estimates were obtained for Vp/Vs velocity ratios, which played an important role in determining the type of crust. The results of the interpretation show that the Mendeleev Rise section corresponds to sections of a thin continental crust of shelf seas and a thinned continental crust of submarine ridges and rises.
Artemieva, I.M.
2003-01-01
A new mechanism for Paleozoic subsidence of the Russian, or East European, platform is suggested, since a model of lithosphere tilting during the Uralian subduction does not explain the post-Uralian sedimentation record. Alternatively, I propose that the Proterozoic and Paleozoic rifting (when a platform-scale Central Russia rift system and a set of Paleozoic rifts were formed) modified the structure and composition of cratonic lithosphere, and these tectono-magmatic events are responsible for the post-Uralian subsidence of the Russian platform. To support this hypothesis, (a) the thermal regime and the thickness of the lithosphere are analyzed, and (b) lithospheric density variations of non-thermal origin are calculated from free-board constraints. The results indicate that Proterozoic and Paleozoic rifting had different effects on the lithospheric structure and composition. (1) Proterozoic rifting is not reflected in the present thermal regime and did not cause significant lithosphere thinning (most of the Russian platform has lithospheric thickness of 150-180 km and the lithosphere of the NE Baltic Shield is 250-300 km thick). Paleozoic rifting resulted in pronounced lithospheric thinning (to 120-140 km) in the southern parts of the Russian platform. (2) Lithospheric density anomalies suggest that Proterozoic-Paleozoic rifting played an important role in the platform subsidence. The lithospheric mantle of the Archean-early Proterozoic part of the Baltic Shield is ??? 1.4 ?? 0.2% less dense than the typical Phanerozoic upper mantle. However, the density deficit in the subcrustal lithosphere of most of the Russian platform is only about (0.4-0.8) ?? 0.2% and decreases southwards to ???0%. Increased densities (likely associated with low depletion values) in the Russian platform suggest strong metasomatism of the cratonic lithosphere during rifting events, which led to its subsidence. It is proposed that only the lower part of the cratonic lithosphere was metasomatized as a result of Proterozoic rifting; the boundary between a depleted upper and more fertile lower layers can be at ca. 90-150 km depth and can produce a seismic pattern similar to the top of a seismic low-velocity zone. Paleozoic rifting has modified the entire lithospheric column and the regions affected are still subsiding. Published by Elsevier B.V.
Artemieva, I.M.; Mooney, W.D.; Perchuc, E.; Thybo, H.
2002-01-01
We discuss the structure of the continental lithosphere, its physical properties, and the mechanisms that formed and modified it since the early Archean. The structure of the upper mantle and the crust is derived primarily from global and regional seismic tomography studies of Eurasia and from global and regional data on seismic anisotropy. These data as documented in the papers of this special issue of Tectonophysics are used to illustrate the role of different tectonic processes in the lithospheric evolution since Archean to present. These include, but are not limited to, cratonization, terrane accretion and collision, continental rifting (both passive and active), subduction, and lithospheric basal erosion due to a relative motion of cratonic keels and the convective mantle. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bischoff, S. H.; Flesch, L. M.
2016-12-01
Differential flow in the lower crust of Tibet has been invoked to explain features in the region, including uniform plateau elevation, crustal thickness/topographic gradients, and uplift without observed shortening. Here, we use 3-D finite element modeling to test impacts of assumed lower crustal viscosities on deformation patterns in the India-Eurasia collision zone. We simulate instantaneous lithospheric deformation with Stokes flow using COMSOL Multiphysics (www.comsol.com). Our model geometry ranges eastward from the Pamir to Sichuan, northward from the southern tip of India to the Tien Shan, and vertically downward from the Earth's surface to 100 km below sea level. We divide model geometry into four domains: Indian lithosphere, Eurasian upper crust, lower crust, and upper mantle. Seismic and magnetotelluric study results guide inclusion of subducted Indian and Burma slabs along with our targeted weak lower crust. Within the larger Eurasian lower crust domain, weak lower crust is restricted to a zone bounded clockwise by the Himalayan Frontal Thrust, Karakorum, Altyn-Tagh, Kunlun, Longmen Shan, and onset of lower elevations along the plateau's southeastern margin. From top to bottom, vertical bounds of the zone are constrained by a constant 20 km below sea level and the shallower of either the top of the Indian slab or Moho. Strength is approximated via 3-D maps of effective viscosity constrained by the vertically-averaged lithospheric estimates of Flesch et al. [2001]. We forward model lower crust effective viscosities on the order of 1018 to 1022 Pa•s and inspect resulting horizontal and vertical deformation patterns. Results suggest that effective viscosities of less than 1020 Pa•s are required for both appreciable differential mass flux through lower crustal flow as well as decoupled lower crustal flow from the upper crust or mantle. Movement of the lower crust is partitioned within weaker fault zones. Effective viscosities of 1020 Pa•s or less produce pronounced patterns of surface subsidence in Qiangtang and uplift in eastern Lhasa and Longmen Shan inconsistent with observations. Solutions show lower crust strength impacts surface stress style with weaker strengths leading to regions of dominant extension separated by compression in the east central Tibetan Plateau.
Modeling Archean Subduction Initiation from Continental Spreading with a Free-Surface
NASA Astrophysics Data System (ADS)
Adams, A.; Thielmann, M.; Golabek, G.
2017-12-01
Earth is the only planet known to have plate tectonics, however the onset of plate tectonics and Earth's early tectonic environment are highly uncertain. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present [van Hunen and van den Berg, 2008]. Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction using numerical simulations with a free-slip upper boundary condition [Rey et al., 2014]. This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 [Kaus, 2010; Thielmann et al., 2014] to investigate the viability of this mechanism for subduction initiation in an Archean mantle for both free-slip and free-surface models. Radiogenic heating, strain weakening, and eclogitization were systematically implemented to determine critical factors for modeling subduction initiation. In free-slip models, results show episodes of continent spreading and subduction initiation of oceanic lithosphere for low limiting yield stresses (100-150 MPa) and increasing continent width with no dependency on radiogenic heating, strain weakening, or eclogitization. For models with a free-surface, subduction initiation was observed at low limiting yield stresses (100-225 MPa) with increasing continent width and only in models with eclogitization. Initial lithospheric stress states were studied as a function of density and viscosity ratios between continent and oceanic lithosphere, and results indicate the magnitude of lithospheric stresses increases with increasing continental buoyancy. This work suggests continent spreading may trigger episodes of subduction in models with a free-surface with critical factors being low limiting yield stresses and eclogitization.
NASA Astrophysics Data System (ADS)
Shahraki, Meysam; Schmeling, Harro; Haas, Peter
2018-01-01
Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.
Modification of the Western Gondwana craton by plume-lithosphere interaction
NASA Astrophysics Data System (ADS)
Hu, Jiashun; Liu, Lijun; Faccenda, Manuele; Zhou, Quan; Fischer, Karen M.; Marshak, Stephen; Lundstrom, Craig
2018-03-01
The longevity of cratons is generally attributed to persistence of neutrally-to-positively buoyant and mechanically strong lithosphere that shields the cratonic crust from underlying mantle dynamics. Here we show that large portions of the cratonic lithosphere in South America and Africa, however, experienced significant modification during and since the Mesozoic era, as demonstrated by widespread Cretaceous uplift and volcanism, present-day high topography, thin crust, and the presence of seismically fast but neutrally buoyant upper-mantle anomalies. We suggest that these observations reflect a permanent increase in lithospheric buoyancy due to plume-triggered delamination of deep lithospheric roots during the Late Cretaceous and early Cenozoic periods. Lithosphere in these regions has been thermally reestablished since then, as confirmed by its present-day low heat flow, high seismic velocities and realigned seismic anisotropy. We conclude that the original lowermost cratonic lithosphere is compositionally denser than the asthenospheric mantle and can be removed when perturbed by underlying mantle upwelling. Therefore, it is the buoyancy of the upper lithosphere that perpetuates stabilization of cratons.
Antarctic Lithosphere Studies: Progress, Problems and Promise
NASA Astrophysics Data System (ADS)
Dalziel, I. W. D.; Wilson, T. J.
2017-12-01
In the sixty years since the International Geophysical Year, studies of the Antarctic lithosphere have progressed from basic geological observations and sparse geophysical measurements to continental-scale datasets of radiometric dates, ice thickness, bedrock topography and characteristics, seismic imaging and potential fields. These have been augmented by data from increasingly dense broadband seismic and geodetic networks. The Antarctic lithosphere is known to have been an integral part, indeed a "keystone" of the Pangea ( 250-185Ma) and Gondwanaland ( 540-180 Ma) supercontinents. It is widely believed to have been part of hypothetical earlier supercontinents Rodinia ( 1.0-0.75 Ga) and Columbia (Nuna) ( 2.0-1.5 Ga). Despite the paucity of exposure in East Antarctica, the new potential field datasets have emboldened workers to extrapolate Precambrian geological provinces and structures from neighboring continents into Antarctica. Hence models of the configuration of Columbia and its evolution into Rodinia and Gondwana have been proposed, and rift-flank uplift superimposed on a Proterozoic orogenic root has been hypothesized to explain the Gamburtsev Subglacial Mountains. Mesozoic-Cenozoic rifting has imparted a strong imprint on the West Antarctic lithosphere. Seismic tomographic evidence reveals lateral variation in lithospheric thickness, with the thinnest zones within the West Antarctic rift system and underlying the Amundsen Sea Embayment. Upper mantle low velocity zones are extensive, with a deeper mantle velocity anomaly underlying Marie Byrd Land marking a possible mantle plume. Misfits between crustal motions measured by GPS and GIA model predictions can, in part, be linked with the changes in lithosphere thickness and mantle rheology. Unusually high uplift rates measured by GPS in the Amundsen region can be interpreted as the response of regions with thin lithosphere and weak mantle to late Holocene ice mass loss. Horizontal displacements across the TAM, which show a velocity gradient that points towards the reconstructed LGM ice load in West Antarctica, rather than radially away from it as expected, coincides with an extreme gradient in lithosphere thickness and shear wave speed, suggesting that GIA-induced mantle flow along the viscosity gradient may be driving the motions.
Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains
NASA Astrophysics Data System (ADS)
Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.
2014-04-01
The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.
Thermal structure of oceanic transform faults
Behn, M.D.; Boettcher, M.S.; Hirth, G.
2007-01-01
We use three-dimensional finite element simulations to investigate the temperature structure beneath oceanic transform faults. We show that using a rheology that incorporates brittle weakening of the lithosphere generates a region of enhanced mantle upwelling and elevated temperatures along the transform; the warmest temperatures and thinnest lithosphere are predicted to be near the center of the transform. Previous studies predicted that the mantle beneath oceanic transform faults is anomalously cold relative to adjacent intraplate regions, with the thickest lithosphere located at the center of the transform. These earlier studies used simplified rheologic laws to simulate the behavior of the lithosphere and underlying asthenosphere. We show that the warmer thermal structure predicted by our calculations is directly attributed to the inclusion of a more realistic brittle rheology. This temperature structure is consistent with a wide range of observations from ridge-transform environments, including the depth of seismicity, geochemical anomalies along adjacent ridge segments, and the tendency for long transforms to break into small intratransform spreading centers during changes in plate motion. ?? 2007 Geological Society of America.
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Daly, E.; Tiberi, C.; Bastow, I. D.; O'Reilly, B. M.; Readman, P. W.; Hauser, F.
2011-03-01
The nature and extent of the regional lithosphere-asthenosphere interaction beneath Ireland and Britain remains unclear. Although it has been established that ancient Caledonian signatures pervade the lithosphere, tertiary structure related to the Iceland plume has been inferred to dominate the asthenosphere. To address this apparent contradiction in the literature, we image the 3-D lithospheric and deeper upper-mantle structure beneath Ireland via non-linear, iterative joint teleseismic-gravity inversion using data from the ISLE (Irish Seismic Lithospheric Experiment), ISUME (Irish Seismic Upper Mantle Experiment) and GRACE (Gravity Recovery and Climate Experiment) experiments. The inversion combines teleseismic relative arrival time residuals with the GRACE long wavelength satellite derived gravity anomaly by assuming a depth-dependent quasilinear velocity-density relationship. We argue that anomalies imaged at lithospheric depths probably reflect compositional contrasts, either due to terrane accretion associated with Iapetus Ocean closure, frozen decompressional melt that was generated by plate stretching during the opening of the north Atlantic Ocean, frozen Iceland plume related magmatic intrusions, or a combination thereof. The continuation of the anomalous structure across the lithosphere-asthenosphere boundary is interpreted as possibly reflecting sub-lithospheric small-scale convection initiated by the lithospheric compositional contrasts. Our hypothesis thus reconciles the disparity which exists between lithospheric and asthenospheric structure beneath this region of the north Atlantic rifted margin.
Insights Into Layering in the Cratonic Lithosphere Beneath Western Australia
NASA Astrophysics Data System (ADS)
Sun, Weijia; Fu, Li-Yun; Saygin, Erdinc; Zhao, Liang
2018-02-01
The characteristics of internal lithospheric discontinuities carry crucial information regarding the origin and evolution of the lithosphere. However, the formation and mechanisms of the midlithosphere discontinuity (MLD) are still enigmatic and controversial. We investigate the midlithospheric discontinuities beneath the Archean Western Australian Craton, which represents one of the oldest continents on the globe, using a novel receiver-based reflectivity approach combined with other geophysical information comprising tomographic P and S wave velocity, radial anisotropy, electrical resistivity, and heat flow data. The MLD is rather shallow with a depth of 68-82 km. Multiple prominent discontinuities are observed in the lithospheric mantle using constructed high-frequency (0.5-4 Hz) P wave reflectivities. These multiple discontinuities coincide well with the broad-scale reduction of relative P and SV wave velocities at the top of the graded transition zone from the lithosphere to the asthenosphere. Strong radial anisotropy in the upper lithosphere mantle tends to be weak across the MLD, which might reflect quasi-laminar lithospheric heterogeneity behavior with a horizontal correlation length that is greater than its vertical correlation length. Broad-scale electrical resistivity variations show little coherence with the MLD. Given these various geophysical observations, the upper lithosphere exhibits rigid and elastic properties above the MLD, while the lower lithosphere tends to be ductile and rheological or viscous. A model comprising quasi-laminar lithospheric heterogeneity could effectively represent the MLD characteristics beneath the Archean continent.
Orogenic plateau magmatism of the Arabia-Eurasia collision zone
NASA Astrophysics Data System (ADS)
Allen, M. B.; Neill, I.; Kheirkhah, M.; van Hunen, J.; Davidson, J. P.; Meliksetian, Kh.; Emami, M. H.
2012-04-01
Magmatism is a common feature of high plateaux created during continental collision, but the causes remain enigmatic. Here we study Pliocene-Quaternary volcanics from the active Arabia-Eurasia collision zone, to determine the chemistry of these rocks and their relations to faulting and deeper lithospheric structure. The great majority of the centres lie within the overriding Eurasian plate in Iran, eastern Turkey and Armenia , implying that mantle fertilised by pre-collision subduction processes plays a significant role in magma generation. The composition of the Pliocene-Quaternary centres is extremely variable, ranging from OIB-like alkali basalts, to intermediate types resembling mature continental arc lavas, to potassic and even ultrapotassic lavas. These centres are erupted across a mosaic of pre-Cenozoic suture zones and heterogeneous lithospheric blocks. The chemical diversity implies a range of partial melting conditions operating on lithospheric and perhaps sub-lithospheric sources. Published data show a thick (>200 km) lithospheric keel beneath the Arabia-Eurasia suture, thinning to near normal thicknesses (~120 km) across much of central and northern Iran. Thin mantle lithosphere under eastern Turkey (max. ~30 km) may relate to the region's juvenile, accretionary lithosphere. These variable thicknesses are constraints on the cause of the melting in each area, and the degree of variation suggests that no one mechanism applies across the plateau. Various melting models have been suggested. Break-off of the subducted Neo-Tethyan oceanic slab is supported by tomographic data, which may have permitted melting related to adiabatic ascent of hot asthenosphere under areas where the lithosphere is thin. This seems a less plausible mechanism where the lithosphere is at normal or greater than normal thickness. The same problem applies to postulated lower lithosphere delamination. Isolated pull-aparts may account for the location of some centres, but are not generally applicable as melt triggers. Enigmatic lavas are erupted over the thick lithosphere of Kurdistan Province, Iran. These alkali basalts and basanites have the chemical characteristics of small degree (<1%) melts in the garnet stability field. Most possess supra-subduction zone chemistry (La/Nb = 1-3), but this signature is highly variable. Similar La/Nb variability occurs in the basic lavas of Damavand volcano in the Alborz Mountains of northern Iran. Modelling suggests the depletion of residual amphibole during the progression of partial melting can explain the observed La/Nb range. This melting may occur as the result of lithospheric thickening. At depths of ~90 km, amphibole-bearing peridotite crosses an experimentally-determined "backbend" in its solidus. Melting can continue while the source remains hydrated. Such "compression" melting may apply to parts of other orogenic plateaux, including Tibet.
Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy.
Rümpker, Georg; Ryberg, Trond; Bock, Günter
2003-10-02
Lithospheric-scale transform faults play an important role in the dynamics of global plate motion. Near-surface deformation fields for such faults are relatively well documented by satellite geodesy, strain measurements and earthquake source studies, and deeper crustal structure has been imaged by seismic profiling. Relatively little is known, however, about deformation taking place in the subcrustal lithosphere--that is, the width and depth of the region associated with the deformation, the transition between deformed and undeformed lithosphere and the interaction between lithospheric and asthenospheric mantle flow at the plate boundary. Here we present evidence for a narrow, approximately 20-km-wide, subcrustal anisotropic zone of fault-parallel mineral alignment beneath the Dead Sea transform, obtained from an inversion of shear-wave splitting observations along a dense receiver profile. The geometry of this zone and the contrast between distinct anisotropic domains suggest subhorizontal mantle flow within a vertical boundary layer that extends through the entire lithosphere and accommodates the transform motion between the African and Arabian plates within this relatively narrow zone.
Stratification of Seismic Anisotropy Beneath Hudson Bay
NASA Astrophysics Data System (ADS)
Darbyshire, F. A.; Eaton, D. W.; Bastow, I. D.
2012-12-01
The Hudson Bay region has a complex tectonic history spanning ~4 Ga of Earth's evolution. During the ~1.8 Ga Trans-Hudson orogeny, the Archean Superior and Western Churchill cratons collided following the subduction of a Pacific-scale ocean. It is thought that a significant amount of juvenile material is preserved in the Trans-Hudson Orogen, in part due to the complex double-indentor geometry of the Superior-Churchill collision. In the region of interest, the orogen lies beneath a large but shallow Paleozoic intra-cratonic basin. Studies of the crust and upper mantle beneath this region have been enabled through the HuBLE (Hudson Bay Lithospheric Experiment) project, through the deployment of broadband seismographs around the Bay and across the islands to the north. A surface-wave tomography study has taken advantage of the data coverage, providing new information on phase velocity heterogeneity and anisotropy for wave periods of 25-200 seconds (equivalent to depths from the lower crust to ~300 km). On a large scale, our results show that the entire region is underlain by a seismically fast lithospheric lid corresponding to the continental keel. The lithospheric thickness ranges from ~180km in the northeast, beneath a zone of Paleozoic rifting, to ~280km beneath central Hudson Bay. Within the lithosphere, seismic velocities vary laterally, including high-velocity material wrapping around the Bay in the uppermost mantle. In the mid-lithosphere, two high-velocity cores are imaged, with a zone of lower velocity between them beneath the Bay. We interpret these high-velocity structures to represent the strongest central cores of the Superior and Churchill cratons, with more-juvenile material preserved between them. The near-vertical geometry of the lower-velocity zone suggests that it is only the effects of terminal collision of the cratonic cores, rather than any preceding subduction, that is preserved today. The lowermost lithosphere has a more uniform velocity, and may represent a pervasive zone of metasomatism or underplating. Anisotropy patterns across the region also vary with depth, suggesting ~3 layers of stratification of lithospheric fabric. At the shallowest depths, anisotropic fast directions wrap around the Bay in a similar fashion to the patterns of isotropic wavespeed. The upper lithospheric mantle below is characterized by relatively weak and incoherent anisotropy; however the mid-to-lower lithosphere shows stronger anisotropy, with a pattern of fast directions broadly consistent with the tectonics of the Superior-Churchill collision as inferred from potential-field data. This may suggest some degree of coherency of deformation between the crust, uppermost mantle and lower lithosphere. These models of seismic wavespeed variation beneath the Hudson Bay region reveal the preservation of a major collision zone during the assembly of the Laurentian continental mass, and also suggest that the Archean cratons can be subdivided into different lithospheric domains that reflect their tectonic history but do not necessarily correspond to surface geological boundaries.
Crustal flow at the margin of high plateaux: A lithospheric-scale experimental approach
NASA Astrophysics Data System (ADS)
Bajolet, Flora; Chardon, Dominique; Gapais, Denis; Martinod, Joseph; Kermarrec, Jean-Jacques
2010-05-01
A serie of analogue models was performed in order to explore the mechanisms of exhumation of high grade rocks at the margin of high plateaux. Experiments are scaled for gravity and simulate convergence between a hot, weak and thin lithosphere lacking a resistant mantle layer (high plateau, HP) and a cold and thick cratonic lithosphere (CL). The HP consists in a three-layer crust made of a low-viscosity silicone simulating partially molten lower crust (PMLC), overlaid by a medium-viscosity silicone simulating the middle crust, and a thin sand layer modelling the brittle upper crust. The CL is made of three layers, from bottom to top: a high-viscosity silicone (resistant mantle layer), a medium-viscosity silicone (lower crust) and a sand layer (upper crust). The model lithospheres float on a low-viscosity and dense solution of sodium polytungstate, simulating the asthenosphere. A set of laterally constrained experiments was run by changing the velocity of convergence, and the strength / thickness of the layers, to explore various degrees of coupling amongst lithospheric layers and between the two lithospheres. Several sets of experiments with comparable parameters were performed and stopped at different amounts of shortening, then frozen and cut for observation on serial cross-sections. For all experiments, the same kinematic scenario occurs. First, shortening affects preferentially the HP. Shortening proceeds by homogeneous thickening of the entire ductile crust and the formation of pop-downs of upper brittle crust after preferential development of HP-verging thrust faults. The crust rapidly acquired a double thickness under the HP, whereas the inner parts of the CL became moderately thickened as a continental subduction of CL mantle initiates under the HP. The part of the PMLC in contact with the CL starts to form a CL-verging antiform evolving into a wedge-shaped channel being injected into the lower crust of the CL. The channel is exhumed by slip along the reverse shear zone acting as the ramp accommodating subduction of the CL mantle below the HP. Injection of PMLC induces far field horizontal displacements of lower crust of the CL towards the foreland. The main foreland-verging thrusts affecting the CL form at that time. After a certain amount of injection and amplification, the roof of the antiform is horizontally sheared backward (i.e., toward the HP) along a flat shear zone whose upper wall coincides with the brittle-ductile transition. This shear zone emerges as the latest back thrust developed in the model, which bounds the outermost pop-down formed in the HP. These results suggest the amplification of a domal antiform resulting in injection of a non-cylindrical channel of PMLC from under HP into the crust of the CL, producing large finite exhumation of the PMLC even in the absence of erosion at the margin of HP. Erosion would favour greater exhumation ending with the formation of a dome of PMLC at the surface, accompanied by back tilting (and consecutive reorganization) of the flat shear zone accommodating return flow of mid/upper crust toward the HP above the channel. Analogy with the Himalayan-Tibet orogen suggests the South Tibetan detachment system may result from such a late reorganization in the exhumation of the Higher Himalaya Crystalline. The experiments provide constraints on the initiation stages of crustal flow at the margin of HP and may allow refining the channel flow model.
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Parmentier, E. M.; Neumann, G. A.
1994-01-01
An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Parmentier, E. M.; Neumann, G. A.
1994-03-01
An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.
The lithosphere-asthenosphere boundary beneath the Korean Peninsula from S receiver functions
NASA Astrophysics Data System (ADS)
Lee, S. H.; Rhie, J.
2017-12-01
The shallow lithosphere in the Eastern Asia at the east of the North-South Gravity Lineament is well published. The reactivation of the upper asthenosphere induced by the subducting plates is regarded as a dominant source of the lithosphere thinning. Additionally, assemblage of various tectonic blocks resulted in complex variation of the lithosphere thickness in the Eastern Asia. Because, the Korean Peninsula located at the margin of the Erasian Plate in close vicinity to the trench of subducting oceanic plate, significant reactivation of the upper asthenosphere is expected. For the study of the tectonic history surrounding the Korean Peninsula, we determined the lithosphere-asthenosphere boundary (LAB) beneath the Korean Peninsula using common conversion point stacking method with S receiver functions. The depth of the LAB beneath the Korean Peninsula ranges from 60 km to 100 km and confirmed to be shallower than that expected for Cambrian blocks as previous global studies. The depth of the LAB is getting shallower to the south, 95 km at the north and 60 km at the south. And rapid change of the LAB depth is observed between 36°N and 37°N. The depth change of the LAB getting shallower to the south implies that the source of the lithosphere thinning is a hot mantle upwelling induced by the northward subduction of the oceanic plates since Mesozoic. Unfortunately, existing tectonic models can hardly explain the different LAB depth in the north and in the south as well as the rapid change of the LAB depth.
The nature of orogenic crust in the central Andes
NASA Astrophysics Data System (ADS)
Beck, Susan L.; Zandt, George
2002-10-01
The central Andes (16°-22°S) are part of an active continental margin mountain belt and the result of shortening of the weak western edge of South America between the strong lithospheres of the subducting Nazca plate and the underthrusting Brazilian shield. We have combined receiver function and surface wave dispersion results from the BANJO-SEDA project with other geophysical studies to characterize the nature of the continental crust and mantle lithospheric structure. The major results are as follows: (1) The crust supporting the high elevations is thick and has a felsic to intermediate bulk composition. (2) The relatively strong Brazilian lithosphere is underthrusting as far west (65.5°W) as the high elevations of the western part of the Eastern Cordillera (EC) but does not underthrust the entire Altiplano. (3) The subcrustal lithosphere is delaminating piecemeal under the Altiplano-EC boundary but is not completely removed beneath the central Altiplano. The Altiplano crust is characterized by a brittle upper crust decoupled from a very weak lower crust that is dominated by ductile deformation, leading to lower crustal flow and flat topography. In contrast, in the high-relief, inland-sloping regions of the EC and sub-Andean zone, the upper crust is still strongly coupled across the basal thrust of the fold-thrust belt to the underthrusting Brazilian Shield lithosphere. Subcrustal shortening between the Altiplano and Brazilian lithosphere appears to be accommodated by delamination near the Altiplano-EC boundary. Our study suggests that orogenic reworking may be an important part of the "felsification" of continental crust.
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.
2017-12-01
An accurate tomography model of the lithospheric mantle is essential for understanding the dynamics and evolution of the Tibetan Plateau. Using regional earthquake records, we obtain the first full-wave Pn tomography model for the eastern Tibetan Plateau. The resulting three-dimensional model exhibits similarities to and notable differences from the previous models based on ray theory. The juxtaposition of a high-velocity anomaly under the eastern Qiangtang Terrane and a low-velocity anomaly to the south near the Bangong-Nujiang Suture (BNS) provides strong evidence that the underthrusting Indian Plate does not reach the BNS beneath the plateau east of 90°E. The model shows no evidence for a southward-subducted Qaidam lithosphere. The sandwich-like layering of a low-velocity layer between two high-velocity layers at 80 to 160 km depths, mainly beneath the Qiangtang Terrane, is consistent with the results of S-to-P receiver functions. The observed contact between these two high-velocity layers beneath the Kunlun suggests that the lower high-velocity layer can be identified as the foundering Tibetan lithospheric mantle, which may be caused by gravitational instability. Beneath the eastern Kunlun Fault and the West Qinling orogen, a southward dipping high-velocity anomaly underlies a low-velocity mantle anomaly, is a pattern consistent with a delaminated mantle lithosphere and associated upwelling asthenosphere. Together with the evidence for lithospheric delamination beneath the central and southern Tibetan Plateau in previous studies, our findings suggest that the lithospheric foundering plays an important role in the formation of the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Barklage, Mitchell
We determine shear wave splitting parameters of teleseismic SKS and SKKS phases recorded at 43 broadband seismometers deployed in South Victoria Land as part of the Transantarctic Mountains seismic experiment (TAMSEIS) from 2000-2003. We use an eigenvalue technique to linearize the rotated and shifted shear wave particle motions and determine the best splitting parameters. The data show a fairly consistent fast direction of azimuthal anisotropy oriented approximately N60°E with splitting times of about 1 second. Based on a previous study of the azimuthal variations of Rayleigh wave phase velocities which show a similar fast direction, we suggest the anisotropy is localized in the uppermost mantle, with a best estimate of 3% anisotropy in a layer of about 150 km thickness. We suggest that the observed anisotropy near the Ross Sea coast, a region underlain by thin lithosphere, results either from upper mantle flow related to Cenozoic Ross Sea extension or to edge-driven convection associated with a sharp change in lithospheric thickness between East and West Antarctica. Both hypotheses are consistent with the more E-W fast axis orientation for stations on Ross Island and along the coast, sub-parallel to the extension direction and the lithospheric boundary. Anisotropy in East Antarctica, which is underlain by cold thick continental lithosphere, must be localized within the lithospheric upper mantle and reflect a relict tectonic fabric from past deformation events. Fast axes for the most remote stations in the Vostok Highlands are rotated by 20° and are parallel to splitting measurements at South Pole. These observations seem to delineate a distinct domain of lithospheric fabric, which may represent the extension of the Darling Mobile Belt or Pinjarra Orogen into the interior of East Antarctica. Seismic tomography imaging provides an opportunity to constrain mantle wedge processes associated with subduction, volatile transport, arc volcanism, and back-arc spreading. We investigate seismic velocity structure of the upper mantle across the Central Mariana subduction system using data from the 2003-2004 Mariana Subduction Factory Imaging Experiment. This 11-month experiment consisted of 20 broadband seismic stations deployed on islands and 58 semi-broadband ocean bottom seismographs deployed across the forearc, island arc, and back-arc spreading center. We determine Vp and Vp/Vs structure on a three dimensional grid using over 25,000 local travel time observations as well as over 2000 teleseismic arrival times determined by waveform cross correlation. The mantle wedge is characterized by a region of low velocity and high Vp/Vs beneath the forearc, an inclined zone of low velocity underlying the volcanic front, and a broad region of low velocity beneath the back-arc spreading center. The slow velocity anomalies are strongest at roughly 20-30 km depth in the forearc, 60-70 km depth beneath the volcanic arc, and 20-30 km beneath the back-arc spreading center. The slow velocity anomalies beneath the arc and back-arc appear as separate and distinct features in our images, with a small channel of connectivity occurring at approximately 75 km depth. The subducting Pacific plate is characterized by high seismic velocities. An exception occurs in the forearc beneath the big blue seamount and at the top of the slab at roughly 80 km depth where slow velocities are observed. We interpret the forearc anomalies to represent a region of large scale serpentinization of the mantle whereas the arc and back-arc anomalies represent regions of high temperature with a small amount of increased water content and/or melt and constrain the source regions in the mantle for arc and back-arc lavas. We investigate the double seismic zone (dsz) beneath the Central Mariana Arc using data from a land-sea array of 58 ocean bottom seismographs and 20 land seismographs deployed during 2003-2004. Nearly 600 well-recorded earthquakes were located using a P and S wave arrival times and a double difference relocation technique. The double seismic zone is well imaged from the forearc region to a depth of nearly 200 km. The width of the dsz is approximately 30 km at shallow depths and gradually becomes narrower with depth until it is now longer resolvable at depths greater than 180-200 km. Focal mechanisms determined from P and S wave polarities and amplitudes indicate that events from 70-150 km depth show along strike extension, whereas events greater than 150 km show downdip extension. Both the upper and lower zones of the dsz show similar focal mechanisms, demonstrating that the dsz is not caused by bending or unbending stresses. Along-strike tension may result from stresses related to the increasing curvature of the Mariana slab over the past few million years, as indicated by plate reconstructions. Downdip extension may result from slab pull forces consistent with the strong density anomaly of an old, cold plate relative to the surrounding mantle.
NASA Astrophysics Data System (ADS)
Ratheesh-Kumar, R. T.; Xiao, Wenjiao
2018-05-01
Gondwana correlation studies had rationally positioned the western continental margin of India (WCMI) against the eastern continental margin of Madagascar (ECMM), and the eastern continental margin of India (ECMI) against the eastern Antarctica continental margin (EACM). This contribution computes the effective elastic thickness (Te) of the lithospheres of these once-conjugated continental margins using the multitaper Bouguer coherence method. The results reveal significantly low strength values (Te ∼ 2 km) in the central segment of the WCMI that correlate with consistently low Te values (2-3 km) obtained throughout the entire marginal length of the ECMM. This result is consistent with the previous Te estimates of these margins, and confirms the idea that the low-Te segments in the central part of the WCMI and along the ECMM represents paleo-rift inception points of the lithospheric margins that was thermally and mechanically weakened by the combined action of the Marion hotspot and lithospheric extension during the rifting. The uniformly low-Te value (∼2 km) along the EACM indicates a mechanically weak lithospheric margin, probably due to considerable stretching of the lithosphere, considering the fact that this margin remained almost stationary throughout its rift history. In contrast, the ECMI has comparatively high-Te variations (5-11 km) that lack any correlation with the regional tectonic setting. Using gravity forward and inversion applications, we find a leading order of influence of sediment load on the flexural properties of this marginal lithosphere. The study concludes that the thick pile of the Bengal Fan sediments in the ECMI masks and has erased the signal of the original load-induced topography, and its gravity effect has biased the long-wavelength part of the observed gravity signal. The hence uncorrelated flat topography and deep lithospheric flexure together contribute a bias in the flexure modeling, which likely accounts a relatively high Te estimate.
NASA Technical Reports Server (NTRS)
Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.
1997-01-01
Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of the thermal lithospheric thickness is that they provide an explanation for the apparently modest levels of geologic activity on Venus over the last half billion years.
Rifting an Archaean Craton: Insights from Seismic Anisotropy Patterns in E. Africa
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; Tiberi, C.; Currie, C. A.; van Wijk, J.; Albaric, J.
2016-12-01
Few places worldwide offer opportunities to study active deformation of deeply-keeled cratonic lithosphere. The magma-rich Eastern rift transects the eastern edge of the Archaean Tanzania craton in northeastern Tanzania, which has been affected by a large-scale mantle upwelling. Abundant xenolith locales offer constraints on mantle age, composition, and physical properties. Our aim is to evaluate models for magmatic fluid-alteration (metasomatism) and deformation of mantle lithosphere along the edge of cratons by considering spatial variations in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics. Waveforms of teleseismic earthquakes (SKS, SKKS) recorded on the 39-station CRAFTI-CoLiBREA broadband array in southern Kenya and northern Tanzania are used to determine the azimuth and amount of shear-wave splitting accrued as seismic waves pass through the uppermost mantle and lithosphere at the craton edge. Lower crustal earthquakes enable evaluation of seismic anisotropy throughout the crust along the rift flanks and beneath the heavily intruded Magadi and Natron basins, and the weakly intruded Manyara basin. Our results and those of earlier studies show a consistent N50E splitting direction within the craton, with delay times of ca. 1.5 s, and similar direction east of the rift in thinner Pan-African lithosphere. Stations within the rift zone are rotated to a N15-35E splitting, with the largest delay times of 2.5 s at the margin of the heavily intruded Magadi basin. The short length scale of variations and rift-parallel splitting directions are similar to patterns in the Main Ethiopian rift attributed to melt-filled cracks or oriented pockets rising from the base of the lithosphere. The widespread evidence for mantle metasomatism and magma intrusion to mid-crustal levels suggests that LAB topography enhances melt production and guides fluid pathways, destabilizing cratonic edges.
NASA Astrophysics Data System (ADS)
Huang, Feng; Xu, Ji-Feng; Liu, Yong-Sheng; Li, Jie; Chen, Jian-Lin; Li, Xi-Yao
2017-05-01
The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re-Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re-Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re-Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re-Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.
NASA Astrophysics Data System (ADS)
Dufréchou, G.; Tiberi, C.; Martin, R.; Bonvalot, S.; Chevrot, S.; Seoane, L.
2018-04-01
We present a new model of the lithosphere and asthenosphere structure down to 300 km depth beneath the Pyrenees from the joint inversion of recent gravity and teleseismic data. Unlike previous studies, crustal correction were not applied on teleseismic data in order (i) to preserve the consistency between gravity data, which are mainly sensitive to the density structure of the crust.lithosphere, and travel time data, and (ii) to avoid the introduction of biases resulting from crustal reductions. The density model down to 100 km depth is preferentially used here to discuss the lithospheric structure of the Pyrenees, whereas the asthenospheric structure from 100 km to 300 km depth is discussed from our velocity model. The absence of a high density anomaly in our model between 30-100 km depth (except the Labourd density anomaly) in the northern part of the Pyrenees seems to preclude eclogitization of the subducted Iberian crust at the scale of the entire Pyrenean range. Local eclogitization of the deep Pyrenean crust beneath the western part of the Axial Zone (West of Andorra) associated with the positive Central density anomaly is proposed. The Pyrenean lithosphere in density and velocity models appears segmented from East to West. No clear relation between the along-strike segmentation and mapped major faults is visible in our models. The Pyrenees' lithosphere segments are associated to different seismicity pattern in the Pyrenees suggesting a possible relation between the deep structure of the Pyrenees and its seismicity in the upper crust. The concentration of earthquakes localized just straight up the Central density anomaly can result of the subsidence and/or delamination of an eclogitized Pyrenean deep root. The velocity model in the asthenosphere is similar to previous studies. The absence of a high-velocity anomaly in the upper mantle and transition zone (i.e. 125 to 225 km depth) seems to preclude the presence of a detached oceanic lithosphere beneath the European lithosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasyanos, M E
The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithosphericmore » keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.« less
NASA Astrophysics Data System (ADS)
Darbyshire, F. A.
2015-12-01
Hudson Bay is a shallow intracratonic basin that partially conceals the Trans-Hudson Orogen (THO) in northern Canada. The THO is thought to be a Himalayan-scale Paleoproterozoic orogenic event that was an important component of assembly of the Canadian Shield, marking the collision of the Archean Superior and Western Churchill plates. Until recently, only global and continental-scale seismic tomographic models had imaged the upper-mantle structure of the region, giving a broad but relatively low-resolution picture of the thick lithospheric keel. The Hudson Bay Lithospheric Experiment (HuBLE) investigated the present-day seismic structure beneath Hudson Bay and its surroundings, using a distributed broadband seismograph network installed around the periphery of the Bay and complemented by existing permanent and temporary seismographs further afield. This configuration, though not optimal for body-wave studies which use subvertical arrivals, is well-suited to surface wave tomographic techniques, with many paths crossing the Bay. As there is little seismicity in the region around the Canadian Shield, two-station measurements of teleseismic Rayleigh wave phase velocity formed the principal data set for lithospheric studies. The interstation measurements were combined in a linearized tomographic inversion for maps of phase velocity and azimuthal anisotropy at periods of 20-200 s; these maps were then used to calculate a pseudo-3D anisotropic upper-mantle shear-wavespeed model of the region. The model shows thick (~180-260 km), seismically fast lithosphere across the Hudson Bay region, with a near-vertical 'curtain' of lower wavespeeds trending NE-SW across the Bay, likely associated with more juvenile material trapped between the Archean Superior and Churchill continental cores during the THO. The lithosphere is layered, suggesting a 2-stage formation process. Seismic anisotropy patterns vary with depth; a circular pattern in the uppermost mantle wrapping around the Hudson Bay basin is superseded in the lower lithosphere by a pattern that mirrors THO-related structures within the crust; the lower layer thus likely formed when stress patterns related to the THO were still active.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
NASA Astrophysics Data System (ADS)
Hopper, E.; Fischer, K. M.
2016-12-01
The lithosphere preserves a record of past and present tectonic processes in its internal structures and its boundary with the underlying asthenosphere. We use common conversion point stacked Sp converted waves recorded by EarthScope's Transportable Array, as well as other available permanent and temporary broadband stations, to image such structures in the lithospheric mantle of the contiguous U.S. In the tectonically youngest western U.S., a shallow, sharp velocity gradient at the base of the lithosphere suggests a boundary defined by ponded melt. The lithosphere thickens with age of volcanism, implying the lithosphere is a melt-mitigated, conductively cooling thermal boundary layer. Beneath older, colder lithosphere where melt fractions are likely much lower, the velocity gradient at the base of such a layer should be a more diffuse, primarily thermal boundary. This is consistent with observations in the eastern U.S. where the lithosphere-asthenosphere boundary (LAB) is locally sharp and shallower only in areas of inferred enhanced upwelling - such as ancient hot spot tracks and areas of inferred delamination. In the cratonic interior, the LAB is even more gradual in depth, and is transparent to Sp waves with dominant periods of 10 s. Although seismic imaging only provides a snapshot of the lithosphere as it is today, preserved internal structures extend the utility of this imaging back into deep geological time. Ancient accretion within the cratonic lithospheric mantle is preserved as dipping structures associated with relict subducted slabs from Paleoproterozoic continental accretion, suggesting that lateral accretion was integral to the cratonic mantle root formation process. Metasomatism, melt migration and ponding below a carbonated peridotite solidus explain a sub-horizontal mid-lithospheric discontinuity (MLD) commonly observed at 70-100 km depth. This type of MLD is strongest in Mesoproterozoic and older lithosphere, suggesting that it formed more vigorously in the deep past, that a billion years or more are required to build up an observable volatile-rich layer, or that strong, ancient lithosphere is required to support an inherently weak, volatilized layer.
Spreading continents kick-started plate tectonics.
Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas
2014-09-18
Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.
On the relations between cratonic lithosphere thickness, plate motions, and basal drag
Artemieva, I.M.; Mooney, W.D.
2002-01-01
An overview of seismic, thermal, and petrological evidence on the structure of Precambrian lithosphere suggests that its local maximum thickness is highly variable (140-350 km), with a bimodal distribution for Archean cratons (200-220 km and 300-350 km). We discuss the origin of such large differences in lithospheric thickness, and propose that the lithospheric base can have large depth variations over short distances. The topography of Bryce Canyon (western USA) is proposed as an inverted analog of the base of the lithosphere. The horizontal and vertical dimensions of Archean cratons are strongly correlated: larger cratons have thicker lithosphere. Analysis of the bimodal distribution of lithospheric thickness in Archean cratons shows that the "critical" surface area for cratons to have thick (>300 km) keels is >6-8 ?? 106 km2 . Extrapolation of the linear trend between Archean lithospheric thickness and cratonic area to zero area yields a thickness of 180 km. This implies that the reworking of Archean crust should be accompanied by thinning and reworking of the entire lithospheric column to a thickness of 180 km in accord with thickness estimates for Proterozoic lithosphere. Likewise, extrapolation of the same trend to the size equal to the total area of all Archean cratons implies that the lithospheric thickness of a hypothesized early Archean supercontinent could have been 350-450 km decreasing to 280-400 km for Gondwanaland. We evaluate the basal drag model as a possible mechanism that may thin the cratonic lithosphere. Inverse correlations are found between lithospheric thickness and (a) fractional subduction length and (b) the effective ridge length. In agreement with theoretical predictions, lithospheric thickness of Archean keels is proportional to the square root of the ratio of the craton length (along the direction of plate motion) to the plate velocity. Large cratons with thick keels and low plate velocities are less eroded by basal drag than small fast-moving cratons. Basal drag may have varied in magnitude over the past 4 Ga. Higher mantle temperatures in the Archean would have resulted in lower mantle viscosity. This in turn would have reduced basal drag and basal erosion, and promoted the preservation of thick (>300 km) Archean keels, even if plate velocities were high during the Archean. ?? 2002 Elsevier Science B.V. All rights reserved.
What Petit-Spot Volcanoes Tell us about the Lithosphere-Asthenosphere Boundary?
NASA Astrophysics Data System (ADS)
Pilet, S.; Abe, N.; Rochat, L.; Kaczmarek, M. A.; Bessat, A.; Duretz, T.; Muntener, O.
2015-12-01
The top of the low seismic velocity zone (LVZ) is frequently used to localize the lithosphere -asthenosphere boundary (LAB) which separates rigid oceanic plates from the underlying ductile asthenosphere. The seismic and electric properties of the LVZ are generally explained by the presence of low degree melts located at the base of the lithosphere, but the composition of these melts (silicate or carbonated melts) is still in debate. If most models for the LAB are based on geophysical or experimental studies, the discovery of petit-spot volcanoes on the top of the down-going Pacific plate (1) provides unique opportunities to obtain direct information on the LAB. Petit-spot volcanoes are interpreted as small-scale seamounts formed by the extraction of low-degree melts from the base of the lithosphere in response of plate flexure and/or crack propagation (2). The petrology of petit-spot lavas from Japan and Costa Rica demonstrates, first, that melts from the LVZ correspond to volatiles rich low degree silicate melts rather then to carbonatitic melts. Second, the discovery of lithospheric metasomatized mantle xenoliths and xenocrysts in the petit-spot lavas suggest that plate bending in front of subduction zones does not only produce petit-spot lavas at the surface, but allowed low degree melts from the LVZ to percolate and differentiate across the base of the oceanic lithosphere. This observation has important implication for the LAB because it demonstrates that deformed LAB does not represent a impermeable barrier for melt percolation as communally assumed, but deformation allows melts from the asthenosphere to percolate through peridotite matrix for significant distance (~10-20 km) modifying the rheology and the seismic properties of the base of the lithospheric mantle. This aspect needs to be taking into account in any model trying to simulate lithosphere asthenosphere deformation. (1) Hirano et al., 2006, Science 313, 1426-1428; (2) Valentine & Hirano, 2010, Geology 38, 55-58.
Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography
NASA Astrophysics Data System (ADS)
Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.
2018-05-01
The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography.
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.
2016-12-01
In the present study, we evaluate the effect of melting of a metasomatized oceanic lithosphere on the chemical composition of MORB using the East Pacific Rise (EPR) mid-ocean ridge basalts (MORB) from the Quebrada-Discovery-GoFar (QDG) transform fault system, Northern EPR seamounts, and Macquarie Island [1-3]. EMORB from the QDG have trace element and volatile-refractory element ratios different from those measured in NEPR seamounts and Macquarie EMORB. The unique chemical composition of the QDG EMORB might indicate contribution from the oceanic lithosphere during the formation of intra-transform spreading centers due to clockwise rotation in Pacific-Nazca plate relative motion. In addition, the compositions of some of the Petit-spot lavas recently erupted along lithospheric fractures in the Pacific Plate in response to its flexure near the Japan Trench [4] have geochemical signatures that might suggest melts derived from a metasomatized oceanic mantle lithosphere. We evaluate this hypothesis using a geochemical model assuming a two-component asthenospheric mantle (DDMM and EDMM) and formation of hydrous cumulates in the oceanic mantle lithosphere by crystallization of low degree melts of the EDMM [3, 5]. The model suggests that melting of the hydrous cumulates can reproduce the composition of EMORB from QDG transform fault and some of the Petit-spot lavas. The process of melting the metasomatized oceanic lithosphere may significantly affect the chemical composition of MORB, and the common assumption for the purely asthenosphere origin of MORB could lead to inaccurate estimates of the Earth's upper mantle composition. We also show that similar process might affect not only oceanic, but also off-craton sub continental mantle lithosphere. References: [1] Niu et al., 2002 EPSL 199. [2] Kamenetsky et al., 2002 J Petrol 43. [3] Shimizu et al., 2016 GCA 176. [4] Hirano et al., 2006 Science 313. [5] Pilet et al., 2011 J Petrol 52.
Constraints on Composition, Structure and Evolution of the Lithosphere
NASA Astrophysics Data System (ADS)
Bianchini, Gianluca; Bonadiman, Costanza; Aulbach, Sonja; Schutt, Derek
2015-05-01
The idea for this special issue was triggered at the Goldschmidt Conference held in Florence (August 25-30, 2013), where we convened a session titled "Integrated Geophysical-Geochemical Constraints on Composition and Structure of the Lithosphere". The invitation to contribute was extended not only to the session participants but also to a wider spectrum of colleagues working on related topics. Consequently, a diverse group of Earth scientists encompassing geophysicists, geodynamicists, geochemists and petrologists contributed to this Volume, providing a comprehensive overview on the nature and evolution of lithospheric mantle by combining studies that exploit different types of data and interpretative approaches. The integration of geochemical and geodynamic datasets and their interpretation represents the state of the art in our knowledge of the lithosphere and beyond, and could serve as a blueprint for future strategies in concept and methodology to advance our knowledge of this and other terrestrial reservoirs.
Do faults trigger folding in the lithosphere?
NASA Astrophysics Data System (ADS)
Gerbault, Muriel; Burov, Eugenii B.; Poliakov, Alexei N. B.; Daignières, Marc
A number of observations reveal large periodic undulations within the oceanic and continental lithospheres. The question if these observations are the result of large-scale compressive instabilities, i.e. buckling, remains open. In this study, we support the buckling hypothesis by direct numerical modeling. We compare our results with the data on three most proeminent cases of the oceanic and continental folding-like deformation (Indian Ocean, Western Gobi (Central Asia) and Central Australia). We demonstrate that under reasonable tectonic stresses, folds can develop from brittle faults cutting through the brittle parts of a lithosphere. The predicted wavelengths and finite growth rates are in agreement with observations. We also show that within a continental lithosphere with thermal age greater than 400 My, either a bi-harmonic mode (two superimposed wavelengths, crustal and mantle one) or a coupled mode (mono-layer deformation) of inelastic folding can develop, depending on the strength and thickness of the lower crust.
Low-Temperature Alteration of the Seafloor: Impacts on Ocean Chemistry
NASA Astrophysics Data System (ADS)
Coogan, Laurence A.; Gillis, Kathryn M.
2018-05-01
Over 50% of Earth is covered by oceanic crust, the uppermost portion of which is a high-permeability layer of basaltic lavas through which seawater continuously circulates. Fluid flow is driven by heat lost from the oceanic lithosphere; the global fluid flux is dependent on plate creation rates and the thickness and distribution of overlying sediment, which acts as a low-permeability layer impeding seawater access to the crust. Fluid-rock reactions in the crust, and global chemical fluxes, depend on the average temperature in the aquifer, the fluid flux, and the composition of seawater. The average temperature in the aquifer depends largely on bottom water temperature and, to a lesser extent, on the average seafloor sediment thickness. Feedbacks between off-axis chemical fluxes and their controls may play an important role in modulating ocean chemistry and planetary climate on long timescales, but more work is needed to quantify these feedbacks.
NASA Technical Reports Server (NTRS)
Parsons, B.; Daly, S.
1983-01-01
Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.
NASA Astrophysics Data System (ADS)
Fernandez, M.; Torne, M.; Carballo, A.; Jiménez-Munt, I.; Verges, J.; Villasenor, A.; Garcia-Castellanos, D.; Diaz Cusi, J.
2015-12-01
We present a geophysical and petrological study that aims to define the lithosphere structure and the variations of the chemical composition of the lithospheric mantle along three geo-transects crossing Iberia, the westernmost Mediterranean and North Africa. The modeling is based on an integrated geophysical-petrological methodology that combines elevation, gravity, geoid, surface heat flow, seismic and geochemical data. Unlike previous models, where the density of the lithospheric mantle is only temperature-dependent, the applied methodology allows inferring seismic velocities and density in the mantle down to 400 km depth from its chemical composition through self-consistent thermodynamic calculations. The first geo-transect with a length of 1100 km runs from the NE-Iberian Peninsula to the Tell-Atlas Mountains in Algeria. The second profile crosses the entire Iberian Peninsula, from the Northern Iberian Margin to the Alboran Basin. The third runs from the Iberian Massif to the Sahara Platform crossing the Betic-Rif orogenic system through the Gibraltar Strait and the Atlas Mountains. Results are compared to available tomography models and Pn-velocity data. The obtained lithospheric structure shows large lateral variations in crustal and lithospheric mantle thicknesses and mantle chemical composition. Measured low Pn velocities in the Western Mediterranean basin can be explained either by serpentinization and/or seismic anisotropy and only partly by transient thermal effects. In the Bay of Biscay low Pn velocities are explained only by serpentinization. The negative sub-lithospheric velocity anomalies imaged by tomography models below the Iberian plate and the Atlas Mountains are interpreted in terms of high-temperature/low-density regions being responsible for the high mean topography.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
Seismic imaging of lithospheric discontinuities and continental evolution
NASA Astrophysics Data System (ADS)
Bostock, M. G.
1999-09-01
Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (˜60 km depth) and L (˜200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.
NASA Astrophysics Data System (ADS)
Schoettle-Greene, P.; Duvall, A. R.
2016-12-01
The foundering of gravitationally unstable lithosphere, while frequently invoked to explain anomalous topography, proves difficult to verify from an Earth surface perspective. Theoretically, direct observables like sudden uplift associated with extension and mantle-sourced volcanism should help identify affected regions but these markers are often obscured by background stresses and heterogeneous lithosphere. To better understand topographic evolution following the removal of mantle lithosphere, we present new apatite U-Th/He thermocrhonometry data and field observations from the Wallowa mountains adjacent to Hells Canyon in the northwestern United States. The granodiorite-cored Wallowa are increasingly recognized as a type locality for the process of lithospheric foundering, as they are bound by extensional structures and were presumably uplifted contemporaneous with the intrusion of feeder dikes for the mantle-sourced Columbia River Basalts at 16 Ma. Cretaceous and early Cenozoic cooling ages from our study imply that in spite of the presumed 1-2 km of basalt flows eroded from the Wallowa and heating associated with the intrusion of the Chief Joseph dike swarm, and 2 km of proposed rapid post-foundering uplift, there has been little exhumation. We attempt to reconcile these conflicting observations with field mapping of folded basalt flows at the margins of the Wallowa mountains, modeling of geothermal response times following a thermal perturbation, and further study using the 4He/3He thermochronometer on a subset of samples to reveal more recent cooling histories. Our findings will improve our understanding of the landscape evolution of the Wallowa mountains, information pertinent to the geodynamics of lithosphere removal and the eruption of Columbia River Basalts.
Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach
NASA Astrophysics Data System (ADS)
Inati, Lama; Zeyen, Hermann; Nader, Fadi Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, François
2016-12-01
This paper discusses the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated. Crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution were calculated by integrating surface heat flow data, free-air gravity anomaly, geoid and topography. Accordingly, two-dimensional, lithospheric models of the study area are discussed, demonstrating the presence of a progressively attenuated crystalline crust from E to W (average thickness from 35 to 8 km). The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Further to the west, the Herodotus Basin is believed to be underlain by an oceanic crust, with a thickness between 6 and 10 km. The Moho under the Arabian Plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. It appears to be situated at depths ranging between 20 and 23 km below the Levant Basin and 26 km beneath the Herodotus Basin, based on our proposed models. At the Levantine margin, the thinning of the crust in the transitional domain between the onshore and the offshore is gradual, indicating successive extensional regimes that did not reach the beak up stage. In addition, the depth to LAB is around 120 km under the Arabian and the Eurasian Plates, 150 km under the Levant Basin, and it plunges to 180 km under the Herodotus Basin. This study shows that detailed 2D lithosphere modeling using integrated geophysical data can help understand the mechanisms responsible for the modelled lithospheric architecture when constrained with geological findings.
Electromagnetic study of lithospheric structure in Trans-European Suture Zone in Poland
NASA Astrophysics Data System (ADS)
Jóźwiak, Waldemar; Ślęzak, Katarzyna; Nowożyński, Krzysztof; Neska, Anne
2016-04-01
The area covered by magnetotelluric surveys in Poland is mostly related to the Trans-European Suture Zone (TESZ), the largest tectonic boundary in Europe. Numerous 1D, 2D, and pseudo-3D and 3D models of the electrical resistivity distribution were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results indicate that the TESZ is a lithospheric discontinuity and there are noticeable differences in geoelectric structures between the East European Craton (EEC), the transitional zone (TESZ), and the Paleozoic Platform (PP). The electromagnetic sounding is a very efficient tool for recognizing the lithospheric structure especially it helps in identification of important horizontal (or lateral) inhomogeneities in the crust. Due to our study we can clearly determine the areas of the East European Craton of high resistivity, Paleozoic Platform of somewhat lower resistivity value, and transitional TESZ of complicated structure. At the East European Craton, we observe very highly resistive lithosphere, reaching 220-240 km depth. Underneath, there is distinctly greater conductivity values, most probably resulting from partial melting of rocks; this layer may represent the asthenosphere. The resistivity of the lithosphere under the Paleozoic Platform is somewhat lower, and its thickness does not exceed 150 km. The properties of the lithosphere in the transition zone, under the TESZ, differ significantly. The presented models include prominent, NW-SE striking conductive lineaments. These structures, that related with the TESZ, lie at a depth of 10-30 km. They are located in a mid-crustal level and they reach the boundary of the EEC. The structures we initially connect to the Variscan Deformation Front (VDF) and the Caledonian Deformation Front (CDF). The differentiation of conductivity visible in the crust continues in the upper mantle.
NASA Astrophysics Data System (ADS)
Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian
2017-04-01
The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.
Effect of the lithospheric thermal state on the Moho interface: A case study in South America
NASA Astrophysics Data System (ADS)
Bagherbandi, Mohammad; Bai, Yongliang; Sjöberg, Lars E.; Tenzer, Robert; Abrehdary, Majid; Miranda, Silvia; Alcacer Sanchez, Juan M.
2017-07-01
Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.
NASA Astrophysics Data System (ADS)
Reading, A. M.; Staal, T.; Halpin, J.; Whittaker, J. M.; Morse, P. E.
2017-12-01
The lithosphere of East Antarctica is one of the least explored regions of the planet, yet it is gaining in importance in global scientific research. Continental heat flux density and 3D glacial isostatic adjustment studies, for example, rely on a good knowledge of the deep structure in constraining model inputs.In this contribution, we use a multidisciplinary approach to constrain lithospheric domains. To seismic tomography models, we add constraints from magnetic studies and also new geological constraints. Geological knowledge exists around the periphery of East Antarctica and is reinforced in the knowledge of plate tectonic reconstructions. The subglacial geology of the Antarctic hinterland is largely unknown but the plate reconstructions allow the well-posed extrapolation of major terranes into the interior of the continent, guided by the seismic tomography and magnetic images. We find that the northern boundary of the lithospheric domain centred on the Gamburtsev Subglacial Mountains has a possible trend that runs south of the Lambert Glacier region, turning coastward through Wilkes Land. Other periphery-to-interior connections are less well constrained and the possibility of lithospheric domains that are entirely sub-glacial is high. We develop this framework to include a probabilistic method of handling alternate models and quantifiable uncertainties. We also show first results in using a Bayesian approach to predicting lithospheric boundaries from multivariate data.Within the newly constrained domains, we constrain heat flux (density) as the sum of basal heat flux and upper crustal heat flux. The basal heat flux is constrained by geophysical methods while the upper crustal heat flux is constrained by geology or predicted geology. In addition to heat flux constraints, we also consider the variations in friction experienced by moving ice sheets due to varying geology.
High-Resolution Lithosphere Viscosity and Dynamics Revealed by Magnetotelluric Imaging
NASA Astrophysics Data System (ADS)
Liu, L.; Hasterok, D. P.
2016-12-01
An accurate viscosity structure is critical to truthfully modeling continental lithosphere dynamics, especially at spatial scales of <200 km where active tectonic deformation and volcanism occur. However, the effective viscosity structure of the lithosphere remains a key challenge in geodynamics due to the intimate involvement of viscosity with time and its dependence on many factors including strain rate, plastic failure, composition, and grain size. Current efforts on inferring the detailed lithosphere viscosity structure are sparse and large uncertainties and discrepancies still exist. Here we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. The results indicate that lithosphere viscosity structure rather than the buoyancy structure is the dominant controlling factor for short-wavelength topography and intra-plate deformation in tectonically active regions. We further show that this viscosity is consistent with and more effective than that derived from laboratory-based rheology. We therefore propose that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.
Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.
Schlindwein, Vera; Schmid, Florian
2016-07-14
Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.
Seismic constraints on the lithosphere-asthenosphere boundary
NASA Astrophysics Data System (ADS)
Rychert, Catherine A.
2014-05-01
The basic tenet of plate tectonics is that a rigid plate, or lithosphere, moves over a weaker asthenospheric layer. However, the exact location and defining mechanism of the boundary at the base of the plate, the lithosphere-asthenosphere boundary (LAB) is debated. The oceans should represent a simple scenario since the lithosphere is predicted to thicken with seafloor age if it thermally defined, whereas a constant plate thickness might indicate a compositional definition. However, the oceans are remote and difficult to constrain, and studies with different sensitivities and resolutions have come to different conclusions. Hotspot regions lend additional insight, since they are relatively well instrumented with seismic stations, and also since the effect of a thermal plume on the LAB should depend on the defining mechanism of the plate. Here I present new results using S-to-P receiver functions to image upper mantle discontinuity structure beneath volcanically active regions including Hawaii, Iceland, Galapagos, and Afar. In particular I focus on the lithosphere-asthenosphere boundary and discontinuities related to the base of melting, which can be used to highlight plume locations. I image a lithosphere-asthenosphere boundary in the 50 - 95 km depth range beneath Hawaii, Galapagos, and Iceland. Although LAB depth variations exist within these regions, significant thinning is not observed in the locations of hypothesized plume impingement from receiver functions (see below). Since a purely thermally defined lithosphere is expected to thin significantly in the presence of a thermal plume anomaly, a compositional component in the definition of the LAB is implied. Beneath Afar, an LAB is imaged at 75 km depth on the flank of the rift, but no LAB is imaged beneath the rift itself. The transition from flank of rift is relatively abrupt, again suggesting something other than a purely thermally defined lithosphere. Melt may also exist in the asthenosphere in these regions of hotpot volcanism. Indeed, S-to-P also images strong velocity increases that are likely related to the base of a melt-rich layer beneath the oceanic LAB. This discontinuity may highlight plume locations since melt is predicted deeper at thermal anomalies. For instance, beneath Hawaii the base of melting increases from 110 km to 155 km depth 100 km west of Hawaii, i.e., the likely location of plume impingement on the lithosphere. Beneath Galapagos the discontinuity is deeper in 3 sectors, all off the island axis, suggesting multiple plume diversions and complex plume-ridge interactions. Beneath Iceland deepening is imaged to the northeast of the island. Beneath the Afar rift a shallow melt discontinuity is imaged at ~75 km, suggesting that the plume is located outside the study region. Overall, the deepest realizations of the discontinuities agree with the slowest velocities from surface waves, but are not located directly beneath surface volcanoes. This suggests that either plumes approach the surface at an angle or that restite roots beneath hotspots divert plumes at shallow depths. In either case, mantle melts are likely guided from the location of impingement on the lithosphere to current day surface volcanoes by pre-existing structures of the lithosphere.
NASA Astrophysics Data System (ADS)
Fisher, A. T.; Wheat, C. G.; Lauer, R. M.; Villinger, H. W.; McManus, J.; Orcutt, B.
2017-12-01
We present results from surveys and studies of ridge-flank hydrothermal circulation in part of the Cocos Plate. Fluids flowing into and out of the crust in an area >104 km2 extract most of the lithospheric heat. Water moves in and out of the crust through a few mid-plate seamounts, which penetrate low-permeability sediments, and water flows laterally across tens of kilometers between seamounts. This kind of fluid circulation is common globally, extracting 20-25% of Earth's geothermal heat, but focused fluid discharge from these systems has not previously been found or sampled. Sites of discharge from this cool hydrothermal system (CHS) were found and sampled on Dorado Outcrop, a small volcanic edifice on 23 M.y. old seafloor, using deep-submergence vehicles. Seafloor measurements show that Dorado Outcrop is a local site of elevated geothermal heat flux, and temperatures recorded during outcrop surveys show a pattern of small bottom-water temperature anomalies (≤0.04°C, mainly above the central and southern part of the outcrop). Direct measurements of shimmering fluids discharging from patches of bare rock on Dorado Outcrop indicate temperatures up to 10.5°C warmer than bottom water, whereas heat flux and reflection seismic data show regional reaction temperatures in basement of 15-20 °C. Heat budget calculations and coupled fluid-heat simulations of regional circulation indicate that the net discharge from Dorado Outcrop is on the order of 1,000-5,000 L/s, and direct observations show that spring discharge rates vary with time, likely being modulated by ocean tides. Samples of Dorado Outcrop fluids have concentrations that are indistinguishable from bottom seawater for many major ions, but concentrations of minor and trace elements differ significantly, especially Mo, V, Rb, U, phosphate, Li, and silicate. In addition, CHS fluids discharging from Dorado Outcrop have about 50% of the dissolved oxygen (DO) found in bottom seawater, showing that DO is consumed as it flows through the crust. Analytical calculations show that diffusion alone, into overlying sediments, cannot explain the observed DO concentrations; we therefore infer that biotic and abiotic reactions within the volcanic crust consume oxygen.
Convective instability within the Tibetan Lithospheric Mantle (Invited)
NASA Astrophysics Data System (ADS)
Houseman, G. A.; Molnar, P. H.; Evans, L.; England, P. C.
2013-12-01
Studies of seismic surface waves in Asia show that shear-wave speeds at depths of ~120-250km beneath the Tibetan Plateau are higher than is generally observed for continents, other than beneath Archaean cratons. The high-speed layer has been interpreted as continental lithosphere that was thickened during the convergence between India and Asia. This interpretation contradicts conceptual models in which gravitational instabilities remove a significant fraction of the mantle lithosphere beneath Tibet during that convergence. In contrast, the suggestion of relatively recent (post-early-Miocene) surface uplift of the Plateau, inferred from the onset of normal faulting across the plateau, synchronous increased rates of compressional deformation in the surroundings of the the plateau, and widespread volcanism in the northern part of the plateau, implies action of a mechanism that increased the gravitational potential energy of, and temperatures within, the Tibetan lithosphere in a way that would not occur if the mantle lithosphere had simply thickened continually throughout the India-Asia convergence. A resolution to this paradox is suggested by the observation that, while shear-wave speeds are indeed high at depths of 120-250 km beneath the Tibetan plateau, they are anomalously low at shallower depths, implying a temperature inversion that is hard to reconcile with uninterrupted lithospheric thickening. We suggest that the ensemble of observations may be explained by the convective overturn of a lithospheric root that is depleted in iron such that it remains buoyant with respect to normal upper mantle. The increased rate of strain within the Tibetan lithosphere once convergence began reduced its effective viscosity, and continuing convergence thickened the lithospheric root. These conditions led to convective overturn, similar to the original conceptual models, with the difference that the overturn was confined within the root, which remains buoyant with respect to the deeper upper mantle. The intrinsic density difference between the root and underlying asthenosphere need only be as large as the density difference due to ~600 K temperature contrast (i.e., ~ 60 kg/m^3) in order that the lithospheric layer remains in place during convective overturn. Such an overturn can occur on a short geological time scale (~ 10 Myr), with the wavelength of the convective flow field likely to be a small multiple of the ~130 km thickness of the depleted lithospheric layer. The horizontal variations of density and temperature implied by this process would not be detectable using typical surface wave analyses, which lack the necessary horizontal resolution at such depths, but may be detectable using body wave tomography given a sufficiently dense ray coverage from a large aperture surface array. Internal convective overturn is a process that can explain the horizontally averaged depth variation of velocity and an abrupt but delayed heating event at the base of the crust.
Lithospheric Structure Beneath Taiwan From Sp Converted Waves
NASA Astrophysics Data System (ADS)
Glasgow, D.; McGlashan, N.; Brown, L.
2006-12-01
Taiwan is the product of three dimensionally complex interaction between the Eurasian Plate (EP) and the Philippine Sea plate (PSP), with the EP subducting eastward beneath the PSP in southern Taiwan while the PSP subducts northward beneath the EP in northern Taiwan. The structural emplacement of Philippine Arc lithosphere onto Chinese passive margin lithosphere is an exemplar of continental amalgamation, yet there are relatively few contraints on the geometry of lithosphere involved at depth. We have used teleseismic data recorded by the Broadband Array for Taiwan Seismology (BATS) to compute S-to-p wave receiver functions for the Taiwan region to provide new constraints on deep geometries. Moho conversions provide independent new estimates of crustal thickness, which vary from 35 to 55 km across the island in agreement with previous P to S conversion studies and local tomography. More significantly, our results suggest that the lithosphere- asthenosphere boundary (LAB) varies in depth from ca 140 km beneath northeastern Taiwan to ca 120 km beneath central Taiwan to perhaps less than 80 km beneath southern Taiwan. We attribute this along strike variation to the depression and decapitation of the Eurasian plate in the transition to northward subduction of the PSP.
The long-term strength of Europe and its implications for plate-forming processes.
Pérez-Gussinyé, M; Watts, A B
2005-07-21
Field-based geological studies show that continental deformation preferentially occurs in young tectonic provinces rather than in old cratons. This partitioning of deformation suggests that the cratons are stronger than surrounding younger Phanerozoic provinces. However, although Archaean and Phanerozoic lithosphere differ in their thickness and composition, their relative strength is a matter of much debate. One proxy of strength is the effective elastic thickness of the lithosphere, Te. Unfortunately, spatial variations in Te are not well understood, as different methods yield different results. The differences are most apparent in cratons, where the 'Bouguer coherence' method yields large Te values (> 60 km) whereas the 'free-air admittance' method yields low values (< 25 km). Here we present estimates of the variability of Te in Europe using both methods. We show that when they are consistently formulated, both methods yield comparable Te values that correlate with geology, and that the strength of old lithosphere (> or = 1.5 Gyr old) is much larger (mean Te > 60 km) than that of younger lithosphere (mean Te < 30 km). We propose that this strength difference reflects changes in lithospheric plate structure (thickness, geothermal gradient and composition) that result from mantle temperature and volatile content decrease through Earth's history.
Lithospheric structure of east Asia from ambient noise and two-station Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
Li, M.; Song, X.; Li, J.; Bao, X.
2017-12-01
The complex tectonic background of east Asia makes it an ideal region to investigate the evolution of continental lithosphere. High-resolution lithospheric structure models are essential in this endeavor. Surface-wave tomography has been an important technique for constructing 3D lithospheric structure in global and regional scales. In this study, using event data recorded by more than 1000 seismic stations from multiple national and international networks in and surrounding China (CEArray, PASSCAL, GSN), we systematically measured Rayleigh-wave phase-velocity dispersion curves at periods 10-120 s and group-velocity dispersion curves at periods 10-140 s based on the traditional two-station method. The dispersion curves were extracted from the cross-correlation functions of the earthquake data at the two stations near the great circle path using frequency-time analysis method. The new measurements extend the phase and group dispersion data to longer periods (i.e. >70 s), which are difficult to extract from ambient noise cross-correlation. The longer-period data allow us to image deeper lithospheric velocity structure. We combined the new dispersion measurements with two previously obtained data sets: (1) data set from Bao et al. (2015) across the Chinese continent that includes group and phase dispersion measurements from ambient noise correlations and group velocity measurements from earthquakes, and (2) data set from Wang et al. (2017) across the marginal seas in east Asia from ambient noise correlations. We used the combined data set to invert for the phase velocity maps up to 120 s and group velocity maps up to 140 s at a grid spacing of 0.5°×0.5°and then invert for the 1D shear-wave velocity structure at each grid to obtain the new 3D shear-wave velocity model. The new model is generally consistent with that of Bao et al. (2015) but with improved resolution particularly in greater depths and in east-Asia marginal seas. We also derived crustal thickness and lithospheric thickness models. The lithospheric thickness model shows strong spatial heterogeneity and thinning trend from west to east in our study region. These models reveal important lithospheric features beneath east Asia and provide a fundamental data set for understanding continental dynamics and evolution.
Convective thinning of the lithosphere - A mechanism for the initiation of continental rifting
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
A model of lithospheric thinning, in which heat is convected to the base and conducted within the lithosphere, is presented. An analytical equation for determinining the amount of thinning attainable on increasing the heat flux from the asthenosphere is derived, and a formula for lithosphere thickness approximations as a function of time is given. Initial and final equilibrium thicknesses, thermal diffusivity, transition temperature profile, and plume temperature profile are all factors considered for performing rate of thinning determinations. In addition, between initial and final equilibrium states, lithospheric thinning occurs at a rate which is inversely proportional to the square root of the time. Finally, uplift resulting from thermal expansion upon lithospheric thinning is on the order of 10 to the 2nd to 10 to the 3rd m.
Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity?
NASA Astrophysics Data System (ADS)
Baumann, Tobias; Kaus, Boris; Thielmann, Marcel
2016-04-01
The concept of elastic thickness (T_e) is one of the main methods to describe the integrated strength of oceanic lithosphere (e.g. Watts, 2001). Observations of the Te are in general agreement with yield strength envelopes estimated from laboratory experiments (Burov, 2007, Goetze & Evans 1979). Yet, applying the same concept to the continental lithosphere has proven to be more difficult (Burov & Diament, 1995), which resulted in an ongoing discussion on the rheological structure of the lithosphere (e.g. Burov & Watts, 2006, Jackson, 2002; Maggi et al., 2000). Recently, we proposed a new approach, which constrains rheological properties of the lithosphere directly from geophysical observations such as GPS-velocity, topography and gravity (Baumann & Kaus, 2015). This approach has the advantage that available data sets (such as Moho depth) can be directly taken into account without making the a-priori assumption that the lithosphere is thin elastic plate floating on the mantle. Our results show that a Bayesian inversion method combined with numerical thermo-mechanical models can be used as independent tool to constrain non-linear viscous and plastic parameters of the lithosphere. As the rheology of the lithosphere is strongly temperature dependent, it is even possible to add a temperature parameterisation to the inversion method and constrain the thermal structure of the lithosphere in this manner. Results for the India-Asia collision zone show that existing geophysical data require India to have a quite high effective viscosity. Yet, the rheological structure of Tibet less well constrained and a number of scenarios give a nearly equally good fit to the data. Yet, one of the assumptions that we make while doing this geodynamic inversion is that the rheology is viscoplastic, and that elastic effects do not significantly alter the large-scale dynamics of the lithosphere. Here, we test the validity of this assumption by performing synthetic forward models and retrieving the rheological parameters of these models with viscoplastic geodynamic inversions. We focus on a typical intra-oceanic subduction system as well as a typical scenario of subduction of an oceanic plate underneath a continental arc. Baumann, T. S. & Kaus, B. J. P., 2015. Geodynamic inversion to constrain thenon-linear rheology of the lithosphere, Geophys. J. Int., 202(2), 1289-1316. Burov, E. B. & Diament, M., 1995. The effective elastic thickness (Te) of continental lithosphere: What does it really mean?, J. Geophys. Res., 100, 3905-3927. Burov, E. B. & Watts, A. B., 2006. The long-term strength of continental lithosphere : jelly sandwich or crème brûlée?, GSA today, 16(1), 4-10. Burov, E. B., 2007. Crust and Lithosphere Dynamics: Plate Rheology and Mechanics, in Treatise Geophys., vol. 6, chap. 3, pp. 99-151, ed. Watts, A. B., Elsevier. Goetze, C. & Evans, B., 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. Int., 59(3), 463-478. Jackson, J., 2002. Strength of the continental lithosphere: Time to abandon the jelly sandwich?, GSA today, 12(9), 4-9. Maggi, A., Jackson, J. A., McKenzie, D., & Priestley, K., 2000a. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology, 28, 495-498. Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere, Cambridge University Press.
Elastic energy distribution in bi-material lithosphere: implications for shear zone formation
NASA Astrophysics Data System (ADS)
So, B.; Yuen, D. A.
2013-12-01
Shear instability in the lithosphere can cause mechanical rupturing such as slab detachment and deep focus earthquake. Recent studies reported that bi-material interface, which refers to sharp elastic modulus contrast, plays an important role in triggering the instability [So and Yuen et al., 2012, GJI]. In present study, we performed two-dimensional numerical simulations to investigate the distribution of thermal-mechanical energy within the bi-material lithosphere. Under the far-field constant compression exerted on the domain, a larger elastic energy is accumulated into the compliant part than stiff medium. For instance, the compliant part has two times greater elastic energy density than surrounding stiff part, when the elastic modulus contrast between two different parts is five. Although these elastic energies in both parts are conversed into thermal energies after plastic yielding, denser elastic energy in the compliant is released more efficiently. This leads to efficient strength weakening and the subsequent ductile shear zone in the compliant part. We propose that strong shear heating occurs in lithosphere with the bi-material interface due to locally non-uniform distribution of the energy around the interface.
Velocity and Density Heterogeneities of the Tien-Shan Lithosphere
NASA Astrophysics Data System (ADS)
Sabitova, T. M.; Lesik, O. M.; Adamova, A. A.
The Tien-Shan orogene is a region in which the earth's crust undergoes considerable thickening and tangential compression. Under these conditions the lithosphere heterogeneities (composi tion, rheological) create the prerequisites for the development of various phenomena of tectonic layering (lateral shearing, different deformation of layers). To study the distribution of velocity, density and other elastic parameters, the results from a seismic tomography study on P-wave as well as S-wave velocities were used. Using empirical as well as theoretical formulas on the relationship between velocity, density and silica content in rocks, their distribution in the Tien-Shan's lithosphere has been calculated. In addition, other elastic parameters, such as Young's modulus, shear modulus, Poisson's ratio and coefficient of general compressions have been determined. Zoning of different types of crust was carried out for the region investigated. The characteristics of the "crust-mantle" transition have been investi gated. Large blocks with different types of the earth's crust were distinguished. Layers with inverse values of velocity, density and shear and Young modulus are revealed in the Tien-Shan lithosphere. All of the above described features open new ways to solve geodynamics problems.
An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth
NASA Technical Reports Server (NTRS)
Brian, A. W.; Smrekar, S. E.; Stofan, E. R.
2004-01-01
Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.
Venus Chasmata: A Lithospheric Stretching Model
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Head, J. W.
1985-01-01
An outstanding problem for Venus is the characterization of its style of global tectonics, an issue intimately related to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. A lithospheric stretching model was developed to explain the topographic characteristics of Venus chasmata and to constrain the physical properties of the Venus crust and lithosphere.
NASA Astrophysics Data System (ADS)
Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy
2014-05-01
Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration are determined by using a series of numerical experiments, tested and calibrated against observations of crustal thicknesses and water-loaded subsidence. Pure-shear widths exert a strong control on the timing of crustal rupture and melt initiation; to satisfy OCT architecture, subsidence and mantle exhumation, we need to focus the deformation from a broad to a narrow region. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. The numerical models are used to predict margin isostatic response and subsidence history.
NASA Astrophysics Data System (ADS)
Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.
2013-12-01
Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration. Particle tracking is used to predict P-T-t histories for both Iberia-Newfoundland and the Alpine Tethys conjugate margin transects. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. Initial continental crust thickness and lithosphere temperature structure are important in controlling initial elevation and subsequent subsidence and depositional histories. Numerical models are used to examine the possible isostatic responses of the present-day and fossil analogue rifted margins.
Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available
NASA Astrophysics Data System (ADS)
Artemieva, Irina
2014-05-01
This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the depth to a 600 deg C isotherm in continental upper mantle is presented as a proxy to the elastic thickness of the cratonic lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle. The TC1 model of the lithosphere thickness is used to calculate the growth and preservation rates of the lithosphere since the Archean.
Evaluation of the Lithospheric Contribution to Southern Rio Grande Rift Mafic Melts
NASA Astrophysics Data System (ADS)
Konter, J. G.; Crocker, L.; Anaya, L. M.; Rooney, T. O.
2011-12-01
As continental rifting proceeds, the accommodation of lithospheric thinning by mechanical extension and magmatic intrusion represents an important but poorly constrained tectonic process. Insight into role of the magmatic component may come from the composition of volcanic products, which can record magma-lithosphere interactions. The volcanic activity in continental rift environments is frequently characterized by bimodal associations of mafic and silicic volcanism with heterogenous lithospheric contributions. We present a new integrated data set from several mafic volcanic fields in the Rio Grande Rift, consisting of major and trace element compositions, as well as isotopes. This data set provides insight into asthenospheric melting processes and interactions with the overlying lithosphere. The melting processes and the related extensional volcanism is the result of foundering of the Farallon slab. Large volume silicic eruptions such as those in the Sierra Madre Occidental originate from a large contribution of lithospheric melting, with a subordinate asthenospheric contribution. In contrast, Late Tertiary and Quaternary basaltic volcanic fields in the Rio Grande Rift were likely sourced in the asthenosphere and did not reside in the lithosphere for substantial periods. As a result the region is the ideal natural laboratory to investigate the interaction of asthenospheric melts with the lithosphere. In particular the wide array of volcanic fields contain multiple xenolith localities, such as Kilbourne Hole, providing direct samples of lithosphere and crust. Although previous studies have focused on correlations between amount of extension related to Farallon slab foundering, volcanic compositions, and their mantle sources, we present data that suggest that some compositional signatures may pre-date current tectonic processes. Radiogenic isotope data from several volcanic fields in New Mexico show a converging pattern in Pb isotope compositions, focusing on the unradiogenic Pb isotope composition of lower crustal xenoliths from Kilbourne Hole. The opposite ends of the converging trends are more radiogenic for some volcanic fields than the (lithospheric) mantle xenoliths of the Potrillo, San Carlos and Geranimo volcanic fields. Combined Pb-Sr isotope compositions for these fields are consistent with a trend from lower crustal xenoliths to mantle xenoliths, but show more variability. This variability may be explained by a small upper crustal contribution, in agreement with the Pb isotope systematics. Therefore, a common unradiogenic lower crustal composition likely contributed to the asthenospheric melts, followed by upper crustal contamination. The unradiogenic character of the lower crust implies an ancient event created the required low U/Pb ratios that generated the present-day Pb isotope compositions.
Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton
NASA Astrophysics Data System (ADS)
Li, Zian; Zhang, Lu; Lin, Ge; Zhao, Chongbin; Liang, Yingjie
2018-06-01
The dynamic mechanism for destruction of the North China Craton (NCC) has been extensively discussed. Numerical simulation is used in this paper to discuss the effect of mantle upward throughflow (MUT) on the lithospheric heat flux of the NCC. Our results yield a three-stage destruction of the NCC lithosphere as a consequence of MUT variation. (1) In Late Paleozoic, the elevation of MUT, which was probably caused by southward and northward subduction of the paleo-Asian and paleo-Tethyan oceans, respectively, became a prelude to the NCC destruction. The geological consequences include a limited decrease of the lithospheric thickness, an increase of heat flux, and a gradual enhancement of the crustal activity. But the tectonic attribute of the NCC maintained a stable craton. (2) During Late Jurassic-Early Cretaceous, the initial velocity of the MUT became much faster probably in response to subduction of the Pacific Ocean; the conductive heat flux at the base of the NCC lithosphere gradually increased from west to east; and the lithospheric thickness was significantly decreased. During this stage, the heat flux distribution was characterized by zonation and partition, with nearly horizontal layering in the lithosphere and vertical layering in the underlying asthenosphere. Continuous destruction of the NCC lithosphere was associated with the intense tectono-magmatic activity. (3) From Late Cretaceous to Paleogene, the velocity of MUT became slower due to the retreat of the subducting Pacific slab; the conductive heat flux at the base of lithosphere was increased from west to east; the distribution of heat flux was no longer layered. The crust of the western NCC is relatively hotter than the mantle, so-called as a `hot crust but cold mantle' structure. At the eastern NCC, the crust and the mantle characterized by a `cold crust but hot mantle.' The western NCC (e.g., the Ordos Basin) had a tectonically stable crust with low thermal gradients in the lithosphere; whereas the eastern NCC was active with a hot lithosphere. The numerical results show that the MUT is the main driving force for the NCC destruction, whereas the complex interaction of surrounding plates lit a fuse for the lithospheric thinning.
Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton
NASA Astrophysics Data System (ADS)
Li, Zian; Zhang, Lu; Lin, Ge; Zhao, Chongbin; Liang, Yingjie
2017-09-01
The dynamic mechanism for destruction of the North China Craton (NCC) has been extensively discussed. Numerical simulation is used in this paper to discuss the effect of mantle upward throughflow (MUT) on the lithospheric heat flux of the NCC. Our results yield a three-stage destruction of the NCC lithosphere as a consequence of MUT variation. (1) In Late Paleozoic, the elevation of MUT, which was probably caused by southward and northward subduction of the paleo-Asian and paleo-Tethyan oceans, respectively, became a prelude to the NCC destruction. The geological consequences include a limited decrease of the lithospheric thickness, an increase of heat flux, and a gradual enhancement of the crustal activity. But the tectonic attribute of the NCC maintained a stable craton. (2) During Late Jurassic-Early Cretaceous, the initial velocity of the MUT became much faster probably in response to subduction of the Pacific Ocean; the conductive heat flux at the base of the NCC lithosphere gradually increased from west to east; and the lithospheric thickness was significantly decreased. During this stage, the heat flux distribution was characterized by zonation and partition, with nearly horizontal layering in the lithosphere and vertical layering in the underlying asthenosphere. Continuous destruction of the NCC lithosphere was associated with the intense tectono-magmatic activity. (3) From Late Cretaceous to Paleogene, the velocity of MUT became slower due to the retreat of the subducting Pacific slab; the conductive heat flux at the base of lithosphere was increased from west to east; the distribution of heat flux was no longer layered. The crust of the western NCC is relatively hotter than the mantle, so-called as a `hot crust but cold mantle' structure. At the eastern NCC, the crust and the mantle characterized by a `cold crust but hot mantle.' The western NCC (e.g., the Ordos Basin) had a tectonically stable crust with low thermal gradients in the lithosphere; whereas the eastern NCC was active with a hot lithosphere. The numerical results show that the MUT is the main driving force for the NCC destruction, whereas the complex interaction of surrounding plates lit a fuse for the lithospheric thinning.
Collapse of passive margins by lithospheric damage and plunging grain size
NASA Astrophysics Data System (ADS)
Mulyukova, Elvira; Bercovici, David
2018-02-01
The collapse of passive margins has been proposed as a possible mechanism for the spontaneous initiation of subduction. In order for a new trench to form at the junction between oceanic and continental plates, the cold and stiff oceanic lithosphere must be weakened sufficiently to deform at tectonic rates. Such rates are especially hard to attain in the cold ductile portion of the lithosphere, at which the mantle lithosphere reaches peak strength. The amount of weakening required for the lithosphere to deform in this tectonic setting is dictated by the available stress. Stress in a cooling passive margin increases with time (e.g., due to ridge push), and is augmented by stresses present in the lithosphere at the onset of rifting (e.g., due to drag from underlying mantle flow). Increasing stress has the potential to weaken the ductile portion of the lithosphere by dislocation creep, or by decreasing grain size in conjunction with a grain-size sensitive rheology like diffusion creep. While the increasing stress acts to weaken the lithosphere, the decreasing temperature acts to stiffen it, and the dominance of one effect or the other determines whether the margin might weaken and collapse. Here, we present a model of the thermal and mechanical evolution of a passive margin, wherein we predict formation of a weak shear zone that spans a significant depth-range of the ductile portion of the lithosphere. Stiffening due to cooling is offset by weakening due to grain size reduction, driven by the combination of imposed stresses and grain damage. Weakening via grain damage is modest when ridge push is the only source of stress in the lithosphere, making the collapse of a passive margin unlikely in this scenario. However, adding even a small stress-contribution from mantle drag results in damage and weakening of a significantly larger portion of the lithosphere. We posit that rapid grain size reduction in the ductile portion of the lithosphere can enable, or at least significantly facilitate, the collapse of a passive margin and initiate a new subduction zone. We use this model to estimate the conditions for passive margin collapse for modern and ancient Earth, as well as for Venus.
Lithospheric structure in the Pacific geoid
NASA Technical Reports Server (NTRS)
Marsh, B. D.
1984-01-01
In order that sub-lithospheric density variations be revealed with the geoid, the regional geoid anomalies associated with bathymetric variations must first be removed. Spectral techniques were used to generate a synthetic geoid by filtering the residual bathymetry assuming an Airy-type isostatic compensation model. An unbiased estimated of the admittances show that for region under study, no single compensation mechanism will explain all of the power in the geoid. Nevertheless, because topographic features are mainly coherent with the geoid, to first order an isostationally compensated lithosphere cut by major E-W fracture zones accounts for most of the power in the high degree and other SEASAT geoid in the Pacific.
NASA Astrophysics Data System (ADS)
Sleep, Norman H.
2008-08-01
Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm or hot plume material are likely to extend laterally away from the volcanic edifices whether or not channeling occurs.
NASA Astrophysics Data System (ADS)
Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena
2016-04-01
Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).
Synthetic Analysis of the Effective Elastic Thickness of the Lithosphere in China
NASA Astrophysics Data System (ADS)
Lu, Z.; Li, C.
2017-12-01
Effective elastic thickness (Te) represents the response of the lithosphere to a long-term (larger than 105 years) geological loading and reflects the deformation mechanism of plate and its thermodynamic state. Temperature and composition of the lithosphere, coupling between crust and lithospheric mantle, and lithospheric structures affect Te. Regional geology in China is quite complex, influenced by the subduction of the Pacific and Philippine Sea plates in the east and the collision of the Eurasia plate with the India-Australia plate in the southwest. Te can help understand the evolution and strength of the lithospheres in different areas and tectonic units. Here we apply the multitaper coherence method to estimate Te in China using the topography (ETOPO1) and Bouguer gravity anomalies (WGM2012) , at different window sizes (600km*600km, 800km*800km, 1000km*1000km) and moving steps. The lateral variation of Te in China coincides well with the geology. The old stable cratons or basins always correspond to larger Te, whereas the oceanic lithosphere or active orogen blocks tend to get smaller Te. We further correlate Te to curie-point depths (Zb) and heat flow to understand how temperature influences the strength of the lithosphere. Despite of a complex correlation between Te and Zb, good positive correlations are found in the North China Block, Tarim Basin, and Lower Yangtze, showing strong influence of temperature on lithospheric strength. Conversely, the Tibetan Plateau, Upper and Middle Yangtze, and East China Sea Basin even show negative correlation, suggesting that lithospheric structures and compositions play more important roles than temperature in these blocks. We also find that earthquakes tend to occur preferably in a certain range of Te. Deeper earthquakes are more likely to occur where the lithosphere is stronger with larger Te. Crust with a larger Te may also have a deeper ductile-brittle boundary, along which deep large earthquakes tend to cluster.
Two-stage magmatism during the evolution of the transitional Ethiopian rift
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; England, R. W.; Maguire, P. K.; Kendall, M.; Stuart, G. W.
2008-12-01
The Ethiopian rift marks the transition between continental rifting and incipient seafloor spreading. The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) included a 400 km-long cross-rift profile with 97 broadband passive seismometers with the aim to investigate the change from mechanical to magmatic extension by defining the lithospheric structure and extent of magmatism beneath the rift. Complimentary studies of P-wave receiver functions, shear-wave splitting and teleseismic earthquake arrival times show that the lithospheric structure is inherently different beneath the north-western rift flank, rift valley and south- eastern rift flank, with contrasting crustal thickness and composition, upper mantle velocity and lithospheric anisotropy. Two stages of magmatic addition are interpreted: 1) a 6--18 km-thick underplate lens at the base of the crust, which probably formed synchronous with an Oligocene flood basalt event (and therefore pre-dates the adjacent rifting by ~20 Myr); and 2) a 20--30 km-wide zone of intense dyking and partial melt, which most likely pervades the entire crust beneath the rift valley and marks the locus of current rift extension. Furthermore, Precambrian collision-related lithospheric fabric is proposed to be the main source of the strong anisotropy that is observed along the entire cross-rift profile, which may be augmented by magmatism beneath the rift. An active, followed by a passive magma-assisted rifting model that is controlled by a combination of far-field plate stresses, the pre-existing lithospheric framework and magmatism is invoked to explain the rift evolution.
Flow, melt and fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, James; Kendall, J.-Michael; Wookey, James; Stuart, Graham; Keir, Derek; Ayele, Atalay
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and use shear-wave splitting tomography to invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due aligned melt due to sharp changes in lithospheric thickness dominate the shear-wave splitting signal in the mantle. Beneath Afar, away from lithospheric topography, melt pockets associated with the crustal magma storage dominate the signal and little anisotropy is seen in the uppermost mantle suggesting melt retains no preferential alignment, possibly due to a lack of mantle lithosphere. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is absent beneath Afar today, rather a broad flow from the southwest dominates in the upper mantle.
Life in the lithosphere, kinetics and the prospects for life elsewhere.
Cockell, Charles S
2011-02-13
The global contiguity of life on the Earth today is a result of the high flux of carbon and oxygen from oxygenic photosynthesis over the planetary surface and its use in aerobic respiration. Life's ability to directly use redox couples from components of the planetary lithosphere in a pre-oxygenic photosynthetic world can be investigated by studying the distribution of organisms that use energy sources normally bound within rocks, such as iron. Microbiological data from Iceland and the deep oceans show the kinetic limitations of living directly off igneous rocks in the lithosphere. Using energy directly extracted from rocks the lithosphere will support about six orders of magnitude less productivity than the present-day Earth, and it would be highly localized. Paradoxically, the biologically extreme conditions of the interior of a planet and the inimical conditions of outer space, between which life is trapped, are the locations from which volcanism and impact events, respectively, originate. These processes facilitate the release of redox couples from the planetary lithosphere and might enable it to achieve planetary-scale productivity approximately one to two orders of magnitude lower than that produced by oxygenic photosynthesis. The significance of the detection of extra-terrestrial life is that it will allow us to test these observations elsewhere and establish an understanding of universal relationships between lithospheres and life. These data also show that the search for extra-terrestrial life must be accomplished by 'following the kinetics', which is different from following the water or energy.
NASA Astrophysics Data System (ADS)
Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.
2016-01-01
Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal growth events rather than just recycling of old lithospheric materials.
NASA Astrophysics Data System (ADS)
Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.
2015-12-01
Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.
NASA Astrophysics Data System (ADS)
Miller, Meghan S.; Becker, Thorsten
2014-05-01
Northwest Africa is affected by late stage convergence of Africa with Eurasia, the Canary Island hotspot, and bounded by the Proterozoic-age West African craton. We present seismological evidence from receiver functions and shear-wave splitting along with geodynamic modeling to show how the interactions of these tectonic features resulted in dramatic deformation of the lithosphere. We interpret seismic discontinuities from the receiver functions and find evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that have been reactivated during the Cenozoic, further suggesting that inherited, lithospheric-scale zones of weakness were involved in the formation of the Atlas. Another significant step in lithospheric thickness is inferred within the Middle Atlas. Its location corresponds to the source of regional Quaternary alkali volcanism, where the influx of melt induced by the shallow asthenosphere appears restricted to a lithospheric-scale fault on the northern side of the mountain belt. Inferred stretching axes from shear-wave splitting are aligned with the topographic grain in the High Atlas, suggesting along-strike asthenospheric shearing in a mantle channel guided by the lithospheric topography. Isostatic modeling based on our improved lithospheric constraints indicates that lithospheric thinning alone does not explain the anomalous Atlas topography. Instead, an mantle upwelling induced by a hot asthenospheric anomaly appears required, likely guided by the West African craton and perhaps sucked northward by subducted lithosphere beneath the Alboran. This dynamic support scenario for the Atlas also suggests that the timing of uplift is contemporaneous with the recent volcanismin the Middle Atlas.
Numerical modeling of mountain formation on Io
NASA Astrophysics Data System (ADS)
Turtle, E. P.; Jaeger, W. L.; McEwen, A. S.; Keszthelyi, L.
2000-10-01
Io has ~ 100 mountains [1] that, although often associated with patera [2], do not appear to be volcanic structures. The mountains are up to 16 km high [3] and are generally isolated from each other. We have performed finite-element simulations of the formation of these mountains, investigating several mountain building scenarios: (1) a volcanic construct due to heterogeneous resurfacing on a coherent, homogeneous lithosphere; (2) a volcanic construct on a faulted, homogeneous lithosphere; (3) a volcanic construct on a faulted, homogeneous lithosphere under compression induced by subsidence due to Io's high resurfacing rate; (4) a faulted, homogeneous lithosphere under subsidence-induced compression; (5) a faulted, heterogeneous lithosphere under subsidence-induced compression; and (6) a mantle upwelling beneath a coherent, homogeneous lithosphere under subsidence-induced compression. The models of volcanic constructs do not produce mountains similar to those observed on Io. Neither do those of pervasively faulted lithospheres under compression; these predict a series of tilted lithospheric blocks or plateaus, as opposed to the isolated structures that are observed. Our models show that rising mantle material impinging on the base of the lithosphere can focus the compressional stresses to localize thrust faulting and mountain building. Such faults could also provide conduits along which magma could reach the surface as is observed near several mountains. [1] Carr et al., Icarus 135, pp. 146-165, 1998. [2] McEwen et al., Science 288, pp. 1193-1198, 2000. [3] Schenk and Bulmer, Science 279, pp. 1514-1517, 1998.
Birch Lecture : The Deep Roots of Continents
NASA Astrophysics Data System (ADS)
Jaupart, C.
2006-12-01
The roots of Archean continents are made of depleted and buoyant mantle and may extend to depths larger than 250 km. Such distinctive characteristics have key dynamical and geological consequences that we are only beginning to address. Thick roots provide large volume repositories for chemical elements that do not mix with Earth's convecting interior. Their large diffusive relaxation time implies long-term thermal disequilibrium with their radioactive heat sources and with the cooling of the mantle. Their negative thermal buoyancy may drive convective instabilities with implications for intracontinental deformation and magmatism as well as for continental growth. The dynamical behaviour of continental roots depends on the buoyancy ratio B, the ratio of the intrinsic (chemical) buoyancy of depleted lithospheric mantle and the density difference due to thermal expansion. The lithosphere can be mechanically stable and in thermal equilibrium with heat supplied by small-scale convection at the top of the asthenosphere. Sufficient cooling may result in an oscillatory convective instability whereby perturbations to the base of the lithosphere rise and fall periodically. The lithosphere seems to have developed in a state near that of instability with different thicknesses depending on its intrinsic buoyancy. It may have grown not only by chemical differentiation during melting, but also by oscillatory convection entraining chemically denser material from the asthenosphere. Mantle plumes have different effects on lithospheres of different thicknesses and compositions. For B values larger than about 0.6, plume material does not really penetrate into the lithosphere and spreads beneath it. In this case, the buoyancy force that is applied to the base of the lithosphere drives moderate thinning and extension over large horizontal distances. It takes values of B less than 0.6 to achieve true plume penetration with a significant vertical velocity component. In this case, thinning and extension get localized above the rising plume. In both cases, heated lithosphere material becomes convectively unstable after some time and entrains asthenospheric material as it rises. Temperatures in thick continental lithosphere do not adjust rapidly to secular changes of mantle temperature. Analysis of (P,T) data from xenolith studies indicates that the Earth's mantle has cooled at a rate of 80 K Ga-1 or less. Thick continental roots preserve a record of Archean processes and of Earth's evolution through geological ages. Deciphering this record may well be our next challenge.
NASA Astrophysics Data System (ADS)
Tian, X.; Buck, W. R.
2017-12-01
Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric thickness. From published seismic reflection data, we obtain a global map of Te at volcanic rifted margins that ranges from 2 12 km using the AtPM and NtPM mapping. The corresponding brittle lithospheric thickness ranges from 6 20 km. In addition, preliminary results show Te increases along a given margin with distance away from a Large Igneous Province.
NASA Astrophysics Data System (ADS)
Bartolome, R.; Danobeitia, J.; Barba, D. C., Sr.; Nunez-Cornu, F. J.; Cameselle, A. L.; Estrada, F.; Prada, M.; Bandy, W. L.
2014-12-01
During the spring of 2014, a team of Spanish and Mexican scientists explored the western margin of Mexico in the frame of the TSUJAL project. The two main objectives were to characterize the nature and structure of the lithosphere and to identify potential sources triggering earthquakes and tsunamis at the contact between Rivera plate-Jalisco block with the North American Plate. With these purposes a set of marine geophysical data were acquired aboard the RRS James Cook. This work is focus in the southern part of the TSUJAL survey, where we obtain seismic images from the oceanic domain up to the continental shelf. Thus, more than 800 km of MCS data, divided in 7 profiles, have been acquired with a 6km long streamer and using an air-gun sources ranging from 5800 c.i. to 3540 c.i. Furthermore, a wide-angle seismic profile of 190 km length was recorded in 16 OBS deployed perpendicular to the coast of Manzanillo. Gravity and magnetic, multibeam bathymetry and sub-bottom profiler data were recorded simultaneously with seismic data in the offshore area. Preliminary stacked MCS seismic sections reveal the crustal structure in the different domains of the Mexican margin. The contact between the Rivera and NA Plates is observed as a strong reflection at 6 s two way travel time (TWTT), in a parallel offshore profile (TS01), south of Manzanillo. This contact is also identified in a perpendicular profile, TS02, along a section of more than 100 km in length crossing the Rivera transform zone, and the plate boundary between Cocos and Rivera Plates. Northwards, offshore Pto. Vallarta, the MCS data reveals high amplitude reflections at around 7-8.5 s TWTT, roughly 2.5-3.5 s TWTT below the seafloor, that conspicuously define the subduction plane (TS06b). These strong reflections which we interpret as the Moho discontinuity define the starting bending of subduction of Rivera Plate. Another clear pattern observed within the first second of the MCS data shows evidences of a bottom simulating reflector (BSR) along the continental margin, particularly strong offshore Pto. Vallarta. The integration of all these acquired geophysical information will allow obtaining a comprehensive image of the lithosphere that will be valuable for the seismic and tsunamigenic hazard assessment.
Mantle beneath the Gibraltar Arc from receiver functions
NASA Astrophysics Data System (ADS)
Morais, Iolanda; Vinnik, Lev; Silveira, Graça; Kiselev, Sergey; Matias, Luís
2015-02-01
P and S receiver functions (PRF and SRF) from 19 seismograph stations in the Gibraltar Arc and the Iberian Massif reveal new details of the regional deep structure. Within the high-velocity mantle body below southern Spain the 660-km discontinuity is depressed by at least 20 km. The Ps phase from the 410-km discontinuity is missing at most stations in the Gibraltar Arc. A thin (˜50 km) low-S-velocity layer atop the 410-km discontinuity is found under the Atlantic margin. At most stations the S410p phase in the SRFs arrives 1.0-2.5 s earlier than predicted by IASP91 model, but, for the propagation paths through the upper mantle below southern Spain, the arrivals of S410p are delayed by up to +1.5 s. The early arrivals can be explained by elevated Vp/Vs ratio in the upper mantle or by a depressed 410-km discontinuity. The positive residuals are indicative of a low (˜1.7 versus ˜ 1.8 in IASP91) Vp/Vs ratio. Previously, the low ratio was found in depleted lithosphere of Precambrian cratons. From simultaneous inversion of the PRFs and SRFs we recognize two types of the mantle: `continental' and `oceanic'. In the `continental' upper mantle the S-wave velocity in the high-velocity lid is 4.4-4.5 km s-1, the S-velocity contrast between the lid and the underlying mantle is often near the limit of resolution (0.1 km s-1), and the bottom of the lid is at a depth reaching 90-100 km. In the `oceanic' domain, the S-wave velocities in the lid and the underlying mantle are typically 4.2-4.3 and ˜ 4.0 km s-1, respectively. The bottom of the lid is at a shallow depth (around 50 km), and at some locations the lid is replaced by a low S-wave velocity layer. The narrow S-N-oriented band of earthquakes at depths from 70 to 120 km in the Alboran Sea is in the `continental' domain, near the boundary between the `continental' and `oceanic' domains, and the intermediate seismicity may be an effect of ongoing destruction of the continental lithosphere.
NASA Astrophysics Data System (ADS)
Andrés, J.; Marzán, I.; Ayarza, P.; Martí, D.; Palomeras, I.; Torné, M.; Campbell, S.; Carbonell, R.
2018-03-01
In this work the thermal structure of the Iberian Peninsula is derived from magnetic data by calculating the bottom of the magnetization, assumed to be the Curie-point depth (CPD) isotherm, which accounts for the depth at which magnetite becomes paramagnetic (580°C). Comparison of the CPD with crustal thickness maps along with a heat flow map derived from the CPD provides new insights on the lithospheric thermal regime. Within Iberia, the CPD isotherm has thickness in the range of 17 to 29 km. This isotherm is shallow (<18 km) offshore, where the lithosphere is thinner. In continental Iberia, the NW Variscan domain presents a magnetic response that is most probably linked to thickening and later extension processes during the late Variscan Orogeny, which resulted in widespread crustal melting and emplacement of granites (in the Central Iberian Arc). The signature of the CPD at the Gibraltar Arc reveals a geometry consistent with the slab roll-back geodynamic model that shaped the western Mediterranean. In offshore areas, a broad extension of magnetized upper mantle is found. Serpentinization of the upper mantle, probably triggered in an extensional context, is proposed to account for the magnetic signal. The Atlantic margin presents up to 8 km of serpentinites, which, according to the identification of exhumed mantle, correlates with a hyperextended margin. The Mediterranean also presents generalized serpentinization up to 6 km in the Algerian Basin. Furthermore, a heat flow map and a Moho temperature map derived from the CPD are presented.
NASA Astrophysics Data System (ADS)
Dabo, Moussa; Aïfa, Tahar; Gning, Ibrahima; Faye, Malick; Ba, Mamadou Fallou; Ngom, Papa Malick
2017-07-01
The new lithological and petrographic data obtained in the Mako sector are analyzed in the light of the geochemical data available in the literature. It consists of ultramaic, mafic rocks of tholeiitic affinities associated with intermediate and felsic rocks of calc-alkaline affinities and with intercalations of sedimentary rocks. The whole unit is intruded by Eburnean granitoids and affected by a greenschist to amphibolite facies metamorphism related to a high grade hydrothermalism. It consists of: (i) ultramafic rocks composed of a fractional crystallization succession of lherzolites, wehrlites and pyroxenites with mafic rock inclusions; (ii) layered, isotropic and pegmatitic metagabbros which gradually pass to metabasalts occur at the top; (iii) massive and in pillow metabasalts with locally tapered vesicles, completely or partially filled with quartzo-feldspathic minerals; (iv) quarzites locally overlying the mafic rocks and thus forming the top of the lower unit. This ultramafic-mafic lower unit presents a tholeiitic affinity near to the OIB or N-MORB. It represents the Mako Ophiolitic Complex (MOC), a lithospheric fragment of Birimian lithospheric crust. The upper unit is a mixed volcanic complex arranged in the tectonic corridors. From bottom to top it comprises the following: (i) andesitic, and (ii) rhyodacitic and rhyolitic lava flows and tuffs, respectively. They present a calc-alkaline affinity of the active margins. Three generations of Eburnean granitoids are recognized: (i) early (2215-2160 Ma); (ii) syn-tectonics (2150-2100 Ma) and post-tectonics (2090-2040 Ma). The lithological succession, geochemical and metamorphic characteristics of these units point to an ophiolitic supra-subduction zone.
European Lithospheric Mantle; geochemical, petrological and geophysical processes
NASA Astrophysics Data System (ADS)
Ntaflos, Th.; Puziewicz, J.; Downes, H.; Matusiak-Małek, M.
2017-04-01
The second European Mantle Workshop occurred at the end of August 2015, in Wroclaw, Poland, attended by leading scientists in the study the lithospheric mantle from around the world. It built upon the results of the first European Mantle Workshop (held in 2007, in Ferrara, Italy) published in the Geological Society of London Special Publication 293 (Coltorti & Gregoire, 2008).
NASA Astrophysics Data System (ADS)
Korolev, N. M.; Kopylova, M.; Bussweiler, Y.; Pearson, D. G.; Gurney, J.; Davidson, J.
2018-04-01
The mantle beneath the Cullinan kimberlite (formerly known as "Premier") is a unique occurrence of diamondiferous cratonic mantle where diamonds were generated contemporaneously and shortly following a mantle upwelling that led to the formation of a Large Igneous Province that produced the world's largest igneous intrusion - the 2056 Ma Bushveld Igneous Complex (BIC). We studied 332 diamond inclusions from 202 Cullinan diamonds to investigate mantle thermal effects imposed by the formation of the BIC. The overwhelming majority of diamonds come from three parageneses: (1) lithospheric eclogitic (69%), (2) lithospheric peridotitic (21%), and (3) sublithospheric mafic (9%). The lithospheric eclogitic paragenesis is represented by clinopyroxene, garnet, coesite and kyanite. Main minerals of the lithospheric peridotitic paragenesis are forsterite, enstatite, Cr-pyrope, Cr-augite and spinel; the sublithospheric mafic association includes majorite, CaSiO3 phases and omphacite. Diamond formation conditions were calculated using an Al-in-olivine thermometer, a garnet-clinopyroxene thermometer, as well as majorite and Raman barometers. The Cullinan diamonds may be unique on the global stage in recording a cold geotherm of 40 mW/m2 in cratonic lithosphere that was in contact with underlying convecting mantle at temperatures of 1450-1550 °C. The studied Cullinan diamonds contain a high proportion of inclusions equilibrated at temperatures exceeding the ambient 1327 °C adiabat, i.e. 54% of eclogitic diamonds and 41% of peridotitic diamonds. By contrast, ≤ 1% of peridotitic diamond inclusions globally yield equally high temperatures. We propose that the Cullinan diamond inclusions recorded transient, slow-dissipating thermal perturbations associated with the plume-related formation of the 2 Ga Bushveld igneous province. The presence of inclusions in diamond from the mantle transition zone at 300-650 km supports this view. Cullinan xenoliths indicative of the thermal state of the cratonic lithosphere at 1.2 Ga are equilibrated at the relatively low temperatures, not exceeding adiabatic. The ability of diamonds to record super-adiabatic temperatures may relate to their entrainment from the deeper, hotter parts of the upper mantle un-sampled by the kimberlite in the form of xenoliths or their equilibration in a younger lithosphere after a decay of the thermal disturbance.
A simple scaling model for smooth vs. rough bathymetry along hotspot tracks
NASA Astrophysics Data System (ADS)
Orellana Rovirosa, F.; Richards, M. A.
2016-12-01
Oceanic hotspot tracks exhibit a remarkable variety of morphologies, both in terms of volcanic seamounts/ocean islands, as well as broader bathymetric swells. A conspicuous feature is that although most hotspot tracks are characterized by "rough" topography, due mainly to volcanic construction, a number are much "smoother," and likely dominated more by the thermal/dynamic swell and crustal intrusion. Examples of relatively smooth tracks include the Nazca Ridge , Carnegie/Cocos/Galápagos, Walvis Ridge, Rio Grande Rise, Iceland, and Kerguelen and much of the Ninety-east Ridge; contrasting with rough and discontinuous seamount chains such Easter/Sala y Gomez, Tristan-Gough, Louisville, Emperor, and much of the Hawaiian ridge. Previous studies have pointed out the role of age, lithospheric thickness, and the plume strength; on the style of the associated bathymetry. Here, we take a systematic approach that emphasizes remarkable along-track changes from smooth to rough topography, e.g., the rough Sala y Gomez and smooth Nazca Ridge portions of the Easter Island hotspot track. Considering the primary controls to be hotspot swell volume flux Qs, the plate-hotspot relative speed v, and the lithospheric elastic thickness D, we suggest that such transitions are controlled by the dimensionless parameter R = sqrt(Qs / v) / D, which is roughly a measure of the heat available from the plume to the heat necessary to thermally attenuate the overlying lithosphere. For very thin (young) lithosphere, such as at the Galápagos platform, igneous intrusion into the hot, weak lithosphere and lower crust may dominate the topographic expression of the hotspot, whereas older lithosphere will support large volcanoes built from magmas passing through more intact lithosphere. Using data from observational studies on mantle-plume buoyancy fluxes, gravity, bathymetry, and tectonic reconstructions, we show that R is a good predictor of bathymetric style: for R<2 hotspot tracks are rough, and for R>3 they are smooth. This analysis therefore gives a straightforward and quantitative framework for interpreting the topographic/bathymetric expressions of oceanic hotspot tracks.
NASA Astrophysics Data System (ADS)
Priestley, K.; Debayle, E.; McKenzie, D.; Pilidou, S.
2007-12-01
There have been a number of prior, large scale surface wave studies of Africa, the majority of which rely on fundamental mode observations. In this study we use a large data set of multi-mode surface waves recorded over epicentral distances most of which are shorter than 6000 km, to investigate the Sv wave speed heterogeneity of the upper mantle beneath Africa. The inclusion of the higher mode data allow us to build an upper mantle model for the African plate with a horizontal resolution of a few hundred kilometers and a vertical resolution of a few tens of kilometers extending to about 400 km depth. Our tomographic images of the upper mantle beneath Africa displays significant shear velocity features, much of which correlate with surface geology. High velocity mantle persists beneath the West African and Congo cratons to 225-250 km depth, but the high velocity root beneath Kalahari Craton extends to only about 175 km depth. Low velocity upper mantle underlies the Pan- African terranes of Africa with the exception of the Damara mobile belt separating the Congo and Kalahari Cratons. The Damara mobile belt is underlain by a thick high velocity upper mantle lid which is indistinguishable from that beneath the Congo Craton to the north and the Kalahari Craton to the south. Low velocity upper mantle underlie the Hoggar, Tebesti and Darfur volcanic areas of northern Africa, and very low velocities underlie the Afar region to at least 400 km depth. We use the relationship between shear velocity and temperature of Priestley & McKenzie (2006) to derive a model for the African thermal lithosphere. Two types of lithosphere underlie Africa. Thick lithosphere underlies most of western Africa and all of southern Africa; in the latter the extent of the thick lithosphere is significantly different from the distribution of Archean crust mapped at the surface. Thick lithosphere forms one continuous structure beneath the Congo and Kalahari Cratons. Other than the Pan-African Damara mobile belt, the only Pan-African terrane of Africa free of recent (<30 Ma) volcanism, all of the Pan- African is underlain by lithosphere whose thickness is too thin to be resolved by our current surface wave analysis.
Matching Lithosphere velocity changes to the GOCE gravity signal
NASA Astrophysics Data System (ADS)
Braitenberg, Carla
2016-07-01
Authors: Carla Braitenberg, Patrizia Mariani, Alberto Pastorutti Department of Mathematics and Geosciences, University of Trieste Via Weiss 1, 34100 Trieste Seismic tomography models result in 3D velocity models of lithosphere and sublithospheric mantle, which are due to mineralogic compositional changes and variations in the thermal gradient. The assignment of density is non-univocal and can lead to inverted density changes with respect to velocity changes, depending on composition and temperature. Velocity changes due to temperature result in a proportional density change, whereas changes due to compositional changes and age of the lithosphere can lead to density changes of inverted sign. The relation between velocity and density implies changes in the lithosphere rigidity. We analyze the GOCE gradient fields and the velocity models jointly, making simulations on thermal and compositional density changes, using the velocity models as constraint on lithosphere geometry. The correlations are enhanced by applying geodynamic plate reconstructions to the GOCE gravity field and the tomography models which places today's observed fields at the Gondwana pre-breakup position. We find that the lithosphere geometry is a controlling factor on the overlying geologic elements, defining the regions where rifting and collision alternate and repeat through time. The study is carried out globally, with focus on the conjugate margins of the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105---- Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th International GOCE User Workshop, 25 - 28 November 2014.---- Braitenberg, C. (2015). Exploration of tectonic structures with GOCE in Africa and across-continents. Int. J.Appl. Earth Observ. Geoinf. 35, 88-95. http://dx.doi.org/10.1016/j.jag.2014.01.013------ Braitenberg, C. (2015). A grip on geological units with GOCE, IAG Symp. 141
NASA Astrophysics Data System (ADS)
Munzarova, Helena; Plomerova, Jaroslava; Kissling, Edi; Vecsey, Ludek; Babuska, Vladislav
2017-04-01
Seismological investigations of the continental mantle lithosphere, particularly its anisotropic structure, advance our understanding of plate tectonics and formation of continents. Orientation of the anisotropic fabrics reflects stress fields during the lithosphere origin and its later deformations. To contribute to studies of the large-scale upper-mantle anisotropy, we have developed code AniTomo for regional anisotropic tomography. AniTomo allows a simultaneous inversion of relative travel time residuals of teleseismic P waves for 3D distribution of isotropic-velocity perturbations and anisotropy in the upper mantle. Weak hexagonal anisotropy with symmetry axis oriented generally in 3D is assumed. The code was successfully tested on a large series of synthetic datasets and synthetic structures. In this contribution we present results of the first application of novel code AniTomo to real data, i.e., relative travel-time residuals of teleseismic P waves recorded during passive seismic experiment LAPNET in the northern Fennoscandia between 2007 and 2009. The region of Fennoscandia is a suitable choice for the first application of the new code. This Precambrian region is tectonically stable and has a thick anisotropic mantle lithosphere (Plomerova and Babuska, Lithos 2010) without significant thermal heterogeneities. In the resulting anisotropic model of the upper mantle beneath the northern Fennoscandia, the strongest anisotropy and the largest velocity perturbations concentrate in the mantle lithosphere. We delimit regions of laterally and vertically consistent anisotropy in the mantle-lithospheric part of the model. In general, the identified anisotropic regions correspond to domains detected by joint interpretation of lateral variations of the P- and SKS-wave anisotropic parameters (Plomerova et al., Solid Earth 2011). Particularly, the mantle lithosphere in the western part of the volume studied exhibits a distinct and uniform fabric that is sharply separated from the surrounding regions. The eastern boundary of this region gradually shifts westward with increasing depth in the tomographic model. We connect the retrieved domain-like anisotropic structure of the mantle lithosphere in the northern Fennoscandia with preserved fossil fabrics of the Archean micro-plates, accreted during the Precambrian orogenic processes.
Lithospheric Deformation Along the Southern and Western Suture Zones of the Wyoming Province
NASA Astrophysics Data System (ADS)
Nuyen, C.; Porritt, R. W.; O'Driscoll, L.
2014-12-01
The Wyoming Province is an Archean craton that played an early role in the construction and growth of the North American continent. This region, which encompasses the majority of modern day Wyoming and southern Montana, initially collided with other Archean blocks in the Paleoproterozoic (2.0-1.8 Ga), creating the Canadian Shield. From 1.8-1.68 Ga, the Yavapai Province crashed into the Wyoming Province, suturing the two together. The accretion of the Yavapai Province gave way to the Cheyenne Belt, a deformational zone that exists along the southern border of the Wyoming Province where earlier studies have found evidence for crustal imbrication and double a Moho. Current deformation within the Wyoming province is due to its interaction with the Yellowstone Hotspot, which is currently located in the northwest portion of the region. This study images the LAB along the western and southern borders of the Wyoming Province in order to understand how the region's Archean lithosphere has responded to deformation over time. These results shed light on the inherent strength of Archean cratonic lithosphere in general. We employ two methods for this study: common conversion point (CCP) stacking of S to P receiver functions and teleseismic and ambient Rayleigh wave dispersion. The former is used to image the LAB structure while the latter is used to create a velocity gradient for the region. Results from both of the methods reveal a notably shallower LAB depth to the west of the boundary. The shallower LAB west of the Wyoming Province is interpreted to be a result of lithospheric thinning due to the region's interaction with the Yellowstone Hotspot and post-Laramide deformation and extension of the western United States. We interpret the deeper LAB east of the boundary to be evidence for the Wyoming Province's resistance to lithospheric deformation from the hotspot and tectonic processes. CCP images across the Cheyenne Belt also reveal a shallower LAB under the western perimeter of the belt. We believe that this is a result of the LAB jumping up to a mid-lithospheric discontinuity (MLD) as the less stable lower lithosphere was thinned or removed. This same MLD appears above the intact LAB in the eastern portion of the Cheyenne Belt. This suggests that the western end of the Cheyenne Belt has undergone more deformation over time than the eastern end.
Numerical modeling of continental lithospheric weak zone over plume
NASA Astrophysics Data System (ADS)
Perepechko, Y. V.; Sorokin, K. E.
2011-12-01
The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of the weakened area with a small decrease in porosity occurs due to the increase of inelastic stresses. The longitudinal scale of the structure remain unchanged. The evolution of intraplate magmatic systems associated with weakened zones is accompanied by the formation of intermediate intracrustal magma chambers. This work was financially supported by the project #24.1.2, the program of RAS #24.
NASA Astrophysics Data System (ADS)
Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.
2006-12-01
Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens, Pannonian Basin and Massif Central) attributed to the presence of tomographically imaged plumes. This study has elucidated the memory of the present-days Europeans lithosphere induced by compositional and thermal heterogeneities. The resulting lateral strength variations has a clear signature of the pst lithospheres polyphase deformation and also entails active tectonics, tectonically induced topography and surface processes.
NASA Astrophysics Data System (ADS)
Motavallianbaran, S.; Zeyen, H. J.; Brunet, M.; Ardestani, V. E.
2010-12-01
The tectonic evolution of Alborz Mountains (northern Iran) and the South Caspian Basin as well as its transition into the Scythian and Turan platforms are yet an unsolved and debated problem. Using gravity, geoid, topography and surface heat flow data, we have modeled the density and temperature distribution in the lithosphere along three profiles crossing Iran in SW-NE direction from the Arabian foreland in the SW to the South Caspian Basin and the Turan Platform to the NE. We found thin lithosphere (100-120 km) underneath Central Iran, whereas thick lithosphere (up to 260 km), is found underneath Arabia, the South Caspian Basin and the Turan Platform. Crustal thickening is found under the Zagros and Alborz Mountains (up to 58 km) and under the Kopet-Dagh Mountains (48 km), whereas the thin crust under the southern Caspian Sea is interpreted as oceanic crust. Modeling result of Profile I is shown below with the crust in gray scale (darker gray: higher density) and the lithospheric mantle with color-coded temperatures. Since some previous studies argued for the absence of a root under the Alborz, we tested different models to see whether it is possible to explain the data without a root beneath the Alborz and finally we found that it is impossible to fit the calculated data to the measured ones with a geologically reasonable model. Below the South Caspian Sea, the form of the crust-mantle interface and the base of the lithosphere indicate a subduction of the South Caspian block towards the N-NW. Further east, under the Kopet-Dagh, no evidence for active subduction is visible. Based on the temperature distribution, we calculated the vertically integrated rock rigidity along the profiles. It shows that a rheologically very strong South Caspian block is surrounded by weaker continental lithosphere which may explain the rigid-block subduction of the South Caspian block on the one hand and internal deformation of the lithosphere under the Kopet-Dagh on the other hand.
NASA Astrophysics Data System (ADS)
Heit, B.; Yuan, X.; Bianchi, M.; Jakovlev, A.; Kumar, P.; Kay, S. M.; Sandvol, E. A.; Alonso, R.; Coira, B.; Comte, D.; Brown, L. D.; Kind, R.
2011-12-01
We present here the results obtained using the data form our passive seismic array in the southern Puna plateau between 25°S to 28°S latitude in Argentina and Chile. In first instance we have been able to calculate P and S receiver functions in order to investigate the Moho thickness and other seismic discontinuities in the study area. The RF data shows that the northern Puna plateau has a thicker crust and that the Moho topography is more irregular along strike. The seismic structure and thickness of the continental crust and the lithospheric mantle beneath the southern Puna plateau reveals that the LAB is deeper to the north of the array suggesting lithospheric removal towards the south. Later we performed a joint inversion of teleseismic and regional tomographic data in order to study the distribution of velocity anomalies that could help us to better understand the evolution of the Andean elevated plateau and the role of lithosphere-asthenosphere interactions in this region. Low velocities are observed in correlation with young volcanic centers (e.g. Ojos del Salado, Cerro Blanco, Galan) and agree very well with the position of crustal lineaments in the region. This is suggesting a close relationship between magmatism and lithospheric structures at crustal scale coniciding with the presence of hot asthenospheric material at the base of the crust probably induced by lithospheric foundering.
NASA Astrophysics Data System (ADS)
Bhanot, K. K.; Downes, H.; Petrone, C. M.; Humphreys-Williams, E.
2017-04-01
Spinel pyroxene-clusters, which are intergrowths of spinel, orthopyroxene and clinopyroxene in mantle xenoliths, have been investigated through the use of micro-CT (μ-CT) in this study. Samples have been studied from two different tectonic settings: (1) the northern Massif Central, France, an uplifted and rifted plateau on continental lithosphere and (2) Lanzarote in the Canary Islands, an intraplate volcanic island on old oceanic lithosphere. μ-CT analysis of samples from both locations has revealed a range of spinel textures from small < 2 mm microcrystals which can be either spatially concentrated or distributed more evenly throughout the rock with a lineation, to large 4-12 mm individual clusters with ellipsoidal complex vermicular textures in random orientation. Microprobe analyses of pyroxenes inside and outside the clusters show broadly similar compositions. Spinel-pyroxene clusters are the result of a transition of shallow lithospheric mantle from the garnet stability field to the spinel stability field. Both the northern Massif Central and Lanzarote are regions that have experienced significant lithospheric thinning. This process provides a mechanism where the sub-solidus reaction of olivine + garnet = orthopyroxene + clinopyroxene + spinel is satisfied by providing a pathway from garnet peridotite to spinel peridotite. We predict that such textures would only occur in the mantle beneath regions that show evidence of thinning of the lithospheric mantle. Metasomatic reactions are seen around spinel-pyroxene clusters in some Lanzarote xenoliths, so metasomatism post-dated cluster formation.
Neotectonic Deformation in Central Eurasia: A Geodynamic Model Approach
NASA Astrophysics Data System (ADS)
Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume; Bird, Peter
2017-11-01
Central Eurasia hosts wide orogenic belts of collision between India and Arabia with Eurasia, with diffuse or localized deformation occurring up to hundreds of kilometers from the primary plate boundaries. Although numerous studies have investigated the neotectonic deformation in central Eurasia, most of them have focused on limited segments of the orogenic systems. Here we explore the neotectonic deformation of all of central Eurasia, including both collision zones and the links between them. We use a thin-spherical sheet approach in which lithosphere strength is calculated from lithosphere structure and its thermal regime. We investigate the contributions of variations in lithospheric structure, rheology, boundary conditions, and fault friction coefficients on the predicted velocity and stress fields. Results (deformation pattern, surface velocities, tectonic stresses, and slip rates on faults) are constrained by independent observations of tectonic regime, GPS, and stress data. Our model predictions reproduce the counterclockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults in the Tibetan Plateau, a weaker lithosphere is required, provided by a change in the rheological parameters. The southward movement of the SE Tibetan Plateau can be explained by the combined effects of the Sumatra trench retreat, a thinner lithospheric mantle, and strik-slip faults in the region. This study offers a comprehensive model for regions with little or no data coverage, like the Arabia-India intercollision zone, where the surface velocity is northward showing no deflection related to Arabia and India indentations.
Preferential rifting of continents - A source of displaced terranes
NASA Technical Reports Server (NTRS)
Vink, G. E.; Morgan, W. J.; Zhao, W.-L.
1984-01-01
Lithospheric rifting, while prevalent in the continents, rarely occurs in oceanic regions. To explain this preferential rifting of continents, the total strength of different lithospheres is compared by integrating the limits of lithospheric stress with depth. Comparisons of total strength indicate that continental lithosphere is weaker than oceanic lithosphere by about a factor of three. Also, a thickened crust can halve the total strength of normal continental lithosphere. Because the weakest area acts as a stress guide, any rifting close to an ocean-continent boundary would prefer a continental pathway. This results in the formation of small continental fragments or microplates that, once accreted back to a continent during subduction, are seen as displaced terranes. In addition, the large crustal thicknesses associated with suture zones would make such areas likely locations for future rifting episodes. This results in the tendency of new oceans to open along the suture where a former ocean had closed.
Magma explains low estimates of lithospheric strength based on flexure of ocean island loads
NASA Astrophysics Data System (ADS)
Buck, W. Roger; Lavier, Luc L.; Choi, Eunseo
2015-04-01
One of the best ways to constrain the strength of the Earth's lithosphere is to measure the deformation caused by large, well-defined loads. The largest, simple vertical load is that of the Hawaiian volcanic island chain. An impressively detailed recent analysis of the 3D response to that load by Zhong and Watts (2013) considers the depth range of seismicity below Hawaii and the seismically determined geometry of lithospheric deflection. These authors find that the friction coefficient for the lithosphere must be in the normal range measured for rocks, but conclude that the ductile flow strength has to be far weaker than laboratory measurements suggest. Specifically, Zhong and Watts (2013) find that stress differences in the mantle lithosphere below the island chain are less than about 200 MPa. Standard rheologic models suggest that for the ~50 km thick lithosphere inferred to exist below Hawaii yielding will occur at stress differences of about 1 GPa. Here we suggest that magmatic accommodation of flexural extension may explain Hawaiian lithospheric deflection even with standard mantle flow laws. Flexural stresses are extensional in the deeper part of the lithosphere below a linear island load (i.e. horizontal stresses orthogonal to the line load are lower than vertical stresses). Magma can accommodate lithospheric extension at smaller stress differences than brittle and ductile rock yielding. Dikes opening parallel to an island chain would allow easier downflexing than a continuous plate, but wound not produce a freely broken plate. The extensional stress needed to open dikes at depth depends on the density contrast between magma and lithosphere, assuming magma has an open pathway to the surface. For a uniform lithospheric density ρL and magma density ρM the stress difference to allow dikes to accommodate extension is: Δσxx (z) = g z (ρM - gρL), where g is the acceleration of gravity and z is depth below the surface. For reasonable density values (i.e. ρL = 3300 Kg/m3 and ρM = 2800 kg/m3) this 'magmatic yield stress' is 250 MPa at 50 km depth. Dikes accommodating flexing below Hawaii would be at most about 2 km wide. This amount of intrusion would significantly heat the lithosphere, leading to lower stress differences below the islands. Since Hawaii marks the highest magma flux on Earth today it seems that 'magma assisted flexure' offers a viable alternative to extremely weak lithospheric rheology as an explanation for low stresses below this load.
Metasomatism and the Weakening of Cratons: A Mechanism to Rift Cratons
NASA Astrophysics Data System (ADS)
Wenker, Stefanie; Beaumont, Christopher
2016-04-01
The preservation of cratons is a demonstration of their strength and resistance to deformation. However, several cratons are rifting now (e.g. Tanzania and North China Craton) or have rifted in the past (e.g. North Atlantic Craton). To explain this paradox, we suggest that widespread metasomatism of the originally cold depleted dehydrated craton mantle lithosphere root can act as a potential weakening mechanism. This process, particularly melt metasomatism, increases root density through a melt-peridotite reaction, and reduces root viscosity by increasing the temperature and rehydrating the cratonic mantle lithosphere. Using 2D numerical models, we model silicate-melt metasomatism and rehydration of cold cratonic mantle lithosphere that is positioned beside standard Phanerozoic lithosphere. The models are designed to investigate when a craton is sufficiently weakened to undergo rifting and is no longer protected by the initially weaker adjacent standard Phanerozoic lithosphere. Melt is added to specified layers in the cratonic mantle lithosphere at a uniform volumetric rate determined by the duration of metasomatism (3 Myr, 10 Myr or 30 Myr), until a total of ~30% by volume of melt has been added. During melt addition heat and mass are properly conserved and the density and volume increase by the respective amounts required by the reaction with the peridotite. No extensional boundary conditions are applied to the models during the metasomatism process. As expected, significant refertilization leads to removal and thinning of progressively more gravitationally unstable cratonic mantle lithosphere. We show that the duration of metasomatism dictates the final temperature in the cratonic upper mantle lithosphere. Consequently, when extensional boundary conditions are applied in our rifting tests in most cases the Phanerozoic lithosphere rifts. The craton rifts only in the models with the hottest cratonic upper mantle lithosphere. Our results indicate rifting of cratons depends on the timing of extension, with respect to metasomatism. The key effect is the associated increase in temperature which must have time to reach peak values in the initially cold and strongest, uppermost mantle lithosphere. However, it remains true that the model cratons mostly remain strong and only rift when subjected to intensive metasomatism. This may explain why so many cratons have survived and only a few have rifted. An additional effect is that the craton surface subsides isostatically to balance the increasing density of craton mantle lithosphere where it is moderately metasomatized. We suggest that this is the mechanism that forms intracratonic basins. If correct, subsidence and subsequent uplift of intracratonic basins, and cratonic rifting constitute evidence of progressive metasomatism of cratonic mantle lithosphere.
An integrated geophysical study of north African and Mediterranean lithospheric structure
NASA Astrophysics Data System (ADS)
Dial, Paul Joseph
1998-07-01
This dissertation utilizes gravity and seismic waveform modeling techniques to: (1) determine models of lithospheric structure across northern African through gravity modeling and (2) determine lithospheric and crustal structure and seismic wave propagation characteristics across northern Africa and the Mediterranean region. The purpose of the gravity investigation was to construct models of lithospheric structure across northern Africa through the analysis of gravity data constrained by previous geological and geophysical studies. Three lithospheric models were constructed from Bouguer gravity data using computer modeling, and the gravity data was wavelength-filtered to investigate the relative depth and extent of the structures associated with the major anomalies. In the Atlas Mountains area, the resulting earth models showed slightly greater crustal thickness than those of previous studies if a low density mantle region is not included in the models. However, if a low density mantle region (density = 3.25 g/cm3) was included beneath the Atlas, the earth models showed little crustal thickening (38 km), in accord with previous seismic studies. The second portion of the research consisted of seismic waveform modeling of regional and teleseismic events to determine crustal and lithospheric structure across northern Africa and the Mediterranean. A total of 174 seismograms (145 at regional distances (200--1400 km) and 29 with epicentral distances exceeding 1900 km) were modeled using 1-D velocity models and a reflectivity code. At regional distances from four stations surrounding the western Mediterranean basin (MAL, TOL, PTO and AQU) and one station near the Red Sea (HLW), 1-D velocity models can satisfactorily model the relative amplitudes of both the Pnl and surface wave portions of the seismograms. Modeling of propagation paths greater than 1900 km was also conducted across northern Africa and the Mediterranean. The results indicate that the S-wave velocity model of Corchete et al. (1995) is more appropriate for the Iberian Peninsula, southwestern Mediterranean basin and northwest African coast than the other models tested. This model was better able to predict both the timing and amplitudes of the observed Sn and surface wave components on the observed seismograms. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Moorkamp, M.; Jones, A. G.; Eaton, D. W.
2007-08-01
Joint inversion of different kinds of geophysical data has the potential to improve model resolution, under the assumption that the different observations are sensitive to the same subsurface features. Here, we examine the compatibility of P-wave teleseismic receiver functions and long-period magnetotelluric (MT) observations, using joint inversion, to infer one-dimensional lithospheric structure. We apply a genetic algorithm to invert teleseismic and MT data from the Slave craton; a region where previous independent analyses of these data have indicated correlated layering of the lithosphere. Examination of model resolution and parameter trade-off suggests that the main features of this area, the Moho, Central Slave Mantle Conductor and the Lithosphere-Asthenosphere boundary, are sensed to varying degrees by both methods. Thus, joint inversion of these two complementary data sets can be used to construct improved models of the lithosphere. Further studies will be needed to assess whether the approach can be applied globally.
Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere
Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.
1996-01-01
Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge tra
Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere
NASA Astrophysics Data System (ADS)
Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.
1996-05-01
Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge transforms to denser spinel, favoring the subsequent sinking of the slab into the lower mantle.
NASA Astrophysics Data System (ADS)
Wang, Gang; Wei, Wenbo; Ye, Gaofeng; Jin, Sheng; Jing, Jianen; Zhang, Letian; Dong, Hao; Xie, Chengliang; Omisore, Busayo O.; Guo, Zeqiu
2017-09-01
The approximately north-south trending Cenozoic Yadong-Gulu rift (YGR) in the eastern Lhasa block is an ideal location to investigate the extensional kinematic mechanism of the upper crust and the deformation characteristics of the Indian lithospheric slab in southern Tibet. The magnetotelluric (MT) method has been widely used in probing subsurface structures at lithospheric scale and is sensitive to high electrically conductive body (conductor). A three-dimensional (3-D) inversion of MT data was conducted to derive the east-west electrical structures across the northern segment of the YGR. The result reveals that the conductors in the middle crust are not continuous in the east-west direction. The deep conductor underneath the YGR is interpreted to result from the tearing of the Indian lithospheric slab. The upper crust to the east of the YGR is significantly intruded by underlying conductors. Based on the features of the 3-D inversion result from this study and other geophysical observations, the formation of the YGR is most likely caused by tearing of the Indian lithospheric slab through the pull of mid-lower crustal conductors that have locally weak strength beneath the YGR.
The delineation and interpretation of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1987-01-01
The geoid and topographic fields of the central Pacific were delineated and shown to correlate closely at intermediate wavelengths (500 to 2500 km). The associated admittance shows that anomalies having wavelengths less than about 1000 km are probably supported by the elastic strength of the lithosphere. Larger wavelength anomalies are due to dynamic effects in the sublithosphere. Direct modeling of small scale convection in the asthenosphere shows that the amplitudes of observed geoid and topographic anomalies can be independently matched, but that the observed admittance cannot. Only by imposing an initial regional variation in the thermal regime is it possible to match the admittance. It is proposed that this variation may be due to differences in the onset time of convection beneath the lithosphere of different ages. That is, convection beneath thickening lithosphere is strongly dependent on the rate of thickening (V) relative to the rise time for convection. The critical Rayleigh number contains the length scale K/V, where K is thermal diffusivity. Young, fast growing lithosphere stabilizes the underlying asthenosphere unless it has an unusually low viscosity. Lithosphere of different age, separated by fracture zones, will go unstable at different times, producing regional horizontal temperature gradient that may strongly influence convection. Laboratory and numerical experiments are proposed to study this form of convection and its influence on the geoid.
NASA Astrophysics Data System (ADS)
Dunn, R. A.; Conder, J. A.; Canales, J. P.
2014-12-01
Marine controlled-source seismic tomography experiments now utilize 50+ ocean-bottom seismographs and source grids consisting of many tens of seismic lines with <500 m shot spacing. These dense experiments focus on the upper 10 km of the lithosphere over areas approaching 9000 sq-km. Because of the dense sampling and large azimuthal coverage of ray paths (200,000+ travel time measurements possible), it is now feasible to solve for 3-D images of P-wave azimuthal anisotropy with resolving lengths approaching 1km. Recent examples include the L-SCAN and MARINER experiments, performed at the Eastern Lau Spreading Center and Mid-Atlantic Ridge (36N), respectively. In each case, background anisotropy of ~4% is found in the upper 3-4 km of lithosphere and is consistent with pervasive stress-aligned cracks and microcracks. The fast axes are generally oriented parallel to the trend of the spreading center, as expected for cracks that form in association with seafloor spreading. Three-dimensional images of anisotropy magnitude and orientation reveal variations interpreted as arising from changes in the ambient stress field. Near the ends of ridge segments, where the ridge axis jumps from one spreading center to the next, anisotropy is high with orientations that are out of alignment relative to the background trend. This agrees with numerical models and seafloor morphology that suggest tensile stress concentration and brittle crack formation in these areas. Anisotropy also increases in areas along the ridges where the underlying magma supply and hydrothermal output are greater. This is opposite the trend expected if simple tectonic stress models govern anisotropy. Increased hydrothermal activity, due to increased magma supply, can explain higher anisotropy via increased pore pressure and hydrofracturing. These studies provide the first evidence that images of seismic anisotropy can be used to map variations in hydrologic activity along the crests of oceanic spreading centers.
Teleseismic P-wave tomography of the Sunda-Banda Arc subduction zone
NASA Astrophysics Data System (ADS)
Harris, C. W.; Miller, M. S.; Widiyantoro, S.; Supendi, P.; O'Driscoll, L.; Roosmawati, N.; Porritt, R.
2017-12-01
The Sunda-Banda Arc is the site of multiple ongoing tectonic deformation processes and is perhaps the best example of the transition from subduction of oceanic lithosphere to an active arc-continent collision. Investigating the mantle structure that has resulted from the collision of continental Australia, as well as the concurrent phenomena of continental subduction, slab-rollback, lithospheric tearing, and subduction polarity reversal is possible through seismic tomography. While both regional scale and global tomographic models have previously been constructed to study the tectonics this region, here we use 250 seismic stations that span the length of this convergent margin to invert for P-wave velocity perturbations in the upper mantle. We combine data from a temporary deployment of 30 broadband instruments as part of the NSF-funded Banda Arc Project, along with data from permanent broadband stations maintained by the Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) to image mantle structure, in particular the subducted Indo-Australian plate. The BMKG dataset spans 2009-2017 and includes >200 broadband seismometers. The Banda Arc array (network YS) adds coverage and resolution to southeastern Indonesia and Timor-Leste, where few permanent seismometers are located but the Australian continent-Banda Arc collision is most advanced. The preliminary model was computed using 50,000 teleseismic P-wave travel-time residuals and 3D finite frequency sensitivity kernels. Results from the inversion of the combined dataset are presented as well as resolution tests to assess the quality of the model. The velocity model shows an arcuate Sunda-Banda slab with morphological changes along strike that correlate with the tectonic collision. The model also features the double-sided Molucca Sea slab and regions of high velocity below the bottom of the transition zone. The resolution added by the targeted USC deployment is clear when comparing models that use only BMKG data to models that incorporate the YS network as well.
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thinning of the Earth's lithosphere by heat advected to its base is a possible mechanism for continental rifting and continental and oceanic mid-plate volcanism. It might also account for continental rifting-like processes and volcanism on Venus and Mars. Earth's continental lithosphere can be thinned to the crust in a few tens of million years by heat advected at a rate of 5 to 10 times the normal basal heat flux. This much heat is easily carried to the lithosphere by mantle plumes. The continent is not required to rest over the mantle hot spot but may move at tens of millimeters per year. Because of the constant level of crustal radioactive heat production, the ratio of the final to the initial surface heat flow increases much less than the ratio of the final to initial basal heat flow. For large increases in asthenospheric heat flow, the lithosphere is almost thinned to the crust before any significant change in surface heat flow occurs. Uplift due to thermal expansion upon thinning is a few kilometers. The oceanic lithosphere can be thinned to the crust in less than 10 million years if the heat advection is at a rate around 5 or more times the basal heat flow into 100 Ma old lithosphere. Uplift upon thinning can compensate the subsidence of spreading and cooling lithosphere.
Craton Heterogeneity in the South American Lithosphere
NASA Astrophysics Data System (ADS)
Lloyd, S.; Van der Lee, S.; Assumpcao, M.; Feng, M.; Franca, G. S.
2012-04-01
We investigate structure of the lithosphere beneath South America using receiver functions, surface wave dispersion analysis, and seismic tomography. The data used include recordings from 20 temporary broadband seismic stations deployed across eastern Brazil (BLSP02) and from the Chile Ridge Subduction Project seismic array in southern Chile (CRSP). By jointly inverting Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh wave forms we obtain a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a correlation between crustal thickness and geologic age can be derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. We also invert for S velocity structure and estimate the depth of the lithosphere-asthenosphere boundary (LAB) in Precambrian South America. The new model reveals a relatively thin lithosphere throughout most of Precambrian South America (< 140 km). Comparing LAB depth with lithospheric age shows they are overall positively correlated, whereby the thickest lithosphere occurs in the relatively small Saõ Francisco craton (200 km). However, within the larger Amazonian craton the younger lithosphere is thicker, indicating that locally even larger cratons are not protected from erosion or reworking of the lithosphere.
NASA Astrophysics Data System (ADS)
Murphy, B. S.; Egbert, G. D.
2016-12-01
We use newly acquired long-period magnetotelluric data to examine lithospheric structure beneath the modern Southern Appalachian Mountains and the adjacent Piedmont. The New York-Alabama Lineament is clearly visible both in inverse models and in the data themselves as a major Appalachian-parallel, mid- to lower-crustal conductive feature. This observation supports geologically-based interpretations of the NY-AL Lineament as a major Grenville suture. We also discern several other suture zones in our inverse models, including the Central Piedmont Suture. Interestingly, we do not observe any geoelectric signature of the Suwannee Suture. Most strikingly, we find a zone of exceptionally high resistivity (>1000 μm) that extends to a depth of more than 200 km beneath the modern Piedmont. This resistive block abuts more conductive lithosphere ( 100 μm, as would be expected for Phanerozoic lithosphere) to the northwest. The boundary between these two distinct domains coincides with the modern Appalachian topographic escarpment to within our resolution. The high resistivity values would seem to require completely dry, highly depleted lithosphere at anomalously cold temperatures; however, corresponding seismically fast lithospheric mantle that would be expected for such a structure has not been observed in any previous studies. The exact nature of this feature therefore remains uncertain at present. Regardless, as it is a persistent feature in inversions and it is also readily apparent in the impedance data, this geoelectric structure likely holds important implications for the past, present, and future tectonic evolution of the Southeastern United States.
Lithospheric Structure In Asia Based On Pp-, P-waves Data
NASA Astrophysics Data System (ADS)
Bushenkova, N.
There is the RR-R method of tomographic inversion, which is based on joint use of teleseismic P or S refracted rays and corresponding PP or SS rays with bounce points located within a study region. This scheme allows imaging the deep seismic structure beneath "blank" areas where there are neither recording stations nor earthquakes. Uti- lization of differential travel times makes it possible to avoid the difficulty of source and station corrections, which cause problems in teleseismic tomography. The RR-R scheme has been applied to more than 10000 ray pairs from the ISC database to in- vestigate a large region from the North Arctic Ocean to the northern part of China and Mongolia. Velocity anomalies were computed in grid nodes distributed in the study 3D area according to ray density. Relatively high velocities beneath the Siberian cra- ton (positive velocity anomalies under 3 % ) observed down to the depth of 350 km are consistent with the geothermal model of Artemieva and Mooney (2001) and with global seismic tomography and may correspond to traces of thick lithosphere. A local low-velocity anomaly is imaged in the northern part of the Siberian craton at sub- lithospheric depths below 300 km. Its centre coincides with the swell of the contem- porary Putorana plateau. This isolated anomaly may be accounted for by the presence of a limited volume of hot and light mantle material that, by its buoyancy, provides a dynamic uplift of the surface. Upper mantle beneath West Siberia is dominated by low velocities which can be interpreted as a result of relatively thin lithosphere. The veloc- ity jump at the base of the lithosphere (~150 km) is smooth due to its essentially ther- mal nature. The velocity anomalies in the southern part of the study area have NW-SE trend, which corresponds to the strike of major lithospheric structures formed by suc- cessive accretion of terranes to the Siberian craton through the Paleozoic (Molnar and Tapponnier, 1975; Sengör et al., 1993; Dobretsov et al., 1996). Negative veloc- ity anomalies are related to the thin lithosphere of the Altai Mountains and the Hangai plateau (negative velocity anomalies under 3 % in the depth range 30 to 430 km). The low-velocity seismic anomaly beneath the eastern Hangai plateau can be interpreted as a mantle plume, which is consistent with other geophysical and geological data. The strong negative velocity anomaly beneath Altai reflects the present-day weak rhe- ology most likely related to conductive heating of the thinned continental lithosphere in the Late Cenozoic. The positive velocity anomaly beneath and the western Hangai plateau and Tuva corresponds to the Precambrian Mongolia-Tuva microcontinent.
NASA Astrophysics Data System (ADS)
Kapp, P. A.; Decelles, P. G.; Ding, L.; van Hinsbergen, D. J.
2010-12-01
The India-Asia collision, although profound, is only the most recent in a series of orogenic events that has modified the architecture of the Asian lithosphere. For instance, large parts of central Tibet (Lhasa and Qiangtang terranes) underwent >50% upper-crustal shortening, and likely substantial elevation gain, between Cretaceous and Eocene time in response to Lhasa - Qiangtang continental collision and Andean-style orogenesis along the southern margin of Asia. Findings by independent groups of Gangdese-arc-age detrital zircons in 52-50 Ma Tethyan Himalaya (TH) strata indicate that TH-Asia collision was ongoing by this time. This collision timing is consistent with multiple other, albeit less direct lines of evidence and suggests that a magmatic flare-up within the Gangdese arc (culminated at 52-51 Ma) occurred during subduction of TH lithosphere. Low-temperature thermochronologic data indicate that very low erosion rates, and likely plateau-like conditions considering the shortening history, were established in large parts of central Tibet at or by 50-45 Ma. The temporal-spatial distribution of subsequent shortening and exhumation is consistent with plateau growth northward and southward from central Tibet since the Eocene. The Cenozoic magmatic record of Tibet shows intriguing temporal-spatial patterns. Between 45 Ma and 30 Ma, volcanism swept >600 km northward from the Indus-Yarlung suture (IYS) and then back southward between 30 Ma and 25 Ma. These magmatic sweeps may have been produced by underthrusting and subsequent rollback of subducting TH lithosphere. Recent stratigraphic and structural studies suggest localized extension and elevation loss along the IYS at ~25 Ma, which is explainable in a slab rollback scenario, followed within a few million years by uplift back to near-modern elevations, perhaps in response to breakoff of TH lithosphere and northward underthrusting of Indian lithosphere. This hypothesis of TH - Indian lithosphere subduction can explain how ~2000 km of India-Asia convergence was accommodated south of the IYS since ~50 Ma (with the remaining ~1000 km accommodated by shortening of Asian lithosphere). Outstanding questions include: (1) What are the explanations for major, coeval geological changes in the Lhasa terrane, Gangdese forearc, IYS, and TH at 65-63 Ma, which have led some workers to argue for initiation of India-Asia collision at this time? (2) What was the nature of the subducted TH lithosphere and its former paleogeographic and tectonic relationships to Indian cratonic lithosphere? (3) Why has only <50% of the estimated 2000 km of post-50 Ma convergence south of the Indus-Yarlung suture been documented as shortening within the Tethyan-Himalayan thrust belts? (4) Why did Asian lithosphere in Pamir and Tibet behave so differently in response to collisional orogenesis?
Isostatic compensation of Ishtar Terra, Venus
NASA Astrophysics Data System (ADS)
Kucinskas, Algis B.; Turcotte, Donald L.; Arkani-Hamed, Jafar
We have used spherical harmonic representations of the Venus topography and geopotential, obtained from Magellan data, to evaluate isostatic support in several areas within the Ishtar Terra highlands, including the Lakshmi plateau, its surrounding mountain belts, namely Akna and Freyja, and Maxwell Montes, and the Fortuna Tessera province. We find that topography in Ishtar is largely isostatically compensated (>80%). Regional geoidtopography variations in the subregions can be explained by a combination of Airy (crustal thickening) and thermal (lithospheric thinning) mechanisms, provided Venus has a thick reference thermal lithosphere (~300-400 km). With the exception of eastern Fortuna, low elevation areas (h<3-4 km above the mean planetary radius, MPR) with large geoidtopography ratios (GTR) seem to be associated, to various degrees, with thermal isostasy, whereas the higher areas (h>4 km above MPR) with small GTRs are almost certainly Airy compensated via thickened crust. Relatively large (>60 km) total Airy crustal thicknesses obtained in the western Ishtar mountain belts, together with a probable basalt-eclogite phase change, suggest a possible silicic composition for these structures, provided they are older than ~25-50 Ma. Lakshmi Planum seems essentially thermally supported, with the thermal lithosphere thinned to ~100 km. We suggest, as one possibility, that the lithospheric thinning process under Lakshmi is delamination of a dense eclogite lower lithosphere layer into the mantle. The decrease in GTR observed in Ishtar between Lakshmi to the west (GTR ~20 m/km), Maxwell and west Fortuna (GTR~8 m/km), and eastern Fortuna (GTR~4 m/km) may correspond to a decay in thermal compensation attributed to lithospheric delamination, which would be fairly recent (~100 Ma) in Lakshmi, partially decayed in west Fortuna, and absent in east Fortuna, where a mostly Airy-supported topography is essentially relaxed with no thermal uplift. Alternatively, if surficial concentrations in radiogenic elements were prevalent throughout the crust, partial melting of a thickened crust could account for the thermal uplift in Lakshmi and west Fortuna. The zero-elevation basaltic crustal thickness H ~24 km obtained for the east Fortuna Tessera region may be representative of the ambient crustal thickness in the Venus lowlands. Our findings support multicomponent models for tectonic and volcanic activity in Ishtar. The thick ambient crust and thermal lithosphere implied by this study agree with observational constraints such as support of extreme elevations, large topographic slopes, unrelaxed craters, and the thick elastic lithosphere suggested by flexure studies. If the ambient thermal lithosphere on Venus were to be relatively thin (~100-200 km), with a cold mantle and radiogenic elements concentrated in the crust, then thermal evolution on Venus may be in quasi-steady state, with the geodynamic evolution in monotonic decline. However, if the ambient thermal lithosphere is very thick (~300-400 km), as suggested by our thermal model fits, then it is consistent with the predictions of strongly unsteady state thermal evolution models and an interior which is currently heating up. This would support the view that catastrophic resurfacing on Venus might be episodic.
Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets
NASA Astrophysics Data System (ADS)
Rogozhina, Irina; Vaughan, Alan
2014-05-01
Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central Greenland results from the remanent effects of an Early Cenozoic passage of the lithosphere above the Iceland mantle plume that is implicated in strong thermochemical erosion of the lithosphere and significant long-term effects on the present-day subglacial heat flow pattern and thermodynamic state of the Greenland ice sheet. These observations and our modeling results (Petrunin et al., 2013) show that the present-day thermal state of Greenland and Antarctic lithosphere cannot be well understood without taking into account a long-term tectonic history of these regions. The goal of the IceGeoHeat project is to combine existing independent geophysical data and innovative modeling approaches to comprehensively study the evolution and present state of the lithosphere in Greenland and Antarctica, and assess the role of geothermal heat flux in shaping the present-day ice sheet dynamics. This requires multiple collaborations involving experts across a range of disciplines. The project builds on the IceGeoHeat initiative formed in April 2012 and now including researchers from ten countries in the main core (MC) with expertise in numerical modeling and data assessment in geodynamics, geology, geothermics, cryosphere and (paleo-)climate. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.
NASA Astrophysics Data System (ADS)
O'Brien, E.
2017-12-01
We have conducted an integration study on the origin and evolution of the tectonics and volcanism of seafloor in the Western Pacific Ocean that took place during the Cretaceous Normal Superchron (CNS) where sparse data has so far precluded detailed investigation. We have compiled the latest satellite-based gravity, gravity gradient, and magnetic grids (EMAG2 v.3) for this region. These crustal-scale high-resolution grids suggest that the CNS seafloor contains fossilized lithospheric morphology possibly attributed to the interaction between Cretaceous supervolcanism activity and Mid-Cretaceous Pacific mid ocean ridge systems that have continuously expanded the Pacific Plate. We recognize previously identified fossilized microplates west of the Magellan Rise, short-lived abandoned propagating rifts and fracture zones, all of which show significant rotation of seafloor fabric. In addition to these large scale observations, we have also compiled marine geological information from previously drilled cores and new data from a Kongsberg Topas PS18 Parametric Sub-Bottom Profiler collected on a transect from Honolulu, Hawaii to Apra, Guam acquired during research cruise SKQ2014S2. In particular, the narrow beam and high bandwidth signal of the Topas PS18 sub-bottom profiler provides sonar data of the seabed with a resolution and depth penetration that is unprecedented compared with previously available surveys in the region. A preliminary assessment of this high resolution Topas data allows us to better characterize sub-seafloor sediment properties and identify features, including the Upper Transparent Layer with identifiable pelagic clay and porcelanite-chert reflectors as well as tectonic features such as the westernmost tip of the Waghenaer Fracture Zone.
NASA Astrophysics Data System (ADS)
Lamoureux, J. M.; Menke, W. H.
2017-12-01
The Northern Appalachian Anomaly (NAA) is a patch of the asthenosphere in southern New England that is unusually hot given its passive margin setting. Previous research has detected large seismic wave delays that imply a temperature of 770 deg C higher than the mantle below the adjacent craton at the same depth. A key outstanding issue is whether the NAA interacts with the lithosphere above it (e.g. by heating it up). We study this issue using Po and So waves from two magnitude >5.5 earthquakes near the Puerto Rico Trench. These waves, propagating in the cold oceanic lithosphere at near Moho speeds, deliver high frequency energy to the shallow continental lithosphere. We hypothesized that: (1) once within the continental lithosphere, Po and So experience attenuation with distance that can be quantified by a quality factor Q, and that (2) any heating of the lithosphere above the NAA would lead to a higher Q than in regions further north or south along the continental margin. Corresponding Po and So velocities would also be lower. The decay rates of Po and So are estimated using least-squares applied to RMS coda amplitudes measured from digital seismograms from stations in northeastern North America, corrected for instrument response. A roughly log-linear decrease in amplitude is observed, corresponding to P and S wave quality factors in the range of 394-1500 and 727-6847, respectively. Measurements are made for four margin-perpendicular geographical bands, with one band overlapping the NAA. We detect no effect on these amplitudes by the NAA; 95% confidence bounds overlap in every case; Furthermore, all quality factors are much higher than the 100 predicted by lab experiments for near-solidus mantle rocks. These results suggest that the NAA is not causing significant heating of the lithosphere above it. The shear velocities, however, are about 10% slower above the NAA - an effect that may be fossil, reflecting processes that occurred millions of years ago.
NASA Astrophysics Data System (ADS)
HéBert, HéLèNe; Deplus, Christine; Huchon, Philippe; Khanbari, Khaled; Audin, Laurence
2001-11-01
The Aden spreading ridge (Somalia/Arabia plate boundary) does not connect directly to the Red Sea spreading ridge. It propagates toward the East African Rift through the Afar depression, where the presence of a hot spot has been postulated from seismological and geochemical evidence. The spreading direction (N37°E) is highly oblique to the overall trend (N90°E) of the ridge. We present and interpret new geophysical data gathered during the Tadjouraden cruise (R/V L'Atalante, 1995) in the Gulf of Aden west of 46°E. These data allow us to study the propagation of the ridge toward the Afar and to discuss the processes of the seafloor spreading initiation. We determine the lithospheric structure of the ridge using gravity data gathered during the cruise with the constraint of available refraction data. A striking Bouguer anomaly gradient together with the identification of magnetic anomalies defines the geographical extent of oceanic crust. The inversion of the Bouguer anomaly is performed in terms of variations of crustal thickness only and then discussed with respect to the expected thermal structure of the mantle lithosphere, which should depend not only on the seafloor spreading but also on the hot spot beneath East Africa. Our results allow us to define three distinct lithospheric domains in the western Gulf of Aden. East of 44°45'E the lithosphere displays an oceanic character (thermal subsidence recorded for the last 10 Ma and constant crustal thickness). Between 43°30'E and 44°10'E the lithosphere is of continental type but locally thinned beneath the axial valley. The central domain defined between 44°10'E and 44°45'E is characterized by a transitional lithosphere which can be seen as a stretched continental crust where thick blocks are mixed with thinned crust; it displays en echelon basins that are better interpreted as extension cells rather than accretion cells.
NASA Astrophysics Data System (ADS)
Yin, Y.; Jin, S.; Wei, W.; Ye, G.; Dong, H.; Zhang, L.
2017-12-01
The Shanxi Rift being located within the interior of the North China Craton and far from any plate boundaries has undergone dramatic deformation and seismicity during the Cenozoic. In this study, we build 3-D lithospheric resistivity model by MT array data, across the Linfen Basin which is the most active segment of this intraplate rift. Accordingly, combined with previous rock physics experimental results, we estimate the fluid contents of lower crustal granulites and upper mantle peridotites and thereby the rough distribution of lithospheric rheological strength. On the two sides of Linfen Basin, lithosphere beneath the Precambrian terranes are of high strength. By contrast, a high-conductivity nearly upright lithosphere weak zone occurs beneath the eastern margin of the Linfen Basin and appears to be connected to the high-conductivity and therefore weak lower crust just beneath the basin, probably indicating a structure of asthenospheric upwelling causing the lower crustal decoupling through lateral drag forces. The distribution of lithospheric weak zones, brittle faults, ductile shear zones and detachment structures determined from our resistivity model is in good agreement with the 8-My stage model of a previous numerical geodynamic simulation for continental rift evolution by reconstruction of the South Atlantic plate. Accordingly, we suggest that the lithospheric weak zone could be a preexisting Precambrian shear zone and has reactivated as an asthenospheric upwelling conduit under the far-field effects of Indo- Asian collision or Pacific Plate subduction since the late Mesozoic. This process could have caused the upper crustal extension and rifting through the stress regulation by the plastic lower crust, which could be the mechanism of rift formation. In summary, we suggest the Linfen segment of the Shanxi Rift, is a simple shear mode rift in the incipient stage of rift evolution, rather than a mature pure shear mode one as determined by precious seismic imaging.
NASA Astrophysics Data System (ADS)
Behn, M. D.; Conrad, C. P.; Silver, P. G.
2005-12-01
Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere viscosity. These models can be used to separate the contributions of asthenospheric flow and lithospheric fossil fabric in observations of continental anisotropy.
Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure
NASA Astrophysics Data System (ADS)
Pilet, S.; Abe, N.; Rochat, L.; Kaczmarek, M.-A.; Hirano, N.; Machida, S.; Buchs, D. M.; Baumgartner, P. O.; Müntener, O.
2016-12-01
Oceanic lithospheric mantle is generally interpreted as depleted mantle residue after mid-ocean ridge basalt extraction. Several models have suggested that metasomatic processes can refertilize portions of the lithospheric mantle before subduction. Here, we report mantle xenocrysts and xenoliths in petit-spot lavas that provide direct evidence that the lower oceanic lithosphere is affected by metasomatic processes. We find a chemical similarity between clinopyroxene observed in petit-spot mantle xenoliths and clinopyroxene from melt-metasomatized garnet or spinel peridotites, which are sampled by kimberlites and intracontinental basalts respectively. We suggest that extensional stresses in oceanic lithosphere, such as plate bending in front of subduction zones, allow low-degree melts from the seismic low-velocity zone to percolate, interact and weaken the oceanic lithospheric mantle. Thus, metasomatism is not limited to mantle upwelling zones such as mid-ocean ridges or mantle plumes, but could be initiated by tectonic processes. Since plate flexure is a global mechanism in subduction zones, a significant portion of oceanic lithospheric mantle is likely to be metasomatized. Recycling of metasomatic domains into the convecting mantle is fundamental to understanding the generation of small-scale mantle isotopic and volatile heterogeneities sampled by oceanic island and mid-ocean ridge basalts.
Magmatic controls on axial relief and faulting at mid-ocean ridges
NASA Astrophysics Data System (ADS)
Liu, Zhonglan; Buck, W. Roger
2018-06-01
Previous models do not simultaneously reproduce the observed range of axial relief and fault patterns at plate spreading centers. We suggest that this failure is due to the approximation that magmatic dikes open continuously rather than in discrete events. During short - lived events, dikes open not only in the strong axial lithosphere but also some distance into the underlying weaker asthenosphere. Axial valley relief affects the partitioning of magma between the lithosphere and asthenosphere during diking events. The deeper the valley, the more magma goes into lithospheric dikes in each event and so the greater the average opening rate of those dikes. The long-term rate of lithospheric dike opening controls faulting rate and axial depth. The feedback between axial valley depth D and lithospheric dike opening rate allows us to analytically relate steady-state values of D to lithospheric thickness HL and crustal thickness HC. A two-dimensional model numerical model with a fixed axial lithospheric structure illustrates the analytic model implications for axial faulting. The predictions of this new model are broadly consistent with global and segment-scale trends of axial depth and fault patterns with HL and HC.
Elements of the tsunami precursors' detection physics
NASA Astrophysics Data System (ADS)
Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor
In accordance with the main physical principles and geophysical data, we formulated a nonlinear mathematical model of seismo-hydro-electromagnetic (EM) geophysical field interaction and calculated generation and propagation of elastic, EM, temperature and hydrodynamic seismically generated disturbances (i.e. signals) in the basin of a marginal sea. We show transferring of seismic and electromagnetic (EM) energy from the upper mantle beneath the sea into its depths and EM emission from the sea surface into the atmosphere. Basing on the calculated characteristics of the signals of different physical nature (computations correspond to measurements of other authors) we develop the project of a Lithosphere-Ocean-Atmosphere Monitoring System (LOAMS) including: a bottom complex, a moored ocean surface buoy complex, an observational balloon complex, and satellite complex. The underwater stations of the bottom complex of the LOAMS will record the earlier signals of seismic activation beneath a seafloor (the ULF EM signals outrun seismic ones, according to the above calculations) and localize the seafloor epicenter of an expected seaquake. These stations will be equipped, in particular, with: magnetometers, the lines for the electric field measurements, and magneto-telluric blocks to discover dynamics of physical parameters beneath a sea floor as signs of a seaquake and/or tsunami preparation process. The buoy and balloon complexes of the LOAMS will record the meteorological and oceanographic parameters' variations including changes of reflection from a sea surface (tsunami ‘shadows’) caused by a tsunami wave propagation. Cables of the balloon and moored buoy will be used as receiving antennas and for multidisciplinary measurements including gradients of the fields (we show the cases are possible when the first seismic EM signal will be registered by an antenna above a sea). Also, the project includes radio-tomography with satellite instrumentation and sounding of the ionosphere from the buoy, balloon and satellite complexes. The balloon and buoy complexes will transmit data to a shore station over satellite link. The frequency ranges and sensitivity thresholds of all of the sensors of the LOAMS will be adapted to the characteristics of expected seismic signals according to the numerical research above. Computational methods and statistical analysis (e.g. seismic changes of coherence of spatially distributed sensors of different nature) of the recorded multidimensional time series will be used for prognostic interpretation. The multilevel recordings will provide a stable noise (e.g. ionosphere Pc pulsations, hard sea, industry) and seismic event detection. An intensive heat flow typical for tectonically active lithosphere zones may be considered as an energy source for advanced modifications of the LOAMS. The latter may be used as a warning system for continental and marine technologies, e.g. a sea bottom geothermal energy production. Indeed, seismic distraction of the nuclear power station Fukushima I demonstrates that similar technology hardly is able to solve the energy problems in seismically active regions. On the other hand, the LOAMS may be considered as a scientific observatory for development of the seaquake/tsunami precursor physics, i.e. seismo-hydro-electromagnetics.
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Banerdt, W. B.
1985-01-01
While it is generally agreed that the strength of a planet's lithosphere is controlled by a combination of brittle sliding and ductile flow laws, predicting the geometry and initial characteristics of faults due to failure from stresses imposed on the lithospheric strength envelope has not been thoroughly explored. Researchers used lithospheric strength envelopes to analyze the extensional features found on Ganymede. This application provides a quantitative means of estimating early thermal profiles on Ganymede, thereby constraining its early thermal evolution.
Rheology of the lithosphere: selected topics.
Kirby, S.H.; Kronenberg, A.K.
1987-01-01
Reviews recent results concerning the rheology of the lithosphere with special attention to the following topics: 1) the flexure of the oceanic lithosphere, 2) deformation of the continental lithosphere resulting from vertical surface loads and forces applied at plate margins, 3) the rheological stratification of the continents, 4) strain localization and shear zone development, and 5) strain-induced crystallographic preferred orientations and anisotropies in body-wave velocities. We conclude with a section citing the 1983-1986 rock mechanics literature by category.-Authors
Lithospheric Layering beneath Southern Africa Constrained by S-to-P Receiver Functions
NASA Astrophysics Data System (ADS)
Liu, L.; Liu, K. H.; Gao, S. S.
2016-12-01
To investigate the existence of intra-lithospheric interfaces in an area of active rifting of ancient lithosphere, we stack S-to-P receiver functions (SRFs) recorded by broadband seismic stations in the vicinity of the non-volcanic sections of the East African Rift System and the stable Kaapvaal and Zimbabwe cratons. The data set was recorded by about 200 permanent and portable seismic stations installed over the past 30 years. The SRFs are computed using frequency-domain deconvolution, and are stacked in consecutive circles with a radius of 2 degrees. They are converted to depth series after moveout corrections using the IASP91 Earth model. In the upper mantle , a robust negative arrival is found in virtually all the stacked traces in the depth range of 50-100 km. Comparison with results from seismic tomography and mantle xenolith studies suggests that this discontinuity represents a mid-lithospheric discontinuity (MLD), similar to what was observed beneath the North American continent. The absence of observable negative arrivals in the anticipated depth of 250 km or greater beneath the study area suggests a gradual instead of sharp transition from the lithosphere to the asthenosphere. No significant shallowing of the MLD is observed beneath the young rift segments, suggesting that rifting is limited in the crust, an observation that is consistent with recent results from the SAFARI (Seismic Arrays for African Rift Initiation) project. The shallowest MLD of about 65 km in the study area is found in a NW-SE trending zone across central Zimbabwe and western Zambia. The MLD may reflect a low velocity zone caused by metasomatism, a process commonly found beneath ancient cratons.
NASA Astrophysics Data System (ADS)
Tommasi, A.; Godard, M.
2002-12-01
In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2.5 percent and be equivalent to those observed below the Deccan, Parana, or Ontong Java mesozoic LIPs.
NASA Astrophysics Data System (ADS)
Tommasi, Andréa; Godard, Marguerite; Coromina, Guilhem; Dautria, Jean-Marie; Barsczus, Hans
2004-11-01
In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we investigated the relationship between petrological processes and microstructure in mantle xenoliths from different hotspots tracks in South Pacific Superswell region: the Austral-Cook, Society, and Marquesas islands in French Polynesia. Olivine forsterite contents in the studied spinel peridotites vary continuously from Fo91 to Fo83. Dunites and wehrlites display the lowest forsterite contents. Their microstructure and high Ni contents preclude a cumulate origin, suggesting that these rocks result from melt/rock reactions involving olivine precipitation and pyroxene dissolution. In addition, lherzolites and wehrlites display evidence of late crystallization of clinopyroxene, which may result from a near-solidus melt-freezing reaction. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. These compositional changes, particularly iron enrichment in olivine, result in lower P- and S-waves velocities. Relative to normal lithospheric mantle, compositionally induced seismic anomalies may attain -2.2% for S-waves and -1% for P-waves. Smaller negative anomalies for P-waves are due to a higher sensitivity to modal composition. Conversely, crystal-preferred orientations (CPO) and seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO. Very weak, almost random olivine CPO is nevertheless rare, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas.
The longevity of the South Pacific isotopic and thermal anomaly
Staudigel, H.; Park, K.-H.; Pringle, M.; Rubenstone, J.L.; Smith, W.H.F.; Zindler, A.
1991-01-01
The South Pacific is anomalous in terms of the Sr, Nd, and Pb isotope ratios of its hot spot basalts, a thermally enhanced lithosphere, and possibly a hotter mantle. We have studied the Sr, Nd, and Pb isotope characteristics of 12 Cretaceous seamounts in the Magellans, Marshall and Wake seamount groups (western Pacific Ocean) that originated in this South Pacific Isotopic and Thermal Anomaly (SOPITA). The range and values of isotope ratios of the Cretaceous seamount data are similar to those of the island chains of Samoa, Tahiti, Marquesas and Cook/Austral in the SOPITA. These define two major mantle components suggesting that isotopically extreme lavas have been produced at SOPITA for at least 120 Ma. Shallow bathymetry, and weakened lithosphere beneath some of the seamounts studied suggests that at least some of the thermal effects prevailed during the Cretaceous as well. These data, in the context of published data, suggest: 1. (1)|SOPITA is a long-lived feature, and enhanced heat transfer into the lithosphere and isotopically anomalous mantle appear to be an intrinsic characteristic of the anomaly. 2. (2)|The less pronounced depth anomaly during northwesterly plate motion suggests that some of the expressions of SOPITA may be controlled by the direction of plate motion. Motion parallel to the alignment of SOPITA hot spots focusses the heat (and chemical input into the lithosphere) on a smaller cross section than oblique motion. 3. (3)|The lithosphere in the eastern and central SOPITA appears to have lost its original depleted mantle characteristics, probably due to enhanced plume/lithosphere interaction, and it is dominated by isotopic compositions derived from plume materials. 4. (4)|We speculate (following D.L. Anderson) that the origin of the SOPITA, and possibly the DUPAL anomaly is largely due to focussed subduction through long periods of the geological history of the earth, creating a heterogeneous distribution of recycled components in the lower mantle. ?? 1991.
Okal, E.A.; Kirby, S.H.
1998-01-01
Previous work has suggested that many of the deep earthquakes beneath the Fiji Basin occur in slab material that has been detached and foundered to the bottom of the transition zone or has been laid down by trench migration in a similar recumbent position. Since nowhere else in the Earth do so many earthquakes occur in slabs stagnated in the transition zone, these earthquakes merit closer study. Accordingly, we have assembled from historical and modern data a comprehensive catalogue of the relocated hypocenters and focal mechanisms of well-located deep events in the geographic area between the bottoms of the main Vanuatu and Tonga Wadati-Benioff zones. Two regions of deep seismogenesis are recognized there: (i) 163 deep shocks have occurred north of 15??S in the Vityaz Group from 1949 to 1996. These seismological observations and the absence of other features characteristic of active subduction suggest that the Vityaz group represents deep failure in a detached slab that has foundered to a horizontal orientation near the bottom of the transition zone. (ii) Another group of nearly 50 'outboard' deep shocks occur between about 450 and 660 km depth, west of the complexly buckled and offset western edge of the Tonga Wadati-Benioff zone. Their geometry is in the form of two or possibly three small-circle arcs that roughly parallel the inferred motion of Tonga trench migration. Earthquakes in the southernmost of these arcs occur in a recumbent high-seismic-wavespeed slab anomaly that connects both to the main inclined Tonga anomaly to the east and a lower mantle anomaly to the west [Van der Hilst, R., 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, Vol. 374, pp. 154-157.]. Both groups show complexity in their focal mechanisms. The major question raised by these observations is the cause of this apparent temporary arrest in the descent of the Tonga slab into the lower mantle. We approach these questions by considering the effects of buoyant metastable peridotite in cold slab material that was detached and rapidly foundered, or was buckled, segmented and laid out in the transition zone.
Tracing the thermal evolution of continental lithosphere through depth-dependent extension
NASA Astrophysics Data System (ADS)
Smye, A.; Lavier, L. L.; Stockli, D. F.; Zack, T.
2015-12-01
Rifting of continental lithosphere requires a mechanism to reduce lithospheric thickness from 100-150 kilometers to close to zero kilometers at the point of rupture. At magma-poor continental margins, this has long-thought to be caused by uniform stretching and thinning of the lithosphere accompanied by passive upwelling of the asthenosphere [1]. For the last thirty years depth-dependent thinning has been proposed as an alternative to this model to explain the anomalously shallow environment of deposition along many continental margins [2, 3]. A critical prediction of this modification is that the lower crust and sub-continental lithospheric mantle undergo a phase of increased heat flow, potentially accompanied by heating, during thinning of the lithospheric mantle. Here, we test this prediction by applying recently developed U-Pb age depth profiling techniques [4] to lower crustal accessory minerals from the exhumed Alpine Tethys and Pyrenean margins. Inversion of diffusion-controlled U-Pb age profiles in rutile affords the opportunity to trace the thermal evolution of the lower crust through the rifting process. Resultant thermal histories are used to calculate thinning factors of the crust and lithospheric mantle by 2D thermo-kinematic models of extending lithosphere. Combined, we use the measured and modeled thermal histories to propose a mechanism to explain the initiation and growth of lithospheric instabilities that lead to depth-dependent thinning at magma-poor continental margins. [1] McKenzie, D. (1978) EPSL 40, 25-32; [2] Royden, L. & Keen, C. (1980) EPSL 51, 343-361; [3] Huismans, R. & Beaumont, C. (2014) EPSL, 407, 148-162; [4] Smye, A. and Stockli, D. (2014) EPSL, 408, 171-182.
Geodynamic inversion to constrain the non-linear rheology of the lithosphere
NASA Astrophysics Data System (ADS)
Baumann, T. S.; Kaus, Boris J. P.
2015-08-01
One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology, we first perform a geodynamic inversion of a synthetic forward model of intraoceanic subduction with known parameters. This requires solving an inverse problem with 14-16 parameters, depending on whether temperature is assumed to be known or not. With the help of a massively parallel direct-search combined with a Markov Chain Monte Carlo method, solving the inverse problem becomes feasible. Results show that the rheological parameters and particularly the effective viscosity structure of the lithosphere can be reconstructed in a probabilistic sense. This also holds, with somewhat larger uncertainties, for the case where the temperature distribution is parametrized. Finally, we apply the method to a cross-section of the India-Asia collision system. In this case, the number of parameters is larger, which requires solving around 1.9 × 106 forward models. The resulting models fit the data within their respective uncertainty bounds, and show that the Indian mantle lithosphere must have a high viscosity. Results for the Tibetan plateau are less clear, and both models with a weak Asian mantle lithosphere and with a weak Asian lower crust fit the data nearly equally well.
Deformation and instability of underthrusting lithospheric plates
NASA Technical Reports Server (NTRS)
Liu, H.
1972-01-01
Models of the underthrusting lithosphere are constructed for the calculation of displacement and deflection. First, a mathematical theory is developed that rigorously demonstrates the elastic instability in the decending lithosphere. The theory states that lithospheric thrust beneath island arcs becomes unstable and suffers deflection as the compression increases. Thus, in the neighborhood of the edges where the lithospheric plate plunges into the asthenosphere and mesosphere its shape will be contorted. Next, the lateral displacement is calculated, and it is shown that, before contortion, the plate will thicken and contract at different positions with the variation in thickness following a parabolic profile. Finally, the depth distribution of the intermediate and deep focus earthquakes is explained in terms of plate buckling and contortion.
A comparison of seismicity in world's subduction zones: Implication by the difference of b-values
NASA Astrophysics Data System (ADS)
Nishikawa, T.; Ide, S.
2013-12-01
Since the pioneering study of Uyeda and Kanamori (1979), it has been thought that world's subduction zones can be classified into two types: Chile and Mariana types. Ruff and Kanamori (1980) suggested that the maximum earthquake size within each subduction zone correlates with convergence rate and age of subducting lithosphere. Subduction zones with younger lithosphere and larger convergence rates are associated with great earthquakes (Chile), while subduction zones with older lithosphere and smaller convergence rates have low seismicity (Mariana). However, these correlations are obscured after the 2004 Sumatra earthquake and the 2009 Tohoku earthquake. Furthermore, McCaffrey (2008) pointed out that the history of observation is much shorter than the recurrence times of very large earthquakes, suggesting a possibility that any subduction zone may produce earthquakes larger than magnitude 9. In the present study, we compare world's subduction zones in terms of b-values in the Gutenberg-Richer relation. We divided world's subduction zones into 146 regions, each of which is bordered by a trench section of about 500 km and extends for 200 km from the trench section in the direction of relative plate motion. In each region, earthquakes equal to or larger than M4.5 occurring during 1988-2009 were extracted from ISC catalog. We find a positive correlation between b-values and ages of subducting lithosphere, which is one of the two important variables discussed in Ruff and Kanamori (1980). Subduction zones with younger lithosphere are associated with high b-values and vice versa, while we cannot find a correlation between b-values and convergence rates. We used the ages determined by Müller et al. (2008) and convergence rate calculated using PB2002 (Bird, 2003) for convergence rate. We also found a negative correlation between b-values and the estimates of seismic coupling, which is defined as the ratio of the observed seismic moment release rate to the rate calculated from plate tectonic velocities (Scholz and Campos, 2012). Lithosphere age also has a weak negative correlation with the degree of seismic coupling. Based on differences in b-values for the types of faulting, Schorlemmer et al. (2005) suggested that b-value depends inversely on differential stress. This idea, taken together with correlations in the present study, suggests a model where the buoyancy of subducting slabs which depends on the lithosphere age determines stress state and the b-value in each sunbduction zone. The stress state also controls the seismic coupling. This model is basically consistent with the idea of Ruff and Kanamori (1980). Subduction zones with younger and lighter lithosphere are in a compressive stress state and associate with high coupling and small b-values (Chile), while those with older and heavier lithosphere are in a tensional stress state and correlate with low coupling and large b-values (Mariana). Subduction zones such as Nicaragua and El Salvador where b-values are much higher than the expectation from the above correlations may be explained by considering the fact that local tectonics affects the seismic coupling (LaFemina et al., 2009; Scholz and Campos, 2012).
Formation of cratonic lithosphere during the initiation of plate tectonics
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Beall, A.; Cooper, C. M.
2017-12-01
The Earth's oldest near-surface material, the cratonic crust, is typically underlain by unusually thick Archean lithosphere (<300 km). This cratonic lithosphere likely thickened in a high compressional stress environment. Mantle convection in the hotter Archean Earth would have imparted relatively low stresses on the lithosphere, whether or not tectonics was operating, so a high stress signal from the early Earth is paradoxical. We propose that a rapid transition, from a stagnant lid Earth to the onset of plate tectonics, generated the high stresses required to thicken the cratonic lithosphere. Numerical calculations are used to demonstrate that an existing buoyant and strong layer, representing harzburgite and felsic crust, can thicken and stabilize during the lid-breaking event. The peak compressional stress experienced by lithosphere is 3-4 higher than for the stagnant lid or mobile lid regimes immediately before and after. It is plausible that the cratonic lithosphere has still not returned to this high stress-state, explaining its stability. The lid-breaking thickening event reproduces craton features previously attributed to subduction: thrust structures, assembled crustal fragments and transport of basaltic upper crust to depths required to generate felsic melt. Palaeoarchean `pre-tectonic' structures can also survive the lid-breaking event, acting as strong crustal rafts. Together, the results indicate that the signature of a catastrophic switch, from a stagnant lid Earth to the initiation of plate tectonics, has been captured and preserved in the unusual characteristics of cratonic crust and lithosphere.
Piecewise Delamination Drives Uplift in the Atlas Mountains Region of Morocco
NASA Astrophysics Data System (ADS)
Bezada, M. J.; Humphreys, E.; Martin Davila, J.; mimoun, H.; Josep, G.; Palomeras, I.
2013-12-01
The elevation of the intra-continental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco by inverting teleseimic p-wave delay times, complemented with local delays, recorded on a dense array of stations in the Iberian peninsula and Morocco. A surface wave model provides constraint on the shallower layers. We determine the geometry of lithospheric cavities and mantle upwelling beneath the Middle Atlas and central High Atlas, and image delaminated lithosphere at ~400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle, sourced from regional upwellings in northern Africa or the Canary Islands, enabled the mobilization of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, where we image the most recent delamination. The Atlas Mountains of Morocco stand as an example of mantle-generated uplift and large-scale lithospheric loss in a mildly contractional orogen.
Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?
NASA Astrophysics Data System (ADS)
Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François
2017-08-01
Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions determined by Raman spectroscopy and microthermometry (0.1-1.1 GPa). The CO2/silicate melt mass ratios in the metasomatic agent that percolated through the lithospheric mantle below the Pannonian Basin are estimated to be between 9.0 and 25.4 wt.%, values consistent with metasomatism either by (1) silicate melts already supersaturated in CO2 before reaching lithospheric depths or (2) carbonatite melts that interacted with mantle peridotite to generate carbonated silicic melts. Taking the geodynamical context of the Pannonian Basin and our calculations of the CO2/silicate melt mass ratios in the metasomatic agent into account, we suggest that slab-derived melts initially containing up to 25 wt.% of CO2 migrated into the lithospheric mantle and exsolved CO2-rich fluid that became trapped in secondary fluid inclusions upon fracturing of the peridotite mineral matrix. We propose a first-order estimate of 2000 ppm as the minimal bulk CO2 concentration in the lithospheric mantle below the Pannonian Basin. This transient carbon reservoir is believed to be degassed through the Pannonian Basin due to volcanism and tectonic events, mostly focused along the lithospheric-scale regional Mid-Hungarian shear Zone.
NASA Astrophysics Data System (ADS)
Li, Lu; Qiu, Nansheng
2017-06-01
In this study the dynamic aspects of the Cenozoic extension in the Bohai Bay Basin are considered in the context of initial thickness of the crust and lithosphere, tectonic force, strain rate and thermal rheology, which are directly or indirectly estimated from a pure shear extensional model. It is accordingly reasonable to expect that, in the Bohai Bay Basin, the thickness variation could be present prior to the initiation of extension. The extensional deformation is localized by a thickness variation of the crust and lithosphere and the heterogeneity of the initial thickness plays an important role in rifting dynamics. The onset of rifting requires a critical tectonic force (initial tectonic force) to be applied, which then immediately begins to decay gradually. Rifting will only occur when the total effective buoyancy force of the subducting slab reaches a critical level, after a certain amount of subduction taking place. The magnitude of the tectonic force decreases with time in the early phase of rifting, which indicates the weakening due to the increase in geothermal gradient. In order to deform the continental lithosphere within the currently accepted maximum magnitude of the force derived from subducted slab roll-back, the following conditions should be satisfied: (1) the thickness of the continental lithosphere is significantly thin and less than 125 km and (2) the lithosphere has a wet and hot rheology, which provides implications for rheological layering in continental lithosphere. Our results are strongly supported by the ;crème brûlée; model, in which the lower crust and mantle are relatively ductile.
Upper mantle structure across the Trans-European Suture Zone imaged by S-receiver functions
NASA Astrophysics Data System (ADS)
Knapmeyer-Endrun, Brigitte; Krüger, Frank; Geissler, Wolfram H.; Passeq Working Group
2017-01-01
We present a high-resolution study of the upper mantle structure of Central Europe, including the western part of the East European Platform, based on S-receiver functions of 345 stations. A distinct contrast is found between Phanerozoic Europe and the East European Craton across the Trans-European Suture Zone. To the west, a pronounced velocity reduction with depth interpreted as lithosphere-asthenosphere boundary (LAB) is found at an average depth of 90 km. Beneath the craton, no strong and continuous LAB conversion is observed. Instead we find a distinct velocity reduction within the lithosphere, at 80-120 km depth. This mid-lithospheric discontinuity (MLD) is attributed to a compositional boundary between depleted and more fertile lithosphere created by late Proterozoic metasomatism. A potential LAB phase beneath the craton is very weak and varies in depth between 180 and 250 km, consistent with a reduced velocity contrast between the lower lithosphere and the asthenosphere. Within the Trans-European Suture Zone, lithospheric structure is characterized by strong heterogeneity. A dipping or step-wise increase to LAB depth of 150 km is imaged from Phanerozoic Europe to 20-22° E, whereas no direct connection to the cratonic LAB or MLD to the east is apparent. At larger depths, a positive conversion associated with the lower boundary of the asthenosphere is imaged at 210-250 km depth beneath Phanerozoic Europe, continuing down to 300 km depth beneath the craton. Conversions from both 410 km and 660 km discontinuities are found at their nominal depth beneath Phanerozoic Europe, and the discontinuity at 410 km depth can also be traced into the craton. A potential negative conversion on top of the 410 km discontinuity found in migrated images is analyzed by modeling and attributed to interference with other converted phases.
Tracing Archean sulfur across stitched lithospheric blocks
NASA Astrophysics Data System (ADS)
LaFlamme, Crystal; Fiorentini, Marco; Lindsay, Mark; Wing, Boswell; Selvaraja, Vikraman; Occhipinti, Sandra; Johnson, Simon; Bui, Hao Thi
2017-04-01
Craton margins are loci for volatile exchange among lithospheric geochemical reservoirs during crust formation processes. Here, we seek to revolutionise the current understanding of the planetary flux and lithospheric transfer of volatiles during supercontinent formation by tracing sulfur from the atmosphere-hydrosphere through to the lithosphere during crust formation. To do so, we trace the transfer of sulfur by following mass independently fractionated sulfur at ancient tectonic boundaries has the potential to. Mass independent fractionation of sulfur (MIF-S) is a signature (quantified as Δ33S and Δ36S) that is unique to the Archean sedimentary rock record and imparted to sulfur reservoirs that interacted with the oxygen-poor atmosphere before the Great Oxidation Event (GOE) at ca. 2.4 Ga. Here we present multiple sulfur isotopes from across a Proterozoic post-GOE orogenic belt, formed when Archean cratons were stitched together during supercontinent amalgamation. For the first time, multiple sulfur isotope data are presented spatially to elucidate volatile pathways across lithospheric blocks. Across the orogenic belt, the Proterozoic granitoid and hydrothermal rock records proximal to Archean cratons preserve values of Δ33S up to +0.8\\permil and a Δ33S-Δ36S array of -1.2, whereas magmatic and hydrothermal systems located more distally from the margin do not display any evidence of MIF-S. This is the first study to identify MIF-S in a Proterozoic orogen indicates that tectonic processes controlling lithospheric evolution and crust formation at tectonic boundaries are able to transfer sulfur from Archean supracrustal rock reservoirs to newly formed Proterozoic granitoid crust. The observation of MIF-S in the Proterozoic granitoid rock record has the potential to revolutionise our understanding of secular changes in the evolution of crust formation mechanisms through time.
NASA Astrophysics Data System (ADS)
Chen, Y.; Gu, Y. J.; Hung, S. H.
2014-12-01
Based on finite-frequency theory and cross-correlation teleseismic relative traveltime data from the USArray, Canadian National Seismograph Network (CNSN) and Canadian Rockies and Alberta Network (CRANE), we present a new tomographic model of P-wave velocity perturbations for the lithosphere and upper mantle beneath the Cordillera-cration transition region in southwestern Canada. The inversion procedure properly accounts for the finite-volume sensitivities of measured travel time residuals, and the resulting model shows a greater resolution of upper mantle velocity heterogeneity beneath the study area than earlier approaches based on the classical ray-theoretical approach. Our model reveals a lateral change of P velocities from -0.5% to 0.5% down to ~200-km depth in a 50-km wide zone between the Alberta Basin and the foothills of the Rocky Mountains, which suggests a sharp structural gradient along the Cordillera deformation front. The stable cratonic lithosphere, delineated by positive P-velocity perturbations of 0.5% and greater, extends down to a maximum depth of ~180 km beneath the Archean Loverna Block (LB). In comparison, the mantle beneath the controversial Medicine Hat Block (MHB) exhibits significantly higher velocities in the uppermost mantle and a shallower (130-150 km depth) root, generally consistent with the average depth of the lithosphere-asthenosphere boundary beneath Southwest Western Canada Sedimentary Basin (WCSB). The complex shape of the lithospheric velocities under the MHB may be evidence of extensive erosion or a partial detachment of the Precambrian lithospheric root. Furthermore, distinct high velocity anomalies in LB and MHB, which are separated by 'normal' mantle block beneath the Vulcan structure (VS), suggest different Archean assembly and collision histories between these two tectonic blocks.
NASA Astrophysics Data System (ADS)
Hughes, Hannah S. R.; McDonald, Iain; Faithfull, John W.; Upton, Brian G. J.; Loocke, Matthew
2016-01-01
Abundances of precious metals and cobalt in the lithospheric mantle are typically obtained by bulk geochemical analyses of mantle xenoliths. These elements are strongly chalcophile and the mineralogy, texture and trace element composition of sulphide phases in such samples must be considered. In this study we assess the mineralogy, textures and trace element compositions of sulphides in spinel lherzolites from four Scottish lithospheric terranes, which provide an ideal testing ground to examine the variability of sulphides and their precious metal endowments according to terrane age and geodynamic environment. Specifically we test differences in sulphide composition from Archaean-Palaeoproterozoic cratonic sub-continental lithospheric mantle (SCLM) in northern terranes vs. Palaeozoic lithospheric mantle in southern terranes, as divided by the Great Glen Fault (GGF). Cobalt is consistently elevated in sulphides from Palaeozoic terranes (south of the GGF) with Co concentrations > 2.9 wt.% and Co/Ni ratios > 0.048 (chondrite). In contrast, sulphides from Archaean cratonic terranes (north of the GGF) have low abundances of Co (< 3600 ppm) and low Co/Ni ratios (< 0.030). The causes for Co enrichment remain unclear, but we highlight that globally significant Co mineralisation is associated with ophiolites (e.g., Bou Azzer, Morocco and Outokumpu, Finland) or in oceanic peridotite-floored settings at slow-spreading ridges. Thus we suggest an oceanic affinity for the Co enrichment in the southern terranes of Scotland, likely directly related to the subduction of Co-enriched oceanic crust during the Caledonian Orogeny. Further, we identify a distinction between Pt/Pd ratio across the GGF, such that sulphides in the cratonic SCLM have Pt/Pd ≥ chondrite whilst Palaeozoic sulphides have Pt/Pd < chondrite. We observe that Pt-rich sulphides with discrete Pt-minerals (e.g., PtS) are associated with carbonate and phosphates in two xenolith suites north of the GGF. This three-way immiscibility (carbonate-sulphide-phosphate) indicates carbonatitic metasomatism is responsible for Pt-enrichment in this (marginal) cratonic setting. These Co and Pt-enrichments may fundamentally reflect the geodynamic setting of cratonic vs. non-cratonic lithospheric terranes and offer potential tools to facilitate geochemical mapping of the lithospheric mantle.
Evolution of planetary lithospheres - Evidence from multiringed structures on Ganymede and Callisto
NASA Technical Reports Server (NTRS)
Mckinnon, W. B.; Melosh, H. J.
1980-01-01
The thickness and viscosity of a planetary lithosphere increase with time as the mantle cools, with a thicker lithosphere leading to the formation of one (or very few) irregular normal faults concentric to the crater. Since a gravity wave or tsunami induced by impact into a liquid mantle would result in both radial and concentric extension features, which are not observed in the case of the large impact structures on Ganymede and Callisto, an alternative mechanism is proposed in which the varying ice/silicate ratios, tectonic histories, and erosional mechanisms of the two bodies are considered to explain the subtle differences in thin lithosphere ring morphology between Ganymede and Callisto. It is concluded that the present lithosphere thickness of Ganymede is too great to permit the development of any rings.
Impact of lithospheric rheology on surface topography
NASA Astrophysics Data System (ADS)
Liao, K.; Becker, T. W.
2017-12-01
The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.
Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet.
Legendre, Cédric P; Deschamps, Frédéric; Zhao, Li; Chen, Qi-Fu
2015-11-09
The Tibetan Plateau results from the collision of the Indian and Eurasian Plates during the Cenozoic, which produced at least 2,000 km of convergence. Its tectonics is dominated by an eastward extrusion of crustal material that has been explained by models implying either a mechanical decoupling between the crust and the lithosphere, or lithospheric deformation. Discriminating between these end-member models requires constraints on crustal and lithospheric mantle deformations. Distribution of seismic anisotropy may be inferred from the mapping of azimuthal anisotropy of surface waves. Here, we use data from the CNSN to map Rayleigh-wave azimuthal anisotropy in the crust and lithospheric mantle beneath eastern Tibet. Beneath Tibet, the anisotropic patterns at periods sampling the crust support an eastward flow up to 100°E in longitude, and a southward bend between 100°E and 104°E. At longer periods, sampling the lithospheric mantle, the anisotropic structures are consistent with the absolute plate motion. By contrast, in the Sino-Korean and Yangtze cratons, the direction of fast propagation remains unchanged throughout the period range sampling the crust and lithospheric mantle. These observations suggest that the crust and lithospheric mantle are mechanically decoupled beneath eastern Tibet, and coupled beneath the Sino-Korean and Yangtze cratons.
Density Of The Continental Roots: Compositional And Thermal Effects
NASA Astrophysics Data System (ADS)
Kaban, M. K.; Schwintzer, P.; Artemieva, I.; Mooney, W. D.
We use gravity, thermal, and seismic data to examine how the density and composi- tion of lithospheric roots vary beneath the cratons. Our interpretation is based on the gravity anomalies calculated by subtracting the gravitational effects of bathymetry, to- pography, and the crust from the observed gravity field, and the residual topography that characterizes the isostatic state of the lithosphere. We distinguish the effects of temperature and compositional variations in producing lithospheric density anomalies using two independent temperature constrains: based on interpretation of the surface heat flow data and estimated from global seismic tomography data. We find that in situ lithospheric density differs significantly between individual cratons, with the most dense values found beneath Eurasia and the least dense values beneath South Africa. This demonstrates that there is not a simple compensation of thermal and composition effects. We present a new gravity anomaly map that was corrected for crustal density structure and lithospheric temperatures. This map reveals differences in lithospheric composition, that are the result of the petrologic processes that have formed and mod- ified the lithosphere. All significant negative gravity anomalies are found in cratonic regions. In contrast, positive gravity anomalies are found in two distinct regions: near ocean-continent and continent-continent subduction zones, and within some continen- tal interiors. The origin of the latter positive anomalies is uncertain.
NASA Astrophysics Data System (ADS)
Legendre, C.; Meier, T.; Lebedev, S.; Friederich, W.; Viereck-Götte, L.
2012-04-01
Broadband waveforms recorded at stations in Europe and surrounding regions were inverted for shear-wave velocity of the European upper mantle. For events between 1995 and 2007 seismograms were collected from all permanent stations for which data are available via the data centers ORFEUS, GEOFON, ReNaSs and IRIS. In addition, we incorporated data from temporary experiments, including SVEKALAPKO, TOR, Eifel Plume, EGELADOS and other projects. Automated Multimode Inversion of surface and S-wave forms was applied to extract structural information from the seismograms, in the form of linear equations with uncorrelated uncertainties. Successful waveform fits for about 70,000 seismograms yielded over 300,000 independent linear equations that were solved together for a three-dimensional tomographic model. Resolution of the imaging is particularly high in the mantle lithosphere and asthenosphere. The highest velocities in the mantle lithosphere of the East European Craton are found at about 150 km depth. There are no indications for a large scale deep cratonic root below about 330 km depth. Lateral variations within the cratonic mantle lithosphere are resolved by our model as well. The locations of diamond bearing kimberlites correlate with reduced S-wave velocities in the cratonic mantle lithosphere. This anomaly is present in regions of both Proterozoic and Archean crust, pointing to an alteration of the mantle lithosphere after the formation of the craton. Strong lateral changes in S-wave velocity are found at the western margin of the East European Craton and hint to erosion of cratonic mantle lithosphere beneath the Scandes by hot asthenosphere. The mantle lithosphere beneath Western Europe and between the Tornquist-Teyissere Zone and the Elbe Line shows moderately high velocities and is of an intermediate character, between cratonic lithosphere and the thin lithosphere of central Europe. In central Europe, Caledonian and Variscian sutures are not associated with strong lateral changes in the lithosphere-asthenosphere system. Cenozoic anorogenic intraplate volcanism in central Europe and the Circum Mediterranean is found in regions of shallow asthenosphere and close to sharp gradients in the depth of the lithosphere-asthenosphere boundary. Low-velocity anomalies extending vertically from shallow upper mantle down to the transition zone are found beneath the Massive Central, Sinai, Canary Islands and Iceland.
NASA Astrophysics Data System (ADS)
Pilet, S.; Müntener, O.; Duretz, T.; Hetényi, G.
2017-12-01
Garnet xenocryst sampled by petit-spot lavas offshore Japan provides evidence for the formation of gabbroic cumulates within the Pacific lithosphere. The trace element signature indicates that garnet probably formed subsolidus from plagioclase-bearing cumulates during off-axis cooling of the oceanic lithosphere. The specific P-T conditions required for garnet subsolidus formation (0.7 - 1.2 GPa) indicate that melt percolation to produce plagioclase-bearing cumulate occurs at more than 150 km off-axis. Although mantle refertilization in periphery of mid-ocean ridge has been previously shown for (ultra-) slow spreading ridges, our finding indicates that similar processes also occur in portions of the Pacific lithospheric mantle formed at intermediate spreading rates. Recent numerical simulations of melting and melt transport at mid-ocean ridges in presence of volatiles1 support our hypothesis. These simulations suggest that volatile extraction at mid ocean ridges is limited and up to 50% of deep, volatile-rich melt is not focused to the axis but percolated along the LAB. Magma evolution at lithospheric pressure2 predicts that these distal volatile-rich melts will cool and crystallize producing anhydrous and hydrous metasomatic cumulates within the base of the lithosphere. As the lithosphere cools, the hydrous metasomatic cumulates will stay close to their solidus temperature. Any thermo-mechanical perturbation at the base of the lithosphere could potentially reactivate melts and remobilize hydrous phases, which may explain the formation of small-scale seamounts characterized by alkaline magma composition. The presence of hydrous phases and residual CO2 -rich melt at depths around 40 to 70 km could also explain the seismic and electric anomalies observed within the Pacific lithosphere4. Addition of 1-2% volatile-rich melt to the base of the lithosphere predicted by the geochemical simulation3 is sufficient to modify the composition of the oceanic lithospheric mantle and produce, after recycling into the convecting mantle, enriched isotopic signature such as E-DMM or even HIMU. 1 Keller et al. 2017, EPSL 464, 55-68; 2 Pilet et al. 2010, CMP 159, 621-643; 3 Pilet et al. 2011 JPet 52, 1415-1442; 4 Tharimena et al. 2017, JGR Solid Earth 122, 2131-2152.
NASA Technical Reports Server (NTRS)
Ravat, Dhananjay; Hinze, William J.
1991-01-01
Analysis of the total magnetic intensity MAGSAT data has identified and characterized the variability of ionospheric current effects as reflected in the geomagnetic field as a function of longitude, elevation, and time (daily as well as monthly variations). This analysis verifies previous observations in POGO data and provides important boundary conditions for theoretical studies of ionospheric currents. Furthermore, the observations have led to a procedure to remove these temporal perturbations from lithospheric MAGSAT magnetic anomaly data based on 'along-the-dip-latitude' averages from dawn and dusk data sets grouped according to longitudes, time (months), and elevation. Using this method, high-resolution lithospheric magnetic anomaly maps have been prepared of the earth over a plus or minus 50 deg latitude band. These maps have proven useful in the study of the structures, nature, and processes of the lithosphere.
Continental and oceanic magnetic anomalies: Enhancement through GRM
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.
1985-01-01
In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.
NASA Astrophysics Data System (ADS)
Chen, Yi-Wei; Wu, Jonny; Suppe, John; Liu, Han-Fang
2016-04-01
Our understanding of the global plate tectonics is based mainly on seafloor spreading and hotspot data obtained from the present earth surface, which records the growth of present ocean basins. However, in convergent tectonic settings vast amounts of lithosphere has been lost to subduction, contributing to increasing uncertainty in plate reconstruction with age. However, subducted lithosphere imaged in seismic tomography provides important information. By analyzing subducted slabs we identify the loci of subduction and assess the size and shape of subducted slabs, giving better constrained global plate tectonic models. The Andean margin of South America is a classic example of continuous subduction up to the present day, providing an opportunity to test the global plate prediction that ~24×10e6 km2 (4.7% of earth surface) lithosphere has been subducted since ~80 Ma. In this study, we used 10 different global seismic tomographies and Benioff zone seismicity under South America. To identify slabs, we first compared all data sets in horizontal slices and found the subducted Nazca slab is the most obvious structure between the surface and 750 km depth, well imaged between 10°N and 30°S. The bottom of the subducted Nazca slab reaches its greatest depth at 1400 km at 3°N (Carnegie Andes) and gradually shallows towards the south with 900 km minimum depth at 30°S (Pampean Andes). To assess the undeformed length of subducted slab, we used a refined cross-sectional area unfolding method from Wu et al. (in prep.) in the MITP08 seismic tomography (Li et al., 2008). Having cut spherical-Earth tomographic profiles that parallel to the Nazca-South America convergence direction, we measured slab areas as a function of depth based on edges defined by steep velocity gradients, calculating the raw length of the slab by the area and dividing an assumed initial thickness of oceanic lithosphere of 100km. Slab areas were corrected for density based on the PREM Earth model (Dziewonski and Anderson, 1981). We found the unfolded length of the Nazca slab is 7000km at 5°N and gradually decreases to 4700 km at 30°S, with total area of ~24×10e6 km2. Finally, we imported our unfolded Nazca slab into Gplates software to reconstruct its tectonic evolution, using the Seton et al. (2012) and Gibbons et al. (2015) global plate model. We find that our unfolded base of the Nazca slab fits tightly against South America at ~80 Ma if the pre-deformed South America margin of McQuarrie (2002) is used. This close fit implies a plate reorganization at the South American margin, marking the beginning of Nazca subduction at ~80 Ma. This observation is in agreement with a beginning of Andian magmatism ~80 Ma, following a 80-100 Ma hiatus in magmatism (Haschke et al., 2002). This result illustrates the importance of subducted-slab constraints in convergent plate-tectonic reconstruction. Our study also provides tracers for mantle flow yielding Nazca slab sinking rates between 1.2 cm/yr and 1.6 cm/yr, which are similar to other global results.
NASA Astrophysics Data System (ADS)
Liu, Junlai; Ji, Mo; Ni, Jinlong; Guan, Huimei; Shen, Liang
2017-04-01
The present study reports progress of our recent studies on the extensional structures in eastern North China craton and contiguous areas. We focus on characterizing and timing the formation/exhumation of the extensional structures, the Liaonan metamorphic core complex (mcc) and the Dayingzi basin from the Liaodong peninsula, the Queshan mcc, the Wulian mcc and the Zhucheng basin from the Jiaodong peninsula, and the Dashan magmatic dome within the Sulu orogenic belt. Magmatic rocks (either volcanic or plutonic) are ubiquitous in association with the tectonic extension (both syn- and post-kinematic). Evidence for crustal-mantle magma mixing are popular in many syn-kinematic intrusions. Geochemical analysis reveals that basaltic, andesitic to rhyolitic magmas were generated during the tectonic extension. Sr-Nd isotopes of the syn-kinematic magmatic rocks suggest that they were dominantly originated from ancient or juvenile crust partly with mantle signatures. Post-kinematic mafic intrusions with ages from ca. 121 Ma to Cenozoic, however, are of characteristic oceanic island basalts (OIB)-like trace element distribution patterns and relatively depleted radiogenic Sr-Nd isotope compositions. Integrated studies on the extensional structures, geochemical signatures of syn-kinematic magmatic rocks (mostly of granitic) and the tectono-magmatic relationships suggest that extension of the crust and the mantle lithosphere triggered the magmatisms from both the crust and the mantle. The Early Cretaceous tectono-magmatic evolution of the eastern Eurasian continent is governed by the PET in which the tectonic processes is subdivided into two stages, i.e. an early stage of tectonic extension, and a late stage of collapse of the extended lithosphere and transformation of lithospheric mantle. During the early stage, tectonic extension of the lithosphere led to detachment faulting in both the crust and mantle, resulted in the loss of some of the subcontinental roots, gave rise to the exhumation of the mccs, and triggered plutonic emplacement and volcanic eruptions of hybrid magmas. During the late stage, the nature of mantle lithosphere in North China was changed from the ancient SCLM to the juvenile SCLM. Extensional structures in eastern Eurasian continent provide a general architecture of the extensional tectonics of a rifted continent. Progressive extension resulted a sudden collaps of the crust (lithosphere) at ca. 130 to 120 Ma, associated with exhumation of mcc's and giant syn-kinematic magmatism, and post-kinematic magmatism. Parallel extension of both the crust and the mantle resulted in detachment faulting and magmatism, and also contributed to inhomogeneous thinning of the NCC lithosphere. Paleo-Pacific plate subduction and roll-back of the subducting oceanic plate contributed to the PET tectonic processes.
Seismic imaging of the lithosphere beneath Hudson Bay: Episodic growth of the Laurentian mantle keel
NASA Astrophysics Data System (ADS)
Darbyshire, Fiona A.; Eaton, David W.; Bastow, Ian D.
2013-07-01
The Hudson Bay basin in northern Canada conceals one of the major collisional zones of the Canadian Shield, the Trans-Hudson Orogen (THO), which marks the Paleoproterozoic collision between the Archean Superior and Western Churchill cratons at ˜1.9-1.8Ga. Improved knowledge of upper mantle structure beneath the region is essential to establish the nature of the THO, specifically whether Himalayan-style plate tectonics operated in Paleoproterozoic times. Detailed seismological constraints on lithospheric architecture are also required to advance our understanding of the mechanism and timing of keel formation. We use surface wave tomography to illuminate new details of the lithospheric architecture of the Hudson Bay region, resolving both seismic wavespeed and azimuthal anisotropy. Phase velocity maps are calculated from fundamental-mode Rayleigh wave dispersion curves, then used to construct a 3D model exploring upper mantle structure to depths of ˜300km. Fast shear wavespeeds suggest a lithospheric thickness varying from ˜180km to almost 280 km beneath the Hudson Bay region. The new study confirms previous inferences that there is no correlation between crustal ages and lithospheric thickness. Patterns of shear wavespeed and azimuthal anisotropy indicate a layered lithosphere. In the uppermost mantle, both the highest velocities and the anisotropic fast directions wrap around the Bay. This structure is likely related to the formation processes of the Paleozoic intracratonic basin. At greater depth (˜70-150km) we resolve two high-wavespeed cores separated by a relatively narrow near-vertical lower-velocity curtain. This internal architecture is suggested to result from the terminal phase of a modern-style plate-tectonic collision between the Archean Superior and Churchill cratons during the Trans-Hudson orogeny, entrapping juvenile Proterozoic material. The lower lithosphere (≥160km depth) has a relatively homogeneous wavespeed structure across the region, with distinct patterns of anisotropy closely resembling the subsurface geometry of the THO. We interpret this basal layer as juvenile or reworked material accreted to the base of the existing cratonic lithosphere during or soon after the Trans-Hudson orogeny. The formation of the Laurentian keel thus likely occurred in multiple phases, with a basal layer developing in post-Archean times, during the THO.
Water-rich Martian mantle can account for the elastic thickness in Amazonian era
NASA Astrophysics Data System (ADS)
Katayama, I.; Matsuoka, Y.; Azuma, S.
2016-12-01
Although high water content in the Martian mantle is inferred from cosmochemistry, the direct measurements of water in the SNC meteorites are controversial, because hydrogen is a highly mobile element and the later terrestrial alteration can modify the primarily concentration in the Mars. On the one hand, water has a significant effect on the rock strength in both brittle and ductile fields; consequently, the presence of water can influence the elastic thickness that is primary controlled by stress distribution in the lithosphere. The Martian elastic lithosphere estimated from gravity and topography data indicates different thickness at the time of loading (e.g. McGovern et al. 2002). The increase of elastic thickness from Noachian to Hesperian is most likely related to the secular cooling in the Mars; however, the nearly constant elastic lithosphere in Amazonian cannot be explained by the thermal evolution alone. In this study, we applied recent rheological data to the Martian lithosphere and tested whether water can account for the elastic thickness seen in the Amazonian era. We incorporated the effect of pore fluid pressure in the brittle regime and Peierls mechanism in the ductile regime in the rheological model, which are not applied in the most previous calculation (e.g. Grott and Breuer 2008) but have a significant influence on the stress distribution in the lithosphere. Since the pore pressure reduces the effective normal stress on the fault plane, the maximum stress in the brittle regime is markedly decreased by the presence of pore fluid. The estimate of elastic lithosphere is dependent on thermal structure, and we used the heat production rate obtained from the Mars Odyssey spectrometry as thermal model (Hahn et al. 2011). Our results indicate the elastic thickness in Amazonian era of 120-170 km for dry condition and 80-110 km for wet condition. The thin elastic thickness calculated under wet environments is a result of significant reduction of flexure moment in the lithosphere. Our model indicates that water-rich Martian lithosphere can be responsible for the observed elastic thickness in Amazonian. However, the model is highly sensitive to the thermal structure and curvature, and more realistic data of heat flow targeted by the Insight mission would provide the robust water concentration in the Martian mantle.
NASA Astrophysics Data System (ADS)
Haldar, C.; Kumar, P.; Kumar, M. Ravi
2014-05-01
Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere-asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1979-01-01
A viscoelastic model for deformation and stress associated with earthquakes is reported. The model consists of a rectangular dislocation (strike slip fault) in a viscoelastic layer (lithosphere) lying over a viscoelastic half space (asthenosphere). The time dependent surface stresses are analyzed. The model predicts that near the fault a significant fraction of the stress that was reduced during the earthquake is recovered by viscoelastic softening of the lithosphere. By contrast, the strain shows very little change near the fault. The model also predicts that the stress changes associated with asthenospheric flow extend over a broader region than those associated with lithospheric relaxation even though the peak value is less. The dependence of the displacements, stresses on fault parameters studied. Peak values of strain and stress drop increase with increasing fault height and decrease with fault depth. Under many circumstances postseismic strains and stresses show an increase with decreasing depth to the lithosphere-asthenosphere boundary. Values of the strain and stress at distant points from the fault increase with fault area but are relatively insensitive to fault depth.
Improved determination of vector lithospheric magnetic anomalies from MAGSAT data
NASA Technical Reports Server (NTRS)
Ravat, Dhananjay
1993-01-01
Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).
NASA Astrophysics Data System (ADS)
Chichester, B.; Rychert, C.; Harmon, N.; Rietbrock, A.; Collier, J.; Henstock, T.; Goes, S. D. B.; Kendall, J. M.; Krueger, F.
2017-12-01
In the Lesser Antilles subduction zone Atlantic oceanic lithosphere, expected to be highly hydrated, is being subducted beneath the Caribbean plate. Water and other volatiles from the down-going plate are released and cause the overlying mantle to melt, feeding volcanoes with magma and hence forming the volcanic island arc. However, the depths and pathways of volatiles and melt within the mantle wedge are not well known. Here, we use S-to-P receiver functions to image seismic velocity contrasts with depth within the subduction zone in order to constrain the release of volatiles and the presence of melt in the mantle wedge, as well as slab structure and arc-lithosphere structure. We use data from 55-80° epicentral distances recorded by 32 recovered broadband ocean-bottom seismometers that were deployed during the 2016-2017 Volatiles in the Lesser Antilles (VoiLA) project for 15 months on the back- and fore-arc. The S-to-P receiver functions are calculated using two methods: extended time multi-taper deconvolution followed by migration to depth to constrain 3-D discontinuity structure of the subduction zone; and simultaneous deconvolution to determine structure beneath single stations. In the south of the island arc, we image a velocity increase with depth associated with the Moho at depths of 32-40 ± 4 km on the fore- and back-arc, consistent with various previous studies. At depths of 65-80 ± 4 km beneath the fore-arc we image a strong velocity decrease with depth that is west-dipping. At 96-120 ± 5 km beneath the fore-arc, we image a velocity increase with depth that is also west-dipping. The dipping negative-positive phase could represent velocity contrasts related to the top of the down-going plate, a feature commonly imaged in subduction zone receiver function studies. The negative phase is strong, so there may also be contributions to the negative velocity discontinuity from slab dehydration and/or mantle wedge serpentinization in the fore-arc.
NASA Astrophysics Data System (ADS)
Van Avendonk, H. J.; Magnani, M. B.; Shillington, D. J.; Gaherty, J. B.; Hornbach, M. J.; Dugan, B.; Long, M. D.; Lizarralde, D.; Becel, A.; Benoit, M. H.; Harder, S. H.; Wagner, L. S.; Christeson, G. L.
2014-12-01
The continental margins of the eastern United States formed in the Early Jurassic after the breakup of supercontinent Pangea. The relationship between the timing of this rift episode and the occurrence of offshore magmatism, which is expressed in the East Coast Magnetic Anomaly, is still unknown. The possible influence of magmatism and existing lithospheric structure on the rifting processes along margin of the eastern U.S. was one of the motivations to conduct a large-scale community seismic experiment in the Eastern North America (ENAM) GeoPRISMS focus site. In addition, there is also a clear need for better high-resolution seismic data with shallow penetration on this margin to better understand the geological setting of submarine landslides. The ENAM community seismic experiment is a project in which a team of scientists will gather both active-source and earthquake seismic data in the vicinity of Cape Hatteras on a 500 km wide section of the margin offshore North Carolina and Virginia. The timing of data acquisition in 2014 and 2015 facilitates leveraging of other geophysical data acquisition programs such as Earthscope's Transportable Array and the USGS marine seismic investigation of the continental shelf. In April of 2014, 30 broadband ocean-bottom seismometers were deployed on the shelf, slope and abyssal plain of the study site. These instruments will record earthquakes for one year, which will help future seismic imaging of the deeper lithosphere beneath the margin. In September and October of 2014, regional marine seismic reflection and refraction data will be gathered with the seismic vessel R/V Marcus Langseth, and airgun shots will also be recorded on land to provide data coverage across the shoreline. Last, in the summer of 2015, a land explosion seismic refraction study will provide constraints on the crustal structure in the adjacent coastal plain of North Carolina and Virginia. All seismic data will be distributed to the community through IRIS/DMC and the LDEO/UTIG Seismic data center. Two workshops are planned for 2015, where new users get an opportunity to engage in basic processing and analysis of the new data set.
Thematic mapper study of Alaskan ophiolites
NASA Technical Reports Server (NTRS)
Bird, John M.
1988-01-01
The two principle objectives of the project Thematic Mapper Study of Alaskan Ophiolites were to further develop techniques for producing geologic maps, and to study the tectonics of the ophiolite terrains of the Brooks Range and Ruby Geanticline of northern Alaska. Ophiolites, sections of oceanic lithosphere emplaced along island arcs and continental margins, are important to the understanding of mountain belt evolution. Ophiolites also provide an opportunity to study the structural, lithologic, and geochemical characteristics of ocean lithosphere, yielding a better understanding of the processes forming lithosphere. The first part of the report is a description of the methods and results of the TM mapping and gravity modeling. The second part includes papers being prepared for publication. These papers are the following: (1) an analysis of basalt spectral variations; (2) a study of basalt geochemical variations; (3) an examination of the cooling history of the ophiolites using radiometric data; (4) an analysis of shortening produced by thrusting during the Brooks Range orogeny; and (5) a study of an ophiolite using digital aeromagnetic and topographic data. Additional papers are in preparation.
Effects of rheology, composition and surface erosion during collision of India and Eurasia
NASA Astrophysics Data System (ADS)
Tympel, Jens; Schröder, Sarah; Sobolev, Stephan
2013-04-01
The collision of northward moving Indian and relatively stationary Eurasian tectonic plate, ongoing since around 55Ma, has created the Himalayan orogen. Lying on the western syntaxis of Himalaya, the Pamir-Hindu Kush is well known for being the locus of enigmatic intermediate depth seismicity and large Gneiss domes. Although the Pamirs and Tibet are belonging to the same collision zone, the former one has been subjected to extreme Cenozoic shortening, with the strains by more than 2 times higher than in Tibet. As members of the TIen Shan - PAmir GEodynamic program (TIPAGE), our aim is to find lithospheric scale models and controlling factors consistent with all major geodynamic observations, e.g. timing of uplift events of the Tien Shan and the occurrence of anomalous high temperatures below the Pamirs. Furthermore the amount of northward Indian unterthrusting, as well the existence of southward dipping Tadjik-micro-plate below the Pamirs needed to be explained. Since lithosphere exhibits elastic, brittle and viscous properties, highly sophisticated numerical tools are necessary to explain these diverse effects. For this purpose we employ the Finite Element code SLIM3D/2D developed in our group in Potsdam, additionally equipped by routines modeling phase transformations in the crustal rocks and surface erosion and sedimentation routines. We run several N-S oriented 2D cross section models, studying the influence of rheological and compositional parameters, e.g. friction of the Indian/Eurasian plate interface, the Eurasian lithospheric strength south of Tadjik and the thickness of Tadjik strong lithosphere inclusion. Our models are starting at 60 Ma and incorporate part of Neo-Thetys, cratonic India and Greater India extension as well as Eurasia. Inside Eurasia we place a single heterogeneity, the Tadjik-micro-plate. Our model reproduce well present day lithospheric structure, high surface heat flow and surface topography as well as timing of deformation if the following key conditions are met: 1) The friction of the India-Eurasia interface must have been much lower then 0.1, (similar to San Andreas Fault System), but higher than 0.02 (similar to a weak subduction zone). The most appropriate values are lying between 0.04 and 0.06, similar to the Nazca - subduction in central Andes. 2) Mantle lithosphere delamination was triggered by eclogitization of Eurasian crust and enforced by rather thin initial lithosphere south of Tadjik (<120 km). 3) Strength of the Tadjik micro plate was much larger than strength of the rest of the Asian lithosphere but also weaker than the Tarim micro plate. Therefore in contrast to the lithosphere of Tarim, the lithosphere of Tajik has failed and underthrusted southward. 4) Surface erosion that is necessary to get a steep topography gradient at the Himalayan front. This can be accomplished by a high precipitation rate and an orographic barrier at around 5 km.
NASA Astrophysics Data System (ADS)
Chuvashova, Irina; Sun, Yi-min
2016-04-01
From a long-lasted discussion on origin of mantle magmatism (i.e. Foulger, 2010), it follows that magmatic sources might belong to: (1) a plume, starting from the lower thermal boundary layer of the mantle, (2) a counterflow from the lower mantle after an avalanche of slab material from the transition layer, (3) a melting anomaly of a domain that extends above the transition layer at depths of 200-410 km, (4) a melting anomaly of a domain that occurs beneath the lithosphere at depths of 50-200 km, (5) a melting anomaly of the lithospheric base, activated due to its extension, and (6) a melting anomaly of the crust-mantle boundary originated through delamination of an orogenic root in compressional conditions. In this study, we present geological and geochemical evidence on the Quaternary volcanism related to the shallow melting anomaly at the lithospheric base. Eruptions of potassic liquids at the northern terminus of the Songliao basin, subsided from the Middle Jurassic to Paleogene, are limited to the Wudalianchi zone that is exhibited by the 230-km long north-south chain of late Cenozoic volcanic fields: Erkeshan - Wudalianchi - Keluo - Xiaogulihe. Contemporaneous eruptions of potassic-sodic melts are distributed at the western and eastern flanks of this zone, in the Nuominhe and Wuyiling volcanic fields, respectively. The melting anomaly is marked by local decreasing S-wave velocities at a depth of 100 km (Rasskazov et al., 2014). Lithospheric control of the potassic volcanism is emphasized by decreasing thickness of the crust up to 33.5 km (Wang, Chen, 2005). In the Wudalianchi field, volcanism commenced at ca. 2.3 Ma and episodically rejuvenated until AD1720-1721 (Guide book ..., 2010). From comparative geochemical study of volcanic rocks from the Wudalianchi zone and Nuominhe volcanic field, the volcanism was examined to be provided by melting of the heterogeneous lithospheric base, material of which was mixed with a common sub-lithospheric component. Due to mutual convergence of trends, obtained in the diagrams of initial (87Sr/86Sr) versus 1/Sr and initial (87Sr/86Sr) versus 206Pb/204Pb, the common sub-lithospheric composition of volcanic rocks was defined at the initial values (87Sr/86Sr) = 0.7052 and 206Pb/204Pb = 17.5. From model calculations, the erupted liquids were examined as generated through melting of the lithospheric material with minor sub-lithospheric admixture, which did not exceed 9 % (Chuvashova et al., 2009; Rasskazov et al., 2014). In terms of space-time activity and variations of rock compositions obtained on basis of the new representative sampling, we distinguish three groups of the Wudalianchi volcanoes: north-western (Northern and Southern Gelaquishan), central (Wohushan, Bijiashan, Laoheishan, Huoshaoshan), and eastern (Yaoquanshan, Weishan, Western and Eastern Jiaodebushan, Xiaogoshan, Western and Eastern Longmenshan, and Molabushan). Randomly distributed rocks of the north-western and eastern groups, as well as the Erkeshan volcanoes, we examine as a result of background volcanic activity. These rocks show a limited range of compositions dominated by lithospheric material: SiO2 51-55 wt.%, K2O 5-6 wt.%, CaO 5.3-6.8 wt.%, MgO 5.3-7.0 wt.%, CaO/Al2O3 0.35-0.45, and CaO/Sr 31-45. On the contrary, the central group of the Wudalianchi volcanoes reveals persistent northeastward shift of eruptions along the volcanic line Wohushan - Bijiashan - Laoheishan - Huoshaoshan in the past 1.3 Ma. Initial rocks from the Wohushan volcano are compositionally close to rocks of background activity. Over time, the compositions of rocks from the migrated volcanoes have changed due to admixture of the sub-lithospheric component with decreasing SiO2 to 49 wt.%, K2O to 3.2 wt .% and increasing CaO to 8.1 wt.%, MgO to 8.3 wt.%, CaO/Al2O3 to 0.65, CaO/Sr to 65. We infer that the background eruptions in the Wudalianchi and Erkeshan volcanic fields were due to overall melting at the base of the heterogeneous lithospheric mantle beneath the northern Songliao basin and that admixture of the common sub-lithospheric component was locally introduced into the melted region by mechanism of propagating crack. This study is based on analytical data obtained for volcanic rocks in the Chinese-Russian Wudalianchi-Baikal Research Center on recent volcanism and environment. Major oxides were determined by "wet chemistry" at the Institute of the Earth's Crust SB RAS, Irkutsk. Trace-elements were measured by ICP-MS technique using mass-spectrometer Agilent 7500ce of the Center for collective use "Microanalysis" (Limnological Institute of SB RAS, Irkutsk) and Nd, Pb, and Sr isotopes by TIMS technique using mass-spectrometer Finnigan MAT 262 of the Center for collective use "Geodynamics and geochronology" (Institute of the Earth's Crust SB RAS). The work was supported by the RFBR grant № 16-05-00774. References Chuvashova, I.S., Rasskazov, S.V., Liu, J., Meng, F., Yasnygina, T.A., Fefelov, N.N., Saranina, E.V., 2009. Isotopically-enriched components in evolution of Late Cenozoic potassic magmatism in Heilongjiang province, northeast China, Proceedings of the Irkutsk State University. Series of Earth Sciences, 2 (2), pp. 181-198. Guide book for field mission to Wudalianchi National Park, China, 2010. Prepared by Wudalianchi National Park and Nature Management Committee Heilongjiang province, 50 p. Foulger, G.R., 2010. Plates vs. plumes: a geological controversy. Wiley-Blackwell, 328 p. Rasskazov, S.V., Yasnygina, T.A., Chuvashova, I.S. Mantle sources of the Cenozoic volcanic rocks of East Asia: Derivatives of slabs, the sub-lithospheric convection, and the lithosphere. Russian Journal of Pacific Geology. 2014. V. 8 (5), 355-371. Wang, Y., Chen, H., 2005. Tectonic controls on the Pleistocene-Holocene Wudalianchi volcanic field (northeastern China), Journal of Asian Earth Sciences, 24, pp. 419-431.
NASA Astrophysics Data System (ADS)
Liu, S.; Wang, L.
2006-12-01
The effective elastic thickness (Te) of lithosphere is one parameter describing the responses of the lithosphere to long term forces, and is still controversial in estimation by different methods. Here we present the effective elastic thickness of the lithosphere in continental China from heat flow data by the method proposed by Burov et al, J.G.R., 1995,100(B3):3905-3927. Our results show that Te varies much in different sub-areas in continental China due to different geological evolution and associated thermal regimes. Te is much greater than the crustal thickness in the area where the heat flow is really low and the lithosphere is really thick, indicating much more contribution from the lithospheric mantle and the dominative control of the mantle with olivine on the rheology of the lithosphere, and the major basins (Tarim, Junggar, Ordos and Sichuan basins) in central-western China share this characteristic. For instance, the Te of the Tarim basin is 66km with crustal thickness of 45km. Te is less than the crustal thickness in the region where the heat flow is relatively high, and approximates to the crustal brittle-ductile transition depth, suggesting more contribution from the crust and the dominative control of the felsic crust on the rheology of the lithosphere, and this phenomenon is obvious in the SE coastal China, eastern North China and the orogenic belts. Compared the estimated Te with the seismogenic layer thickness (Ts) available in China, it is also found that the Te is much greater than Ts in the major basins with low heat flow, and is similar to Ts in the active zones with high heat flow, which is inconsistent with that Te is usually smaller than Ts proposed by Maggi et al., Geology,2000,28(6):495-498. Generally, two end elements rheological modes for continental lithosphere of the strong crust-weak mantle and the weak crust-strong mantle are all available in continental China considering different thermal regime, composition and geological evolution.
NASA Astrophysics Data System (ADS)
Collins, John A.; Molnar, Peter
2014-10-01
Pn travel times from regional earthquakes recorded both by stations on New Zealand and by ocean bottom seismographs deployed offshore indicate anisotropy in the uppermost mantle beneath the region. The largest anisotropy of ~8% (±2%, 1σ) lies beneath the deforming part of the South Island to just off its West Coast, a zone roughly 100-200 km wide. The fastest propagation is aligned N60°E (±3°), essentially parallel to the largely strike-slip relative plate motion since 20 Ma, also ~ N60°E. The magnitude of anisotropy decreases abruptly northwest and southeast of this zone, and on the southeast side of the island, the orientation of fastest propagation is between N32°W and N-S. The ~ N60°E orientation of fast propagation is consistent with finite strain within the uppermost part of the mantle lithosphere if the measured 850 km of displacement of the Pacific plate past the Australia plate is spread over a region with a width of 100-200 km. The agreement of this orientation of fast propagation with the orientation or relative plate motion suggests the possibility of but does not require some dynamic recrystallization in rock as cold as 500-800°C, where Peierls creep seems to be the likely deformation mechanism. Such a strain distribution matches deformation of a thin viscous sheet that obeys a constitutive relationship of the form ɛ>˙ ~ τn, where ɛ>˙ is the average strain rate and τ is the operative deviatoric stress, with an average value of n ≈ 3-10. Presumably, the NW-SE fast propagation in the region southeast of the island results from strain that precedes the Cenozoic deformation that has shaped the island.
NASA Astrophysics Data System (ADS)
Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.
2009-12-01
We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.
Lithospheric processes that enhance melting at rifts
NASA Astrophysics Data System (ADS)
Elkins-Tanton, L. T.; Furman, T.
2008-12-01
Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.
Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism
NASA Astrophysics Data System (ADS)
Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.
2016-07-01
The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.
Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits
Bierlein, F.P.; Groves, D.I.; Goldfarb, R.J.; Dube, B.
2006-01-01
Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens. ?? Springer-Verlag 2006.
The delineation and interpretation of the earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1989-01-01
In an attempt to understand the mechanical interaction of a growing lithosphere containing fracture zones with small and large scale mantle convection, which gives rise to geoid anomalies in oceanic regions, a series of fluid dynamical experiments is in progress to investigate: (1) the influence of lithosphere structure, fluid depth and viscosity field on the onset, scale, and evolution of sublithospheric convection; (2) the role of this convection in determining the rate of growth of lithosphere, especially in light of the flattening of the lithosphere bathymetry and heat flow at late times; and (3) combining the results of both numerical and laboratory experiments to decide the dominate factors in producing geoid anomalies in oceanic regions through the thermo-mechanical interaction of the lithosphere and subjacent mantle. The clear existence of small scale convection associated with a downward propagating solidification front (i.e., the lithosphere) and a larger scale flow associated with a discontinuous upward heat flux (i.e., a fracture zone) has been shown. The flows exist simultaneously and each may have a significant role in deciding the thermal evolution of the lithosphere and in understanding the relation of shallow mantle convection to deep mantle convection. This overall process is reflected in the geoid, gravity, and topographic anomalies in the north-central Pacific. These highly correlated fields of intermediate wavelength (approx. 200 to 2000 km) show isostatic compensation by a thin lithosphere for shorter (less than or equal to approx. 500 km), but not the longer, wavelengths. The ultimate, dynamic origin of this class of anomalies is being investigated.
NASA Astrophysics Data System (ADS)
Bezada, Maximiliano J.
2017-11-01
The long and often complicated tectonic history of continental lithosphere results in lateral strength heterogeneities which in turn affect the style and localization of deformation. In this study, we produce a model for the attenuation structure of Iberia and northern Morocco using a waveform-matching approach on P-wave data from teleseismic deep-focus earthquakes. We find that attenuation is correlated with zones of intraplate deformation and seismicity, but do not find a consistent relationship between attenuation and recent volcanism. The main features of our model are low to moderate Δt* in the undeformed Tertiary basins of Spain and high Δt* in areas deformed by the Alpine orogeny. Additionally, low Δt* is found in areas where the Alboran slab is thought to be attached to the Iberian and African lithosphere, and high Δt* where it has detached. These features are robust with respect to inversion parameters, and are consistent with independent data. Very mild backazimuthal dependence of the measurements and comparison with previous results suggest that the source of the attenuation is sub-crustal. In line with other recent studies, the range of Δt* we observe is much larger than can be expected from lithospheric thickness or temperature variations.
NASA Astrophysics Data System (ADS)
Braitenberg, Carla; Mariani, Patrizia
2015-03-01
The GOCE gravity field is globally homogeneous at the resolution of about 80km or better allowing for the first time to analyze tectonic structures at continental scale. Geologic correlation studies propose to continue the tectonic lineaments across continents to the pre-breakup position. Tectonic events that induce density changes, as metamorphic events and magmatic events, should then show up in the gravity field. Applying geodynamic plate reconstructions to the GOCE gravity field places today’s observed field at the pre-breakup position. The same reconstruction can be applied to the seismic velocity models, to allow a joint gravity-velocity analysis. The geophysical fields allow to control the likeliness of the hypothesized continuation of lineations based on sparse surface outcrops. Total absence of a signal, makes the cross-continental continuation of the lineament improbable, as continental-wide lineaments are controlled by rheologic and compositional differences of lithospheric mantle. It is found that the deep lithospheric roots as those found below cratons control the position of the positive gravity values. The explanation is that the deep lithospheric roots focus asthenospheric upwelling outboard of the root protecting the overlying craton from magmatic intrusions. The study is carried out over the African and South American continents.
NASA Technical Reports Server (NTRS)
Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.
2015-01-01
A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.
NASA Astrophysics Data System (ADS)
Alvarez, T.; Mann, P.; Wood, L. J.; Vargas, C. A.; Latchman, J. L.
2013-12-01
Topography, basin structures and geomorphology of the southeast Caribbean-northeast South American margin are controlled by a 200-km-long transition from westward-directed subduction of South American lithosphere beneath the Caribbean plate, to east-west strike-slip motion of the Caribbean and South American plates. Our study of structures and basins present in the transitional area integrates a tomographic study of the lithospheric structures associated with lateral variations in the subduction of the South American lithosphere and orientation of the slab beneath the Caribbean plate as well as the evolution of overlying sedimentary basins imaged with deep-penetration seismic data kindly provided by the oil industry and Trinidad & Tobago government agencies. We use an earthquake dataset containing more than 700 events recorded by the eastern Caribbean regional seismograph network to build travel-time and attenuation tomography models used to image the mantle to depths of 100 km beneath transition zone. Approximately 10,000 km of 2D seismic reflection lines which are recorded to depths > 12 seconds TWT are used to interpret basin scale structures including tectono-stratigraphic sequences and structures which deform and displace sedimentary sequences. We use the observed satellite gravity to generate a gravity model for key sections traversing the tectonic transitional zone and to determine depth to basement in basins with sedimentary fill > 12 km. Within the study area, the dip of subducted South American oceanic lithosphere imaged on tomographic images is variable from ~44 to ~24 degrees. There is a distinct low gravity, low velocity, high attenuation, northwest - southeast trending lineation located east of Trinidad which defines the location of a Mesozoic oceanic fracture zone which accommodated the opening of the Central Atlantic during the Jurassic to Middle Cretaceous. This feature is also coincident with the present-day continent-ocean boundary and acts as a lithospheric weakness during subduction. We propose that this fracture zone is a key transition point between the subduction of South American/Atlantic oceanic lithosphere; which descends into the mantle, to the northeast, and the under-thrusting of transitional to continental South American lithosphere which resists subduction to the southwest. Maps of South American basement and its overlying Cretaceous passive margin illustrates a northwesterly basement dip with a distinct change in angle of the northwest dip across the paleo-fracture zone consistent with our tomographic model. We propose that flexure of the subducting South American plate at this location exerts a critical control on the formation and evolution of the basins and the lateral distribution of Cretaceous through Pleistocene stratigraphic fill. East of the fracture zone, the overlying strata is deformed by active subduction and accretionary prism processes with a wider zone of shortening with lower overall topography, while to the west of the fracture zone there is active oblique collision with a narrower zone of shortening and greater uplift.
Electrically Anisotropic 35 Ma Pacific Lithosphere
NASA Astrophysics Data System (ADS)
Chesley, C. J.; Key, K.; Constable, S.; Behrens, J.; MacGregor, L.
2017-12-01
Geophysical studies of anisotropy in the oceanic lithosphere and asthenosphere can yield crucial insights into the processes of plate formation and evolution as the plate cools and thickens. While most previous studies have employed seismic methods to investigate anisotropy, here we examine the electrical conductivity anisotropy as constrained by controlled-source electromagnetic (CSEM) data collected during the Anisotropy and Physics of the Pacific Lithosphere Experiment (APPLE). Unlike passive magnetotelluric data, which are not particularly sensitive to the resistive part of the lithosphere or its anisotropy, CSEM data are highly sensitive to anisotropy in both the resistive crust and uppermost mantle. The APPLE data include a 30 km radius circular deep-tow of a Horizontal Electric Dipole (HED) transmitter around orthogonal pairs of HED receivers. The circular tow was optimized to measure azimuthal anisotropy, while radially oriented data at ranges from 14 to 70 km provided constraints on depth dependence of bulk conductivity. We inverted these data with a nonlinear anisotropic inversion that allows for laterally transverse isotropy, with the vertical plane of isotropy aligned orthogonal to the paleo-spreading direction. Our best model shows at least an order of magnitude resistivity difference between the paleo-spreading and paleo-ridge strike directions in both the crust and upper mantle. In the crust, conductivity is higher in the paleo-ridge and vertical directions. The opposite is true in the upper mantle, where conductivity is ten times higher in the paleo-spreading direction. Since the study area is centered on 35 Ma lithosphere, it is unlikely that melt plays a role in the observed anisotropy. Instead we propose that the crustal anisotropy is due to conductive clay minerals in normal faults promoted by hydration during paleo-extension close to the mid-ocean ridge. The upper mantle anisotropy potentially results from a crystal preferred orientation of olivine induced by shear deformation. These findings offer clues about the processes associated with oceanic spreading and may be of import to ophiolite studies.
Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction
Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs
2016-01-01
The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere. PMID:27009463
NASA Astrophysics Data System (ADS)
Motavalli-Anbaran, Seyed-Hani; Zeyen, Hermann; Brunet, Marie-FrançOise; Ardestani, Vahid Ebrahimzadeh
2011-10-01
Using gravity, geoid, topography and surface heat flow data, we have modeled the density and temperature distribution in the lithosphere along three profiles crossing Iran in SW-NE direction from the Arabian foreland in the SW to the South Caspian Basin and the Turan Platform to the NE. We find thin lithosphere (100-120 km) underneath central Iran, whereas thick lithosphere (up to 240 km) is found underneath Arabia, the South Caspian Basin and the Turan Platform. Crustal thickening is found under the Zagros and Alborz mountains (up to 60 km) and under the Kopet-Dagh Mountains (48 km), whereas the thin crust under the southern Caspian Sea is either an oceanic crust or a highly thinned continental one. Below the South Caspian Sea, the shape of the crust-mantle interface and the base of the lithosphere indicate a subduction of the South Caspian block toward the N-NW. Further east, under the Kopet-Dagh, no evidence for active subduction is visible. This can be explained by a rheologically very strong South Caspian block, surrounded by weaker continental lithosphere.
Reconciling laboratory and observational models of mantle rheology in geodynamic modelling
NASA Astrophysics Data System (ADS)
King, Scott D.
2016-10-01
Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high-stress regions of the lower mantle, may be in the dislocation creep (power-law) regime. Due to our limited knowledge of mantle grain size, the best hope to resolve the question of whether a region is in diffusion creep (Newtonian rheology) or dislocation or grain-boundary creep (power-law rheology), may be the presence of absence of seismic anisotropy, because there is no mechanism to rotate crystals in diffusion creep which would be necessary to develop anisotropy from lattice preferred orientation. While non-intuitive, the presence or absence of a weak region in the upper mantle has a profound effect on lower mantle flow. With an asthenosphere, the lower mantle organizes into a long-wavelength plan form with one or two (degree 1 or degree 2) large downwellings and updrafts, which may contain a cluster of plumes. The boundary between the long-wavelength lower mantle flow and upper region flow may be deeper, likely 800-1200 km, than the usually assumed base of the transition zone. There are competing hypotheses as to whether this change in flow pattern is caused by a change in rheology, composition, or phase.
Limits on modes of lithospheric heat transport on Venus from impact crater density
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1987-01-01
Based on the observed density of impact craters on the Venus surface obtained from Venera 15-16 radar images, a formalism to estimate the upper bounds on the contributions made to lithospheric heat transport by volcanism and lithospheric recycling is presented. The Venera 15-16 data, if representative of the entire planet, limit the average rate of volcanic resurfacing on Venus to less than 2 cu km/yr (corresponding to less than 1 percent of the global heat loss), and limit the rate of lithospheric recycling to less than 1.5 sq km/yr (and probably to less than 0.5 sq km/yr), corresponding to 25 percent (and to 9 percent) of the global heat loss. The present results indicate that heat loss at lithospheric levels in Venus is dominated by conduction.
Passive Seismology On- and Offshore Costa Rica
NASA Astrophysics Data System (ADS)
Gossler, J.; Flueh, E.; Goltz, C.; Arroyo Hidalgo, I.; Boschini, I.; Mora, M.
2003-12-01
The theme of the National German Research Center SFB 574 "Volatiles and Fluids in Subduction Zones" subproject A2 is to understand the nature of coupling and mass transfer between upper and lower plate of the subduction zone in central Costa Rica. An amphibious seismic network, consisting of 23 ocean bottom sensors and 15 landstations, was deployed in the coastal Pacific region of central Costa Rica near Jaco in April 2002. The network was moved south-east towards Quepos in October 2002 and operated until spring this year. Our main objective is to detect and evaluate the seismicity induced by the convergent dynamics between the subducting oceanic lithosphere and the Caribbean plate. The spatial dimensions of the joined marine and land networks are designed to register events associated with the downgoing plate. We report details on the campaign and show first results of the standard investigation of the data (i.e. determinatin of hypocenters, magnitudes, polarities and focal mechanisms), including first interpretations.
NASA Astrophysics Data System (ADS)
Darbyshire, F. A.; Afonso, J. C.; Porritt, R. W.
2015-12-01
The Paleozoic Hudson Bay intracratonic basin conceals a Paleoproterozoic Himalayan-scale continental collision, the Trans-Hudson Orogen (THO), which marks an important milestone in the assembly of the Canadian Shield. The geometry of the THO is complex due to the double-indentor geometry of the collision between the Archean Superior and Western Churchill cratons. Seismic observations at regional scale show a thick, seismically fast lithospheric keel beneath the entire region; an intriguing feature of recent models is a 'curtain' of slightly lower wavespeeds trending NE-SW beneath the Bay, which may represent the remnants of more juvenile material trapped between the two Archean continental cores. The seismic models alone, however, cannot constrain the nature of this anomaly. We investigate the thermal and compositional structure of the Hudson Bay lithosphere using a multi-observable probabilistic inversion technique. This joint inversion uses Rayleigh wave phase velocity data from teleseismic earthquakes and ambient noise, geoid anomalies, surface elevation and heat flow to construct a pseudo-3D model of the crust and upper mantle. Initially a wide range of possible mantle compositions is permitted, and tests are carried out to ascertain whether the lithosphere is stratified with depth. Across the entire Hudson Bay region, low temperatures and a high degree of chemical depletion characterise the mantle lithosphere. Temperature anomalies within the lithosphere are modest, as may be expected from a tectonically-stable region. The base of the thermal lithosphere lies at depths of >250 km, reaching to ~300 km depth in the centre of the Bay. Lithospheric stratification, with a more-depleted upper layer, is best able to explain the geophysical data sets and surface observables. Some regions, where intermediate-period phase velocities are high, require stronger mid-lithospheric depletion. In addition, a narrow region of less-depleted material extends NE-SW across the Bay, likely associated with the trace of the THO collision and the entrapment of juvenile material between the highly-depleted Archean cores.
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced negative buoyancy and can more easily founder to the very base of the mantle. Plateau segregation remains statistical and no sharp compositional interface is expected from the multiple fate of the plates. We show that the variable depth subduction of heavily laden plates can prevent full vertical mixing and preserve a vertical concentration gradient in the mantle. In addition, it can account for the preservation of scattered remnants of primitive material in the deep mantle and therefore for the Ar and (3)He observations in ocean-island basalts.
Mercury's lithospheric thickness and crustal density, as inferred from MESSENGER observations
NASA Astrophysics Data System (ADS)
James, P. B.; Mazarico, E.; Genova, A.; Smith, D. E.; Neumann, G. A.; Solomon, S. C.
2015-12-01
The gravity field and topography of Mercury measured by the MESSENGER spacecraft have provided insights into the thickness of the planet's elastic lithosphere, Te. We localized the HgM006 free-air gravity anomaly and gtmes_125v03 shape datasets to search for theoretical elastic thickness solutions that best fit a variety of localized coherence spectra between Bouguer gravity anomaly and topography. We adopted a crustal density of ρcrust =2700 kg m-3 for the Bouguer gravity correction, but density uncertainty did not markedly affect the elastic thickness estimates. A best-fit solution in the northern smooth plains (NSP) gives an elastic thickness of Te =30-60 km at the time of formation of topography for a range of ratios of top to bottom loading from 1 to 5. For a mechanical lithosphere with a thickness of ~2Te and a temperature of 1600 °C at the base, this solution is consistent with a geothermal gradient of 9-18 K km-1. A similar coherence analysis exterior to the NSP produces an elastic thickness estimate of Te =20-50 km, albeit with a poorer fit. Coherence in the northern hemisphere as a whole does not approach zero at any wavelength, because of the presence of variations in crustal thickness that are unassociated with elastic loading. The ratios and correlations of gravity and topography at intermediate wavelengths (harmonic degree l between 30 and 50) also constrain regional crustal densities. We localized gravity and topography with a moving Slepian taper and calculated regionally averaged crustal densities with the approximation ρcrust=Zl/(2πG), where Zl is the localized admittance and G is the gravitational constant. The only regional density estimates greater than 2000 kg m-3 for l=30 correspond to the NSP. Density estimates outside of the NSP were unreasonably low, even for highly porous crust. We attribute these low densities to the confounding effects of crustal thickness variations and Kaula filtering of the gravity dataset at the highest harmonic degrees, both of which tend to introduce a downward bias to crustal density estimation. An alternative analysis—which corrected for crustal thickness variability and was restricted to regions with gravity/topography coherence greater than 0.6—yielded an aggregate crustal density of ρcrust=2602 ± 470 kg m-3 for Mercury's high northern latitudes.
Controls on sublithospheric small-scale convection on Curie depths
NASA Astrophysics Data System (ADS)
Likerman, Jeremias; Zlotnik, Sergio; Chun-Feng, Li
2017-04-01
As the ocean lithosphere cools and thickens, its bottom layer goes unstable leading to sub-lithospheric small-scale convection (SSC). Since SSC was originally proposed, there have been considerable efforts regarding the understanding of the physics that rules the thermal instabilities of the SSC (e.g. Dumoulin et al, 1999; Solomatov and Moresi, 2000). Over the last several years, it is understood that the interaction between the plate movement and the SSC tends to form longitudinal (LRs or also called 'Richter rolls') and transverse rolls (TRs), of which the axis is parallel and perpendicular to the plate motion, respectively. The geometry of these rolls have been been recently inferred by Li et al (2013) using Curie depths from the North Atlantic as proxies for plates temperatures. They showed that Curie depths have a large oscillating and heterogeneous patterns that could be related to SSC. In the North Atlantic transverse rolls seem predominant. In this work we analyze, by means of 3D dynamical numerical simulations, the influence of SSC on the Curie depths patterns observed in the North Atlantic and Pacific plates. We investigate the behaviour of the Curie isotherms trying to determine if SSC is able to reproduce the observed data, and the influence of several poorly constrained rheological parameters. Our numerical simulations show that: a) using realistic laboratory-constrained rheologies and temperature it is possible to modify temperatures as low as those at Curie depths; b) transverse rolls are generated as well as longitudinal rolls on those isotherms; c) the spreading rate is a first order control on the developing of transverse rolls. References Dumoulin, C., Doin, M. P., & Fleitout, L. (1999). Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology. Journal of Geophysical Research: Solid Earth, 104(B6), 12759-12777. Li, C. F., Wang, J., Lin, J., & Wang, T. (2013). Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model. Geochemistry, Geophysics, Geosystems, 14(12), 5078-5105. Solomatov, V. S., & Moresi, L. N. (2000). Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. Journal of Geophysical Research: Solid Earth, 105(B9), 21795-21817.
The Stability of Tibetan Mantle Lithosphere
NASA Astrophysics Data System (ADS)
Houseman, Gregory; England, Philip
2017-04-01
The large area of thickened crust beneath the Tibetan Plateau is a consequence of sustained continental convergence between India and the Eurasian land mass during the last 50 m.y. Although the Tibetan crust has thickened, there has been much debate about the consequences for its sub-crustal mantle lithosphere. The onset of crustal thinning in the late Miocene appears to require an increase in the gravitational potential energy of the plateau at that time. One explanation for that increase depended on the idea that the mantle lithosphere beneath Tibet had been replaced by asthenosphere, either by some form of convective thinning or by a delamination process akin to retreating subduction acting on the unstable lithospheric mantle layer. Such ideas seem consistent with the history of magmatism and volcanism on the plateau. However, the dispersion of surface waves crossing the plateau implies that a relatively cold and fast layer of mantle remains beneath the plateau to depths of at least 250 km. Because the surface wave data appear inconsistent with the idea that mantle lithosphere has been removed, we investigate an alternative explanation that could explain the apparent increase in gravitational potential energy of the Tibetan lithosphere. If that mantle lithosphere has remained largely in place due to an intrinsic compositional buoyancy but, on thickening, has become unstable to an internal convective overturn, then: (1) mantle material at near asthenospheric temperatures would be emplaced below the crust, and (2) colder mantle from beneath the Moho could become stranded above about 250 km depth. This mechanism is feasible if the Tibetan sub-continental mantle lithosphere is depleted and intrinsically less dense than the underlying asthenosphere. The mechanism is broadly consistent with the surface wave analyses (which cannot resolve the short horizontal wavelengths on which overturn is likely to occur), and it predicts the kind of short-wavelength variations that are revealed by body-wave tomography. The thermal re-equilibration of the disturbed lithosphere may take 100s of m.y. but there is a rapid transient transfer of heat as the coldest parts of the mantle lithosphere are juxtaposed with the asthenosphere and the hotter parts juxtaposed with the base of the crust. Heat transfer at the base of the lithosphere could explain a short-term uplift of the surface ( 500 m in 10 m.y.). Heat transfer at the Moho could cause lower-crustal melting and volcanism, and could trigger retrograde metamorphic reactions in the lowermost crust that would contribute to further uplift. The increase in gravitational potential energy of the lithosphere associated with surface uplift thereby can explain the onset of extension in the plateau.
The stress field below the NE German Basin: effects induced by the Alpine collision
NASA Astrophysics Data System (ADS)
Marotta, A. M.; Bayer, U.; Scheck, M.; Thybo, H.
2001-02-01
We use a thin-sheet approach for a viscous lithosphere to investigate the effects induced by the Alpine collision on the vertical deformation and regional stress in northern Europe, focusing on the NE German Basin. New seismic studies indicate a flexural-type deep crustal structure under the basin, which may be induced by compressive forces transmitted from the south and related to Alpine tectonics. Finite element techniques are used to solve the vertical deformation and stress field for a viscous European lithosphere with horizontal rheological heterogeneities. Our results support the idea that a relatively strong lithosphere below the northern margin of the German Basin at the transition into the Baltic Shield may explain the characteristic regional stress field, especially the fan-like pattern that is observed within the region.
Lithospheric Architecture Beneath Hudson Bay
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.
2015-12-01
Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches 350 km thick but is thinner (200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the lithosphere-asthenosphere boundary (LAB) conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.
Impact of rheological layering on rift asymmetry
NASA Astrophysics Data System (ADS)
Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault
2015-04-01
Although numerous models of rift formation have been proposed, what triggers asymmetry of rifted margins remains unclear. Parametrized material softening is often employed to induce asymmetric fault patterns in numerical models. Here, we use thermo-mechanical finite element models that allow softening via thermal weakening. We investigate the importance of lithosphere rheology and mechanical layering on rift morphology. The numerical code is based on the MILAMIN solver and uses the Triangle mesh generator. Our model configuration consists of a visco-elasto-platic layered lithosphere comprising either (1) only one brittle-ductile transition (in the mantle) or (2) three brittle-ductile transitions (one in the upper crust, one in the lower crust and one in the mantle). We perform then two sets of simulations characterized by low and high extensional strain rates (5*10-15 s-1, 2*10-14 s-1). The results show that the extension of a lithosphere comprising only one brittle-ductile transition produces a symmetric 'neck' type rift. The upper and lower crusts are thinned until the lithospheric mantle is exhumed to the seafloor. A lithosphere containing three brittle-ductile transitions favors strain localization. Shear zones at different horizontal locations and generated in the brittle levels of the lithosphere get connected by the weak ductile layers. The results suggest that rheological layering of the lithosphere can be a reason for the generation of asymmetric rifting and subsequent rift morphology.
NASA Astrophysics Data System (ADS)
Regenauer-Lieb, Klaus; Weinberg, Roberto F.; Rosenbaum, Gideon
2012-04-01
The traditional definition of lithospheric strength is derived from the differential stresses required to form brittle and ductile structures at a constant strain rate. This definition is based on dissipative brittle and ductile deformation and does not take into account the ability of the lithosphere to store elastic strain. Here we show the important role of elasticity in controlling the long-term behaviour of the lithosphere. This is particularly evident when describing deformation in a thermodynamic framework, which differentiates between stored (Helmholtz free energy) and dissipative (entropy) energy potentials. In our model calculations we stretch a continental lithosphere with a wide range of crustal thickness (30-60 km) and heat flow (50-80 mW/m2) at a constant velocity. We show that the Helmholtz free energy, which in our simple calculation describes the energy stored elastically, converges for all models within a 25% range, while the dissipated energy varies over an order of magnitude. This variation stems from complex patterns in the local strain distributions of the different models, which together operate to minimize the Helmholtz free energy. This energy minimization is a fundamental material behaviour of the lithosphere, which in our simple case is defined by its elastic properties. We conclude from this result that elasticity (more generally Helmholtz free energy) is an important regulator of the long-term geological strength of the lithosphere.
U-Pb thermochronology of the lower crust: producing a long-term record of craton thermal evolution
NASA Astrophysics Data System (ADS)
Blackburn, T.; Bowring, S. A.; Mahan, K. H.; Perron, T.; Schoene, B.; Dudas, F. O.
2010-12-01
The EarthScope initiative is focused on providing an enhanced view of the North American lithosphere and the present day stress field of the North American continent. Of key interest is the interaction between convecting asthenosphere and the conducting lithospheric mantle that underlie the continents, especially the cold ‘keels’ that underlie Archean domains. Cratonic regions are in general characterized by minimal erosion and or sediment accumulation. The Integration of seismic tomography, and mantle xenolith studies reveal a keel of seismically fast and relatively buoyant and viscous mantle; physical properties that are intimately linked with the long-term stability and topographic expression of the region. Missing from this model of the continental lithosphere is the 4th dimension--time--and along with it our understanding of the long-term evolution of these stable continental interiors. Here we present a thermal record from the North American craton using U-Pb thermochronology of lower crustal xenoliths. The use of temperature sensitive dates on lower crustal samples can produce a unique time-temperature record for a well-insulated and slowly cooling lithosphere. The base of the crust is insulated enough to remain unperturbed by any plausible changes to surface topography, yet unlike the subadjacent lithospheric mantle, contains accessory phases amenable to U-Pb dating (rutile, apatite, titanite). With near steady state temperatures in the lower crust between 400-600 °C, U-Pb thermochronometers with similar average closure temperatures for Pb are perfectly suited to record the long-term cooling of the lithosphere. Xenoliths from multiple depths, and across the craton yield time-temperature paths produced from U-Pb thermochronometers that record extremely slow cooling (<0.25 °C/Ma) over time scales of billions of years. Combining these data with numerical thermal modeling allow constraints to be placed on the dominant heat transfer mechanisms operating within the lithosphere including exhumation, conduction, decay of heat producing elements and thickness of crustal layers/lithospheric mantle. The thermal histories produced from this numerical model can in turn be used to calculate model U-Pb thermochronometric data using a numerical solution to the diffusion/production equation. Integration of thermal and volume diffusion models for the U-Pb system suggests that the extreme slow cooling recorded by U-Pb thermochronology is consistent with low integrated exhumation rates (<0.005 km/Ma). This exhumation rate is integrated over time-scales of hundreds of million to a billion years and does not preclude the possibility for rapid or short-wave length uplift/subsidence. This long-term record of continental lithosphere stability and apparent neutral buoyancy of the craton within a cooling mantle may be further used to refine our estimates of secular cooling within the mantle.
NASA Astrophysics Data System (ADS)
Greenhalgh, E. E.; Kusznir, N. J.
2006-12-01
Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the N.E. Atlantic. The inversion of gravity data to determine crustal thickness incorporates a lithosphere thermal gravity anomaly correction for both oceanic and continental margin lithosphere. Predicted crustal thicknesses in the Norwegian Basin are between 7 and 4 km on the extinct Aegir oceanic ridge which ceased sea-floor spreading in the Oligocene. Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thicknesses determined by gravity inversion for the Aegir Ridge are consistent with recent estimates derived using refraction seismology by Breivik et al. (2006). Failure to incorporate a lithosphere thermal gravity anomaly correction produces an over-estimate of crustal thickness. Oceanic crustal thicknesses within the Norwegian Basin are predicted by the gravity inversion to increase to 9-10 km eastwards towards the Norwegian (Moere) and westwards towards the Jan Mayen micro-continent, consistent with volcanic margin continental breakup at the end of the Palaeocene. The observation (from gravity inversion and seismic refraction studies) of thin oceanic crust produced by the Aegir ocean ridge in the Oligocene has implications for the temporal evolution of asthenosphere temperature under the N.E. Atlantic during the Tertiary. Thin Oligocene oceanic crust may imply cool (normal) asthenosphere temperatures during the Oligocene in contrast to elevated asthenosphere temperatures in the Palaeocene and Miocene-Recent as indicated by volcanic margin formation and the formation of Iceland respectively. Gravity inversion also predicts a region of thin oceanic crust to the west of the northern part of the Jan Mayen micro-continent and to the east of the thicker oceanic crust currently being formed at the Kolbeinsey Ridge. Thicker crust (c.f. ocean basins) is predicted for the Jan Mayen micro- continent south of Jan Mayen Island, with crust of the order of 20 km thickness extending southwards to connect with both the Faroes-Iceland Ridge and N.E. Iceland. Predicted crustal thicknesses under the Faroes- Iceland Ridge are approximately 25 km. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using magnetic isochron data to provide the age of oceanic lithosphere. The resulting crustal thickness determination and the location of ocean-continent transition (OCT) are however sensitive to errors in the magnetic isochron data. An alternative method of inverting satellite gravity to give crustal thickness, incorporating a lithosphere thermal correction, has been used which does not use magnetic isochron data and provides an independent prediction of crustal thickness and OCT location. The crustal thickness estimates and OCT locations detailed above are robust to these sensitivity tests.
NASA Astrophysics Data System (ADS)
Botter, C. D.; Prada, M.; Fullea, J.
2017-12-01
The Porcupine is a North-South oriented basin located southwest of Ireland, along the North Atlantic continental margin, formed by several rifting episodes during Late Carboniferous to Early Cretaceous. The sedimentary cover is underlined by a very thin continental crust in the center of the basin (<5 km) that has been generally associated with hyperextension and mantle serpentinization. From North to South lithospheric stretching factors increase drastically from 2 in the North to >10 in the South. In spite of the abundant literature, most of the oil and gas exploration in the Porcupine Basin has been targeting its northern part and is mostly restricted to relatively shallow depths, giving a restrained overview of the basin structure. Therefore, studying the thermodynamic and composition of the deep and broader structures is needed to understand the processes linked to the formation and the symmetry signature of the basin. Here, we model the present-day thermal and compositional structure of the continental crust and lithospheric mantle underneath the Porcupine basin using gravity, seismic, heat flow and elevation data. We use an integrated geophysical-petrological framework where most relevant rock properties (density, seismic velocities) are determined as a function of temperature, pressure and composition. Our modelling approach solves simultaneously the heat transfer, thermodynamic, geopotential, seismic and isostasy equations, and fit the results to all available geophysical and petrological observables (LitMod software). In this work we have implemented a module to compute self-consistently a laterally variable lithospheric elastic thickness based on mineral physics rheological laws (yield strength envelopes over the 3D volume). An appropriate understanding of local and flexural isostatic behavior of the basin is essential to unravel its tectonic history (i.e. stretching factors, subsidence etc.). Our Porcupine basin 3D model is defined by four lithological layers, representing properties from post- and syn-rift sequences to the lithospheric mantle. The computed yield strength envelopes are representative of hyperextended lithosphere and reveal the sensitivity of the lithospheric strength to the geotherm, as well as to the thickness and composition of the crust.
Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift
NASA Astrophysics Data System (ADS)
Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.
2014-12-01
Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower crust relative to the brittle crust above. Our study suggests that kinematics of crustal blocks in the ER is controlled by Africa and Somalia plates interaction at different scale and layers.
NASA Astrophysics Data System (ADS)
Chen, L.; Jiang, M.; Talebian, M.; Wan, B.; Ai, Y.; Ghods, A.; Sobouti, F.; Xiao, W.; Zhu, R.
2017-12-01
This study investigates the intracontinental deformation and its relationship with the structure of the crust and uppermost mantle in the NW Iranian plateau by combining new seismic and geological observations, to understand how this part of the plateau deformed to accommodate the Arabia-Eurasia plate collision and how the property of the lithosphere controls the deformation pattern. In contrast to the adjacent Anatolian block that exhibits westward large-scale extrusion, the northwesternmost part of the Iranian plateau shows dispersed intracontinental deformations with the development of numerous small-scale and discontinuous right-lateral strike-slip faults. The dispersed surface structures and deformation pattern correspond well to the active volcanism and seismically slow crust and uppermost mantle, and hence a weak lithosphere of the area. Further to the southeast are the western part of the Alborz Mountains and the southern Caspian Sea, both of which are characterized by stronger and more rigid lithosphere with relatively fast crust and uppermost mantle and absence of Quaternary volcanoes. A sharp Moho offset of 18 km has been imaged at the border of the Alborz and southern Caspian Sea using teleseismic receiver function data from a dense seismic array deployed under a collaborative project named "China-Iran Geological and Geophysical Survey in the Iranian Plateau (CIGSIP)". The sharp Moho offset and the minor undulations of the Moho on both sides indicate insignificant intracrustal deformation but mainly relative crustal movements between the Alborz Mountains and southern Caspian Sea, a behavior consistent with the relatively rigid nature of the lithosphere. Similar Moho offsets and lithospheric structures have been reported at the borders between the Kunlun Mountains and Qaidam or Tarim Basins in the northern margin of the Tibetan plateau, suggesting the occurrence of relative crustal movements with the effects of rigid continental lithosphere in the region. The new observations in the NW Iranian plateau combined with those in the Tibetan plateau thus provide solid evidence that intracontinental deformation is primarily controlled by the structure and properties of the continental lithosphere that may or may not have been severely altered by the collisional processes at plate margins.
NASA Astrophysics Data System (ADS)
Jacob, J.; Dyment, J.
2013-12-01
We make inferences on the structure, age and physical properties of the subducting northern Wharton Basin lithosphere by (1) modeling the structure and age of the lithosphere subducted under the Sumatra trench through three-plate reconstructions involving Australia, Antarctica, and India, and (2) superimposing the resulting fracture zones and magnetic isochrons to the geometry of the subducting plate as imaged by seismic tomography. The model of Pesicek et al. (2010) was digitized and smoothed in order to get a realistic topography of the subducting plate. The fracture zone and magnetic isochron geometry was draped on this topography assuming a N18°E direction of subduction. This model provides an effective means to study the effect of varying physical properties of the subducting lithosphere on the subduction along the Sumatra trench. 1) The age of the oceanic lithosphere determines its thickness and buoyancy, then its ability to comply with or resist subduction. We define the "subductability" of the lithosphere as the extra weight applied on the asthenosphere by the part of the bulk lithospheric density exceeding the asthenospheric density. A negative subductability means that the bulk lithospheric density is lower than the asthenospheric density, i.e. the plate will resist subduction, which is the case for lithosphere less than ~23 Ma. The area off Sumatra corresponds to oceanic lithosphere formed between 80 and 38 Ma, with a lower subductability than other areas along the Sunda Trench. 2) The spreading rate at which the oceanic lithosphere was formed has implications of the structure and composition of the oceanic crust, and therefore on its rheology. In a subduction zone, the contact between the subducting and overriding plates is often considered to be the top of the oceanic crust and the overlying sediments. The roughness of this interface and the rheology of its constitutive material are essential parameters constraining the slip of the down going plate in the seismogenic zone, and therefore the characteristics of the resulting earthquakes. Indeed the rough topography of a slow crust may offer more asperities, and therefore a more irregular slip, than the smooth topography of a fast crust. Conversely, the weak rheology of serpentines present in a slow crust would favor a regular slip, unlike the brittle magmatic rocks of the fast crust and the underlying dry olivine mantle. 3) Local features, including fracture zones and seamounts, may affect the seismic segmentation of the subduction zone. Many seamounts have been mapped in the Wharton Basin between 10°S and 15°S., their age decreasing from 136 Ma to the East to 47 Ma to the West, with anomalously younger ages in Christmas Island. Similar seamounts belonging to the same province may have existed further north and subducted in the Sunda Trench from southern Sumatra to Java and eastward. Conversely, the Roo Rise, a larger plateau located south of Eastern Java, may have more difficulty to enter the subduction, as suggested by the geometry of the Sunda Trench in this area, diverting from the regular arc by a maximum of 60 km. References Pesicek, J.D., C.H. Thurber, S. Widiyantoro, H. Zhang, H.R. DeShon, and E.R. Engdahl (2010), Sharpening the tomographic image of the subducting slab below Sumatra, the Andaman Islands and Burma, Geophys. J. Int., 182, 433-453.
NASA Astrophysics Data System (ADS)
Pilet, S.; Buchs, D.; Cosca, M. A.; Baumgartner, P.
2011-12-01
Petrological studies play a significant role in the debate regarding the origin of intraplate magmas by providing unequivocal constraints about the source(s) composition and melting processes related to basalt formation. Two major hypotheses are currently in debate: first, intraplate magmas are produced at depth (i.e. within the asthenosphere) by low-degrees melting of an enriched peridotitic source in the presence of CO2 [1]; second, alkaline magmas are produced by the melting of metasomatic hydrous veins present within the lithospheric mantle [2]. If the existence of metasomatic veins in the continental lithospheric mantle is well documented, their existence and the mechanism of their formation in an oceanic setting are still mostly unconstrained. Here we report new petrological data demonstrating that metasomatic veins can be produced within the oceanic lithosphere by percolation and differentiation of low-degree melts initially located in the low velocity zone [3]. The existence of metasomatic veins in the oceanic lithosphere is documented by cpx xenocrysts in accreted basaltic sills from northern Costa Rica. New field observations, 40Ar-39Ar radiometric dating, biostratigraphic ages and geochemical analyses indicate that the sills represent a possible, ancient analogue of petit-spot volcanoes produced off Japan by oceanic plate flexure [4]. The cpx xenocrysts are interpreted as a relic of metasomatic veins based on their composition, which is similar to that of cpx from metasomatic veins observed in mantle outcrops and xenoliths. The major and trace element contents of the studied cpx xenocrysts indicate that they crystallized at high pressure in a differentiated liquid. This liquid represents the last stage of a fractional crystallization process that produced early anhydrous cumulates followed by later hydrous cumulates, a mechanism similar to that proposed by Harte et al. [5] for the formation of metasomatic veins in the continental lithosphere. Monte Carlo simulation of this process indicates that the differentiation of low degree melts can produce metasomatic cumulates with a mineralogical and chemical composition suitable to be a source for alkaline rocks observed in an oceanic setting [6]. The presence of low degree melts at the base of the lithosphere has been recently suggested to explain the occurrence of the ubiquitous low seismic velocity zone at the base of the oceanic lithosphere [3]. We propose that tectonic processes such as plate flexure [4] or/and small scale mantle convection [7] can allow these melts to percolate and differentiate across the lithosphere to form metasomatic cumulates (i.e. veins). Such cumulates are likely to represent a potential source of alkaline rocks observed in intraplate ocean volcanoes, especially those produced by low volumes of magma. [1] Dasgupta et al. (2007) J. of Petrol. 48, 2093; [2] Pilet et al. (2008) Science 320, 916; [3] Kawakatsu et al. (2009) Science 324, 499; [4] Hirano et al. (2006) Science 313, 1426 ; [5] Harte et al. (1993) Phil. Trans. Royal Soc. of London, Series A 342, 1; [6] Pilet et al. (2011) J. of Petrol. doi:10.1093/petrology/egr007; [7] Ballmer et al. (2009) G3 doi:10.1029/2009GC002386.
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Kaban, Mikhail K.; Mooney, Walter D.; Cloetingh, Sierd A. P. L.
2014-12-01
Temperature and compositional variations of the North American (NA) lithospheric mantle are estimated using a new inversion technique introduced in Part 1, which allows us to jointly interpret seismic tomography and gravity data, taking into account depletion of the lithospheric mantle beneath the cratonic regions. The technique is tested using two tomography models (NA07 and SL2013sv) and different lithospheric density models. The first density model (Model I) reproduces the typical compositionally stratified lithospheric mantle, which is consistent with xenolith samples from the central Slave craton, while the second one (Model II) is based on the direct inversion of the residual gravity and residual topography. The results obtained, both in terms of temperature and composition, are more strongly influenced by the input models derived from seismic tomography, rather than by the choice of lithospheric density Model I versus Model II. The final temperatures estimated in the Archean lithospheric root are up to 150°C higher than in the initial thermal models obtained using a laterally and vertically uniform "fertile" compositional model and are in agreement with temperatures derived from xenolith data. Therefore, the effect of the compositional variations cannot be neglected when temperatures of the cratonic lithospheric mantle are estimated. Strong negative compositional density anomalies (<-0.03 g/cm3), corresponding to Mg # (100 × Mg/(Mg + Fe)) >92, characterize the lithospheric mantle of the northwestern part of the Superior craton and the central part of the Slave and Churchill craton, according to both tomographic models. The largest discrepancies between the results based on different tomography models are observed in the Proterozoic regions, such as the Trans Hudson Orogen (THO), Rocky Mountains, and Colorado Plateau, which appear weakly depleted (>-0.025 g/cm3 corresponding to Mg # ˜91) when model NA07 is used, or locally characterized by high-density bodies when model SL2013sv is used. The former results are in agreement with those based on the interpretation of xenolith data. The high-density bodies might be interpreted as fragments of subducted slabs or of the advection of the lithospheric mantle induced from the eastward-directed flat slab subduction. The selection of a seismic tomography model plays a significant role when estimating lithospheric density, temperature, and compositional heterogeneity. The consideration of the results of more than one model gives a more complete picture of the possible compositional variations within the NA lithospheric mantle.
Polar wander caused by the Quaternary glacial cycles and fluid Love number
NASA Astrophysics Data System (ADS)
Nakada, Masao
2002-06-01
Perturbations of the Earth's rotation caused by the Quaternary glacial cycles provide an important constraint on the viscosity of the deep mantle because they represent a long-wavelength response of the Earth to surface load redistribution. The predicted present-day polar wander speed (PWS) is, however, sensitive to both the lower mantle viscosity ( ηlm), the density jump at 670 km depth, and the lithospheric thickness and viscosity (e.g., Sabadini and Peltier, Geophys. J. R. Astron. Soc. 66 (1981) 553-578; Yuen et al., J. Geophys. Res. 87 (1982) 10745-10762; Peltier and Wu, Geophys. Res. Lett. 10 (1983) 181-184; Wu and Peltier, Geophys, J. R. Astron. Soc. 76 (1984) 753-791; Peltier, J. Geophys. Res. 89 (1984) 11303-11316; Vermeersen et al., J. Geophys. Res. 102 (1997) 27689-27702; Mitrovica and Milne, J. Geophys. Res. 103 (1998) 985-1005; Johnston and Lambeck, Geophys. J. Int. 136 (1999) 537-558; Nakada, Geophys. J. Int. 143 (2000) 230-238). For earth models with ηlm<5×10 21 Pa s and an elastic lithosphere, the present-day PWS is very sensitive to the M1 mode (buoyancy mode) related to the density jump at 670 km depth [Mitrovica and Milne, J. Geophys. Res. 103 (1998) 985-1005]. The contribution of the M1 mode, however, is less significant for earth models with a viscoelastic lithosphere [Nakada, Geophys. J. Int. 143 (2000) 230-238]. This is due to the fact that this contribution depends on the relative strength of the M1 mode, Δ k2T(M1)/ kfT, where Δ k2T(M1) is the magnitude of tidal Love number ( k2T) of the M1 mode and kfT is the value of k2T in the fluid limit (fluid Love number). The magnitude of kfT for earth models with a viscoelastic lithosphere is larger than that for an elastic lithosphere, and it is smaller for a thicker elastic lithosphere than for a thinner one. Thus, for earth models with a viscoelastic lithosphere, the PWS is mainly sensitive to the lower mantle viscosity regardless of the behavior of the 670 km density discontinuity. This relation also explains why the predicted PWS increases with increasing thickness of an elastic lithosphere. That is, since the value of Δ k2T(M1)/ kfT with a thicker elastic lithosphere is larger than that with a thinner elastic lithosphere, the M1 mode will have a higher contribution in the case of a thicker elastic lithosphere.
Global model for the lithospheric strength and effective elastic thickness
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2013-08-01
Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.
NASA Astrophysics Data System (ADS)
Torne, Montserrat; Zeyen, Hermann; Jimenez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume
2017-04-01
We investigate the lithospheric density structure of the Iberian Peninsula and the surrounding Atlantic and Mediterranean margins from a 3D joint inversion of free-air, geoid and elevation data, based on a Bayesian approach. In addition, the crustal structure has been further constrained by incorporating about 750 Moho values from DSS investigations and RF analysis covering the entire region. Our preliminary results shows a significant lithospheric deformation along the plate boundaries, the Bay of Biscay-Pyrenees to the North and the Azores-Gibraltar to the south, where the CMB and LAB are located at depths more than 45 and 150 km, respectively. Noteworthy is the arcuate lithospheric thickening located at the westernmost end of the Gibraltar Arc system showing the presence of the NW-to-Westward retreated Gibraltar Arc slab that has given rise to the formation of the Betics-Rif Alpine belt system and the back arc Alboran basin. To the west, the stable-slightly deformed Iberian massif shows a quasi-flat CMB and LAB topography (30 to 32 km and about 110 km, respectively). The crust and mantle lithosphere thin towards the Mediterranean and Atlantic margins, with the exception of its northern margin where lithospheric thickening extends offshore to the Gulf of Biscay. In the western Mediterranean the SE-Neogene slab retreat has resulted in a significant thinning of the crust and mantle lithosphere. Thin lithosphere is also observed in the Tagus-Horseshoe abyssal plain region where the LAB shallows to less than 90 km. This work has been funded by the Spanish projects MITE (CGL2014-59516-P) and WEME-CSIC project 201330E11.
NASA Astrophysics Data System (ADS)
Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.
2016-12-01
The present tectonic configuration of the southeastern United States is a product of earlier episodes of arc accretion, continental collision and breakup. This region is located in the interior of the North American Plate, some 1500 km away from closest active plate margin. However, there is ongoing tectonism across the area with multiple zones of seismicity, rejuvenation of the Appalachians of North Carolina, Virginia, and Pennsylvania, and Cenozoic intraplate volcanism. The mechanisms controlling this activity and the modern-day state of stress remain enigmatic. Two factors often regarded as major contributors are plate strength and preexisting inherited structures. Recent improvements in broadband seismic data coverage in the region associated with the South Eastern Suture of the Appalachian Margin Experiment (SESAME) and EarthScope Transportable Array make it possible to obtain detailed information on the structure of the lithosphere in the region. Here we present new tomographic images of the upper mantle beneath the Southeastern United States, revealing large-scale structural variations in the upper mantle. Our results indicate fast seismic velocity patterns that can be interpreted as ongoing lithospheric foundering. We observe an agreement between the locations of these upper mantle anomalies and the location of major zones of tectonism, volcanism and seismicity, providing a viable explanation for modern-day activity in this plate interior setting long after it became a passive margin. Based on distinct variations in the geometry and thickness of the lithospheric mantle and foundered lithosphere, we propose that piecemeal delamination has occurred beneath the region throughout the Cenozoic, removing a significant amount of reworked/deformed mantle lithosphere. Ongoing lithospheric foundering beneath the eastern margin of stable North America explains significant variations in thickness of lithospheric mantle across the former Grenville deformation front.
Is there uniformitarian or catastrophic tectonics on Venus?
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1993-01-01
The distribution and modification of craters on Venus favors a near global, volcanic resurfacing event about 500 Myrs ago. Such an event indicates that the tectonic evolution of Venus was catastrophic rather than uniformitarian. The creation of a global, single-plate lithosphere on Venus about 500 Myrs ago can explain a variety of tectonic features on Venus that are not consistent with the thin lithosphere required by a uniformitarian hypothesis. A lithosphere on Venus that has thickened for 500 Myrs has a present thickness of about 300 km whereas steady-state heat loss from Venus requires a mean lithospheric thickness near 40 km. A thick lithosphere on Venus can support the high plateaus (elevations of 3-4 km) and mountain belts (up to 9 km) using the same isostatic compensation concepts applicable to the earth. If a thick lithosphere is thinned by a mantle plume, elevation is caused by thermal isostasy. The elevation due to the thinning of a 300 km thick lithosphere is about 3 km. Thus the domal elevation of Beta Regio can be explained by the same mechanism responsible for the elevation of the Hawaiian Swell. While the broad highland plateaus on Venus may be associated with thermal isostasy, the mountain belts in Ishtar Terra clearly cannot be. The high topography of Freyja Montes is almost certainly associated with underthrusting and the likely compensation mechanism is Airy isostasy associated with a thickened crust. With a density contrast delta, of 500 kg m(exp -3) an elevation of 9 km requires a crustal thickening of about 70 km. With a thick lithosphere there is no difficulty in supporting such a thick crust.
Modeling Geodynamic Mobility of Anisotropic Lithosphere
NASA Astrophysics Data System (ADS)
Perry-Houts, J.; Karlstrom, L.
2016-12-01
The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.
NASA Astrophysics Data System (ADS)
Behr, W. M.; Smith, D.; Bernard, R. E.
2015-12-01
We investigate xenoliths from several volcanic centers in the western US Cordillera, including the Navajo Volcanic Field in the Four Corners region of the Colorado Plateau, the San Carlos Volcanic Field in Arizona, and the Cima and Dish Hill volcanic fields in the western Mojave. We use these xenolith suites to determine to what extent and by what mechanisms the western North American lithospheric mantle has deformed during Cenozoic tectonic events, including Laramide flat-slab subduction, Basin-and-Range extension, and Quaternary strike-slip faulting associated with the San Andreas Fault System. We find the following. 1) Laramide flat-slab subduction substantially and heterogeneously deformed the North American lithospheric mantle. Despite some serpentinization, deformation along the plate interface was accommodated primarily by olivine dislocation creep, and was cold enough that the mantle lithosphere was strong and could transmit basal shear tractions into the upper plate crust, generating high topography. 2) During B&R extension, the mantle lithosphere was thinned and heated, and Laramide-age shear zone foliations were obliterated by grain growth, even in mixed phase lithologies. Despite annealing, LPO in olivine is preserved in several samples. This fossil LPO may control present-day mantle lid seismic anisotropy in the Basin and Range and may also provide an important source of viscous anisotropy. 3) The mantle lithosphere is actively deforming in localized zones beneath faults of the San Andreas system, but high sub-Moho temperatures render it very weak such that most of the strength of the lithosphere resides in the crust. Because deformation is localized, mantle lid anisotropy in the Mojave region is likely controlled by a fossil LPO, despite present-day deformation in the lithospheric mantle.
Updated Reference Model for Heat Generation in the Lithosphere
NASA Astrophysics Data System (ADS)
Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.
2017-12-01
Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.
Lithospheric controls on magma composition along Earth's longest continental hotspot track.
Davies, D R; Rawlinson, N; Iaffaldano, G; Campbell, I H
2015-09-24
Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, so far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot track, a 2,000-kilometre-long track in eastern Australia that displays a record of volcanic activity between 33 and 9 million years ago, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (1) standard basaltic compositions in regions where lithospheric thickness is less than 110 kilometres; (2) volcanic gaps in regions where lithospheric thickness exceeds 150 kilometres; and (3) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the sub-continental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.
Lasting mantle scars lead to perennial plate tectonics.
Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell
2016-06-10
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.
Lasting mantle scars lead to perennial plate tectonics
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-01-01
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541
Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, J. O. S.; Kendall, J.-M.; Wookey, J.; Stuart, G. W.; Keir, D.; Ayele, A.
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow, or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study, we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti, and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and we directly invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due to shear segregated melt along sharp changes in lithospheric thickness dominates the shear-wave splitting signal in the mantle. Beneath Afar, away from regions with significant lithospheric topography, melt pockets associated with the crustal and uppermost mantle magma storage dominate the signal in localized regions. In general, little anisotropy is seen in the uppermost mantle beneath Afar suggesting melt retains no preferential alignment. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is lacking beneath Afar today, rather a broad flow from the southwest dominates flow in the upper mantle.
The Lithosphere-asthenosphere Boundary beneath the South Island of New Zealand
NASA Astrophysics Data System (ADS)
Hua, J.; Fischer, K. M.; Savage, M. K.
2017-12-01
Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. This study takes advantage of the long-duration and high-density seismometer networks deployed on or near the South Island, especially 29 broadband stations of the New Zealand permanent seismic network (GeoNet). We obtained 24,980 individual receiver functions by extended-time multi-taper deconvolution, mapping to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography (Ball et al., 2015) and geochemical studies. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the west of the Alpine fault. The deeper LAB to the west of the Alpine fault is consistent with oceanic lithosphere attached to the Australian plate that was partially subducted while also translating parallel to the Alpine fault (e.g. Sutherland, 2000). However, models in which the Pacific lithosphere has been underthrust to the west past the Alpine fault cannot be ruled out. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the west of the fault, juxtaposed against a region of anomalously weak LAB conversions to the east of the fault. This structure, similar to results of Sp imaging beneath the central segment of the San Andreas fault (Ford et al., 2014), also suggests that lithospheric blocks with contrasting LAB properties meet beneath the Alpine fault. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.
NASA Technical Reports Server (NTRS)
Kidd, W. S. F.; Kusky, T. M.; Bradley, D. C.
1988-01-01
How late Archean tectonics could be seen to have operated in the Slave Province is illustrated. Lithospheric thinning and stretching, with the formation of rifted margins (to continental or island arc fragments), and lithospheric flexural loading of the kind familiar in arcs and mountain belts could be discerned.
Volcano spacings and lithospheric attenuation in the Eastern Rift of Africa
NASA Technical Reports Server (NTRS)
Mohr, P. A.; Wood, C. A.
1976-01-01
The Eastern Rift of Africa runs the gamut of crustal and lithospheric attenuation from undeformed shield through attenuated rift margin to active neo-oceanic spreading zones. It is therefore peculiarly well suited to an examination of relationships between volcano spacings and crust/lithosphere thickness. Although lithospheric thickness is not well known in Eastern Africa, it appears to have direct expression in the surface spacing of volcanoes for any given tectonic regime. This applies whether the volcanoes are essentially basaltic, silicic, or alkaline-carbonatitic. No evidence is found for control of volcano sites by a pre-existing fracture grid in the crust.
Report of the panel on lithospheric structure and evolution, section 3
NASA Technical Reports Server (NTRS)
Chase, Clement G.; Lang, Harold; Mcnutt, Marcia K.; Paylor, Earnest D.; Sandwell, David T.; Stern, Robert J.
1991-01-01
The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents.
NASA Astrophysics Data System (ADS)
Janbakhsh, P.; Pysklywec, R.
2017-12-01
2D numerical modeling techniques have made great contribution to understanding geodynamic processes involved in crustal and lithospheric scale deformations for the past 20 years. The aim of this presentation is to expand the scope covered by previous researchers to 3 dimensions to address out-of-plane intrusion and extrusion of mantle material in and out of model space, and toroidal mantle wedge flows. In addition, 3D velocity boundary conditions can create more realistic models to replicate real case scenarios. 3D numerical experiments that will be presented are designed to investigate the density and viscosity effects of lower crustal eclogitization on the decoupling process of continental mantle lithosphere from the crust and its delamination. In addition, these models examine near-field effects of a subducting ocean lithosphere and a lithospheric scale fault zone on the evolution of the processes. The model solutions and predictions will also be compared against the Anatolian geology where subduction of Aegean and Arabian slabs, and the northern boundary with the North Anatolian Fault Zone are considered as two main contributing factors to anomalous crustal uplift, missing mantle lithosphere, and anomalous surface heat flux.
Lithospheric strength across the ocean-continent transition in the NW of the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Martín-Velázquez, Silvia; Martín-González, Fidel
2014-05-01
The main objective of this work is to investigate the relation between the strength of the lithosphere and the observed pattern of seismicity across the ocean-continent transition in the NW margin of the Iberian Peninsula. The seismicity is diffuse in this intraplate area, far from the seismically active margin of the plate: the Eurasia-African plate boundary, where convergence occurs at a rate of 4-5mm/year. The earthquake epicentres are mainly limited to an E-W trending zone (onshore seismicity is more abundant than offshore), and most earthquakes occur at depths less than 30 km, however, offshore depths are up to 150 km). Moreover, one of the problems to unravel in this area is that the seismotectonic interpretations of the anomalous seismicity in the NW peninsular are contradictory. The temperature and strength profiles have been modelled in three domains along the non-volcanic rifted West Iberian Margin: 1) the oceanic lithosphere of the Iberian Abyssal Plain, 2) the oceanic lithosphere near the ocean-continent transition of the Galicia Bank, and 3) the continental lithosphere of the NW Iberian Massif. The average bathymetry and topography have been used to fit the thermal structures of the three types of lithospheres, given that the heat flow and heat production values show a varied range. The geotherms, together with the brittle and ductile rheological laws, have been used to calculate the strength envelopes in different stress regimes (compression, shear and tensile). The continental lithosphere-asthenosphere boundary is located at 123 km and several brittle-ductile transitions appear in the crust and the mantle. However, the oceanic lithospheres are thinner (110 km near the Galicia Bank and 87 km in the Iberian Abbysal Plain) and more simple (brittle behaviour in the crust and upper mantle). The earthquake distribution is best explained by lithospheres with dry compositions and shear or tensile stress regimes. These results are similar can be compared to those of the Gulf of Cadiz oceanic-continental transition near the Eurasia-African plate boundary (Neves and Neves, 2009), and they contribute to complete the knowledge about seismicity and lithospheric strength in the ocean-continent transition of the Iberian Peninsula. References Neves M.C., Neves, R.G.M., 2009. Flexure and seismicity across the ocean-continent transition in the Gulf of Cadiz. Journal of Geodynamics, 47, 119-129.
NASA Astrophysics Data System (ADS)
Niu, Y.; O'Hara, M. J.; Pearce, J. A.
2001-12-01
Subduction of oceanic lithosphere into deep mantle is one of the key aspects of plate tectonics. Pull by the subducting-slab due to its negative buoyancy is widely accepted as the major driving force for plate motion and plate tectonics. Hence, there would be no plate tectonics if there were no subduction zones. Yet how a subduction zone initiates remains poorly known. Here we show that lateral compositional (vs. thermal) buoyancy contrast within the lithosphere creates the favored and necessary condition for the initiation of a subduction zone by (1) comparing the compositional and density differences between normal oceanic lithosphere (NOL) represented by abyssal peridotites (AP) and subarc lithosphere (SAL) represented by forearc peridotites (FP), and (2) simple physical analysis. As the gravitational attraction is the principal driving force of the subducting slab, it would be optimal if one part of the lithosphere experiences a greater gravitational attraction than its adjacent neighbor prior to or during the initiation of a subduction. This requires the pre-existence of a density contrast within the lithosphere. If the lithosphere is thermally uniform as is often the case, then the density contrast must result from a compositional contrast. This hypothesis can be tested by examining the lithospheric materials on both sides of a subduction zone. Subduction of a dense NOL beneath a buoyant continental lithosphere is straightforward, but intra-oceanic subduction such as in the western Pacific requires a scrutiny. Our data show that FP of Mariana and Tonga - two of the most important intra-oceanic subduction zones on Earth - are compositionally more depleted than AP: Cr#-sp (mean+/- 1σ ) = 0.584+/-0.084(FP) vs. 0.307+/-0.134(AP); Mg#-ol = 0.915+/-0.006(FP) vs. 0.898+/-0.082(AP); Mg#-opx = 0.917+/-0.006(FP) vs. 0.908+/-0.006(AP); Mg#-cpx = 0.929+/-0.021(FP) vs. 0.917+/-0.011(AP). As a result, SAL is > 0.7% less dense than NOL. This density contrast due to compositional difference is equivalent to Δ T = ~230° C, which is similar to or greater than the postulated thermal buoyancy contrast between a hot mantle plume and its surroundings. While the depleted nature of FP has been interpreted to result from subducting-slab dehydration induced high extents of mantle wedge melting, evidence indicates that the depletion of these FP predates the inception of the subduction, thus these FP are not residues of present-day arc magmatism. Hence, the compositional buoyancy contrast already existed within the lithosphere before the inception of the subduction in the western Pacific. Much of the Mariana SAL may be fragments of old continental lithosphere, whereas the Tonga/Fiji plateau and Kamchatka lithosphere may be remnants of buoyant, hence unsubductable oceanic plateaus (mantle plume head materials) for the Louisville and Hawaiian hotspots respectively. Passive continental margins, where the largest compositional buoyancy contrast exists within the lithosphere, are the loci of future subduction zones. Geometrical analysis shows that the compositional buoyancy contrast within the lithosphere under compression (e.g., ridge push) induces transtensional planes. The weakest plane in the vicinity of the compositional buoyancy contrast develops into a reverse fault. The dense NOL (the foot-wall) tends to sink into the hot and less dense asthenosphere. Calculations show that this tendency to sink reduces both the normal stress to, and shear resistance along, the fault plane, thus easing the sinking and favoring the initiation of a subduction zone. This concept also explains other observations and makes testable predictions on important geodynamic problems.
New Insights on the Rheology of Olivine Deformed under Lithospheric Temperature Conditions
NASA Astrophysics Data System (ADS)
Cordier, P.; Demouchy, S. A.; Mussi, A.; Tommasi, A.
2014-12-01
Rheology of mantle rocks at lithospheric temperatures remains poorly constrained, since most experimental studies on creep mechanisms of olivine single crystals ((MgFe)2SiO4, Pbnm) and polycrystalline olivine aggregates were performed at high-temperatures (T >> 1200oC). In this study, we report results from deformation experiments on oriented single crystals of San Carlos olivine and polycrystalline olivine aggregate at temperatures relevant of the uppermost mantle (ranging from 800o to 1090oC) in tri-axial compression. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at various constant strain rates (from 7 x 10-6 s-1 to 1 x 10-4 s-1). Mechanical tests show that mantle lithosphere is actually weaker than previously inferred from the extrapolation of high-temperature experiments. In this study, we present characterization of dislocation microstructures based on transmission electron microscopy and electron tomography. It is shown that below 1000°C, dislocation activity is restricted to [001] glide with a strong predominance of {110} as glide planes. We observe recovery mechanisms which suggest that the mechanical properties observed in laboratory experiments represent an upper bound for the actual behavior of olivine under lithospheric mantle conditions. Moreover, the drastic reduction in slip system activity observed questions the ability of deforming olivine aggregates in the ductile regime at such temperatures. We show that ductility is preserved thanks to the activation of alternative deformation mechanisms in grain boundaries involving disclinations.
Pollitz, F.F.
2003-01-01
Instantaneous velocity gradients within the continental lithosphere are often related to the tectonic driving forces. This relationship is direct if the forces are secular, as for the case of loading of a locked section of a subduction interface by the downgoing plate. If the forces are static, as for the case of lateral variations in gravitational potential energy, then velocity gradients can be produced only if the lithosphere has, on average, zero strength. The static force model may be related to the long-term velocity field but not the instantaneous velocity field (typically measured geodetically over a period of several years) because over short time intervals the upper lithosphere behaves elastically. In order to describe both the short- and long-term behaviour of an (elastic) lithosphere-(viscoelastic) asthenosphere system in a self-consistent manner, I construct a deformation model termed the expected interseismic velocity (EIV) model. Assuming that the lithosphere is populated with faults that rupture continually, each with a definite mean recurrence time, and that the Earth is well approximated as a linear elastic-viscoelastic coupled system, I derive a simple relationship between the instantaneous velocity field and the average rate of moment release in the lithosphere. Examples with synthetic fault networks demonstrate that velocity gradients in actively deforming regions may to a large extent be the product of compounded viscoelastic relaxation from past earthquakes on hundreds of faults distributed over large ( ≥106 km2) areas.
NASA Astrophysics Data System (ADS)
Liang, X.; Tian, X.; Wang, M.
2017-12-01
Indian plate collided with Eurasian plate at 60 Ma and there are about 3000 km crustal shortening since the continental-continental collision. At least one third of the total amount of crustal shortening between Indian and Eurasian plates could not be accounted by thickened Tibetan crust and surface erosion. It will need a combination of possible transfer of lower crust to the mantle by eclogitization and lateral extrusion. Based on the lithosphere-asthenosphere boundary images beneath the Tibetan plateau, there is also at least the same amount deficit for lithospheric mantle subducted into upper/lower mantle or lateral extrusion with the crust. We have to recover a detailed Indian continental lithosphere image beneath the plateau in order to explain this deficit of mass budget. Combining the new teleseismic body waves recorded by SANDWICH passive seismic array with waveforms from several previous temporary seismic arrays, we carried out finite-frequency tomographic inversions to image three-dimensional velocity structures beneath southern and central Tibetan plateau to examine the possible image of subducted Indian lithosphere in the Tibetan upper mantle. We have recovered a continuous high velocity body in upper mantle and piece-wised high velocity anomalies in the mantle transition zone. Based on their geometry and relative locations, we interpreted these high velocity anomalies as the subducted and detached Indian lithosphere at different episodes of the plateau evolution. Detachments of the subducted Indian lithosphere should have a crucial impact on the volcanism activities and uplift history of the plateau.
NASA Astrophysics Data System (ADS)
Holt, P.; Allen, M. B.; Van Hunen, J.
2012-04-01
A large number of areas which have experienced platformal subsidence during the Phanerozoic are located upon regions of juvenile accretionary crust. These include the Palaeozoic basins of North Africa, the Paraná and Parnaíba basins in South America, the Cape-Karoo basin in South Africa, the Mesozoic Scythian and Turan platforms in Central Asia and the Eastern Australian basins. We hypothesise that the juvenile accretionary crust is initially underlain by a thin mantle lithosphere. This is most likely inherited from the island arcs, accretionary prisms and microcontinents that collided to form this juvenile crust, although it could also be due to lithospheric delamination as a result of the collision. Once the crust has stabilised the lithosphere begins to cool and thicken, which drives the observed subsidence. To test this we constructed a simple 1D forward finite difference model which calculates heat conduction through a column of crust, mantle lithosphere and upper mantle as it cools. The model then isostatically calculates the water loaded subsidence produced by this process. This allows us to use subsidence curves calculated from the sedimentary record preserved within the basin to test whether the basins could be forming in response to growth of the lithosphere. The results from the model showed that the subsidence produced was most sensitive to variations in crustal thickness and plate thickness (final lithospheric thickness). The modelled subsidence curves were then compared to subsidence curves acquired by backstripping the sediments within the basins mentioned above. The parameters were varied iteratively to find the best fit between the modelled and the observed subsidence. This produced good fits and also provided another method to validate the model results. The crustal thickness and final lithospheric thickness from the models were then compared to measurements of these parameters from other sources such as deep seismic lines and tomographic imaging of the Low Velocity Zone. These generally agreed well with the values used in the model and were used to further constrain the model. However, subsidence of thin lithosphere is not necessarily limited to unmodified accretionary crust, as described above. For instance the subsidence of the West Siberian Basin, outside the rift system, is similar to the platformal basins mentioned above except that there is a delay of 50 - 90 Myrs between the rifting (and associated eruption of the Siberian flood basalts), and the onset of sedimentation. We used a variant of our model that incorporated an anomalously hot layer beneath a thinned lithosphere to represent a cooling mantle plume head. This produced a good match to the subsidence patterns from the West Siberian Basin. This coupling of deep processes with surface processes allows us to further understand how the basins form, but inversely the sedimentary record could be used to investigate the growth of the lithosphere and provide a prediction of present day lithospheric thickness independent of seismic methods.
NASA Astrophysics Data System (ADS)
Klemann, V.; Rau, D.; Martinec, Z.; Wolf, D.
2009-05-01
The strong structural dichotomy between East and West Antarctica is related to the West Antarctic Rift. The rheological implications are a reduction of the elastic-lithosphere thickness by a factor of more than 2 from East to West Antarctica as well as a strongly reduced mantle viscosity below West Antarctica and the Antarctic Peninsula. For modelling glacial-isostatic adjustment, we use a global viscoelastic earth model and apply the spectral finite-element method for the solution of the field equations. Ice models ICE-5G and IJ05 are used for parameterizing the last Pleistocene deglaciation. Lateral viscosity variations in the upper mantle are derived from variations in seismic velocity by applying scaling laws. Considering also lateral variations in the lithosphere structure, we study the implications of lateral variability on the glacial-isostatic adjustment of Antarctica.
Investigation of Pre-Earthquake Ionospheric Disturbances by 3D Tomographic Analysis
NASA Astrophysics Data System (ADS)
Yagmur, M.
2016-12-01
Ionospheric variations before earthquakes have been widely discussed phenomena in ionospheric studies. To clarify the source and mechanism of these phenomena is highly important for earthquake forecasting. To well understanding the mechanical and physical processes of pre-seismic Ionospheric anomalies that might be related even with Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling, both statistical and 3D modeling analysis are needed. For these purpose, firstly we have investigated the relation between Ionospheric TEC Anomalies and potential source mechanisms such as space weather activity and lithospheric phenomena like positive surface electric charges. To distinguish their effects on Ionospheric TEC, we have focused on pre-seismically active days. Then, we analyzed the statistical data of 54 earthquakes that M≽6 between 2000 and 2013 as well as the 2011 Tohoku and the 2016 Kumamoto Earthquakes in Japan. By comparing TEC anomaly and Solar activity by Dst Index, we have found that 28 events that might be related with Earthquake activity. Following the statistical analysis, we also investigate the Lithospheric effect on TEC change on selected days. Among those days, we have chosen two case studies as the 2011 Tohoku and the 2016 Kumamoto Earthquakes to make 3D reconstructed images by utilizing 3D Tomography technique with Neural Networks. The results will be presented in our presentation. Keywords : Earthquake, 3D Ionospheric Tomography, Positive and Negative Anomaly, Geomagnetic Storm, Lithosphere
NASA Astrophysics Data System (ADS)
Corchete, V.
2017-04-01
A 3D imaging of S-velocity for the Arabian Sea crust and upper mantle structure is presented in this paper, determined by means of Rayleigh wave analysis, for depths ranging from zero to 300 km. The crust and upper mantle structure of this region of the earth never has been the subject of a surface wave tomography survey. The Moho map performed in the present study is a new result, in which a crustal thickening beneath the Arabian Fan sediments can be observed. This crustal thickening can be interpreted as a quasi-continental oceanic transitional structure. A crustal thickness of up to 20 km also can be observed for the Murray Ridge system in this Moho map. This crustal thickening can be due to that the Murray Ridge System consists of Indian continental crust. This continental crust is extremely thinned to the southwest of this region, as shown in this Moho map. This area can be interpreted as oceanic in origin. In the depth range from 30 to 60 km, the S-velocity presents its lower values at the Carlsberg Ridge region, because it is the younger region of the study area. In the depth range from 60 to 105 km of depth, the S-velocity pattern is very similar to that shown for the previous depth range, except for the regions in which the asthenosphere is reached, for these regions appear a low S-velocity pattern. The lithosphere-asthenosphere boundary (LAB), or equivalently the lithosphere thickness, determined in the present study is also a new result, in which the lithosphere thickness for the Arabian Fan can be estimated in 60-70 km. The lower lithospheric thickness observed in the LAB map, for the Arabian Fan, shows that this region may be in the transition zone between continental and oceanic structure. Finally, a low-velocity zone (LVZ) has been determined, for the whole study area, located between the LAB and the boundary of the asthenosphere base (or equivalently the lithosphere-asthenosphere system thickness). The asthenosphere-base map calculated in the present study is also a new result.
The Lithospheric Fabric of Southern North America and the Wide Gulf of Mexico Rift
NASA Astrophysics Data System (ADS)
Stern, R. J.
2017-12-01
Rifting of Laurentia out of Greater Gondwana and Cuyania out of Laurentia in Cambrian time was associated with a strongly magmatic triple junction centered near modern Dallas, one arm of which is preserved as the S. Oklahoma Aulacogen. The position of this hotspot and the trend of its two successful arms (which opened to form the Iapetus/Rheic ocean in Early Paleozoic time) carved an irregular southern margin of Laurentia, which has since controlled the tectonic evolution of the region. This re-entrant margin was modified by Pennsylvanian collision of rigid indentor Laurentia with weak arc lithosphere of N. Gondwana, juxtaposing strong Laurentian lithosphere of the Texas craton in the west with weak (hydrated and partially molten) arc lithosphere of N. Gondwana to the east. The different strengths of the two lithospheres was remarkable, with strong Laurentia contrasted with weak N. Gondwana margin, and persisted for 150 m.y. to control Gulf of Mexico rifting. The Ouachita-Marathon foldbelt demarcates regions strongly affected by extension (lithosphere that originally was part of the N. Gondwanan arc and forearc) from unaffected regions (lithosphere that was originally part of Laurentia). Extensional strain to open the Gulf of Mexico in Jurassic time totally occurred in Gondwanan lithosphere and had little effect on Laurentia except for Triassic uplift in Texas (which shed large volumes of clastic sediments westwards, now preserved as Late Triassic Dockum and Chinle Groups) and rifting in Arkansas (to form Late Triassic Eagle Mills grabens) and farther east. Even Pennsylvanian foreland basins and Ancestral Rockies faults intersecting the Ouachita-Marathon orogen do not appear to have been rejuvenated by Triassic-Jurassic extension. Extension in weak Gondwanan lithosphere resulted in a broad rift zone that now buried beneath Mesozoic and younger sediments. Buried fragments of thicker continental crust - the Sabine and Monroe uplifts, the Wiggins Arch, and Florida - must be fragments of Gondwanan arc crust. Because they are buried, we know little about these "Gondwana orphans" and also the deeper basins associated with the buried broad region of distributed extension. It will require joint efforts by academia, industry, and government to probe this region.
NASA Astrophysics Data System (ADS)
Pérez-Gussinyé, M.; Metois, M.; Fernández, M.; Vergés, J.; Fullea, J.; Lowry, A. R.
2009-09-01
Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~ 400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in the surrounding cratons. We speculate that these corridors may provide potential conduits for hot asthenospheric material to flow from the western Ethiopian plateau to the volcanic provinces of central and western Africa.
NASA Astrophysics Data System (ADS)
Perez-Gussinye, M.; Metois, M.; Fernandez, M.; Verges, J.; Fullea, J.; Lowry, A. R.
2009-12-01
Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line vo provinces lcanic are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in the surrounding cratons. We speculate that these corridors may provide potential conduits for hot asthenospheric material to flow from the western Ethiopian plateau to the volcanic provinces of central and western Africa.
The Main Ethiopian Rift: a Narrow Rift in a Hot Craton?
NASA Astrophysics Data System (ADS)
Gashawbeza, E.; Keranen, K.; Klemperer, S.; Lawrence, J.
2008-12-01
The Main Ethiopian Rift (MER) is a classic example of a narrow rift, but a synthesis of our results from the EAGLE (Ethiopia-Afar Geoscientific Lithospheric Experiment Phase I broadband experiment) and from the EBSE experiment (Ethiopia Broadband Seismic Experiment) suggests the MER formed in thin, hot, weak continental lithosphere, in strong contrast with predictions of the Buck model of modes of continental lithospheric extension. Our joint inversion of receiver functions and Rayleigh-wave group velocities yields shear-wave velocities of the lowermost crust and uppermost mantle across the MER and the Ethiopian Plateau that are significantly lower than the equivalent velocities in the Eastern and Western branches of the East African Rift System. The very low shear-wave velocities, high electrical conductivity in the lower-crust, and high shear-wave splitting delay times beneath a very broad region of the MER and the Ethiopian Plateau indicate that the lower-crust is hot and likely contains partial melt. Our S-receiver function data demonstrate shallowing of the lithosphere-asthenosphere boundary from 90 km beneath the northwestern Ethiopian Plateau to 60 km beneath the MER. Although we lack good spatial resolution on the lithosphere-asthenosphere boundary, the region of thinned lithosphere may be intermediate in width between the narrow surface rift (< 100 km) and the broader zone of strain in the lower crust (~ 300 km). The MER developed as a narrow rift at the surface, localized along the Neoproterozoic suture that joined East and West Gondwana. However, a far broader of lower crust and uppermost mantle remains thermally weakened since the Oligocene formation of the flood basalts by the Afar plume head. If the lithosphere- asthenosphere boundary is indeed a strain marker then lithospheric mantle deformation is localized beneath the surface rift. The development of both the Eastern/Western branches of the East African Rift System to the south and of the MER in the north as narrow rifts, despite vastly different lithospheric strength profiles, indicates that inherited structure, rather than rheological stratification, is the primary control on the mode of extension in these continental rifts.
NASA Astrophysics Data System (ADS)
Keranen, Katie M.; Klemperer, Simon L.; Julia, Jordi; Lawrence, Jesse F.; Nyblade, Andy A.
2009-05-01
The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ≤4.3 km/s in the uppermost mantle, both ˜0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (˜400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the primary control on the mode of extension.
NASA Astrophysics Data System (ADS)
Nelson, W. R.; Furman, T.; Elkins-Tanton, L. T.
2015-12-01
The East African Rift System (EARS) is the archetypal active continental rift. The rift branches cut through the elevated Ethiopian and Kenyan domes and are accompanied by a >40 Myr volcanic record. This record is often used to understand changing mantle dynamics, but this approach is complicated by the diversity of spatio-temporally constrained, geochemically unique volcanic provinces. Various sources have been invoked to explain the geochemical variability across the EARS (e.g. mantle plume(s), both enriched and depleted mantle, metasomatized or pyroxenitic lithosphere, continental crust). Mantle contributions are often assessed assuming adiabatic melting of mostly peridotitic material due to extension or an upwelling thermal plume. However, metasomatized lithospheric mantle does not behave like fertile or depleted peridotite mantle, so this model must be modified. Metasomatic lithologies (e.g. pyroxenite) are unstable compared to neighboring peridotite and can founder into the underlying asthenosphere via ductile dripping. As such a drip descends, the easily fusible metasomatized lithospheric mantle heats conductively and melts at increasing T and P; the subsequent volcanic products in turn record this drip magmatism. We re-evaluated existing data of major mafic volcanic episodes throughout the EARS to investigate potential evidence for lithospheric drip foundering that may be an essential part of the rifting process. The data demonstrate clearly that lithospheric drip melting played an important role in pre-flood basalt volcanism in Turkana (>35 Ma), high-Ti "mantle plume-derived" flood basalts and picrites (HT2) from NW Ethiopia (~30 Ma), Miocene shield volcanism on the E Ethiopian Plateau and in Turkana (22-26 Ma), and Quaternary volcanism in Virunga (Western Rift) and Chyulu Hills (Eastern Rift). In contrast, there is no evidence for drip melting in "lithosphere-derived" flood basalts (LT) from NW Ethiopia, Miocene volcanism in S Ethiopia, or Quaternary within-rift lavas in Ethiopia, Turkana or Kivu. The evidence for widespread lithospheric removal across eastern Africa coincides with the timing of dome uplift (e.g. Gani et al., 2007; Wichura et al., 2015) and further demonstrates the controls of lithospheric mantle on volcano-tectonic processes throughout the evolving EARS.
Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.
2009-01-01
[1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are the primary control on the mode of extension. ?? 2009 by the American Geophysical Union.
Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths
NASA Astrophysics Data System (ADS)
Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.
2015-12-01
Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure represents a global mechanism in subduction zone, a portion of oceanic lithospheric mantle is likely to be metasomatized; recycling of these enriched domains into the convecting mantle is fundamental to understand the generation of small scale mantle isotopic and volatile heterogeneities sampled by OIBs and MORBs.
Water in the Cratonic Mantle Lithosphere
NASA Technical Reports Server (NTRS)
Peslier, A. H.
2016-01-01
The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents (<10 ppm wt H2O) at > 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (<20 ppm wt H2O). The xenoliths may represent a biased sample of the cratonic lithosphere with an over-abundance of metasomatized peridotites with high water contents. The olivine inclusions, however, may have been protected from metasomatism by their host diamond and record the overall low olivine water content of the cratonic lithosphere. Water may thus still play a role in cratonic keel longevity.
Effects of De-spinning and Lithosphere Thickening on the Lunar Fossil Bulge
NASA Astrophysics Data System (ADS)
Zhong, S.; Qin, C.; Phillips, R. J.
2016-12-01
The Moon has abnormally large degree-2 anomalies in gravity and shape (or bulge). The degree-2 gravity coefficients C20 and C22 are, respectively, 22 and 7 times greater than expected from the Moon's current orbital and rotational states. One prevalent hypothesis, called the fossil bulge hypothesis, interprets the current degree-2 shape as a remnant of the bulge that froze in when the Moon was closer to the Earth with stronger tidal and rotational potentials. However, the dynamic feasibility of the freeze-in process has never been quantitatively examined. In this study, we explore, using numerical models of viscoelastic deformation with time-dependent rotational potential and lithospheric rheology, how the degree-2 bulge would evolve with time as the early Moon cools and migrates away from the Earth. Our model includes two competing effects: 1) a thickening lithosphere with time through cooling, which helps maintain the bulge, and 2) de-spinning through tidal locking, which tends to reduce the bulge. In our model, a strong lithosphere is represented by the topmost layer that is orders of magnitude more viscous than the mantle. The benchmark results show that our numerical model can compute the bulge size accurately. Our calculations start with a bulge size that is in hydrostatic equilibrium with the initial rotational rate. The bulge reduces with time as the Moon spins down, while the lithosphere can support certain amount of bulge as it thickens. We find that the final size of the bulge is controlled by the relative time scales of the two processes. At limiting cases, if the time scale of de-spinning were much larger than that of lithosphere thickening, the bulge size would be largely maintained. Conversely, the bulge size would be reduced significantly. We will consider more realistic time scales for these two processes, as well as effects of other subsequent processes after lunar magma ocean crystallization, such as large impacts and mare volcanism.
NASA Astrophysics Data System (ADS)
Tommasi, A.; Godard, M.; Coromina, G.; Dautria, J. M.; Barczus, H.
2003-04-01
In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2.5 (2.2) percent for P (S) waves and be equivalent to those observed below the Deccan, Parana, or Ontong Java mesozoic LIPs.
NASA Astrophysics Data System (ADS)
Pitcavage, E.; Furman, T.; Nelson, W. R.
2017-12-01
The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important driver of volcanism in the early history of these igneous provinces and may be fundamentally related to the onset of successful rifting. 1. Graham, D. et al. Goldschmidt Conference Abstracts (2011). 2. Furman, T., et al. Geochim. Cosmochim. Acta 185, 418-434 (2016).
A thermo-mechanical model of horizontal subduction below an overriding plate
NASA Astrophysics Data System (ADS)
van Hunen, Jeroen; van den Berg, Arie P.; Vlaar, Nico J.
2000-10-01
Subduction of young oceanic lithosphere cannot be explained by the gravitational driving mechanisms of slab pull and ridge push. This deficiency of driving forces can be overcome by obduction of an actively overriding plate, which forces the young plate either to subduct or to collide. This mechanism leads to shallow flattening of the slab as observed today under parts of the west coast of North and South America. Here this process is examined by means of numerical modeling. The convergence velocity between oceanic and continental lithospheric plates is computed from the modeling results, and the ratio of the subduction velocity over the overriding velocity is used as a diagnostic of the efficiency of the ongoing subduction process. We have investigated several factors influencing the mechanical resistance working against the subduction process. In particular, we have studied the effect of a preexisting lithospheric fault with a depth dependent shear resistance, partly decoupling the oceanic lithosphere from the overriding continent. We also investigated the lubricating effect of a 7 km thick basaltic crustal layer on the efficiency of the subduction process and found a log-linear relation between convergence rate and viscosity prefactor characterizing the strength of the oceanic crust, for a range of parameter values including values for basaltic rocks, derived from empirical data. A strong mantle fixes the subducting slab while being overridden and prevents the slab from further subduction in a Benioff style. Viscous heating lowers the coupling strength of the crustal interface between the converging plates with about half an order of magnitude and therefore contributes significantly to the subduction process. Finally, when varying the overriding velocity from 2.5 to 10 cm yr -1, we found a non-linear increase of the subduction velocity due to the presence of non-linear mantle rheology. These results indicate that active obduction of oceanic lithosphere by an overriding continental lithosphere is a viable mechanism for shallow flat subduction over a wide range of model parameters.
NASA Astrophysics Data System (ADS)
Galushkin, Yu. I.; Leitchenkov, G. L.; Guseva, Yu. B.; Dubinin, E. P.
2018-01-01
The burial history and thermal evolution of the lithosphere within the passive nonvolcanic Antarctic margin in the region of the Mawson Sea are numerically reconstructed for the margin areas along the seismic profile 5909 with the use of the GALO basin modeling system. The amplitudes of the lithosphere stretching at the different stages of continental rifting which took place from 160 to 90 Ma ago are calculated from the geophysical estimates of the thickness of the consolidated crust and the tectonic analysis of the variations in the thickness of the sedimentary cover and sea depths during the evolution of the basin. It is hypothesized that the formation of the recent sedimentary section sequence in the studied region of the Antarctic margin began 140 Ma ago on a basement that was thinned by a factor of 1.6 to 4.5 during the first episode of margin stretching (160-140 Ma) under a fairly high heat flux. The reconstruction of the thermal regime of the lithosphere has shown that the mantle rocks could occur within the temperature interval of serpentinization and simultaneously within the time interval of lithospheric stretching (-160 < t <-90 Ma) only within separate segments of profile 5909 in the Mawson Sea. The calculations of the rock strength distribution with depth by the example of the section of pseudowell 4 have shown that a significant part of the crust and uppermost mantle fall here in the region of brittle deformations in the most recent period of lithosphere stretching (-104 to-90 Ma ago). The younger basin segments of profile 5909 in the region of pseudowells 5 and 6 are characterized by a high heat flux, and the formation of through-thickness brittle fractures in these zones is less probable. However, serpentinization could take place in these areas as in the other margin segments at the stage of presedimentation ultra slow basement stretching.
Hemispheric dichotomy in lithosphere growth on Mars caused by differences in crustal composition
NASA Astrophysics Data System (ADS)
Thiriet, M.; Michaut, C.; Breuer, D.
2016-12-01
The surface dichotomy is the most striking feature of Mars. The Northern hemisphere is covered by extensive lava plains and is lower in altitude than the South which has higher and sharper reliefs and is more craterized and older than the North. Recent studies have suggested that this bimodal distribution of altitudes could be due to the existence of a buried felsic component similar to the terrestrial continental crust in the Southern hemisphere. The presence of a large buried component of evolved composition might imply an enrichment in incompatible radioactive elements. The thermal surface properties of the two hemispheres also seem to differ; the South shows fine-particulate materials probably resulting from explosive volcanism, while the Northern lava flows are more consolidated and characterized by a higher thermal conductivity. Using a parameterized convection model with a stagnant lid, we computed the thermal evolution and lithosphere growth of Mars accounting for potential differences in the thermal parameters characterizing the Northern and Southern crusts. We find that a stronger enrichment in radioactive elements and a lower surface conductivity in the South can cause a significant difference in elastic thickness of the lithosphere in between both hemispheres, with an elastic lithosphere thicker in the North by several tens of kilometers today. This result might explain the large and still unexplained difference in lithosphere elastic thickness estimated below the two polar caps, which is about 300 km in the North and only 140 km in the South. Assuming a crust in the Northern hemisphere with a thickness of 40 km, a density of 3000 kg/m3 and an enrichment factor in radioactive elements of 5 relative to the primitive mantle, Monte Carlo inversions show that the Southern crust requires a thickness of >60 km, a density between 2700 and 3000 kg/m3 and an enrichment factor of 13-20 to explain such a difference in lithosphere elastic thickness.
NASA Astrophysics Data System (ADS)
Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.
2017-12-01
The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.
NASA Astrophysics Data System (ADS)
Zirakparvar, N. A.; Mathez, E. A.; Rajesh, H.; Vervoort, J. D.; Choe, S.
2016-12-01
The Bushveld Large Igneous Province (B-LIP) comprises a diverse array of >30 magma bodies that intruded the Kaapvaal Craton at 2.06 Ga. In this talk we use zircon and bulk-rock Lu-Hf isotope data to show that the B-LIP formed in response to the arrival of a plume(s) from the deep mantle. New zircon Hf isotope compositions for four B-LIP bodies yield intrusion-specific average ɛHf (2.06 Ga) values that range from -20.7 ± 2.8 to -2.7 ± 2.8, largely consistent with literature zircon data for other B-LIP intrusions. Bulk-rock solution ɛHf (2.06 Ga) values for a variety of B-LIP intrusions range from -2.1 ± 0.2 to -10.6 ± 0.2. Because the most radiogenic Hf isotope compositions across the entire B-LIP are nearly primordial with an ɛHf (2.06 Ga) close to 0, it is likely that the heat source of the B-LIP was a plume(s) from deep mantle. The Hf isotope data further suggests that individual intrusions in the B-LIP can be grouped into four categories based on their ultimate sources: 1) melts generated in subduction and plume modified continental lithospheric mantle; 2) melts generated by melting of a mafic-ultramafic reservoir composed of older ( 2.7 Ga) plume-related material trapped in the Kaapvaal lithosphere; 3) melts generated in the mid- to upper crust; and 4) melts generated from the 2.06 Ga mantle plume itself. The presence of 2.7 Ga mafic-ultramafic material in the Kaapvaal lithosphere may have acted to strengthen the lithosphere so that it was able to resist being dispered by the arrival of the B-LIP plume at 2.06 Ga. Because the B-LIP extends into a 2.7 Ga aged suture zone between the Kaapvaal and Zimbabwe cratons, it is also possible to understand the role of the lithospheric mantle in producing the Lu-Hf signatures observed in the various B-LIP intrusions as a function of two different types of the continental lithosphere: The very old lithosphere comprising the Kaapvaal Craton and the somewhat younger lithosphere comprising the suture zone. A basic observation is that the Hf isotope signature of the plume source is only directly expressed in B-LIP bodies that intruded the suture zone, providing further evidence that the craton was already underlain by thick lithospheric mantle at the time of B-LIP magmatism.
NASA Astrophysics Data System (ADS)
van der Hilst, R. D.; Huang, H.; Yao, H.
2010-12-01
We summarize results of our seismological studies of the lithosphere beneath Tibet and SW China. Joint analysis of geological, geodetic, and seismological data suggests that the Tibetan plateau formed through interplay between continental collision between India and Asia in the west and ocean floor subduction along the western Pacific island arcs and marginal basins in the east. These dynamic systems combine to facilitate the eastward extrusion of lithospheric material away from central Tibet. Located near the transition of these systems, SE Tibet is a key area for understanding regional seismicity as well as eastward plateau expansion. For a detailed regional study MIT installed an array of 25 three-component, broad band seismometers in Sichuan and Yunnan provinces, SW China. During the same 1-year period Lehigh University operated a 75 station array in east Tibet. Data from these and other nearby arrays have been used in a range of studies of crust and mantle heterogeneity and anisotropy. We focus our presentation on results of two lines of seismological study. First, travel time tomography (Li et al., PEPI 2006, EPSL 2008, JGR 2010) - with hand-picked phase arrivals from recordings at regional arrays, data from over 1,000 stations in China, and the global data base due to Engdahl et al. (BSSA, 1998) - has revealed that structures associated with subduction of the Indian plate beneath the Himalayas vary significantly from west Tibet (where the plate seems to underlie the entire plateau) to east Tibet (where Indian lithosphere seems to have plunged deeper into the mantle). Further east, fast structures appear in the upper mantle transition zone, presumably related to stagnation of slab fragments from westward subduction along Asia’s eastern sea board. Second, surface wave array tomography (Yao et al., GJI 2006, GJI 2008, JGR 2010; Huang et al., GRL 2010), based on ambient noise interferometry and traditional (inter station) dispersion analysis, is used to delineate the 3-D anisotropic structure of the crust and lithospheric mantle at length scales as small as 100 km beneath SE Asia. These inversions revealed (i) the presence of intra-crustal low velocity zones (perhaps bounded by major faults), (ii) a strong correlation between these low velocity zones and radial anisotropy (Vsh faster than Vsv), and (iii) that the pattern of crustal (azimuthal) anisotropy is quite different from that in the deep crust and mantle lithosphere. Furthermore, the spatial relationship with high heat flow, high (electrical) conductivity, and high Poisson’s ratio’s suggests that the crustal zones of low shear velocity are mechanically weak. Collectively, these inferences suggest that deformation is generally not vertically coherent and that (horizontal) ductile flow occurs (at least locally) in the deep crust of SE Tibet. Deformation of the lithosphere in SE Tibet may thus occur through interaction of geological units with and without crustal flow that are separated by major faults.
Konrad, Kevin; Graham, David W; Thornber, Carl; Duncan, Robert A.; Kent, Adam J.R.; Al-Amri, Abdulla
2016-01-01
Elevated 3He/4He in the western harrats has been observed only at Rahat (up to 11.8 RA; Murcia et al., 2013), a volcanic field situated above thinned lithosphere beneath the Makkah-Medinah-Nafud volcanic lineament. Previous work established that spinel lherzolites at Hutaymah are sourced near the lithosphere-asthenosphere boundary (LAB), while other xenolith types there are derived from shallower depths within the lithosphere itself (Thornber, 1992). Helium isotopes are consistent with melts originating near the LAB beneath many of the Arabian harrats, and any magma derived from the Afar mantle plume currently appears to be of minor importance.
The Effect of Plume Impingement on Lithospheric Preservation Beneath the Kenya Rift, East Africa
NASA Astrophysics Data System (ADS)
Hamblock, J. M.; Anthony, E. Y.; Chesley, J. T.; Omenda, P. A.
2003-12-01
The Kenya Rift is located at the transition between Archean Tanzanian craton and Proterozoic mobile belt. Currently, discrepancies exist between geochemical and geophysical interpretations of lithospheric preservation in the Kenya Rift. Seismic data show a sharp vertical boundary between low velocity mantle in the axis and higher velocity mantle on the flanks, which is interpreted to reflect lithospheric erosion from the axis (Mechie et al., 1997; Prodehl et al., 1997). However, geochemical data suggest that the lithospheric mantle is intact beneath both the axis and the flanks. Different elemental groups are observed for rocks from Kenya (Hamblock et al., 2003). One group is characterized by elemental concentrations greater than ocean island basalts (OIB), negative K and Sr anomalies, and Lan and Cen greater than 100. These characteristics are found in silica-undersaturated rocks such as nephelinites, basanites, and some alkali basalts from the flank and the axis and are interpreted to represent melting of an enriched lithosphere. A second group is characterized by elemental concentrations less than OIB, a flat overall pattern, and Lan and Cen less than 100. This pattern is found in alkali basalts and hypersthene-normative rocks. The multi-element pattern varies minimally between axis and flank lavas, with axial lavas containing higher concentrations of Ba (Macdonald et al., 2001). Because rocks of both groups are present in the axis and the flanks, lithosphere appears to be intact across the Kenya Rift, and strong lateral contrasts in composition do not exist. Sr, Nd, and Pb isotopes also suggest that ancient lithospheric mantle is present in Kenya and Tanzania (Macdonald et al., 2001; Paslick et al., 1995). A consistent difference between axis and flank is lower La/Yb for axis lavas, indicating that they originate in the spinel stability field. Flank lavas, regardless of their silica saturation, have higher La/Yb and are interpreted to come from garnet peridotite. Discrepancies between geophysical and geochemical data exist for other parts of the East African Rift as well. In the axis of the rift in Tanzania, tomography suggests that upwelling asthenosphere has eroded the lithosphere (Nyblade, 2002). However, gravity models (Simiyu and Keller, 1997, 2001) and the presence of subchondritic 187Os/188Os in spinel and garnet-bearing xenoliths (TRD of 2.6 Ga) suggest that the lithosphere is intact (Chesley et al., 1999). In contrast, for the Tanzanian craton, Os isotopes, gravity, and tomography are consistent with 2.5-2.9 Ga lithosphere existing to depths of 140 km and a broad thermal and geochemical anomaly (plume?) below the lithosphere (Chesley et al., 1999; Owens et al., 2000; Nyblade et al., 2000; Simiyu and Keller, 1997, 2001). In the Sidamo region of Ethiopia, Os isotopes suggest that ancient depleted mantle is present and has been modified by recent melt percolation (Lorand et al., 2003; Reisberg et al., in press). Finally, for Ethiopian flood basalts, element chemistry, petrology, and 3He/4He (Marty et al., 1996; Scarsi and Craig, 1996) indicate a dominant role for plume. Os isotopes (Davies et al., 2003), however, are lower than PUM, indicating that an ancient lithospheric mantle reservoir is present. In order to help resolve the discrepancies between geophysical and geochemical interpretations, we will obtain petrologic and isotopic data for xenoliths and mafic lavas in both east-west and north-south directions. The lavas span a wide range of silica saturation and La/Yb ratios, and thus are intended to represent lithospheric as well as asthenospheric sources.
State of stress, faulting, and eruption characteristics of large volcanoes on Mars
NASA Technical Reports Server (NTRS)
Mcgovern, Patrick J.; Solomon, Sean C.
1993-01-01
The formation of a large volcano loads the underlying lithospheric plate and can lead to lithospheric flexure and faulting. In turn, lithospheric stresses affect the stress field beneath and within the volcanic edifice and can influence magma transport. Modeling the interaction of these processes is crucial to an understanding of the history of eruption characteristics and tectonic deformation of large volcanoes. We develop models of time-dependent stress and deformation of the Tharsis volcanoes on Mars. A finite element code is used that simulates viscoelastic flow in the mantle and elastic plate flexural behavior. We calculate stresses and displacements due to a volcano-shaped load emplaced on an elastic plate. Models variously incorporate growth of the volcanic load with time and a detachment between volcano and lithosphere. The models illustrate the manner in which time-dependent stresses induced by lithospheric plate flexure beneath the volcanic load may affect eruption histories, and the derived stress fields can be related to tectonic features on and surrounding martian volcanoes.
Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle
Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel
2017-01-01
Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055
Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.
Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel
2017-03-01
Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.
Shield volcanism and lithospheric structure beneath the Tharsis plateau, Mars
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Cutts, J. A.
1976-01-01
The heights of four great shield volcanoes, when interpreted as reflecting the local hydrostatic head on a common source of upwelling magma, provide significant constraints on models of lithospheric structure beneath the Tharsis plateau. If Bouguer gravity anomalies are modeled in terms of a variable thickness crust, and a two-component (crust/mantle) earth-like structure is assumed for the Martian lithosphere, the derived model lithosphere beneath the Tharsis plateau has the following properties: (1) the upper low-density 'crustal' component is thickened beneath the Tharsis plateau; (2) the lower high-density 'mantle' component is thinned beneath the Tharsis plateau; and (3) there is a net gradient on the base of the Martian lithosphere directed downward away from beneath the summit of the Tharsis plateau. A long history of magmatic intrusion is hypothesized to have been the cause of the updoming of the Tharsis plateau and the maintenance of the plateau in a state of only partial compensation.
NASA Astrophysics Data System (ADS)
Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.
2017-09-01
The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.
Tectonic evolution of the terrestrial planets.
Head, J W; Solomon, S C
1981-07-03
The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.
NASA Astrophysics Data System (ADS)
Aradi, L. E.; Hidas, K.; Kovács, I. J.; Tommasi, A.; Klébesz, R.; Garrido, C. J.; Szabó, C.
2017-12-01
Mantle xenoliths from the Styrian Basin Volcanic Field (Western Pannonian Basin, Austria) are mostly coarse granular amphibole-bearing spinel lherzolites with microstructures attesting for extensive annealing. Olivine and pyroxene CPO (crystal-preferred orientation) preserve nevertheless the record of coeval deformation during a preannealing tectonic event. Olivine shows transitional CPO symmetry from [010]-fiber to orthogonal type. In most samples with [010]-fiber olivine CPO symmetry, the [001] axes of the pyroxenes are also dispersed in the foliation plane. This CPO patterns are consistent with lithospheric deformation accommodated by dislocation creep in a transpressional tectonic regime. The lithospheric mantle deformed most probably during the transpressional phase after the Penninic slab breakoff in the Eastern Alps. The calculated seismic properties of the xenoliths indicate that a significant portion of shear wave splitting delay times in the Styrian Basin (0.5 s out of approximately 1.3 s) may originate in a highly annealed subcontinental lithospheric mantle. Hydroxyl content in olivine is correlated to the degree of annealing, with higher concentrations in the more annealed textures. Based on the correlation between microstructures and hydroxyl content in olivine, we propose that annealing was triggered by percolation of hydrous fluids/melts in the shallow subcontinental lithospheric mantle. A possible source of these fluids/melts is the dehydration of the subducted Penninic slab beneath the Styrian Basin. The studied xenoliths did not record the latest large-scale geodynamic events in the region—the Miocene extension then tectonic inversion of the Pannonian Basin.
NASA Astrophysics Data System (ADS)
Wang, K.; Xiong, X.; Hao, X.; Li, J.
2017-12-01
Tienshan mountain is located about 1500 km away from the plate boundary, but it absorbs approximately 30% of the total effect of the Indian-Eurasian collision. As its rapid shortening and distinct deformation, Tienshan is considered as a good laboratory for studying the dynamics of intra-plate compressional deformation. However, a better understanding of the mechanics of Tienshan mountain building processes demands a detailed knowledge of the rheological structure of the lithosphere in Tienshan region.Here we take advantages of the new data sets from the geothermal, seismology and geodesy to re-estimate the strength of lithosphere in the Tienshan mountain and neighbouring region. We have developed two numerical deformation models (two-dimension profile) along the eastern and western Tienshan Mountain in order to investigate the effects of lateral strength heterogeneities on mountain building.We find that (1) the lithospheric strength of Tienshan mountain has significant difference with adjacent area, and its strength is significantly lower than that of Tarim Basin and Junggar Basin; (2) the strength also shows difference between the eastern and western of Tienshan Mountain, the eastern is strong and the western is weak. Our numerical results reveal that (3) the presence of strong Tarim Basin caused the Indian-Eurasian collision effect to be transferred to the Tienshan Mountains beyond 1500km, while the Tarim Basin shows little internal deformation; (4) the Tienshan region with weak lithosphere contributes to its horizontal shortening and vertical uplift; (5) the existence of high strength Junggar Basin is advantageous to the deformation and orogenic of Tienshan, and also prevents the orogenic range from spreading further northward.
Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting
NASA Astrophysics Data System (ADS)
Bastow, I. D.; Gilligan, A.; Watson, E.; Darbyshire, F. A.; Levin, V. L.; Menke, W. H.; Lane, V.; Boyce, A.; Liddell, M. V.; Petrescu, L.; Hawthorn, D.
2016-12-01
Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (φ ) and the delay time between the fast and slow split shear waves (δt ) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (φ , δt ) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥ 100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of > 1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.
Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting
NASA Astrophysics Data System (ADS)
Gilligan, Amy; Bastow, Ian D.; Watson, Emma; Darbyshire, Fiona A.; Levin, Vadim; Menke, William; Lane, Victoria; Hawthorn, David; Boyce, Alistair; Liddell, Mitchell V.; Petrescu, Laura
2016-08-01
Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (ϕ) and the delay time between the fast and slow split shear waves (δt) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (ϕ, δt) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of >1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.
NASA Astrophysics Data System (ADS)
Chen, Yun; Li, Wei; Yuan, Xiaohui; Badal, José; Teng, Jiwen
2015-03-01
Shear wave birefringence is a direct diagnostic of seismic anisotropy. It is often used to infer the northern limit of the underthrusting Indian lithosphere, based on the seismic anisotropy contrast between the Indian and Eurasian plates. Most studies have been made through several near north-south trending passive-source seismic experiments in southern Tibet. To investigate the geometry and the nature of the underthrusting Indian lithosphere, an east-west trending seismic array consisting of 48 seismographs was operated in the central Lhasa block from September 2009 to November 2010. Splitting of SKS waves was measured and verified with different methods. Along the profile, the direction of fast wave polarization is about 60° in average with small fluctuations. The delay time generally increases from east to west between 0.2 s and 1.0 s, and its variation correlates spatially with north-south oriented rifts in southern Tibet. The SKS wave arrives 1.0-2.0 s later at stations in the eastern part of the profile than in the west. The source of the anisotropy, estimated by non-overlapped parts of the Fresnel zones at stations with different splitting parameters, is concentrated above ca. 195 km depth. All the first-order features suggest that the geometry of the underthrusting Indian lithospheric slab in the Himalayan-Tibetan collision zone beneath southern Tibet is characterized by systematic lateral variations. A slab tearing and/or breakoff model of Indian lithosphere with different subduction angles is likely a good candidate to explain the observations.
Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere
Qi, Chao; Warren, Jessica M.
2016-01-01
Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary. PMID:27606485
NASA Astrophysics Data System (ADS)
Motavalli-Anbaran, Seyed-Hani; Zeyen, Hermann; Ebrahimzadeh Ardestani, Vahid
2013-02-01
We present a 3D algorithm to obtain the density structure of the lithosphere from joint inversion of free air gravity, geoid and topography data based on a Bayesian approach with Gaussian probability density functions. The algorithm delivers the crustal and lithospheric thicknesses and the average crustal density. Stabilization of the inversion process may be obtained through parameter damping and smoothing as well as use of a priori information like crustal thicknesses from seismic profiles. The algorithm is applied to synthetic models in order to demonstrate its usefulness. A real data application is presented for the area of northern Iran (with the Alborz Mountains as main target) and the South Caspian Basin. The resulting model shows an important crustal root (up to 55 km) under the Alborz Mountains and a thin crust (ca. 30 km) under the southernmost South Caspian Basin thickening northward to the Apsheron-Balkan Sill to 45 km. Central and NW Iran is underlain by a thin lithosphere (ca. 90-100 km). The lithosphere thickens under the South Caspian Basin until the Apsheron-Balkan Sill where it reaches more than 240 km. Under the stable Turan platform, we find a lithospheric thickness of 160-180 km.
Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.
Hansen, Lars N; Qi, Chao; Warren, Jessica M
2016-09-20
Tectonic plates are a key feature of Earth's structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.
NASA Astrophysics Data System (ADS)
Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.
2010-11-01
We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.
Current kinematics and dynamics of Africa and the East African Rift System
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.
2014-06-01
Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.
The rapid drift of the Indian tectonic plate.
Kumar, Prakash; Yuan, Xiaohui; Kumar, M Ravi; Kind, Rainer; Li, Xueqing; Chadha, R K
2007-10-18
The breakup of the supercontinent Gondwanaland into Africa, Antarctica, Australia and India about 140 million years ago, and consequently the opening of the Indian Ocean, is thought to have been caused by heating of the lithosphere from below by a large plume whose relicts are now the Marion, Kerguelen and Réunion plumes. Plate reconstructions based on palaeomagnetic data suggest that the Indian plate attained a very high speed (18-20 cm yr(-1) during the late Cretaceous period) subsequent to its breakup from Gondwanaland, and then slowed to approximately 5 cm yr(-1) after the continental collision with Asia approximately 50 Myr ago. The Australian and African plates moved comparatively less distance and at much lower speeds of 2-4 cm yr(-1) (refs 3-5). Antarctica remained almost stationary. This mobility makes India unique among the fragments of Gondwanaland. Here we propose that when the fragments of Gondwanaland were separated by the plume, the penetration of their lithospheric roots into the asthenosphere were important in determining their speed. We estimated the thickness of the lithospheric plates of the different fragments of Gondwanaland around the Indian Ocean by using the shear-wave receiver function technique. We found that the fragment of Gondwanaland with clearly the thinnest lithosphere is India. The lithospheric roots in South Africa, Australia and Antarctica are between 180 and 300 km deep, whereas the Indian lithosphere extends only about 100 km deep. We infer that the plume that partitioned Gondwanaland may have also melted the lower half of the Indian lithosphere, thus permitting faster motion due to ridge push or slab pull.
Mantle Lithosphere Rheology, Vertical Tectonics, and the Exhumation of (U)HP Rocks
NASA Astrophysics Data System (ADS)
Bodur, Ömer F.; Göǧüş, Oǧuz H.; Pysklywec, Russell N.; Okay, Aral I.
2018-02-01
Numerical modeling results indicate that mantle lithosphere rheology can influence the pressure-temperature-time (P-T-t) trajectories of continental crust subducted and exhumed during the onset of continental collision. Exhumation of ultrahigh-pressure ( 35 kbar)/high-temperature ( 750°C) metamorphic rocks is more prevalent in models with stronger continental mantle lithosphere (e.g., dry), whereas high-pressure ( 9-22 kbar)/low-temperature (350°C-630°C) metamorphic rocks occur in models with weaker rheology (e.g., hydrated) for the same layer. In the latter case, the buried crustal rocks can remain encased in ablatively subducting mantle lithosphere, reach only moderate temperatures, and exhume by dripping/detachment of the lithospheric root. In this transition from subduction to a dripping style of "vertical tectonics," burial and exhumation of crustal rocks are driven without imposed far-field plate convergence. The model results are compared against thermobarometric P-T estimates from major (ultra)high-pressure metamorphic terranes. We propose that the exhumation of high-pressure/low-temperature metamorphic rocks in Tavşanlı and Afyon zones in western Anatolia may be caused by viscous dripping of mantle lithosphere suggesting a weaker continental mantle lithosphere, whereas (ultra)high-pressure exhumation (e.g., Dabie Shan-eastern China and Dora Maira-western Alps) may be associated with plate-like subduction. In the latter case, the slab is much stronger and deformation is localized to the subduction interface along which rocks are buried to >100 km depth before they are exhumed to the near surface.
The Rapid Drift of the Indian Tectonic Plate
NASA Astrophysics Data System (ADS)
Kumar, P.; Yuan, X.; Kumar, R.; Kind, R.; Li, X.; Chadha, R.
2007-12-01
The breakup of the supercontinent Gondwanaland into Africa, Antarctica, Australia and India about 140 million years ago and consequently the opening of the Indian Ocean was caused by heating of the lithosphere from below by a large plume whose relicts are the Marion, Kerguelen and Reunion plumes. Plate reconstructions based on paleomagnetic data suggest that the Indian plate attained a very high speed (18-20 cm/yr during late Cretaceous) subsequent to its breakup from the Gondwanaland and slowed down to ~5 cm/yr since the continental collision with Asia during the last ~50 Ma. The Australian and African plates moved comparatively lesser distances and at much lesser speed of 2-4 cm/yr. Antarctica remained almost stationary. This super mobility makes India unique compared to the other fragments of Gondwanaland. We propose that when the parts of Gondwanaland were separated by the plume, the penetration of their lithospheric roots into the asthenosphere played an important role in determining their speed. We estimated the thickness of the lithospheric plates of the different parts of Gondwanaland around the Indian Ocean using the S-receiver function technique. We found that the part of Gondwanaland with clearly the thinnest lithosphere has travelled with the highest speed - India. The lithospheric root in South Africa, Australia and Antarctica is between 180 and 300 km deep. The Indian lithosphere is in contrast only about 100 km thick. Our interpretation is that the plume that partitioned Gondwanaland has also melted the lower half of the Indian lithosphere thus permitting faster motion due to the ridge push or slab pull.
NASA Astrophysics Data System (ADS)
Tychkov, Nikolay; Agashev, Alexey; Malygina, Elena; Pokhilenko, Nikolay
2014-05-01
Integrated study of 250 peridotite xenoliths from Udachnaya -East pipe show difference in mineral paragenesises and textural-structural peculiarities in the different level of cratonic lithosphere mantle (CLM). The compositions of minerals were determined using EPMA. Thermobarometric parameters (Brey, Kohller, 1990) were determined for all rocks occupying different fields on geothermal curve. The deepest layer (the pressure interval of 5.0-7.0 GPa) contains mostly pophyroclastic lherzolites. Anyway, some rocks of this layer have an idiomorphic texture being also enriched in incompatible components. Higher in the CLM sequence, the interval (4.2-6.3 GPa) is composed of the most depleted rocks: megacristalline ultradepleted harzburgite-dunites and depleted granular harzburgite-dunites, as well as lherzolites in a subordinate amount. They correspond strate to 35 mW/m2 and partly overlap the deeper layer in dapth. It is likely that rocks of this layer are in equilibrium and were not subject to significant secondary changes due to kimberlite magma intrusion. Thus, this interval of the CLM sequence reflects the true (relic) geotherm for the area of the Udachnaya kimberlite pipe. Moreover, it is obvious that this interval was a major supplier of diamonds into kimberlites of the Udachnaya pipe. The interval of 4.2-2.0 GPa in the CLM sequence is also composed of coarse depleted lherzolites and harzburgites. Rocks of this interval are slightly more enriched than those of the underlying interval. This is confirmed by the distinct predominance of lherzolites over harzburgite-dunites. The heat flow in this layer varies in the range of 38-45 mW/m2 and shows a general tendency to increase with decreasing depth. According to occurrence of nonequilibrium mineral assemblages and increased heat flow relative to the major heat flow of 35 mW/m2, this interval is similar to the deepest interval of secondary enriched rocks. Interval of less than 2.0 GPa composed of spinel lherzolites and harzburgites. The temperature range of stability of these rocks is 600-900oC (average 754oC) for the geotherm curve of 45 mW/m2. The paleogeotherm obtained as a result of our study has a relatively complicated stepped structure. The geotherm knee in the deep part of the sequence, described for different regions, is connected with the temperature perturbations at the lithosphere-asthenosphere boundary. The increased heat flow at the depth corresponding to a pressure of <4.2 GPa is rather unusual. It is obvious that it is not connected with deep processes on the CLM bottom. We assume, that thermal perturbations of this interval are due to large-scale crystallization and heating when going up silicate-carbonate kimberlitic magma reach the depth of peridotite+CO2 solidus curve bend. 11-05-91060-PICS
NASA Astrophysics Data System (ADS)
Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.
2016-12-01
Competing hypotheses for the formation and evolution of continents are highly under debate, including the theory of underplating by hot plumes or accretion by shallow subduction in continental or arc settings. In order to support these hypotheses, documenting structural layering in the cratonic lithosphere becomes especially important. Studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at 100-140 km depths, which is too shallow to be consistent with the lithosphere-asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. This leads to the conclusion that 1) the cratonic lithosphere may be thinner than expected, contradicting tomographic and other geophysical or geochemical inferences, or 2) that the receiver function studies detect a mid-lithospheric discontinuity rather than the LAB. Recent studies (Bodin et al., 2015, Calo et al. 2016) confirmed the presence of a structural boundary under the north American craton at 100-140 km depths by taking advantage of the power of a trans-dimensional Monte Carlo Markov chain (TMCMC). They generated probabilistic 1D radially shear wave velocity profiles for selected stations in North America by jointly inverting 2 different data types (PS Receiver Functions, surface wave dispersion for Love and Rayleigh waves), which sample different volumes of the Earth and have different sensitivities to structure. The resulting 1D profiles include both isotropic and anisotropic discontinuities in the upper mantle (above 350 km depth). Here we extend this approach and include the vp/vs ratio as an unknown in the TMCMC algorithm to avoid artificial layers induced by multiples of the receiver functions. Additionally, we include SKS waveforms in the joint inversion and invert for azimuthal anisotropy to verify if layering in the anisotropic structure of the stable part of the North American continent involves significant changes in the direction of azimuthal anisotropy as suggested by Yuan and Romanowicz (2010). We recently demonstrated the power of this approach in the case of two stations located in different tectonic settings (Bodin et al., 2016. Here we extend this approach to a broader range of settings within the north American continent.
Temporal evolution of continental lithospheric strength in actively deforming regions
Thatcher, W.; Pollitz, F.F.
2008-01-01
It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic setting of the process being investigated.
Double subduction of continental lithosphere, a key to form wide plateau
NASA Astrophysics Data System (ADS)
Replumaz, Anne; Funiciello, Francesca; Reitano, Riccardo; Faccenna, Claudio; Balon, Marie
2016-04-01
The mechanisms involved in the creation of the high and wide topography, like the Tibetan Plateau, are still controversial. In particular, the behaviour of the indian and asian lower continental lithosphere during the collision is a matter of debate, either thickening, densifying and delaminating, or keeping its rigidity and subducting. But since several decades seismicity, seismic profiles and global tomography highlight the lithospheric structure of the Tibetan Plateau, and make the hypotheses sustaining the models more precise. In particular, in the western syntaxis, it is now clear that the indian lithosphere subducts northward beneath the Hindu Kush down to the transition zone, while the asian one subducts southward beneath Pamir (e.g. Negredo et al., 2007; Kufner et al., 2015). Such double subduction of continental lithospheres with opposite vergence has also been inferred in the early collision time. Cenozoic volcanic rocks between 50 and 30 Ma in the Qiangtang block have been interpreted as related to an asian subduction beneath Qiangtang at that time (De Celles et al., 2011; Guillot and Replumaz, 2013). We present here analogue experiments silicone/honey to explore the subduction of continental lithosphere, using a piston as analogue of far field forces. We explore the parameters that control the subductions dynamics of the 2 continental lithospheres and the thickening of the plates at the surface, and compare with the Tibetan Plateau evolution. We show that a continental lithosphere is able to subduct in a collision context, even lighter than the mantle, if the plate is rigid enough. In that case the horizontal force due to the collision context, modelled by the piston push transmitted by the indenter, is the driving force, not the slab pull which is negative. It is not a subduction driving by the weight of the slab, but a subduction induced by the collision, that we could call "collisional subduction".
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Byrne, Paul K.; Mikhail, Sami
2017-01-01
Surface gravitational acceleration (surface gravity) on Mars, the second-smallest planet in the Solar System, is much lower than that on Earth. A direct consequence of this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any given depth. Collated published data from deformation experiments on basalts suggest that, throughout its geological history (and thus thermal evolution), the Martian brittle lithosphere was much thicker but weaker than that of present-day Earth as a function solely of surface gravity. We also demonstrate, again as a consequence of its lower surface gravity, that the Martian lithosphere is more porous, that fractures on Mars remain open to greater depths and are wider at a given depth, and that the maximum penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than on Earth. The result of a weak Martian lithosphere is that dykes-the primary mechanism for magma transport on both planets-can propagate more easily and can be much wider on Mars than on Earth. We suggest that this increased the efficiency of magma delivery to and towards the Martian surface during its volcanically active past, and therefore assisted the exogeneous and endogenous growth of the planet's enormous volcanoes (the heights of which are supported by the thick Martian lithosphere) as well as extensive flood-mode volcanism. The porous and pervasively fractured (and permeable) nature of the Martian lithosphere will have also greatly assisted the subsurface storage of and transport of fluids through the lithosphere throughout its geologically history. And so it is that surface gravity, influenced by the mass of a planetary body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere with manifest differences in surface topography and geomorphology, volcanic character, and hydrology.
When mountain belts disrupt mantle flow: from natural evidences to numerical modelling
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent; Guillaume, Benjamin
2016-04-01
During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Here, we show that such mountain belts, at plate boundaries, increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, it changes the dynamic and kinematic surface conditions of the underlying flowing mantle, which ultimately modifies the pattern of mantle flow. Such forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among others, at lithospheric scale, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, the initiation of subductions, or the onset of obductions. In the mantle, such changes in boundary conditions redesign the flow pattern and, consequently, disturb the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere is resting on top. Our results show that when collision occurs, the mantle flow is strongly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) a modification of the convection style. In turn, the transition between a "free" convection (mobile lid) and a "disturbed" convection (stagnant - or sluggish - lid) highly impacts the dynamics of the lithosphere at the surface. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a lithosphere presenting a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction initiation or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, which may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.
The many impacts of building mountain belts on plate tectonics and mantle flow
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Husson, Laurent
2015-04-01
During the Cenozoic, the number of orogens on Earth increased. This observation readily indicates that in the same time, compression in the lithosphere became gradually more and more important. Such an increase of stresses in the lithosphere can impact on plate tectonics and mantle dynamics. We show that mountain belts at plate boundaries increasingly obstruct plate tectonics, slowing down and reorienting their motions. In turn, this changes the dynamic and kinematic surface conditions of the underlying flowing mantle. Ultimately, this modifies the pattern of mantle flow. This forcing could explain many first order features of Cenozoic plate tectonics and mantle flow. Among these, one can cite the compression of passive margins, the important variations in the rates of spreading at oceanic ridges, or the initiation of subduction, the onset of obduction, for the lithosphere. In the mantle, such change in boundary condition redesigns the pattern of mantle flow and, consequently, the oceanic lithosphere cooling. In order to test this hypothesis we first present thermo-mechanical numerical models of mantle convection above which a lithosphere rests. Our results show that when collision occurs, the mantle flow is highly modified, which leads to (i) increasing shear stresses below the lithosphere and (ii) to a modification of the convection style. In turn, the transition between a 'free' convection (mobile lid) and an 'upset' convection (stagnant -or sluggish- lid) highly impacts the dynamics of the lithosphere at the surface of the Earth. Thereby, on the basis of these models and a variety of real examples, we show that on the other side of a collision zone, passive margins become squeezed and can undergo compression, which may ultimately evolve into subduction or obduction. We also show that much further, due to the blocking of the lithosphere, spreading rates decrease at the ridge, a fact that may explain a variety of features such as the low magmatism of ultraslow spreading ridges or the departure of slow spreading ridges from the half-space cooling model.
NASA Astrophysics Data System (ADS)
Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Paul, A.; Zhao, L.
2018-02-01
The Western Alps, although being intensively investigated, remains elusive when it comes to determining its lithospheric structure. New inferences on the latter are important for the understanding of processes and mechanisms of orogeny needed to unravel the dynamic evolution of the Alps. This situation led to the deployment of the CIFALPS temporary experiment, conducted to address the lack of seismological data amenable to high-resolution seismic imaging of the crust and the upper mantle. We perform a 3-D isotropic full-waveform inversion (FWI) of nine teleseismic events recorded by the CIFALPS experiment to infer 3-D models of both density and P- and S-wave velocities of the Alpine lithosphere. Here, by FWI is meant the inversion of the full seismograms including phase and amplitude effects within a time window following the first arrival up to a frequency of 0.2 Hz. We show that the application of the FWI at the lithospheric scale is able to generate images of the lithosphere with unprecedented resolution and can furnish a reliable density model of the upper lithosphere. In the shallowest part of the crust, we retrieve the shape of the fast/dense Ivrea body anomaly and detect the low velocities of the Po and SE France sedimentary basins. The geometry of the Ivrea body as revealed by our density model is consistent with the Bouguer anomaly. A sharp Moho transition is followed from the external part (30 km depth) to the internal part of the Alps (70-80 km depth), giving clear evidence of a continental subduction event during the formation of the Alpine Belt. A low-velocity zone in the lower lithosphere of the S-wave velocity model supports the hypothesis of a slab detachment in the western part of the Alps that is followed by asthenospheric upwelling. The application of FWI to teleseismic data helps to fill the gap of resolution between traditional imaging techniques, and enables integrated interpretations of both upper and lower lithospheric structures.
Lithospheric buoyancy and continental intraplate stresses
Zoback, M.L.; Mooney, W.D.
2003-01-01
Lithospheric buoyancy, the product of lithospheric density and thickness, is an important physical property that influences both the long-term stability of continents and their state of stress. We have determined lithospheric buoyancy by applying the simple isostatic model of Lachenbruch and Morgan (1990). We determine the crustal portion of lithospheric buoyancy using the USGS global database of more than 1700 crustal structure determinations (Mooney et al., 2002), which demonstrates that a simple relationship between crustal thickness and surface elevation does not exist. In fact, major regions of the crust at or near sea level (0-200 m elevation) have crustal thicknesses that vary between 25 and 55 km. Predicted elevations due to the crustal component of buoyancy in the model exceed observed elevations in nearly all cases (97% of the data), consistent with the existence of a cool lithospheric mantle lid that is denser than the asthenosphere on which it floats. The difference between the observed and predicted crustal elevation is assumed to be equal to the decrease in elevation produced by the negative buoyancy of the mantle lid. Mantle lid thickness was first estimated from the mantle buoyancy and a mean lid density computed using a basal crust temperature determined from extrapolation of surface heat flow, assuming a linear thermal gradient in the mantle lid. The resulting values of total lithosphere thickness are in good agreement with thicknesses estimated from seismic data, except beneath cratonic regions where they are only 40-60% of the typical estimates (200-350 km) derived from seismic data. This inconsistency is compatible with petrologic data and tomography and geoid analyses that have suggested that cratonic mantle lids are ??? 1% less dense than mantle lids elsewhere. By lowering the thermally determined mean mantle lid density in cratons by 1%, our model reproduces the observed 200-350+ km cratonic lithospheric thickness. We then computed gravitational potential energy by taking a vertical integral over the computed lithosphere density. Our computed values suggest that the thick roots beneath cratons lead to strong negative potential energy differences relative to surrounding regions, and hence exert compressive stresses superimposed on the intraplate stresses derived from plate boundary forces. Forces related to this lithosphere structure thus may explain the dominance of reverse-faulting earthquakes in cratons. Areas of high elevation and a thin mantle lid (e.g., western U.S. Basin and Range, East African rift, and Baikal rift) are predicted to be in extension, consistent with the observed stress regime in these areas.
NASA Astrophysics Data System (ADS)
Bessat, A.; Pilet, S.; Duretz, T.; Schmalholz, S. M.
2017-12-01
Petit-spot volcanoes were found fifteen years ago by Japanese researchers at the top of the subducting plate in Japan (Hirano 2006). This discovery is of great significance as it highlights the importance of tectonic processes for the initiation of intraplate volcanism. The location of these small lava flows is unusual and seems to be related to the plate flexure, which may facilitate the extraction of low degree melts from the base of the lithosphere, a hypothesis previously suggested to explain changes in electric and seismic properties at 70-90 km depth, i.e. within the low velocity zone (LVS) (Sifré 2014). A critical question is related to the process associated with the extraction of this low degree melts from the LVZ. First models suggested that extension associated to plate bending allows large cracks to propagate across the lithosphere and could promote the extraction of low degree melts at the base of the lithosphere (Hirano 2006 & Yamamoto 2014). However, the study of petit-spot mantle xenoliths from Japan (Pilet 2016) has demonstrated that low degree melts are not directly extracted to the surface but percolate, interact and metasomatize the oceanic lithosphere. In order to understand the melt extraction process in the region of plate bending, we performed 2D thermo-mechanical simulations of Japanese-type subduction. The numerical model considers viscoelastoplastic deformation. This allows the quantification of state of the stress, strain rates, and viscosities which will control the percolation of melt initially stocked at the base of the lithosphere. Initial results show that plate flexure changes the distribution of the deformation mechanism in the flexure zone, between 40 km to 80 km depth. A change of the dominant deformation mechanism from diffusion creep to dislocation creep and from there to Peierls creep was observed about 200 to 300 km from the trench. These changes are linked to the augmentation of the stresses in the flexure zone. At the base of the lithosphere diffusion creep is observed as a thin layer (20 km), which becomes smaller (10 km) as the subduction progresses in favour of the dislocation creep. Further work will be necessary to prove whether the associated stress distributions is compatible with the development of porosity waves, a critical process to extract melts in low porosity media.
NASA Astrophysics Data System (ADS)
Stanley, J. R.; Flowers, R. M.
2015-12-01
In many cases it is difficult to evaluate the synchronicity and thus potential connections between disparate geologic events, such as the links between processes in the mantle lithosphere and at the surface. Developing new geochronologic tools and strategies for integrating existing chronologic data with other information is essential for addressing these problems. Here we use (U-Th)/He dating of multiple kimberlitic minerals to date kimberlite eruption and cratonic erosion phases. This approach permits us to more directly assess the link between unroofing and thermomodification of the lithosphere by tying our results to information obtained from mantle-derived clasts in the same pipes. Kimberlites are rich sources of information about the composition of the cratonic lithosphere and its evolution over time. Their xenoliths and xenocrysts can preserve a snapshot of the entire lithosphere and its sedimentary cover at the time of eruption. Accurate geochronology of these eruptions is crucial for interpreting spatiotemporal trends, but kimberlites can be difficult to date using standard techniques. Here we show that the mid-temperature thermochonometers of the zircon and perovskite (U-Th)/He (ZHe, PHe) systems can be viable tools for dating kimberlite eruption. When combined with the low temperature sensitivity of (U-Th)/He in apatite (AHe), the (U-Th)/He system can be used to date both the emplacement and the erosional cooling history of kimberlites. The southern African shield is an ideal location to test the utility of this approach because the region was repeatedly intruded by kimberlites in the Cretaceous, with two major pulses at ~200-110 Ma and ~100-80 Ma. These kimberlites contain a well-studied suite of mantle xenoliths and xenocrysts that document lithospheric heating and metasomatism over this interval. Our ZHe and PHe dates overlap with published eruption ages and add new ages for undated pipes. Our AHe dates constrain the spatial patterns of Cretaceous erosion across the craton, with a phase of erosion that overlaps with when the lithosphere was thermochemically modified, especially in the more heavily altered off-craton regions. These results highlight the value of the (U-Th)/He system for dating a range of geologic events and evaluating elusive links between surface and deeper-earth processes.
NASA Astrophysics Data System (ADS)
Vinnik, L.; Singh, A.; Kiselev, S.; Kumar, M. Ravi
2007-12-01
The fate of the mantle lithosphere of the Indian Plate in the India-Eurasia collision zone is not well understood. Tomographic studies reveal high P velocity in the uppermost mantle to the south of the western Himalaya, and these high velocities are sometimes interpreted as an image of subducting Indian lithosphere. We suggest that these high velocities are unrelated to the ongoing subduction but correspond to a near-horizontal mantle keel of the Indian shield. In the south of the Indian shield upper-mantle velocities are anomalously low, and relatively high velocities may signify a recovery of the normal shield structure in the north. Our analysis is based on the recordings of seismograph station NIL in the foothills of the western Himalaya. The T component of the P receiver functions is weak relative to the Q component, which is indicative of a subhorizontally layered structure. Joint inversion of the P and S receiver functions favours high uppermost mantle velocities, typical of the lithosphere of Archean cratons. The arrival of the Ps converted phase from 410 km discontinuity at NIL is 2.2 s earlier than in IASP91 global model. This can be an effect of remnants of Tethys subduction in the mantle transition zone and of high velocities in the keel of the Indian shield. Joint inversion of SKS particle motions and P receiver functions reveals a change in the fast direction of seismic azimuthal anisotropy from 60° at 80-160 km depths to 150° at 160-220 km. The fast direction in the lower layer is parallel to the trend of the Himalaya. The change of deformation regimes at a depth of 160 km suggests that this is the base of the lithosphere of the Indian shield. A similar boundary was found with similar techniques in central Europe and the Tien Shan region, but the base of the lithosphere in these regions is relatively shallow, in agreement with the higher upper-mantle temperatures. The ongoing continental collision is expressed in crustal structure: the crust beneath NIL is very thick (58 +/- 2 km), and the S velocity in the intermediate and lower crust is around 4.0 km s-1. This anomalously large velocity and thickness can be explained by scraping off the lower crust, when the Indian lithosphere underthrusts the Himalaya.
NASA Technical Reports Server (NTRS)
Sleep, N. H.; Phillips, R. J.
1985-01-01
On Mars and Venus, a strong positive correlation is found between geoid height and topography. The Tharsis region of Mars provides an exhibition of this correlation. Several hypotheses have been proposed regarding the origin of Tharsis. For purposes of explanation, three end-member dynamic hypotheses are considered. A hypothesis that the flexural doming of Tharsis resulted from uplift caused by some force acting on the base of the lithosphere can be rejected. According to another hypothesis, Tharsis is associated with a lithospheric load, while a third one considers that Tharsis is primarily isostatically compensated. In the present study, improved stress models for isostatic compensation on Mars are obtained. The strains inferred from fracture patterns on Mars are compared with the stresses predicted by the isostatic theory. It is found that the computed stresses are in reasonable agreement with tectonic features on Mars.
Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography
NASA Astrophysics Data System (ADS)
Pandey, Shantanu; Yuan, Xiaohui; Debayle, Eric; Tilmann, Frederik; Priestley, Keith; Li, Xueqing
2015-06-01
Azimuthal anisotropy derived from multimode Rayleigh wave tomography in China exhibits depth-dependent variations in Tibet, which can be explained as induced by the Cenozoic India-Eurasian collision. In west Tibet, the E-W fast polarization direction at depths <100 km is consistent with the accumulated shear strain in the Tibetan lithosphere, whereas the N-S fast direction at greater depths is aligned with Indian Plate motion. In northeast Tibet, depth-consistent NW-SE directions imply coupled deformation throughout the whole lithosphere, possibly also involving the underlying asthenosphere. Significant anisotropy at depths of 225 km in southeast Tibet reflects sublithospheric deformation induced by northward and eastward lithospheric subduction beneath the Himalaya and Burma, respectively. The multilayer anisotropic surface wave model can explain some features of SKS splitting measurements in Tibet, with differences probably attributable to the limited back azimuthal coverage of most SKS studies in Tibet and the limited horizontal resolution of the surface wave results.
Relationship between the upper mantle high velocity seismic lid and the continental lithosphere
NASA Astrophysics Data System (ADS)
Priestley, Keith; Tilmann, Frederik
2009-04-01
The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
NASA Astrophysics Data System (ADS)
Wang, Xiaoran; Li, Qiusheng; Li, Guohui; Zhou, Yuanze; Ye, Zhuo; Zhang, Hongshuang
2018-03-01
We provided a new study of the seismic velocity structure of the mantle transition zone (MTZ) beneath the northeastern South China Sea using P-wave triplications from two earthquakes at the central Philippines recorded by the Chinese Digital Seismic Network. Through fitting the observed and theoretical triplications modeled by the dynamic ray tracing method for traveltimes, and the reflectivity method for synthetic waveforms using grid-searching method, best-fit velocity models based on IASP91 were obtained to constrain the P-wave velocity structure of the MTZ. The models show that a high-velocity anomaly (HVA) resides at the bottom of MTZ. The HVA is 215 km to 225 km thick, with a P-wave velocity increment of 1.0% between 450 km and 665 km or 675 km transition and increase by 2.5-3.5% at 665 km or 675 km depth. The P-wave velocity increment ranges from approximately 0.3% to 0.8% below the 665 km or 675 km. We proposed that the HVA in the MTZ was caused by the broken fragments of a diving oceanic plate falling into the MTZ at a high angle, and/or by unstable thick continental lithosphere dropping into the MTZ sequentially or almost simultaneously.
Two-dimensional Coupled Petrological-tectonic Modelling of Extensional Basins
NASA Astrophysics Data System (ADS)
Kaus, B. J. P.; Podladchikov, Y. Y.; Connolly, J. A. D.
Most numerical codes that simulate the deformation of a lithosphere assume the den- sity of the lithosphere to be either constant or depend only on temperature and pres- sure. It is, however, well known that rocks undergo phase transformations in response to changes in pressure and temperature. Such phase transformations may substantially alter the bulk properties of the rock (i.e., density, thermal conductivity, thermal ex- pansivity and elastic moduli). Several previous studies demonstrated that the density effects due to phase transitions are indeed large enough to have an impact on the litho- sphere dynamics. These studies were however oversimplified in that they accounted for only one or two schematic discontinuous phase transitions. The current study there- fore takes into account all the reactions that occur for a realistic lithospheric composi- tion. Calculation of the phase diagram and bulk physical properties of the stable phase assemblages for the crust and mantle within the continental lithosphere was done ac- counting for mineral solution behaviour using a free energy minimization program for natural rock compositions. The results of these calculations provide maps of the varia- tions in rock properties as a function of pressure and temperature that are easily incor- porated in any dynamic model computations. In this contribution we implemented a density map in the two-dimensional basin code TECMOD2D. We compare the results of the model with metamorphic reactions with a model without reactions and define some effective parameters that allow the use of a simpler model that still mimics most of the density effects of the metamorphic reactions.
NASA Astrophysics Data System (ADS)
Huang, J.
2017-12-01
Northeast China is located in the composite part of Paleo Asia ocean and Pacific ocean Domain, it undergone multi-stage tectonism and has complicated geological structure. In this region, two major geologic and geophysical boundaries are distinct, the NNE-trending North South Gravity Lineament (NSGL) and Tanlu fault. With respect to North China Craton (NCC), Northeast China is more closely adjacent to the subduction zone of Pacific slab. Along the eastern boundary of Northeast China, the subducting Pacific plate approaches depths of 600 km, many deep earthquakes occurred here. This region becomes an ideal place to investigate deep structure related to deep subduction, deep earthquakes as well as intraplate volcanism. In this study, we determined high-resolution three dimensional P- and S-wave velocity models of the crust and upper mantle to 800 km depth by jointly inverting arrival times from local events and relative residuals from teleseismic events. Our results show that main velocity anomalies exhibited block feature and are generally oriented in NE to NNE direction, which is consistent with regional tectonic direction. The NSGL is characterized by a high-velocity (high-V) anomaly belt with a width of approximately 100 km, and the high-V anomaly extents to the bottom of upper mantle or mantle transition zone. The songliao basin, which is located between NSGL and Tanlu fault tectonic boundaries, obvious low-velocity anomaly extends to about depth of 200 km(. Under the Great Xing'an Range on the west side of NSGL, the low velocity extend to the lithosphere. Our results also show that most of deep earthquakes all occurred in deep subduction zone with high-velocity anomaly. Further, we also observed that extensive low velocity exists above deep-earthquakes zones, this result suggests that deep subduction of the Pacific slab maybe affect overlying lithosphere, resulting in the state of molten, semi-molten or high water.This research is supported by the National Science Foundation of China (91114204) and National Key R&D Plan (2017YFC0601406)
NASA Astrophysics Data System (ADS)
Howell, S. M.; Ito, G.; Behn, M. D.; Olive, J. A. L.; Kaus, B.; Popov, A.; Mittelstaedt, E. L.; Morrow, T. A.
2016-12-01
Previous two-dimensional (2-D) modeling studies of abyssal-hill scale fault generation and evolution at mid-ocean ridges have predicted that M, the ratio of magmatic to total extension, strongly influences the total slip, spacing, and rotation of large faults, as well as the morphology of the ridge axis. Scaling relations derived from these 2-D models broadly explain the globally observed decrease in abyssal hill spacing with increasing ridge spreading rate, as well as the formation of large-offset faults close to the ends of slow-spreading ridge segments. However, these scaling relations do not explain some higher resolution observations of segment-scale variability in fault spacing along the Chile Ridge and the Mid-Atlantic Ridge, where fault spacing shows no obvious correlation with M. This discrepancy between observations and 2-D model predictions illuminates the need for three-dimensional (3-D) numerical models that incorporate the effects of along-axis variations in lithospheric structure and magmatic accretion. To this end, we use the geodynamic modeling software LaMEM to simulate 3-D tectono-magmatic interactions in a visco-elasto-plastic lithosphere under extension. We model a single ridge segment subjected to an along-axis gradient in the rate of magma injection, which is simulated by imposing a mass source in a plane of model finite volumes beneath the ridge axis. Outputs of interest include characteristic fault offset, spacing, and along-axis gradients in seafloor morphology. We also examine the effects of along-axis variations in lithospheric thickness and off-axis thickening rate. The main objectives of this study are to quantify the relative importance of the amount of magmatic extension and the local lithospheric structure at a given along-axis location, versus the importance of along-axis communication of lithospheric stresses on the 3-D fault evolution and morphology of intermediate-spreading-rate ridges.
NASA Astrophysics Data System (ADS)
Seiberlich, C. K. A.; Ritter, J. R. R.; Wawerzinek, B.
2013-09-01
We study the crust-mantle and lithosphere-asthenosphere boundaries (Moho and LAB) in Central Europe, specifically below the Upper Rhine Graben (URG) rift, the Eifel volcanic region and their surrounding areas. Teleseismic recordings at permanent and mobile stations are analysed to search for shear (S) wave to compressional (P) wave converted phases. After a special processing these phases are identified in shear wave receiver functions (S-RFs). Conversions from the Moho at 2.9-3.3 s arrival time are the clearest signals in the S-RFs and indicate a relatively flat Moho at 27-30 km depth. A negative polarity conversion signal at 7-9 s arrival time can be explained with a low shear wave velocity zone (LVsZ) in the upper mantle. We use forward S-RF waveform modelling and Monte-Carlo techniques to determine shear wave velocity (vs)-depth (z) profiles which explain the observed S-RF and which outline variations of the lithospheric thickness in the study region. Across the URG rift and its surrounding mountain ranges (Black Forest, Odenwald etc.) the LAB is at a depth of about 60 ± 5 km. This depth is found for the rift itself as well as for the rift shoulders. Southeast and southwest of the URG, in the regions of the Swabian Alb and Vosges Mountains, the LAB dips to about 78 ± 5 km depth. In the volcanic Eifel region the LAB is at a much shallower depth of just 41 ± 5 km. There an upwelling mantle plume thermally eroded the lower lithosphere. The reduction of vs is about 2%-4% in the upper asthenosphere compared to the lower lithosphere. This vs contrast may be explained with a low portion of partial melt or hydrous minerals in the asthenosphere.
NASA Astrophysics Data System (ADS)
Takeuchi, Christopher S.
In this dissertation, I study the influence of transform faults on the structure and deformation of the lithosphere, using shipboard and geodetic observations as well as numerical experiments. I use marine topography, gravity, and magnetics to examine the effects of the large age-offset Andrew Bain transform fault on accretionary processes within two adjacent segments of the Southwest Indian Ridge. I infer from morphology, high gravity, and low magnetization that the extremely cold and thick lithosphere associated with the Andrew Bain strongly suppresses melt production and crustal emplacement to the west of the transform fault. These effects are counteracted by enhanced temperature and melt production near the Marion Hotspot, east of the transform fault. I use numerical models to study the development of lithospheric shear zones underneath continental transform faults (e.g. the San Andreas Fault in California), with a particular focus on thermomechanical coupling and shear heating produced by long-term fault slip. I find that these processes may give rise to long-lived localized shear zones, and that such shear zones may in part control the magnitude of stress in the lithosphere. Localized ductile shear participates in both interseismic loading and postseismic relaxation, and predictions of models including shear zones are within observational constraints provided by geodetic and surface heat flow data. I numerically investigate the effects of shear zones on three-dimensional postseismic deformation. I conclude that the presence of a thermally-activated shear zone minimally impacts postseismic deformation, and that thermomechanical coupling alone is unable to generate sufficient localization for postseismic relaxation within a ductile shear zone to kinematically resemble that by aseismic fault creep (afterslip). I find that the current record geodetic observations of postseismic deformation do not provide robust discriminating power between candidate linear and power-law rheologies for the sub-Mojave Desert mantle, but longer observations may potentially allow such discrimination.
Lithospheric bending at subduction zones based on depth soundings and satellite gravity
NASA Technical Reports Server (NTRS)
Levitt, Daniel A.; Sandwell, David T.
1995-01-01
A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(sub 1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (approximately 150 Ma) exceeds the GDH1 model depths by about 400 m.
NASA Astrophysics Data System (ADS)
Stotz, I. L.; Iaffaldano, G.; Davies, D. R.
2018-01-01
The Pacific Plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians-Japan, Marianas-Izu-Bonin, and Tonga-Kermadec trenches. This implies that viscous flow within the sub-Pacific asthenosphere is mainly generated by overlying plate motion (i.e., Couette flow) and that the associated shear stresses at the lithosphere's base are resisting such motion. Recent studies on glacial isostatic adjustment and lithosphere dynamics provide tighter constraints on the viscosity and thickness of Earth's asthenosphere and, therefore, on the amount of shear stress that asthenosphere and lithosphere mutually exchange, by virtue of Newton's third law of motion. In light of these constraints, the notion that subduction is the main driver of present-day Pacific Plate motion becomes somewhat unviable, as the pulling force that would be required by slabs exceeds the maximum available from their negative buoyancy. Here we use coupled global models of mantle and lithosphere dynamics to show that the sub-Pacific asthenosphere features a significant component of pressure-driven (i.e., Poiseuille) flow and that this has driven at least 50% of the Pacific Plate motion since, at least, 15 Ma. A corollary of our models is that a sublithospheric pressure difference as high as ±50 MPa is required across the Pacific domain.
NASA Astrophysics Data System (ADS)
Roda, M.; Marotta, A. M.; Conte, K.; Spalla, M. I.
2015-12-01
The transition from continental rifting to oceanization has been investigated by mean of a 2D thermo-mechanical numerical model in which the formation of oceanic crust by mantle serpentinization, due to the hydration of the uprising peridotite, as been implemented. Model predictions have been compared with natural data related to the Permian-Triassic thinning affecting the continental lithosphere of the Alpine domain, in order to identify which portions of the present Alpine-Apennine system, preserving the imprints of Permian-Triassic high temperature (HT) metamorphism, is compatible, in terms of lithostratigraphy and tectono-metamorphic evolution, with a lithospheric extension preceding the opening of the Ligure-Piemontese oceanic basin. At this purpose age, petrological and structural data from the Alpine and Apennine ophiolite complexes are compared with model predictions from the oceanization stage. Our comparative analysis supports the thesis that the lithospheric extension preceding the opening of the Alpine Tethys did not start on a stable continental lithosphere, but developed by recycling part of the old Variscan collisional suture. The HT Permian-Triassic metamorphic re-equilibration overprints an inherited tectonic and metamorphic setting consequent to the Variscan subduction and collision, making the Alps a key case history to explore mechanisms responsible for the re-activation of orogenic scars.
NASA Astrophysics Data System (ADS)
Ye, Gaofeng; Jin, Sheng; Wei, Wenbo; Jing, Jian'en
2017-04-01
The closure of the Paleo-Asian Ocean along the Solonker Suture Zone (SSZ) during the Late Permian and Triassic represented the final stage in the formation of the Central Asian Orogenic Belt between the Siberian Craton and the North China Craton. In order to better understand the structure and formation of this ancient subduction zone, a high-resolution magnetotelluric (MT) profile was collected with both broadband and long-period MT data. The high resolution mapping of the lithosphere achieved in this study is due to the closely spaced MT stations (2-3 km). With the 2-D resistivity model, a south-dipping conductor was detected and extends through the entire crust. The geometry of this feature provides evidence that a southward directed subduction zone formed the Solonker suture. The enhanced conductivity was interpreted to subducted sulfide-bearing graphitic sediments. The resistive body beneath the northern margin of the North China Craton indicates a thickened lithosphere caused by the southward subduction at this region, and the resistive body beneath the Solonker Suture Zone indicates the subducted oceanic lithosphere. North-dipping low resistivity features were also detected in the crust of both the North China Craton and Central Asian Orogenic Belt, and were interpreted as post-collisional thrust faults. Strong anisotropy was found beneath the suture zone, and can be explained if the high strain rate has rotated the fold axes into the dip direction.
NASA Astrophysics Data System (ADS)
Jóźwiak, Waldemar
2013-10-01
The marginal zone of the East European Platform, an area of key importance for our understanding of the geotectonic history of Europe, has been a challenge for geophysicists for many years. The basic research method is seismic survey, but many important data on physical properties and structure of the lithosphere may also be provided by the electromagnetic methods. In this paper, results of deep basement study by electromagnetic methods performed in Poland since the mid-1960s are presented. Over this time, several hundred long-period soundings have been executed providing an assessment of the electric conductivity distribution in the crust and upper mantle. Numerous 1D, 2D, and pseudo-3D electric conductivity models were constructed, and a new interpretation method based on Horizontal Magnetic Tensor analysis has been applied recently. The results show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian Platform, transitional zone (TESZ), and the Paleozoic Platform. The wide-spread conducting complexes in the crust with integral conductivity values reaching 10 000 S at 20-30 km depths are most spectacular. They are most likely consequences of geological processes related to Caledonian and Variscan orogenesis. The upper mantle conductivity is also variable, the thickness of high-resistive lithospheric plates ranging from 120-140 km under the Paleozoic Platform to 220-240 km under the East European Platform.
Using natural laboratories and modeling to decipher lithospheric rheology
NASA Astrophysics Data System (ADS)
Sobolev, Stephan
2013-04-01
Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of observations for the DSB can be explained within the classical pull-apart model assuming that (1) the lithosphere has been thermally eroded at about 20 Ma, just before the active faulting at the DST, and (2) the uppermost mantle in the region have relatively weak rheology consistent with the experimental data for wet olivine or pyroxenite. Another example is modeling of the collision of India and Eurasia in Tibet. Our recent thermo-mechanical model (see abstract by Tympel et al) reproduce well many important features of this orogeny, including observed convergence and distance of underthrusting of Indian lithosphere beneath Tibet, if long-term friction at India-Eurasia interface is about 0.04- 0.05, which is typical for oceanic subduction zones, but is unexpected low for continental setting.
NASA Astrophysics Data System (ADS)
Glotzbach, Christoph; Büttner, Lukas; Ehlers, Todd
2017-04-01
Tomographic analyses of the lithosphere structure underneath the Alps suggest a complex geodynamic history (e.g. Lippitsch et al. 2003), indicating, among other things, switches in the direction of subduction. A subduction polarity switch is proposed to have occurred in Miocene times between the Central and Eastern Alps (e.g. Lippitsch et al. 2003; Handy et al. 2015). In the Western and Central Alps SE-directed subduction of European continental lithosphere occurs, whereas NW-directed subduction of Adriatic lithosphere occurs further east (e.g. Kissling et al. 2006). The subducted slab steepens at the transition to the Eastern Alps, roughly at the position of the TRANSALP geophysical profile (S. Germany to N. Italy). This lithospheric reorientation was pre-dated by slab breakoff and also involves the delamination of the lower lithosphere, both processes producing distinct long-wavelength deformation (e.g. Gerya et al. 2004). Thermochronological data can be used to study the surface response to such a long-wavelength deformation. We present new apatite and zircon (U-Th)/He ages of 23 samples collected along 210 km of the TRANSALP profile. The samples were collected along a balanced cross section the TRANSALP profile (e.g. Lüschen et al. 2004) across individual structures that can be tied to deeper, seismically imaged, structures. The thermochronometer ages provide a record of exhumation related to both crustal shortening and post deformation erosional exhumation. Interpretation of the data is in progress and being used to discriminate between competing kinematic/geometric models, and the timing of major fault activity. Variations in exhumation along the section will also unravel the timing and shape of possible long-wavelength rock uplift event(s). References Gerya, T.V., Yuen, D.A., Maresch, W.V. 2004. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226, 101-116. Handy, M.R., Ustaszewski, K., Kissling, E. 2015. Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. Int. J. Earth Sci. 104, 1-26. Kissling, E., Schmid, S.M., Lippitsch, R., Ansorge, J., Fügenschuh, B. 2006. Lithosphere structure and tectonic evolution of the Alpine arc: new evidence from high-resolution teleseismic tomography. In: Gee, D.G., Stephenson, R.A. (eds) European Lithosphere Dynamics. Geol. Soc. London Mem. 32, 129-145. Lippitsch, R., Kissling, E., Ansorge, J. 2003. Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J. Geophys. Res. 108, 2376, doi:10.1029/2002JB002016. Lüschen, E., Lammerer, B., Gebrande, H., Millahn, K., Nicolich, R., TRANSALP Working Group 2004. Orogenic structure of the Eastern Alps, Europe, from TRANSALP deep seismic reflection profiling. Tectonophysics 388, 85-102.
NASA Astrophysics Data System (ADS)
Currie, C. A.; Beaumont, C.
2009-05-01
The origin of deep-seated magmatism (in particular, kimberlites and lamproites) within continental plate interiors remains enigmatic in the context of plate tectonic theory. One hypothesis proposes a relationship between kimberlite occurrence and lithospheric subduction, such that a subducting plate releases fluids below a continental craton, triggering melting of the deep lithosphere and magmatism (Sharp, 1974; McCandless, 1999). This study provides a quantitative evaluation of this hypothesis, focusing on the Late Cretaceous- Eocene (105-50 Ma) kimberlites and lamproites of western North America. These magmas were emplaced along a corridor of Archean and Proterozoic lithosphere, 1000-1500 km inboard of the plate margin separating the subducting Farallon Plate and continental North America Plate. Kimberlite-lamproite magmatism coincides with tectonic events, including the Laramide orogeny, shut-down of the Sierra Nevada arc, and eastward migration of volcanism, that are commonly attributed to a change in Farallon Plate geometry to a shallow-angle trajectory (<25° dip). Thermal-mechanical numerical models demonstrate that rapid Cretaceous plate convergence rates and enhanced westward velocity of North America result in shallow-angle subduction that places the Farallon Plate beneath the western edge of the cratonic interior of North America. This geometry is consistent with the observed continental dynamic subsidence that lead to the development of the Western Interior Seaway. The models also show that the subducting plate has a cool thermal structure, and subducted hydrous minerals (serpentine, phengite and phlogopite) remain stable to more than 1200 km from the trench, where they may break down and release fluids that infiltrate the overlying craton lithosphere. This is supported by geochemical studies that indicate metasomatism of the Colorado Plateau and Wyoming craton mantle lithosphere by an aqueous fluid and/or silicate melt with a subduction signature. Through Cretaceous shallow-angle subduction, the Farallon Plate was in a position to mechanically and chemically interact with North American craton lithosphere at the time of kimberlite-lamproite magmatism, making the subduction hypothesis a viable mechanism for the genesis of these magmas. REFERENCES: McCandless, T.E., Proceedings of the 7th International Kimberlite Conference, v.2, pp.545-549, 1999; Sharp, W.E., Earth Planet. Sci. Lett., v.21, pp.351-354, 1974.
Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux
NASA Astrophysics Data System (ADS)
Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina
2014-05-01
New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388-392. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Gozzard, Simon; Alvey, Andy
2016-04-01
The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.
Orogenic delamination - dynamics, effects, and geological expression
NASA Astrophysics Data System (ADS)
Ueda, Kosuke; Gerya, Taras
2010-05-01
Unbundling of continental lithosphere and removal of its mantle portion have been described by two mutually rather exclusive models, convective thinning and integral delamination. Either disburdens the remaining lithosphere, weakens the remainder, and causes uplift and extension. Increased heat flux is likely to promote high-degree crustal melting, and has been viewed as a source for voluminous granitic intrusions in late or collapsing orogenic settings. Collapse may be driven by any of gravitational potential differences from orogen to foreland, by stress inversion in the unburdened domain, or by suction of a retreating trench. In this study, we investigate prerequisites, mechanism, and development paths for orogeny-related mantle lithosphere removal. Our experiments numerically reproduce delamination which self-consistently results from the dynamics of a decoupling collision zone. In particular, it succeeds without a seed facilitating initial separation of layers. External shortening of a continent - ocean - continent assembly, such as to initiate oceanic subduction, is lifted before the whole oceanic part is consumed, leaving slab pull to govern further convergence. Once buoyant continental crust enters, the collision zone locks, and convergence diminishes. Under favourable conditions, delamination then initiates close to the edge of the mantle wedge and at deep crustal levels. While it initially separates upper crust from lower crust according to the weakness minimum in the lithospheric strength profile, the lower crust is eventually also delaminated from the subducting lithospheric mantle, owing to buoyancy differences. The level of delamination within the lithosphere seems thus first rheology-controlled, then density-controlled. Subduction-coupled delamination is contingent on retreat and decoupling of the subducting slab, which in turn is dependent on effective rheological weakening of the plate contact. Weakening is a function of shear-heating and hereby of collision rate, melting and hydration, the latter two incorporating the effects of sediment subduction and phase changes. The drag available for slab retreat scales with the age of the descending oceanic lithosphere; integrated strength of the lithosphere and activation volume for mantle creep additionally control angle and depth of the descent. Fully developed delamination is observed from between 10 to 15 Ma after collision ceases, with following trenchward migration of the delamination front. Consequently, the main maximum extension migrates, while local, partly intermittent compression can be observed on smaller scale. Across the orogen, extension thus has a strongly diachronous main component. We track common surface observables such as heat flow, partially melted rocks (domal migmatites), and predicted geo-/thermochronological ages over the evolving plate boundary. Geochemical projections of our observations confirm potential contamination of reservoirs - although the net delamination level follows the Moho, some crustal remnants along the old slab still sink through the 660-discontinuity. On the other hand, the base of the delaminated domain is not as plain a contact as in concept. Where the contact of asthenosphere with delaminated crust is the location of high-degree melting, also traces of original lithospheric mantle can be entangled. Our results do not fully support the conceptual distinction between convective thinning and blockwise delamination. While the foundering portion initially retains a fairly coherent, slab-like perimeter, the actual separation of layers in a limited process-zone occurs in smaller -scale eddies. Also, convection of the whole uprising asthenosphere wedge is dynamically not discernible from the latter and crucial for the removal of lithospheric mantle. The removed lithosphere does initially not convect, but subsequently shows an increasing tendency to drip down. In the presented case, extension in the axial zone of the orogen is not (only) caused by unsupported gravitational potential of the core domain itself, but actively driven by slab retreat with a shallow mantle dynamic contribution.
NASA Astrophysics Data System (ADS)
Lee, Tae-Gook; Moon, Jai-Woon; Jung, Mee-Sook
2009-04-01
The geophysical data were obtained in 2000-2003 during a survey of seamounts near the Ogasawara Fracture Zone (OFZ) to the northwest of the Marshall Islands in the western Pacific. The OFZ is unique in that it is a wide rift zone showing 600-km-long right-lateral movement between the Pigafetta Basin (PB) and East Mariana Basin (EMB), and contains many seamounts (e.g. the Magellan Seamounts and the seamounts on the Dutton Ridge). Most seamounts in this study are newly mapped using modern multibeam echosounder (Seabeam 2000) and denoted sequentially by Korea Ocean Research and Development Institute (KORDI). OSM2, OSM4, OSM7, OSM8-1 and OSM8-2 seamounts of the study area are located in the OFZ which formed by the spreading ridge between the Izanagi and Pacific plates, and OSM5-1, Seascan, OSM6-1 and OSM6-2 seamounts in the PB which is a part of the oldest oceanic crust in the Pacific. In this study, the densities of seamounts and the elastic thickness values of lithosphere are estimated by using 3-D flexure and gravity modelling by considering several boundary conditions and a constant sediment layer. The infinite model with two different elastic thickness values is the best-fitting model and it indicates that the OFZ was mechanically coupled with plate of different elastic thickness values, probably after the reorganization of Izanagi-Pacific spreading zone. Very low elastic thickness values (5-10 km), relatively young seamounts, and old lithosphere in the east study area suggest the possibility of the rejuvenation of the lithosphere by widespread volcanism pulses, whereas higher elastic thickness values (15-20 km), relatively younger lithosphere, and old seamounts of the west study area are comparable with a simple cooling plate model. It implies that the west study area is outside the rejuvenation range of the lithosphere. In the flexure and gravity modelling, the different residual pattern of OSM6-1 and OSM6-2, which are joined, suggests that they have different load densities or elastic thickness values. OSM2 and OSM7 may be close to a basaltic volcano with low viscosity because they have high densities and ratios of the basal diameter to the height, whereas OSM4, OSM5-1 and Seascan may be close to an andesitic volcano.
Continental extension, magmatism and elevation; formal relations and rules of thumb
Lachenbruch, A.H.; Morgan, P.
1990-01-01
To investigate simplified relations between elevation and the extensional, magmatic and thermal processes that influence lithosphere buoyancy, we assume that the lithosphere floats on an asthenosphere of uniform density and has no flexural strength. A simple graph relating elevation to lithosphere density and thickness provides an overview of expectable conditions around the earth and a simple test for consistancy of continental and oceanic lithosphere models. The mass-balance relations yield simple general rules for estimating elevation changes caused by various tectonic, magmatic and thermal processes without referring to detailed models. The rules are general because they depend principally on buoyancy, which under our assumptions is specified by elevation, a known quantity; they do not generally require a knowledge of lithosphere thickness and density. The elevation of an extended terrain contains important information on its tectonic and magmatic history. In the Great Basin where Cenozoic extension is estimated to be 100%, the present high mean elevation ( ~ 1.75 km) probably requires substantial low-density magmatic contributions to the extending lithosphere. The elevation cannot be reasonably explained solely as the buoyant residue of a very high initial terrane, or of a lithosphere that was initially very thick and subsequently delaminated and heated. Even models with a high initial elevation typically call for 10 km or so of accumulated magmatic material of near-crustal density. To understand the evolution of the Great Basin, it is important to determine whether such intruded material is present; some could replenish the stretching crust by underplating and crustal intrusion and some might reside in the upper mantle. The elevation maintained or approached by an intruded extending lithosphere depends on the ratio B of how fast magma is supplied from the asthenosphere ( b km/Ma) to how fast the lithosphere spreads the magma out by extension (?? Ma-1). For a surface maintained 2 1 2km below sea level (e.g., an ocean ridge) B is about 5 km; for continental extension the ratio may be much greater. The frequent association of volcanism with continental extension, the high elevation (and buoyancy) of some appreciably extended terrains, and the oceanic spreading analog all suggest that magmatism may play an important role in continental extension. Better estimates of total extension and elevation change in extended regions can help to identify that role. ?? 1990.
NASA Astrophysics Data System (ADS)
Du, Jinsong; Chen, Chao; Xiong, Xiong; Li, Yongdong; Liang, Qing
2016-04-01
Recently, because of continually accumulated magnetic measurements by CHAMP satellite and Swarm constellation of three satellites and well developed methodologies and techniques of data processing and geomagnetic field modeling etc., global lithospheric magnetic anomaly field models become more and more reliable. This makes the quantitative interpretation of lithospheric magnetic anomaly field possible for having an insight into large-scale magnetic structures in the crust and uppermost mantle. Many different approaches have been utilized to understand the magnetized sources, such as forward, inversion, statistics, correlation analysis, Euler deconvolution, signal transformations etc. Among all quantitative interpretation methods, the directly converting a magnetic anomaly map into a magnetic susceptibility anomaly map proposed by Arkani-Hamed & Strangway (1985) is, we think, the most fast quantitative interpretation tool for global studies. We just call this method AS85 hereinafter for short. Although Gubbins et al. (2011) provided a formula to directly calculate the apparent magnetic vector distribution, the AS85 method introduced constraints of magnetized direction and thus corresponding results are expected to be more robust especially in world-wide continents. Therefore, in this study, we first improved the AS85 method further considering non-axial dipolar inducing field using formulae by Nolte & Siebert (1987), initial model or priori information for starting coefficients in the apparent susceptibility conversion, hidden longest-wavelength components of lithospheric magnetic field and field contaminations from global oceanic remanent magnetization. Then, we used the vertically integrated susceptibility model by Hemant & Maus (2005) and vertically integrated remanent magnetization model by Masterton et al. (2013) to test the validity of our improved method. Subsequently, we applied the conversion method to geomagnetic field models by CHAMP and Swarm satellite magnetic measurements and obtained global lithospheric apparent susceptibility distribution models. Finally, we compared these deduced models with previous results in the literature and some other geophysical, geodetic and geologic datum. Both tests and applications suggest, indeed, that the improved AS85 method can be adopted as a fast and effective interpretation tool of global induced large-scale magnetic anomaly field models in form of spherical harmonics. Arkani-Hamed, J. & Srangway, D.W., 1985. Lateral variations of apparent magnetic susceptibility of lithosphere deduced from Magsat data, J. Geophys. Res., 90(B3), 2655-2664. Gubbins, D., Ivers, D., Masterton, S.M. & Winch, D.E., 2011. Analysis of lithospheric magnetization in vector spherical harmonics, Geophys. J. Int., 187(1), 99-117. Hemant, K. & Maus, S., 2005. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique, J. Geophys. Res., 110, B12103, doi: 10.1029/2005JB003837. Masterton, S.M., Gubbins, D., Müller, R.D. & Singh, K.H., 2013. Forward modeling of oceanic lithospheric magnetization, Geophys. J. Int., 192(3), 951-962. Nolte, H.J. & Siebert, M., 1987. An analytical approach to the magnetic field of the Earth's crust, J. Geophys., 61, 69-76. This study is supported by State Key Laboratory of Geodesy and Earth's Dynamics (Institute of Geodesy and Geophysics, Chinese Academy of Sciences) (SKLGED2015-5-5-EZ), Natural Science Fund of Hubei Province (2015CFB361), International Cooperation Project in Science and Technology of China (2010DFA24580), China Postdoctoral Science Foundation (2015M572217 and 2014T70753), Hubei Subsurface Multi-scale Imaging Key Laboratory (Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan) (SMIL-2015-06) and National Natural Science Foundation of China (41574070, 41104048 and 41504065).
Gravity signals from the lithosphere in the Central European Basin System
NASA Astrophysics Data System (ADS)
Yegorova, T.; Bayer, U.; Thybo, H.; Maystrenko, Y.; Scheck-Wenderoth, M.; Lyngsie, S. B.
2007-01-01
We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian-Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic-Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS. Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north-east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco-Norwegian orogeny. The major part of the NGB is characterized by high-density lithosphere, which includes a high-velocity lower crust (relict of Baltica passive margin) overthrusted by the Avalonian terrane. The short wavelength pattern of the final residuals shows several north-west trending gravity highs between the Tornquist Zone and the Elbe Fault System. The NDB is separated by a gravity low at the Ringkøbing-Fyn high from a chain of positive anomalies in the NGB and the PT. In the NGB these anomalies correspond to the Prignitz (Rheinsberg anomaly), the Glueckstadt and Horn Graben, and they continue further west into the Central Graben, to join with the gravity high of the Central North Sea.
Waveform Tomography of the South Atlantic Region
NASA Astrophysics Data System (ADS)
Celli, N. L.; Lebedev, S.; Schaeffer, A. J.; Gaina, C.
2016-12-01
The rapid growth in broadband seismic data, along with developments in waveform tomography techniques, allow us to greatly improve the data sampling in the southern hemisphere and resolve the upper-mantle structure beneath the South Atlantic region at a new level of detail. We have gathered a very large waveform dataset, including all publicly available data from permanent and temporary networks. Our S-velocity tomographic model is constrained by vertical-component waveform fits, computed using the Automated Multimode Inversion of surface, S and multiple S waves. Each seismogram fit provides a set of linear equations describing 1D average velocity perturbations within approximate sensitivity volumes, with respect to a 3D reference model. All the equations are then combined into a large linear system and inverted jointly for a model of shear- and compressional-wave speeds and azimuthal anisotropy within the lithosphere and underlying mantle. The isotropic-average shear speeds are proxies for temperature and composition at depth, while azimuthal anisotropy provides evidence on the past and present deformation in the lithosphere and asthenosphere beneath the region. We resolve the complex boundaries of the mantle roots of South America's and Africa's cratons and the deep low-velocity anomalies beneath volcanic areas in South America. Pronounced lithospheric high seismic velocity anomalies beneath the Argentine Basin suggest that its anomalously deep seafloor, previously attributed to dynamic topography, is mainly due to anomalously cold, thick lithosphere. Major hotspots show low-velocity anomalies extending substantially deeper than those beneath the mid-ocean ridge. The Vema Hotspot shows a major, hot asthenospheric anomaly beneath thick, cold oceanic lithosphere. The mantle lithosphere beneath the Walvis Ridge—a hotspot track—shows normal cooling. The volcanic Cameroon Line, in contrast, is characterized by thin lithosphere beneath the locations of recent volcanism.
Construction and destruction of some North American cratons
NASA Astrophysics Data System (ADS)
Snyder, D. B.; Humphreys, G.
2015-12-01
Construction histories of Archean cratons remain poorly understood; their destruction is even less clear because of, by definition, its rarity. By assembling geophysical and geochemical data in 3-D lithosphere models, a clearer understanding of the geometry of major structures within the Rae, Slave and Wyoming cratons of central North America is now possible. Little evidence exists of subducted slabs similar to modern oceanic lithosphere in these construction histories whereas underthrusting and wedging of proto-continental lithosphere is inferred from multiple dipping discontinuities. Archean continental building blocks may resemble the modern lithosphere of Ontong-Java-Hikurangi oceanic plateau. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can be correlated to surface rocks. The 3.6-2.6 Ga Rae, Slave and Wyoming cratons comprise smaller continental terranes that 'cratonized' during a granitic bloom at 2.61-2.55 ga. Cratonization probably represents the final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho atop depleted lithospheric mantle. Peak thermo-tectonic events at 1.86-1.7 Ga broadly metasomatized, mineralized and recrystallized mantle and lower crustal rocks, apparently making mantle peridotite more 'fertile' and conductive by introducing or concentrating sulfides or graphite throughout the lithosphere at 80-120 km depths. This metasomatism may have also weakened the lithosphere or made it more susceptible to tectonic or chemical erosion. The arrival of the subducted Shatsky Rise conjugate at the Wyoming craton at 65-75 Ma appears to have eroded and displaced the thus weakened base of the craton below 140-160 km. This replaced old refertilized continental mantle with new depleted oceanic mantle. Is this the same craton?
Understanding the Yellowstone magmatic system using 3D geodynamic inverse models
NASA Astrophysics Data System (ADS)
Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.
2017-12-01
The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.
NASA Astrophysics Data System (ADS)
Schiffer, Christian; Nielsen, Søren Bom
2016-08-01
With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250-350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.
NASA Astrophysics Data System (ADS)
Marchesi, Claudio; Griffin, William L.; Garrido, Carlos J.; Bodinier, Jean-Louis; O'Reilly, Suzanne Y.; Pearson, Norman J.
2010-03-01
The western part of the Ronda peridotite massif (Southern Spain) consists mainly of highly foliated spinel-peridotite tectonites and undeformed granular peridotites that are separated by a recrystallization front. The spinel tectonites are interpreted as volumes of ancient subcontinental lithospheric mantle and the granular peridotites as a portion of subcontinental lithospheric mantle that underwent partial melting and pervasive percolation of basaltic melts induced by Cenozoic asthenospheric upwelling. The Re-Os isotopic signature of sulfides from the granular domain and the recrystallization front mostly coincides with that of grains in the spinel tectonites. This indicates that the Re-Os radiometric system in sulfides was highly resistant to partial melting and percolation of melts induced by Cenozoic lithospheric thermal erosion. The Re-Os isotopic systematics of sulfides in the Ronda peridotites thus mostly conserve the geochemical memory of ancient magmatic events in the subcontinental lithospheric mantle. Os model ages record two Proterozoic melting episodes at ~1.6 to 1.8 and 1.2-1.4 Ga, respectively. The emplacement of the massif into the subcontinental lithospheric mantle probably coincided with one of these depletion events. A later metasomatic episode caused the precipitation of a new generation of sulfides at ~0.7 to 0.9 Ga. These Proterozoic Os model ages are consistent with results obtained for several mantle suites in Central/Western Europe and Northern Africa as well as with the Nd model ages of the continental crust of these regions. This suggests that the events recorded in mantle sulfides of the Ronda peridotites reflect different stages of generation of the continental crust in the ancient Gondwana supercontinent.
Characteristics and habitat of deep vs. shallow slow slip events
NASA Astrophysics Data System (ADS)
Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.
2016-12-01
Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.
NASA Astrophysics Data System (ADS)
Piccardo, G. B.
2009-04-01
The Monte Maggiore peridotite body, cropping out within the Alpine Corsica metamorphic belt, is an ophiolite massif derived from the more internal setting of the Jurassic Ligurian Tethys basin. It is mostly composed by spinel and plagioclase peridotites that are cut by MORB gabbroic dykes. The spinel peridotites, similarly to other ophiolitic peridotites from the Internal Ligurides, have been considered, on the basis of their low abundance of fusible components, low Si and high Mg contents, as refractory residua after MORB-type partial melting related to the formation of the Jurassic basin (e.g. Rampone et al., 1997). Recent studies (e.g. Müntener & Piccardo 2003; Rampone et al. 2008) have evidenced that these depleted spinel peridotites show diffuse melt-rock interaction micro-textures and contrasting bulk vs. mineral chemistry features which cannot be simply reconciled with partial melting. Accordingly, these peridotites have been recognized as reactive peridotites, formed by interaction of pristine peridotites with melts percolating by porous flow. Geochemical data have evidenced the depleted MORB signature of the percolating melts. Recent field studies at Monte Maggiore (Piccardo, 2007; Piccardo & Guarnieri, 2009), have revealed: 1) the presence and local abundance of pyroxenite-bearing, cpx-rich spinel lherzolites and 2) the replacement relationships of the reactive peridotites on the pyroxenite-bearing lherzolite rock-types. The pyroxenite-veined spinel lherzolites record a composite history of subsolidus evolution under lithospheric P-T conditions, thus indicating their provenance from the sub-continental lithospheric mantle. Accordingly, the pristine sub-continental mantle protoliths were infiltrated by MORB melts and transformed by melt-rock interaction to reactive spinel peridotites and refertilized by melt impregnation to plagioclase-enriched peridotites. Available isotopic data on the Mt. Maggiore spinel and plagioclase peridotites and gabbroic rocks (Rampone, 2004; Rampone et al., 2008; 2009) provide reliable geochronological informations (i.e. Sm-Nd cpx-plg-wr isochron ages and Sm-Nd model ages) and evidence that the whole mafic and ultramafic rocks show an overall Sm/Nd isotopic homogeneity. Cpx-plg-wr data from gabbroic dykes define internal isochrones yielding Jurassic ages (162+/-10 Ma and 159+/-15 Ma, respectively). The plg-cpx(-wr) isochrons for impregnated plagioclase peridotites yields age of 155+/-6 Ma. The initial ɛNd values (8.9-9.7) are indicative of a MORB affinity. Calculated DM model ages for both spinel and plagioclase peridotites point to a Late Jurassic age (150 Ma). Isotope ratios of cpx from spinel and plagioclase peridotites conform to the linear array defined by overall gabbroic rocks. The isotopic evidence from the melt-percolated, reactive and impregnated peridotites indicates that the pristine lithospheric mantle protoliths were isotopically homogenized by the melt-rock interaction during percolation/impregnation processes which erased any pre-existing isotopic signature. Moreover, the overall Sm/Nd isotopic homogeneity indicates that the asthenospheric mantle sources of the infiltrating melts were isotopically homogeneous. Accordingly, it is plausible that percolation and intrusion were operated by similar and coeval Late Jurassic MORB-type melts. In conclusion, petrologic and isotopic data allow to recognize that the extending sub-continental lithospheric mantle was infiltrated by Late Jurassic MORB melts, formed by asthenospheric decompression-induced partial melting during continental extension and rifting. Melt-peridotite interaction modified the compositional features of the lithospheric mantle and caused its isotopic resetting. Accordingly, the sub-continental lithospheric mantle underwent an "oceanization" process (i.e. isotope resetting to "oceanic" MORB signatures) during Late Jurassic times operated by asthenospheric MORB melts. Depending on the melt composition, the lithospheric level and the mode of melt-rock interaction, fertile peridotites from the sub-continental lithospheric mantle were transformed, concomitantly, to depleted spinel peridotites and refertilized plagioclase peridotites.
NASA Astrophysics Data System (ADS)
Klyuchevskii, A. V.; Dem'yanovich, V. M.
2006-05-01
Investigation and understanding of the present-day geodynamic situation are of key importance for the elucidation of the laws and evolution of the seismic process in a seismically active region. In this work, seismic moments of nearly 26000 earthquakes with K p ≥ 7 ( M LH ≥ 2) that occurred in the southern Baikal region and northern Mongolia (SBNM) (48° 54°N, 96° 108°E) from 1968 through 1994 are determined from amplitudes and periods of maximum displacements in transverse body waves. The resulting set of seismic moments is used for spatial-temporal analysis of the stress-strain state of the SBNM lithosphere. The stress fields of the Baikal rift and the India-Asia collision zone are supposed to interact in the region studied. Since the seismic moment of a tectonic earthquake depends on the type of motion in the source, seismic moments and focal mechanisms of earthquakes belonging to four long-term aftershock and swarm clusters of shocks in the Baikal region were used to “calibrate” average seismic moments in accordance with the source faulting type. The study showed that the stress-strain state of the SBNM lithosphere is spatially inhomogeneous and nonstationary. A space-time discrepancy is observed in the formation of faulting types in sources of weak ( K p = 7 and 8) and stronger ( K p ≥ 9) earthquakes. This discrepancy is interpreted in terms of rock fracture at various hierarchical levels of ruptures on differently oriented general, regional, and local faults. A gradual increase and an abrupt, nearly pulsed, decrease in the vertical component of the stress field S v is a characteristic feature of time variations. The zones where the stress S v prevails are localized at “singular points” of the lithosphere. Shocks of various energy classes in these zones are dominated by the normal-fault slip mechanism. For earthquakes with K p = 9, the source faulting changes with depth from the strike-slip type to the normal-strike-slip and normal types, suggesting an increase in S v . On the whole, the results of this study are well consistent with the synergism of open unstable dissipative systems and are usable for interpreting the main observable variations in the stress-strain state of the lithosphere in terms of spatiotemporal variations in the vertical component of the stress field S v . This suggests the influence of rifting on the present-day geodynamic processes in the SBNM lithosphere.
Lithospheric buckling and intra-arc stresses: A mechanism for arc segmentation
NASA Technical Reports Server (NTRS)
Nelson, Kerri L.
1989-01-01
Comparison of segment development of a number of arcs has shown that consistent relationships between segmentation, volcanism and variable stresses exists. Researchers successfully modeled these relationships using the conceptual model of lithospheric buckling of Yamaoka et al. (1986; 1987). Lithosphere buckling (deformation) provides the needed mechanism to explain segmentation phenomenon; offsets in volcanic fronts, distribution of calderas within segments, variable segment stresses and the chemical diversity seen between segment boundary and segment interior magmas.
Constraints on the subsurface structure of Europa
NASA Astrophysics Data System (ADS)
Golombek, M. P.; Banerdt, W. B.
1990-02-01
The wedge-shaped bands appearing near the anti-Jovian point on Europa are tension cracks which, after formation on an intact lithosphere, have facilitated the rotation of ice-lithosphere sections decoupled from the silicate interior. Such factors as fluid pressure, surface temperature, silicate impurities in the ice, and strain rates, would have affected the processes in question. A minimum degree of differentiation is required for Europa to mechanically decouple the rotated ice lithosphere from the underlying, predominantly silicate mantle.
Changes in the earth's rotation by tectonic movements
NASA Astrophysics Data System (ADS)
Vermeersen, L. L. A.; Vlaar, N. J.
1993-01-01
We propose that lithospheric processes unrelated to postglacial rebound and taking place under nonisostatic conditions are able to induce nonnegligible influences on the earth's rotation. Examples of such processes are mountain building and erosion, foundering flexure of oceanic basins and lithospheric snapbacking resulting from detachment of subducting slabs. Lithospheric and crustal rheologies and intraplate stresses are the dominant factors in these mechanisms, contrary to the mantle rheologies which are assumed to dominate the process of postglacial rebound.
Lithospheric architecture beneath Hudson Bay
NASA Astrophysics Data System (ADS)
Porritt, Robert W.; Miller, Meghan S.; Darbyshire, Fiona A.
2015-07-01
Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches ˜350 km thick but is thinner (˜200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the LAB conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.
Three-dimensional estimate of the lithospheric effective elastic thickness of the Line ridge
NASA Astrophysics Data System (ADS)
Hu, Minzhang; Li, Jiancheng; Jin, Taoyong; Xu, Xinyu; Xing, Lelin; Shen, Chongyang; Li, Hui
2015-09-01
Using a new bathymetry grid formed with vertical gravity gradient anomalies and ship soundings (BAT_VGG), a 1° × 1° lithospheric effective elastic thickness (Te) grid of the Line ridge was calculated with the moving window admittance technique. As a comparison, both the GEBCO_08 and SIO V15.1 bathymetry datasets were used to calculate Te as well. The results show that BAT_VGG is suitable for the calculation of lithospheric effective elastic thickness. The lithospheric effective elastic thickness of the Line ridge is shown to be low, in the range of 5.5-13 km, with an average of 8 km and a standard deviation of 1.3 km. Using the plate cooling model as a reference, most of the effective elastic thicknesses are controlled by the 150-300 °C isotherm. Seamounts are primarily present in two zones, with lithospheric ages of 20-35 Ma and 40-60 Ma, at the time of loading. Unlike the Hawaiian-Emperor chain, the lithospheric effective elastic thickness of the Line ridge does not change monotonously. The tectonic setting of the Line ridge is discussed in detail based on our Te results and the seamount ages collected from the literature. The results show that thermal and fracture activities must have played an important role in the origin and evolution of the ridge.
NASA Astrophysics Data System (ADS)
King, S. D.
2017-12-01
In high-Rayleigh-number, spherical-shell convection, such as one expects to find in the interiors of large silicate planetary bodies, plumes will migrate unless they are anchored to fixed structures. Within the Earth LLSVPs or core-mantle boundary topography have been proposed to anchor deep mantle plumes, fixing the location of hotspots. The relative stability of volcanic features on Mars and Venus, which are thought to be related to mantle plumes, have not be satisfactorily explained. Thus, it is surprising to see high-Rayleigh-number, stagnant-lid, spherical-shell convection calculations where plumes seeded by the structure of the initial condition persist in a stable configuration for more than 1 Gyr. By comparing calculations with a fixed lithospheric rheology structure with a lithosphere rheology determined by temperature and pressure, I show that in these calculations, topography on the base of the stagnant lid (i.e., the lithosphere-asthenosphere boundary) is responsible for the spatial stability of the plumes. If there is symmetry in the plume distribution, this symmetry can prevent the lithosphere becoming unstable and overturning, leading to a significantly over-thickened lithosphere relative to predictions based on scaling laws. This is confirmed by considering an identical calculation where the symmetry in the plume distribution is broken. I discuss geological and geophysical implications for planetary bodies resulting of long-lived, stable, mantle structures.
NASA Astrophysics Data System (ADS)
Peres Rocha, M.; Azevedo, P. A. D.; Assumpcao, M.; Franca, G. S.; Marotta, G. S.
2016-12-01
Results of the P-wave travel-time seismic tomography method allowed observing differences in the seismic behavior of the lithosphere along the Brazilian continental margin in the South Atlantic. High velocity anomalies have predominance in the northern portion, which extends from the Rio de Janeiro to Alagoas States (between latitudes -22.5 and -8.5), and low velocity anomalies in the southern portion, which extends from Rio de Janeiro to Rio Grande do Sul States (between latitudes -30 and -22.5). Low velocities coincide spatially with the offshore high seismicity areas, as indicated by Assumpção (1998) and at the high velocities with low seismicity regions. The high velocity anomalies at northern portion are related to the cratonic and low-stretched lithosphere of San Francisco block that was connected to the Congo block before the opening of the Atlantic Ocean. Low velocities can be assigned to more weakened lithosphere, where it started the South Atlantic Ocean opening process. The oldest lithosphere in the South Atlantic, indicated by the magnetic anomalies of the oceanic floor, is higher in the southern part than in the northern part, suggesting that the continents in this region were separating, while the northern region was still connected to Africa, which could explain the lithospheric stretching process.
Cordilleran Longevity, Elevation and Heat Driven by Lithospheric Mantle Removal
NASA Astrophysics Data System (ADS)
Mackay-Hill, A.; Currie, C. A.; Audet, P.; Schaeffer, A. J.
2017-12-01
Cordilleran evolution is controlled by subduction zone back-arc processes that generate and maintain high topography due to elevated uppermost mantle temperatures. In the northern Canadian Cordillera (NCC), the persisting high mean elevation long after subduction has stopped (>50 Ma) requires a sustained source of heat either from small-scale mantle convection or lithospheric mantle removal; however direct structural constraints of these processes are sparse. We image the crust and uppermost mantle beneath the NCC using scattered teleseismic waves recorded on an array of broadband seismograph stations. We resolve two sharp and flat seismic discontinuities: a downward velocity increase at 35 km that we interpret as the Moho; and a deeper discontinuity with opposite velocity contrast at 50 km depth. Based on petrologic estimates, we interpret the deeper interface as the lithosphere-asthenosphere boundary (LAB), which implies an extremely thin ( 15 km) lithospheric mantle. We calculate the temperature at the Moho and the LAB in the range 800-900C and 1200-1300C, respectively. Below the LAB, we find west-dipping features far below the LAB beneath the eastern NCC that we associate with laminar downwelling of Cordilleran lithosphere. Whether these structures are fossilized or active, they suggest that lithospheric mantle removal near the Cordillera-Craton boundary may have provided the source of heat and elevation and therefore played a role in the longevity and stability of the Cordillera.
Formation of the bulge of Iapetus through long-wavelength folding of the lithosphere
NASA Astrophysics Data System (ADS)
Kay, Jonathan P.; Dombard, Andrew J.
2018-03-01
Previous models that attempted to explain the formation of the pronounced oblate shape of Iapetus suggested that it was a preserved rotational bulge. These models found that heating was provided by short-lived radioactive isotopes that decayed rapidly and allowed the excess flattening of the lithosphere to be locked in by a thickening lithosphere, but placed severe timing constraints on the formation of Iapetus and its bulge. Here, we show that finite element simulations with an elastic-viscous-plastic rheology indicate it is possible to form the bulge through long-wavelength folding of the lithosphere of Iapetus during an epoch of contraction combined with a latitudinal surface temperature gradient. In contrast to models of a frozen rotational bulge, heat generated by long-lived radioactive isotopes warms the interior, which causes porosity loss and forces Iapetus to compact by ∼10%. Our simulations are most successful when there is a 30 K temperature difference between the pole and the equator. Tectonic growth of the bulge is not sensitive to the time scale over which the moon contracts, and lithospheric thickness primarily controls whether a fold can form, not fold wavelength. In addition, long term simulations show that when no stress is applied, the mechanical lithosphere is strong enough to support the bulge, with negligible relaxation over billion year time scales.
Seismic constraints of thinning and fragmenting continental lithosphere beneath the Korean Peninsula
NASA Astrophysics Data System (ADS)
Kim, S.; Tauzin, B.; Tkalcic, H.; Rhie, J.
2017-12-01
Modification of the continental lithosphere is still an enigmatic process. The Korean Peninsula (KP) is one of ideal place to depict the process by interactions with subducting oceanic slabs. We detect a significant thickness change (>50 km) of the continental lithosphere beneath the KP that is confirmed by two independent approaches: (1) 3D imaging using ambient noise analysis and (2) receiver function CCP stacking. A series of transdimensional and hierarchical Bayesian joint inversions is performed to obtain a high-resolution 3D model from different types of surface wave dispersion data. For the stacking of receiver function waveforms, the coda waveforms of crustal multi-modes (PpPs and PpSs) are combined together to better image the lithosphere-asthenosphere boundary. We estimate the relatively deeper rooted lithosphere (>100 km) in the southwestern part of the KP compared to shallower surrounding regions. The lithospheric structure is underlain by lower velocity anomalies (Vs<4.1 km/s), which extends from back-arc regions near subducting slabs horizontally and connects to low velocity anomalies in the deeper upper mantle vertically. The imaged features clearly show that the effect of the oceanic slab subduction is a key factor controlling the modification process. We further examine the implication for the occurrence of intraplate volcanoes and the relationship to the mantle transition zone heterogeneities due to stagnant slabs in the northeast Asia.
Magnetic mineralogy of the Mercurian lithosphere
NASA Astrophysics Data System (ADS)
Strauss, B. E.; Feinberg, J. M.; Johnson, C. L.
2016-11-01
Mercury and Earth are the only inner solar system planets with active, internally generated dynamo magnetic fields. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission recently detected magnetic fields on Mercury that are consistent with lithospheric magnetization. We investigate the physical and chemical environment of Mercury's lithosphere, past and present, to establish the conditions under which magnetization may have been acquired and modified. Three factors are particularly crucial to the determination of crustal composition and iron mineralogy: redox conditions in the planet's crust and mantle, the iron content of the lithosphere, and, for any remanent magnetization, the temperature profile of the lithosphere and its evolution over time. We explore potential mechanisms for remanence acquisition and alteration on Mercury, whose surface environment is both hot and highly reducing. The long-term thermal history of Mercury's crust plays an important role in the longevity of any remanent crustal magnetization, which may be subject to remagnetization through thermal, viscous, and shock mechanisms. This thermal and compositional framework is used both to constrain plausible candidate minerals that could carry magnetic remanence on Mercury and to evaluate their capacity to acquire and retain sufficient magnetization to be detectable from satellite orbit. We propose that iron metal and its alloys are likely to be the dominant contributors to induced and remanent magnetization in Mercury's lithosphere, with additional contributions from iron silicides, sulfides, and carbides.
An essential role for continental rifts and lithosphere in the deep carbon cycle
NASA Astrophysics Data System (ADS)
Foley, Stephen F.; Fischer, Tobias P.
2017-12-01
The continental lithosphere is a vast store for carbon. The carbon has been added and reactivated by episodic freezing and re-melting throughout geological history. Carbon remobilization can lead to significant variations in CO2 outgassing and release in the form of magmas from the continental lithosphere over geological timescales. Here we use calculations of continental lithospheric carbon storage, enrichment and remobilization to demonstrate that the role for continental lithosphere and rifts in Earth's deep carbon budget has been severely underestimated. We estimate that cratonic lithosphere, which formed 2 to 3 billion years ago, originally contained about 0.25 Mt C km-3. A further 14 to 28 Mt C km-3 is added over time from the convecting mantle and about 43 Mt C km-3 is added by plume activity. Re-melting focuses carbon beneath rifts, creating zones with about 150 to 240 Mt C km-3, explaining the well-known association of carbonate-rich magmatic rocks with rifts. Reactivation of these zones can release 28 to 34 Mt of carbon per year for the 40 million year lifetime of a continental rift. During past episodes of supercontinent breakup, the greater abundance of continental rifts could have led to short-term carbon release of at least 142 to 170 Mt of carbon per year, and may have contributed to the high atmospheric CO2 at several times in Earth's history.
Horizontal stress in planetary lithospheres from vertical processes
NASA Technical Reports Server (NTRS)
Banerdt, W. B.
1991-01-01
Understanding the stress states in a lithosphere is of fundamental importance for planetary geophysics. It is closely linked to the processes which form and modify tectonic features on the surface and reflects the behavior of the planet's interior, providing a constraint for the difficult problem of determining interior structure and processes. The tectonics on many extraterrestrial bodies (Moon, Mars, and most of the outer planet satellites) appears to be mostly vertical, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. Herein, only changes are examined in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. All references to lithosphere herein should be understood to refer to the elastic lithosphere, that layer which deforms elastically or brittlely when subjected to geologically scaled stresses.