Sample records for bottom sediments space

  1. Sound Propagation in Shallow Water with an Inhomogeneous GAS-Saturated Bottom

    NASA Astrophysics Data System (ADS)

    Grigor'ev, V. A.; Petnikov, V. G.; Roslyakov, A. G.; Terekhina, Ya. E.

    2018-05-01

    We present the methods and results of numerical experiments studying the low-frequency sound propagation in one of the areas of the Arctic shelf with a randomly inhomogeneous gas-saturated bottom. The characteristics of the upper layer of bottom sedimentary rocks (sediments) used in calculations were obtained during a 3D seismic survey and trial drilling of the seafloor. We demonstrate the possibilities of substituting in numerical simulation a real bottom with a fluid homogeneous half-space where the effective value of the sound speed is equal to the average sound speed in the bottom, with averaging along the sound propagation path to a sediment depth of 0.6 wavelength in the bottom. An original technique is proposed for estimating the sound speed propagation in an upper inhomogeneous sediment layer. The technique is based on measurements of acoustic wave attenuation in water during waveguide propagation.

  2. Unconsolidated sediments at the bottom of Lake Vostok from seismic data

    USGS Publications Warehouse

    Filina, I.; Lukin, V.; Masolov, V.; Blankenship, D.

    2007-01-01

    Seismic soundings of Lake Vostok have been performed by the Polar Marine Geological Research Expedition in collaboration with the Russian Antarctic Expedition since the early 1990s. The seismograms recorded show at least two relatively closely spaced reflections associated with the lake bottom. These were initially interpreted as boundaries of a layer of unconsolidated sediments at the bottom of the lake. A more recent interpretation suggests that the observed reflections are side echoes from the rough lake bottom, and that there are no unconsolidated sediments at the bottom of the lake. The major goal of this paper is to reveal the nature of those reflections by testing three hypotheses of their origin. The results show that some of the reflections, but not all of them, are consistent with the hypothesis of a non-flat lake bottom along the source-receiver line (2D case). The reflections were also evaluated as side echoes from an adjacent sloping interface, but these tests implied unreasonably steep slopes (at least 8 degrees) at the lake bottom. The hypothesis that is the most compatible with seismic data is the presence of a widespread layer of unconsolidated sediments at the bottom of Lake Vostok. The modeling suggests the presence of a two hundred meter thick sedimentary layer with a seismic velocity of 1700 -1900 m/sec in the southern and middle parts of the lake. The sedimentary layer thickens in the northern basin to ~350 m

  3. Bottom currents and sediment transport in Long Island Sound: A modeling study

    USGS Publications Warehouse

    Signell, R.P.; List, J.H.; Farris, A.S.

    2000-01-01

    A high resolution (300-400 m grid spacing), process oriented modeling study was undertaken to elucidate the physical processes affecting the characteristics and distribution of sea-floor sedimentary environments in Long Island Sound. Simulations using idealized forcing and high-resolution bathymetry were performed using a three-dimensional circulation model ECOM (Blumberg and Mellor, 1987) and a stationary shallow water wave model HISWA (Holthuijsen et al., 1989). The relative contributions of tide-, density-, wind- and wave-driven bottom currents are assessed and related to observed characteristics of the sea-floor environments, and simple bedload sediment transport simulations are performed. The fine grid spacing allows features with scales of several kilometers to be resolved. The simulations clearly show physical processes that affect the observed sea-floor characteristics at both regional and local scales. Simulations of near-bottom tidal currents reveal a strong gradient in the funnel-shaped eastern part of the Sound, which parallels an observed gradient in sedimentary environments from erosion or nondeposition, through bedload transport and sediment sorting, to fine-grained deposition. A simulation of estuarine flow driven by the along-axis gradient in salinity shows generally westward bottom currents of 2-4 cm/s that are locally enhanced to 6-8 cm/s along the axial depression of the Sound. Bottom wind-driven currents flow downwind along the shallow margins of the basin, but flow against the wind in the deeper regions. These bottom flows (in opposition to the wind) are strongest in the axial depression and add to the estuarine flow when winds are from the west. The combination of enhanced bottom currents due to both estuarine circulation and the prevailing westerly winds provide an explanation for the relatively coarse sediments found along parts of the axial depression. Climatological simulations of wave-driven bottom currents show that frequent high-energy events occur along the shallow margins of the Sound, explaining the occurrence of relatively coarse sediments in these regions. Bedload sediment transport calculations show that the estuarine circulation coupled with the oscillatory tidal currents result in a net westward transport of sand in much of the eastern Sound. Local departures from this regional westward trend occur around topographic and shoreline irregularities, and there is strong predicted convergence of bedload transport over most of the large, linear sand ridges in the eastern Sound, providing a mechanism which prevents their decay. The strong correlation between the near-bottom current intensity based on the model results and the sediment response, as indicated by the distribution of sedimentary environments, provides a framework for predicting the long-term effects of anthropogenic activities.

  4. Observations on Cretaceous abyssal hills in the northeast Pacific

    USGS Publications Warehouse

    Eittreim, S.L.; Piper, D.Z.; Chezar, H.; Jones, D.R.; Kaneps, A.

    1984-01-01

    An abyssal hills area of 50 ?? 60 km in the northeast Pacific was studied using bottom transponder navigation, closely spaced survey lines, and long-traverse oblique photography. The block-faulted north-south hills are bounded by scarps, commonly with 40?? slopes. On these steep scarps sedimentation is inhibited and pillow basalts often crop out. An ash layer of high acoustic reflectivity at about 7 m subbottom depth blankets the area. This ash occurs in multiple beds altered to phillipsite and is highly consolidated. A 24 m.y. age for the ash is based on ichthyolith dates from samples in the overlying sediments. Acoustically transparent Neogene sediments above the ash are thickest in trough bottoms and are absent or thin on steep slopes. These Neogene sediments are composed of pale-brown pelagic clays of illite, quartz, smectite, chlorite and kaolinite. Dark-brown pelagic clays, rich in smectite and amorphous iron oxides, underlie the Neogene surficial sediments. Manganese nodules cover the bottom in varying percentages. The nodules are most abundant near basement outcrops and where the subbottom ash layer is absent. ?? 1984.

  5. What a drag: Quantifying the global impact of chronic bottom trawling on continental shelf sediment

    USGS Publications Warehouse

    Oberle, Ferdinand K.J.; Storlazzi, Curt; Hanebuth, Till J.J.

    2016-01-01

    Continental shelves worldwide are subject to intense bottom trawling that causes sediment to be resuspended. The widely used traditional concepts of modern sedimentary transport systems on the shelf rely only on estimates for naturally driven sediment resuspension such as through storm waves, bottom currents, and gravity-driven flows but they overlook a critical anthropogenic factor. The strong influence of bottom trawling on a source-to-sink sediment budget is explored on the NW Iberian shelf. Use of Automated Information System vessel tracking data provides for a high-resolution vessel track reconstruction and the accurate calculation of the spatial distribution of bottom trawling intensity and associated resuspended sediment load. The mean bottom trawling-induced resuspended sediment mass for the NW Iberian shelf is 13.50 Mt yr− 1, which leads to a six-fold increase in off-shelf sediment transport when compared to natural resuspension mechanisms. The source-to-sink budget analysis provides evidence that bottom trawling causes a rapid erosion of the fine sediment on human time scales. Combining global soft sediment distribution data of the shelves with worldwide bottom trawling intensity estimates we show that the bottom trawling-induced resuspended sediment mass amounts to approximately the same mass of all sediment entering the shelves through rivers. Spatial delineations between natural and anthropogenic sediment resuspension areas are presented to aid in marine management questions.

  6. 77 FR 32573 - Takes of Marine Mammals Incidental to Specified Activities; Construction and Race Event...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... operations, support space, media operations, hospitality services, sponsored commercial space, and...). Intertidal habitats in the Central Bay, or those that lie between low and high tides, include sandy beaches... sediment and hard substrate habitat. Soft bottom substrate ranges between soft mud with high silt and clay...

  7. Comprehensive Characteristics of Bottom Sediments of Water Bodies of Various Types in the Kiliya Delta of the Danube River

    EPA Science Inventory

    The "triad" approach, including analysis of the total content of toxicants, bioassay of bottom sediments, and the study of the structure of zoo- and phytobenthos communities, was used in assessing the quality of bottom sediments. It has been found that the studied bottom sediment...

  8. Long-term observations of bottom conditions and sediment movement on the Atlantic continental shelf; time-lapse photography from instrumented tripod

    USGS Publications Warehouse

    Butman, Bradford; Bryden, Cynthia G.; Pfirman, Stephanie L.; Strahle, William J.; Noble, Marlene A.

    1984-01-01

    An instrument system that measures bottom current, temperature, light transmission, and pressure, and that photographs the bottom at 2- to 6-hour intervals has been developed to study sediment transport on the Atlantic Continental Shelf. Instruments have been deployed extensively along the United States East Coast Continental Shelf for periods of from 2 to 6 months to study the frequency, direction, and rate of bottom sediment movement, and the processes causing movement. The time-lapse photographs are used to (1) characterize the bottom benthic community and surface microtopography; (2) monitor changes in the bottom topography and near-bottom water column caused by currents and storms (for example, ripple generation and migration, sediment resuspension); and (3) monitor seasonal changes in the bottom benthic community and qualitative effects of this community on the bottom sediments.

  9. Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut; Allahyarov, Elshad

    2011-10-01

    Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures.

  10. The impact of bottom brightness on spectral reflectance of suspended sediments

    USGS Publications Warehouse

    Tolk, Brian L.; Han, L.; Rundquist, D. C.

    2000-01-01

    Two experiments were conducted outdoors to investigate how bottom brightness impacts the spectral response of a water column under varied suspended sediment concentrations. A white aluminum panel placed at the bottom of the tank was used as the bright bottom, and a flat-black tank liner served as the dark bottom. Sixteen levels of suspended sediment from 25 to 400 mg litre -1 were used in each experiment. Spectral data were collected using a Spectron SE-590 spectroradiometer. The major findings include the following: the bright bottom had the greatest impact at visible wavelengths; when suspended sediment concentrations exceeded 100 mg litre -1, the bright bottom response was found to be negligible; and, substrate brightness has minimal impact between 740 and 900 nm, suggesting that these wavelengths are best for measuring suspended sediment concentrations by means of remote sensing.

  11. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. An instrument system for long-term sediment transport studies on the continental shelf

    USGS Publications Warehouse

    Butman, Bradford; Folger, David W.

    1979-01-01

    A bottom-mounted instrument system has been designed and built to monitor processes of bottom sediment movement on the continental shelf. The system measures bottom current speed and direction, pressure, temperature, and light transmission and photographs the bottom. The system can be deployed for periods of 2–6 months to monitor intermitent processes of sediment movement such as storms and to assess seasonal variability. Deployments of the system on the U.S. east coast continental shelf show sediment resuspension and changes in bottom microtopography due to surface waves, tidal currents, and storms.

  13. Methane gas hydrate effect on sediment acoustic and strength properties

    USGS Publications Warehouse

    Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.; Pecher, I.A.

    2007-01-01

    To improve our understanding of the interaction of methane gas hydrate with host sediment, we studied: (1) the effects of gas hydrate and ice on acoustic velocity in different sediment types, (2) effect of different hydrate formation mechanisms on measured acoustic properties (3) dependence of shear strength on pore space contents, and (4) pore pressure effects during undrained shear.A wide range in acoustic p-wave velocities (Vp) were measured in coarse-grained sediment for different pore space occupants. Vp ranged from less than 1 km/s for gas-charged sediment to 1.77–1.94 km/s for water-saturated sediment, 2.91–4.00 km/s for sediment with varying degrees of hydrate saturation, and 3.88–4.33 km/s for frozen sediment. Vp measured in fine-grained sediment containing gas hydrate was substantially lower (1.97 km/s). Acoustic models based on measured Vp indicate that hydrate which formed in high gas flux environments can cement coarse-grained sediment, whereas hydrate formed from methane dissolved in the pore fluid may not.The presence of gas hydrate and other solid pore-filling material, such as ice, increased the sediment shear strength. The magnitude of that increase is related to the amount of hydrate in the pore space and cementation characteristics between the hydrate and sediment grains. We have found, that for consolidation stresses associated with the upper several hundred meters of sub-bottom depth, pore pressures decreased during shear in coarse-grained sediment containing gas hydrate, whereas pore pressure in fine-grained sediment typically increased during shear. The presence of free gas in pore spaces damped pore pressure response during shear and reduced the strengthening effect of gas hydrate in sands.

  14. Sedimentary processes on the Atlantic Continental Slope of the United States

    USGS Publications Warehouse

    Knebel, H.J.

    1984-01-01

    Until recently, the sedimentary processes on the United States Atlantic Continental Slope were inferred mainly from descriptive studies based on the bathymetry and on widely spaced grab samples, bottom photographs, and seismic-reflection profiles. Over the past 6 years, however, much additional information has been collected on the bottom morphology, characteristics of shallow-subbottom strata, velocity of bottom currents, and transport of suspended and bottom sediments. A review of these new data provides a much clearer understanding of the kinds and relative importance of gravitational and hydrodynamic processes that affect the surface sediments. On the rugged slope between Georges Bank and Cape Lookout, N.C., these processes include: (1) small scale mass wasting within submarine canyons and peripheral gullies; (2) density flows within some submarine valleys; (3) sand spillover near the shelf break; (4) sediment creep on the upper slope; and (5) hemipelagic sedimentation on the middle and lower slope. The area between Georges Bank and Hudson Canyon is further distinguished by the relative abundance of large-scale slump scars and deposits on the open slope, the presence of ice-rafted debris, and the transport of sand within the heads of some submarine canyons. Between Cape Lookout and southern Florida, the slope divides into two physiographic units, and the topography is smooth and featureless. On the Florida-Hatteras Slope, offshelf sand spillover and sediment winnowing, related to Gulf Stream flow and possibly to storm-driven currents, are the major processes, whereas hemipelagic sedimentation is dominant over the offshore slope along the seaward edge of the Blake Plateau north of the Blake Spur. Slumping generally is absent south of Cape Lookout, although one large slump scarp (related to uplift over salt diapirs) has been identified east of Cape Romain. Future studies concerning sedimentary processes on the Atlantic slope need to resolve: (1) the ages and mechanisms of mass wasting; (2) the accumulation rates and thicknesses of hemipelagic sediments; and (3) the causes and variability of offshelf sand spillover, sediment winnowing, and canyon transport. 

  15. Dynamics of the Sediment Plume Over the Yangtze Bank in the Yellow and East China Seas

    NASA Astrophysics Data System (ADS)

    Luo, Zhifa; Zhu, Jianrong; Wu, Hui; Li, Xiangyu

    2017-12-01

    A distinct sediment plume exists over the Yangtze Bank in the Yellow and East China Seas (YECS) in winter, but it disappears in summer. Based on satellite color images, there are two controversial viewpoints about the formation mechanism for the sediment plume. One viewpoint is that the sediment plume forms because of cross-shelf sediment advection of highly turbid water along the Jiangsu coast. The other viewpoint is that the formation is caused by local bottom sediment resuspension and diffused to the surface layer through vertical turbulent mixing. The dynamic mechanism of the sediment plume formation has been unclear until now. This issue was explored by using a numerical sediment model in the present paper. Observed wave, current, and sediment data from 29 December 2016 to 16 January 2017 were collected near the Jiangsu coast and used to validate the model. The results indicated that the model can reproduce the hydrodynamic and sediment processes. Numerical experiments showed that the bottom sediment could be suspended by the bottom shear stress and diffuse to the surface layer by vertical mixing in winter; however, the upward diffusion is restricted by the strong stratification in summer. The sediment plume is generated locally due to bottom sediment resuspension primarily via tide-induced bottom shear stress rather than by cross-shelf sediment advection over the Yangtze Bank.

  16. Chemical data for bottom sediment, lake water, bottom-sediment pore water, and fish in Mountain Creek Lake, Dallas, Texas, 1994-96

    USGS Publications Warehouse

    Jones, S.A.; Van Metre, P.C.; Moring, J.B.; Braun, C.L.; Wilson, J.T.; Mahler, B.J.

    1997-01-01

    Mountain Creek Lake is a reservoir adjacent to two U.S. Department of the Navy facilities, the Naval Weapons Industrial Reserve Plant and the Naval Air Station in Dallas, Texas. A Resource Conservation and Recovery Act Facility Investigation found ground-water plumes containing chlorinated solvents on both facilities. These findings led to a U.S. Geological Survey study of Mountain Creek Lake adjacent to both facilities between June 1994 and August 1996. Bottom sediments, lake water, bottom-sediment pore water, and fish were collected for chemical analysis.

  17. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  18. Sediment Budgets and Sources Inform a Novel Valley Bottom Restoration Practice Impacted by Legacy Sediment: The Big Spring Run, PA, Restoration Experiment

    NASA Astrophysics Data System (ADS)

    Walter, R. C.; Merritts, D.; Rahnis, M. A.; Gellis, A.; Hartranft, J.; Mayer, P. M.; Langland, M.; Forshay, K.; Weitzman, J. N.; Schwarz, E.; Bai, Y.; Blair, A.; Carter, A.; Daniels, S. S.; Lewis, E.; Ohlson, E.; Peck, E. K.; Schulte, K.; Smith, D.; Stein, Z.; Verna, D.; Wilson, E.

    2017-12-01

    Big Spring Run (BSR), a small agricultural watershed in southeastern Pennsylvania, is located in the Piedmont Physiographic Province, which has the highest nutrient and sediment yields in the Chesapeake Bay watershed. To effectively reduce nutrient and sediment loading it is important to monitor the effect of management practices on pollutant reduction. Here we present results of an ongoing study, begun in 2008, to understand the impact of a new valley bottom restoration strategy for reducing surface water sediment and nutrient loads. We test the hypotheses that removing legacy sediments will reduce sediment and phosphorus loads, and that restoring eco-hydrological functions of a buried Holocene wetland (Walter & Merritts 2008) will improve surface and groundwater quality by creating accommodation space to trap sediment and process nutrients. Comparisons of pre- and post-restoration gage data show that restoration lowered the annual sediment load by at least 118 t yr-1, or >75%, from the 1000 m-long restoration reach, with the entire reduction accounted for by legacy sediment removal. Repeat RTK-GPS surveys of pre-restoration stream banks verified that >90 t yr-1 of suspended sediment was from bank erosion within the restoration reach. Mass balance calculations of 137Cs data indicate 85-100% of both the pre-restoration and post-restoration suspended sediment storm load was from stream bank sources. This is consistent with trace element data which show that 80-90 % of the pre-restoration outgoing suspended sediment load at BSR was from bank erosion. Meanwhile, an inventory of fallout 137Cs activity from two hill slope transects adjacent to BSR yields average modern upland erosion rates of 2.7 t ha-1 yr-1 and 5.1 t ha-1 yr-1, showing modest erosion on slopes and deposition at toe of slopes. We conclude that upland farm slopes contribute little soil to the suspended sediment supply within this study area, and removal of historic valley bottom sediment effectively reduced bank erosion and sediment and phosphorus loads. Enhanced deposition further contributed to load reductions; prior to restoration, there was no deposition on tile pads on the 1.5 m-high legacy sediment "floodplain" terrace, whereas after restoration deposition on the low, restored floodplain showed net accumulation of 0.009 ± 0.012 m yr-1.

  19. Processes controlling the remobilization of surficial sediment and formation of sedimentary furrows in north-central Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H.J.; Lewis, R.S.; DiGiacomo-Cohen, M. L.

    2002-01-01

    Sidescan sonar, bathymetric, subbottom, and bottom-photographic surveys and sediment sampling have improved our understanding of the processes that control the complex distribution of bottom sediments and benthic habitats in Long Island Sound. Although the deeper (>20 m) waters of the central Sound are long-term depositional areas characterized by relatively weak bottom-current regimes, our data reveal the localized presence of sedimentary furrows. These erosional bedforms occur in fine-grained cohesive sediments (silts and clayey silts), trend east-northeast, are irregularly spaced, and have indistinct troughs with gently sloping walls. The average width and relief of the furrows is 9.2 m and 0.4 m, respectively. The furrows average about 206 m long, but range in length from 30 m to over 1,300 m. Longitudinal ripples, bioturbation, and nutclam shell debris are common within the furrows. Although many of the furrows appear to end by gradually narrowing, some furrows show a "tuning fork" joining pattern. Most of these junctions open toward the east, indicating net westward sediment transport. However, a few junctions open toward the west suggesting that oscillating tidal currents are the dominant mechanism controlling furrow formation. Sedimentary furrows and longitudinal ripples typically form in environments which have recurring, directionally stable, and occasionally strong currents. The elongate geometry and regional bathymetry of Long Island Sound combine to constrain the dominant tidal and storm currents to east-west flow directions and permit the development of these bedforms. Through resuspension due to biological activity and the subsequent development of erosional bedforms, fine-grained cohesive sediment can be remobilized and made available for transport farther westward into the estuary.

  20. Processes controlling the remobilization of surficial sediment and formation of sedimentary furrows in North-Central Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H.J.; Lewis, R.S.; DiGiacomo-Cohen, M. L.

    2002-01-01

    Sidescan sonar, bathymetric, subbottom, and bottom-photographic surveys and sediment sampling have improved our understanding of the processes that control the complex distribution of bottom sediments and benthic habitats in Long Island Sound. Although the deeper (>20 m) waters of the central Sound are long-term depositional areas characterized by relatively weak bottom-current regimes, our data reveal the localized presence of sedimentary furrows. These erosional bedforms occur in fine-grained cohesive sediments (silts and clayey silts), trend east-northeast, are irregularly spaced, and have indistinct troughs with gently sloping walls. The average width and relief of the furrows is 9.2 m and 0.4 m, respectively. The furrows average about 206 m long, but range in length from 30 m to over 1,300 m. Longitudinal ripples, bioturbation, and nutclam shell debris are common within the furrows. Although many of the furrows appear to end by gradually narrowing, some furrows show a "tuning fork" joining pattern. Most of these junctions open toward the east, indicating net westward sediment transport. However, a few junctions open toward the west suggesting that oscillating tidal currents are the dominant mechanism controlling furrow formation. Sedimentary furrows and longitudinal ripples typically form in environments which have recurring, directionally stable, and occasionally strong currents. The elongate geometry and regional bathymetry of Long Island Sound combine to constrain the dominant tidal and storm currents to east-west flow directions and permit the development of these bedforms. Through resuspension due to biological activity and the subsequent development of erosional bedforms, fine-grained cohesive sediment can be remobilized and made available for transport farther westward into the estuary.

  1. Sediment deposition and selected water-quality characteristics in Cedar Lake and Lake Olathe, Northeast Kansas, 2000

    USGS Publications Warehouse

    Mau, D.P.

    2002-01-01

    The Lake Olathe watershed, located in northeast Kansas, was investigated using bathymetric survey data and reservoir bottom-sediment cores to determine sediment deposition, water-quality trends, and transport of nutrients (phosphorus and nitrogen species), selected trace elements, selected pesticides, and diatoms as indicators of eutrophic (organic-enriched and depleted oxygen supply) conditions. To determine sediment deposition and loads, bathymetric data from Cedar Lake and Lake Olathe, both located in the Lake Olathe watershed, were collected in 2000 and compared to historical topographic data collected when the lakes were built. Approximately 338 acre-feet of sediment deposition has occurred in Cedar Lake since dam closure in 1938, and 317 acre-feet has occurred at Lake Olathe since 1956. Mean annual sediment deposition was 5.45 acre-feet per year (0.89 acre-feet per year per square mile) for Cedar Lake and 7.0 acre-feet per year (0.42 acre-feet per year per square mile) for Lake Olathe. Mean annual sediment loads for the two reservoirs were 9.6 million pounds per year for Cedar Lake and 12.6 million pounds per year for Lake Olathe. Mean concentrations of total phosphorus in bottom-sediment samples from Cedar Lake ranged from 1,370 to 1,810 milligrams per kilogram, and concentrations in bottom-sediment samples from Lake Olathe ranged from 588 to 1,030 milligrams per kilogram. The implication of large total phosphorus concentrations in the bottom sediment of Cedar Lake is that inflow into Cedar Lake is rich in phosphorus and that adverse water-quality conditions could affect water quality in downstream Lake Olathe through discharge of water from Cedar Lake to Lake Olathe via Cedar Creek. Mean annual phosphorus loads transported from the Lake Olathe watershed were estimated to be 14,700 pounds per year for Cedar Lake and 9,720 pounds per year for Lake Olathe. The mean annual phosphorus yields were estimated to be 3.74 pounds per acre per year for Cedar Lake and 0.91 pound per acre per year for Lake Olathe. Phosphorus yields in the Cedar Lake watershed were largest of the six Kansas impoundment watersheds recently studied. Concentrations of total ammonia plus organic nitrogen as nitrogen in bottom sediment increased from upstream to downstream in both Cedar Lake and Lake Olathe. Mean concentrations of total ammonia plus organic nitrogen as nitrogen (N) ranged from 2,000 to 2,700 milligrams per kilogram in bottom-sediment samples from Cedar Lake and from 1,300 to 2,700 milligrams per kilogram in samples from Lake Olathe. There was no statistical significance between total ammonia plus organic nitrogen as nitrogen and depth of bottom sediment. Concentrations of six trace elements in bottom sediment from Cedar Lake and Lake Olathe (arsenic, chromium, copper, lead, nickel, and zinc) exceeded the U.S. Environmental Protection Agency Threshold Effects Levels (TELs) sediment-quality guidelines for aquatic organisms in sediment except for one lead concentration. Probable Effects Levels (PELs) for trace elements, however, were not exceeded at either lake. Organochlorine and organophosphate insecticides were not detected in bottom-sediment samples from either Cedar Lake or Lake Olathe, but the acetanilide herbicides alachlor and metolachlor were detected in sediment from both lakes. The U.S. Environmental Protection Agency has not proposed TEL or PEL guideline concentrations for bottom sediment for any of the organophosphate, acetanilide, or triazine pesticides. The diatoms (microscopic, single-celled organisms) Cyclotella bodanica, an indicator of low organic-enriched water, and Cyclotella meneghiniana, an indicator of organic-enriched water, were both present in bottom sediment from Lake Olathe. The presence of both of these diatoms suggests varying periods of low and high eutrophication in Lake Olathe from 1956 to 2000. The concentrations of two species in bottom sediment from Cedar Lake, Aulacoseira cf alpigena and Cyclotella meneg

  2. Influence of the Bottom Sediment Characteristics on the Bivalve Mollusk Anadara kagoshimensis Histopathology's Variability in the Northeastern Coast of the Black Sea

    NASA Astrophysics Data System (ADS)

    Kolyuchkina, G. A.; Budko, D. F.; Chasovnikov, V. K.; Chzhu, V. P.

    2017-11-01

    With increasing anthropogenic impact on the environment, investigations of organism's response to the contamination of natural habitats, are especially relevant. In the present study, we sought to identify the correlation between the bottom sediments and local variability in histopathology of Anadara kagoshimensis (Bivalvia) in four sites of the north-eastern coast of the Black Sea. Bottom sediment grain size, redox potential of pore water, heavy metals, benzo-α-pyrene and DDT concentrations have been used as characteristics of bottom sediments. Analysis of the data revealed differences in the geochemical background of the studied sites and the histopathological state of the molluscs from these areas. Among the 10 studied elements as well as benzo-α-pyrene and DDT, only Ni has shown an exceedance of statutory limits of concentration in bottom sediments. The study reveals a relationship between Ni concentration in the bottom sediments and frequency of heavy histopathologies in the molluscs. In addition to causes directly related to pollution, mild pathology may be influenced by "natural" causes; in particular, the high content of brown cells in the connective tissue of the digestive gland may be due to the age of molluscs.

  3. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density gradient from intruded salinity and local sediment suspension. Meanwhile, tripods' monitoring identified a significant cross-channel component of residual current, which could produce potential bottom sediment accumulation in the channel region within the North Passage.

  4. Continuous In Situ Measurements of Near Bottom Chemistry and Sediment-Water Fluxes with the Chimney Sampler Array (CSA)

    NASA Astrophysics Data System (ADS)

    Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.

    2011-12-01

    The Chimney Sampler Array (CSA) was designed to measure in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical fluxes at upper slope sites in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water fluxes. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to measure temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core measurements and measured temporal variability in oxygen and methane sediment-water fluxes at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic flux events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates were used to calculate sediment O2 demand. Episodic events yielding turbidity spikes produced episodic spikes in chimney methane concentrations and sediment-water fluxes. The robust data set reveals new capabilities for long-term monitoring of near-bottom processes in biogeochemically active, continental margin environments.

  5. Presence of selected chemicals of emerging concern in water and bottom sediment from the St. Louis River, St. Louis Bay, and Superior Bay, Minnesota and Wisconsin, 2010

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; Kieta, Kristen A.; Elliott, Sarah M.

    2012-01-01

    The St. Louis Bay of Lake Superior receives substantial urban runoff, wastewater treatment plant effluent, and industrial effluent. In 1987, the International Joint Commission designated the St. Louis Bay portion of the lower St. Louis River as one of the Great Lakes Areas of Concern. Concerns exist about the potential effects of chemicals of emerging concern on aquatic biota because many of these chemicals, including endocrine active chemicals, have been shown to affect the endocrine systems of fish. To determine the occurrence of chemicals of emerging concern in the St. Louis River, the St. Louis Bay, and Superior Bay, the U.S. Geological Survey in cooperation with the Minnesota Pollution Control Agency and the Wisconsin Department of Natural Resources collected water and bottom-sediment samples from 40 sites from August through October 2010. The objectives of this study were to (1) identify the extent to which chemicals of emerging concern, including pharmaceuticals, hormones, and other organic chemicals, occur in the St. Louis River, St. Louis Bay, and Superior Bay, and (2) identify the extent to which the chemicals may have accumulated in bottom sediment of the study area. Samples were analyzed for selected wastewater indicators, hormones, sterols, bisphenol A, and human-health pharmaceuticals. During this study, 33 of 89 chemicals of emerging concern were detected among all water samples collected and 56 of 104 chemicals of emerging concern were detected in bottom-sediment samples. The chemical N,N-diethyl-meta-toluamide (DEET) was the most commonly detected chemical in water samples and 2,6-dimethylnaphthalene was the most commonly detected chemical in bottom-sediment samples. In general, chemicals of emerging concern were detected at a higher frequency in bottom-sediment samples than in water samples. Estrone (a steroid hormone) and hexahydrohexamethyl cyclopentabensopyran (a synthetic fragrance) were the most commonly detected endocrine active chemicals in water samples; beta-sitosterol (a plant sterol), estrone, and 4-tert-octylphenol (an alkylphenol) were the most commonly detected endocrine active chemicals in bottom-sediment samples. The greater detection frequency of chemicals in bottom-sediment samples compared to the detection frequency in water samples indicates that bottom sediment is an important sink for chemicals of emerging concern. At least one polycyclic aromatic hydrocarbon was detected in every sample; and in most samples, all nine polycyclic aromatic hydrocarbons included in analyses were detected. Bottom sediment collected from Superior Bay had the most polycyclic aromatic hydrocarbon detections of the sediment sampling locations.

  6. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea - Summary of 3years of studies.

    PubMed

    Siedlewicz, Grzegorz; Białk-Bielińska, Anna; Borecka, Marta; Winogradow, Aleksandra; Stepnowski, Piotr; Pazdro, Ksenia

    2018-04-01

    Concentrations of selected antibiotic compounds from different groups were measured in sediment samples (14 analytes) and in near-bottom water samples (12 analytes) collected in 2011-2013 from the southern Baltic Sea (Polish coastal zone). Antibiotics were determined at concentration levels of a few to hundreds of ng g -1 d.w. in sediments and ng L -1 in near-bottom waters. The most frequently detected compounds were sulfamethoxazole, trimethoprim, oxytetracycline in sediments and sulfamethoxazole and trimethoprim in near-bottom waters. The occurrence of the identified antibiotics was characterized by spatial and temporal variability. A statistically important correlation was observed between sediment organic matter content and the concentrations of sulfachloropyridazine and oxytetracycline. Risk assessment analyses revealed a potential high risk of sulfamethoxazole contamination in near-bottom waters and of contamination by sulfamethoxazole, trimethoprim and tetracyclines in sediments. Both chemical and risk assessment analyses show that the coastal area of the southern Baltic Sea is highly exposed to antibiotic residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Insecticide residues on stream sediments in Ontario, Canada.

    PubMed

    Miles, J R

    1976-12-01

    Insecticide residues on suspended and bottom sediments of streams of Ontario, Canada, have been studied in a tobacco-growing and a vegetable muck area. The proportion of TDE to DDT was less than 1 in water and greater than 1 in bottom sediments. The ratio of TDE to DDT in bottom material increased linearly from the contamination point at stream source to the mouth of Big Creek in Norfolk County, Ontario. Bed load samples contained three to six times greater concentrations of insecticides than bottom material. Adsorption of insecticides on suspended sediment decreased in order DDT greater than TDE greater than dieldrin greater than diazinon, which is consistent with the water solubility of these compounds.

  8. Sediment size fractionation and focusing in the equatorial Pacific: Effect on 230Th normalization and paleoflux measurements

    NASA Astrophysics Data System (ADS)

    Lyle, Mitchell; Marcantonio, Franco; Moore, Willard S.; Murray, Richard W.; Huh, Chih-An; Finney, Bruce P.; Murray, David W.; Mix, Alan C.

    2014-07-01

    We use flux, dissolution, and excess 230Th data from the Joint Global Ocean Flux Study and Manganese Nodule Project equatorial Pacific study Site C to assess the extent of sediment focusing in the equatorial Pacific. Measured mass accumulation rates (MAR) from sediment cores were compared to reconstructed MAR by multiplying the particulate rain caught in sediment traps by the 230Th focusing factor and subtracting measured dissolution. CaCO3 MAR is severely overestimated when the 230Th focusing factor correction is large but is estimated correctly when the focusing factor is small. In contrast, Al fluxes in the sediment fine fraction are well matched when the focusing correction is used. Since CaCO3 is primarily a coarse sediment component, we propose that there is significant sorting of fine and coarse sediments during lateral sediment transport by weak currents. Because CaCO3 does not move with 230Th, normalization typically overcorrects the CaCO3 MAR; and because CaCO3 is 80% of the total sediment, 230Th normalization overestimates lateral sediment flux. Fluxes of 230Th in particulate rain caught in sediment traps agree with the water column production-sorption model, except within 500 m of the bottom. Near the bottom, 230Th flux measurements are as much as 3 times higher than model predictions. There is also evidence for lateral near-bottom 230Th transport in the bottom nepheloid layer since 230Th fluxes caught by near-bottom sediment traps are higher than predicted by resuspension of surface sediments alone. Resuspension and nepheloid layer transport under weak currents need to be better understood in order to use 230Th within a quantitative model of lateral sediment transport.

  9. A new instrument system to investigate sediment dynamics on continental shelves

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.

    1979-01-01

    A new instrumented tripod, the GEOPROBE system, has been constructed and used to collect time-series data on physical and geological parameters that are important in bottom sediment dynamics on continental shelves. Simultaneous in situ digital recording of pressure, temperature, light scattering, and light transmission, in combination with current velocity profiles measured with a near-bottom vertical array of electromagnetic current meters, is used to correlate bottom shear generated by a variety of oceanic processes (waves, tides, mean flow, etc.) with incipient movement and resuspension of bottom sediment. A bottom camera system that is activated when current speeds exceed preset threshold values provides a unique method to identify initial sediment motion and bed form development. Data from a twenty day deployment of the GEOPROBE system in Norton Sound, Alaska, during the period September 24 - October 14, 1976 show that threshold conditions for sediment movement are commonly exceeded, even in calm weather periods, due to the additive effects of tidal currents, mean circulation, and surface waves. ?? 1979.

  10. Evaluation of organic compounds and trace elements in Amazon Creek Basin, Oregon, September 1990

    USGS Publications Warehouse

    Rinella, F.A.

    1993-01-01

    Water and bottom sediment were collected from Amazon Creek, Oregon during a summer low-flow condition and analyzed for different classes of organic compounds, including many from the U.S. Environmental Protection Agency's priority pollutant list. Bottom sediment also was analyzed for trace elements typically associated with urban runoff. Trace-element concentrations in the less than 63 micrometer fraction of Amazon Creek bottom-sediment samples were compared with baseline concentrations (expected 95 percent confidence range) for soils from the Western United States and with concen- trations found in bottom sediment from the Willamette River Basin. Total-digestion concentrations of antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, titanium, and zinc were enriched at some or all sites sampled. Whole-water samples from some sites contained concentrations of several chlorophenoxy-acid herbicides, the organophosphorus insecticide diazinon, and several semivolatile priority pollutants. Classes of compounds not detected in whole-water samples included carbamate insecticides, triazine and other nitrogen-containing herbicides, and purgeable organic compounds. Bottom-sediment samples contained many organochlorine compounds, including chlordane, DDT plus metabolites, dieldrin, endrin, heptachlor epoxide (a metabolite of heptachlor), and PCBs at some or all sites sampled. Twenty-four of 54 semivolatile compounds were detected in bottom- sediment samples at some or all sites sampled.

  11. Monitoring changes in stream bottom sediments and benthic invertebrates.

    DOT National Transportation Integrated Search

    1981-01-01

    The study was conducted to determine whether the analysis of stream bottom sediments could be used to assess sediment pollution generated by highway construction. Most of the work completed to date has involved testing and refining methods for the co...

  12. Satellite-based quantification of the bottom trawling induced sediment resuspension over an entire shelf

    NASA Astrophysics Data System (ADS)

    Oberle, F. J.; Cheriton, O. M.; Hanebuth, T. J. J.

    2014-12-01

    The effect of bottom trawling activities on continental shelves has been a topic of interest for both fishery resource studies and ecological impact studies for a while. However, the impact of demersal fishing gear was almost exclusively studied from a perspective of its effects on benthic fauna, but recently it has also attracted attention due to its profound impact on sediments. Here we present the first study to quantify the trawling-induced sediment resuspension effect by combining satellite-based spatial patterns of bottom trawling with quantitative measurements of induced sediment plumes. This study examined high-resolution GPS vessel monitoring data from one year (2011-2012) to quantify the sedimentary budget caused by bottom trawling activity for the entire NW Iberian shelf, an area that is widely affected by chronic (continuous and intensive) commercial bottom trawling and is exemplary for many other narrow shelves worldwide. By filtering the GPS data by vessel type, vessel speed, and geometry of the trawl path, we resolved geographically detailed bottom trawling activities with varying local trawling intensities depending both on legal restrictions and bedrock geomorphology. Initial results show that trawling-induced resuspended sediments mark a significant if not dominant factor for a source to sink sedimentary budget, as they are calculated to be approximately two times as large as fluvial sedimentary input to the shelf. Ultimately, these results not only allow for a trawling affected sediment budget but also significantly help with marine management decisions by allowing to predict the mobilization and transport of sediment caused by bottom trawling gear at the level of a specific fishing fleet or ecosystem.

  13. May 1984-Aril 1985 Water Budget of Reelfoot Lake With Estimates of Sediment Inflow and Concentrations of Pesticides in Bottom Material in Tributary Streams--Basic Data Report

    DTIC Science & Technology

    1985-01-01

    Open-File Report 85-498 MAY 1984-APRIL 1985 WATER BUDGET OF REELFOOT LAKE WITH ESTIMATES OF SEDIMENT INFLOW AND CONCENTRATIONS OF PESTICIDES IN...AND SUBTITLE May 1984-Apr 1985 Water Budget of Reelfoot Lake With Estimates of Sediment Inflow and Concentrations of Pesticides in Bottom Material in...1984-APRIL 1985 WATER BUDGET OF REELFOOT LAKE WITH ESTIMATES OF SEDIMENT INFLOW AND CONCENTRATIONS OF PESTICIDES IN BOTTOM MATERIAL IN TRIBUTARY

  14. Assessment of chemical and biological significance of arsenical species in the Maurice River drainage basin (N. J. ). Part II. Partitioning of arsenic into bottom sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faust, S.D.; Winka, A.J.; Belton, T.

    1987-01-01

    A laboratory study was conducted on the partitioning of four arsenical species onto organic and sandy bottom sediments of Union Lake, N.J. Sandy sediments released more arsenic and sorbed less arsenic than the organic sediments. Organic sediments generally sorbed inorganic As species better than organic As species.

  15. Characteristics of the near-bottom suspended sediment field over the continental shelf off northern California based on optical attenuation measurements during STRESS and SMILE

    NASA Astrophysics Data System (ADS)

    Trowbridge, J. H.; Butman, B.; Limeburner, R.

    1994-08-01

    Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.

  16. Features of distribution and quality of organic matter in the bottom sediments of the Great Peter Bay (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Nesterova, Olga; Tregubova, Valentina; Semal, Victoria; Vasenev, Ivan

    2017-04-01

    The nature and distribution of organic carbon in marine waters depends on: 1) biological productivity and revenue of the autochthonous organic matter to the bottom; 2) sediment grain-size composition and conditions of dumping, which in turn depends of hydrothermic regime, topography, speed River mist and received major erosion products; 3) living conditions of the benthos (the quantity consumed of OM, gas regime of habitats, physiological capacity of heterotrophs). Autochthonous OM of phytoplankton plays a dominant role in the processes of formation of humus in aquatic conditions. Bottom sediments at different distance from the shoreline to depths from 0.5 up to 480 m of the Sea of Japan, which are formed in various conditions of facies, were selected as the objects of study. There is no clear relationships to the amount of organic matter in bottom sediments on the characteristics of the distribution and nature of living matter in the oceans and seas. This is because the process of sedimentation and fossilization of organic matter on the seabed and the ocean floor depends on many factors (currents, depth). Humus of studied bottom sediments in composition can be attributed mainly to the humic type. Nonhydrolyzing rest is 70-90%. This is characteristic of bottom sediments formed in facial types of small bays, internal coastal shelf bights and the underwater slope. At a fraction of the carbon of humic acids in organic matter, ranging from 4 to 80% of the amount of humic and fulvic acids. Fulvic acids content is much less. This is due to more favourable conservation situation of humic acids in precipitation with high content of organic matter, whereas fulvic acids in aquatic environments are more labile and almost not dumped. Despite the fact humic acids are not the most stable component (s), however, with increased content of humic acids, the mobility of organic matter and removing it from the bottom sediments are reduced. Internal shelf facies of the Great Peter Bay is the most diverse on the content of the various components of the bottom sediments humus. This is because modern processes of sedimentations and humus formation are active in this zone. The greatest concentration of organic matter in conjunction with the submarine and coastal slope at depths of more than 120 m. Slight variations parameters that characterize the composition of humus, are notable for all bottom sediments, as well as the marine environment, largely cancels the General conditions of humus formation around the basin of the Sea of Japan. Organic substance moving in the water colomn and transforms. Only sustainable to mineralization of organic substance reaches the bottom.

  17. Sediment Transport over a Dredge Pit, Sandy Point Southeast, west flank of the Mississippi River during Summer Upcoast Currents: a Coupled Wave, Current and Sediment Numerical Model

    NASA Astrophysics Data System (ADS)

    Chaichitehrani, N.; Li, C.; Xu, K.; Bentley, S. J.; Miner, M. D.

    2017-12-01

    Sandy Point southeast, an elongated sand resource, was dredged in November 2012 to restore Pelican Island, Louisiana. Hydrodynamics and wave propagation patterns along with fluvial sediments from the Mississippi River influence the sediment and bottom boundary layer dynamics over Sandy Point. A state-of-the-art numerical model, Delft3D, was implemented to investigate current variations and wave transformation on Sandy Point as well as sediment transport pattern. Delft3d FLOW and WAVE modules were coupled and validated using WAVCIS and NDBC data. Sediment transport model was run by introducing both bed and river sediments, consisted of mainly mud and a small fraction of sand. A sediment transport model was evaluated for surface sediment concentration using data derived from satellite images. The model results were used to study sediment dynamics and bottom boundary layer characteristics focused on the Sandy Point area during summer. Two contrasting bathymetric configurations, with and without the Sandy Point dredge pit, were used to conduct an experiment on the sediment and bottom boundary layer dynamics. Preliminary model results showed that the presence of the Sandy Point pit has very limited effect on the hydrodynamics and wave pattern at the pit location. Sediments from the Mississippi River outlets, especially in the vicinity of the pit, get trapped in the pit under the easterly to the northeasterly upcoast current which prevails in August. We also examined the wave-induced sediment reworking and river-borne fluvial sediment over Sandy Point. The effect of wind induced orbital velocity increases the bottom shear stress compared to the time with no waves, relatively small wave heights (lower than 1.5 meters) along the deepest part of the pit (about 20 meters) causes little bottom sediment rework during this period. The results showed that in the summertime, river water is more likely the source of sedimentation in the pit.

  18. Dynamics of sediments along with their core properties in the Monastir-Bekalta coastline (Tunisia, Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Khiari, Nouha; Atoui, Abdelfattah; Khalil, Nadia; Charef, Abdelkrim; Aleya, Lotfi

    2017-10-01

    The authors report on two campaigns of high-resolution samplings along the shores of Monastir Bay in Tunisia: the first being a study of sediment dynamics, grain size and mineral composition in surface sediment, and the second, eight months later, using four sediment cores to study grain-size distribution in bottom sediments. Particle size analysis of superficial sediment shows that the sand in shallow depths is characterized by S-shaped curves, indicating a certain degree of agitation, possible transport by rip currents near the bottom and hyperbolic curves illustrating heterogeneity of sand stock. The sediments settle in a relatively calm environment. Along the bay shore (from 0 to 2 m depth), the bottom is covered by medium sand. Sediment transport is noted along the coast; from north to south and from south to north, caused by longshore drift and a rip current in the middle of the bay. These two currents are generated by wind and swell, especially by north to northeast waves which transport the finest sediment. Particle size analysis of bottom sediment indicates a mean grain size ranging from coarse to very fine sands while vertical distribution of grain size tends to decrease from surface to depth. The increase in particle size of sediment cores may be due to the coexistence of terrigenous inputs along with the sedimentary transit parallel to the coast due to the effect of longshore drift. Mineralogical analysis shows that Monastir's coastal sands and bottom sediment are composed of quartz, calcite, magnesium calcite, aragonite and hematite. The existence of a low energy zone with potential to accumulate pollutants indicates that managerial action is necessary to help preserve Monastir Bay.

  19. Chromium distribution in an Amazonian river exposed to tannery effluent.

    PubMed

    de Sousa, Eduardo Araujo; Luz, Cleber Calado; de Carvalho, Dario Pires; Dorea, Caetano Chang; de Holanda, Igor Bruno Barbosa; Manzatto, Ângelo Gilberto; Bastos, Wanderley Rodrigues

    2016-11-01

    This study aims to evaluate the Cr concentrations in surface water, suspended particles, and bottom sediments exposed to tannery effluent releases in the Candeias River. Cr concentrations were compared in relation to environmental thresholds imposed by United States Environmental Protection Agency (USEPA) and the Brazilian Environmental Council (CONAMA), and the geoaccumulation index (Igeo) was calculated in bottom sediment. Samples were collected in flood and dry seasons. Cr extraction was done by an acid extraction and quantified by flame atomic absorption spectrometry. Most samples were found to be below the environmental thresholds imposed by CONAMA and USEPA, except in the one from the discharge zone sampled during the dry season, showing values 1.5 and 6.1 higher than CONAMA in water and bottom sediment, respectively. Cr concentrations were significantly higher (P < 0.001) in suspended particles during dry season than flood season. Surface water and bottom sediment did not show significant differences between the seasons. The Igeo revealed an enrichment of Cr in bottom sediments after discharge zone, indicating that the effluent may be contributing to metal accumulation in the sediment. Apparently, the Candeias River shows a wash behavior on the river bottom, leaching the accumulated metal deposited on the riverbed to other areas during the flood pulses, which decreases Cr concentration in the discharge zone during dry seasons. Thus, this behavior can promote Cr dispersion to unpolluted areas.

  20. Sedimentation and occurrence and trends of selected nutrients, other chemical constituents, and cyanobacteria in bottom sediment, Clinton Lake, northeast Kansas, 1977-2009

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    A combination of available bathymetric-survey information and bottom-sediment coring was used to investigate sedimentation and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, cyanobacterial akinetes, and the radionuclide cesium-137 in the bottom sediment of Clinton Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1977 through 2009 in the conservation (multi-purpose) pool of the reservoir was 438 million cubic feet and 18 billion pounds, respectively. The estimated sediment volume occupied about 8 percent of the conservation-pool, water-storage capacity of the reservoir. Sedimentation in the conservation pool has occurred about 70 percent faster than originally projected at the time the reservoir was completed. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 0.25 percent annually. Mean annual net sediment deposition since 1977 in the conservation pool of the reservoir was estimated to be 563 million pounds per year. Mean annual net sediment yield from the Clinton Lake Basin was estimated to be 1.5 million pounds per square mile per year. Typically, the bottom sediment sampled in Clinton Lake was at least 99 percent silt and clay. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Clinton Lake were estimated to be 1.29 million pounds per year and 556,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the Clinton Lake Basin were 3,510 pounds per square mile per year and 1,510 pounds per square mile per year, respectively. Throughout the history of Clinton Lake, total nitrogen concentrations in the deposited sediment generally were uniform and indicated consistent inputs to the reservoir over time. Likewise, total phosphorus concentrations in the deposited sediment generally were uniform. Although, for two of three coring sites, a possible positive trend in phosphorus deposition was indicated. The Wakarusa River possibly was a larger contributor of nitrogen and phosphorus to Clinton Lake than was Rock Creek. As a principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. Trace-element concentrations in the bottom sediment of Clinton Lake generally were uniform over time. As is typical for eastern Kansas reservoirs, arsenic, chromium, and nickel concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Zinc concentrations frequently exceeded the threshold-effects guideline. Trace-element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects usually or frequently occur. Cyanobacterial akinetes (cyanobacteria resting stage) in the bottom sediment of Clinton Lake, combined with historical water-quality data on chlorophyll-a and total phosphorus concentrations, indicated that the reservoir likely has been eutrophic throughout most of its history. A statistically significant increase in cyanobacterial akinetes in the bottom sediment indicated that Clinton Lake may have become more eutrophic over the life of the reservoir. The increase in cyanobacterial akinetes may, in part, be related to a possible increase in total phosphorus concentrations.

  1. Anthropogenic radionuclide fluxes and distribution in bottom sediments of the cooling basin of the Ignalina Nuclear Power Plant.

    PubMed

    Marčiulionienė, D; Mažeika, J; Lukšienė, B; Jefanova, O; Mikalauskienė, R; Paškauskas, R

    2015-07-01

    Based on γ-ray emitting artificial radionuclide spectrometric measurements, an assessment of areal and vertical distribution of (137)Cs, (60)Co and (54)Mn activity concentrations in bottom sediments of Lake Drūkšiai was performed. Samples of bottom sediments from seven monitoring stations within the cooling basin were collected in 1988-1996 and 2007-2010 (in July-August). For radionuclide areal distribution analysis, samples from the surface 0-5 cm layer were used. Multi sample cores sliced 2 cm, 3 cm or 5 cm thick were used to study the vertical distribution of radionuclides. The lowest (137)Cs activity concentrations were obtained for two stations that were situated close to channels with radionuclide discharges, but with sediments that had a significantly smaller fraction of organic matter related to finest particles and consequently smaller radionuclide retention potential. The (137)Cs activity concentration was distributed quite evenly in the bottom sediments from other investigated monitoring stations. The highest (137)Cs activity concentrations in the bottom sediments of Lake Drūkšiai were measured in the period of 1988-1989; in 1990, the (137)Cs activity concentrations slightly decreased and they varied insignificantly over the investigation period. The obtained (238)Pu/(239,240)Pu activity ratio values in the bottom sediments of Lake Drūkšiai represented radioactive pollution with plutonium from nuclear weapon tests. Higher (60)Co and (54)Mn activity concentrations were observed in the monitoring stations that were close to the impact zones of the technical water outlet channel and industrial rain drainage system channel. (60)Co and (54)Mn activity concentrations in the bottom sediments of Lake Drūkšiai significantly decreased when operations at both INPP reactor units were stopped. The vertical distribution of radionuclides in bottom sediments revealed complicated sedimentation features, which may have been affected by a number of natural and anthropogenic factors resulting in mixing, resuspension and remobilization of sediments and radionuclides. The associated with particles (137)Cs flux was 129 Bq/(m(2) year). The (137)Cs transfer rate from water into bottom sediments was 14.3 year(-1) (or, the removal time was 25 days). The Kd value for (137)Cs in situ estimated from trap material was 80 m(3)/kg. The associated with particles (60)Co flux was 21 Bq/(m(2) year), when (60)Co activity concentration in sediment trap particles was 15.7 ± 5 Bq/kg. (60)Co activity concentration in soluble form was less than the minimum detectable activity (MDA = 1.3 Bq/m(3)). Then, the conservatively derived Kd value for (60)Co was >90 m(3)/kg. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Characterization of a Louisiana Bay Bottom

    NASA Astrophysics Data System (ADS)

    Freeman, A. M.; Roberts, H. H.

    2016-02-01

    This study correlates side-scan sonar and CHIRP water bottom-subbottom acoustic amplitudes with cone penetrometer data to expand the limited understanding of the geotechnical properties of sediments in coastal Louisiana's bays. Standardized analysis procedures were developed to characterize the bay bottom and shallow subsurface of the Sister Lake bay bottom. The CHIRP subbottom acoustic data provide relative amplitude information regarding reflection horizons of the bay bottom and shallow subsurface. An amplitude analysis technique was designed to identify different reflectance regions within the lake from the CHIRP subbottom profile data. This amplitude reflectivity analysis technique provides insight into the relative hardness of the bay bottom and shallow subsurface, useful in identifying areas of erosion versus deposition from storms, as well as areas suitable for cultch plants for state oyster seed grounds, or perhaps other restoration projects. Side-scan and CHIRP amplitude reflectivity results are compared to penetrometer data that quantifies geotechnical properties of surface and near-surface sediments. Initial results indicate distinct penetrometer signatures that characterize different substrate areas including soft bottom, storm-deposited silt-rich sediments, oyster cultch, and natural oyster reef areas. Although amplitude analysis of high resolution acoustic data does not directly quantify the geotechnical properties of bottom sediments, our analysis indicates a close relationship. The analysis procedures developed in this study can be applied in other dynamic coastal environments, "calibrating" the use of synoptic acoustic methods for large-scale water bottom characterization.

  3. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1986-92

    USGS Publications Warehouse

    Tadayon, Saeid; Smith, C.F.

    1994-01-01

    Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.

  4. Visual observations of historical lake trout spawning grounds in western Lake Huron

    USGS Publications Warehouse

    Nester, Robert T.; Poe, Thomas P.

    1987-01-01

    Direct underwater video observations were made of the bottom substrates at 12 spawning grounds formerly used by lake trout Salvelinus namaycush in western Lake Huron to evaluate their present suitability for successful reproduction by lake trout. Nine locations examined north of Saginaw Bay in the northwestern end of the lake are thought to provide the best spawning habitat. The substrate at these sites consisted of angular rough cobble and rubble with relatively deep interstitial spaces (a?Y 0.5 m), small amounts of fine sediments, and little or no periphytic growth. Conditions at the three other sampling locations south of Saginaw Bay seemed much less suitable for successful reproduction based on the reduced area of high-quality substrate, shallow interstitial spaces, high infiltration of fine sediments, and greater periphytic growth.

  5. Sediment deposition and occurrence of selected nutrients and other chemical constituents in bottom sediment, Tuttle Creek Lake, Northeast Kansas, 1962-99

    USGS Publications Warehouse

    Juracek, K.E.; Mau, D.P.

    2002-01-01

    A combination of bathymetric surveying and bottom-sediment coring was used to investigate sediment deposition and the occurrence of selected nutrients (total ammonia plus organic nitrogen and total phosphorus), 44 metals and trace elements, 15 organochlorine compounds, and 1 radionuclide in bottom sediment of Tuttle Creek Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1962 through 1999 in the original conservation-pool area of the lake was 6,170 million cubic feet (142,000 acre-feet) and 292,400 million pounds (133,000 million kilograms), respectively. The volume of sediment occupies about 33 percent of the original conservation-pool, water-storage capacity of the lake. Mean annual net sediment deposition since 1962 was estimated to be 7,900 million pounds (3,600 million kilograms). Mean annual net sediment yield from the Tuttle Creek Lake Basin was estimated to be 821,000 pounds per square mile (1,440 kilograms per hectare). The estimated mean annual net loads of total ammonia plus organic nitrogen and total phosphorus deposited in the bottom sediment of Tuttle Creek Lake were 6,350,000 pounds per year (2,880,000 kilograms per year) and 3,330,000 pounds per year (1,510,000 kilograms per year), respectively. The estimated mean annual net yields of total ammonia plus organic nitrogen and total phosphorus from the Tuttle Creek Lake Basin were 657 pounds per square mile per year (1.15 kilograms per hectare per year) and 348 pounds per square mile per year (0.61 kilograms per hectare per year), respectively. No statistically significant trend for total phosphorus deposition in the bottom sediment of Tuttle Creek Lake was indicated (trend analysis for total ammonia plus organic nitrogen was not performed). On the basis of available sediment-quality guidelines, the concentrations of arsenic, chromium, copper, nickel, silver, and zinc in the bottom sediment of Tuttle Creek Lake frequently or typically exceeded the threshold-effects levels established by the U.S. Environmental Protection Agency. Sediment concentrations of metals and trace elements were relatively uniform over time. Organochlorine compounds either were not detected or were detected at concentrations generally less than the threshold-effects levels. Following an initial positive trend, a statistically significant negative depositional trend was indicated for DDE (degradation product of DDT), which was consistent with the history of DDT use. Other organochlorine compounds detected included aldrin, DDD, and dieldrin. Notable changes in human activity within the basin included a substantial increase in the production of grain corn and soybeans from the 1960s to the 1990s. This increase in production was accompanied by a pronounced increase in the number of irrigated acres. Also, during the same time period, there was an overall increase in hog production. These changes in human activity have not had a discernible effect on the deposition of chemical constituents in the bottom sediment of Tuttle Creek Lake.

  6. Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data

    NASA Astrophysics Data System (ADS)

    Chabert, Anne; Minshull, Tim A.; Westbrook, Graham K.; Berndt, Christian; Thatcher, Kate E.; Sarkar, Sudipta

    2011-12-01

    The ongoing warming of bottom water in the Arctic region is anticipated to destabilize some of the gas hydrate present in shallow seafloor sediment, potentially causing the release of methane from dissociating hydrate into the ocean and the atmosphere. Ocean-bottom seismometer (OBS) experiments were conducted along the continental margin of western Svalbard to quantify the amount of methane present as hydrate or gas beneath the seabed. P- and S-wave velocities were modeled for five sites along the continental margin, using ray-trace forward modeling. Two southern sites were located in the vicinity of a 30 km long zone where methane gas bubbles escaping from the seafloor were observed during the cruise. The three remaining sites were located along an E-W orientated line in the north of the margin. At the deepest northern site, Vp anomalies indicate the presence of hydrate in the sediment immediately overlying a zone containing free gas up to 100-m thick. The acoustic impedance contrast between the two zones forms a bottom-simulating reflector (BSR) at approximately 195 m below the seabed. The two other sites within the gas hydrate stability zone (GHSZ) do not show the clear presence of a BSR or of gas hydrate. However, anomalously low Vp, indicating the presence of free gas, was modeled for both sites. The hydrate content was estimated from Vp and Vs, using effective-medium theory. At the deepest northern site, modeling suggests a pore-space hydrate concentration of 7-12%, if hydrate forms as part of a connected framework, and about 22% if it is pore-filling. At the two other northern sites, located between the deepest site and the landward limit of the GHSZ, we suggest that hydrate is present in the sediment as inclusions. Hydrate may be present in small quantities at these two sites (4-5%) of the pore space. The variation in lithology for the three sites indicated by high-resolution seismic profiles may control the distribution, concentration and formation of hydrate and free gas.

  7. Anchor ice, seabed freezing, and sediment dynamics in shallow arctic seas

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.; Barnes, P.W.

    1987-01-01

    Diving investigations confirm previous circumstantial evidence of seafloor freezing and anchor ice accretion during freeze-up storms in the Alaskan Beaufort Sea. These related bottom types were found to be continuous from shore to 2 m depth and spotty to 4.5 m depth. The concretelike nature of frozen bottom, where present, should prohibit sediment transport by any conceivable wave or current regime during the freezing storm. But elsewhere, anchor ice lifts coarse material off the bottom and incorporates it into the ice canopy, thereby leading to significant ice rafting of shallow shelf sediment and likely sediment loss to the deep sea. -from Authors

  8. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa). Consequences for sedimentation and southeast Atlantic upwelling

    NASA Astrophysics Data System (ADS)

    Séranne, Michel; Nzé Abeigne, César-Rostand

    1999-10-01

    Seismic reflection profiles on the slope of the south Gabon continental margin display furrows 2 km wide and some 200 m deep, that develop normal to the margin in 500-1500 m water depth. Furrows are characterised by an aggradation/progradation pattern which leads to margin-parallel, northwestward migration of their axes through time. These structures, previously interpreted as turbidity current channels, display the distinctive seismic image and internal organisation of sediment drifts, constructed by the activity of bottom currents. Sediment drifts were initiated above a major Oligocene unconformity, and they developed within a Oligocene to Present megasequence of general progradation of the margin, whilst they are markedly absent from the underlying Late Cretaceous-Eocene aggradation megasequence. The presence of upslope migrating sediment waves, and the northwest migration of the sediment drifts indicate deposition by bottom current flowing upslope, under the influence of the Coriolis force. Such landwards-directed bottom currents on the slope probably represent coastal upwelling, which has been active along the west Africa margin throughout the Neogene.

  9. Time series of suspended-solids concentration, salinity, temperature, and total mercury concentration in San Francisco Bay during water year 1998

    USGS Publications Warehouse

    Ruhl, Catherine A.; Schoellhamer, David H.

    2001-01-01

    The transport and fate of suspended sediments are important factors in determining the transport and fate of constituents adsorbed on the sediments. For example, the concentration of suspended particulate chromium in the bay appears to be controlled primarily by sediment resuspension (Abu-Saba and Flegal, 1995). Concentrations of dissolved trace elements are greater in South Bay than elsewhere in San Francisco Bay, and bottom sediments are believed to be a significant source (Flegal et al., 1991). The sediments on the bay bottom provide habitat for benthic communities that can ingest these substances and introduce them into the food web (Luoma et al., 1985; Brown and Luoma, 1995, Luoma 1996). Bottom sediments also are a reservoir of nutrients that contribute to the maintenance of estuarine productivity (Hammond et al., 1985).

  10. Spatially quantitative seafloor habitat mapping: Example from the northern South Carolina inner continental shelf

    USGS Publications Warehouse

    Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.

    2004-01-01

    Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.

  11. Trawling-induced daily sediment resuspension in the flank of a Mediterranean submarine canyon

    NASA Astrophysics Data System (ADS)

    Martín, Jacobo; Puig, Pere; Palanques, Albert; Ribó, Marta

    2014-06-01

    Commercial bottom trawling is one of the anthropogenic activities causing the biggest impact on the seafloor due to its recurrence and global distribution. In particular, trawling has been proposed as a major driver of sediment dynamics at depths below the reach of storm waves, but the issue is at present poorly documented with direct observations. This paper analyses changes in water turbidity in a tributary valley of the La Fonera (=Palamós) submarine canyon, whose flanks are routinely exploited by a local trawling fleet down to depths of 800 m. A string of turbidimeters was deployed at 980 m water depth inside the tributary for two consecutive years, 2010-2011. The second year, an ADCP profiled the currents 80 m above the seafloor. The results illustrate that near-bottom water turbidity at the study site is heavily dominated, both in its magnitude and temporal patterns, by trawling-induced sediment resuspension at the fishing ground. Resuspended sediments are channelised along the tributary in the form of sediment gravity flows, being recorded only during working days and working hours of the trawling fleet. These sediment gravity flows generate turbid plumes that extend to at least 100 m above the bottom, reaching suspended sediment concentrations up to 236 mg l-1 close to the seafloor (5 m above bottom). A few hours after the end of daily trawling activities, water turbidity progressively decreases but resuspended particles remain in suspension for several hours, developing bottom and intermediate nepheloid layers that reach background levels ˜2 mg l-1 before trawling activities resume. The presence of these nepheloid layers was recorded in a CTD+turbidimeter transect conducted across the fishing ground a few hours after the end of a working day. These results highlight that deep bottom trawling can effectively replace natural processes as the main driving force of sediment resuspension on continental slope regions and generate increased near-bottom water turbidity that propagates from fishing grounds to wider and deeper areas via sediment gravity flows and nepheloid layer development.

  12. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  13. Characterization of bottom-sediment, water, and elutriate chemistry at selected stations at Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Broshears, R.E.

    1991-01-01

    To better-understand and predict the potential effect of dredging on water quality at Reelfoot Lake, chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water. Chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water collected at five stations in the lake during November 1988. Lake water was of the calcium magnesium bicarbonate type with an average dissolved-solids concentration of 120 milligrams per liter. Trace constituents were present in bottom sediments at concentrations representative of their average relative abundance in the earth?s crust. Elutriate waters prepared by mixing bottom sediment and lake water had suspended-solids concentrations as high as 2,000 milligrams per liter which exerted significant oxygen demand Trace constituents in the unfiltered elutriate waters were elevated with respect to lake water; elevated concentrations were attributable to the increased suspended-solids concentrations. Concentrations of total-recoverable copper, lead., and zinc in many elutriate waters exceeded U.S. Environmental Protection Agency?s water-quality criteria for the protection of freshwater aquatic life. The toxicity of elutriate waters, as measured by a 48-hour bioassay with Ceriodaphnia dubia, was low.

  14. Sediment characteristics and sedimentation rates in Lake Michie, Durham County, North Carolina, 1990-92

    USGS Publications Warehouse

    Weaver, J.C.

    1994-01-01

    A reservoir sedimentation study was conducted at 508-acre Lake Michie, a municipal water-supply reservoir in northeastern Durham County, North Carolina, during 1990-92. The effects of sedimentation in Lake Michie were investigated, and current and historical rates of sedimentation were evaluated. Particle-size distributions of lake-bottom sediment indicate that, overall, Lake Michie is rich in silt and clay. Nearly all sand is deposited in the upstream region of the lake, and its percentage in the sediment decreases to less than 2 percent in the lower half of the lake. The average specific weight of lake-bottom sediment in Lake Michie is 73.6 pounds per cubic foot. The dry-weight percentage of total organic carbon in lake-bottom sediment ranges from 1.1 to 3.8 percent. Corresponding carbon-nitrogen ratios range form 8.6 to 17.6. Correlation of the total organic carbon percentages with carbon-nitrogen ratios indicates that plant and leaf debris are the primary sources of organic material in Lake Michie. Sedimentation rates were computed using comparisons of bathymetric volumes. Comparing the current and previous bathymetric volumes, the net amount of sediment deposited (trapped) in Lake Michie during 1926-92 is estimated to be about 2,541 acre-feet or slightly more than 20 percent of the original storage volume computed in 1935. Currently (1992), the average sedimentation rate is 38 acre-feet per year, down from 45.1 acre-feet per year in 1935. To confirm the evidence that sedimentation rates have decreased at Lake Michie since its construction in 1926, sediment accretion rates were computed using radionuclide profiles of lake-bottom sediment. Sediment accretion rates estimated from radiochemical analyses of Cesium-137 and lead-210 and radionuclides in the lake-bottom sediment indicate that rates were higher in the lake?s early years prior to 1962. Estimated suspended-sediment yields for inflow and outflow sites during 1983-91 indicate a suspended-sediment trap efficiency of 89 percent. An overall trap efficiency for the period of 1983-91 was computed using the capacity-inflow ratio. The use of this ratio indicates that the trap efficiency for Lake Michie is 85 percent. However, the suspended-sediment trap efficiency indicates that the actual overall trap efficiency for Lake Michie was probably greater than 89 percent during this period.

  15. Sediment transport in the presence of large reef bottom roughness

    USGS Publications Warehouse

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Storlazzi, Curt; Symonds, Graham; Roelvink, Dano

    2017-01-01

    The presence of large bottom roughness, such as that formed by benthic organisms on coral reef flats, has important implications for the size, concentration, and transport of suspended sediment in coastal environments. A 3 week field study was conducted in approximately 1.5 m water depth on the reef flat at Ningaloo Reef, Western Australia, to quantify the cross-reef hydrodynamics and suspended sediment dynamics over the large bottom roughness (∼20–40 cm) at the site. A logarithmic mean current profile consistently developed above the height of the roughness; however, the flow was substantially reduced below the height of the roughness (canopy region). Shear velocities inferred from the logarithmic profile and Reynolds stresses measured at the top of the roughness, which are traditionally used in predictive sediment transport formulations, were similar but much larger than that required to suspend the relatively coarse sediment present at the bed. Importantly, these stresses did not represent the stresses imparted on the sediment measured in suspension and are therefore not relevant to the description of suspended sediment transport in systems with large bottom roughness. Estimates of the bed shear stresses that accounted for the reduced near-bed flow in the presence of large roughness vastly improved the relationship between the predicted and observed grain sizes that were in suspension. Thus, the impact of roughness, not only on the overlying flow but also on bed stresses, must be accounted for to accurately estimate suspended sediment transport in regions with large bottom roughness, a common feature of many shallow coastal ecosystems.

  16. Role of naturally occurring gas hydrates in sediment transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIver, R.D.

    1982-06-01

    Naturally occurring gas hydrates have the potential to store enormous volumes of both gas and water in semi-solid form in ocean-bottom sediments and then to release that gas and water when the hydrate's equilibrium condition are disturbed. Therefore, hydrates provide a potential mechanism for transporting large volumes of sediments. Under the combined low bottom-water temperatures and moderate hydrostatic pressures that exist over most of the continental slopes and all of the continental rises and abyssal plains, hydrocarbon gases at or near saturation in the interstitial waters of the near-bottom sediments will form hydrates. The gas can either be autochthonous, microbiallymore » produced gas, or allochthonous, catagenic gas from deeper sediments. Equilibrium conditions that stabilize hydrated sediments may be disturbed, for example, by continued sedimentation or by lowering of sea level. In either case, some of the solid gas-water matrix decomposes. Released gas and water volume exceeds the volume occupied by the hydrate, so the internal pressure rises - drastically if large volumes of hydrate are decomposed. Part of the once rigid sediment is converted to a gas- and water-rich, relatively low density mud. When the internal pressure, due to the presence of the compressed gas or to buoyancy, is sufficiently high, the overlying sediment may be lifted and/or breached, and the less dense, gas-cut mud may break through. Such hydrate-related phenomena can cause mud diapirs, mud volcanos, mud slides, or turbidite flows, depending on sediment configuration and bottom topography. 4 figures.« less

  17. Using ground-penetrating radar and sidescan sonar to compare lake bottom geology in New England

    NASA Astrophysics Data System (ADS)

    Nesbitt, I. M.; Campbell, S. W.; Arcone, S. A.; Smith, S. M.

    2017-12-01

    Post-Laurentide Ice Sheet erosion and re-deposition has had a significant influence on the geomorphology of New England. Anthropogenic activities such as forestry, farming, and construction of infrastructure such as dams and associated lake reservoirs, has further contributed to near surface changes. Unfortunately, these surface dynamics are difficult to constrain, both in space and time. One analog that can be used to estimate erosion and deposition, lake basin sedimentation, is typically derived from lake bottom sediment core samples. Reliance on core records assumes that derived sedimentation rates are representative of the broader watershed, despite being only a single point measurement. Geophysical surveys suggest that this assumption can be highly erroneous and unrepresentative of an entire lake basin. Herein, we conducted ground-penetrating radar (GPR) and side-scan sonar (SSS) surveys of multiple lakes in Maine, New Hampshire, and Vermont which are representative of different basin types to estimate sedimentation rates since Laurentide retreat. Subsequent age constraints from cores on multiple GPR-imaged horizons could be used to refine estimates of sedimentation rate change caused by evolving physical, biological, and chemical processes that control erosion, transport, and re-deposition. This presentation will provide a summary of GPR and SSS data collection methods, assumptions and limitations, structural and surficial interpretations, and key findings from multiple lake basins in New England. Results show that GPR and SSS are efficient, cost effective, and relatively accurate tools for helping to constrain lake erosion and deposition processes.

  18. Hydrologic and geochemical effects on oxygen uptake in bottom sediments of an effluent-dominated river

    USGS Publications Warehouse

    McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.

    1995-01-01

    More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.

  19. Effects of hurricanes Katrina and Rita on the chemistry of bottom sediments in Lake Pontchartrain, Louisiana, USA

    USGS Publications Warehouse

    Van Metre, P.C.; Horowitz, A.J.; Mahler, B.J.; Foreman, W.T.; Fuller, C.C.; Burkhardt, M.R.; Elrick, K.A.; Furlong, E.T.; Skrobialowski, S.C.; Smith, J.J.; Wilson, J.T.; Zaugg, S.D.

    2006-01-01

    The effects of Hurricanes Katrina and Rita and the subsequent unwatering of New Orleans, Louisiana, on the sediment chemistry of Lake Pontchartrain were evaluated by chemical analysis of samples of street mud and suspended and bottom sediments. The highest concentrations of urban-related elements and compounds (e.g., Pb, Zn, polycyclic aromatic hydrocarbons, and chlordane) in bottom sediments exceeded median concentrations in U.S. urban lakes and sediment-quality guidelines. The extent of the elevated concentrations was limited, however, to within a few hundred meters of the mouth of the 17th Street Canal, similar to results of historical assessments. Chemical and radionuclide analysis of pre- and post-Hurricane Rita samples indicates that remobilization of near-shore sediment by lake currents and storms is an ongoing process. The effects of Hurricanes Katrina and Rita on the sediment chemistry of Lake Pontchartrain are limited spatially and are most likely transitory. ?? 2006 American Chemical Society.

  20. Contamination of estuarine water, biota, and sediment by halogenated organic compounds: A field study

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Chiou, C.T.; Brinton, T.I.; Barber, L.B.; Demcheck, D.K.; Demas, C.R.

    1988-01-01

    Studies conducted in the vicinity of an industrial outfall in the Calcasieu River estuary, Louisiana, have shown that water, bottom and suspended sediment, and four different species of biota are contaminated with halogenated organic compounds (HOC) including haloarenes. A "salting-out" effect in the estuary moderately enhanced the partitioning tendency of the contaminants into biota and sediments. Contaminant concentrations in water, suspended sediments, and biota were found to be far below the values predicted on the basis of the assumption of phase equilibria with respect to concentrations in bottom sediment. Relative concentration factors of HOC between biota (catfish) and bottom sediment increased with increasing octanol/estuarine water partition coefficients (Kow*), maximizing at log Kow* of about 5, although these ratios were considerably less than equilibrium values. In contrast, contaminant concentrations in water, biota, and suspended sediments were much closer to equilibrium values. Bioconcentration factors of HOC determined on the basis of lipid content for four different biotic species correlated reasonably well with equilibrium triolein/water partition coefficients (Ktw).

  1. Watershed trend analysis and water-quality assessment using bottom-sediment cores from Cheney Reservoir, south-central Kansas

    USGS Publications Warehouse

    Pope, Larry M.

    1998-01-01

    An examination of Cheney Reservoir bottom sediment was conducted in August 1997 to describe long-term trends and document the occurrence of selected constituents at concentrations that may be detrimental to aquatic organisms. Average concentrations of total phosphorus in bottom-sediment cores ranged from 94 to 674 milligrams per kilogram and were statistically related to silt- and (or) clay-size particles. Results from selected sampling sites in Cheney Reservoir indicate an increasing trend in total phosphorus concentrations. This trend is probably of nonpoint-source origin and may be related to an increase in fertilizer sales in the area, which more than doubled between 1965 and 1996, and to livestock production. Few organochlorine compounds were detected in bottom-sediment samples from Cheney Reservoir. DDT, its degradation products DDD and DDE, and dieldrin had detectable concentrations in the seven samples that were analyzed. DDT and DDD were each detected in one sample at concentrations of 1.0 and 0.65 microgram per kilogram, respectively. By far, the most frequently detected organochlorine insecticide was DDE, which was detected in all seven samples, ranging in concentration from 0.31 to 1.3 micrograms per kilogram. A decreasing trend in DDE concentrations was evident in sediment-core data from one sampling site. Dieldrin was detected in one sample from each of two sampling sites at concentrations of 0.21 and 0.22 micrograms per kilogram. Polychlorinated biphenyls were not detected in any bottom-sediment sample analyzed. Selected organophosphate, chlorophenoxy-acid, triazine, and acetanilide pesticides were analyzed in 18 bottom-sediment samples. Of the 23 pesticides analyzed, only the acetanilide herbicide metolachlor was detected (in 22 percent of the samples). Seven bottom-sediment samples were analyzed for major metals and trace elements. The median and maximum concentrations of arsenic and chromium, the maximum concentration of copper, and all concentrations of nickel in the seven samples were in the range where adverse effects to aquatic organisms occasionally occur. No time trends in trace elements were discernable in the August 1997 data.

  2. Measurements of Two-Phase Suspended Sediment Transport in Breaking Waves Using Volumetric Three-Component Velocimetry

    NASA Astrophysics Data System (ADS)

    Ting, F. C. K.; LeClaire, P.

    2016-02-01

    Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was very high. These results suggest that vertical velocity or turbulent shear stress may be a better parameter for predicting sediment pick-up rate than turbulent kinetic energy. It was also found that splash-up vortices enhanced onshore transport relative to the condition when no vortex impinged on the bottom.

  3. Collection, processing, and interpretation of ground-penetrating radar data to determine sediment thickness at selected locations in Deep Creek Lake, Garrett County, Maryland, 2007

    USGS Publications Warehouse

    Banks, William S.L.; Johnson, Carole D.

    2011-01-01

    This investigation focused on selected regions of the study area, particularly in the coves where sediment accumulations were presumed to be thickest. GPR was the most useful tool for interpreting sediment thickness, especially in these shallow coves. The radar profiles were interpreted for two surfaces of interest-the water bottom, which was defined as the "2007 horizon," and the interface between Lake sediments and the original Lake bottom, which was defined as the "1925 horizon"-corresponding to the year the Lake was impounded. The ground-penetrating radar data were interpreted on the basis of characteristics of the reflectors. The sediments that had accumulated in the impounded Lake were characterized by laminated, parallel reflections, whereas the subsurface below the original Lake bottom was characterized by more discontinuous and chaotic reflections, often with diffractions indicating cobbles or boulders. The reflectors were picked manually along the water bottom and along the interface between the Lake sediments and the pre-Lake sediments. A simple graphic approach was used to convert traveltimes to depth through water and depth through saturated sediments using velocities of the soundwaves through the water and the saturated sediments. Nineteen cross sections were processed and interpreted in 9 coves around Deep Creek Lake, and the difference between the 2007 horizon and the 1925 horizon was examined. In most areas, GPR data indicate a layer of sediment between 1 and 7 feet thick. When multiple cross sections from a single cove were compared, the cross sections indicated that sediment thickness decreased toward the center of the Lake.

  4. Wind Induced Sediment Resuspension in a Microtidal Estuary

    NASA Technical Reports Server (NTRS)

    Booth, J. G.; Miller, R. L.; McKee, B. A.; Leathers, R. A.

    1999-01-01

    Bottom sediment resuspension frequency, duration and extent (% of bottom sediments affected) were characterized for the fifteen month period from September 1995 to January 1997 for the Barataria Basin, LA. An empirical model of sediment resuspension as a function of wind speed, direction, fetch and water depth was derived from wave theory. Water column turbidity was examined by processing remotely sensed radiance information from visible and near-IR AVHRR imagery. Based on model predictions, wind induced resuspension occurred during all seasons of this study. Seasonal characteristics for resuspension reveal that late fall, winter and early spring are the periods of most frequent and intense resuspension. Model predictions of the critical wind speed required to induce resuspension indicate that winds of 4 m/s (averaged over all wind directions resuspend approximately 50% of bottom sediments in the water bodies examined. Winds of this magnitude (4 m/s) occurred for 80% of the time during the late fall, winter and early spring and for approximately 30% of the time during the summer. More than 50% of the bottom sedimets are resuspended throughout the year, indicating the importance of resuspension as a process affecting sediment and biogeochemical fluxes in the Barataria Basin.

  5. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Betts, J. N.; Holland, H. D.

    1991-01-01

    Data for the burial efficiency of organic carbon with marine sediments have been compiled for 69 locations. The burial efficiency as here defined is the ratio of the quantity of organic carbon which is ultimately buried to that which reaches the sediment-water interface. As noted previously, the sedimentation rate exerts a dominant influence on the burial efficiency. The logarithm of the burial efficiency is linearly related to the logarithm of the sedimentation rate at low sedimentation rates. At high sedimentation rates the burial efficiency can exceed 50% and becomes nearly independent of the sedimentation rate. The residual of the burial efficiency after the effect of the sedimentation rate has been subtracted is a weak function of the O2 concentration in bottom waters. The scatter is sufficiently large, so that the effect of the O2 concentration in bottom waters on the burial efficiency of organic matter could be either negligible or a minor but significant part of the mechanism that controls the level of O2 in the atmosphere.

  6. The effect of the new Massachusetts Bay sewage outfall on the concentrations of metals and bacterial spores in nearby bottom and suspended sediments

    USGS Publications Warehouse

    Bothner, Michael H.; Casso, M.A.; Rendigs, R. R.; Lamothe, P.J.

    2002-01-01

    Since the new outfall for Boston's treated sewage effluent began operation on September 6, 2000, no change has been observed in concentrations of silver or Clostridium perfringens spores (an ecologically benign tracer of sewage), in bottom sediments at a site 2.5 km west of the outfall. In suspended sediment samples collected with a time-series sediment trap located 1.3 km south of the outfall, silver and C. perfringens spores increased by 38% and 103%, respectively, in post-outfall samples while chromium, copper, and zinc showed no change. All metal concentrations in sediments are <50% of warning levels established by the Massachusetts Water Resources Authority. An 11-year data set of bottom sediment characteristics collected three times per year prior to outfall startup provides perspective for the interpretation of post-outfall data. A greater than twofold increase in concentrations of sewage tracers (silver and C. perfringens) was observed in muddy sediments following the exceptional storm of December 11-16, 1992 that presumably moved contaminated inshore sediment offshore. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. A comparison of approaches for estimating bottom-sediment mass in large reservoirs

    USGS Publications Warehouse

    Juracek, Kyle E.

    2006-01-01

    Estimates of sediment and sediment-associated constituent loads and yields from drainage basins are necessary for the management of reservoir-basin systems to address important issues such as reservoir sedimentation and eutrophication. One method for the estimation of loads and yields requires a determination of the total mass of sediment deposited in a reservoir. This method involves a sediment volume-to-mass conversion using bulk-density information. A comparison of four computational approaches (partition, mean, midpoint, strategic) for using bulk-density information to estimate total bottom-sediment mass in four large reservoirs indicated that the differences among the approaches were not statistically significant. However, the lack of statistical significance may be a result of the small sample size. Compared to the partition approach, which was presumed to provide the most accurate estimates of bottom-sediment mass, the results achieved using the strategic, mean, and midpoint approaches differed by as much as ?4, ?20, and ?44 percent, respectively. It was concluded that the strategic approach may merit further investigation as a less time consuming and less costly alternative to the partition approach.

  8. Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.

    PubMed

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea.

  9. Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon

    PubMed Central

    Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel

    2014-01-01

    The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298

  10. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.

    1994-08-01

    Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.

  11. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions

    USGS Publications Warehouse

    Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.

    1994-01-01

    Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.

  12. A deterministic (non-stochastic) low frequency method for geoacoustic inversion.

    PubMed

    Tolstoy, A

    2010-06-01

    It is well known that multiple frequency sources are necessary for accurate geoacoustic inversion. This paper presents an inversion method which uses the low frequency (LF) spectrum only to estimate bottom properties even in the presence of expected errors in source location, phone depths, and ocean sound-speed profiles. Matched field processing (MFP) along a vertical array is used. The LF method first conducts an exhaustive search of the (five) parameter search space (sediment thickness, sound-speed at the top of the sediment layer, the sediment layer sound-speed gradient, the half-space sound-speed, and water depth) at 25 Hz and continues by retaining only the high MFP value parameter combinations. Next, frequency is slowly increased while again retaining only the high value combinations. At each stage of the process, only those parameter combinations which give high MFP values at all previous LF predictions are considered (an ever shrinking set). It is important to note that a complete search of each relevant parameter space seems to be necessary not only at multiple (sequential) frequencies but also at multiple ranges in order to eliminate sidelobes, i.e., false solutions. Even so, there are no mathematical guarantees that one final, unique "solution" will be found.

  13. Sedimentation and occurrence and trends of selected chemical constituents in bottom sediment of 10 small reservoirs, Eastern Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2004-01-01

    Many municipalities in Kansas rely on small reservoirs as a source of drinking water and for recreational activities. Because of their significance to the community, management of the reservoirs and the associated basins is important to protect the reservoirs from degradation. Effective reservoir management requires information about water quality, sedimentation, and sediment quality. A combination of bathymetric surveying and bottom-sediment coring during 2002 and 2003 was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 trace elements, 15 organochlorine compounds, and 1 radionuclide in the bottom sediment of 10 small reservoirs in eastern Kansas. Original reservoir water-storage capacities ranged from 23 to 5,845 acre-feet. The mostly agricultural reservoir basins range in area from 0.6 to 14 square miles. The mean annual net volume of deposited sediment, estimated separately for several of the reservoirs, ranged from about 43,600 to about 531,000 cubic feet. The estimated mean annual net mass of deposited sediment ranged from about 1,360,000 to about 23,300,000 pounds. The estimated mean annual net sediment yields from the reservoir basins ranged from about 964,000 to about 2,710,000 pounds per square mile. Compared to sediment yield estimates provided by a statewide study published in 1965, the estimates determined in this study differed substantially and were typically smaller. A statistically significant positive correlation was determined for the relation between sediment yield and mean annual precipitation. Nutrient concentrations in the bottom sediment varied substantially among the 10 reservoirs. Median total nitrogen concentrations ranged from 1,400 to 3,700 milligrams per kilogram. Median total phosphorus concentrations ranged from 550 to 1,300 milligrams per kilogram. A statistically significant positive trend (that is, nutrient concentration increased toward the top of the sediment core) was indicated in one reservoir for total nitrogen and in two reservoirs for total phosphorus. Also, a possible positive trend for total nitrogen was indicated in two other reservoirs. These trends in nutrient concentrations may be related to a statewide increase in fertilizer use. Alternatively, the trends may be indicative of diagenesis (that is, postdepositional changes in the sediment caused by various processes including decomposition). Nutrient loads and yields also varied substantially among the five reservoirs for which loads and yields were estimated. Estimated mean annual net loads of total nitrogen deposited in the bottom sediment ranged from 4,080 to 49,100 pounds. Estimated mean annual net loads of total phosphorus deposited in the bottom sediment ranged from 1,120 to 20,800 pounds. Estimated mean annual net yields of total nitrogen from the basins ranged from 2,210 to 6,800 pounds per square mile. Estimated mean annual net yields of total phosphorus from the basins ranged from 598 to 2,420 pounds per square mile. Compared to nonenforceable sediment-quality guidelines adopted by the U.S. Environmental Protection Agency, bottom-sediment concentrations of arsenic, chromium, copper, and nickel in samples from all 10 reservoirs typically exceeded the threshold-effects levels (TELs) but were less than the probable-effects levels (PELs). TELs represent the concentrations above which toxic biological effects occasionally occur in aquatic organisms, whereas PELs represent the concentrations above which toxic biological effects usually or frequently occur. Concentrations of cadmium, lead, and zinc exceeded the TELs but were less than the PELs in sediment samples from about one-half of the reservoirs and were less than the TELs in samples from the remaining reservoirs. Mercury concentrations were less than the TEL (information only available for four reservoirs). Silver was not detected in the bottom sediment fro

  14. Neodymium isotopes in authigenic phases, bottom waters and detrital sediments in the Gulf of Alaska and their implications for paleo-circulation reconstruction

    NASA Astrophysics Data System (ADS)

    Du, Jianghui; Haley, Brian A.; Mix, Alan C.

    2016-11-01

    The isotopic composition of neodymium (εNd) extracted from sedimentary Fe-Mn oxyhydroxide offers potential for reconstructing paleo-circulation, but its application depends on extraction methodology and the mechanisms that relate authigenic εNd to bottom water. Here we test methods to extract authigenic εNd from Gulf of Alaska (GOA) sediments and assess sources of leachate Nd, including potential contamination from trace dispersed volcanic ash. We show that one dominant phase is extracted via leaching of core-top sediments. Major and trace element geochemistry demonstrate that this phase is authigenic Fe-Mn oxyhydroxide. Contamination of leachate (authigenic) Nd from detrital sources is insignificant (<1%); our empirical results are consistent with established kinetic mineral dissolution rates and theory. Contamination of extracted εNd from leaching of volcanic ash is below analytical uncertainty. However, the εNd of core-top leachates in the GOA is consistently more radiogenic than bottom water. We infer that authigenic phases record pore water εNd, and the relationships of εNd among bottom waters, pore waters, authigenic phases and detrital sediments are primarily governed by the exposure time of bottom water to sea-floor sediments, rate of exchange across the sediment-water interface and the reactivity and composition of detrital sediments. We show that this conceptual model is applicable on the Pacific basin scale and provide a new framework to understand the role of authigenic phases in both modern and paleo-applications, including the use of authigenic εNd as a paleo-circulation tracer.

  15. Characterization of microbial populations across geochemical and lithological boundaries in urban lake sediments under environmental change in Minneapolis-St. Paul

    NASA Astrophysics Data System (ADS)

    Gilbertson, M.; Harrison, B. K.; Flood, B. E.; Myrbo, A.; Bailey, J. V.

    2013-12-01

    The characterization of microbial communities within urban lake sediments may offer a promising method to observe changes in lake geochemistry due to human impact. By mapping the abundances and diversity of microorganisms through the uppermost meter of sediment in three distinctive Minneapolis-St. Paul lakes (Brownie Lake and Twin Lake, both meromictic, and oligomictic Lake McCarrons) using 16S rRNA characterization, our aim was to observe changes in microbial populations across steep geochemical and lithological gradients. Lake McCarrons underwent a process of eutrophication and a shift to bottom water anoxia beginning around 1910 due mostly to agricultural run-off. This shift greatly increased the preservation potential of seasonal sedimentation and finely laminated varve accumulation. The onset of meromixis in Brownie Lake in ~1915 is abrupt and has been attributed to a sudden drop in water level. Twin Lake is perennially meromictic due to the topography of the watershed. The three lakes were sampled by collecting freeze cores in July, 2012 (McCarrons, Brownie) and February, 2013 (Twin) at the deepest locations beneath anoxic to hypoxic bottom waters. The cores were then subsampled with high resolution techniques at places of interest: within individual lamina, across mass flow deposits, and near the onset of laminae preservation (beginning of oxygen-depleted bottom waters). Terminal Restriction Fragment Length Polymorphism (T-RFLP) allows for comparison of the microbial assemblages throughout the sediment columns of each lake and from lake to lake, with a focus on the horizons mentioned previously. The microbial assemblages present in specific horizons are often introduced via sedimentation and are partially derived from community composition at the time of sedimentation. T-RFLP analyses are complemented by mineralogical and lithological descriptions. The lakes have each been subject to their own set of variables and inputs. Brownie Lake contains high levels of Fe and Mn (measured up to 78 and 6 mg/l in bottom waters, respectively, US EPA STORET). The ecology of McCarrons has been greatly disturbed most recently when the lake was targeted by a 2004 aluminum sulfate treatment to counteract high phosphorous levels. Twin Lake has mass flow deposits nearly 5 cm thick, similar to turbidites, likely caused by increased sedimentation from large housing developments on the lake shores. The microbial community in each of the lakes is impacted by these distinct parameters. This study examines variability in microbial community assemblages through time and space within these lake sediments. Changes seen in the ecology of the communities are related to changes in chemical and physical parameters, namely, shifts in lithology and sediment accumulation via the onset of meromixis. Freeze coring exceptionally allows super-high resolution subsampling techniques to identify differences across geochemical gradients and between individual seasonal laminae within each lake and from lake to lake.

  16. Near-bottom circulation and dispersion of sediment containing Alexandrium fundyense cysts in the Gulf of Maine during 2010-2011

    USGS Publications Warehouse

    Aretxabaleta, Alfredo L.; Butman, Bradford; Signell, Richard P.; Dalyander, P. Soupy; Sherwood, Christopher R.; Sheremet, Vitalii A.; McGillicuddy, Dennis J.

    2014-01-01

    The life cycle of Alexandrium fundyense in the Gulf of Maine includes a dormant cyst stage that spends the winter predominantly in the bottom sediment. Wave-current bottom stress caused by storms and tides induces resuspension of cyst-containing sediment during winter and spring. Resuspended sediment could be transported by water flow to different locations in the Gulf and the redistribution of sediment containing A. fundyense cysts could alter the spatial and temporal manifestation of its spring bloom. The present study evaluates model near-bottom flow during storms, when sediment resuspension and redistribution are most likely to occur, between October and May when A. fundyense cells are predominantly in cyst form. Simulated water column sediment (mud) concentrations from representative locations of the Gulf are used to initialize particle tracking simulations for the period October 2010–May 2011. Particles are tracked in full three-dimensional model solutions including a sinking velocity characteristic of cyst and aggregated mud settling (0.1 mm s−1). Although most of the material was redeposited near the source areas, small percentages of total resuspended sediment from some locations in the western (~4%) and eastern (2%) Maine shelf and the Bay of Fundy (1%) traveled distances longer than 100 km before resettling. The redistribution changed seasonally and was sensitive to the prescribed sinking rate. Estimates of the amount of cysts redistributed with the sediment were small compared to the inventory of cysts in the upper few centimeters of sediment but could potentially have more relevance immediately after deposition.

  17. Imaging Reservoir Siltation and Quaternary Stratigraphy Beneath the Mactaquac Headpond by Acoustic and Ground Penetrating Radar Sub-bottom Imaging

    NASA Astrophysics Data System (ADS)

    Grace, M.; Butler, K. E.; Peter, S.; Yamazaki, G.; Haralampides, K.

    2016-12-01

    The Mactaquac Hydroelectric Generating Station, located on the Saint John River in New Brunswick, Canada, is approaching the end of its life due to deterioration of the concrete structures. As part of an aquatic ecosystem study, designed to support a decision on the future of the dam, sediment in the headpond, extending 80 km upriver, is being examined. The focus of this sub-study lies in (i) mapping the thickness of sediments that have accumulated since inundation in 1968, and (ii) imaging the deeper glacial and post-glacial stratigraphy. Acoustic sub-bottom profiling surveys were completed during 2014 and 2015. An initial 3.5 kHz chirp sonar survey proved ineffective, lacking in both resolution and depth of the penetration. A follow-up survey employing a boomer-based "Seistec" sediment profiler provided better results, resolving sediment layers as thin as 12 cm, and yielding coherent reflections from the deeper Quaternary sediments. Post-inundation sediments in the lowermost 25 km of the headpond, between the dam and Bear Island, are interpreted to average 26 cm in thickness with the thickest deposits (up to 65 cm) in deep water areas overlying the pre-inundation riverbed west of Snowshoe Island, and south and east of Bear Island. A recent coring program confirmed the presence of silty sediment and showed good correlation with the Seistec thickness estimates. In the 15 km stretch upriver of Bear Island to Nackawic, the presence of gas in the uppermost sediments severely limits sub-bottom penetration and our ability to interpret sediment thicknesses. Profiles acquired in the uppermost 40 km reach of the headpond, extending to Woodstock, show a strong, positive water bottom reflection and little to no sub-bottom penetration, indicating the absence of soft post-inundation sediment. Deeper reflections observed within 5 km of the dam reveal a buried channel cut into glacial till, extending up to 20 m below the water bottom. Channel fill includes a finely laminated unit interpreted to be glaciolacustrine clay-silt and a possible esker - similar to stratigraphy found 20 - 30 km downriver at Fredericton. Future plans include a small scale survey in late summer, 2016 to evaluate the suitability of waterborne ground penetrating radar (GPR) profiling as an alternative to acoustic profiling in areas of gas-charged sediment.

  18. Sediment storage and severity of contamination in a shallow reservoir affected by historical lead and zinc mining

    USGS Publications Warehouse

    Juracek, K.E.

    2008-01-01

    A combination of sediment-thickness measurement and bottom-sediment coring was used to investigate sediment storage and severity of contamination in Empire Lake (Kansas), a shallow reservoir affected by historical Pb and Zn mining. Cd, Pb, and Zn concentrations in the contaminated bottom sediment typically exceeded baseline concentrations by at least an order of magnitude. Moreover, the concentrations of Cd, Pb, and Zn typically far exceeded probable-effects guidelines, which represent the concentrations above which toxic biological effects usually or frequently occur. Despite a pre-1954 decrease in sediment concentrations likely related to the end of major mining activity upstream by about 1920, concentrations have remained relatively stable and persistently greater than the probable-effects guidelines for at least the last 50 years. Cesium-137 evidence from sediment cores indicated that most of the bottom sediment in the reservoir was deposited prior to 1954. Thus, the ability of the reservoir to store the contaminated sediment has declined over time. Because of the limited storage capacity, Empire Lake likely is a net source of contaminated sediment during high-inflow periods. The contaminated sediment that passes through, or originates from, Empire Lake will be deposited in downstream environments likely as far as Grand Lake O' the Cherokees (Oklahoma). ?? 2007 Springer-Verlag.

  19. Application of Sub-Bottom Profiler to Study Riverbed Structure and Sediment Density

    NASA Astrophysics Data System (ADS)

    Rui, Wang; Changzheng, Li; Xiaofei, Yan

    2018-03-01

    In this pater, we present a study on the riverbed structure and sediment density in-situ test by using sub-bottom profiler. Compared with traditional direct observation methods, the sub-bottom profiler method based on sonar technology is non-contact, low-disturbance and high-efficient. We finish the investigation of several sections in Sanmenxia and Xiaolangdi reservoirs, which located on the main channel of lower reaches of Yellow River. Collected data show a detailed layered structure of the riverbed sediment which believed caused by sedimentary processes in different periods. Further more, we analyse the reflection coefficient of water-sediment interface and inverse the sediment density data from the raw wave record. The inversion method is based on the effective density fluid model and Kozeny-Carman formula. The comparison of the inversion results and sample tests shows that the in-situ test is reliable and useable.

  20. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.

    2016-04-01

    Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.

  1. Short-term environmental impact of clam dredging in coastal waters (south of Portugal): chemical disturbance and subsequent recovery of seabed.

    PubMed

    Falcão, M; Gaspar, M B; Caetano, M; Santos, M N; Vale, C

    2003-12-01

    The physical and chemical changes in sediment and near bottom water caused by clam dredging were examined during July and September 1999, at two locations Vilamoura (VL) and Armona (AR), south coast of Portugal. Sediment cores and near bottom water were collected simultaneously before dredging (control samples) and within short time intervals (min-h) after dredging. After dredging operations, microphytobenthos coming from the path were accumulated in the re-worked sediment (ridge). Chlorophyll a in superficial sediment increased from 1.2 microg x g(-1) before dredging to 1.7 microg x g(-1) after dredging and these higher values remained for a few hours. However, the expected increase of chlorophyll a in near bottom water due to re-suspension was not observed. After sediment disturbance an instantaneous sorption of phosphorus onto iron oxides occurred in the upper sediment layers (from 2 to 3 micromol x g(-1) before dredging to 4-5 micromol x g(-1) after dredging). A microcosm experiment showed that after sediment disturbance HPO(4)(2-) dissolved in pore water decreased from 40 to 10 microM being simultaneously sorbed onto iron oxides formed in the top layer of sediment. The ammonium, nitrates, organic nitrogen, phosphate and silicate dissolved in pore water decreased immediately after dredging activity and simultaneously an increase in near bottom water was sporadically observed. Generally, the re-establishment of seabed was reached within a short time (min-h), at both stations (VL and AR).

  2. Bottom-boundary-layer measurements on the continental shelf off the Ebro River, Spain

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Losada, M.A.; Medina, R.

    1990-01-01

    Measurements of currents, waves and light transmission obtained with an instrumented bottom tripod (GEOPROBE) were used in conjunction with a theoretical bottom-boundary-layer model for waves and currents to investigate sediment transport on the continental shelf south of the Ebro River Delta, Spain. The current data show that over a 48-day period during the fall of 1984, the average transport at 1 m above the seabed was alongshelf and slightly offshore toward the south-southwest at about 2 cm/s. A weak storm passed through the region during this period and caused elevated wave and current speeds near the bed. The bottom-boundary-layer model predicted correspondingly higher combined wave and current bottom shear velocities at this time, but the GEOPROBE optical data indicate that little to no resuspension occurred. This result suggests that the fine-grained bottom sediment, which has a clay component of 80%, behaves cohesively and is more difficult to resuspend than noncohesive materials of similar size. Model computations also indicate that noncohesive very fine sand in shallow water (20 m deep) was resuspended and transported mainly as bedload during this storm. Fine-grained materials in shallow water that are resuspended and transported as suspended load into deeper water probably account for the slight increase in sediment concentration at the GEOPROBE sensors during the waning stages of the storm. The bottom-boundary-layer data suggest that the belt of fine-grained bottom sediment that extends along the shelf toward the southwest is deposited during prolonged periods of low energy and southwestward bottom flow. This pattern is augmented by enhanced resuspension and transport toward the southwest during storms. ?? 1990.

  3. Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea

    USGS Publications Warehouse

    Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.

    2014-01-01

    We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.

  4. Estimates of Crustal Transmission Losses Using MLM Array Processing.

    DTIC Science & Technology

    1982-07-01

    boundary with a half space below, and with some form of reflection characteristic and/or loss mechanism. If acoustic energy , upon encountering the bottom...sea-sediment interface would probably be sufficient. However, sound energy does penetrate beneath the sea -2- floor and is both reflected and refracted...back to the water. In an active acoustical experiment, especially at longer ranges, a significant amount of tne received energy may come from waves

  5. Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change

    DTIC Science & Technology

    2006-08-01

    demonstrates symmetry of the methodology and capability to represent complex configurations of non -erodible cells. The bathymetric configuration (Figure...Army Engineer Rsearch and Development Center, Coastal and Hydraulics Laboratory. The upgrades chiefly concern capability to calculate sediment...hard bottom ( non -erodible bottom) to represent limestone and rocking coasts, as well as scour blankets at jetties, and (2) bottom avalanching to limit

  6. Hydrocarbon gases in Baikal bottom sediments: preliminary results of the Second international Class@Baikal cruise

    NASA Astrophysics Data System (ADS)

    Vidischeva, Olesya; Akhmanov, Grigorii; Khlystov, Oleg; Giliazetdinova, Dina

    2016-04-01

    In July 2015 the research cruise in the waters of Lake Baikal was carried out onboard RV "G.Yu. Vereshchagin". The expedition was organized by Lomonosov Moscow State University and Limnological Institute of Russian Academy of Sciences. The main purpose of the expedition was to study the modern sedimentation and natural geological processes on the bottom of Lake Baikal. One of the tasks of the cruise was to conduct gas-geochemical survey of bottom sediments. The samples of hydrocarbon gases were collected during the cruise. Subsequent study of the composition and origin of the sampled gas was carried out in the laboratories of Moscow State University. 708 samples from 61 bottom sampling stations were studied. Analyzed samples are from seven different areas located in the southern and central depressions of the lake: (1) "Goloustnoe" seepage area; (2) Bolshoy mud volcano; (3) Elovskiy Area; (4) "Krasny Yar" Seep; (5) "St. Petersburg" Seep; (6) Khuray deep-water depositional system; and (7) Kukuy Griva (Ridge) area. The results of molecular composition analysis indicate that hydrocarbon gases in bottom sediments from almost all sampling stations are represented mostly by pure methane. Ethane was detected only in some places within "Krasny Yar", "Goloustnoe" and "St. Petersburg" seepage areas. The highest concentrations of methane were registered in the sediments from the "Krasny Yar" area - 14 457 μl/l (station TTR-BL15-146G) - and from the "St. Petersburg" area - 13 684 μl/l (station TTR-BL15-125G). The sediments with high concentrations of gases were sampled from active fluid discharge areas, which also can be well distinguished on the seismic profiles. Gas hydrates were obtained in the areas of "Krasny Yar", "Goloustnoe", and "St. Petersburg" seeps and in the area of the Bolshoy mud volcano. Isotopic composition δ13C(CH4) was studied for 100 samples of hydrocarbon gases collected in areas with high methane concentration in bottom sediments. The average value is -53‰. Overall bottom sediments of the Baikal Lake are very saturated in biogenic shallow methane. However, some evidences of thermogenic methane contribution can be recorded in the areas of focused fluid flows from deeper strata (e.g. mud volcanoes, seepage sites, etc.). Scrupulous examination of gas composition data results in understanding of scope of activity of individual structure and rough estimation of thermogenic gas flow input.

  7. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    USGS Publications Warehouse

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  8. Factors influencing organic carbon preservation in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.

    1994-01-01

    The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the "pseudo-G" model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.

  9. Characteristics of Air Core and Surface Velocity for Water Flow in a Vortex Sediment-Extraction Chamber Measured by Using Photo Images and PTV Technique.

    NASA Astrophysics Data System (ADS)

    Yao, Hou Chang; Chyan Deng, Jan; Chao, Hsu Yu; Chih Yuan, Yang

    2017-04-01

    A vortex sediment-extraction chamber, consisted of cylindrical chamber, inflow system, bottom orifice and overflow weir, is used to separate sediment from sediment-laden water flow. A tangential inflow is introduced into a cylindrical chamber with a bottom orifice; thus, a strong vortex flow is produced there. Under actions of gravity and centrifugal force, heavier sediment particles are forced to move towards the bottom orifice, and relatively clear water flows over through the top overflow weir. The flow field in the cylindrical chamber consists of forced vortex and free vortex. When the bottom orifice is opened during the sediment-extraction process, an air core appears and changes with different settings. In this study, the air core and water surface velocity in the cylindrical chamber were measured by using a photo image process and particle tracking velocimetry (PTV), as well as numerically simulated by using a commercial software, Flow-3D.Laboratory experiments were conducted in a vortex chamber, having height of 130 cm and diameter of 48 cm. Five kinds of bottom orifice size from 1.0 cm to 3.0 cm and four kinds of inflow water discharge from 1,300cm3/s to 1,700 cm3/s were used while the inflow pipe of 3 cm in diameter was kept the same for all experiments. The characteristics of the air core and water surface velocity, and the inflow and outflow ratios under different experimental arrangements were observed and discussed so as to provide a better design and application for a vortex sediment-extraction chamber in the future.

  10. A primer on trace metal-sediment chemistry

    USGS Publications Warehouse

    Horowitz, Arthur J.

    1985-01-01

    In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic matter) and ways in which the metals are entrained by the sediments (such as adsorption, complexation, and within mineral lattices).

  11. High resolution model studies of transport of sedimentary material in the south-western Baltic

    NASA Astrophysics Data System (ADS)

    Seifert, Torsten; Fennel, Wolfgang; Kuhrts, Christiane

    2009-02-01

    The paper presents high resolution model simulations of transport, deposition and resuspension of sedimentary material in the south-western Baltic, based on an upgrade of the sediment transport model described in the work of Kuhrts et al. [Kuhrts, C., Fennel, W., Seifert, T., 2004. Model studies of transport of sedimentary material in the Western Baltic. Journal of Marine Systems 52, 167.]. In the western Baltic, a grid spacing of at least 1 nautical mile is required to resolve the shallow and narrow bathymetry and the associated current patterns. A series of experimental model simulations is carried out with forcing data for the year 1993, which include a sequence of storms in January. Compared to earlier model versions, a more detailed description of potential deposition areas can be provided. The study quantifies the influence of enhanced bottom roughness caused by biological structures, like mussels and worm holes, provides estimates of the regional erosion risks for fine grained sediments, and analyses scenarios of the settling and spreading of material at dumping sites. Although the effects of changed bottom roughness, as derived from more detailed, re-classified sea floor data, are relatively small, the sediment transport and deposition patterns are clearly affected by the variation of the sea bed properties.

  12. Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; McKee, Brent A.

    2004-01-01

    High concentrations of suspended particulate matter in coastal waters directly effect or govern numerous water column and benthic processes. The concentration of suspended sediments derived from bottom sediment resuspension or discharge of sediment-laden rivers is highly variable over a wide range of time and space scales. Although there has been considerable effort to use remotely sensed images to provide synoptic maps of suspended particulate matter, there are limited routine applications of this technology due in-part to the low spatial resolution, long revisit period, or cost of most remotely sensed data. In contrast, near daily coverage of medium-resolution data is available from the MODIS Terra instrument without charge from several data distribution gateways. Equally important, several display and processing programs are available that operate on low cost computers.

  13. Central San Francisco Bay suspended-sediment transport processes study and comparison of continuous and discrete measurements of suspended-solids concentrations

    USGS Publications Warehouse

    Schoellhamer, David H.

    1994-01-01

    Sediments are an important component of the San Francisco Bay estuarine system. Potentially toxic substances, such as metals and pesticides, adsorb to sediment particles. The sediments on the bottom of the Bay provide the habitat for benthic communities which can ingest these substances and introduce them into the food web. The bottom sediments are also a reservoir of nutrients. The transport and fate of suspended sediment is an important factor in determining the transport and fate of the constituents adsorbed on the sediment. Suspended sediments also limit light availability in the bay, which limits photosynthesis and primary production, and deposit in ports and shipping channels, which require dredging. Dredged materials are disposed in Central San Francisco Bay.

  14. Chemical quality of the Saw Mill River, Westchester County, New York, 1981-83

    USGS Publications Warehouse

    Rogers, R.J.

    1984-01-01

    Surface waters, bottom sediments and coatings formed on artificial substrates (ceramic tiles) were analyzed to evaluate the chemical quality of the Saw Mill River, New York. Heavy metals, nutrients, and organic contaminants were studied. Dissolved orthophosphate concentrations were highest in the lower third of the river. Dissolved manganese was the only metal to exceed U.S. Environmental Protection Agency water-quality criteria. Arsenic, cadmium, copper, lead, and zinc concentrations were highest in waters from the lowest 4 river miles. Concentrations of copper, lead, and zinc in bottom sediments from the lowest 3 river miles were greater than in upstream sediments. Concentrations of nine heavy metals were higher on tiles emplaced below river mile 3 than on tiles upstream. Few organic compounds were detected in the water column; none persisted at all sites. Chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were found in bottom sediments throughout the basin. PCB concentrations were highest in the lowest 6 river miles; the other organic compounds exhibited no spatial patterns. Polynuclear aromatic hydrocarbons were most abundant in bottom sediments from the lowest 2 river miles. Collectively the distribution of contaminants indicates that river quality deteriorates in the lower, more heavily urbanized reach. (USGS)

  15. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  16. Detection of Animal Viruses in Coastal Seawater and Sediments

    PubMed Central

    De Flora, Silvio; De Renzi, Giuseppe P.; Badolati, Giuseppe

    1975-01-01

    Animal viruses, predominantly enteroviruses, were detected in shallow waters at bottom depths and in clastic marine sediments. Viruses accumulated in sandy and slimy deposits of the sea bottom near the shore and could be easily released into water by means of simple mechanical shaking. Images PMID:170859

  17. Relationship between the lability of sediment-bound Cd and its bioaccumulation in edible oyster.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Chennuri, Kartheek; Bardhan, Pratirupa

    2015-11-15

    A linkage between Cd speciation in sediments and its bioaccumulation in edible oyster (Crassostrea sp.) from a tropical estuarine system was established. Bioaccumulation of Cd in edible oyster increased with the increasing lability and dissociation rate constants of Cd-sediment complexes in the bottom sediments. Total Cd concentration in sediment was not a good indicator of Cd-bioavailability. Increasing trace metal competition in sediments increased lability and bioavailability of Cd in the tropical estuarine sediment. Low thermodynamic stability and high bioavailability of Cd in the estuarine sediment were responsible for high bioaccumulation of Cd in edible oysters (3.2-12.2mgkg(-1)) even though the total concentration of Cd in the bottom sediment was low (0.17-0.49mgkg(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Reconstruction of sediment transport pathways in modern microtidal sand flat by multiple classification analysis

    NASA Astrophysics Data System (ADS)

    Yamashita, S.; Nakajo, T.; Naruse, H.

    2009-12-01

    In this study, we statistically classified the grain size distribution of the bottom surface sediment on a microtidal sand flat to analyze the depositional processes of the sediment. Multiple classification analysis revealed that two types of sediment populations exist in the bottom surface sediment. Then, we employed the sediment trend model developed by Gao and Collins (1992) for the estimation of sediment transport pathways. As a result, we found that statistical discrimination of the bottom surface sediment provides useful information for the sediment trend model while dealing with various types of sediment transport processes. The microtidal sand flat along the Kushida River estuary, Ise Bay, central Japan, was investigated, and 102 bottom surface sediment samples were obtained. Then, their grain size distribution patterns were measured by the settling tube method, and each grain size distribution parameter (mud and gravel contents, mean grain size, coefficient of variance (CV), skewness, kurtosis, 5, 25, 50, 75, and 95 percentile) was calculated. Here, CV is the normalized sorting value divided by the mean grain size. Two classical statistical methods—principal component analysis (PCA) and fuzzy cluster analysis—were applied. The results of PCA showed that the bottom surface sediment of the study area is mainly characterized by grain size (mean grain size and 5-95 percentile) and the CV value, indicating predominantly large absolute values of factor loadings in primal component (PC) 1. PC1 is interpreted as being indicative of the grain-size trend, in which a finer grain-size distribution indicates better size sorting. The frequency distribution of PC1 has a bimodal shape and suggests the existence of two types of sediment populations. Therefore, we applied fuzzy cluster analysis, the results of which revealed two groupings of the sediment (Cluster 1 and Cluster 2). Cluster 1 shows a lower value of PC1, indicating coarse and poorly sorted sediments. Cluster 1 sediments are distributed around the branched channel from Kushida River and show an expanding distribution from the river mouth toward the northeast direction. Cluster 2 shows a higher value of PC1, indicating fine and well-sorted sediments; this cluster is distributed in a distant area from the river mouth, including the offshore region. Therefore, Cluster 1 and Cluster 2 are interpreted as being deposited by fluvial and wave processes, respectively. Finally, on the basis of this distribution pattern, the sediment trend model was applied in areas dominated separately by fluvial and wave processes. Resultant sediment transport patterns showed good agreement with those obtained by field observations. The results of this study provide an important insight into the numerical models of sediment transport.

  19. Geoacoustic models of Coastal Bottom Strata at Jeongdongjin in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Han, Jooyoung

    2017-04-01

    Geoacoustic models provide submarine environmental data to predict sound transmission through submarine bottom layers of sedimentary strata and acoustic basement. This study reconstructed four geoacoustic models for sediments of 50 m thick at the Jeongdongjin area in the western continental margin of the East Sea. Bottom models were based on about 1100 line-km data of the high-resolution air-gun seismic and subbottom profiles (SBP) with sediment cores. The 4 piston cores were analyzed for reconstruction of the bottom and geoacoustic models in the study area, together with 2 long cores in the adjacent area. P-wave speed in the core sediment was measured by the pulse transmission technique, and the resonance frequency of piezoelectric transducers was maintained at 1 MHz. Measurements of 42 P-wave speeds and 41 attenuations were fulfilled in three core sediments. For actual modeling, the P-wave speeds of the models were compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of coastal bottom strata will be used for geoacoustic and underwater acoustic experiments reflecting vertical and lateral variability of geoacoustic properties in the Jeongdongjin area of the East Sea. Keywords: geoacosutic model, bottom model, P-wave speed, Jeongdongjin, East Sea Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  20. Sedimentation and Occurrence and Trends of Selected Chemical Constituents in Bottom Sediment, Empire Lake, Cherokee County, Kansas, 1905-2005

    USGS Publications Warehouse

    Juracek, Kyle E.

    2006-01-01

    For about 100 years (1850-1950), the Tri-State Mining District in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma was one of the primary sources of lead and zinc ore in the world. The mining activity in the Tri-State District has resulted in substantial historical and ongoing input of cadmium, lead, and zinc to the environment including Empire Lake in Cherokee County, southeast Kansas. The environmental contamination caused by the decades of mining activity resulted in southeast Cherokee County being listed on the U.S. Environmental Protection Agency's National Priority List as a superfund hazardous waste site in 1983. To provide some of the information needed to support efforts to restore the ecological health of Empire Lake, a 2-year study was begun by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service and the Kansas Department of Health and Environment. A combination of sediment-thickness mapping and bottom-sediment coring was used to investigate sediment deposition and the occurrence of cadmium, lead, zinc, and other selected constituents in the bottom sediment of Empire Lake. The total estimated volume and mass of bottom sediment in Empire Lake were 44 million cubic feet and 2,400 million pounds, respectively. Most of the bottom sediment was located in the main body and the Shoal Creek arm of the reservoir. Minimal sedimentation was evident in the Spring River arm of the reservoir. The total mass of cadmium, lead, and zinc in the bottom sediment of Empire Lake was estimated to be 78,000 pounds, 650,000 pounds, and 12 million pounds, respectively. In the bottom sediment of Empire Lake, cadmium concentrations ranged from 7.3 to 76 mg/kg (milligrams per kilogram) with an overall median concentration of 29 mg/kg. Compared to an estimated background concentration of 0.4 mg/kg, the historical mining activity increased the median cadmium concentration by about 7,200 percent. Lead concentrations ranged from 100 to 950 mg/kg with an overall median concentration of 270 mg/kg. Compared to an estimated background concentration of 33 mg/kg, the median lead concentration was increased by about 720 percent as a result of mining activities. The range in zinc concentrations was 1,300 to 13,000 mg/kg with an overall median concentration of 4,900 mg/kg. Compared to an estimated background concentration of 92 mg/kg, the median zinc concentration was increased by about 5,200 percent. Within Empire Lake, the largest sediment concentrations of cadmium, lead, and zinc were measured in the main body of the reservoir. Within the Spring River arm of the reservoir, increased concentrations in the downstream direction likely were the result of tributary inflow from Short Creek, which drains an area that has been substantially affected by historical lead and zinc mining. Compared to nonenforceable sediment-quality guidelines, all Empire Lake sediment samples (representing 21 coring sites) had cadmium concentrations that exceeded the probable-effects guideline (4.98 mg/kg), which represents the concentration above which toxic biological effects usually or frequently occur. With one exception, cadmium concentrations exceeded the probable-effects guideline by about 180 to about 1,400 percent. With one exception, all sediment samples had lead concentrations that exceeded the probable-effects guideline (128 mg/kg) by about 10 to about 640 percent. All sediment samples had zinc concentrations that exceeded the probable-effects guideline (459 mg/kg) by about 180 to about 2,700 percent. Overall, cadmium, lead, and zinc concentrations in the bottom sediment of Empire Lake have decreased over time following the end of lead and zinc mining in the area. However, the concentrations in the most recently deposited bottom sediment (determined for 4 of 21 coring sites) still exceeded the probable-effects guideline by about 440 to 640 percent for cadmium, about 40 to 80 percent for lead, and about 580

  1. Sediment Transforms Lake Michigan

    NASA Image and Video Library

    2011-01-11

    NASA image acquired December 17, 2010 In mid-December 2010, suspended sediments transformed the southern end of Lake Michigan. Ranging in color from brown to green, the sediment filled the surface waters along the southern coastline and formed a long, curving tendril extending toward the middle of the lake. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured these natural-color images on December 17, 2010 (top), and December 10, 2010 (bottom). Such sediment clouds are not uncommon in Lake Michigan, where winds influence lake circulation patterns. A scientificpaper published in 2007 described a model of the circulation, noting that while the suspended particles mostly arise from lake-bottom sediments along the western shoreline, they tend to accumulate on the eastern side. When northerly winds blow, two circulation gyres, rotating in opposite directions, transport sediment along the southern shoreline. As the northerly winds die down, the counterclockwise gyre predominates, and the smaller, clockwise gyre dissipates. Clear water—an apparent remnant of the small clockwise gyre—continues to interrupt the sediment plume. George Leshkevich, a researcher with the U.S. National Oceanic and Atmospheric Administration, explains that the wind-driven gyres erode lacustrine clay (very fine lakebed sediment) on the western shore before transporting it, along with re-suspended lake sediments, to the eastern shore. On the eastern side, the gyre encounters a shoreline bulge that pushes it toward the lake’s central southern basin, where it deposits the sediments. The sediment plume on December 17 followed a windy weather front in the region on December 16. NASA image courtesy MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Aqua - MODIS NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook To read more about this image go to: earthobservatory.nasa.gov/IOTD/view.php?id=48511

  2. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves

    USGS Publications Warehouse

    Harris, C.K.; Wiberg, P.L.

    2001-01-01

    A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.

  3. On contemporary sedimentation at the titanic survey area

    NASA Astrophysics Data System (ADS)

    Lukashin, V. N.

    2009-12-01

    The basic parameters of the sedimentation environment are considered: the Western Boundary Deep Current that transports sedimentary material and distributes it on the survey area; the nepheloid layer, its features, and the distribution of the concentrations and particulate standing crop in it; the distribution of the horizontal and vertical fluxes of the sedimentary material; and the bottom sediments and their absolute masses. The comparison of the vertical fluxes of the particulate matter and the absolute masses of the sediments showed that the contemporary fluxes of sedimentary material to the bottom provided the distribution of the absolute masses of the sediments in the survey area during the Holocene.

  4. Documentation of the U.S. Geological Survey Stress and Sediment Mobility Database

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.

    2012-01-01

    The U.S. Geological Survey Sea Floor Stress and Sediment Mobility Database contains estimates of bottom stress and sediment mobility for the U.S. continental shelf. This U.S. Geological Survey database provides information that is needed to characterize sea floor ecosystems and evaluate areas for human use. The estimates contained in the database are designed to spatially and seasonally resolve the general characteristics of bottom stress over the U.S. continental shelf and to estimate sea floor mobility by comparing critical stress thresholds based on observed sediment texture data to the modeled stress. This report describes the methods used to make the bottom stress and mobility estimates, statistics used to characterize stress and mobility, data validation procedures, and the metadata for each dataset and provides information on how to access the database online.

  5. Chemical data for bottom sediment in Mountain Creek Lake, Dallas, Texas, 1999-2000

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2002-01-01

    Mountain Creek Lake is a reservoir adjacent to the Naval Weapons Industrial Reserve Plant and the former Naval Air Station in Dallas, Texas. The U.S. Geological Survey began studies of water, sediment, and biota in the reservoir in 1994 after a Resource Conservation and Recovery Act Facility Investigation detected concentrations of organic chemicals on both facilities. Additional reservoir bottom sediment samples were collected during December 1999–January 2000 at the request of the Southern Division Naval Facilities Engineering Command to further define the occurrence and distribution of selected constituents and to supplement available data. The U.S. Geological Survey National Water Quality Laboratory analyzed bottom-sediment samples from 16 box cores and 5 gravity cores for major and trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, grain size, and cesium-137.

  6. STS-65 Earth observation of dust plumes from Rio Grande in Southern Bolivia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of dust plumes from the Rio Grande in Southern Bolivia. A series of dust plumes can be seen rising from sand banks in the Rio Grande of southern Bolivia, bottom right of this northeast-looking view. The Rio Grande brings sediment from the Andes (foothills visible in the foreground, bottom left) and flows across the flat country of the northern Chaco plain. During the low-flow season, sand banks of this sediment are exposed to northerly winds which often blow dust into the surrounding forest. One of the significances of the dust plumes is that dust acts as a source of nutrient for the local soils. This is the most impressive example of dust ever recorded on Shuttle photography from this river. Such plumes have been seen on photographs from four previous missions (STS-31, STS-47, STS-48, STS-51I) emanating from the Rio Grande. The plumes are regularly space because the sand is blown only from those reaches of th

  7. Enrichment and geochemical mobility of heavy metals in bottom sediment of the Hoedong reservoir, Korea and their source apportionment.

    PubMed

    Lee, Pyeong-Koo; Kang, Min-Ju; Yu, Soonyoung; Ko, Kyung-Seok; Ha, Kyoochul; Shin, Seong-Cheon; Park, Jung Han

    2017-10-01

    Physicochemical characteristics of bottom sediment in the Hoedong reservoir were studied to evaluate the effectiveness of the reservoir as traps for trace metals. Roadside soil, stream sediment and background soil were also studied for comparison. Sequential extractions were carried out, and lead isotopic compositions of each extraction were determined to apportion Pb sources. Besides, particle size distribution of roadside soil, and metal concentrations and Pb isotopes of each size group were determined to characterize metal contamination. In result, Zn and Cu were enriched in sediment through roadside soil. The data on metal partitioning implied that Zn posed potential hazards for water quality. Meanwhile, the noticeable reduction of the 206 Pb/ 207 Pb isotopic ratio in the acid-soluble fraction in the size group 200 μm - 2 mm of national roadside soil indicated that this size group was highly contaminated by automotive emission with precipitation of acid-soluble secondary minerals during evaporation. Based on the Pb isotopic ratios, the dry deposition of Asian dust (AD) and non-Asian dust (NAD) affected roadside soil, while the effects of AD and NAD on bottom sediment appeared to be low given the low metal concentrations in sediment. Metal concentrations and Pb isotopic compositions indicated that sediments were a mixture of background and roadside soil. Source apportionment calculations showed that the average proportion of traffic Pb in bottom and stream sediments was respectively 34 and 31% in non-residual fractions, and 26 and 28% in residual fraction. The residual fraction of sediments appeared to be as contaminated as the non-residual fractions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Thran, Amanda C.; Dutkiewicz, Adriana; Spence, Paul; Müller, R. Dietmar

    2018-05-01

    Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world's most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2 cm/s) than the rest of the global ocean (1.1 cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10-15 cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest of the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current's susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.

  9. Microplastics in Baltic bottom sediments: Quantification procedures and first results.

    PubMed

    Zobkov, M; Esiukova, E

    2017-01-30

    Microplastics in the marine environment are known as a global ecological problem but there are still no standardized analysis procedures for their quantification. The first breakthrough in this direction was the NOAA Laboratory Methods for quantifying synthetic particles in water and sediments, but fibers numbers have been found to be underestimated with this approach. We propose modifications for these methods that will allow us to analyze microplastics in bottom sediments, including small fibers. Addition of an internal standard to sediment samples and occasional empty runs are advised for analysis quality control. The microplastics extraction efficiency using the proposed modifications is 92±7%. Distribution of microplastics in bottom sediments of the Russian part of the Baltic Sea is presented. Microplastic particles were found in all of the samples with an average concentration of 34±10 items/kg DW and have the same order of magnitude as neighbor studies reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Survey of Lake Ontario bottom sediment off Rochester, New York, to define the extent of jettisoned World War II material and its potential for sediment contamination

    USGS Publications Warehouse

    Kennedy, Gregory; Kappel, William M.

    2000-01-01

    Military-type mat??riel was recovered from the bottom of Lake Ontario near Rochester, N.Y., during bottom-trawl, fish-stock surveys at depths of 75 to 180 feet each year from 1978 through 1996. The recovered mat??riel included many shell-detonator nose cones (2 inches in diameter by about 3.5 inches long); several electronic components; one corroded box of detonators; a corrugated container of mercury-filled capsules; and corroded batteries. Most of the recovered mat??riel has been identified as defective components of shell detonators (proximity-fuze assemblies) that were jettisoned in the lake to protect them from discovery during World War II. Side-scan SONAR, metal-detector, and ROV (remotely-operated-vehicle) surveys found no evidence of any large piles of mat??riel containing potentially hazardous, toxic, or polluting materials within the 17-square-mile study site. Many scattered magnetic anomalies were detected in this area, but chemical analysis of bottom sediment and of zebra- and quagga-mussel (Dreissena spp.) tissue indicate that the concentrations of mercury and other heavy metals are within the previously documented ranges for Lake Ontario sediment. The failure of ROV videos and of SCUBA-diver surveys and probes of the lake bottom to locate any debris indicates that most, if not all, of the debris is scattered and buried under a layer of fine-grained sediment and, possibly, mussels.

  11. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1992-93

    USGS Publications Warehouse

    Tadayon, Saeid

    1995-01-01

    Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.

  12. A 22,000 year record of changing redox conditions from the Peruvian Oxygen Minimum Zone (OMZ): benthic foraminifera approach

    NASA Astrophysics Data System (ADS)

    Erdem, Z.; Schönfeld, J.; Glock, N.

    2015-12-01

    Benthic foraminifera have been used as proxies for the prevailing conditions at the sediment-water interface. Their distribution patterns are thought to facilitate reconstruction of past environmental conditions. Variations of bottom water oxygenation can be traced by the downcore distribution of benthic foraminifera and some of their morphological characters. Being one of the strongest and most pronounced OMZs in today's world oceans, the Peruvian OMZ is a key area to study such variations in relation with changing climate. Spatial changes or an extension of the OMZ through time and space are investigated using sediment cores from the lower OMZ boundary. We focus on time intervals Late Holocene, Early Holocene, Bølling Allerød, Heinrich-Stadial 1 and Last Glacial Maximum (LGM) to investigate changes in bottom-water oxygen and redox conditions. The recent distributions of benthic foraminiferal assemblages provide background data for an interpretation of the past conditions. Living benthic foraminiferal faunas from the Peruvian margin are structured with the prevailing bottom-water oxygen concentrations today (Mallon et al., 2012). Downcore distribution of benthic foraminiferal assemblages showed fluctuations in the abundance of the indicator species depicting variations and a decreasing trend in bottom water oxygen conditions since the LGM. In addition, changes in bottom-water oxygen and nitrate concentrations are reconstructed for the same time intervals by the pore density in tests of Planulina limbata and Bolivina spissa (Glock et al., 2011), respectively. The pore densities also indicate a trend of higher oxygen and nitrate concentrations in the LGM compared to the Holocene. Combination of both proxies provide information on past bottom-water conditions and changes of oxygen concentrations for the Peruvian margin. Glock et al., 2011: Environmental influences on the pore density of Bolivina spissa (Cushman), Journal of Foraminiferal Research, v. 41, no. 1, p. 22-32. Mallon et al., 2012: The response of benthic foraminifera to low-oxygen conditions of the Peruvian oxygen minimum zone, in ANOXIA, pp.305-322.

  13. Transfer of radionuclides from high polluted bottom sediments to marine organisms through benthic food chain in post Fukushima period

    NASA Astrophysics Data System (ADS)

    Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli

    2015-04-01

    A catastrophic earthquake and tsunami occurred on March 11, 2011 and severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) that resulted in an uncontrolled release of radioactivity into air and ocean. Around 80% of the radioactivity released due to the FDNPP accident in March-April 2011 was either directly discharged into the ocean or deposited onto the ocean surface from the atmosphere. A large amount of long-lived radionuclides (mainly Cs-137) were released into the environment. The concentration of radionuclides in the ocean reached a maximum in mid-April of 2011, and then gradually decreased. From 2011 the concentration of Cs-137 in water essentially fell except the area around the FDNPP where leaks of contaminated water are continued. However, in the bottom sediment high concentrations of Cs-137 were found in the first months after the accident and slowly decreased with time. Therefore, it should be expected that a time delay is found of sediment-bound radionuclides in marine organisms. For the modeling of radionuclide transfer from highly polluted bottom sediments to marine organisms the dynamical food chain model BURN-POSEIDON (Heling et al, 2002; Maderich et al., 2014) was extended. In this model marine organisms are grouped into a limited number of classes based on their trophic level and type of species. These include: phytoplankton, zooplankton, fishes (two types: piscivorous and non-piscivorous), crustaceans, and molluscs for pelagic food chain and bottom sediment invertebrates, demersal fishes and bottom predators for benthic food chain and whole water column predators feeding by pelagial and benthic fishes. Bottom invertebrates consume organic parts of bottom sediments with adsorbed radionuclides which then migrate through the food chain. All organisms take radionuclides directly from water as well as via food. In fishes where radioactivity is not homogeneously distributed over all tissues of the organism, it is assumed that radionuclide accumulates in a specific tissue called target tissue. This tissue (bone, flesh, stomach, and organs) controls the overall elimination rate of the nuclide in the organism. The model prediction for the coastal area around the FDNPP agree well with observations. In addition the effects from the Chernobyl accident on the Baltic Sea are modelled and these results also are in good agreement with available data. These results demonstrate the importance of the benthic food chain in long-term transfer of radionuclides from high polluted bottom sediments to the marine organisms. The developed model can be applied for different regions of the World Ocean.

  14. River bottom sediment from the Vistula as matrix of candidate for a new reference material.

    PubMed

    Kiełbasa, Anna; Buszewski, Bogusław

    2017-08-01

    Bottom sediments are very important in aquatic ecosystems. The sediments accumulate heavy metals and compounds belonging to the group of persistent organic pollutants. The accelerated solvent extraction (ASE) was used for extraction of 16 compounds from PAH group from bottom sediment of Vistula. For the matrix of candidate of a new reference material, moisture content, particle size, loss on ignition, pH, and total organic carbon were determined. A gas chromatograph with a selective mass detector (GC/MS) was used for the final analysis. The obtained recoveries were from 86% (SD=6.9) for anthracene to 119% (SD=5.4) for dibenzo(ah)anthracene. For the candidate for a new reference material, homogeneity and analytes content were determined using a validated method. The results are a very important part of the development and certification of a new reference materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Life of a Sponge in a Sandy Lagoon.

    PubMed

    Ilan, M; Abelson, A

    1995-12-01

    Infaunal soft-bottom invertebrates benefit from the presence of sediment, but sedimentation is potentially harmful for hard-bottom dwellers. Most sponges live on hard bottom, but on coral reefs in the Red Sea, the species Biemna ehrenbergi (Keller, 1889) is found exclusively in soft-bottom lagoons, usually in the shallowest part. This location is a sink environment, which increases the deposition of particulate organic matter. Most of the sponge body is covered by sediment, but the chimney-like siphons protrude from the sediment surface. The sponge is attached to the buried beach-rock, which reduces the risk of dislodgment during storms. Dye injected above and into the sediment revealed, for the first time, a sponge pumping interstitial water (rich with particles and nutrients) into its aquiferous system. Visual examination of plastic replicas of the aquiferous system and electron microscopical analysis of sponge tissue revealed that the transcellular ostia are mostly located on the buried surface of the sponge. The oscula, however, are located on top of the siphons; their elevated position and their ability to close combine to prevent the filtering system outflow from clogging. The transcellular ostia presumably remain open due to cellular mobility. The sponge maintains a large population of bacteriocytes, which contains bacteria of several different species. Some of these bacteria disintegrate, and may be consumed by the sponge.

  16. Grounding of the Bahia Paraiso at Arthur Harbor, Antarctica. 1. Distribution and fate of oil spill related hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennicutt, M.C. II; Sweet, S.T.; Fraser, W.R.

    1991-03-01

    In January to March 1989 water, organisms, and sediments within a 2-mile radius of Arthur Harbor were contaminated with an estimated 600,000 L of petroleum spilled by the Bahia Paraiso. All components of the ecosystem were contaminated to varying degrees during the spill, including birds, limpets, macroalgae, clams, bottom-feeding fish, and sediments. The high-energy environment, the relatively small volume of material released, and the volatility of the released product all contributed to limiting toxic effects in time and space. The most effective removal processes were evaporation, dilution, winds, and currents. Sedimentation, biological uptake, microbial oxidation, and photooxidation accounted for removalmore » of only a minor portion of the spill. One year after the spill several areas still exhibited contamination. Subtidal sediments and the more distant intertidal locations were devoid of detectable PAH contaminants whereas sediments near the docking facility at Palmer Station continued to reflect localized nonspill-related activities in the area. Arthur Harbor and adjacent areas continue to be chronically exposed to low-level petroleum contamination emanating from the Bahia Paraiso.« less

  17. Instability of bottom-water redox conditions during accumulation of Quaternary sediment in the Japan Sea

    USGS Publications Warehouse

    Piper, D.Z.; Isaacs, C.M.

    1996-01-01

    The concentrations of Cd, Cr, Cu, Mo, Ni, Sb, U, V, and Zn were measured in early Quaternary sediment (1.32 to 1.08 Ma) from the Oki Ridge in the Japan Sea. The elements were partitioned between a detrital fraction, composed of terrigenous and volcaniclastic aluminosilicate debris, and a marine fraction, composed of biogenic and hydrogenous debris derived from seawater. The most important factors controlling minor-element accumulation rates in the marine fraction were (1) primary productivity in the photic zone, which largely controlled the flux of particulate organic-matter-bound minor elements settling through the water column and onto the seafloor, and (2) bottom-water redox, which determined the suite of elements that accumulated directly from seawater. This marine fraction of minor elements on Oki Ridge recorded six periods of high minor-element abundance. Assuming a constant bulk sediment accumulation rate, each period lasted roughly 5,000 to 10,000 years with a 41,000-year cycle. Accumulation rates of individual elements such as Cd, Mo, and U suggest sulfate-reducing conditions were established in the bottom water during the 10,000-year periods; accumulation rates of Cr and V during the intervening periods are indicative of less reducing, denitrifying conditions. Interelement ratios, for example, Cu:Mo, V:Cr, and Sb:Mo, further reflect bottom-water instability, such that bottom-water redox actually varied from sulfate reducing to denitrifying during the periods of highest minor-element accumulation rates; it varied from denitrifying to oxidizing during the intervening periods. Sediment lithology supports these interpretations of the minor-element distributions; the sediment is finely laminated for several of the periods represented by Cd, Mo, and U maxima and weakly laminated to bioturbated for the intervening periods. The geochemistry of this sediment demonstrates the unambiguous signal of Mo, principally, but of several other minor elements as well in recording sulfate-reducing conditions in bottom water. The forcing function that altered their accumulation, that is, that altered primary productivity and bottom water redox conditions, is problematic. Currently held opinion suggests that O2 depletion was most strongly developed during glacial advances. Low sea level during such times is interpreted to have enhanced primary productivity and restricted bottom-water advection.

  18. Enhanced particle fluxes and heterotrophic bacterial activities in Gulf of Mexico bottom waters following storm-induced sediment resuspension

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Dike, C.; Asper, V.; Montoya, J.; Battles, J.; D`souza, N.; Passow, U.; Diercks, A.; Esch, M.; Joye, S.; Dewald, C.; Arnosti, C.

    2016-07-01

    Bottom nepheloid layers (BNLs) in the deep sea transport and remobilize considerable amounts of particulate matter, enhancing microbial cycling of organic matter in cold, deep water environments. We measured bacterial abundance, bacterial protein production, and activities of hydrolytic enzymes within and above a BNL that formed in the deep Mississippi Canyon, northern Gulf of Mexico, shortly after Hurricane Isaac had passed over the study area in late August 2012. The BNL was detected via beam attenuation in CTD casts over an area of at least 3.5 km2, extending up to 200 m above the seafloor at a water depth of 1500 m. A large fraction of the suspended matter in the BNL consisted of resuspended sediments, as indicated by high levels of lithogenic material collected in near-bottom sediment traps shortly before the start of our sampling campaign. Observations of suspended particle abundance and sizes throughout the water column, using a combined camera-CTD system (marine snow camera, MSC), revealed the presence of macroaggregates (>1 mm in diameter) within the BNL, indicating resuspension of canyon sediments. A distinct bacterial response to enhanced particle concentrations within the BNL was evident from the observation that the highest enzymatic activities (peptidase, β-glucosidase) and protein production (3H-leucine incorporation) were found within the most particle rich sections of the BNL. To investigate the effects of enhanced particle concentrations on bacterial activities in deep BNLs more directly, we conducted laboratory experiments with roller bottles filled with bottom water and amended with experimentally resuspended sediments from the study area. Macroaggregates formed within 1 day from resuspended sediments; by day 4 of the incubation bacterial cell numbers in treatments with resuspended sediments were more than twice as high as in those lacking sediment suspensions. Cell-specific enzymatic activities were also generally higher in the sediment-amended compared to the unamended treatments. The broader range and higher activities of polysaccharide hydrolases in the presence of resuspended sediments compared to the unamended water reflected enzymatic capabilities typical for benthic bacteria. Our data suggest that the formation of BNLs in the deep Gulf of Mexico can lead to transport of sedimentary organic matter into bottom waters, stimulating bacterial food web interactions. Such storm-induced resuspension may represent a possible mechanism for the redistribution of sedimented oil-fallout from the Deepwater Horizon spill in 2010.

  19. Sediment deposition and occurrence of selected nutrients, other chemical constituents, and diatoms in bottom sediment, Perry Lake, northeast Kansas, 1969-2001

    USGS Publications Warehouse

    Juracek, Kyle E.

    2003-01-01

    A combination of bathymetric surveying and bottom-sediment coring was used to investigate sediment deposition and the occurrence of selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 26 metals and trace elements, 15 organochlorine compounds, 1 radionuclide, and diatoms in bottom sediment of Perry Lake, northeast Kansas. The total estimated volume and mass of bottom sediment deposited from 1969 through 2001 in the original conservation-pool area of the lake was 2,470 million cubic feet (56,700 acre-feet) and 97,200 million pounds (44,100 million kilograms), respectively. The estimated sediment volume occupied about 23 percent of the original conservation-pool, water-storage capacity of the lake. Mean annual net sediment deposition since 1969 was estimated to be 3,040 million pounds (1,379 million kilograms). Mean annual sediment yield from the Perry Lake Basin was estimated to be 2,740,000 pounds per square mile (4,798 kilograms per hectare). The estimated mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of Perry Lake were 7,610,000 pounds per year (3,450,000 kilograms per year) and 3,350,000 pounds per year (1,520,000 kilograms per year), respectively. The estimated mean annual yields of total nitrogen and total phosphorus from the Perry Lake Basin were 6,850 pounds per square mile per year (12.0 kilograms per hectare per year) and 3,020 pounds per square mile per year (5.29 kilograms per hectare per year), respectively. A statistically significant positive trend for total nitrogen deposition in the bottom sediment of Perry Lake was indicated. However, the trend may be due solely to analytical variance. No statistically significant trend for total phosphorus deposition was indicated. Overall, the transport and deposition of these constituents have been relatively uniform throughout the history of Perry Lake. On the basis of nonenforceable sediment-quality guidelines established by the U.S. Environmental Protection Agency, concentrations of arsenic, chromium, copper, and nickel in the bottom sediment of Perry Lake typically exceeded the threshold-effects levels, which represent the concentrations above which toxic biological effects occasionally occur. Most nickel concentrations also exceeded the probable-effects level, which represents the concentration above which toxic biological effects usually or frequently occur. Sediment concentrations of metals and trace elements were relatively uniform over time. Statistically significant positive depositional trends for arsenic and manganese and statistically significant negative depositional trends for beryllium, chromium, titanium, and vanadium were indicated. However, the trends may be due solely to analytical variance. Organochlorine compounds either were not detected or were detected at concentrations less than the threshold-effects levels. Evidence of a negative depositional trend for DDE (degradation product of DDT) was consistent with the history of DDT use. Other organochlorine compounds detected were DDD and dieldrin. Diatom occurrence in the bottom sediment of Perry Lake was dominated by species that are indicators of eutrophic (nutrient-rich) conditions. Thus, it was concluded that eutrophic conditions have existed during much of the history of Perry Lake. However, an increase in the relative percentage abundance of the oligotrophic (nutrient-poor) species, combined with the significant positive depositional trends for two oligotrophic species (Aulacoseira islandica and Cyclotella radiosa) and the significant negative depositional trend for one eutrophic species (Stephanodiscus niagarae), indicated that conditions in Perry Lake may have become less eutrophic in recent years. Notable changes in human activity within the basin included a substantial decrease in alfalfa production and a substantial increase in soybean production from 1965 to 2000. These and other changes in human activi

  20. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    NASA Astrophysics Data System (ADS)

    El-Tahawy, M. S.; Farouk, M. A.; Ibrahiem, N. M.; El-Mongey, S. A. M.

    1994-07-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238U series, 232Th series and 40K did not exceed 16.0, 15.5 and 500.0 Bq kg-1 dry weight for sediments. The activity concentration of 238U series and 40K did not exceed 0.6 and 18.0 Bq 1-1 for stream water.

  1. Gas Hydrate and Acoustically Laminated Sediments: Potential Environmental Cause of Anomalously Low Acoustic Bottom Loss in Deep-Ocean Sediments

    DTIC Science & Technology

    1990-02-09

    temperatures at which hydrates are stable, gas produced in deep-ocean, near -surface sediment or rising into it from below, will be transformed into gas...seafloor. When water becomes heated naturally at ridge plumes and elsewhere, it rises and is further replaced by polar-water inflow. In the North Atlantic...Bottom of HSZ1200 N j Permafrost [ / Methane hydrate-stability zone Fig. 8 - Cross section through 10 near -shore wells from the north slope of Alaska

  2. Large sand waves on the Atlantic Outer Continental Shelf around Wilmington Canyon, off Eastern United States

    USGS Publications Warehouse

    Knebel, H.J.; Folger, D.W.

    1976-01-01

    New seismic-reflection data show that large sand waves near the head of Wilmington Canyon on the Atlantic Outer Continental Shelf have a spacing of 100-650 m and a relief of 2-9 m. The bedforms trend northwest and are asymmetrical, the steeper slopes being toward the south or west. Vibracore sediments indicate that the waves apparently have formed on a substrate of relict nearshore sediments. Although the age of the original bedforms is unknown, the asymmetry is consistent with the dominant westerly to southerly drift in this area which has been determined by other methods; the asymmetry, therefore, is probably modern. Observations in the sand-wave area from a submersible during August 1975, revealed weak bottom currents, sediment bioturbation, unrippled microtopography, and lack of scour. Thus, the asymmetry may be maintained by periodic water motion, possibly associated with storms or perhaps with flow in the canyon head. ?? 1976.

  3. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    USGS Publications Warehouse

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  4. 137Cs and plutonium isotopes accumulation/retention in bottom sediments and soil in Lithuania: A case study of the activity concentration of anthropogenic radionuclides and their provenance before the start of operation of the Belarusian Nuclear Power Plant (NPP).

    PubMed

    Marčiulionienė, D; Lukšienė, B; Montvydienė, D; Jefanova, O; Mažeika, J; Taraškevičius, R; Stakėnienė, R; Petrošius, R; Maceika, E; Tarasiuk, N; Žukauskaitė, Z; Kazakevičiūtė, L; Volkova, M

    2017-11-01

    Knowledge of the background activity concentrations of anthropogenic radionuclides before the start of operations of the new nuclear facilities in Belarus is of great value worldwide. Inland water bodies in Lithuania (specifically the Neris River, the Nemunas River and the Curonian Lagoon) are near the site of the Belarusian NPP under construction and, for this reason, sediments and flooded soils from these sensitive areas were analysed for radiocesium and plutonium isotopes (macrophytes were analysed only for 137 Cs) in 2011-2012. The 137 Cs and 239+240 Pu activity concentrations in bottom sediments from the Nemunas River, sampled in 1995-1996 and re-calculated to the year 2016, were compared with those of 2011-2012. The obtained activity of 137 Cs in bottom sediments of the Nemunas River and Curonian Lagoon varied from 1 Bq/kg to 47.0 Bq/kg. The activity of 137 Cs in the tested soils ranged from 5.3 B g/kg to 32.9 Bq/kg. The 239+240 Pu activity in bottom sediments of the studied sampling sites varied between 0.016 and 0.34 Bq/kg and in flooded soils from 0.064 to 0.55 Bq/kg. The 238 Pu activity values were very low or lower than the detection limit. The activity of 137 Cs in macrophytes varied from values lower than the detection limit to 6 Bq/kg. A strong positive linear correlation for bottom sediments was calculated between: 239+240 Pu and total organic carbon (TOC), r = 0.86, p-value 0.01; 239+240 Pu and silt, r = 0.80, p-value 0.029; 137 Cs and silt, r = 0.78, p-value 0.04; and 137 Cs and TOC, r = 0.85, p-value 0.015. The similar peculiarities of 137 Cs and 239+240 Pu accumulation in bottom sediments and flooded soil allow us to assume that 137 Cs can be used as a tracer for 239+240 Pu in the initial stage of searching for radionuclide accumulation zones. A remaining impact of the Chernobyl fallout in average comprised: in the Lower Nemunas River and Curonian Lagoon sediments - 51%, in the Middle Nemunas River -90% and in the floodplains of the Nemunas River - 59%, while the provenance of plutonium in studied bottom sediments and flooded soil was the global fallout. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bottom currents and sediment waves on a shallow carbonate shelf, Northern Carnarvon Basin, Australia

    NASA Astrophysics Data System (ADS)

    Belde, Johannes; Reuning, Lars; Back, Stefan

    2017-04-01

    The modern seafloor of the Australian Northwest Shelf between Exmouth and Dampier was analyzed for large scale sedimentary bedforms on 3D seismic reflection data. The Carnarvon MegaSurvey of Petroleum Geo-Services (PGS), a merged dataset of multiple industrial 3D seismic reflection surveys with a total size of 49,717 km2, offers an extensive view of the continental shelf, slope and rise of the Northern Carnarvon Basin. Over the shelf two fields of large scale sediment waves were observed in water depths between 55-130 m, where the seafloor may be influenced by different processes including internal waves, tides and storms. Based on the dimensions and orientations of the sediment waves the dominant direction and approximate strength of local bottom currents could be estimated. Information on local sediment grain-size distribution was provided by the auSEABED database allowing a classification of the observed sediment waves into sand- or mudwaves. The first sediment wave field is positioned northwest of the Montebello Islands where the shelf is comparatively narrow and local sediment is mainly sand-sized. It most likely formed by increased bottom currents induced by the diversion of tidal flows around the islands. The second sediment wave field is located north of the Serrurier and Bessieres Islands within a local seafloor depression. Local sediments are poorly sorted, containing significant amounts of mud and gravel in addition to the mainly sand-sized grains. The coarser sediment fraction could have been reworked to sandwaves by cyclone-induced bottom currents. Alternatively, the finer sediment fraction could form mudwaves shaped by less energetic along-slope oriented currents in the topographic depression. The sediment waves consist partially of carbonate grains such as ooids and peloids that formed in shallow water during initial stages of the post glacial sea-level rise. These stranded carbonate grains thus formed in a different environment than the sediment waves in which they were redeposited. In fossil examples of similar high-energy ramp systems this possible out-of-equilibrium relationship between grains and bedforms has to be taken into account for the interpretation of the depositional environment.

  6. Suspended sediment transport under estuarine tidal channel conditions

    USGS Publications Warehouse

    Sternberg, R.W.; Kranck, K.; Cacchione, D.A.; Drake, D.E.

    1988-01-01

    A modified version of the GEOPROBE tripod has been used to monitor flow conditions and suspended sediment distribution in the bottom boundary layer of a tidal channel within San Francisco Bay, California. Measurements were made every 15 minutes over three successive tidal cycles. They included mean velocity profiles from four electromagnetic current meters within 1 m of the seabed; mean suspended sediment concentration profiles from seven miniature nephelometers operated within 1 m of the seabed; near-bottom pressure fluctuations; vertical temperature gradient; and bottom photographs. Additionally, suspended sediment was sampled from four levels within 1 m of the seabed three times during each successive flood and ebb cycle. While the instrument was deployed, STD-nephelometer measurements were made throughout the water column, water samples were collected each 1-2 hours, and bottom sediment was sampled at the deployment site. From these measurements, estimates were made of particle settling velocity (ws) from size distributions of the suspended sediment, friction velocity (U*) from the velocity profiles, and reference concentration (Ca) was measured at z = 20 cm. These parameters were used in the suspended sediment distribution equations to evaluate their ability to predict the observed suspended sediment profiles. Three suspended sediment particle conditions were evaluated: (1) individual particle size in the 4-11 ?? (62.5-0.5 ??m) range with the reference concentration Ca at z = 20 cm (C??), (2) individual particle size in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration Ca at z = 20 cm (Cf), and (3) individual particle size in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration predicted as a function of the bed sediment size distribution and the square of the excess shear stress. In addition, computations of particle flux were made in order to show vertical variations in horizontal mass flux for varying flow conditions. ?? 1988.

  7. Chemical constituents in sediment in Lake Pontchartrain and in street mud and canal sediment in New Orleans, Louisiana, following Hurricanes Katrina and Rita, 2005

    USGS Publications Warehouse

    Van Metre, Peter C.; Wilson, Jennifer T.; Horowitz, Arthur J.; Skrobialowski, Stanley C.; Foreman, William T.; Fuller, Christopher C.; Burkhardt, Mark R.; Elrick, Kent A.; Mahler, Barbara J.; Smith, James J.; Zaugg, Steven D.

    2007-01-01

    Samples of street mud, suspended and bottom sediment in canals discharging to Lake Ponchartrain, and suspended and bottom sediment in the lake were collected and analyzed for chemical constituents to help evaluate the effects of Hurricanes Katrina and Rita and the subsequent unwatering of New Orleans, Louisiana. The approach used for sampling and analysis of chemical data for the study is presented herein. Radionuclides, major and trace elements, and numerous organic compounds in sediment were analyzed. The organic compounds include organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, urban waste indicator compounds, and current-use pesticides. Methods for the analysis of urban waste indicator compounds and current-use pesticides in sediment were developed only recently.

  8. Model testing of radioactive contamination by 90Sr, 137Cs and 239,240Pu of water and bottom sediments in the Techa River (Southern Urals, Russia).

    PubMed

    Kryshev, I I; Boyer, P; Monte, L; Brittain, J E; Dzyuba, N N; Krylov, A L; Kryshev, A I; Nosov, A V; Sanina, K D; Zheleznyak, M I

    2009-03-15

    This paper presents results of testing models for the radioactive contamination of river water and bottom sediments by (90)Sr, (137)Cs and (239,240)Pu. The scenario for the model testing was based on data from the Techa River (Southern Urals, Russia), which was contaminated as a result of discharges of liquid radioactive waste into the river. The endpoints of the scenario were model predictions of the activity concentrations of (90)Sr, (137)Cs and (239,240)Pu in water and bottom sediments along the Techa River in 1996. Calculations for the Techa scenario were performed by six participant teams from France (model CASTEAUR), Italy (model MARTE), Russia (models TRANSFER-2, CASSANDRA, GIDRO-W) and Ukraine (model RIVTOX), all using different models. As a whole, the radionuclide predictions for (90)Sr in water for all considered models, (137)Cs for MARTE and TRANSFER-2, and (239,240)Pu for TRANSFER-2 and CASSANDRA can be considered sufficiently reliable, whereas the prediction for sediments should be considered cautiously. At the same time the CASTEAUR and RIVTOX models estimate the activity concentrations of (137)Cs and (239,240)Pu in water more reliably than in bottom sediments. The models MARTE ((239,240)Pu) and CASSANDRA ((137)Cs) evaluated the activity concentrations of radionuclides in sediments with about the same agreement with observations as for water. For (90)Sr and (137)Cs the agreement between empirical data and model predictions was good, but not for all the observations of (239,240)Pu in the river water-bottom sediment system. The modelling of (239,240)Pu distribution proved difficult because, in contrast to (137)Cs and (90)Sr, most of models have not been previously tested or validated for plutonium.

  9. Preliminary estimating the contemporary sedimentation trend in dry valley bottoms of first-order catchments of different landscape zones of the Russian Plain using the 137Cs as a chronomarker

    NASA Astrophysics Data System (ADS)

    Sharifullin, A.; Gusarov, A.; Gafurov, A.; Essuman-Quainoo, B.

    2018-01-01

    A general trend of erosion processes over the last 50-60 years can be estimated by dating sediments washed off from arable lands and accumulated in the first-order dry valleys bottoms. Three small (first-order) catchments were chosen as objects of the study. They are located, respectively, in the southern part of the taiga zone, the zone of temperate broad-leaf forests and the forest-steppe zone of the Russian Plain. To date the sediments accumulated in the bottoms the radioactive caesium-137 (137Cs) of global (since 1954) and Chernobyl origin (1986) had been used as a chronomarker. The average (for all the catchments) sedimentation rates during the global 137Cs fallout period (1963(1954)-1986) are at least 0.88-2.71 cm per year.For the period that has passed since the Chernobyl accident (1986-2015(2016)) the average rates were 0.15-1.07 cm per year. The greatest reduction in the sedimentation rates is observed in the subzone of the southern taiga, the lowest one is in the forest-steppe zone of the Russian Plain. The main reason for such significant reduction in the rates of sedimentation of the soil erosion products in the dry valley bottoms was a reduction of surface runoff within the catchments during a snowmelt period, as well as crop-rotation changes there.

  10. Sulfides of Bottom Sediments in the Northeastern Part of the Black Sea

    NASA Astrophysics Data System (ADS)

    Rozanov, A. G.

    2018-03-01

    A study of bottom sediments conducted on the 100th cruise of R/V Professor Shtokman in the northeastern part of the Black Sea along the section from the Kerch Strait to the deep-sea depression allowed estimation of Holocene sulfide sedimentation and consideration of the accompanying diagenetic processes, which involve reactions with C, N, and P. The behavior of dissolved forms of Mn and Fe is considered from the viewpoint of their different solubility and formation of sulfides. The redox system of the Black Sea sediments can significantly be expanded at the expense of the migration methane and hydrogen, which accompanies its anaerobic oxidation.

  11. Occurrence and trends of selected nutrients, other chemical constituents, diatoms, and cyanobacteria in bottom sediment, Lake Maxinkuckee, northern Indiana

    USGS Publications Warehouse

    Juracek, Kyle E.

    2015-01-01

    Biological indicators in the bottom sediment provided evidence for an improving, or at least not worsening, lake trophic condition. The occurrence of multiple diatom species, none of which were overwhelmingly dominant, was indicative of a minimally contaminated lake ecosystem. The combined evidence of several diatom species in the recent sediment indicated that the lake had not become more productive in recent decades. The combined evidence provided by akinetes for three cyanobacterial genera in the recent and predevelopment sediment indicated similar nutrient conditions in the lake during the past 40 years and possibly back to at least the mid-1800s.

  12. Tidal asymmetry and residual circulation over linear sandbanks and their implication on sediment transport: a process-oriented numerical study

    USGS Publications Warehouse

    Sanay, Rosario; Voulgaris, George; Warner, John C.

    2007-01-01

    A series of process-oriented numerical simulations is carried out in order to evaluate the relative role of locally generated residual flow and overtides on net sediment transport over linear sandbanks. The idealized bathymetry and forcing are similar to those present in the Norfolk Sandbanks, North Sea. The importance of bottom drag parameterization and bank orientation with respect to the ambient flow is examined in terms of residual flow and overtide generation, and subsequent sediment transport implications are discussed. The results show that although the magnitudes of residual flow and overtides are sensitive to bottom roughness parameterization and bank orientation, the magnitude of the generated residual flow is always larger than that of the locally generated overtides. Also, net sediment transport is always dominated by the nonlinear interaction of the residual flow and the semidiurnal tidal currents, although cross-bank sediment transport can occur even in the absence of a cross-shore residual flow. On the other hand, net sediment divergence/convergence increases as the bottom drag decreases and as bank orientation increases. The sediment erosion/deposition is not symmetric about the crest of the bank, suggesting that originally symmetric banks would have the tendency to become asymmetric.

  13. Contaminated Sediment in the Great Lakes

    EPA Pesticide Factsheets

    Contaminated sediments are a significant problem in the Great Lakes basin. Persistent high concentrations of contaminants in the bottom sediments of rivers and harbors pose risks to aquatic organisms, wildlife, and humans.

  14. Characterization of shallow ocean sediments using the airborne electromagnetic method

    NASA Technical Reports Server (NTRS)

    Won, I. J.; Smits, K.

    1986-01-01

    Experimental airborne electromagnetic (AEM) survey data collected in Cape Cod Bay are used to derive continuous profiles of water depth, electrical depth, water conductivity, and bottom sediment conductivity. Through a few well-known empirical relationships, the conductivities are used, in turn, to derive density, porosity, sound speed, and acoustic reflectivity of the ocean bottom. A commercially available Dighem III AEM system was used for the survey without any significant modification. The helicopter-borne system operated at 385 and 7200 Hz; both were in a horizontal coplanar configuration. The interpreted profiles show good agreement with available ground truth data. Where no such data are available, the results appear to be very reasonable. Compared with the shipborne electrode array method, the AEM method can determine the necessary parameters at a much higher speed with a better lateral resolution over a wide range of water depths from 0 to perhaps 100 m. The bottom sediment conductivity that can be measured by the AEM method is closely related to physical properties of sediments, such as porosity, density, sound speed, and, indirectly, sediment types that might carry broad implications for various offshore activities.

  15. Distribution and relationships of trace metals in the isopod Saduria entomon and adjacent bottom sediments in the southern Baltic.

    PubMed

    Góral, Marta; Szefer, Piotr; Ciesielski, Tomasz; Warzocha, Jan

    2009-10-01

    The concentrations of Ag, Cd, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn in Saduria entomon and adjacent bottom sediments from the southern Baltic were determined by FAAS. In order to estimate the strength of correlations between accumulated elements in these crustaceans and surficial sediment, bioaccumulation factors (BAFs) were calculated. The results of factor analysis (FA) and the Kruskal-Wallis analysis of variance (ANOVA) clearly indicate geographical differences between the concentrations of these elements. Cd, Co, Fe, Ni, Pb and Zn levels were higher in S. entomon from the Gulf of Gdańsk, whereas Cr and Mn levels were higher in the crustaceans inhabiting open Baltic waters. The concentrations of Ag and Cu were comparable in both regions. There was a tendency for metal concentrations to distinguish organisms inhabiting the muddy bottom from those living in sandy sediments. The granulometric composition of the sediment appears to influence trace metal bioavailability. The results show that S. entomon could be a valuable sentinel organism for biomonitoring heavy metal contamination in the southern Baltic.

  16. MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Depositional flux of particulate organic matter in bottom sediments affects nutrients cycling at the sediment-water interface and consumes oxygen from the overlying water in streams, lakes, and estuaries. This project deals with analytical modeling of nitrogen and carbon producti...

  17. Detection gas presence in lakes bottom sediments based on seismic investigations.

    NASA Astrophysics Data System (ADS)

    Krylov, Pavel; Nurgaliev, Danis; Yasonov, Pavel

    2017-04-01

    Seismic investigations are used for various tasks, such as the study of the bottom sediments properties, finding sunken objects, reconstruction the reservoir history, etc. Detailed seismic investigation has been carried out in the southern part of Lake Bol'shoe Yarovoe (Altai Krai), Lake Sunukul (Chelyabinsk region), Lake Kisegach to map the bottom sediments and features associated with the presence of gas. The obtained results demonstrate that various types of gas can be recognized in lakes sediments, such as pockmarks, acoustic turbidity, gas flares, seeps. These features, on the one hand, prevent the reconstruction of sequence stratigraphic patterns and, on the other hand, contribute to understanding of the processes of gas formation and migration in the sediments, possible impacts of these processes on the formation of sediments enriched in the organic matter. Also, it helps to recognize these processes in the ancient sediments. The paper points out the importance of studying the formation of methane in lake sediments, because it plays an important role in the climate change. The work was carried out according to the Russia Government's Program of Competitive Growth of Kazan Federal University, supported by the grant provided to the Kazan State University for performing the state program in the field of scientific research, and partially supported by the Russian Foundation for Basic research (grant nos. 16-35-00452).

  18. Hydrocarbons in the Surface Layer of Bottom Sediments in the Northwestern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.; Ostrovskaya, E. V.

    2018-03-01

    The paper presents research results on the concentrations and compositions of aliphatic and polycyclic aromatic hydrocarbons in the surface layer of bottom sediments in the Northwestern Caspian Sea (2014) and compares them to data for sediments of the Middle and Southern Caspian (2012-2013). The seepage of hydrocarbons out of the sediment mass, resulting in abnormally high concentrations of aliphatic hydrocarbons per dry weight (up to 468 μg/g), as well as within the Corg composition (up to 35.2%), is considered the main source of hydrocarbons in sediments in the surveyed area of the Northern Caspian. This is also confirmed by the absence of any correlation between the hydrocarbon and Corg distributions, as well as by the transformed oil composition of high-molecular alkanes. The distribution of markers within polycyclic aromatic hydrocarbons points to a mixed genesis—petrogenic and pyrogenic—with prevalence of the latter. Unlike the shallow-water northern part of the Caspian Sea, the content and composition of hydrocarbons in deep-seated sediments are affected by facial conditions of sedimentation and by matter exchange at the water-bottom interface. Therefore, despite high Corg concentrations (up to 9.9%), sediments in deep-water depressions are characterized by a quite low concentration of aliphatic hydrocarbons (52 μg/g on average; 0.2% of Corg) with prevailing natural allochthonous alkanes.

  19. Estimates of suspended-sediment flux and bedform activity on the inner portion of the Eel continental shelf

    USGS Publications Warehouse

    Cacchione, D.A.; Wiberg, P.L.; Lynch, J.; Irish, J.; Traykovski, P.

    1999-01-01

    Energetic waves, strong bottom currents, and relatively high rates of sediment discharge from the Eel River combined to produce large amounts of suspended-sediment transport on the inner continental shelf near the Eel River during the winter of 1995-1996. Bottom-boundary-layer (BBL) measurements at a depth of ~50 m using the GEOPROBE tripod showed that the strongest near-bottom flows (combined wave and current speeds of over 1 m/s) and highest sediment concentrations (exceeding 2 g/l at ~1.2 m above the bed) occurred during two storms, one in December 1995 and the other in February 1996. Discharge from the Eel River during these storms was estimated at between 2 and 4 x 103 m3/s. Suspended-sediment flux (SSF) was measured 1.2 m above the bed and calculated throughout the BBL, by applying the tripod data to a shelf sediment-transport model. These results showed initially northward along-shelf SSF during the storms, followed by abrupt and persistent southward reversals. Along-shelf flux was more pronounced during and after the December storm than in February. Across-shelf SSF over the entire measurement period was decidedly seaward. This seaward transport could be responsible for surficial deposits of recent sediment on the outer shelf and upper continental slope in this region. Sediment ripples and larger bedforms were observed in the very fine to fine sand at 50-m depth using a sector-scanning sonar mounted on the tripod. Ripple wavelengths estimated from the sonar images were about 9 cm, which compared favorably with photographs of the bottom taken with a camera mounted on the tripod. The ripple patterns were stable during periods of low combined wave-current bottom stresses, but changed significantly during high-stress events, such as the February storm. Two different sonic altimeters recorded changes in bed elevation of 10 to 20 cm during the periods of measurement. These changes are thought to have been caused principally by the migration of low-amplitude, long-wavelength sand waves into the measurement area.

  20. Deposition and chemistry of bottom sediments in Cochiti Lake, north-central New Mexico

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.

    2000-01-01

    Bottom sediments were sampled at seven sites in Cochiti Lake in September 1996. Sediment cores penetrating the entire lacustrine sediment sequence were collected at one site near the dam. Surficial sediments were sampled at the near-dam site and six other sites located along the length of the reservoir. Analyses included grain size, major and trace elements, organochlorine compounds, polycyclic aromatic hydrocarbons (PAH's), and radionuclides. Concentrations of trace elements, organic compounds, and radionuclides are similar to those in other Rio Grande reservoirs and are low compared to published sediment-quality guidelines. Most elements and compounds that were detected did not show trends in the age estimated sediment cores with the exception of a decreasing trend in total DDT concentrations from about 1980 to 1992. The mixture of PAH's suggests that the increase is caused by inputs of fuel-related PAH and not combustion- related PAH.

  1. An Alternative to Channel-Centered Views of the Landscape for Understanding Modern Streams in the Mid-Atlantic Piedmont Region, Eastern USA

    NASA Astrophysics Data System (ADS)

    Merritts, D. J.; Walter, R. C.; Rahnis, M. A.; Oberholtzer, W.

    2008-12-01

    Stream channels generally are the focus of conceptual models of valley bottom geomorphology. The channel-centered model prevalent in the tectonically inactive eastern U. S. invokes meandering stream channels migrating laterally across valley floors, eroding one bank while depositing relatively coarse sediment in point bars on the other. According to this model, overbank deposition during flooding deposits a veneer of fine sediment over the gravel substrate. Erosion is considered normal, and the net volume of sediment is relatively constant with time. A dramatic change in conditions-land-clearing during European settlement--led to widespread aggradation on valley bottoms. This historic sedimentation was incorporated in the channel-centered view by assuming that meandering streams were overwhelmed by the increased sediment load and rapidly aggraded vertically. Later, elevated stream channels cut through these deposits because of decreased sediment supply and increased stormwater runoff accompanying urbanization. This view can be traced to early ideas of stream equilibrium in which incoming sediment supply and runoff determine stream-channel form. We propose a different conceptual model. Our trenching and field work along hundreds of km of stream length in the mid-Atlantic Piedmont reveal no point bars prior to European settlement. Instead, a polygenetic valley-bottom landscape underlies the drape of historic sediment. The planar surface of this veneer gives the appearance of a broad floodplain generated by long-term meandering and overbank deposition, but the "floodplain" is a recent aggradational surface from regional base-level rise due to thousands of early American dams that spanned valley bottoms. As modern streams incise into the historic fine-grained slackwater sediment, they expose organic-rich hydric soils along original valley bottom centers; talus, colluvium, bedrock, and saprolite with forest soils along valley margins; and weathered Pleistocene (and older) alluvial fans and fan pediments at tributary confluences. Two-dimensional views along incised stream banks give the appearance of overbank sediment atop stream bed gravel, but the fine- grained bank (1-5 m) is mostly the result of slackwater sedimentation from damming, whereas the underlying gravel polygenetic in origin. The gravel is Pleistocene or older in age, and not the result of active stream channel migration and point-bar formation during the Holocene. The Holocene warm period was dominated by valley-bottom stability and widespread wetland formation, fostered by beaver activity. Modern stream channel forms are largely the result of incision and bank erosion in response to dam breaching and base- level fall, not hydraulic adjustment to prevailing (or changed) supplies of sediment and water. Rather, channel dimensions are controlled by thickness of historic sediment (i.e., dam height and distance upstream of dam) and depth of incision. Changes in slope (i.e., rapid base-level fall), rather than changes in sediment supply and runoff, are powerful determinants of modern channel forms, and there are no pre-settlement forms for comparison. At present, there is an "impedance mismatch" between those with channel-centered views and those who view the deeply weathered mid-Atlantic landscape as the result of hundreds of thousands to millions of years of slow landscape evolution.

  2. Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection

    NASA Astrophysics Data System (ADS)

    Durrieu de Madron, X.; Ramondenc, S.; Berline, L.; Houpert, L.; Bosse, A.; Martini, S.; Guidi, L.; Conan, P.; Curtil, C.; Delsaut, N.; Kunesch, S.; Ghiglione, J. F.; Marsaleix, P.; Pujo-Pay, M.; Séverin, T.; Testor, P.; Tamburini, C.

    2017-03-01

    The Gulf of Lions in the northwestern Mediterranean is one of the few sites around the world ocean exhibiting deep open-ocean convection. Based on 6 year long (2009-2015) time series from a mooring in the convection region, shipborne measurements from repeated cruises, from 2012 to 2015, and glider measurements, we report evidence of bottom thick nepheloid layer formation, which is coincident with deep sediment resuspension induced by bottom-reaching convection events. This bottom nepheloid layer, which presents a maximum thickness of more than 2000 m in the center of the convection region, probably results from the action of cyclonic eddies that are formed during the convection period and can persist within their core while they travel through the basin. The residence time of this bottom nepheloid layer appears to be less than a year. In situ measurements of suspended particle size further indicate that the bottom nepheloid layer is primarily composed of aggregates between 100 and 1000 µm in diameter, probably constituted of fine silts. Bottom-reaching open ocean convection, as well as deep dense shelf water cascading that occurred concurrently some years, lead to recurring deep sediments resuspension episodes. They are key mechanisms that control the concentration and characteristics of the suspended particulate matter in the basin, and in turn affect the bathypelagic biological activity.

  3. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    NASA Astrophysics Data System (ADS)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  4. The vertical distribution of selected trace metals and organic compounds in bottom materials of the proposed lower Columbia River export channel, Oregon, 1984

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Horowitz, Arthur J.

    1989-01-01

    A proposal to deepen the lower Columbia River navigation channel in Oregon prompted a study of the vertical distribution of selected trace metals and organic compounds in bottom sediments. These data are needed to evaluate the effects of dredging and disposal operations. Elutriation testing of bottom material indicated chemical concentrations as large as 900 ug/L for barium, 6,500 ug/L for manganese, and 14 ug/L for nickel. The amount of oxygen present during elutriation testing of reduced bottom material was shown to have a negligble effect on manganese elutriate-test concentrations, but it did affect barium and iron concentrations. Sediment-associated organochlorine compounds detected in bottom-sediment core samples were as large as 0.1 ug/kg (micrograms/kilogram) for aldrin, 2.0 ug/kg for chlordane, 27 ug/kg for DDD, 5.0 ug/kg for DDE, 0.2 ug/kg for DDT, 0.2 ug/kg for dieldrin, 37 ug/kg for PCB 's 1.0 ug/kg for PCN 's and 1.0 ug/kg for heptachlor epoxide. Concentrations of cadmium, lead, and zinc in selected cores were found to exceed those of local basalts. Concentrations of cadmium, lead, and zinc were as large as 3.6 ug/g, 26 ug/g, and 210 ug/g respectively. Bottom-sediment concentrations of cadmium , chromium, copper, iron, and zinc associated with the less-than-100-micrometer size fraction are larger than those associated with the greater-than-100-micrometer fraction. (USGS)

  5. Crystal-chemical characteristics of nontronites from bottom sediments of Pacific ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palchik, N. A., E-mail: nadezhda@igm.nsc.ru; Moroz, T. N.; Grigorieva, T. N.

    A crystal-chemical analysis of the nontronite samples formed in deep-water sediments of the underwater Juan-de-Fuca ridge in the Pacific ocean has been performed using powder X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy. A comparison with the previously investigated nontronites from different regions of the Sea of Okhotsk showed that the structural features of these formations are due to the difference in the physicochemical parameters of their crystallization. The values of the basal interplanar spacing d{sub 001} (within 11–13 Å) in the samples analyzed are determined by the degree of hydration and cation filling of the interlayer space, while the differencesmore » in the IR spectra are due to isomorphic substitutions in the structure. The character of cation distribution and the nature and concentration of stacking faults in nontronite structures are determined. The differences in the composition, structure, and properties of nontronites of different origin are confirmed by theoretical calculations of their structural parameters.« less

  6. Biogeochemical mercury methylation influenced by reservoir eutrophication, Salmon Falls Creek Reservoir, Idaho, USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.

    2009-01-01

    Salmon Falls Creek Reservoir (SFCR) in southern Idaho has been under a mercury (Hg) advisory since 2001 as fish in this reservoir contain elevated concentrations of Hg. Concentrations of total Hg (HgT) and methyl-Hg (MeHg) were measured in reservoir water, bottom sediment, and porewater to examine processes of Hg methylation at the sediment/water interface in this reservoir. Rates of Hg methylation and MeHg demethylation were also measured in reservoir bottom sediment using isotopic tracer techniques to further evaluate methylation of Hg in SFCR. The highest concentrations for HgT and MeHg in sediment were generally found at the sediment/water interface, and HgT and MeHg concentrations declined with depth. Porewater extracted from bottom sediment contained highly elevated concentrations of HgT ranging from 11-230??ng/L and MeHg ranging from 0.68-8.5??ng/L. Mercury methylation was active at all sites studied. Methylation rate experiments carried out on sediment from the sediment/water interface show high rates of Hg methylation ranging from 2.3-17%/day, which is significantly higher than those reported in other Hg contaminant studies. Using porewater MeHg concentrations, we calculated an upward diffusive MeHg flux of 197??g/year for the entire reservoir. This sediment derived MeHg is delivered to the overlying SFCR water column, and eventually transferred to biota, such as fish. This study indicates that methylation of Hg is highly influenced by the hypolimnetic and eutrophic conditions in SFCR.

  7. Morphological signatures of microbial activity across sediment and light microenvironments of Lake Vanda, Antarctica

    NASA Astrophysics Data System (ADS)

    Mackey, Tyler J.; Sumner, Dawn Y.; Hawes, Ian; Jungblut, Anne D.

    2017-11-01

    Cyanobacteria-dominated microbial mats in Lake Vanda grow with pinnacles and ridges separated by prostrate mat. Rocks protrude over microbial mats on the lake bottom to create localized, dm-scale gradients in sedimentation and irradiance. The effects of sedimentation on pinnacle and ridge growth were isolated from photosynthetic activity by contrasting growth across microenvironmental gradients. Sedimentation rate was measured as the mass of sand and mud sized sediment in mat that accumulated over 11 years, and the incident light was modeled near and under rocks by reconstructing topography using Structure from Motion techniques. Morphologically diverse pinnacles and ridges were documented in both exposed and sheltered mat microenvironments, in addition to growing downward from the underside of overhanging rocks. Mat that grew with > 40% irradiance under overhangs did not have consistent differences in pinnacle density or ridge abundance as a function of sedimentation rates or irradiance when compared to exposed mat. However, their morphology did change significantly with changes in the direction of incident irradiance. Where irradiance was < 40% ambient or light intersected the mat at very low angles, few pinnacles were present and ridges were preferentially aligned parallel to incident light direction. These observations indicate that pinnacle nucleation and spacing were not strongly influenced by sedimentation but pinnacle and ridge morphology varied in response to directional irradiance.

  8. Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea-a preliminary study.

    PubMed

    Graca, Bożena; Szewc, Karolina; Zakrzewska, Danuta; Dołęga, Anna; Szczerbowska-Boruchowska, Magdalena

    2017-03-01

    Microplastics' (particles size ≤5 mm) sources and fate in marine bottom and beach sediments of the brackish are strongly polluted Baltic Sea have been investigated. Microplastics were extracted using sodium chloride (1.2 g cm -3 ). Their qualitative identification was conducted using micro-Fourier-transform infrared spectroscopy (μFT-IR). Concentration of microplastics varied from 25 particles kg -1 d.w. at the open sea beach to 53 particles kg -1  d.w. at beaches of strongly urbanized bay. In bottom sediments, microplastics concentration was visibly lower compared to beach sediments (0-27 particles kg -1  d.w.) and decreased from the shore to the open, deep-sea regions. The most frequent microplastics dimensions ranged from 0.1 to 2.0 mm, and transparent fibers were predominant. Polyester, which is a popular fabrics component, was the most common type of microplastic in both marine bottom (50%) and beach sediments (27%). Additionally, poly(vinyl acetate) used in shipbuilding as well as poly(ethylene-propylene) used for packaging were numerous in marine bottom (25% of all polymers) and beach sediments (18% of all polymers). Polymer density seems to be an important factor influencing microplastics circulation. Low density plastic debris probably recirculates between beach sediments and seawater in a greater extent than higher density debris. Therefore, their deposition is potentially limited and physical degradation is favored. Consequently, low density microplastics concentration may be underestimated using current methods due to too small size of the debris. This influences also the findings of qualitative research of microplastics which provide the basis for conclusions about the sources of microplastics in the marine environment.

  9. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.

    2008-01-01

    We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay. 

  10. Morphology of sea-floor landslides on Horizon Guyot: application of steady-state geotechnical analysis

    USGS Publications Warehouse

    Kayen, R.E.; Schwab, W.C.; Lee, H.J.; Torresan, M.E.; Hein, J.R.; Quinterno, P.J.; Levin, L.A.

    1989-01-01

    Mass movement and erosion have been identified on the pelagic sediment cap of Horizon Guyot, a seamount in the Mid-Pacific Mountains. Trends in the size, shape and preservation of bedforms and sediment textural trends on the pelagic cap indicate that bottom-current-generated sediment transport direction is upslope. Slumping of the sediment cap occurred on and that the net bedload transport direction is upslope. Slumping of the sediment cap occurred on the northwest side of the guyot on a 1.6?? to 2.0?? slope in the zone of enhanced bottom-current activity. Submersible investigations of these slump blocks show them to be discrete and to have a relief of 6-15 m, with nodular chert beds cropping out along the headwall of individual rotated blocks. An evaluation of the stability of the sediment cap suggests that the combination of the current-induced beveling of the sea floor and infrequent earthquake loading accompanied by cyclic strength reduction is responsible for the initiation of slumps. The sediment in the area of slumping moved short distances in relatively coherent masses, whereas sediment that has moved beyond the summit cap perimeter has fully mobilized into sediment gravity flows and traveled large distances. A steady-state geotechnical analysis of Horizon Guyot sediment indicates the predisposition of deeply buried sediment towards disintegrative flow failure on appropriately steep slopes. Thus, slope failure in this deeper zone would include large amounts of internal deformation. However, gravitational stress in the near-surface sediment of the summit cap (sub-bottom depth < 14 m) is insufficient to maintain downslope movement after initial failure occurs. The predicted morphology of coherent slump blocks displaced and rafted upon a weakened zone at depth corresponds well with seismic-reflection data and submersible observations. ?? 1990.

  11. Role of the bottom sediments immediately beneath the lake water-groundwater interface in the transport and removal of cyanobacteria, cyanophage, and dissolved organic carbon during natural lake-bank filtration at a kettle pond subject to harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.

    2015-12-01

    Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the underlying 30-cm-long segment of sediment. A follow-up study conducted the following year at the same location demonstrated that removal of the top 5 cm of sediment resulted in a six-fold decrease in the efficiency of the near-surface bottom sediments for filtering out Synechococcus, cyanophage, and well-characterized microspheres.

  12. Continental shelf sediment dynamics in the Anthropocene: A global shift

    NASA Astrophysics Data System (ADS)

    Oberle, Ferdinand K. J.; Puig, Pere; Martin, Jacobo

    2017-04-01

    Recent technological advances in remote sensing and deep marine sampling have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.

  13. Burrowing hard corals occurring on the sea floor since 80 million years ago.

    PubMed

    Sentoku, Asuka; Tokuda, Yuki; Ezaki, Yoichi

    2016-04-14

    We describe a previously unknown niche for hard corals in the small, bowl-shaped, solitary scleractinian, Deltocyathoides orientalis (Family Turbinoliidae), on soft-bottom substrates. Observational experiments were used to clarify how the sea floor niche is exploited by turbinoliids. Deltocyathoides orientalis is adapted to an infaunal mode of life and exhibits behaviours associated with automobility that include burrowing into sediments, vertical movement through sediments to escape burial, and recovery of an upright position after being overturned. These behaviours were achieved through repeated expansion and contraction of their peripheral soft tissues, which constitute a unique muscle-membrane system. Histological analysis showed that these muscle arrangements were associated with deeply incised inter-costal spaces characteristic of turbinoliid corals. The oldest known turbinoliid, Bothrophoria ornata, which occurred in the Cretaceous (Campanian), also possessed a small, conical skeleton with highly developed costae. An infaunal mode of life became available to turbinoliids due to the acquisition of automobility through the muscle-membrane system at least 80 million years ago. The newly discovered active burrowing strategies described herein provide new insights into the use of an unattached mode of life by corals inhabiting soft-bottom substrates throughout the Phanerozoic.

  14. Burrowing hard corals occurring on the sea floor since 80 million years ago

    NASA Astrophysics Data System (ADS)

    Sentoku, Asuka; Tokuda, Yuki; Ezaki, Yoichi

    2016-04-01

    We describe a previously unknown niche for hard corals in the small, bowl-shaped, solitary scleractinian, Deltocyathoides orientalis (Family Turbinoliidae), on soft-bottom substrates. Observational experiments were used to clarify how the sea floor niche is exploited by turbinoliids. Deltocyathoides orientalis is adapted to an infaunal mode of life and exhibits behaviours associated with automobility that include burrowing into sediments, vertical movement through sediments to escape burial, and recovery of an upright position after being overturned. These behaviours were achieved through repeated expansion and contraction of their peripheral soft tissues, which constitute a unique muscle-membrane system. Histological analysis showed that these muscle arrangements were associated with deeply incised inter-costal spaces characteristic of turbinoliid corals. The oldest known turbinoliid, Bothrophoria ornata, which occurred in the Cretaceous (Campanian), also possessed a small, conical skeleton with highly developed costae. An infaunal mode of life became available to turbinoliids due to the acquisition of automobility through the muscle-membrane system at least 80 million years ago. The newly discovered active burrowing strategies described herein provide new insights into the use of an unattached mode of life by corals inhabiting soft-bottom substrates throughout the Phanerozoic.

  15. Distribution and migration of 239+240Pu in abiotic components of the Black Sea ecosystems during the post-Chernobyl period.

    PubMed

    Tereshchenko, N N; Gulin, S B; Proskurnin, V Yu

    2018-08-01

    Distribution of 239,240 Pu in abiotic components (water and bottom sediment) of the Black Sea ecosystems was studied during the post-Chernobyl period at different offshore and near-shore locations. The trends of these radionuclides accumulation by sediments were analyzed. The spatial-temporal changes in the 239,240 Pu distribution as well as effective half-life for these radionuclides in the Black Sea surface water in deep-sea area are presented. The estimations of the average annual removal fluxes of the 239,240 Pu into the bottom sediments were obtained. The Black Sea sediments were characterized by a higher 239,240 Pu concentration factor (C f  ≈ n·10 4 -n·10 6 ) and radiocapacity factor (F( 239,240 Pu) was about 99.9% on the shelf, 94.5-99.1% on deep-sea basin for silty and 94.6-98.9% on the shelf for sandy bottom sediments) as compared with C f and F for 137 Cs and 90 Sr. Silty bottom sediments play the role of 239,240 Pu main depot in the Black Sea ecosystem. The studied radioecological characteristics of Pu allowed us to define the type of plutonium biogeochemical behavior in the Black Sea as a pedotropic one. The results of this complex radioecological monitoring of 239+240 Pu contamination in the Black Sea and their analysis makes it possible to understand the plutonium redistribution pathways which will enable to carry out the tracing of its migration within the ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sediment sources and transport in Kings Bay and vicinity, Georgia and Florida, July 8-16, 1982

    USGS Publications Warehouse

    Radtke, D.B.

    1985-01-01

    Water quality, bottom-material, suspended-sediment, and current velocity data were collected during July 1982 in Kings Bay and vicinity to provide information on the source and transport of estuarine sediments. Kings Bay and Cumberland Sound, the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest sediment transported from lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal march drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hr ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)

  17. Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.

    2013-01-01

    Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.

  18. Physical, chemical, and biological characteristics of Sturgeon Lake, Goodhue County, Minnesota, 2003-04

    USGS Publications Warehouse

    Lee, Kathy E.; Sanocki, Christopher A.; Montz, Gary R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Prairie Island Indian Community and the Minnesota Department of Natural Resources, conducted a study of Sturgeon Lake (a backwater lake in Navigation Pool 3 of the Mississippi River) during 2003-04 to describe the physical, chemical, and biological characteristics of the lake. Riparian and shoreline areas surrounding Sturgeon Lake consist primarily of deciduous tree and shrub cover with minimal amounts of commercial or residential land use. Woody debris and aquatic vegetation are the major types of physical habitat suitable for fish and invertebrates. Among 10 bottom-sediment sampling sites, 24 organic wastewater compounds, 1 organochlorine pesticide metabolite (p,p’DDE), and total polychlorinated biphenyls (PCBs) were detected in the bottom sediments of Sturgeon Lake. The most prevalent class of compounds detected were polyaromatic hydrocarbons. Other classes of compounds detected include sterols, disinfectants, plastic components, alkylphenols, and fragrances. Three compounds detected (bisphenol A, benzo[a]pyrene, and triclosan) are considered endocrine disrupting compounds. Twenty-one and 49 invertebrate taxa were identified from 10 bottom-sediment and 6 woody-debris/vegetation samples, respectively. Most of the taxa were Diptera in the family Chironomidae. The most common invertebrate in terms of density in bottom-sediment samples was the burrowing mayfly (Hexagenia sp.). Trichoptera in the families Hydropsychidae or Polycentropodidae were common in most of the woody-debris samples. The presence of the Hexagenia larvae in samples indicates that the bottom sediments are stable and that dissolved oxygen concentrations in the lake do not drop to acute or sub-lethal anoxic conditions. Backwater lakes such as Sturgeon Lake are important areas of habitat for aquatic organisms along the Mississippi River, and this report provides baseline physical, chemical, and biological information that resource managers can compare with future investigations.

  19. The Pianosa Contourite Depositional System (Northern Tyrrhenian Sea): drift morphology and Plio-Quaternary stratigraphic evolution

    NASA Astrophysics Data System (ADS)

    Miramontes Garcia, Elda; Cattaneo, Antonio; Jouet, Gwenael; Thereau, Estelle; Thomas, Yannick; Rovere, Marzia; Cauquil, Eric; Trincardi, Fabio

    2016-04-01

    The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7-0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish and the turbidite system was disconnected, resulting in a lower sediment influx.

  20. Polycyclic aromatic hydrocarbons in bottom sediment and bioavailability in streams in the New River Gorge National River and Gauley River National Recreation Area, West Virginia, 2002

    USGS Publications Warehouse

    Messinger, Terrence

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.

  1. Nannofossils in upper quaternary bottom sediments of back-arc basins in the southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Dmitrenko, O. B.

    2015-05-01

    The analysis of calcareous nannoplankton assemblages in bottom sediments sampled during Cruise 21 of the R/V Akademik Mstislav Keldysh in three areas located in back-arc basins of the southwestern Pacific (western Woodlark in the Solomon Sea, Manus in the Bismarck Sea, Central Lau) reveal that they belong to the Emiliania huxleyi Acme Zone, the most detailed one in the Gartner's scale of 1977. The content of coccoliths and their taxonomic composition indicate warm subtropical-tropical conditions. Long cores demonstrate a decrease in species diversity reflecting the transition from the cold late Pleistocene to the Holocene. The changes in species diversity and presence/absence of thermophilic representatives indicate transformation of depositional environments with unstable conditions in the water column and bottom layer, seismic activity, and widely developed processes of sediment redistribution and reworking.

  2. Distribution of surficial sediment in Long Island Sound and adjacent waters: Texture and total organic carbon

    USGS Publications Warehouse

    Poppe, L.J.; Knebel, H.J.; Mlodzinska, Z.J.; Hastings, M.E.; Seekins, B.A.

    2000-01-01

    The surficial sediment distribution within Long Island Sound has been mapped and described using bottom samples, photography, and sidescan sonar, combined with information from the geologic literature. The distributions of sediment type and total organic carbon (TOC) reveal several broad trends that are largely related to the sea-floor geology, the bathymetry, and the effects of modern tidal- and wind-driven currents. Sediment types are most heterogeneous in bathymetrically complex and shallow nearshore areas; the heterogeneity diminishes and the texture fines with decreasing bottom-current energy. Lag deposits of gravel and gravelly sand dominate the surficial sediment texture in areas where bottom currents are the strongest (such as where tidal flow is constricted) and where glacial till crops out at the sea floor. Sand is the dominant sediment type in areas characterized by active sediment transport and in shallow areas affected by fine-grained winnowing. Silty sand and sand-silt-clay mark transitions within the basin from higher- to lower-energy environments, suggesting a diminished hydraulic ability to sort and transport sediment. Clayey silt and silty clay are the dominant sediment types accumulating in the central and western basins and in other areas characterized by long-term depositional environments. The amount of TOC in the sediments of Long Island Sound varies inversely with sediment grain size. Concentrations average more than 1.9% (dry weight) in clayey silt, but are less than 0.4% in sand. Generally, values for TOC increase both toward the west in the Sound and from the shallow margins to the deeper parts of the basin floor. Our data also suggest that TOC concentrations can vary seasonally.

  3. A new seepage site south of Svalbard? Results from Eurofleets-2 BURSTER cruise

    NASA Astrophysics Data System (ADS)

    Giulia Lucchi, Renata; Morigi, Caterina; Sabbatini, Anna; Mazzini, Adriano; Krueger, Martin; de Vittor, Cinzia; Kovacevic, Vedrana; Deponte, Davide; Stefano, Graziani; Bensi, Manuel; Langone, Leonardo; Eurofleets2-Burster*, Scientific Party Of

    2017-04-01

    The oceanographic and environmental characteristics of the Kveithola Glacial Trough, located south of Svalbard, have been investigated during the Eurofleets2-BURSTER project onboard the German icebreaker Polarstern (expedition PS99-1a, June, 19-20, 2016). The inner part of the glacial trough contains a complex sediment drift that deposited under persistent bottom currents, active in the area after Last Glacial Maximum. Notwithstanding the highly dynamic environment depicted from the morphological and structural characteristics of the Kveithola sediment drift, previous studies indicated the presence of an apparently "stagnant" environment with black anoxic sediments and absence of bottom current related sediment features. We present the preliminary results from the new dataset that includes micropaleontological, geochemical and microbial analyses of multi-core sediments; morphological analyses of sea floor sediments with benthic camera (Ocean Floor Observatory System); acoustic analyses of the sub-bottom record, and oceanographic analyses of CTD-Rosette sampling, all together indicating the possible presence of a new seepage site in the Arctic area south of 75°N Latitude. *Bazzaro, M., Biebow, N., Carbonara, K., Caridi, F., Dominiczak, A., Gamboa Sojo, V.M., Laterza R., Le Gall, C., Musco, M.E., Povea, P., Relitti, F., Ruggiero, L., Rui, L., Sánchez Guillamón, O., Tagliaferro, M., Topchiy, M., Wiberg, D., Zoch, D.

  4. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    PubMed Central

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-01-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities. PMID:28233856

  5. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    NASA Astrophysics Data System (ADS)

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  6. Bottom-trawling along submarine canyons impacts deep sedimentary regimes.

    PubMed

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-24

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons' morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20 th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  7. Bottom sediment as a source of organic contaminants in Lake Mead, Nevada, USA

    USGS Publications Warehouse

    Alvarez, David A.; Rosen, Michael R.; Perkins, Stephanie D.; Cranor, Walter L.; Schroeder, Vickie L.; Jones-Lepp, Tammy L.

    2012-01-01

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities' flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however, partitioning between the sediment and the overlying water could result in the sediment acting as a secondary contaminant source. Locating the chemical plumes may be important to understanding possible chemical stressors to aquatic organisms. Passive sampling devices (SPMDs and POCIS) were suspended in LVB at depths of 3.0, 4.7, and 6.7 (lake bottom) meters in June of 2008 to determine the vertical distribution of SOCs in the water column. A custom sediment probe was used to also bury the samplers in the sediment at depths of 0–10, 10–20, and 20–30 cm. The greatest number of detections in samplers buried in the sediment was at the 0–10 cm depth. Concentrations of many hydrophobic SOCs were twice as high at the sediment–water interface than in the mid and upper water column. Many SOCs related to wastewater effluents, including fragrances, insect repellants, sun block agents, and phosphate flame retardants, were found at highest concentrations in the middle and upper water column. There was evidence to suggest that the water infiltrated into the sediment had a different chemical composition than the rest of the water column and could be a potential risk exposure to bottom-dwelling aquatic organisms.

  8. Suspended Alexandrium spp. hypnozygote cysts in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Kirn, Sarah L.; Townsend, David W.; Pettigrew, Neal R.

    2005-09-01

    The life cycle of dinoflagellates of the genus Alexandrium includes sexual reproduction followed by the formation of a dormant hypnozygote cyst, which serves as a resting stage. Negatively buoyant cysts purportedly fall to the benthos where they undergo a mandatory period of quiescence. Previous reports of cysts in the surficial sediments of the Gulf of Maine, where Alexandrium blooms are well documented, show a broad distribution of cysts, with highest concentrations generally in sediments below 100 m depth. We report here an exploration of cysts suspended in the water column, where they would be better positioned to inoculate springtime Alexandrium populations. During cruises in February, April, and June of 2000, water samples were collected at depths just off the bottom (within 5 m), at the top of the bottom nepheloid layer, and near the surface (1 m) and examined for cyst concentrations. Suspended cysts were found throughout the Gulf of Maine and westernmost Bay of Fundy. Planktonic cyst densities were generally greater in near-bottom and top of the bottom nepheloid layer samples than in near-surface water samples; densities were of the order of 10 2 cysts m -3 in surface waters, and 10 2-10 3 cysts m -3 at near-bottom depths. Temporally, they were most abundant in February and least abundant in April. Reports by earlier workers of cysts in the underlying sediments were on the order of 10 3 cysts cm -3. We present calculations that demonstrate the likelihood of cyst resuspension from bottom sediments forced by swell and tidal currents, and propose that such resuspended cysts are important in inoculating the seasonal bloom. We estimate that suspended cysts may contribute significantly to the annual vegetative cell population in the Gulf of Maine.

  9. Hydrography and bottom boundary layer dynamics: Influence on inner shelf sediment mobility, Long Bay, North Carolina

    USGS Publications Warehouse

    Davis, L.A.; Leonard, L.A.; Snedden, G.A.

    2008-01-01

    This study examined the hydrography and bottom boundary-layer dynamics of two typical storm events affecting coastal North Carolina (NC); a hurricane and the passages of two small consecutive extratropical storms during November 2005. Two upward-looking 1200-kHz Acoustic Doppler Current Profilers (ADCP) were deployed on the inner shelf in northern Long Bay, NC at water depths of less than 15 m. Both instruments profiled the overlying water column in 0.35 in bins beginning at a height of 1.35 in above the bottom (mab). Simultaneous measurements of wind speed and direction, wave and current parameters, and acoustic backscatter were coupled with output from a bottom boundary layer (bbl) model to describe the hydrography and boundary layer conditions during each event. The bbl model also was used to quantify sediment transport in the boundary layer during each storm. Both study sites exhibited similar temporal variations in wave and current magnitude, however, wave heights during the November event were higher than waves associated with the hurricane. Near-bottom mean and subtidal currents, however, were of greater magnitude during the hurricane. Peak depth-integrated suspended sediment transport during the November event exceeded transport associated with the hurricane by 25-70%. Substantial spatial variations in sediment transport existed throughout both events. During both events, along-shelf sediment transport exceeded across-shelf transport and was related to the magnitude and direction of subtidal currents. Given the variations in sediment type across the bay, complex shoreline configuration, and local bathymetry, the sediment transport rates reported here are very site specific. However, the general hydrography associated with the two storms is representative of conditions across northern Long Bay. Since the beaches in the study area undergo frequent renourishment to counter the effects of beach erosion, the results of this study also are relevant to coastal management decision-making. Specifically, these issues include 1) identification of municipalities that should share the cost for renourishment given the likelihood for significant along-shelf sand movement and 2) appropriate timing of sand placement with respect to local climatology and sea-turtle nesting restrictions.

  10. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site

    NASA Astrophysics Data System (ADS)

    Harris, Courtney K.; Wiberg, Patricia L.

    1997-09-01

    Modeling shelf sediment transport rates and bed reworking depths is problematic when the wave and current forcing conditions are not precisely known, as is usually the case when long-term sedimentation patterns are of interest. Two approaches to modeling sediment transport under such circumstances are considered. The first relies on measured or simulated time series of flow conditions to drive model calculations. The second approach uses as model input probability distribution functions of bottom boundary layer flow conditions developed from wave and current measurements. Sediment transport rates, frequency of bed resuspension by waves and currents, and bed reworking calculated using the two methods are compared at the mid-shelf STRESS (Sediment TRansport on Shelves and Slopes) site on the northern California continental shelf. Current, wave and resuspension measurements at the site are used to generate model inputs and test model results. An 11-year record of bottom wave orbital velocity, calculated from surface wave spectra measured by the National Data Buoy Center (NDBC) Buoy 46013 and verified against bottom tripod measurements, is used to characterize the frequency and duration of wave-driven transport events and to estimate the joint probability distribution of wave orbital velocity and period. A 109-day record of hourly current measurements 10 m above bottom is used to estimate the probability distribution of bottom boundary layer current velocity at this site and to develop an auto-regressive model to simulate current velocities for times when direct measurements of currents are not available. Frequency of transport, the maximum volume of suspended sediment, and average flux calculated using measured wave and simulated current time series agree well with values calculated using measured time series. A probabilistic approach is more amenable to calculations over time scales longer than existing wave records, but it tends to underestimate net transport because it does not capture the episodic nature of transport events. Both methods enable estimates to be made of the uncertainty in transport quantities that arise from an incomplete knowledge of the specific timing of wave and current conditions. 1997 Elsevier Science Ltd

  11. Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós) Canyon, NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sañé, E.; Martín, J.; Puig, P.; Palanques, A.

    2012-12-01

    Deep-sea ecosystems are in general adapted to a limited variability of physical conditions, resulting in high vulnerability and slow recovery rates from anthropogenic perturbations such as bottom trawling. Commercial trawling is the most recurrent and pervasive of human impacts on the deep-sea floor, but studies on its consequences on the biogeochemistry of deep-sea sediments are still scarce. Pigments, fatty acids, amino acids and carbohydrates were analyzed in sediments from the flanks of the La Fonera (Palamós) submarine canyon (NW Mediterranean Sea), where a commercial bottom trawling fishery has been active for more than 70 yr. More specifically, we investigated how trawling-induced sediment reworking affects the quality of sedimentary organic matter which reaches the seafloor and accumulates in the sediment column, which is fundamental for the development of benthic communities. Sediment samples were collected during two oceanographic cruises in spring and autumn 2011. The sampled sites included trawl fishing grounds as well as pristine (control) areas. We report that bottom trawling in the flanks of the La Fonera Canyon has caused an alteration of the quality of the organic matter accumulated in the upper 5 cm of the seafloor. The use of a wide pool of biochemical tracers characterized by different reactivity to degradation allowed us to discriminate the long-term effects of trawled-induced sediment reworking from the natural variability caused by the seasonal cycle of production and sinking of biogenic particles. Differences between untrawled and trawled areas were evidenced by labile amino acids, while differences between spring and autumn samples were detected only by the more labile indicators chlorophyll a and mono-unsaturated fatty acids. These results suggest that changes in the biochemical composition of the sedimentary organic matter caused by bottom trawling can be more relevant than those associated with natural seasonality and pose serious concerns about the ecological sustainability of deep-sea trawling activities.

  12. Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós) Canyon, NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sañé, E.; Martín, J.; Puig, P.; Palanques, A.

    2013-12-01

    Deep-sea ecosystems are in general adapted to a limited variability of physical conditions, resulting in high vulnerability and slow recovery rates from anthropogenic perturbations such as bottom trawling. Commercial trawling is the most recurrent and pervasive of human impacts on the deep-sea floor, but studies on its consequences on the biogeochemistry of deep-sea sediments are still scarce. Pigments, fatty acids, amino acids and carbohydrates were analysed in sediments from the flanks of the La Fonera (Palamós) submarine canyon (NW Mediterranean Sea), where a commercial bottom trawling fishery has been active for more than 70 yr. More specifically, we investigated how trawling-induced sediment reworking affects the quality of sedimentary organic matter which reaches the seafloor and accumulates in the sediment column, which is fundamental for the development of benthic communities. Sediment samples were collected during two oceanographic cruises in spring and autumn 2011. The sampled sites included trawl fishing grounds as well as pristine (control) areas. We report that bottom trawling in the flanks of the La Fonera Canyon has caused an alteration of the quality of the organic matter accumulated in the upper 5 cm of the seafloor. The use of a wide pool of biochemical tracers characterized by different reactivity to degradation allowed for us to discriminate the long-term effects of trawl-induced sediment reworking from the natural variability caused by the seasonal cycle of production and sinking of biogenic particles. Differences between untrawled and trawled areas were evidenced by labile amino acids, while differences between spring and autumn samples were detected only by the more labile indicators chlorophyll a and monounsaturated fatty acids. These results suggest that changes in the biochemical composition of the sedimentary organic matter caused by bottom trawling can be more relevant than those associated with natural seasonality and pose serious concerns about the ecological sustainability of deep-sea trawling activities.

  13. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  14. A preliminary appraisal of sediment sources and transport in Kings Bay and vicinity, Georgia and Florida

    USGS Publications Warehouse

    McConnell, J.B.; Radtke, D.B.; Hale, T.W.; Buell, G.R.

    1983-01-01

    Water-quality, bottom-material, suspended-sediment, and current-velocity data were collected during November 1981 in Kings Bay and vicinity to provide information on the sources and transport of estuarine sediments. Kings Bay and Cumberland Sound , the site of the Poseidon Submarine Base in southeast Georgia, are experiencing high rates of sediment deposition and accumulation, which are causing serious navigational and operational problems. Velocity, bathymetry, turbidity, and bottom-material data suggest that the area in the vicinity of lower Kings Bay is accumulating deposits of suspended sediment transported from Cumberland Sound on the floodtide and from upper Kings Bay and the tidal marsh drained by Marianna Creek on the ebbtide. Suspended-sediment discharges computed for consecutive 13-hour ebbtides and floodtides showed that a net quantity of suspended sediment was transported seaward from upper Kings Bay and Marianna Creek. A net landward transport of suspended sediment computed at the St. Marys Entrance indicated areas seaward of St. Marys Entrance may be supplying sediment to the shoaling areas of the estuary, including lower Kings Bay. (USGS)

  15. Chemical composition of sediments from White Sea, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr

    2010-05-01

    The White Sea, the only Russian inland sea, is located on the north of outlying districts of the European part of Russia, belongs to Arctic Ocean. Area of water of sea occupies about 90 tousend square kilometers. The sea can be divided into some general parts: neck, funnel, basin and 4 Bays: Dvina Bay, Kandalaksha Bay, Mezen Bay and Onega Bay. The purpose of this work was geochemical mapping of the surface sediments of this area. The main tasks were: compilation data base of element composition of the surface sediments, geochemical mapping of each element, research of the anormal concentration of elements on the surface. To detect the content of chemical elements several methods were used: atomic absorption spectrometry (P.P. Shirshov Institute of Oceanology); neutron activation analysis (Vernadsky Institute of Geochemistry and Analytical Chemistry), total and organic carbon analysis, photometric method to detection Si, Al, P (P.P. Shirshov Institute of Oceanology). Bulk composition is one of the fundamental characteristics of sediments and bottom deposites of modern basins. Coarse-grained sediments with portion of pelitic component <50% is spread on the shallow area (Kandalaksha Bay), in areas with high hydrodynamic activity of near-bottom water. Under the conditions of their low activity, fine-grained facies are common(>80%). Character of elements distribution correlates with facial distribution of sediments from White Sea. According to litologic description, bottom surface of Dvina Bay is practically everywhere covered by layer of fine-grained sand. In the border area between Dvina Bay and White Sea basin on terraced subwater slope aleurite politic silts are abundant. They tend to exhange down the slope to clay silts. In Onega Bay fractions of non-deposition are observed. They are characterized by wide spread of thin blanket poorgraded sediments, which are likely to be relic. Relief of Kandalakscha Bay bottom is presented as alternation of abyssal fosses (near 300 m) with silles and elevations (<20 m), and also numerous islands. Thus variety of sediment composition is observed here - from rules and gravels to fine-grained clay silts [1]. The map of distribution of chemical elements was created by using bulk composition data with the help of program ArcView. Mn distribution in sedimentation mass is largely determed by influence of redox diagenesis. Reactive form of Mn dominates over less moving, litogenic form in sedimation mass of White Sea. Litogenic form remains in sediment, reactive form moves into silt near-bottom water, resulting Mn migration both in sediment and near-bottom layer of marine water. Mn oxidizes on the contact with oxygen of marine water and alters into insoluble form MnO2, causing Mn enrichment of surface layer of sediments. Highly movable silt deposit MnO2 and enriched by Mn suspension are moved by underflow and accumulate in bottom depressions and in central part of the sea, which is quite wide from both places of original sedimentation and run off sources [2]. Thus, the interrelation between granulometric composition of sediment and materials concentration can be shown by the example of Mn. Local conditions, leading to accumulation of clastic components, are: 1. Rise of content in sand owning to separation of heavy minerals 2. Rise of content in surface, mainly sandy clay sediments owning to presence of concretions 3. Rise of content in lower bunches roof owning to diagenetic contraction. Authors thank academic Lisitsyn for encourage, Andrey Apletalin for valuable help, and everybody, who helped in field and laboratory research of the White sea sediments. Work was being done under the auspices of Russian foundation of basic research (grants 09-05-10081, 09-05-00658 and 08-05-00860), RSA presidiums program of 17 fundamental researches (project 17.1). References: 1.Kuzmina T., Lein A., Lutchsheva L., Murdmaa I., Novigatsky A., Shevchenko V. Chemical composition of White Sea's sediments // Litology and mineral deposits . 2009. - № 2. - P 115-132. 2.Nevessky E., Medvedev V. , Kalinenko V. White sea, sedimentation and holocoen developmental history. - Moscow.: Nauka, 1977. - 236 p. 3.White Sea and it water collection affected by climatic and antropogenic factors. / under the editorship of Terzhevik A., Filatov N. - Petrozavodsk.: Karelsky nauchny centr RAN, 2007. - 335p

  16. Storm-driven sediment transport in Massachusetts Bay

    USGS Publications Warehouse

    Warner, J.C.; Butman, B.; Dalyander, P.S.

    2008-01-01

    Massachusetts Bay is a semi-enclosed embayment in the western Gulf of Maine about 50 km wide and 100 km long. Bottom sediment resuspension is controlled predominately by storm-induced surface waves and transport by the tidal- and wind-driven circulation. Because the Bay is open to the northeast, winds from the northeast ('Northeasters') generate the largest surface waves and are thus the most effective in resuspending sediments. The three-dimensional oceanographic circulation model Regional Ocean Modeling System (ROMS) is used to explore the resuspension, transport, and deposition of sediment caused by Northeasters. The model transports multiple sediment classes and tracks the evolution of a multilevel sediment bed. The surficial sediment characteristics of the bed are coupled to one of several bottom-boundary layer modules that calculate enhanced bottom roughness due to wave-current interaction. The wave field is calculated from the model Simulating WAves Nearshore (SWAN). Two idealized simulations were carried out to explore the effects of Northeasters on the transport and fate of sediments. In one simulation, an initially spatially uniform bed of mixed sediments exposed to a series of Northeasters evolved to a pattern similar to the existing surficial sediment distribution. A second set of simulations explored sediment-transport pathways caused by storms with winds from the northeast quadrant by simulating release of sediment at selected locations. Storms with winds from the north cause transport southward along the western shore of Massachusetts Bay, while storms with winds from the east and southeast drive northerly nearshore flow. The simulations show that Northeasters can effectively transport sediments from Boston Harbor and the area offshore of the harbor to the southeast into Cape Cod Bay and offshore into Stellwagen Basin. This transport pattern is consistent with Boston Harbor as the source of silver found in the surficial sediments of Cape Cod Bay and Stellwagen Basin.

  17. Great differences in the critical erosion threshold between surface and subsurface sediments: A field investigation of an intertidal mudflat, Jiangsu, China

    NASA Astrophysics Data System (ADS)

    Shi, Benwei; Wang, Ya Ping; Wang, Li Hua; Li, Peng; Gao, Jianhua; Xing, Fei; Chen, Jing Dong

    2018-06-01

    Understanding of bottom sediment erodibility is necessary for the sustainable management and protection of coastlines, and is of great importance for numerical models of sediment dynamics and transport. To investigate the dependence of sediment erodibility on degree of consolidation, we measured turbidity, waves, tidal currents, intratidal bed-level changes, and sediment properties on an exposed macrotidal mudflat during a series of tidal cycles. We estimated the water content of surface sediments (in the uppermost 2 cm of sediment) and sub-surface sediments (at 2 cm below the sediment surface). Bed shear stress values due to currents (τc), waves (τw), and combined current-wave action (τcw) were calculated using a hydrodynamic model. In this study, we estimate the critical shear stress for erosion using two approaches and both of them give similar results. We found that the critical shear stress for erosion (τce) was 0.17-0.18 N/m2 in the uppermost 0-2 cm of sediment and 0.29 N/m2 in sub-surface sediment layers (depth, 2 cm), as determined by time series of τcw values and intratidal bed-level changes, and values of τce, obtained using the water content of bottom sediments, were 0.16 N/m2 in the uppermost 2 cm and 0.28 N/m2 in the sub-surface (depth, 2 cm) sediment. These results indicate that the value of τce for sub-surface sediments (depth, 2 cm) is much greater than that for the uppermost sediments (depth, 0-2 cm), and that the τce value is mainly related to the water content, which is determined by the extent of consolidation. Our results have implications for improving the predictive accuracy of models of sediment transport and morphological evolution, by introducing variable τce values for corresponding sediment layers, and can also provide a mechanistic understanding of bottom sediment erodibility at different sediment depths on intertidal mudflats, as related to differences in the consolidation time.

  18. Entrainment at a sediment concentration interface in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2016-11-01

    In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.

  19. Indicators of sewage contamination in sediments beneath a deep-ocean dump site off New York

    USGS Publications Warehouse

    Bothner, Michael H.; Takada, H.; Knight, I.T.; Hill, R.T.; Butman, B.; Farrington, J.W.; Colwell, R.R.; Grassle, J. F.

    1994-01-01

    The world's largest discharge of municipal sewage sludge to surface waters of the deep sea has caused measurable changes in the concentration of sludge indicators in sea-floor sediments, in a spatial pattern which agrees with the predictions of a recent sludge deposition model. Silver, linear alkylbenzenes, coprostanol, and spores of the bacterium Clostridium perfringens, in bottom sediments and in near-bottom suspended sediment, provide evidence for rapid settling of a portion of discharged solids, accumulation on the sea floor, and biological mixing beneath the water sediment interface. Biological effects include an increase in 1989 of two species of benthic polychaete worm not abundant at the dump site before sludge dumping began in 1986. These changes in benthic ecology are attributed to the increased deposition of utilizable food in the form of sludge-derived organic matter.

  20. Compressional Wave Speed and Absorption Measurements in a Saturated Kaolinite-Water Artificial Sediment.

    DTIC Science & Technology

    OCEAN BOTTOM, ULTRASONIC PROPERTIES), (*UNDERWATER SOUND, SOUND TRANSMISSION), KAOLINITE , ABSORPTION, COMPRESSIVE PROPERTIES, POROSITY, VELOCITY, VISCOELASTICITY, MATHEMATICAL MODELS, THESES, SEDIMENTATION

  1. Seafloor habitat mapping of the New York Bight incorporating sidescan sonar data

    USGS Publications Warehouse

    Lathrop, R.G.; Cole, M.; Senyk, N.; Butman, B.

    2006-01-01

    The efficacy of using sidescan sonar imagery, image classification algorithms and geographic information system (GIS) techniques to characterize the seafloor bottom of the New York Bight were assessed. The resulting seafloor bottom type map was compared with fish trawl survey data to determine whether there were any discernable habitat associations. An unsupervised classification with 20 spectral classes was produced using the sidescan sonar imagery, bathymetry and secondarily derived spatial heterogeneity to characterize homogenous regions within the study area. The spectral classes, geologic interpretations of the study region, bathymetry and a bottom landform index were used to produce a seafloor bottom type map of 9 different bottom types. Examination of sediment sample data by bottom type indicated that each bottom type class had a distinct composition of sediments. Analysis of adult summer flounder, Paralichthys dentatus, and adult silver hake, Merluccius bilinearis, presence/absence data from trawl surveys did not show evidence of strong associations between the species distributions and seafloor bottom type. However, the absence of strong habitat associations may be more attributable to the coarse scale and geographic uncertainty of the trawl sampling data than conclusive evidence that no habitat associations exist for these two species. ?? 2006 Elsevier Ltd. All rights reserved.

  2. Effects of Hurricanes Katrina and Rita on the chemistry of bottom sediments in Lake Pontchartrain, La.: Chapter 7F in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Van Metre, Peter C.; Horowitz, Arthur J.; Mahler, Barbara J.; Foreman, William T.; Fuller, Christopher C.; Burkhardt, Mark R.; Elrick, Kent A.; Furlong, Edward T.; Skrobialowski, Stanley C.; Smith, James J.; Wilson, Jennifer T.; Zaugg, Stephen D.

    2007-01-01

    Concerns about the effect of pumping contaminated flood waters into Lake Pontchartrain following the hurricanes of 2005 prompted the U.S. Geological Survey (USGS) to sample street mud, canal-suspended sediment, and bottom sediment in Lake Pontchartain. The samples were analyzed for a wide variety of potential inorganic and organic contaminants. Results indicate that contamination of lake sediment relative to other urban lakes and to accepted sedimentquality guidelines was limited to a relatively small area offshore from the Metairie Outfall Canal (popularly known as the 17th Street Canal) and that this contamination is probably transient.

  3. Anomalous topography on the continental shelf around Hudson Canyon

    USGS Publications Warehouse

    Knebel, H.J.

    1979-01-01

    Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.

  4. Quantification of soil erosion and transport processes in the in the Myjava Hill Land

    NASA Astrophysics Data System (ADS)

    Hlavcová, Kamila; Kohnová, Silvia; Velisková, Yvetta; Studvová, Zuzana; Socuvka, Valentin; Németová, Zuzana; Duregová, Maria

    2017-04-01

    The aim of the study is a complex analysis of soil erosion processes and proposals for erosion control in the region of the Myjava Hill Land located in western Slovakia. The Myjava Hill Land is characteristic of quick runoff response, intensive soil erosion by water and related muddy floods, which are determined by both natural and socio-economic conditions. In this paper a case study in the Svacenický Creek catchment, with a focus on the quantification of soil loss from the agriculturally arable lands and sediment transport to the dry water reservoir (polder) of the Svacenický Creek is presented. Erosion, sediment transport, and the deposition of sediments in the water reservoir represent a significant impact on its operation, mainly with regard to reducing its accumulation volume. For the analysis of the soil loss and sediment transport from the Svacenický Creek catchment, the Universal Soil Loss Equation, the USLE 2D, and the Sediment Delivery Ratio (SDR) models were applied. Because the resulting values of the soil loss exceeded the values of the tolerated soil loss, erosion control measures by strip cropping were designed. Strip cropping is based on altering crop strips with protective (infiltration) strips. The effectiveness of the protective (infiltration) strips for reducing runoff from the basin by the SCS-CN method was estimated. Monitoring the morphological parameters of bottom sediments and their changes over time is crucial information in the field of water reservoir operations. In September 2015, the AUV EcoMapper was used to gather the data information on the Svacenický Creek reservoir. The data includes information about the sediment depths and parameters of the water quality. The results of the surveying are GIS datasets and maps, which provide a higher resolution of the bathymetric data and contours of the bottom reservoir. To display the relief of the bottom, the ArcMap 10.1. software was used. Based on the current status of the bottom bathymetry, the current status of the clogging of the reservoir was evaluated. After an evaluation of all the analyses, we can conclude that within five years of the acceptance run, 10,515 m3 of bottom sediments accumulated in the Svacenický Creek reservoir.

  5. Adsorption Processes of Lead Ions on the Mixture Surface of Bentonite and Bottom Sediments.

    PubMed

    Hegedűsová, Alžbeta; Hegedűs, Ondrej; Tóth, Tomáš; Vollmannová, Alena; Andrejiová, Alena; Šlosár, Miroslav; Mezeyová, Ivana; Pernyeszi, Tímea

    2016-12-01

    The adsorption of contaminants plays an important role in the process of their elimination from a polluted environment. This work describes the issue of loading environment with lead Pb(II) and the resulting negative impact it has on plants and living organisms. It also focuses on bentonite as a natural adsorbent and on the adsorption process of Pb(II) ions on the mixture of bentonite and bottom sediment from the water reservoir in Kolíňany (SR). The equilibrium and kinetic experimental data were evaluated using Langmuir isotherm kinetic pseudo-first and pseudo-second-order rate equations the intraparticle and surface diffusion models. Langmuir isotherm model was successfully used to characterize the lead ions adsorption equilibrium on the mixture of bentonite and bottom sediment. The pseudo second-order model, the intraparticle and surface (film) diffusion models could be simultaneously fitted the experimental kinetic data.

  6. Distribution and transport of polychlorinated biphenyls in Little Lake Butte des Morts, Fox River, Wisconsin, April 1987-October 1988

    USGS Publications Warehouse

    House, L.B.

    1995-01-01

    The mass of PCB's transported from the lake in streamflow during 1987-88 was calculated to be 110 kilograms annually. The PCB's transport rate decreased 50 percent from 1987 to 1988, for the period April through September. Transport of PCB's was greatest during April and May of each year. The average flux rate of PCB's into the water column from the bottom sediment in the lake was estimated to be 1.2 milligrams per square meter per day. The PCB's load seems to increase at river discharges greater than 212 cubic meters per second. This increase in PCB's load might be caused by resuspension of PCB's-contaminated bottom-sediment deposits. There was little variation in PCB's load at flows less than 170 cubic meters per second. The bottom sediments are a continuing source of PCB's to Little Lake Butte des Morts and the lower Fox River.

  7. Density structure of submarine slump and normal sediments of the first gas production test site at Daini-Atsumi Knoll near Nankai Trough, estimated by LWD logging data

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takayama, T.; Fujii, T.; Yamamoto, K.

    2014-12-01

    Many geologists have discussed slope instability caused by gas-hydrate dissociation, which could make movable fluid in pore space of sediments. However, physical property changes caused by gas hydrate dissociation would not be so simple. Moreover, during the period of natural gas-production from gas-hydrate reservoir applying depressurization method would be completely different phenomena from dissociation processes in nature, because it could not be caused excess pore pressure, even though gas and water exist. Hence, in all cases, physical properties of gas-hydrate bearing sediments and that of their cover sediments are quite important to consider this phenomena, and to carry out simulation to solve focusing phenomena during gas hydrate dissociation periods. Daini-Atsumi knoll that was the first offshore gas-production test site from gas-hydrate is partially covered by slumps. Fortunately, one of them was penetrated by both Logging-While-Drilling (LWD) hole and pressure-coring hole. As a result of LWD data analyses and core analyses, we have understood density structure of sediments from seafloor to Bottom Simulating Reflector (BSR). The results are mentioned as following. ・Semi-confined slump showed high-density, relatively. It would be explained by over-consolidation that was result of layer-parallel compression caused by slumping. ・Bottom sequence of slump has relative high-density zones. It would be explained by shear-induced compaction along slide plane. ・Density below slump tends to increase in depth. It is reasonable that sediments below slump deposit have been compacting as normal consolidation. ・Several kinds of log-data for estimating physical properties of gas-hydrate reservoir sediments have been obtained. It will be useful for geological model construction from seafloor until BSR. We can use these results to consider geological model not only for slope instability at slumping, but also for slope stability during depressurized period of gas production from gas-hydrate. AcknowledgementThis study was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI).

  8. Biodegradable plastic bags on the seafloor: A future threat for seagrass meadows?

    PubMed

    Balestri, Elena; Menicagli, Virginia; Vallerini, Flavia; Lardicci, Claudio

    2017-12-15

    Marine plastic litter is a global concern. Carrier bags manufactured from non-biodegradable polymers constitute a large component of this litter. Because of their adverse impact on marine life, non-biodegradable bags have recently been replaced by biodegradable ones. However, growing evidence shows that these latter are not readily degradable in marine sediments and can alter benthic assemblages. The potential impact of biodegradable bags on seagrasses inhabiting sandy bottoms, which are the most widespread and productive ecosystems of the coastal zones, has been ignored. Mesocosm experiments were conducted to assess the effect of a commercialized biodegradable bag on a common seagrass species of the Mediterranean, Cymodocea nodosa, both at the level of individual plant (clonal growth) and of plant community (plant-plant relationships), under three culture regimes (plant alone, in combination with a neighbour of the same species or of the co-existing seagrass Zostera noltei) simulating different natural conditions (bare substrate, monospecific meadows or mixed meadows). The bag behaviour in marine sediment and sediment physical/chemical variables were also examined. After six months of sediment exposure, the bag retained considerable mass (85% initial weight) and reduced sediment pore-water oxygen concentration and pH. In the presence of bag, C. nodosa root spread and vegetative recruitment increased compared to controls, both intra- and interspecific interactions shifted from neutral to competitive, and the growth form changed from guerrilla (loosely arranged group of widely spaced ramets) to phalanx form (compact structure of closed spaced ramets) but only with Z. noltei. These findings suggest that biodegradable bags altering sediment geochemistry could promote the spatial segregation of seagrass clones and influence species coexistence. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Temporal and spatial variations in suspended matter in continental shelf and slope waters off the north-eastern United States

    USGS Publications Warehouse

    Bothner, Michael H.; Parmenter, Carol M.; Milliman, John D.

    1981-01-01

    Seston in waters of Georges Bank originates primarily from biological production and from resuspension of bottom sediments. The concentrations of suspended matter observed on the central shoals are more influenced by storms than by seasonal changes. Winter storms produce highest concentrations of non-combustible material throughout the water column, and summer storms appear to increase biological production by mixing additional nutrients into the photic zone. On the south-east flank of the bank, in water depths between 80 and 200 in, the concentrations of total suspended matter and non-combustible material show little variation compared with the central shoals, and storm effects are far less noticeable.Highest concentrations (>15 mg 1−1) of suspended matter occur in bottom waters south of Nantucket Island after winter storms and appear to be primarily resuspended bottom sediment. Resuspended sediment is also common in near-bottom waters of the south-western Gulf of Maine, and occasionally near the intersection of the shelf/slope water mass front and the bottom.Seasonal variations were observed in the distribution and species composition of phytoplankton. Coccoliths are predominant on the central bank during the winter, but during the spring and summer they are concentrated on the eastern flank at deeper depths.

  10. Structure of Subsurface Sediments in the Scan Basin (Scotia Sea)

    NASA Astrophysics Data System (ADS)

    Schreider, Al. A.; Schreider, A. A.; Sazhneva, A. E.; Galindo-Zaldivar, J.; Ruano, P.; Maldonado, A.; Martos-Martin, Y.; Lobo, F.

    2018-01-01

    The structure of sediments in the Scotia Sea is used as a basis for reconstructing the geological history of its bottom in the Late Quaternary. The Scan Basin is one of the main elements of the topography of the southern Scotia Sea. Its formation played a considerable role in the fragmentation of the continent, which included the Bruce and Discovery banks. The main parameters of the sediment layer in the Scan Basin have been reconstructed by the present time, but its top part has not been studied. In this work, we analyze the first data obtained on the R/V Gesperidas with the use of a TOPAS PS 18/40 high-resolution seismic profilograph in 2012. Three layers in the subsurface sediments on the bottom of the Scan Basin were specified for the first time. The mean periods of their deposition in the Late Quaternary were determined as 115000 years for the first, 76000 years for the second, and 59 000 years for the third layer from the surface of the bottom. The duration of the total accumulation period of the three layers is about 250000 years.

  11. A deep-sea sediment transport storm

    NASA Astrophysics Data System (ADS)

    Gross, Thomas F.; Williams, A. J.; Newell, A. R. M.

    1988-02-01

    Photographs taken of the sea bottom since the 1960s suggest that sediments at great depth may be actively resuspended and redistributed1. Further, it has been suspected that active resus-pension/transport may be required to maintain elevated concentrations of particles in deep-sea nepheloid layers. But currents with sufficient energy to erode the bottom, and to maintain the particles in suspension, have not been observed concurrently with large concentrations of particles in the deep nepheloid layer2-4. The high-energy benthic boundary-layer experiment (HEBBLE) was designed to test the hypothesis that bed modifications can result from local erosion and deposition as modelled by simple one-dimensional local forcing mechanics5. We observed several 'storms' of high kinetic energy and near-bed flow associated with large concentrations of suspended sediment during the year-long deployments of moored instruments at the HEBBLE study site. These observations, at 4,880 m off the Nova Scotian Rise in the north-west Atlantic, indicate that large episodic events may suspend bottom sediments in areas well removed from coastal and shelf sources.

  12. TRACE ELEMENT DISTRIBUTION IN SEDIMENTS OF THE MID-ATLANTIC RIDGE.

    DTIC Science & Technology

    MARINE GEOLOGY, ATLANTIC OCEAN), (*OCEAN BOTTOM, MINERALS), SEDIMENTATION, IRON, COBALT, MANGANESE, STRONTIUM, CHLORITES, NEUTRON ACTIVATION, GEOCHEMISTRY, CALCITE , CARBONATES, X RAY DIFFRACTION, CLAY MINERALS, THESES

  13. Seafloor environments within the Boston Harbor- Massachusetts Bay sedimentary system: A regional synthesis

    USGS Publications Warehouse

    Knebel, H.J.; Circe, R.C.

    1995-01-01

    Modern seafloor sedimentary environments within the glaciated, topographically complex Boston Harbor and Massachusetts Bay area have been interpreted and mapped from an extensive collection of sidescan sonar records and supplemental marine geologic data. Three categories of environments are present that reflect the dominant long-term processes of erosion or nondeposition, deposition, and sediment reworking. (1) Environments of erosion or nondeposition comprise exposures of bedrock, glacial drift, coarse lag deposits, and possibly coastal plain rocks that contain sediments (where present) ranging from boulder fields to gravelly sands and occur in areas of relatively strong currents. (2) Environments of deposition contain fine-grained sediments ranging from muddy sands to muds that have accumulated in areas of predominantly weak bottom currents. (3) Environments of sediment reworking contain patches with textures ranging from sandy gravels to muds that have been produced by a combination of erosion and deposition in areas with variable bottom currents. The distribution of sedimentary environments across the Boston Harbor-Massachusetts Bay area is extremely patchy. Locally, this patchiness is due either to modifications of bottom-current strength (caused by the irregular topography and differences in water depth) or to small-scale changes in the supply of fine-grained sediments. Regional patchiness, however, reflects differences in geologic and oceanographic conditions among the estuarine, inner shelf, and basinal parts of the sedimentary system. The estuarine part of the system (Boston Harbor) is a depositional trap for fine-grained sediments because it is protected from large waves, has generally weak and variable tidal currents, and receives a large supply of fine grained detritus from natural and anthropogenic sources. The inner shelf, on the other hand, is largely an area of erosion or nondeposition due to sediment removal and redistribution during past sea-level changes, to sediment resuspension and winnowing by modern waves and currents, and to an inadequate supply of fine-grained sediments. The basinal part of the system (Stellwagen Basin) is mainly a tranquil depositional environment in which fine-grained sediments from several potential sources settle through the water column and accumulate under weak bottom currents. This study indicates areas within the Boston Harbor-Massachusetts Bay sedimentary system where fine-grained sediments and associated contaminants are likely to be either moved or deposited. It also provides a guide to the locations and variability of benthic habitats.

  14. Sediment quality in the north coastal basin of Massachusetts, 2003

    USGS Publications Warehouse

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston Harbor. The probable toxicity to benthic organisms ranged from about 33 to 91 percent across the study area. Of the elements analyzed, antimony, arsenic, beryllium, and lead exceeded the soil standards for risk to human health. Of the PAHs analyzed, four also exceeded soil standards. Organochlorine pesticide concentrations, however, were not high enough relative to the soil standards to pose a risk to human health. Some trace element and some organic compound concentrations in bottom sediment may be toxic to aquatic organisms and may pose a risk to human health.

  15. Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine

    USGS Publications Warehouse

    Butman, Bradford; Aretxabaleta, Alfredo L.; Dickhudt, Patrick J.; Dalyander, P. Soupy; Sherwood, Christopher R.; Anderson, Donald M.; Keafer, Bruce A.; Signell, Richard P.

    2014-01-01

    Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by waves and currents) could change the distribution of over-wintering cysts from patterns observed in the previous autumn; or if resuspension could contribute cysts to the water column during spring when cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m−2 near Grand Manan Island, to 0.35 kg m−2 in northern Wilkinson Basin. The depth of sediment eroded ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine shelf, to about 1.2 mm in clayey–silt sediment at 250 m water depth in northern Wilkinson Basin. The sediment erodibility measurements were used in a sediment-transport model forced with modeled waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional sediment resuspension along the central and western Maine coast associated with storms, steady resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The sediment response in the model depended primarily on the profile of sediment erodibility, strength and time history of bottom stress, consolidation time scale, and the current in the water column. Based on analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing a bottom shear stress large enough to resuspend sediment at 80 m ranged from 0 to 2 in spring (April and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in water greater than about 100 m deep. The observations and model results suggest that a millimeter or so of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical distribution in the water column, these events could result in a concentration in the water column of at least 104 cysts m−3. In some years, resuspension events could episodically introduce cysts into the water column in spring, where germination is likely to be facilitated at the time of bloom formation. An assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year requires more detailed investigation.

  16. Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska

    USGS Publications Warehouse

    Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.

    2000-01-01

    Introduction The U.S. Geological Survey has a long history of exploring marine geology in the Gulf of Alaska. As part of a cooperative program with other federal and state agencies, the USGS is investigating the relations between ocean-floor geology and benthic marine biohabitats. This bottom sediment map, compiled from published literature will help marine biologists develop an understanding of sea-floor geology in relation to various biological habitats. The pattern of sea-floor sedimentation and bottom morphology in the Gulf of Alaska reflects a complex interplay of regional tectonism, glacial advances and retreats, oceanic and tidal currents, waves, storms, eustatic change, and gravity-driven processes. This map, based on numerous cruises during the period of 1970-1996, shows distribution of bottom sediments in areas of study on the continental shelf. The samples were collected with piston, box, and gravity corers, and grab samplers. The interpretations of sediment distribution are the products of sediment size analyses combined with interpretations of high-resolution seismic reflection profiles. The sea floor was separated into several areas as follows: Cook Inlet -- Hazards studies in this embayment emphasized sediment distribution, sediment dynamics, bedforms, shallow faults, and seafloor stability. Migrating mega-sandwaves, driven by strong tidal currents, influence seabed habitats and stability of the seafloor, especially near pipelines and drilling platforms. The coarseness of the bottom sediment reinforces the influence of the strong tidal currents on the seafloor habitats. Kodiak Shelf -- Tectonic framework studies demonstrate the development of an accretionary wedge as the Pacific Plate underthrusts the Alaskan landmass. Seismic data across the accretionary wedge reveal anomalies indicative of fluid/gas vent sites in this segment of the continental margin. Geologic hazards research shows that movement along numerous shallow faults poses a risk to sea floor structures. Sea-floor sediment on shallow banks is eroded by seasonal wave-generated currents. The winnowing action of the large storm waves results in concentrations of gravel over broad segments of the Kodiak shelf. Northeastern Gulf of Alaska -- Tectonic framework studies demonstrate that rocks of distant origin (Yakutat terrane) are currently attached to and moving with the Pacific Plate, as it collides with and is subducted beneath southern Alaska. This collision process has led to pronounced structural deformation of the continental margin and adjacent southern Alaska. Consequences include rapidly rising mountains and high fluvial and glacial sedimentation rates on the adjacent margin and ocean floor. The northeastern Gulf of Alaska shelf also has concentrations of winnowed (lag) gravel on Tarr Bank and on the outer shelf southeast of Yakutat Bay. Between Kayak Island and Yakutat Bay the outer shelf consists of pebbly mud (diamict). This diamict is a product of glacial marine sedimentation during the Pleistocene and is present today as a relict sediment. A prograding wedge of Holocene sediment consisting of nearshore sand grading seaward into clayey silt and silty clay covers the relict pebbly mud to mid-shelf and beyond. Shelf and slope channel systems transport glacially derived sediment across the continental margin into Surveyor Channel, an abyssal fan and channel system that reaches over 1,000 km to the Aleutian Trench.

  17. Sand waves on an epicontinental shelf: Northern Bering Sea

    USGS Publications Warehouse

    Field, M.E.; Nelson, C.H.; Cacchione, D.A.; Drake, D.E.

    1981-01-01

    Sand waves and current ripples occupy the crests and flanks of a series of large linear sand ridges (20 km ?? 5 km ?? 10 m high) lying in an open-marine setting in the northern Bering Sea. The sand wave area, which lies west of Seward Peninsula and southeast of Bering Strait, is exposed to the strong continuous flow of coastal water northward toward Bering Strait. A hierarchy of three sizes of superimposed bedforms, all facing northward, was observed in successive cruises in 1976 and 1977. Large sand waves (height 2 m; spacing 200 m) have smaller sand waves (height 1 m; spacing 20 m) lying at a small oblique angle on their stoss slopes. The smaller sand waves in turn have linguoid ripples on their stoss slopes. Repeated studies of the sand wave fields were made both years with high-resolution seismic-reflection profiles, side-scan sonographs, underwater photographs, current-meter stations, vibracores, and suspended-sediment samplers. Comparison of seismic and side-scan data collected along profile lines run both years showed changes in sand wave shape that indicate significant bedload transport within the year. Gouge marks made in sediment by keels of floating ice also showed significantly different patterns each year, further documenting modification to the bottom by sediment transport. During calm sea conditions in 1977, underwater video and camera observations showed formation and active migration of linguoid and straight-crested current ripples. Current speeds 1 m above the bottom were between 20 and 30 cm/s. Maximum current velocities and sand wave migration apparently occur when strong southwesterly winds enhance the steady northerly flow of coastal water. Many cross-stratified sand bodies in the geologic record are interpreted as having formed in a tidal- or storm-dominated setting. This study provides an example of formation and migration of large bedforms by the interaction of storms with strong uniform coastal currents in an open-marine setting. ?? 1981.

  18. Concentration, sources and risk assessment of PAHs in bottom sediments.

    PubMed

    Baran, Agnieszka; Tarnawski, Marek; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Spałek, Iwona

    2017-10-01

    The aims of the study were to investigate the concentration, sources and ecological risk of PAHs (polycyclic aromatic hydrocarbons) in bottom sediments collected from nine reservoirs located in south-eastern Poland. The concentration of ∑PAHs in sediments ranged from 150 to 33,900 μg kg -1 . The total PAH concentration in the bottom sediments was arranged in the following order: Rybnik > Rzeszów > Brzóza Królewska > Brzóza Stadnicka > Besko > Chechło > Ożanna > Głuchów > Narożniki. BAP was the major compound in sediments from the Besko, Brzóza Stadnicka and Rzeszów reservoirs; FLT in the sediments from the Rybnik, Narożniki, Ożanna and Brzóza Królewska reservoirs; and FLN from the Głuchów and Chechło reservoirs. The major inputs of PAHs were of pyrolytic origin. However, petrogenic sources of PAHs occurred especially in the Chechło and Głuchów reservoirs. The ecological risk assessment indicated that non-adverse effects on the benthic fauna may occur for sediments from the Głuchów, Narozniki and Ożanna reservoirs, while slightly adverse effects were found for sediments from the Brzóza Królewska, Besko, Brzóza Stadnicka and Chechło reservoirs. The other sediments showed moderate (Rzeszów reservoirs) and strong effect (Rybnik reservoir) on biological communities. Individual PAHs such as NAP, PHE, FLT, PYR, BAA, CHR and BAP in sediments from the Rybnik reservoir and BAP in sediments from the Rzeszów reservoirs indicated a higher possibility of occurrence of an adverse ecological effect. PCA analysis found slight difference between the reservoirs in the profile of variable PAHs. Only the sediments from the Rybnik and Chechło reservoirs differ considerably from this grouping.

  19. Characterization of bottom sediments in the Río de la Plata estuary

    NASA Astrophysics Data System (ADS)

    Simionato, Claudia G.; Moreira, Diego

    2016-04-01

    Bottom sediments and surface water samples were collected in the intermediate and outer Río de la Plata Estuary during 2009-2010, in six repeated cruises, with 26 stations each. Samples were processed for grain size using a laser particle size analyzer, and water and organic matter contents. The aim of this work is to analyze this data set to provide a comprehensive and objective characterization of the bottom sediments distribution, to study their composition and to progress in the construction of a conceptual model of the involved physical mechanisms. Principal Components Analysis is applied to the bottom sediments size histograms to investigate the spatial patterns. Variations in grain-size parameters contain information on possible sediment transport patterns, which were analyzed by means of trend vectors. Sediments show a gradational arrangement of textures, sand dominant at the head, silt in the intermediate estuary and clayey silt and clay at its mouth; textures become progressively more poorly sorted offshore, and the water and organic matter contents increase. And seem to be strongly related to the geometry and the hydrodynamics. Along the Northern coast of the intermediate estuary, well sorted medium and fine silt predominates, whereas in the Southern coast, coarser and less sorted silt prevails, due to differences in tidal currents and/or in water pathways. Around Barra del Indio, clay prevails over silt and sand, and the water and organic matter contents reach a maximum, probably due flocculation, and the reduction of the currents. Immediately seawards the salt wedge, net transport reverses its direction and well sorted coarser sand from the adjacent shelf dominates. Relict sediment is observed around the Santa Lucía River, consisting of poorly sorted fine silt and clay. The inferred net transport suggests convergence at the Barra del Indio shoal, which is consistent with the constant growing of the banks.

  20. Distribution and Origin of Multiple Bottom Simulating Reflectors in the Danube Deep-Sea Fan, Black Sea

    NASA Astrophysics Data System (ADS)

    Zander, T.; Berndt, C.; Haeckel, M.; Klaucke, I.; Bialas, J.; Klaeschen, D.

    2015-12-01

    The sedimentary succession of the anoxic, deep Black Sea Basin is an ideal location for organic matter preservation and microbial methane generation. In the depth range of the gas hydrate stability zone (GHSZ) methane gas forms methane hydrates and presumably large accumulations of gas hydrate exist in porous sediments, such as those encountered on the Danube deep-sea fan. High-resolution P-Cable 3D seismic data reveals the character and distribution of up to four stacked bottom simulating reflectors (BSR) within the channel-levee systems of the Danube deep-sea fan. These anomalous BSRs were first described by Popescu et al. (2006). The geological processes that lead to multiple BSRs are still poorly understood. The theoretical base of the GHSZ calculated from regional temperature gradients and salinity data is in agreement with the shallowest BSR in the area. We have tested two hypotheses that may explain the formation of the lower BSRs. The first hypothesis is that the lower BSRs are formed by overpressure compartments. Large amounts of free gas below the BSRs are trapped in the pore space increasing the pressure above hydrostatic condition up to a level where gas hydrates are stable again. The second hypothesis is that the lower BSRs are linked to the growth of the Danube fan. Sediment deposits from the outer levee of the youngest channel cover the area hosting multiple BSRs. The youngest channel developed during the last sea level lowstand that is correlated with the Neo-Euxinian that started 23,000 yrs. BP. We propose that the rapid sediment loading during sea level lowstands is a key factor for the preservation of paleo-BSRs in the study area. References Popescu, I., De Batist, M., Lericolais, G., Nouzé, H., Poort, J., Panin, N., Versteeg, W., Gillet, H., 2006. Multiple bottom-simulating reflections in the Black Sea: Potential proxies of past climate conditions. Marine Geology 227, 163-176.

  1. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in the Yuma Valley, Arizona, 1995

    USGS Publications Warehouse

    Tadayon, Saeid; King, K.A.; Andrews, Brenda; Roberts, William

    1997-01-01

    Because of concerns expressed by the U.S. Congress and the environmental community, the Department of the Interior began a program in late 1985 to identify the nature and extent of water-quality problems induced by irrigation that might exist in the western States. Surface water, bottom sediment, and biota were collected from March through September 1995 along the lower Colorado River and in agricultural drains at nine sites in the Yuma Valley, Arizona, and analyzed for selected inorganic and organic constituents. Analyses of water, bottom sediment, and biota were completed to determine if irrigation return flow has caused, or has the potential to cause, harmful effects on human health, fish, and wildlife in the study area. Concentrations of dissolved solids in surface-water samples collected in March generally did not vary substantially from surface-water samples collected in June. Concentrations of dissolved solids ranged from 712 to 3,000 milligrams per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for drinking water. Concentrations of chloride in 9 of 18 water samples and concentrations of sulfate in 16 of 18 water samples exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter for drinking water. Calcium and sodium were the dominant cations, and chloride and sulfate were the dominant anions. The maximum selenium concentration of 8 micrograms per liter exceeded the U.S. Environmental Protection Agency aquatic-life chronic criterion of 5 micrograms per liter. Concentrations of lead in 7 of 18 water samples and concentrations of mercury in 4 of 18 water samples exceeded the aquatic-life cronic criteria of 3.2 and 0.012 micrograms per liter, respectively. Concentrations of antimony, beryllium, cadmium, and silver in the water samples were below analytical reporting limits. Arsenic was detected in 3 of 9 bottom-sediment samples, and concentrations ranged from 11 to 16 micrograms per gram. Concentrations ofaluminum, beryllium, boron, copper, lead, and zinc were highest in samples from Main Drain at southerly international boundary near San Luis, Arizona. Selenium was detected in all bottom-sediment samples, and concentrations ranged from 0.1 to 0.7 micrograms per gram. Concentrations of cadmium, europium, homium, mercury, molybdenum, silver, tantalum, tin, and uranium were below analytical reporting limits in the bottom-sediment samples. Concentrations of trace elements in bottom-sediment samples were within the ranges found in a study of soils of the western United States and did not indicate a significant accumulation of these constituents. p,p'Dichlorodiphenyldichloroethylene (commonly referred to as p,-p'-DDE) was detected in one bottom-sediment sample at a concentration of 1.4 micrograms per gram. No other organochlorine compounds were detected in the bottom-sediment samples. DDE was present in all fish and bird samples. Almost one-half of the fish samples contained DDE residues that were two times higher than the mean calculated for a national study in 1984-85. Twenty-tree percent of the fish contained more than three times the national mean. Fish from downstream parts of the Main Drain had the highest concentrations of DDE. Although concentrations of DDE in fish and in bird carcasses and eggs were above background levels, residues generally were below thresholds associated with chronic poisoning and reproductive problems in figh and wildlife. Concentrations of 18 trace elements were detected in cattail (Typha sp.) roots, freshwater clam (Corbicula fluminea), fish, and bird samples. Selenium in most fish and in livers of red-winged (Agelaius phoeniceus) and yellow-headed (Xanthocephalus xanthocephalus) blackbirds was above background concentrations but below toxic concentrations. In contrast, selenium was present in a killdeer (Charadrium vociferus) liver sample at potentially toxic con

  2. Processes forcing the suspended sediments distribution in a wide, shallow and microtidal estuary: a numerical case study for the Río de la Plata

    NASA Astrophysics Data System (ADS)

    Simionato, Claudia; Moreira, Diego

    2017-04-01

    The impact of the diverse mechanisms driving the suspended sediments distribution in the wide, shallow and microtidal Río de la Plata (RdP) estuary and the adjacent shelf is studied by means of a set of process-oriented numerical simulations. With that aim, a regional application of the hydro-sedimentological Model for Applications at Regional Scale (MARS) is implemented, tested and run under diverse conditions. Even the simulations are idealized, they reproduce both qualitatively and quantitatively well the main features of the suspended sediments observed distribution, particularly the mean values of concentration and its gradients: perpendicular to the estuary axis at the upper and intermediate RdP and parallel to the estuary axis at its outer part. Even though naturally the diameter of the sediments that deposit decays with the distance to the sources (with sands and silts dominating in the upper estuary and fine silts and clays over the Barra del Indio), model results show that the large width and the geometry of the estuary play an important role in the sedimentation process. The widening and deepening, and the associated significant reduction of the currents speed that occurs after (i) the confluence of the tributaries and (ii) downstream the Barra del Indio Shoal, favors sediments deposition downstream those areas. Even though tides are of small amplitude in the study area, they have a significant impact on the lateral mixing and the re-suspension of bottom sediments; this last augments the concentration of fine sediments in the layers close to the bottom but their energy is not enough to rise them up to the surface. The model reproduces the increment in the concentration of fine sediments observed in the areas where tidal dissipation energy by bottom friction maximizes (over the southern coast of the RdP and around Punta Piedras and Punta Rasa), but shows that tides alone cannot account for the observed maxima. Winds (which can be quite large over this area) enhance horizontal mixing, smoothing the pattern produced by the tides. Wind waves are the most important forcing for the vertical mixing of the sediments. Their effect is most evident along the southern coast of the RdP and the Barra del Indio Shoal, where wind waves rise to the surface the sediments resuspended by tides. The bottom salinity front acts retaining the sediments upstream the Barra del Indio shoal; there, estuarine currents and flocculation play an important role in sediments deposition.

  3. Sediment dynamics in the Adriatic Sea investigated with coupled models

    USGS Publications Warehouse

    Sherwood, Christopher R.; Book, Jeffrey W.; Carniel, Sandro; Cavaleri, Luigi; Chiggiato, Jacopo; Das, Himangshu; Doyle, James D.; Harris, Courtney K.; Niedoroda, Alan W.; Perkins, Henry; Poulain, Pierre-Marie; Pullen, Julie; Reed, Christopher W.; Russo, Aniello; Sclavo, Mauro; Signell, Richard P.; Traykovski, Peter A.; Warner, John C.

    2004-01-01

    Several large research programs focused on the Adriatic Sea in winter 2002-2003, making it an exciting place for sediment dynamics modelers (Figure 1). Investigations of atmospheric forcing and oceanic response (including wave generation and propagation, water-mass formation, stratification, and circulation), suspended material, bottom boundary layer dynamics, bottom sediment, and small-scale stratigraphy were performed by European and North American researchers participating in several projects. The goal of EuroSTRATAFORM researchers is to improve our ability to understand and simulate the physical processes that deliver sediment to the marine environment and generate stratigraphic signatures. Scientists involved in the Po and Apennine Sediment Transport and Accumulation (PASTA) experiment benefited from other major research programs including ACE (Adriatic Circulation Experiment), DOLCE VITA (Dynamics of Localized Currents and Eddy Variability in the Adriatic), EACE (the Croatian East Adriatic Circulation Experiment project), WISE (West Istria Experiment), and ADRICOSM (Italian nowcasting and forecasting) studies.

  4. Quantitative Evaluations of the Effects of the Seabed Sediments on Scattering and Propagation of Acoustics Energy in Shallow Oceans

    DTIC Science & Technology

    1999-09-30

    Dec. (1998) Yamamoto, T., “ A poroelastic model of highly permeable rocks,” Geophysics, revised August 1999a. Yamamoto, T., “ Acoustical imaging of...scattering mechanisms (volume fluctuation, bottom and sub-bottom roughness) on the acoustic propagation and scattering, and the effects of poroelastic ...properties of the sediments on the propagation of acoustic waves. OBJECTIVES To develop a universal (forward/inverse) model for the seafloor roughness

  5. Contaminant distribution and accumulation in the surface sediments of Long Island Sound

    USGS Publications Warehouse

    Mecray, E.L.; Buchholtz ten Brink, Marilyn R.

    2000-01-01

    The distribution of contaminants in surface sediments has been measured and mapped as part of a U.S. Geological Survey study of the sediment quality and dynamics of Long Island Sound. Surface samples from 219 stations were analyzed for trace (Ag, Ba, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn and Zr) and major (Al, Fe, Mn, Ca, and Ti) elements, grain size, and Clostridium perfringens spores. Principal Components Analysis was used to identify metals that may covary as a function of common sources or geochemistry. The metallic elements generally have higher concentrations in fine-grained deposits, and their transport and depositional patterns mimic those of small particles. Fine-grained particles are remobilized and transported from areas of high bottom energy and deposited in less dynamic regions of the Sound. Metal concentrations in bottom sediments are high in the western part of the Sound and low in the bottom-scoured regions of the eastern Sound. The sediment chemistry was compared to model results (Signell et al., 1998) and maps of sedimentary environments (Knebel et al., 1999) to better understand the processes responsible for contaminant distribution across the Sound. Metal concentrations were normalized to grain-size and the resulting ratios are uniform in the depositional basins of the Sound and show residual signals in the eastern end as well as in some local areas. The preferential transport of fine-grained material from regions of high bottom stress is probably the dominant factor controlling the metal concentrations in different regions of Long Island Sound. This physical redistribution has implications for environmental management in the region.

  6. Oxic to anoxic transition in bottom waters during formation of the Citronen Fjord sediment-hosted Zn-Pb deposit, North Greenland

    USGS Publications Warehouse

    Slack, John F.; Rosa, Diogo; Falck, Hendrik

    2015-01-01

    Bulk geochemical data acquired for host sedimentary rocks to the Late Ordovician Citronen Fjord sediment-hosted Zn-Pb deposit in North Greenland constrain the redox state of bottom waters prior to and during sulphide mineralization. Downhole profiles for one drill core show trends for redox proxies (MnO, Mo, Ce anomalies) that suggest the local basin bottom waters were initially oxic, changing to anoxic and locally sulphidic concurrent with sulphide mineralization. We propose that this major redox change was caused by two broadly coeval processes (1) emplacement of debris-flow conglomerates that sealed off the basin from oxic seawater, and (2) venting of reduced hydrothermal fluids into the basin. Both processes may have increased H2S in bottom waters and thus prevented the oxidation of sulphides on the sea floor.

  7. Quality of bottom material and elutriates in the lower Willamette River, Portland Harbor, Oregon

    USGS Publications Warehouse

    Fuhrer, Gregory J.

    1989-01-01

    In October 1983 the U.S. Geological Survey, in cooperation with the U.S. Army Corp of Engineers, collected bottom-material and water samples from Portland Harbor, Oregon to determine concentrations of trace metals and organic compounds in elutriate-test filtrate and bottom material. Of the trace metals examined in bottom material, concentrations of cadmium slightly exceed those of local rocks, whereas lead and zinc exceedance is substantially larger. Of the organochlorine compounds examined in bottom material chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were detected and quantified in at least 30% of the samples tested. A large DDT concentration (2,700 microgram/kilogram) near Doane Lake outlet is indicative of recent contamination. Polychlorinated biphenyls are ubiquitous in bottom sediments; median concentrations are nearly 65 micrograms/kilogram and as large as 550 microgram/kilogram. PCB loading to the Columbia River from Willamette River suspended sediment has been estimated to be 72 kilograms/year, nearly five times the PCB dredge load of 15 kilogram/year. The acid and base-neutral extractable di-n-butyl phthalate and bis (2-ethylhexyl)phthalate occur in sediments of Terminal No. 2 in concentrations as large as 1,965 and 2,200 micrograms/kilogram, respectively. Of the trace metals examined in both standard and oxic elutriate-test filtrate, only copper concentration in an oxic elutriate-test filtrate (19 micrograms/L) exceeded the water quality criteria (5.7 micrograms/L). (USGS)

  8. Suspension freezing of bottom sediment and biota in the Northwest Passage and implications for Arctic Ocean sedimentation

    USGS Publications Warehouse

    Reimnitz, E.; Marincovich, L.; McCormick, M.; Briggs, W.M.

    1992-01-01

    No evidence was seen for entrainment by bottom adfreezing, bluff slumping, river flooding, dragging ice keels, or significant eolian transport from land to sea. Muddy sediment with pebbles and cobbles, algae with holdfasts, ostracodes with appendages, and well-preserved mollusks and sea urchins were collected from two sites in a 50 km long stretch of turbid ice. These materials indicate that suspension freezing reaching to a water depth of 25-30 m during the previous fall was responsible for entrainment. This mechanism requires rapid ice formation in open, shallow water during a freezing storm, when the ocean becomes supercooled, and frazil and anchor ice attach to and ultimately lift sediment and living organisms to the sea surface. -from Authors

  9. Heavy metals in the bottom sediments of the Furo of Laura estuary, Eastern Amazon, Brazil.

    PubMed

    Lima, M W; Santos, M L S; Faial, K C F; Freitas, E S; Lima, M O; Pereira, J A R; Cunha, I P R T

    2017-05-15

    The Furo of Laura is an economically important river in the Amazon estuary. Thus, in the present study, we evaluated the metal distribution (Al, Cd, Co, Cu, Cr, Fe, Ni, and Mg) in the bottom sediments of this river. The sediments were sampled at four points every 2months for a year with an Ekman-Birge sampler. After microwave acid digestion, the metal levels were determined by optical emission spectrometry with inductively coupled plasma. The particle size and organic matter content influenced the concentration of the metals. The sediments were not enriched by the analyzed metals; the estuary therefore retained the characteristics of an uncontaminated environment, thus serving as a reference environment for comparison. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Degree of contamination and sources of polychlorinated biphenyls in Meandering Road Creek and Woods Inlet of Lake Worth, Fort Worth, Texas, 2004 and 2006-07

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.

    2008-01-01

    Lake Worth is a reservoir on the West Fork Trinity River on the western edge of Fort Worth, Texas. Air Force Plant 4 (AFP4) is on the eastern shore of Woods Inlet, an arm of Lake Worth that extends south from the main body of the lake. Two previous reports documented ele-vated polychlorinated biphenyl (PCB) concentrations in surficial sediment in Woods Inlet relative to those in surficial sediment in other parts of Lake Worth. This report presents the results of another USGS study, done in cooperation with the U.S. Air Force, to indicate the degree of PCB contamination of Meandering Road Creek and Woods Inlet and to identify possible sources of PCBs in Meandering Road Creek and Woods Inlet on the basis of suspended, streambed, and lake-bottom sediment samples collected there in 2004 and 2006-07. About 40 to 80 percent of total PCB concentrations (depending on how total PCB concentration is computed) in suspended sediment exceed the threshold effect concentration, a concentration below which adverse effects to benthic biota rarely occur. About 20 percent of total PCB concentrations (computed as sum of three Aroclors) in suspended sediment exceed the probable effect concentration, a concentration above which adverse effects to benthic biota are expected to occur frequently. About 20 to 30 percent of total PCB concentrations in streambed sediment exceed the threshold effect concentration; and about 6 to 20 percent of total PCB concentrations in lake-bottom (Woods Inlet) sediment exceed the threshold effect concentration. No streambed or lake-bottom sediment concentrations exceed the probable effect concentration. The sources of PCBs to Meandering Road Creek and Woods Inlet were investigated by comparing the relative distributions of PCB congeners of suspended sediment to those of streambed and lake-bottom sediment. The sources of PCBs were identified using graphical analysis of normalized concentrations (congener ratios) of 11 congeners. For graphical analysis, the sampling sites were divided into three groups with each group associated with one of the three outfalls sampled: SSO, OF4, and OF5. The variations of normalized PCB congener concentrations from Woods Inlet, from outfalls along Meandering Road Creek, and from streambed sediment sampling sites along Meandering Road Creek generally form similar patterns within sample groups, which is indicative of a common source of PCBs to each group. Overall, the variations in congener ratios indicate that PCBs in surficial lake-bottom sediment of Woods Inlet probably entered Woods Inlet primarily from Meandering Road Creek, and that runoff from AFP4 is a prominent source of PCBs in Meandering Road Creek. Sixteen of the 20 box core sites in Woods Inlet had lower PCB concentrations in the 2006 cores compared to those in the 2003 cores.

  11. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  12. Bottom morphology in the Song Hau distributary channel, Mekong River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Allison, Mead A.; Dallon Weathers, H.; Meselhe, Ehab A.

    2017-09-01

    Field studies in the Song Hau distributary of the Mekong Delta in Vietnam conducted at high (Sept.-Oct 2014) and low (March 2015) Mekong River discharge are utilized to examine channel bottom morphology and links with sediment transport in the system. Multibeam bathymetric mapping surveys over the entire channel complex in the lower 80 km of the distributary channel, and over 12- to 24-h tidal periods at six transect locations in the reach are used to characterize bottom type and change on seasonal and tidal timescales, supplemented by bottom sampling. The results of this study indicate that the largest proportion of channel floor (up to 80% of the total area) is composed of substratum outcrops of relict sediment units deposited during the progradation of the delta in the last 3.5 ka. These take the form of outcrops that are either (1) steep-sided, tabular channel floor, (2) steep-sided sidewall, or (3) relatively flat channel floor. Flatter outcrops of channel floor substratum are identified by the presence of sedimentary furrows (<0.5 m deep) incised into the channel bottom that are exposed at high discharge and oriented along channel and laterally continuous for kilometers. These furrows are persistent in location and extent across tidal cycles and appear to be incised into relict units, sometimes with a thin surficial layer of modern sediment observable in bottom grabs. The extent of substratum exposure, greater than that observed previously in low tidal energy systems like the Mississippi River, may relate both to a relatively low sand supply from the catchment, and/or to an efficient transfer of both sand and mud through this tidally energetic channel. Sand bottom areas forming dunes, comprise about 19% of the channel floor over the study area and are generally less than a few meters thick except on bar extensions of mid-channel islands. Both sandy and substratum areas are mantled by soft muds 0.25-1 m thick during low discharge in the estuarine section of the study area. This mud mantling appears to be a key control on bottom sourcing of sand to suspension. An understanding of channel bottom morphology, particularly mobility and erodibility of sediments, is valuable for setting up morphodynamic models of channel evolution that can be used to test system response to anthropogenic alterations in the catchment and rising sea levels.

  13. Identifying water-quality trends in the Trinity River, Texas, USA, 1969-1992, using sediment cores from Lake Livingston

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1996-01-01

    Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.

  14. The geology of Six Mile Reef, eastern Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; Denny, J.F.; Williams, S.J.; Moser, M.S.; Forfinski, N.A.; Stewart, H.F.; Doran, E.F.

    2007-01-01

    Digital terrain models, which can be produced from multibeam bathymetric data, are ordered arrays of depths for a number of sea-floor positions sampled at regularly spaced intervals. These models provide valuable base maps for marine geological interpretations that help define the variability of the sea floor (one of the primary controls of benthic habitat diversity), improve our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats, and provide a detailed framework to guide and assist future research, monitoring, and management activities. The bathymetry interpreted herein was processed from data collected by National Oceanic and Atmospheric Administration vessels during hydrographic surveys H11361 and H11252. These surveys mapped roughly 156 km² of sea floor in the vicinity of Six Mile Reef, an area of eastern Long Island Sound where the sea floor is characterized by fields of large sand waves and an east-west decreasing gradient of bottom tidal-current speeds (fig. 1). Interpretations of the bathymetry are supplemented by concurrently collected seismic reflection data, as well as archived historic seismic profiles, sediment samples and bottom photography collected as part of a long-standing geologic mapping partnership between the State of Connecticut and the U.S. Geological Survey (fig. 2). The purpose of this digital report is 1) to provide the acoustic data layers produced during the above mentioned surveys, 2) to use them to describe the sea-floor character and bedform morphologies near Six Mile Reef, and 3) to relate these descriptions to ongoing processes and sedimentary environments.

  15. Preliminary study of sources and processes of enrichment of manganese in water from University of Rhode Island supply wells

    USGS Publications Warehouse

    Silvey, William Dudley; Johnston, Herbert E.

    1977-01-01

    Concentrations of dissolved manganese have increased from 0.0 to as much as 3.3 mg/liter over a period of years in closely spaced University of Rhode Island supply wells. The wells tap stratified glacial deposits and derive part of their water from infiltration from a nearby river-pond system. The principal sources of the manganese seem to be coatings of oxides and other forms of manganese on granular aquifer materials and organic-rich sediments on the bottom of the pond and river. Chemical analyses of water from an observation well screened from 3 to 5 feet below the pond bottom indicate that infiltration of water through organic-rich sediments on the pond bottom is the likely cause of manganese enrichment in the well supplies. After passing through the organic layer, the water contains concentrations of manganese as high as 1.2 mg/liter. Manganese in water in concentrations that do not cause unpleasant taste is not regarded to be toxicologically significant. However, concentrations in excess of a few tenths of a milligram per liter are undesirable in public supplies and in many industrial supplies. Brown and others (21970) note that waters containing manganese in concentrations less than 0.1 mg/liter seldom prove troublesome, but that those containing more than 0.5 mg/liter may form objectionable deposits on cooked food, laundry, and plumbing fixtures. The U.S. Public health Service (1962) recommends that the concentrations of manganese in drinking and culinary water not exceed 0.05 mg/liter. (Woodard-USGS)

  16. Chemical quality of water and bottom sediment, Stillwater National Wildlife Refuge, Lahontan Valley, Nevada

    USGS Publications Warehouse

    Thodal, Carl E.

    2017-12-28

    The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service collected data on water and bottom-sediment chemistry to be used to evaluate a new water rights acquisition program designed to enhance wetland habitat in Stillwater National Wildlife Refuge and in Lahontan Valley, Churchill County, Nevada. The area supports habitat critical to the feeding and resting of migratory birds travelling the Pacific Flyway. Information about how water rights acquisitions may affect the quality of water delivered to the wetlands is needed by stakeholders and Stillwater National Wildlife Refuge managers in order to evaluate the effectiveness of this approach to wetlands management. A network of six sites on waterways that deliver the majority of water to Refuge wetlands was established to monitor the quality of streamflow and bottom sediment. Each site was visited every 4 to 6 weeks and selected water-quality field parameters were measured when flowing water was present. Water samples were collected at varying frequencies and analyzed for major ions, silica, and organic carbon, and for selected species of nitrogen and phosphorus, trace elements, pharmaceuticals, and other trace organic compounds. Bottom-sediment samples were collected for analysis of selected trace elements.Dissolved-solids concentrations exceeded the recommended criterion for protection of aquatic life (500 milligrams per liter) in 33 of 62 filtered water samples. The maximum arsenic criterion (340 micrograms per liter) was exceeded twice and the continuous criterion was exceeded seven times. Criteria protecting aquatic life from continuous exposure to aluminum, cadmium, lead, and mercury (87, 0.72, 2.5, and 0.77 micrograms per liter, respectively) were exceeded only once in filtered samples (27, 40, 32, and 36 samples, respectively). Mercury was the only trace element analyzed in bottom-sediment samples to exceed the published probable effect concentration (1,060 micrograms per kilogram).

  17. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87

    USGS Publications Warehouse

    Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.

    1990-01-01

    Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)

  18. Bottom current deposition in the Antarctic Wilkes Land margin during the Oligocene

    NASA Astrophysics Data System (ADS)

    Salabarnada, Ariadna; Escutia, Carlota; Nelson, Hans C.; Evangelinos, Dimitris; López-Quirós, Adrián

    2017-04-01

    Sediment cores collected from the Antarctic Wilkes Land continental rise at IODP site 1356 provide evidence for bottom current sedimentation taking place since the early Oligocene (i.e., 33.6 Ma) (Escutia et al., 2011). Correlation between site 1356 sediments and the regional grid of multichannel seismic reflection profiles, complemented with bathymetric data, allow us to differentiate a variety of contourite deposits resulting from the interaction between bottom currents and seafloor paleomorphologies. Contourite deposits are identified based on the seismic signature, reflector configuration and geometry of the depositional bodies as elongated-mounded drifts, giant mounded drifts, confined drifts, infill drifts, plastered drifts, sediment waves, and moats. Based on the spatial and temporal distribution of these deposits, we differentiate three phases in contourite deposition in this margin: Phase 1) from 33.6-28 Ma sheeted drift morphologies dominate, related to high-energy deposits associated with fast flowing currents during the early Oligocene; Phase 2) At around 28 Ma, mounded drift morphologies and moat channels start forming. Continued intensification of contour currents results in larger contourite morphologies such as giant mounded drifts and moats forming around structural heights present in the Wilkes Land basin (e.g, the Adelie Rift Block). Phase 3) A shift in current configuration is recorded at around 15 Ma above regional unconformity WL-U5, which marks the Oligocene-Miocene Transition. This change is shown by a migration to the North of the drift crests and by a dominance of down-slope sedimentation processes that is indicated by mass transport deposits and channel levee formation. We interpret the evolution of the contourite deposits during the Oligocene in this margin to be driven by changes in the intensity of bottom current activity over time resulting from ice sheet growth, evolution of bottom morphology and related changes in paleoceanographic configuration in the Southern Ocean. This contribution results from work funded by the Spanish Ministry of Economy and Competitivity Grant CTM2014-60451-C2-1-P and FEDER funds.

  19. Tempo and scale of biogenic effects on high-frequency acoustic propagation near the marine sediment-water interface in shallow water

    NASA Astrophysics Data System (ADS)

    Jumars, Peter

    2003-04-01

    Organisms have natural scales, such as lifetimes, body sizes, frequencies of movement to new locations, and residence times of material in digestive systems, and each scale has potential implications for acoustic effects. The effects of groups of organisms, like organisms themselves, aggregate in space and time. This review, including an assortment of unpublished information, examines examples of such aggregations, many of them documented acoustically. Light synchronizes many activities. Macroscopic animals forage primarily under cover of darkness. This phasing applies both to animals that extend appendages above the sediment-water interface and to animals that leave the seabed at night. Whereas their bottom-modifying activities are concentrated in nocturnal or crepuscular fashion, the bottom-modifying activities of the visual feeders follow a different phasing and often dominate the rate of change in acoustic backscatter from the interface. Light also acts through its effects on primary production, often concentrated in a very thin surficial layer atop the seabed. The supersaturation of oxygen does, and microbubble nucleation may, result. Where tidal velocities are large, light-set patterns are often tidally modulated. Activities of animals living below the seabed, however, remain a mystery, whose primary hope for solution is acoustic. [Work supported by ONR and DEPSCoR.

  20. Effects of near-bottom water oxygen concentration on biogeochemical cycling of C, N and S in sediments of the Gulf of Gdansk (southern Baltic)

    NASA Astrophysics Data System (ADS)

    Lukawska-Matuszewska, Katarzyna; Kielczewska, Joanna

    2016-04-01

    Sediments from four sampling sites in the Gulf of Gdansk were sampled to test how different oxygen concentrations in near-bottom water affects biogeochemical cycling of C, N and S. Vertical distributions of content of organic carbon (OC), total nitrogen (TN) and total sulfur (TS) and number of sulfate-reducing bacteria (SRB) in sediments were determined. Pore water total alkalinity (TA), dissolved inorganic carbon (DIC), sulfate, hydrogen sulfide, ammonium and phosphate were analyzed and benthic fluxes of DIC, hydrogen sulfide and ammonium were calculated. Concentrations of OC and TN decreased and concentration of TS increased with sediment depth. Highest concentrations of OC, TN and TS were observed in silty clay sediments from hypoxic and anoxic sediments below the permanent halocline. Organic matter (OM) accumulation in sediments and oxygen deficiency in near-bottom water stimulate preservation of OC and burial of TS in this area. Concentrations of TA, DIC, hydrogen sulfide, ammonium and phosphate in pore water increased, while concentration of sulfate decreased with sediment depth. Hydrogen sulfide, ammonium and phosphate was a significant additional source of TA in pore water under hypoxic and anoxic conditions. Mineralization of OM at oxygen concentrations <2 ml l-1 occurred mainly via bacterial sulfate reduction. Diurnal hydrogen sulfide fluxes under hypoxic conditions ranged from 400 to 1240 μmol m-2 d-1. Ammonium fluxes were estimated on 534 - 924 μmol m-2 d-1. Corresponding fluxes measured under anoxic conditions were 266 μmol m-2 d-1 and 106 μmol m-2 d-1. Sediments under oxic conditions became a place of the intensive regeneration of carbon - DIC flux from sediment reached 2775 μmol m-2 day-1. Sediment-water DIC fluxes under hypoxic and anoxic conditions were much lower and ranged from 1015 to 1208 μmol m-2 d-1.

  1. Trends in polychlorinated biphenyl concentrations in Hudson River water five years after elimination of point sources

    USGS Publications Warehouse

    Schroeder, R.A.; Barnes, C.R.

    1983-01-01

    Industrial discharge of polychlorinated biphenyls (PCBs) to the Hudson River from 1950 to the mid-1970 's has resulted in serious degradation of the water. Contaminated river-bottom sediments continue to contribute PCBs to the river water. Concentrations in the sediment range from several hundred micrograms per gram near the outfall to less than 10 micrograms per gram in the lower estuary. PCBs are supplied by bottom sediments to the overlying water by two mechanisms--desorption and resuspension. Because desorption is a relatively constant process, concentrations of PCBs decrease as water discharge increases. At high flow, however, scouring by turbulence causes resuspension of PCB-laden sediment. Transport rates indicate that most PCBs enter the water from the most contaminated sediments, which are within 20 kilometers of the outfall. Mean daily transport from the upper river (except during high discharges) has decreased from 10 kilograms in 1976 to 5 kilograms in the late 1970 's and to 1 kilogram in 1981. This decrease probably results from the burial of highly contaminated sediments by cleaner sediments originating upstream. (USGS)

  2. Indicators of sediment and biotic mercury contamination in a southern New England estuary

    PubMed Central

    Taylor, David L.; Linehan, Jennifer C.; Murray, David W.; Prell, Warren L.

    2012-01-01

    Total mercury (Hg) and methylmercury (MeHg) were analyzed in near surface sediments (0–2 cm) and biota (zooplankton, macro-invertebrates, finfish) collected from Narragansett Bay (Rhode Island/Massachusetts, USA) and adjacent embayments and tidal rivers. Spatial patterns in sediment contamination were governed by the high affinity of Hg for total organic carbon (TOC). Sediment MeHg and percent MeHg were also inversely related to summer bottom water dissolved oxygen (DO) concentrations, presumably due to the increased activity of methylating bacteria. For biota, Hg accumulation was influenced by inter-specific habitat preferences and trophic structure, and sediments with high TOC and percent silt-clay composition limited mercury bioavailability. Moreover, hypoxic bottom water limited Hg bioaccumulation, which is possibly mediated by a reduction in biotic foraging, and thus, dietary uptake of mercury. Finally, most biota demonstrated a significant positive relationship between tissue and TOC-normalized sediment Hg, but relationships were much weaker or absent for sediment MeHg. These results have important implications for the utility of estuarine biota as subjects for mercury monitoring programs. PMID:22317792

  3. Sedimentation, sediment quality, and upstream channel stability, John Redmond Reservoir, east-central Kansas, 1964-2009

    USGS Publications Warehouse

    Juracek, Kyle E.

    2010-01-01

    A combination of available bathymetric-survey information, bottom-sediment coring, and historical streamgage information was used to investigate sedimentation, sediment quality, and upstream channel stability for John Redmond Reservoir, east-central Kansas. Ongoing sedimentation is reducing the ability of the reservoir to serve several purposes including flood control, water supply, and recreation. The total estimated volume and mass of bottom sediment deposited between 1964 and 2009 in the conservation pool of the reservoir was 1.46 billion cubic feet and 55.8 billion pounds, respectively. The estimated sediment volume occupied about 41 percent of the conservation-pool, water-storage capacity of the reservoir. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 1 percent annually. Mean annual net sediment deposition since 1964 in the conservation pool of the reservoir was estimated to be 1.24 billion pounds per year. Mean annual net sediment yield from the reservoir basin was estimated to be 411,000 pounds per square mile per year Information from sediment cores shows that throughout the history of John Redmond Reservoir, total nitrogen concentrations in the deposited sediment generally were uniform indicating consistent nitrogen inputs to the reservoir. Total phosphorus concentrations in the deposited sediment were more variable than total nitrogen indicating the possibility of changing phosphorus inputs to the reservoir. As the principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of the reservoir were estimated to be 2,350,000 pounds per year and 1,030,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the reservoir basin were 779 pounds per square mile per year and 342 pounds per square mile per year, respectively. Trace element concentrations in the bottom sediment of John Redmond Reservoir generally were uniform over time. As is typical for eastern Kansas reservoirs, arsenic, chromium, and nickel concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Trace element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects usually or frequently occur. Organochlorine compounds either were not detected or were detected at concentrations that were less than the threshold-effects guidelines. Stream channel banks, compared to channel beds, likely are a more important source of sediment to John Redmond Reservoir from the upstream basin. Other sediment sources include surface-soil erosion in the basin and shoreline erosion in the reservoir.

  4. Impact of Natural (Storm) and Anthropogenic (Trawl) Resuspension the Sediment Transport on the Gulf of Lion's Shelf (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferre, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.

    2006-12-01

    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. On shelves with strong fishing activity, resuspension by bottom trawling processes can modify the scale of natural disturbance by waves and currents. Recent field data shows that the impact of bottom trawls on the resuspension of the fine sediments per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of river-borne particles and shelf sediments on the Gulf of Lion's Shelf. Realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers were developed. Simulations were conducted for a 16-month period to characterize the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediment. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents is controlled by the shear stress, whereas resuspension by the bottom trawler fleet is controlled by its density and distribution. Natural resuspension by waves and currents mostly occurs during short winter episodes, and is concentrated on the inner-shelf. Trawling-induced resuspension, in contrast, occurs regularly throughout the year and is concentrated on the outer shelf. The total annual net resuspension by trawls (8×106 T y-1 is four orders of magnitude lower than the resuspension induced by waves and currents (4×1010 T y-1. However, because trawled regions are located on the outer shelf, closer to the continental slope, export of fine sediment resuspended by trawls (0.6×106 T y-1 is only one order of magnitude lower than export associated with natural resuspension (8×106 T y-1. A simulation combining both resuspension processes reveals a decrease of about 10% in resuspension and export rates, compared with the sum of each individual process.

  5. Sediment transport processes at the head of Halibut Canyon, Eastern Canada margin: An interplay between internal tides and dense shelf water cascading.

    NASA Astrophysics Data System (ADS)

    Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.

    2013-04-01

    To investigate the processes by which sediment is transported through a submarine canyon incised in a glaciated margin, the bottom boundary layer quadrapod RALPH was deployed at 276-m depth in the West Halibut Canyon (off Newfoundland) during winter 2008-2009. Two main sediment transport processes were identified throughout the deployment. Firstly, periodic increases of near-bottom suspended-sediment concentrations (SSC) were recorded associated with the up-canyon propagation of the semidiurnal internal tidal bore along the canyon axis, carrying fine sediment particles resuspended from deeper canyon regions. The recorded SSC peaks, lasting less than one hour, were observed sporadically and were linked to bottom intensified up-canyon flows concomitant with sharp drops in temperature. Secondly, sediment transport was also observed during events of intensified down-canyon current velocities that occurred during periods of sustained heat loss from surface waters, but were not associated with large storms. High-resolution velocity profiles throughout the water column during these events revealed that the highest current speeds (~1 m s-1) were centered several meters above the sea floor and corresponded to the region of maximum velocities of a gravity flow. Such flows had associated low SSC and cold water temperatures and have been interpreted as dense shelf water cascading events channelized along the canyon axis. Sediment transport during these events was largely restricted to bedload and saltation, producing winnowing of sands and fine sediments around larger gravel particles. Analysis of historical hydrographic data suggests that the origin of such gravity flows is not related to the formation of coastal dense waters advected towards the canyon head. Rather, the dense shelf waters appear to be generated around the outer shelf, where convection during winter is able to reach the sea floor and generate a pool of near-bottom dense water that cascades into the canyon during one or two tidal cycles. A similar transport mechanism can occur in other submarine canyons along the eastern Canadian margin, as well in other canyoned regions elsewhere, where winter convection generally reaches the shelf-edge.

  6. Geotechnical and Geoacoustic Properties of Sediments Off South Florida: Boca Raton, Indian River Beach, Lower Tampa Bay, and the Lower Florida Keys

    DTIC Science & Technology

    1997-06-24

    foraminifers, sea urchin spines, barnacles, spiny oysters, worm shells, bivalves, coral fragments, and few quartz grains. The sediments are composed of...photographing a diver’s compass on the sea bottom as the first photograph of a photographic transect along a tape measure previously laid down on the sea ...measurements for distortion caused by refraction in sea water and lens aberrations. Use of the stereocomparator allows high frequency sampling of bottom

  7. Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions Under Waves, Currents, and Combined Flows

    DTIC Science & Technology

    2015-12-01

    little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct observations made under...where there is little or no sediment cover (e.g., such as on coral reefs ) versus a sandy or muddy bottom. However, there is a dearth of direct...INTERIM REPORT Large-Scale Laboratory Experiments of Incipient Motion, Transport, and Fate of Underwater Munitions under Waves , Currents, and

  8. Consequences of the river valley bottom transformation after extreme flood (on the example of the Niida River, Japan)

    NASA Astrophysics Data System (ADS)

    Botavin, D.; Golosov, V.; Konoplev, A.; Wakiyama, Y.

    2018-01-01

    Detailed study of different sections of floodplain was undertaken in the Niida River basin (Fukushima Prefecture) after an extreme flood event which occurred in the middle of September 2015. The upstream part of the basin is located in the area with very high level of radionuclide contamination after the accident at Fukushima Dai-ichi NPP. Field and GIS methods were used, including direct measurement of the depth of fresh sediment and its area, with soil descriptions for the typical floodplain sections, measurement of dose rates, interpretation of space images for a few time intervals (before and after flood event) with the following evaluation of spatial changes in deposition for different floodplain sections. In addition, results of quantitative assessment of sedimentation rates and soil radionuclide contamination were applied for understanding the effect of extreme flood on alluvial soils of the different sections. It was established that the maximum sedimentation rates (20-50 cm/event) occurred in the middle part of the lower reach of the Niida River and in some locations of the upper reaches. Dose rates had reduced considerably for all the areas with high sedimentation because the top soil layers with high radionuclide contamination were buried under fresh sediments produced mostly due to bank erosion and mass movements.

  9. Influence of the hydrodynamic conditions on the accessibility of the demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amores, A.; Rueda, L.; Monserrat, S.; Guijarro, B.; Pasqual, C.; Massutí, E.

    2013-12-01

    Ocean mean surface vorticity from gridded multi-mission satellite altimetry data was explored in the Western Mediterranean basin for the period 2000-2010, with the aim of comparing its variability with several species of the deep water fishery in the area. Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed off northern Mallorca Island displayed a good correlation with surface vorticity. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspensions, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity by moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accesibility to fishing exploitation. This relationship between vorticity and catches also holds for other species , considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticy episodes is significant enough to affect the dynamics of the demersal species. The way the surface vorticity observed can affect the bottom sediments is also investigated using a year-long moored near-bottom currentmeter and a sediment trap sited in the fishing grounds.

  10. Indicators: Sediment Mercury

    EPA Pesticide Factsheets

    Sediment mercury is mercury that has become embedded into the bottom substrates of aquatic ecosystems. Mercury is a common pollutant of aquatic ecosystems and it can have a substantial impact on both human and wildlife health.

  11. Review of Oceanographic and Geochemical Data Collected in Massachusetts Bay during a Large Discharge of Total Suspended Solids from Boston's Sewage-Treatment System and Ocean Outfall in August 2002

    USGS Publications Warehouse

    Bothner, Michael H.; Butman, Bradford; Casso, Michael A.

    2010-01-01

    During the period August 14-23, 2002, the discharge of total suspended solids (TSS) from the Massachusetts Water Resources Authority sewage-treatment plant ranged from 32 to 132 milligrams per liter, causing the monthly average discharge to exceed the limit specified in the National Pollution Discharge Elimination System permit. Time-series monitoring data collected by the U.S. Geological Survey in western Massachusetts Bay were examined to evaluate changes in environmental conditions during and after this exceedance event. The rate of sediment trapping and the concentrations of near-bottom suspended sediment measured near the outfall in western Massachusetts Bay increased during this period. Because similar increases in sediment-trapping rate were observed in the summers of 2003 and 2004, however, the increase in 2002 cannot be definitively attributed to the increased TSS discharge. Concentrations of copper and silver in trapped sediment collected 10 and 20 days following the 2002 TSS event were elevated compared to those in pre-event samples. Maximum concentrations were less than 50 percent of toxicity guidelines. Photographs of surficial bottom sediments obtained before and after the TSS event do not show sediment accumulation on the sea floor. Concentrations of silver, Clostridium perfringens, and clay in surficial bottom sediments sampled 10 weeks after the discharge event at a depositional site 3 kilometers west of the outfall were unchanged from those in samples obtained before the event. Simulation of the TSS event by using a coupled hydrodynamic-wave-sediment-transport model could enhance understanding of these observations and of the effects of the exceedance on the local marine environment.

  12. Fern Spore Longevity in Saline Water: Can Sea Bottom Sediments Maintain a Viable Spore Bank?

    PubMed Central

    de Groot, G. Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal. PMID:24223951

  13. STURM: Resuspension mesocosms with realistic bottom shear stress and water column turbulence for benthic-pelagic coupling studies: Design and Applications

    NASA Astrophysics Data System (ADS)

    Sanford, L. P.; Porter, E.; Porter, F. S.; Mason, R. P.

    2016-02-01

    Shear TUrbulence Resuspension Mesocosm (STURM) tanks, with high instantaneous bottom shear stress and realistic water column mixing in a single system, allow more realistic benthic-pelagic coupling studies that include sediment resuspension. The 1 m3 tanks can be programmed to produce tidal or episodic sediment resuspension over extended time periods (e.g. 4 weeks), over muddy sediments with or without infaunal organisms. The STURM tanks use a resuspension paddle that produces uniform bottom shear stress across the sediment surface while gently mixing a 1 m deep overlying water column. The STURM tanks can be programmed to different magnitudes, frequencies, and durations of bottom shear stress (and thus resuspension) with proportional water column turbulence levels over a wide range of mixing settings for benthic-pelagic coupling experiments. Over eight STURM calibration settings, turbulence intensity ranged from 0.55 to 4.52 cm s-1, energy dissipation rate from 0.0032 to 2.65 cm2 s-3, the average bottom shear stress from 0.0068 to 0.19 Pa, and the instantaneous bottom shear stress from 0.07 to 2.0 Pa. Mixing settings can be chosen as desired and/or varied over the experiment, based on the scientific question at hand. We have used the STURM tanks for four 4-week benthic-pelagic coupling ecosystem experiments with tidal resuspension with or without infaunal bivalves, for stepwise erosion experiments with and without infaunal bivalves, for experiments on oyster biodeposit resuspension, to mimic storms overlain on tidal resuspension, and for experiments on the effects of varying frequency and duration of resuspension on the release of sedimentary contaminants. The large size of the tanks allows water quality and particle measurements using standard oceanographic instrumentation. The realistic scale and complexity of the contained ecosystems has revealed indirect feedbacks and responses that are not observable in smaller, less complex experimental systems.

  14. Innovative eco-friendly bio- solvent for combating sea surface and sedimented oil pollution

    NASA Astrophysics Data System (ADS)

    Theodorou, Paraskevas

    2017-04-01

    The combating of oil spill at sea surface by chemical dispersants accelerates the evaporation and disperse the oil into the water column, where it is broken down by natural processes and/or is sedimented at the sea bottom, especially at near coastal shallow areas, ports and marinas. The usual methodology for cleaning the sedimented oil from the sea bottom is mainly carried out via excavation and dumping of the polluted sediment into deeper sea areas, where the contamination is transferred from one area to another. The eco-friendly bio-solvent MSL Aqua 250 is an innovative new solution based mainly on natural constituents. The action mechanism and the effectiveness of this eco-friendly solvent is based on the high surface tension process. Organic compounds, including hydrocarbons upon coming in contact with MSL Aqua 250 solvent generate a significant surface tension reaction, which is able to alter the organic compounds to liquid form and then to drastically evaporate it. The use of MSL Aqua 250 solvent, both at sea surface and at the bottom, has the following advantages compared to the dispersants: • Efficient solution without transferring the pollution from sea surface to the water column and to the bottom or disturbing the Aquatic Eco System. • Non-Toxic. • Environmentally friendly with a restoration of marine life in the Eco System. • Cost effective. The MSL Aqua 250 solvent has been tested in cooperation with the Cyprus Department of Fisheries and Marine Research and the Technological University of Cyprus and used during the years 2015 and 2016 in marinas and fishing shelters in Cyprus faced oil pollution, with high concentration in the sea water and at the sea bottom of chemical parameters (BOD5, COD, FOG, TKN, TP, TPH), with excellent results.

  15. Contribution of Methane Accumulation and Pore Water Flow to Forming High Concentration of Gas Hydrate in Sandy Sediments

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Waseda, A.; Fujii, T.

    2006-12-01

    The geological and geophysical evaluations have suggested worldwide methane contents in gas hydrate beneath deep sea floors as well as permafrost-related zones to about twice the total reserves of conventional and unconventional hydrocarbon. In 1998 and 2002 Mallik wells were drilled in the Canadian Arctic that clarified the characteristics of gas hydrate-concentrated sandy layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data, anomalies of chloride contents in pore waters, core temperature depression as well as visible gas hydrates have confirmed the highly saturated pore-space hydrate as intergranular pore filling, whose saturations are evaluated higher than 80 percent in pore volume. In the Nankai Trough forearc basins and accretionary prisms developed and BSRs (bottom simulating reflectors) have been recognized widely, where the multiple wells were drilled in 2000 and 2004, and revealed the presence of pore-space hydrate in sandy layers. It is remarked that there are many similar features in appearance and characteristics between the Mallik and Nankai Trough areas with observations of well- interconnected and highly saturated pore-space hydrate. High concentration of gas hydrate may need original pore space large enough to occur within a host sandy sediment, and this appears to be a similar mode for conventional petroleum accumulations. The distribution of a porous and coarser-grained sandy sediments should be one of the most important factors controlling occurrences and distributions of gas hydrate, as well as physicochemical conditions. Supplying methane for forming deep marine gas hydrate is commonly attributed to microbial conversion of organic material within the zone of stability or to migration of methane-containing fluids from a deeper source area. Pore water flows are considered to a macroscopic migration through faults/fractures and a microscopic flow in intergranular pore systems of sediment. We should assess the influence of methane supply on observable features of hydrate occurrences.

  16. Tracking the fate of mercury in the fish and bottom sediments of Minamata Bay, Japan, using stable mercury isotopes.

    PubMed

    Balogh, Steven J; Tsui, Martin Tsz-Ki; Blum, Joel D; Matsuyama, Akito; Woerndle, Glenn E; Yano, Shinichiro; Tada, Akihide

    2015-05-05

    Between 1932 and 1968, industrial wastewater containing methylmercury (MeHg) and other mercury (Hg) compounds was discharged directly into Minamata Bay, Japan, seriously contaminating the fishery. Thousands of people who consumed tainted fish and shellfish developed a neurological disorder now known as Minamata disease. Concentrations of total mercury (THg) in recent fish and sediment samples from Minamata Bay remain higher than those in other Japanese coastal waters, and elevated concentrations of THg in sediments in the greater Yatsushiro Sea suggest that Hg has moved beyond the bay. We measured stable Hg isotope ratios in sediment cores from Minamata Bay and the southern Yatsushiro Sea and in archived fish from Minamata Bay dating from 1978 to 2013. Values of δ(202)Hg and Δ(199)Hg in Yatsushiro Sea surface sediments were indistinguishable from those in highly contaminated Minamata Bay sediments but distinct from and nonoverlapping with values in background (noncontaminated) sediments. We conclude that stable Hg isotope data can be used to track Minamata Bay Hg as it moves into the greater Yatsushiro Sea. In addition, our data suggest that MeHg is produced in bottom sediments and enters the food web without substantial prior photodegradation, possibly in sediment porewaters or near the sediment-water interface.

  17. 75 FR 5708 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... suspended by wave action near the bottom, and are moved by bottom currents or directly as bedload. Tidal, wind and wave forces contribute to generating bottom currents, which act in relation to the sediment... littoral zone, limit wave effects due to mounding, and keep material from reentering the navigation channel...

  18. Observations of the R reflector and sediment interface reflection at the Shallow Water '06 Central Site.

    PubMed

    Choi, Jee Woong; Dahl, Peter H; Goff, John A

    2008-09-01

    Acoustic bottom-interacting measurements from the Shallow Water '06 experiment experiment (frequency range 1-20 kHz) are presented. These are co-located with coring and stratigraphic studies showing a thin (approximately 20 cm) higher sound speed layer overlaying a thicker (approximately 20 m) lower sound speed layer ending at a high-impedance reflector (R reflector). Reflections from the R reflector and analysis of the bottom reflection coefficient magnitude for the upper two sediment layers confirm both these features. Geoacoustic parameters are estimated, dispersion effects addressed, and forward modeling using the parabolic wave equation undertaken. The reflection coefficient measurements suggest a nonlinear attenuation law for the thin layer of sandy sediments.

  19. Sediment and Lower Water Column Oxygen Consumption in the Seasonally-hypoxic Region of the Louisiana Continental Shelf

    EPA Science Inventory

    We report sediment and bottom water respiration rates from 10 cruises from 2003-2007 on the Louisiana Continental Shelf (LSC) where summer hypoxia regularly occurs. Cruises were conducted during spring (5 cruises), summer (3 cruises) and fall (2 cruises). Cruise average sediment ...

  20. Effects of legacy sediment removal on hydrology and biogeochemistryin a first order stream in Pennsylvania, USA

    EPA Science Inventory

    Historic forest conversion to agriculture and associated stream impoundments built for hydropower led to extensive burial of valley bottoms throughout the mid-Atlantic region of the US. These so-called legacy sediments are sources of nutrient and sediment pollutant loads to down...

  1. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  2. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE-FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate-flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  3. Modern sedimentary environments in a large tidal estuary, Delaware Bay

    USGS Publications Warehouse

    Knebel, H.J.

    1989-01-01

    Data from an extensive grid of sidescan-sonar records reveal the distribution of sedimentary environments in the large, tidally dominated Delaware Bay estuary. Bathymetric features of the estuary include large tidal channels under the relatively deep (> 10 m water depth) central part of the bay, linear sand shoals (2-8 m relief) that parallel the sides of the tidal channels, and broad, low-relief plains that form the shallow bay margins. The two sedimentary environments that were identified are characterized by either (1) bedload transport and/or erosion or (2) sediment reworking and/or deposition. Sand waves and sand ribbons, composed of medium to coarse sands, define sites of active bedload transport within the tidal channels and in gaps between the linear shoals. The sand waves have spacings that vary from 1 to 70 m, amplitudes of 2 m or less, and crestlines that are usually straight. The orientations of the sand waves and ribbons indicate that bottom sediment movement may be toward either the northwest or southeast along the trends of the tidal channels, although sand-wave asymmetry indicates that the net bottom transport is directed northwestward toward the head of the bay. Gravelly, coarse-grained sediments, which appear as strongly reflective patterns on the sonographs, are also present along the axes and flanks of the tidal channels. These coarse sediments are lag deposits that have developed primarily where older strata were eroded at the bay floor. Conversely, fine sands that compose the linear shoals and muddy sands that cover the shallow bay margins appear mainly on the sonographs either as smooth featureless beds that have uniform light to moderate shading or as mosaics of light and dark patches produced by variations in grain size. These acoustic and textural characteristics are the result of sediment deposition and reworking. Data from this study (1) support the hypothesis that bed configurations under deep tidal flows are functions of current velocity, sediment size, and depth; (2) suggest criteria that could be used to distinguish between open estuarine tidal deposits in the geologic record; and (3) provide a guide to future utilization of the bay floor. ?? 1989.

  4. Emergence of burrowing urchins from California continental shelf sediments-A response to alongshore current reversals?

    USGS Publications Warehouse

    Nichols, F.H.; Cacchione, D.A.; Drake, D.E.; Thompson, J.K.

    1989-01-01

    Two sequences of bottom photographs taken every two or four hours for two months during the Coastal Ocean Dynamics Experiment (CODE) off the Russian River, California, reveal the dynamic nature of interations between the water column, the sediments, and benthic organisms in the mid-shelf silt deposit. Time-lapse photographs taken between late spring and early summer in 1981 and 1982 show that the subsurface-dwelling urchin Brisaster latifrons (one of the largest invertebrates found in shelf-depth fine sediment off the U.S. Pacific coast) occasionally emerged from the sediment, plowed the sediment surface during the course of a few hours to several days, then buried themselves again. Frame-by-frame study of the film sequences shows that the urchins typically emerged following relaxation of coastal upwelling, periods characterized by current direction reversals and increases in bottom water turbidity. Among the possible causes of the emergence of urchins and the consequent bioturbation of the upper few cm of sediment, a response to an enhanced food supply seems most plausible. Circumstantial evidence suggests the possibility that phytoplankton sedimentation during periods of upwelling relaxation could provide a new source of food at the sediment surface. ?? 1989.

  5. Holocene oceanographic and climatic variability of the Vega Drift deduced through foraminiferal interpretation

    USGS Publications Warehouse

    Szymcek, Phillip; Ishman, Scott E.; Domack, Eugene W.; Leventer, Amy

    2007-01-01

    fusiformis assemblages. Most agglutinated forms tend to decrease downcore, and comparisons to modern analogues imply post-depositional disintegration, while calcareous taxa indicate non-corrosive bottom waters. The lower to middle Holocene Vega Drift sediments are characterized by the calcareous S. fusiformis assemblage and glacial plume sediments. This assemblage is characterized by calcareous forms including Globocassidulina biora, G. subglobosa, and Nonionella iridea. The planktic species Neogloboquadrina pachyderma is associated with the S. fusiformis assemblage. The S. fusiformis assemblage is faunally similar to assemblages described in fjords of the western Antarctic Peninsula and indicates non-corrosive bottom water. Sediments of the mid to upper Holocene interval are characterized by the T. wiesneri and M. arenacea assemblages and indicate the presence of Hyper Saline Shelf Water. These assemblages are similar to modern assemblages directly to the south in the Prince Gustav Channel. The upper Holocene is marked by several small intervals with taxonomic characteristics similar to the S. fusiformis assemblage, indicating periodic introduction of non-corrosive bottom water to the Vega Drift

  6. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the American Falls Reservoir area, Idaho, 1988-89. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, W.H.; Mullins, W.H.

    1990-01-01

    The report presents results of a reconnaissance investigation to determine whether potentially toxic concentrations of selected trace elements or organochlorine compounds associated with irrigation drainage exist in surface and ground water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds in the American Falls Reservoir area. American Falls Reservoir was selected for investigation in part because several previous investigations of fish in the reservoir indicated that mercury and cadmium concentrations exceeded human health standards and periodic botulism-related die-offs of waterbirds have been known to occur. Also, rocks south and southeast of the reservoir contain naturally occurring selenium concentrations many timesmore » greater than those in the continental crust. Samples of water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds were collected from nine sites in the American Falls Reservoir area. The samples were analyzed for selected inorganic and organic constituents to determine whether concentrations exceeded known standards or criteria.« less

  7. Fate of linear alkylbenzene sulfonate in the Mississippi River

    USGS Publications Warehouse

    Tabor, C.F.; Barber, L.B.

    1996-01-01

    The 2 800-km reach of the Mississippi River between Minneapolis, MN, and New Orleans, LA, was examined for the occurrence and fate of linear alkylbenzene sulfonate (LAS), a common anionic surfactant found in municipal sewage effluents. River water and bottom sediment were sampled in the summer and fall of 1991 and in the spring of 1992. LAS was analyzed using solid- phase extraction/derivatization/gas chromatography/mass spectrometry. LAS was present on all bottom sediments at concentrations ranging from 0.01 to 20 mg/kg and was identified in 21% of the water samples at concentrations ranging from 0.1 to 28.2 ??g/L. The results indicate that LAS is a ubiquitous contaminant on Mississippi River bottom sediments and that dissolved LAS is present mainly downstream from the sewage outfalls of major cities. The removal of the higher LAS homologs and external isomers indicates that sorption and biodegradation are the principal processes affecting dissolved LAS. Sorbed LAS appears to degrade slowly.

  8. Geochemical data for core and bottom-sediment samples collected in 2007 from Grand Lake O' the Cherokees, northeast Oklahoma

    USGS Publications Warehouse

    Fey, David L.; Becker, Mark F.; Smith, Kathleen S.

    2010-01-01

    Grand Lake O' the Cherokees is a large reservoir in northeast Oklahoma, below the confluence of the Neosho and Spring Rivers, both of which drain the Tri-State Mining District to the north. The Tri-State district covers an area of 1,200 mi2 (3,100 km2) and comprises Mississippi Valley-type lead-zinc deposits. A result of 120 years of mining activity is an estimated 75 million tons of processed mine tailings (chat) remaining in the district. Concerns of sediment quality and the possibility of human exposure to cadmium and lead through eating fish have led to several studies of the sediments in the Tri-State district. In order to record the transport and deposition of metals from the Tri-State district by the Spring and Neosho Rivers into Grand Lake O' the Cherokees, the U.S. Geological Survey collected 11 sediment cores and 15 bottom-sediment samples in September 2007. Subsamples from five selected cores and the bottom-sediment samples were analyzed for major and trace elements and forms of carbon. The sediment samples collected from the sediment-water interface had larger average concentrations of zinc, cadmium, and lead than local background. The core collected from the Spring River had the largest concentrations of mining-related elements. A core collected just south of Twin Bridges State Park, at the confluence of the Spring and Neosho Rivers, showed a mixing zone with more mining-related elements coming from the Spring River side. The element zinc showed the most definitive patterns in graphs depicting concentration-versus-depth profiles. A core collected from the main body of the reservoir showed affected sediment down to a depth of 85 cm (33 in). This core and two others appear to have penetrated to below mining-affected sediment.

  9. Radionuclides and mercury in the salt lakes of the Crimea

    NASA Astrophysics Data System (ADS)

    Mirzoyeva, Natalya; Gulina, Larisa; Gulin, Sergey; Plotitsina, Olga; Stetsuk, Alexandra; Arkhipova, Svetlana; Korkishko, Nina; Eremin, Oleg

    2015-11-01

    90Sr concentrations, resulting from the Chernobyl NPP accident, were determined in the salt lakes of the Crimea (Lakes Kiyatskoe, Kirleutskoe, Kizil-Yar, Bakalskoe and Donuzlav), together with the redistribution between the components of the ecosystems. The content of mercury in the waters of the studied reservoirs was also established. Vertical distributions of natural radionuclide activities (238U, 232Th, 226Ra, 210Pb, 40K) and anthropogenic 137Cs concentrations (as radiotracers) were determined in the bottom sediments of the Koyashskoe salt lake (located in the south-eastern Crimea) to evaluate the longterm dynamics and biogeochemical processes. Radiochemical and chemical analysis was undertaken and radiotracer and statistical methods were applied to the analytical data. The highest concentrations of 90Sr in the water of Lake Kiyatskoe (350.5 and 98.0 Bq/m3) and Lake Kirleutskoe (121.3 Bq/m3) were due to the discharge of the Dnieper water from the North-Crimean Canal. The high content of mercury in Lake Kiyatskoe (363.2 ng/L) and in seawater near Lake Kizil-Yar (364 ng/L) exceeded the maximum permissible concentration (3.5 times the maximum). Natural radionuclides provide the main contribution to the total radioactivity (artificial and natural combined) in the bottom sediments of Lake Koyashskoe. The significant concentration of 210Pb in the upper layer of bottom sediments of the lake indicates an active inflow of its parent radionuclide—gaseous 222Rn from the lower layers of the bottom sediment. The average sedimentation rates in Lake Koyashskoe, determined using 210Pb and 137Cs data, were 0.117 and 0.109 cm per year, respectively.

  10. Extraction of Seabed/Subsurface Features in a Potential CO2 Sequestration Site in the Southern Baltic Sea, Using Wavelet Transform of High-resolution Sub-Bottom Profiler Data

    NASA Astrophysics Data System (ADS)

    Tegowski, J.; Zajfert, G.

    2014-12-01

    Carbon Capture & Storage (CCS) efficiently prevents the release of anthropogenic CO2 into the atmosphere. We investigate a potential site in the Polish Sector of the Baltic Sea (B3 field site), consisting in a depleted oil and gas reservoir. An area ca. 30 x 8 km was surveyed along 138 acoustic transects, realised from R/V St. Barbara in 2012 and combining multibeam echosounder, sidescan sonar and sub-bottom profiler. Preparation of CCS sites requires accurate knowledge of the subsurface structure of the seafloor, in particular deposit compactness. Gas leaks in the water column were monitored, along with the structure of upper sediment layers. Our analyses show the shallow sub-seabed is layered, and quantified the spatial distribution of gas diffusion chimneys and seabed effusion craters. Remote detection of gas-containing surface sediments can be rather complex if bubbles are not emitted directly into the overlying water and thus detectable acoustically. The heterogeneity of gassy sediments makes conventional bottom sampling methods inefficient. Therefore, we propose a new approach to identification, mapping, and monitoring of potentially gassy surface sediments, based on wavelet analysis of echo signal envelopes of a chirp sub-bottom profiler (EdgeTech SB-0512). Each echo envelope was subjected to wavelet transformation, whose coefficients were used to calculate wavelet energies. The set of echo envelope parameters was input to fuzzy logic and c-means algorithms. The resulting classification highlights seafloor areas with different subsurface morphological features, which can indicate gassy sediments. This work has been conducted under EC FP7-CP-IP project No. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2).

  11. Distribution of polychlorinated biphenyls in the Housatonic River and adjacent aquifer, Massachusetts

    USGS Publications Warehouse

    Gay, Frederick B.; Frimpter, Michael H.

    1985-01-01

    Polychlorinated biphenyls (PCB's) are sorbed to the fine-grained stream-bottom sediments along the Housatonic River from Pittsfield, Massachusetts, southward to the Massachusetts-Connecticut boundary. The highest PCB concentrations, up to 140,000 micrograms per kilogram, were found in samples of bottom material from a reach of the river between Pittsfield and Woods Pond Dam in Lee, Massachusetts. Sediments in Woods Pond have been estimated to contain about 11,000 pounds of PCB's. Approximately 490 pounds per year of PCB's have also been estimated to move past the Housatonic River gaging station at Great Barrington. The distribution of hydraulic heads, water temperatures, and concentrations of dissolved oxygen, ammonia, nitrate, iron, and manganese in ground water shows that industrial water-supply wells in a sand and gravel aquifer adjacent to a stretch of the river called Woods Pond have been inducing ground-water recharge through the PCB-contaminated bottom sediments of the pond since late 1956. These data indicate that, at one location along the shore of the pond, the upper 40 feet of the aquifer contains water derived from induced infiltration. However, this induced recharge has not moved PCB's from the bottom sediments into a vertical section of the aquifer located 5 feet downgradient from the edge of Woods Pond. Samples taken at selected intervals in this section showed that no PCB's sorbed to the aquifer material or dissolved in the ground water within the detection limits of the chemical analyses.

  12. Relationships between contourite deposition, climate and slope instability: new insights from the Demerara Plateau (French Guyana)

    NASA Astrophysics Data System (ADS)

    Tallobre, C.; Bassetti, M. A.; Loncke, L.; Giresse, P.; Bayon, G.; Buscail, R.

    2015-12-01

    A Contourite Depositional System (CDS) has been described at the Demerara Plateau (DP) based on seismic investigations, but little is known about the mechanisms of associated sediment deposition and its interaction with past deep ocean circulation patterns (e.g. bottom current velocity) and bottom morphology related to ancient event of slope instability. The new seismic and bathymetric data recently acquired allow describing in details the CDS on the DP. Erosional and syn-sedimentary features on the seafloor (comet tail, « longitudinal waves », contourite drifts and moats) have been observed, helping to constrain the sedimentary processes at the origin of the CDS construction. Also, the recovery and multi-proxy analysis of sediment cores allows the characterization of sedimentary environments and possible relation with climate forcing. These sediment cores are characterized by the presence of several beds rich in glauconite grains. Glauconite can form at the sediment/water interface by winnowing effect that prevent sediment deposition and increase the residence time at the seafloor. Under strong winnowing conditions, glauconite grains can develop at several stages of maturity. We observed that the residence time and hence the maturity of glauconite is reflected by the color changes (light to dark green), the presence of crack on grains, the formation of (secondary) glauconite lamellae and decrease of grain porosity. A chronological framework (based on radiocarbon dates and δ18O variations) of contourite sequences at the studied location indicates correlation with grain-size parameters (sortable silt) and allows one to further constrain their dynamics through time. The combination of these proxies allows us to estimate and understand the evolution and the impact of the bottom current on sedimentation on the DP during the last 80 ky. These results show the potentiality of the glauconite study to estimate the relative variation of bottom current velocity at margins.

  13. Glider Observations of Sediment Resuspension in a Middle Atlantic Bight Fall Transition Storm

    DTIC Science & Technology

    2008-06-14

    response within the lower water column only was observed for sediment resuspension on the outer shelf during Tropical Storm Ernesto , which also occurred when...sediment types in the MAB was summarized by Amato (1994) using data mostly from U.S. Geological Survey databases or state geological surveys and...shelf ( Amato 1994) and suggests that the storm resuspended the sediment from the sandy bottom. Physical processes driving the sediment resuspension

  14. Biogeochemical and microbiological characteristic of the pockmark sediments, the Gdansk Deep, The Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pimenov, Nikolay; Kanapatskiy, Timur; Sivkov, Vadim; Toshchakov, Stepan; Korzhenkov, Aleksei; Ulyanova, Marina

    2016-04-01

    Comparison of the biogeochemical and microbial features was done for the gas-bearing and background sediments as well as near-bottom water of the Gdansk Deep, The Baltic Sea. Data were received in October, 2015 during 64th cruise of the R/V Akademik Mstislav Keldysh. Gas-bearing sediments were sampled within the known pockmark (Gas-Point, depth 94 m). Background sediments area (BG-Point, depth 86 m) was located several km off the pockmark area. The sulphate concentration in the pore water of the surface sediment layer (0-5 cm) of Gas-Point was 9,7 mmol/l, and sharply decreased with depth (did not exceed 1 mmol/l deeper than 50 cm). The sulphate concentration decrease at BG-Point also took place but was not so considerable. Sulphate concentration decrease is typical for the organic rich sediments of the high productive areas, both as for the methane seep areas. Fast sulphate depletion occurs due to active processes of its microbial reduction by consortium of the sulphate-reduction bacteria, which may use low-molecular organic compounds or hydrogen, formed at the different stages of the organic matter destruction; as well as within the process of the anaerobic methane oxidation by consortium of the methane-trophic archaea and sulphate-reduction bacteria. Together with sulphate concentration decrease the methane content increase, typical for the marine sediments, occurred. At the Gas-Point the methane concentration varied within 10 μmol/dm3 in the surface layer till its maximum at sediment horizon of 65 cm (5 mmol/dm3), and decreased to 1.5 mmol/dm3 at depth of 300 cm. The BG-Point maximum values were defined at sediment horizon 6 cm (2,6 μmol/dm3). Methane sulfate transition zone at the Gas-Point sediments was at 25-35 cm depth; whereas it was not defined at the BG-Point mud. High methane concentration in the gas-bearing sediments results in the formation of the methane seep from the sediments to the near-bottom water. So the Gas-Point near-bottom waters were characterized by high methane concentration (0.36-0.50 μmol/l) even in the water 2-5 m above the bottom (0.08-0.28 μmol/l), whereas at the BG-Point sediments methane concentration in the near-bottom water was 0.06-0.08 μmol/l. In order to get insights into the structure of microbial community responsible for realization of these redox processes we performed microbial community profiling using high-throughput 16S amplicon sequencing. DNA was extracted from sediments and water column in pockmark and background zones. NGS libraries were prepared with fusion primers for V4 variable region (Caporaso et al., 2012) and sequenced on the MiSeq system. Results well correlated with new data obtained from the analysis of the intensity of microbial processes. The study was financed by the Russian Scientific Fund (grant 14-37-00047). Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012 Aug;6(8):1621-4

  15. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis of calculations from deposited sediment in the reservoir. Mean total phosphorus concentration in the surface-water inflow to Cheney Reservoir was 0.76 milligram per liter, mean annual phosphorus yield of the watershed was estimated to be 0.38 pound per year per acre, and both are based on sediment deposition in the reservoir. A comparison of the Cheney Reservoir watershed to the Webster Reservoir, Tuttle Creek Lake, and Hillsdale Lake watersheds showed that phosphorus yields were smallest in the Webster Reservoir watershed where precipitation was less than in the other watersheds. Mean concentrations of total ammonia plus organic nitrogen in bottom sediment from Cheney Reservoir ranged from 1,200 to 2,400 milligrams per kilogram as nitrogen. A regression analysis between total ammonia plus organic nitrogen as nitrogen and sediment particle size showed a strong relation between the two variables and suggests, as with phosphorus, that total ammonia plus organic nitrogen as nitrogen adsorbs to the silt- and clay-sized particles that are transported to the deeper parts of the reservoir. An analysis of trends with depth of total ammonia plus organic nitrogen as nitrogen did not indicate a strong relation between the two variables despite the increase in fertilizer use in the watershed during the past 40 years. Selected cores were analyzed for trace elements. Concentrations of arsenic, chromium, copper, and nickel at many sites exceeded levels where adverse effects on aquatic organisms sometimes occur. Larger concentrations of these elements also occurred in sediment closer to the reservoir dam where there is a larger percentage of silt and clay in the bottom sediment than farther upstream. However, the lack of industrial or commercial land use in the watershed suggests that these concentrations may be the result of natural conditions. Organochlorine insecticides were detected in the reservoir-bottom sediment in Cheney Reservoir. DDT and its degradation products DDD and DD

  16. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1989-01-01

    Chapter Al of the laboratory manual contains methods used by the U.S. Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, the total recoverable and total of constituents in water-suspended sediment samples, and the recoverable and total concentrations of constituents in samples of bottom material. The introduction to the manual includes essential definitions and a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including the accuracy and precision of analyses, the use of standard-reference water samples, and the operation of an effective quality-assurance program. Methods for sample preparation and pretreatment are given also. A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods of these techniques are arranged alphabetically by constituent. For each method, the general topics covered are the application, the principle of the method, the interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 126 methods are given for the determination of 70 inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  17. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1985-01-01

    Chapter Al of the laboratory manual contains methods used by the Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, total recoverable and total of constituents in water-suspended sediment samples, and recoverable and total concentrations of constituents in samples of bottom material. Essential definitions are included in the introduction to the manual, along with a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including accuracy and precision of analyses, the use of standard reference water samples, and the operation of an effective quality assurance program. Methods for sample preparation and pretreatment are given also.A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods involving these techniques are arranged alphabetically according to constituent. For each method given, the general topics covered are application, principle of the method, interferences, apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 125 methods are given for the determination of 70 different inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  18. Impacts of the 2011 Tsunami on Sediment Characteristics and Macrozoobenthic Assemblages in a Shallow Eutrophic Lagoon, Sendai Bay, Japan.

    PubMed

    Kanaya, Gen; Suzuki, Takao; Kikuchi, Eisuke

    2015-01-01

    A huge tsunami is one of the greatest disturbance events in coastal benthic communities, although the ecological consequences are not fully understood. Here we examined the tsunami-induced changes in the sediment environment and macrozoobenthic assemblage in a eutrophic brackish lagoon in eastern Japan. The 7.2-m-high tsunami completely replaced muddy sediment with drifting sea sand throughout the lagoon, leading to the drastic changes in quantity and quality of sedimental organic matters, sulfide contents, and sediment redox condition. Intensive physical stress devastated the benthic community, but the disappearance of sulfidic muddy bottoms significantly improved the habitat quality for macrozoobenthos. The re-established macrozoobenthic community after 5 months was characterized by (1) a 2-fold higher total density, but sharp declines in species richness, diversity, and evenness; (2) an increased density of opportunistic taxa (e.g., polychaete Pseudopolydora spp. and amphipod Monocorophium uenoi) in newly created sandy bottoms; and (3) disappearance of several dominant taxa including bivalves and chironomid larvae. These findings indicate that the sensitivity and recovery potential of macrozoobenthos were highly taxa-specific, which was closely related to the taxa's ecological characteristics, including tolerance to physical disturbance, life-history traits, and life form. Our data revealed the rapid recolonization of opportunistic macrozoobenthos after a huge tsunami, which would contribute to the functional recovery of estuarine soft-bottom habitats shortly after a disturbance event.

  19. Modeling waves and circulation in Lake Pontchartrain, Louisiana

    USGS Publications Warehouse

    Signell, Richard P.; List, Jeffrey H.

    1997-01-01

    The U.S. Geological Survey is conducting a study of storm-driven sediment resuspension and transport in Lake Pontchartrain, Louisiana. Two critical processes related to sediment transport in the lake are (1) the resuspension of sediments due to wind-generated storm waves and (2) the movement of resuspended material by lake currents during storm wind events. The potential for sediment resuspension is being studied with the wave prediction model which simulates local generation of waves by wind and shallow-water effects on waves (refraction, shoaling, bottom friction, and breaking). Long-term wind measurements are then used to determine the regional "climate" of bottom orbital velocity (showing the spatial and temporal variability of wave-induced currents at the bottom). The circulation of the lake is being studied with a three-dimensional hydrodynamic model. Results of the modeling effort indicate that remote forcing due to water levels in Mississippi Sound dominate the circulation near the passes in the eastern end of the lake, while local wind forcing dominates water movement in the western end. During typical storms with winds from the north-northeast or the south-southeast, currents along the south coast near New Orleans generally transport material westward, while material in the central region moves against the wind. When periods of sustained winds are followed by a drop in coastal sea level, a large amount of suspended sediment can be flushed from the lake.

  20. Factors influencing release of phosphorus from sediments in a high productive polymictic lake system.

    PubMed

    Solim, S U; Wanganeo, A

    2009-01-01

    Phosphorus (P) release rates from bottom sediments are high (20.6 mg/m(2)/day) in Dal Lake (India), a polymictic hyper-eutrophic lake. These gross release rates occur over a period of 72 days during summer only. Likewise, a net internal load of 11.3 tons was obtained from mass balance estimates. Significant proportion i.e. approximately 80% of 287.3 tons/yr of nitrate nitrogen (NO(3)-N) load is either eliminated by denitrification or gets entrapped for a short period in high macrophyte biomass of 3.2 kg/m(2) f.w., which eventually get decomposed and nitrogen (N) is released back. These processes result in low lake water NO(3)-N concentrations which potentially influence sediment phosphorus (P) release. Especially, nitrate nitrogen (NO(3)-N) <500 microg/L in the lake waters were associated with high P concentrations. Phosphorus was also observed to increase significantly in relation to temperature and pH, and it seems likely that release of phosphorus and ammonical nitrogen (NH(4)-N) depend on decomposition of rich reserves of organic matter (893 tons d.w. in superficial 10-cm bottom sediment layer). Lake P concentrations were significantly predicted by a multivariate regression model developed for the lake. This study describes significance of various lake water variables in relation to P-release from bottom sediments.

  1. Use of geochemical biomarkers in bottom sediment to track oil from a spill, San Francisco Bay, California

    USGS Publications Warehouse

    Hostettler, F.D.; Rapp, J.B.; Kvenvolden, K.A.

    1992-01-01

    In April 1988, approximately 1500 m3 of a San Joaquin Valley crude oil were accidentally released from a Shell Oil Co. refinery near Martinez, Californa. The oil flowed into Carquinez Strait and Suisun Bay in northern San Francisco Bay Sediment and oil samples were collected within a week and analysed for geochemical marker compounds in order to track the molecular signature of the oil spill in the bottom sediment. Identification of the spilled oil in the sediment was complicated by the degraded nature of the oil and the similarity of the remaining, chromatographically resolvable constituents to those already present in the sediments from anthropogenic petroleum contamination, pyrogenic sources, and urban drainage. Ratios of hopane and sterane biomarkers, and of polycyclic aromatic hydrocarbons and their alkylated derivatives best identified the oil impingement. They showed the oil impact at this early stage to be surficial only, and to be patchy even within an area of heavy oil exposure.

  2. Comparison of E. coli, enterococci, and fecal coliform as indicators for brackish water quality assessment.

    PubMed

    Jin, Guang; Jeng, Huei-Wang; Bradford, Henry; Englande, A J

    2004-01-01

    Escherichia coli (E. coli), enterococci, and fecal coliform data were collected and compared as potential indicators for swimmablility assessment of a brackish waterbody (Lake Pontchartrain, Louisiana). These indicators were measured during lake background conditions, in stormwater runoff (before dilution with lake water), and in the outfall plume within the lake following storm events. Microbial indicator titers associated with suspended particles and lake-bottom sediments were also investigated. Overall reduction rate constants for fecal coliform, E. coli, and enterococci in lake water and sediment were measured and reported. Attachment of microbial indicators to suspended matter and subsequent sedimentation appeared to be a significant fate mechanism. A slower reduction rate of indicator organisms in sediment further suggested that bottom sediment may act as a reservoir for prolonging indicator organism survival and added concern of recontamination of overlaying waters due to potential solids resuspension. Results indicated that enterococci might be a more stable indicator than E. coli and fecal coliform and, consequently, a more conservative indicator under brackish water conditions.

  3. Trip Report - June 1989 Swallow Float Deployment with RUM

    DTIC Science & Technology

    1990-12-01

    Float 1. with its external geophone package resting on the sediment, and float 3, equipped with an infra - sonic hydrophone and tethered to the bottom...an external, triaxial geophone package resting on the ocean bottom and the other equippd with an infrasonic hydrophone and bottom-tethered by a 0.5... infrasonic hydrophone and bottom-tethered by a 0.5-meter line, are presented in this report Introduction An experiment designed to compare the ambient sound

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Jesse E.; Baptista, António M.

    A sediment model coupled to the hydrodynamic model SELFE is validated against a benchmark combining a set of idealized tests and an application to a field-data rich energetic estuary. After sensitivity studies, model results for the idealized tests largely agree with previously reported results from other models in addition to analytical, semi-analytical, or laboratory results. Results of suspended sediment in an open channel test with fixed bottom are sensitive to turbulence closure and treatment for hydrodynamic bottom boundary. Results for the migration of a trench are very sensitive to critical stress and erosion rate, but largely insensitive to turbulence closure.more » The model is able to qualitatively represent sediment dynamics associated with estuarine turbidity maxima in an idealized estuary. Applied to the Columbia River estuary, the model qualitatively captures sediment dynamics observed by fixed stations and shipborne profiles. Representation of the vertical structure of suspended sediment degrades when stratification is underpredicted. Across all tests, skill metrics of suspended sediments lag those of hydrodynamics even when qualitatively representing dynamics. The benchmark is fully documented in an openly available repository to encourage unambiguous comparisons against other models.« less

  5. Geological Characteristics of Active Methane Expulsion In Accretionary Prism Kaoping Slope Off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, C.; Chien, C.; Yang, T. F.; Lin, S.

    2005-12-01

    The Kaoping Slope off SW Taiwan represents the syn-collision accretionary prism characterized by active NW-trending folding - thrusting structures and high sedimentation rate favoring the formation of gas hydrate. For an assessment of gas hydrate potential in the Kaoping Slope off SW Taiwan, sedimentology, paleontology and geochemistry in box cores and piston cores were studied. BSRs are commonly found in seismic profiles in 400-600 m below seafloor of water depth 2500-1000 m. Active expulsions of methane were found along active thrust faults where sulfate/methane interface could be as shallow as 30 cm and the methane concentration of dissolved gases in bottom water and in pore-space of drilled core samples could be three-four order higher than the normal marine environments. Occurrences of authigenic carbonate and elongated pyrite tubes are correlated with shallow SMI depth and high methane content in bottom water and pore-space of sediment cores. Authigenic carbonates were found in seafloor surface and in 20-25 meters below seafloor. The authigenic carbonate nodules are characterized by irregular shape, whitish color, no visible microfossil, containing native sulfur, pyrites, gypsum, small open spaces, and very depleted carbon isotope (-54 ~ -43 per mil PDB). Tiny native sulfur and gypsum crystals were commonly found either on surface of foraminiferal tests and elongated pyrite tubes or in the authigenic carbonate nodules. Morphological measurements of elongated pyrite tubes show that they could represent pseudomorphs after three types of Pogonophora tube worm. Foraminifers are commonly filled by rhomboidal pyrites or cemented by pyrite crystals. Normal marine benthic foraminifers predominated by calcareous tests of slope fauna are associated with authigenic carbonate nodules in the study area, suggesting no major geochemistry effect on distribution of benthic foraminifers. Integrating sedimentology, paleontology and geochemistry characters, there could be high potential to have gas hydrate in the accretionary prism off SW Taiwan.

  6. Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea

    USGS Publications Warehouse

    Sherwood, C.R.

    2000-01-01

    A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.

  7. Multiscale Modeling of Radioisotope Transfers in Watersheds, Rivers, Reservoirs and Ponds of Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.

    2015-12-01

    The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high floods of the next years. MOIRA -LAKE model of long term radioisotopes transfer in water, bottom sediment and fish was used for the assessments of the efficiency of the bottom sediment dredging for the remediation of the irrigation ponds at Okuma town.

  8. Methane release from the southern Brazilian margin during the last glacial.

    PubMed

    Portilho-Ramos, R C; Cruz, A P S; Barbosa, C F; Rathburn, A E; Mulitza, S; Venancio, I M; Schwenk, T; Rühlemann, C; Vidal, L; Chiessi, C M; Silveira, C S

    2018-04-13

    Seafloor methane release can significantly affect the global carbon cycle and climate. Appreciable quantities of methane are stored in continental margin sediments as shallow gas and hydrate deposits, and changes in pressure, temperature and/or bottom-currents can liberate significant amounts of this greenhouse gas. Understanding the spatial and temporal dynamics of marine methane deposits and their relationships to environmental change are critical for assessing past and future carbon cycle and climate change. Here we present foraminiferal stable carbon isotope and sediment mineralogy records suggesting for the first time that seafloor methane release occurred along the southern Brazilian margin during the last glacial period (40-20 cal ka BP). Our results show that shallow gas deposits on the southern Brazilian margin responded to glacial-interglacial paleoceanographic changes releasing methane due to the synergy of sea level lowstand, warmer bottom waters and vigorous bottom currents during the last glacial period. High sea level during the Holocene resulted in an upslope shift of the Brazil Current, cooling the bottom waters and reducing bottom current strength, reducing methane emissions from the southern Brazilian margin.

  9. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of inorganic and organic constituents in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, M. J.

    1993-01-01

    Methods to be used to analyze samples of water, suspended sediment and bottom material for their content of inorganic and organic constituents are presented. Technology continually changes, and so this laboratory manual includes new and revised methods for determining the concentration of dissolved constituents in water, whole water recoverable constituents in water-suspended sediment samples, and recoverable concentration of constit- uents in bottom material. For each method, the general topics covered are the application, the principle of the method, interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data. Included in this manual are 30 methods.

  10. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  11. A mycological baseline study based on a multidisciplinary approach in a coastal area affected by contaminated torrent input.

    PubMed

    Capello, M; Carbone, C; Cecchi, G; Consani, S; Cutroneo, L; Di Piazza, S; Greco, G; Tolotti, R; Vagge, G; Zotti, M

    2017-06-15

    Fungi include a vast group of eukaryotic organisms able to colonise different natural, anthropised and extreme environments, including marine areas contaminated by metals. The present study aims to give a first multidisciplinary characterisation of marine bottom sediments contaminated by metals (Cd, Co, Cr, Cu, Ni, and Zn), originating in the water leakage from an abandoned Fe-Cu sulphide mine (Libiola, north-western Italy), and evaluate how the chemical and physical parameters of water and sediments may affect the benthic fungal communities. Our preliminary results showed the high mycodiversity of the marine sediments studied (13 genera and 23 species of marine fungi isolated), and the great physiological adaptability that this mycobiota evolved in reaction to the effects of the ecotoxic bottom sediment contamination, and associated changes in the seawater parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chemical evolution of the Salton Sea, California: Nutrient and selenium dynamics

    USGS Publications Warehouse

    Schroeder, R.A.; Orem, W.H.; Kharaka, Y.K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (???44 000 mg l-1 dissolved solids) lake started as fresh water in 1905-07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr-1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  13. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions

    PubMed Central

    Bukin, Sergei V.; Pavlova, Olga N.; Manakov, Andrei Y.; Kostyreva, Elena A.; Chernitsyna, Svetlana M.; Mamaeva, Elena V.; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.

    2016-01-01

    The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716

  14. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions.

    PubMed

    Bukin, Sergei V; Pavlova, Olga N; Manakov, Andrei Y; Kostyreva, Elena A; Chernitsyna, Svetlana M; Mamaeva, Elena V; Pogodaeva, Tatyana V; Zemskaya, Tamara I

    2016-01-01

    The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.

  15. Benchmarking an unstructured grid sediment model in an energetic estuary

    DOE PAGES

    Lopez, Jesse E.; Baptista, António M.

    2016-12-14

    A sediment model coupled to the hydrodynamic model SELFE is validated against a benchmark combining a set of idealized tests and an application to a field-data rich energetic estuary. After sensitivity studies, model results for the idealized tests largely agree with previously reported results from other models in addition to analytical, semi-analytical, or laboratory results. Results of suspended sediment in an open channel test with fixed bottom are sensitive to turbulence closure and treatment for hydrodynamic bottom boundary. Results for the migration of a trench are very sensitive to critical stress and erosion rate, but largely insensitive to turbulence closure.more » The model is able to qualitatively represent sediment dynamics associated with estuarine turbidity maxima in an idealized estuary. Applied to the Columbia River estuary, the model qualitatively captures sediment dynamics observed by fixed stations and shipborne profiles. Representation of the vertical structure of suspended sediment degrades when stratification is underpredicted. Across all tests, skill metrics of suspended sediments lag those of hydrodynamics even when qualitatively representing dynamics. The benchmark is fully documented in an openly available repository to encourage unambiguous comparisons against other models.« less

  16. Particle-associated contaminants in street dust, parking lot dust, soil, lake-bottom sediment, and suspended and streambed sediment, Lake Como and Fosdic Lake watersheds, Fort Worth, Texas, 2004

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.; Werth, Charles J.; Yang, Yanning

    2006-01-01

    A previous study by the U.S. Geological Survey of impaired water bodies in Fort Worth, Texas, reported elevated but variable concentrations of particle-associated contaminants (PACs) comprising chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and trace elements in suspended and bed sediment of lakes and streams affected by urban land use. The U.S. Geological Survey, in cooperation with the City of Fort Worth, collected additional samples during October 2004 to investigate sources of PACs in the watersheds of two impaired lakes: Lake Como and Fosdic Lake. Source materials and aquatic sediment were sampled and analyzed for PACs. Source materials sampled consisted of street dust and soil from areas with residential and commercial land use and parking lot dust from sealed and unsealed parking lots. Aquatic sediment sampled consisted of bottom-sediment cores from the two lakes and suspended and streambed sediment from the influent stream of each lake. Samples were analyzed for chlorinated hydrocarbons (organochlorine pesticides and polychlorinated biphenyls), polycyclic aromatic hydrocarbons, major and trace elements, organic carbon, grain size, and radionuclides.

  17. Results of the flowmeter-injection test in the Long Valley Exploratory Well (Phase II), Long Valley, California

    USGS Publications Warehouse

    Morin, R.H.; Sorey, M.L.; Jacobson, R.D.

    1993-01-01

    Bayboro Harbor and the Port of St. Petersburg, Florida, form a manmade basin adjacent to Tampa Bay that may supply turbid water to the bay and subsequently affect light penetration in water in the bay. To address concerns about the nature and extent of this potential problem, resuspension of bottom sediments, sedimentation, and tributary storm discharge in the basin were studied. Study results indicated that tidal currents, wind waves, and seiche motions do not resuspend bottom sediments. The maneuvering of a cruise ship in the port resuspended bottom sediments, but these sediments settled within 2 hours. Tidal currents and wave action were not large enough o prevent the resuspended sediments from settling in the basin. Analysis of bathymetric surveys of the port made in 1981, 1986, 1987, and 1989 indicates that the cruise ship has deepened the port along its route and that the displaced sediment has been deposited elsewhere within the port. The storm discharge from two tributaries and the effect of tributary storm runoff on the water quality of the harbor were studied during a storm on November 9, 1989. Booker Creek, which drains an urban watershed, was stratified with a thin layer of turbid freshwater flowing into the harbor over a layer of less turbid saltwater. Salt Creek, which primarily drains Lake Maggiore, was only partially stratified and was less turbid. The turbid water from the creeks increased the turbidity only slightly in the harbor, probably because of mixing with less turbid water and particle settling. Thus, the basin provides mixing and settling, which diminish and eliminate the potentially adverse effect on Tampa Bay from tributary storm runoff and large vessel traffic in the basin.

  18. Trace elements and organic chemicals in stream-bottom sediments and fish tissues, Red River of the North basin, Minnesota, North Dakota, and South Dakota, 1992-95

    USGS Publications Warehouse

    Brigham, M.E.; Goldstein, R.M.; Tornes, L.H.

    1998-01-01

    Stream-bottom sediment and fish-tissue samples from the Red River of the North Basin, were analyzed for a large suite of chemical elements and organic chemicals. Cadmium, lead, and mercury were widespread in sediments, at concentrations not indicative of acute contamination. Mercury, the element of greatest health concern in the region, was detected at low concentrations in 38 of 43 sediment samples (<0.02-0.13 micrograms per gram) and all of eleven fish-liver samples (0.03-0.6 micrograms per gram dry weight, or 0.0066-0.13 micrograms per gram wet weight). Concentrations of many elements appeared to be controlled by mineral rather than anthropogenic sources. DDT and its metabolites were the most frequently detected synthetic organochlorines: p,p'-DDE was detected in 9 of 38 sediment samples (concentration range: <1-16 nanograms per gram) and also frequently in whole-fish samples. Total DDT (the sum of DDT and its metabolites) concentrations ranged from <5 to 217 nanograms per gram, and at least one component of total DDT was detected in 19 of 23 fish samples. Concentrations of DDT and its metabolites in stream sediments were significantly higher in the intensively cropped Red River Valley Lake Plain, compared to upland areas, probably because of greater historical DDT usage in the lake plain. Several polycyclic aromatic hydrocarbons were detected in stream-bottom sediments. Although the potentially toxic chemicals measured in this study were at low levels, relative to more contaminated areas of the Nation, maximum concentrations of some chemicals are of concern because of their possible effects on aquatic biota and human health.

  19. Are Sediments a Source of Fukushima Radiocesium for Marine Fauna in Coastal Japan?

    NASA Astrophysics Data System (ADS)

    Wang, C.; Fisher, N. S.; Baumann, Z.

    2016-02-01

    The Fukushima nuclear power plant accident in 2011 resulted in the largest accidental release of artificial radionuclides into the world's oceans. Among the fission products released in large quantities, 137Cs has the greatest potential for long-term impacts on marine biota and human consumers of seafood. In particular, some species of bottom fish near Fukushima were very contaminated and had higher radiocesium (134Cs and 137Cs) levels than pelagic fish in the same area, sometimes exceeding Japanese safety limits >4 years after the accident. Benthic invertebrates, many being prey items for bottom fish, show the same slow decrease in radiocesium as sediments, suggesting that contaminated sediment could be a source of radiocesium for benthic fauna. We evaluated the binding of 137Cs to sediments (Kd found to be 44-60 ml g-1) and found that bioturbation by the polychaete Nereis succinea greatly increased the initial release rate of Cs to overlying seawater. We also assessed the bioavailability of dissolved and sediment-bound Cs for deposit-feeding polychaetes, and its subsequent transfer to crabs and fish, and measured the influence of water temperature on Cs accumulation in fish. Assimilation efficiency (AE) of ingested 137Cs ranged from 16% in polychaetes ingesting sediments to 79% in fish ingesting worms. Efflux rate constants ranged from 5% d-1 for killifish to 40% d-1 for polychaetes. Animal absorption and retention of dissolved 137Cs were also measured. These parameters are used to model radiocesium bioaccumulation and trophic transfer in benthic food chains. Our results are consistent with the idea that sediments can be an important source of Cs for benthic food chains and help explain why some species of bottom fish remained more contaminated than pelagic fish in Japanese coastal waters.

  20. Sediment transport on the Palos Verdes shelf, California

    USGS Publications Warehouse

    Ferre, B.; Sherwood, C.R.; Wiberg, P.L.

    2010-01-01

    Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature-salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m-1 yr-1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ???0.2 mm yr-1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation rates (???5 mm yr-1), but do not preclude higher localized rates near abrupt transitions in sediment characteristics. However, low particle settling velocities and strong currents result in transport length-scales that are long relative to the narrow width of the PV shelf, which combined with the significant offshore component in transport, means that transport of resuspended sediment towards deep water is as likely as transport along the axis of the effluent-affected deposit.

  1. Photographic evaluation of the impacts of bottom fishing on benthic epifauna

    USGS Publications Warehouse

    Collie, J.S.; Escanero, G.A.; Valentine, P.C.

    2000-01-01

    The gravel sediment habitat on the northern edge of Georges Bank (East coast of North America) is an important nursery area for juvenile fish, and the site of a productive scallop fishery. During two cruises to this area in 1994 we made photographic transects at sites of varying depths that experience varying degrees of disturbance from otter trawling and scallop dredging. Differences between sites were quantified by analyzing videos and still photographs of the sea bottom. Videos were analyzed for sediment types and organism abundance. In the still photos, the percentages of the bottom covered by bushy, plant-like organisms and colonial worm tubes (Filograna implexa) were determined, as was the presence/absence of encrusting bryozoa. Non-colonial organisms were also identified as specifically as possible and sediment type was quantified. Significant differences between disturbed and undisturbed areas were found for the variables measured in the still photos; colonial epifaunal species were conspicuously less abundant at disturbed sites. Results from the videos and still photos were generally consistent although less detail was visible in the videos. Emergent colonial epifauna provide a complex habitat for shrimp, polychaetes, brittle stars and small fish at undisturbed sites. Bottom fishing removes this epifauna, thereby reducing the complexity and species diversity of the benthic community. (C) 2000 International Council for the Exploration of the Sea.

  2. Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods

    NASA Astrophysics Data System (ADS)

    Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli

    2016-05-01

    After the earthquake and tsunami on 11 March 2011 damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), an accidental release of a large amount of radioactive isotopes into both the air and the ocean occurred. Measurements provided by the Japanese agencies over the past 5 years show that elevated concentrations of 137Cs still remain in sediments, benthic organisms, and demersal fishes in the coastal zone around the FDNPP. These observations indicate that there are 137Cs transfer pathways from bottom sediments to the marine organisms. To describe the transfer quantitatively, the dynamic food chain biological uptake model of radionuclides (BURN) has been extended to include benthic marine organisms. The extended model takes into account both pelagic and benthic marine organisms grouped into several classes based on their trophic level and type of species: phytoplankton, zooplankton, and fishes (two types: piscivorous and non-piscivorous) for the pelagic food chain; deposit-feeding invertebrates, demersal fishes fed by benthic invertebrates, and bottom omnivorous predators for the benthic food chain; crustaceans, mollusks, and coastal predators feeding on both pelagic and benthic organisms. Bottom invertebrates ingest organic parts of bottom sediments with adsorbed radionuclides which then migrate up through the food chain. All organisms take radionuclides directly from water as well as food. The model was implemented into the compartment model POSEIDON-R and applied to the north-western Pacific for the period of 1945-2010, and then for the period of 2011-2020 to assess the radiological consequences of 137Cs released due to the FDNPP accident. The model simulations for activity concentrations of 137Cs in both pelagic and benthic organisms in the coastal area around the FDNPP agree well with measurements for the period of 2011-2015. The decrease constant in the fitted exponential function of simulated concentration for the deposit-feeding invertebrates (0.45 yr-1) is close to the observed decrease constant in sediments (0.44 yr-1). These results strongly indicate that the gradual decrease of activity in demersal fish (decrease constant is 0.46 yr-1) is caused by the transfer of activity from organic matter deposited in bottom sediment through the deposit-feeding invertebrates. The estimated model transfer coefficient from bulk sediment to demersal fish in the model for 2012-2020 (0.13) is larger than that to the deposit-feeding invertebrates (0.07). In addition, the transfer of 137Cs through food webs for the period of 1945-2020 has been modelled for the Baltic Sea contaminated due to global fallout and from the Chernobyl accident. The model simulation results obtained with generic parameters are also in good agreement with available measurements in the Baltic Sea. Unlike the open coastal system where the FDNPP is located, the dynamics of radionuclide transfer in the Baltic Sea reach a quasi-steady state due to the slow rate in water mass exchange in this semi-enclosed basin. Obtained results indicate a substantial contribution of the benthic food chain in the long-term transfer of 137Cs from contaminated bottom sediments to marine organisms and the potential application of a generic model in different regions of the world's oceans.

  3. Genotoxic substances in the St. Lawrence system. 1: Industrial genotoxins sorbed to particulate matter in the St. Lawrence, St. Maurice, and Saguenay rivers, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, P.A.; Rasmussen, J.B.; Blaise, C.

    1998-02-01

    Previous investigations of organic genotoxins in industrial effluents discharged into the St. Lawrence River system (Quebec, Canada) indicated that a substantial fraction of the genotoxicity is adsorbed to suspended particulate matter. This study used the SOS Chromotest to investigate the presence, potency, and behavior of particle-bound genotoxins in the downstream ecosystem. The results indicate that although extracts of both suspended and sedimented particulate matter are genotoxic, suspended particulate matter samples are more potent in the absence of S9 activation, with the reverse being true for bottom sediments. The results confirmed a positive relationship between the genotoxicity of bottom sediment extractsmore » and sediment organic matter content. A similar relationship between organic matter content and total polycyclic aromatic hydrocarbon (PAH) concentration indicates that putative genotoxins have physicochemical properties similar to the PAH class of contaminants. Conversion of PAH values to benzo[a]pyrene equivalents indicates that measured PAHs only account for a small fraction ({approximately}10%) of the observed SOS Chromotest response. Sites that receive discharges from foundries, aluminum refineries, and petroleum refineries yielded several of the most genotoxic samples. Further analyses revealed that the genotoxicity of suspended and sedimented particulate matter extracts is empirically related to the genotoxicity of industrial discharges. Comparisons of total genotoxicity levels in suspended particulates and bottom sediments suggest that direct-acting substances adsorbed to suspended matter are rapidly degraded and/or converted to more stable progenotoxins upon deposition. Further research is required to test this hypothesis and investigate effects on indigenous biota.« less

  4. The role of vigorous current systems in the Southeast Indian Ocean in redistributing deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Adriana; Müller, Dietmar; Hogg, Andrew; Spence, Paul

    2017-04-01

    Understanding the transport of modern deep-sea sediment is critical for accurate models of climate-ocean history and the widespread use of the sedimentological record as a proxy for productivity where the connection between biogenic seafloor lithologies and sea-surface is tenuous. The Southern Ocean, where diatoms contribute the bulk of pelagic material to the seafloor forming an extensive belt of diatom ooze, is an exemplar. However, most of the key studies on large-scale sediment reworking in the Southern Ocean were conducted in the 1970s when relatively little was known about the oceanography of this region. At this time even our knowledge of the bathymetry and tectonic fabric, which underpin the distribution of deep-sea currents, were fairly general. The record of widespread regional disconformities in the abyssal plains of the Southern Ocean is well-established and indicates extensive erosion of deep-sea sediments throughout the Quaternary. Here we combine a high-resolution numerical model of bottom currents with sedimentological data to constrain the redistribution of sediment across the abyssal plains and adjacent mid-ocean ridges in the Southern Ocean. We use the global ocean-sea ice model (GFDL-MOM01) to simulate ocean circulation at a resolution that results in realistic velocities throughout the water column, and is ideal for estimating interaction between time-dependent bottom currents and ocean bathymetry. 230Th-normalized vertical sediment rain rates for 63 sites in the Southeast Indian Ocean, combined with satellite data-derived surface productivity, demonstrate that a wide belt of fast sedimentation rates (> 5.5 cm/kyr) along the Southeast Indian Ridge (SEIR) occurs in a region of low surface productivity bounded by two major disconformity fields associated with the Kerguelen Plateau to the east and the Macquarie Ridge to the west. Our ocean circulation model illustrates that the disconformity fields occur in regions of intense bottom current activity where current speeds reach 0.2 m/s and are favorable for generating intense nepheloid layers. These currents transport sediment towards and along the SEIR and through leaky fracture zones to regions where bottom currents speeds drop to < 0.03 m/s and fine particles settle out of suspension. We suggest that the anomalously high sedimentation rates along an 8,000 km-long segment of the SEIR represent a giant Pliocene-Holocene succession of contourite drifts. It is a major extension of the much smaller contourite east of Kerguelen and has accumulated since 3-5 Ma based on the age of the oldest crust underlying the deposit. These inferred contourite drifts provide exceptionally valuable drilling targets for high-resolution climatic investigations of the Southern Ocean. Understanding and quantifying the link between bottom current activity and sediment transport is critical for paleooceanographic and palaeoclimatic reconstructions and for understanding the history of current flow. Dutkiewicz, A., Müller, R.D., Hogg, A. McC., and Spence, P., 2016, Vigorous deep-sea currents cause global anomaly in sediment accumulation in the Southern Ocean, Geology, 44, 663-666, DOI: 10.1130/G38143.1

  5. Continued Investigation of the Acoustics of Marine Sediments Using Impedance Tube and Acoustic Resonator Techniques

    DTIC Science & Technology

    2009-09-30

    seagrass , which in turn benefits buried object detection, sonar operation and acoustic communications in shallow water. Another goal for the out years...bottom sediments, including multiphase materials such as gas- bearing sediments and seagrass . These measurements are conducted using an acoustic...such as gas-bearing sediments and seagrass , which in turn benefits buried object detection, sonar operation and acoustic communications in shallow

  6. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    USGS Publications Warehouse

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi-species and/or various life stages with different sensitivities to contaminants may offer a more conservative assessment of toxicity than single species testing. Using a ?weight of evidence? approach, the Sediment Quality Trial produces a robust evaluation of habitat quality and includes a measure of contaminant concentrations in the sediment, an assessment of sediment/pore-water toxicity to laboratory animals, and an evaluation of in situ biological assemblages. Field and laboratory procedures are available that can be used to ascertain habitat quality, identify contaminants causing environmental degradation and delineate aquatic systems requiring mitigation of protective efforts. These studies provide the scientific data that are integral to developing an environmental risk assessment of contaminants from watercraft use in shallow water systems.

  7. MANUAL OF TEMPORARY EROSION CONTROL PRODUCTS FOR ROADSIDE DITCHES

    DOT National Transportation Integrated Search

    2017-09-01

    Sediment continues to be the primary pollutant by volume in Ohio's streams and rivers. Unvegetated roadside ditches' side slopes and bottoms erode and contribute tons of sediment annually to local receiving streams. Pollutants attach themselves to se...

  8. Mapping beneath the seafloor: AUV sub-bottom profilers, sediment thickness and resource potential

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.; Vardy, M. E.; Holwell, D.; North, L.; Murton, B. J.

    2017-12-01

    Most AUV seafloor exploration focuses primarily on collecting high-resolution bathymetric and backscatter data in order to identify and map features of interest. Sub-bottom profiler data provides an essential third dimension that can illuminate not only the thickness of overlying sediment packets, but also the scale and tectonic setting of surface features. In this study we present results of high-resolution sub-bottom profiler surveys of Tropic Seamount, a 3000m tall, 40km wide, flat-topped gyot located 400km south of the Canary Islands. We show how the application of AUV derived sub-bottom profiler data can be used to assess the thickness and extent of ferromanganese crusts covering the summit and underlying thin pelagic sediment cover. Bespoke chirp signals at two altitudes were used to increase the likelihood of resolving thin (tens of cm) layers of crust. Drill cores were obtained from an ROV and used to constrain and calibrate the profiler data. The cores show variable crustal thicknesses of zero to 14 cm of FeMn crustal cover over a partially phosphoritised, vuggy, often poorly lithified limestone basement. Initial measurements of sound velocities suggest differences between the limestone basement and the crust of only a few hundred meters per second. Sub-cores, drilled from large samples collected during the cruise were analysed in the NOC Acoustic Pulse Tube and with X-Ray Computer Tomography to better understand how variations in lithology, crustal thickness, surface texture and internal structure affect the returning geoacoustic signal. We discuss the pros and cons of different surveying patterns, altitudes and chirps, the relative usefulness of sub-bottom profiler data in different environments, and the value added by sub-bottom profiler surveying as opposed to bathymetric surveying alone.

  9. Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash

    NASA Astrophysics Data System (ADS)

    Katz, Timor; Yahel, Gitai; Yahel, Ruthy; Tunnicliffe, Verena; Herut, Barak; Snelgrove, Paul; Crusius, John; Lazar, Boaz

    2009-12-01

    In this study, we link groundfish activity to the marine silica cycle and suggest that the drastic mid-1980s crash of the Baltic Sea cod (Gadus morhua) population triggered a cascade of events leading to decrease in dissolved silica (DSi) and diatom abundance in the water. We suggest that this seemingly unrelated sequence of events was caused by a marked decline in sediment resuspension associated with reduced groundfish activity resulting from the cod crash. In a study in Saanich Inlet, British Columbia, Canada, we discovered that, by resuspending bottom sediments, groundfish triple DSi fluxes from the sediments and reduce silica accumulation therein. Using these findings and the available oceanographic and environmental data from the Baltic Sea, we estimate that overfishing and recruitment failure of Baltic cod reduced by 20% the DSi supply from bottom sediments to the surface water leading to a decline in the diatom population in the Baltic Sea. The major importance of the marginal ocean in the marine silica cycle and the associated high population density of groundfish suggest that groundfish play a major role in the silica cycle. We postulate that dwindling groundfish populations caused by anthropogenic perturbations, e.g., overfishing and bottom water anoxia, may cause shifts in marine phytoplankton communities.

  10. Geochemical history of Lake Miccosukee, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.Q.; Donoghue, J.F.; Hess, D.W.

    1994-03-01

    Lake Miccosukee is a 2,500 hectare karst lake in northwest Florida. The lake draws water from a 65,000 hectare watershed, although groundwater seepage appears to be the principal water source to the lake. Like many of the large lakes of north Florida it periodically drains via sinkholes, becoming nearly dry in the process. The result of the natural drawdowns is a large reduction of the organic matter content of the bottom sediments. The water level in the lake was stabilized after 1954 with the construction of a dike and weir. Drawdowns have been managed since then and have been fewermore » and less drastic. The lake bottom has been exposed for only about six months since 1954. The result has been an increase in aquatic vegetation and a diminishment in fish populations. A set of two dozen sediment cores was analyzed for sedimentation rate (using lead-210 and Cs-137), percent organics, C, N, P and trace metals. The effect of the lake level stabilization appears to be an increase in organic matter deposited in the bottom sediments. Anthropogenic metals, including Hg, Zn, Pb, Cu and V have been found to increase considerably near the tops of the cores, by a factor of two or more over long-term background levels.« less

  11. High resolution near-bed observations in winter near Cape Hatteras, North Carolina

    USGS Publications Warehouse

    Martini, Marinna A.; Armstrong, Brandy N.; Warner, John C.

    2010-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Science Center in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the Carolinas Coastal Change Processes Project, a geologic framework study in June of 2008 by the Woods Hole Coastal and Marine Science Center's Sea Floor Mapping Group focused on the seaward limit of Diamond Shoals and provided high resolution bathymetric data, surficial sediment characteristics, and subsurface geologic stratigraphy. These data also provided unprecedented guidance to identify deployment locations for tripods and moorings to investigate the processes that control sediment transport at Diamond Shoals. Equipment was deployed at three sites from early January, 2009 through early May, 2009: north and south of the shoals at 15 m depth, and at the tip at 24 m depth. Many strong storm systems were recorded during that time period. Mounted on the tripods were instruments to measure surface waves, pressure, current velocity, bottom turbulence, suspended-sediment profiles, and sea-floor sand-ripple bedforms. Many instruments were designed and programmed to sample in high resolution in time and space, as fast as 8 Hz hourly bursts and as small as 6 cm bin sizes in near bottom profiles. A second tripod at the north site also held a visual camera system and sonar imaging system which document seafloor bedforms. The region is known for its dynamics, and one of the tripods tipped over towards the end of the experiment. A preliminary look at the data suggests the region is characterized by high energy. Raw data from a burst recorded at the south site on Mar. 26th show instantaneous flow speed at 150 cm/s at 0.5 m above the seabed. This paper reports preliminary highlights of the observations, based on raw data, and lessons learned from a deployment of large tripod systems in such a dynamic location.

  12. High resolution near-bed observations in winter near Cape Hatteras, North Carolina

    USGS Publications Warehouse

    Martini, M.; Armstrong, B.; Warner, J.C.

    2009-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Science Center in Woods Hole, Massachusetts, is leading an effort to understand the regional sediment dynamics along the coastline of North and South Carolina. As part of the Carolinas Coastal Change Processes Project, a geologic framework study in June of 2008 by the Woods Hole Coastal and Marine Science Center's Sea Floor Mapping Group focused on the seaward limit of Diamond Shoals and provided high resolution bathymetric data, surficial sediment characteristics, and subsurface geologic stratigraphy. These data also provided unprecedented guidance to identify deployment locations for tripods and moorings to investigate the processes that control sediment transport at Diamond Shoals. Equipment was deployed at three sites from early January, 2009 through early May, 2009: north and south of the shoals at 15 m depth, and at the tip at 24 m depth. Many strong storm systems were recorded during that time period. Mounted on the tripods were instruments to measure surface waves, pressure, current velocity, bottom turbulence, suspended-sediment profiles, and sea-floor sand-ripple bedforms. Many instruments were designed and programmed to sample in high resolution in time and space, as fast as 8 Hz hourly bursts and as small as 6 cm bin sizes in near bottom profiles. A second tripod at the north site also held a visual camera system and sonar imaging system which document seafloor bedforms. The region is known for its dynamics, and one of the tripods tipped over towards the end of the experiment. A preliminary look at the data suggests the region is characterized by high energy. Raw data from a burst recorded at the south site on Mar. 26th show instantaneous flow speed at 150 cm/s at 0.5 m above the seabed. This paper reports preliminary highlights of the observations, based on raw data, and lessons learned from a deployment of large tripod systems in such a dynamic location. ??2009 MTS.

  13. Changes in Fe Oxidation Rate in Hydrothermal Plumes as a Potential Driver of Enhanced Hydrothermal Input to Near-Ridge Sediments During Glacial Terminations

    NASA Astrophysics Data System (ADS)

    Cullen, J. T.; Coogan, L. A.

    2017-12-01

    Recent studies have hypothesized that changes in sea level due to glacial-interglacial cycles lead to changes in the rate of melt addition to the crust at mid-ocean ridges with globally significant consequences. Arguably the most compelling evidence for this comes from increases in the hydrothermal component in near-ridge sediments during glacial-interglacial transitions. Here we explore the hypothesis that changes in ocean bottom water [O2] and pH across glacial-interglacial transitions would lead to changes in the rate of Fe oxidation in hydrothermal plumes. A simple model shows that a several fold increase in the rate of Fe oxidation is expected at glacial-interglacial transitions. Uncertainty in bottom water chemistry and the relationship between oxidation and sedimentation rates prevent direct comparison of the model and data. However, it appears that the null hypothesis of invariant hydrothermal vent fluxes into ocean bottom water that changed in O2 content and pH across these transitions cannot currently be discounted.

  14. Uranium Stable Isotopes: A Proxy For Productivity Or Ocean Oxygenation?

    NASA Astrophysics Data System (ADS)

    Severmann, S.

    2015-12-01

    Uranium elemental abundances in sediments have traditionally been used to reconstruct primary productivity and carbon flux in the ocean. 238U/235U isotope compositions, in contrast, are currently understood to reflect the extent of bottom water anoxia in the ocean. A review of our current understanding of authigenic U enrichment mechanism into reducing sediments suggests that a revision of this interpretation is warranted. Specifically, the current interpretation of U isotope effects in suboxic vs. anoxic deposits has not taken into account the well-documented linear relationship with organic C burial rates. Although organic C rain rates (i.e., surface productivity) and bottom water oxygenation are clearly related, distinction between these two environmental controls is conceptually important as it relates to the mechanism of enhanced C burial and ultimately the strength of the biological pump. Here we will review new and existing data to test the hypothesis that the isotope composition of authigenic U in reducing sediments are best described by their relationship with parameters related to organic carbon delivery and burial, rather than bottom water oxygen concentration.

  15. Sediment unmixing using detrital geochronology

    USGS Publications Warehouse

    Sharman, Glenn R.; Johnstone, Samuel

    2017-01-01

    Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the influence of environmental forcings (e.g., tectonism, climate) on the earth’s surface. Here we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First we summarize ‘top-down’ mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions (‘parents’) that characterize a derived sample or set of samples (‘daughters’). Second we propose the use of ‘bottom-up’ methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable mixtures over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.

  16. Impacts of the 2011 Tsunami on Sediment Characteristics and Macrozoobenthic Assemblages in a Shallow Eutrophic Lagoon, Sendai Bay, Japan

    PubMed Central

    Kanaya, Gen; Suzuki, Takao; Kikuchi, Eisuke

    2015-01-01

    A huge tsunami is one of the greatest disturbance events in coastal benthic communities, although the ecological consequences are not fully understood. Here we examined the tsunami-induced changes in the sediment environment and macrozoobenthic assemblage in a eutrophic brackish lagoon in eastern Japan. The 7.2-m-high tsunami completely replaced muddy sediment with drifting sea sand throughout the lagoon, leading to the drastic changes in quantity and quality of sedimental organic matters, sulfide contents, and sediment redox condition. Intensive physical stress devastated the benthic community, but the disappearance of sulfidic muddy bottoms significantly improved the habitat quality for macrozoobenthos. The re-established macrozoobenthic community after 5 months was characterized by (1) a 2-fold higher total density, but sharp declines in species richness, diversity, and evenness; (2) an increased density of opportunistic taxa (e.g., polychaete Pseudopolydora spp. and amphipod Monocorophium uenoi) in newly created sandy bottoms; and (3) disappearance of several dominant taxa including bivalves and chironomid larvae. These findings indicate that the sensitivity and recovery potential of macrozoobenthos were highly taxa-specific, which was closely related to the taxa’s ecological characteristics, including tolerance to physical disturbance, life-history traits, and life form. Our data revealed the rapid recolonization of opportunistic macrozoobenthos after a huge tsunami, which would contribute to the functional recovery of estuarine soft-bottom habitats shortly after a disturbance event. PMID:26241654

  17. Sediment unmixing using detrital geochronology

    NASA Astrophysics Data System (ADS)

    Sharman, Glenn R.; Johnstone, Samuel A.

    2017-11-01

    Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the effect of environmental forcing (e.g., tectonism, climate) on the Earth's surface. Here, we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First, we summarize 'top-down' mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions ('parents') that characterize a derived sample or set of samples ('daughters'). Second, we propose the use of 'bottom-up' methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable that is well mixed over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has the potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.

  18. Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Ling, C.-H.; Gartner, J.W.; Wang, P.-F.

    1999-01-01

    A field investigation of the hydrodynamics and the resuspension and transport of participate matter in a bottom boundary layer was carried out in South San Francisco Bay (South Bay), California, during March-April 1995. Using broadband acoustic Doppler current profilers, detailed measurements of turbulent mean velocity distribution within 1.5 m above bed have been obtained. A global method of data analysis was used for estimating bottom roughness length zo and bottom shear stress (or friction velocities u*). Field data have been examined by dividing the time series of velocity profiles into 24-hour periods and independently analyzing the velocity profile time series by flooding and ebbing periods. The global method of solution gives consistent properties of bottom roughness length zo and bottom shear stress values (or friction velocities u*) in South Bay. Estimated mean values of zo and u* for flooding and ebbing cycles are different. The differences in mean zo and u* are shown to be caused by tidal current flood-ebb inequality, rather than the flooding or ebbing of tidal currents. The bed shear stress correlates well with a reference velocity; the slope of the correlation defines a drag coefficient. Forty-three days of field data in South Bay show two regimes of zo (and drag coefficient) as a function of a reference velocity. When the mean velocity is >25-30 cm s-1, the ln zo (and thus the drag coefficient) is inversely proportional to the reference velocity. The cause for the reduction of roughness length is hypothesized as sediment erosion due to intensifying tidal currents thereby reducing bed roughness. When the mean velocity is <25-30 cm s-1, the correlation between zo and the reference velocity is less clear. A plausible explanation of scattered values of zo under this condition may be sediment deposition. Measured sediment data were inadequate to support this hypothesis, but the proposed hypothesis warrants further field investigation.

  19. Rare earth element association with foraminifera

    NASA Astrophysics Data System (ADS)

    Roberts, Natalie L.; Piotrowski, Alexander M.; Elderfield, Henry; Eglinton, Timothy I.; Lomas, Michael W.

    2012-10-01

    Neodymium isotopes are becoming widely used as a palaeoceanographic tool for reconstructing the source and flow direction of water masses. A new method using planktonic foraminifera which have not been chemically cleaned has proven to be a promising means of avoiding contamination of the deep ocean palaeoceanographic signal by detrital material. However, the exact mechanism by which the Nd isotope signal from bottom waters becomes associated with planktonic foraminifera, the spatial distribution of rare earth element (REE) concentrations within the shell, and the possible mobility of REE ions during changing redox conditions, have not been fully investigated. Here we present REE concentration and Nd isotope data from mixed species of planktonic foraminifera taken from plankton tows, sediment traps and a sediment core from the NW Atlantic. We used multiple geochemical techniques to evaluate how, where and when REEs become associated with planktonic foraminifera as they settle through the water column, reside at the surface and are buried in the sediment. Analyses of foraminifera shells from plankton tows and sediment traps between 200 and 2938 m water depth indicate that only ˜20% of their associated Nd is biogenically incorporated into the calcite structure. The remaining 80% is associated with authigenic metal oxides and organic matter, which form in the water column, and remain extraneous to the carbonate structure. Remineralisation of these organic and authigenic phases releases ions back into solution and creates new binding sites, allowing the Nd isotope ratio to undergo partial equilibration with the ambient seawater, as the foraminifera fall through the water column. Analyses of fossil foraminifera shells from sediment cores show that their REE concentrations increase by up to 10-fold at the sediment-water interface, and acquire an isotopic signature of bottom water. Adsorption and complexation of REE3+ ions between the inner layers of calcite contributes significantly to elevated REE concentrations in foraminifera. The most likely source of REE ions at this stage of enrichment is from bottom waters and from the remineralisation of oxide phases which are in chemical equilibrium with the bottom waters. As planktonic foraminifera are buried below the sediment-water interface redox-sensitive ion concentrations are adjusted within the shells depending on the pore-water oxygen concentration. The concentration of ions which are passively redox sensitive, such as REE3+ ions, is also controlled to some extent by this process. We infer that (a) the Nd isotope signature of bottom water is preserved in planktonic foraminifera and (b) that it relies on the limited mobility of particle reactive REE3+ ions, aided in some environments by micron-scale precipitation of MnCO3. This study indicates that there may be sedimentary environments under which the bottom water Nd isotope signature is not preserved by planktonic foraminifera. Tests to validate other core sites must be carried out before downcore records can be used to interpret palaeoceanographic changes.

  20. Sediment drifts and contourites on the continental margin off northwest Britain

    NASA Astrophysics Data System (ADS)

    Stoker, M. S.; Akhurst, M. C.; Howe, J. A.; Stow, D. A. V.

    1998-01-01

    Seismic reflection profiles and short cores from the continental margin off northwest Britain have revealed a variety of sediment-drift styles and contourite deposits preserved in the northeast Rockall Trough and Faeroe-Shetland Channel. The sediment drifts include: (1) distinctly mounded elongate drifts, both single- and multi-crested; (2) broad sheeted drift forms, varying from gently domed to flat-lying; and (3) isolated patch drifts, including moat-related drifts. Fields of sediment waves are locally developed in association with the elongate and gently domed, broad sheeted drifts. The contrasting styles of the sediment drifts most probably reflect the interaction between a variable bottom-current regime and the complex bathymetry of the continental margin. The bulk of the mounded/gently domed drifts occur in the northeast Rockall Trough, whereas the flat-lying, sheet-form deposits occur in the Faeroe-Shetland Channel, a much narrower basin which appears to have been an area more of sediment export than drift accumulation. Patch drifts are present in both basins. In the northeast Rockall Trough, the along-strike variation from single- to multi-crested elongate drifts may be a response to bottom-current changes influenced by developing drift topography. Muddy, silty muddy and sandy contourites have been recovered in sediment cores from the uppermost parts of the drift sequences. On the basis of their glaciomarine origin, these mid- to high-latitude contourites can be referred to, collectively, as glacigenic contourites. Both partial and complete contourite sequences are preserved; the former consist largely of sandy (mid-only) and top-only contourites. Sandy contourites, by their coarse-grained nature and their formation under strongest bottom-current flows, are the most likely to be preserved in the rock record. However, the very large scale of sediment drifts should be borne in mind with regard to the recognition of fossil contourites in ancient successions.

  1. Pelagic erosion and sedimentation north of Carnegie Ridge, eastern equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Brooks, C. K.; Lyle, M. W.; Marcantonio, F.; Lewis, D. M.; Paul, C.

    2011-12-01

    The Carnegie Ridge is one of three bathymetric highs bounding the Panama Basin and is known to exhibit erosion and redeposition of pelagic sediments. The extent of erosion and redeposition was studied during the R/V Melville cruise MV1014 in November 2010 to compare with geochemical estimates of sediment focusing. The MV1014 cruise acquired geochemical, geological and geophysical data using multichannel 2-D seismic and 3.5 kHz sub-bottom profiler, swathmap bathymetry, coring, and water casts. The seismic reflection, digital sub-bottom profiler and swathmap bathymetry data were used to investigate biogenic sedimentary deposition in the Panama Basin and erosion from Carnegie Ridge. We compare the new geophysical results with drilling on ODP Leg 202, the NEMO-03 site survey cruise for Leg 202, an early survey from 1969 and other data compiled by Ecuadorian surveys. Areas of non-deposition and/or erosion include the bathymetric highs along the ridge, seamounts, and an area of interest, a valley located on the northwestern flank of the ridge. The valley encompasses 183 km2 and exhibits large scale erosion, cutting down through sediments deposited over the 10-million year life of this segment of the Carnegie Ridge. All other valleys located within the Carnegie Ridge study area demonstrate ample deposition with sedimentary packages ranging from 200-800m with an average value trending around 400m. Higher sediment deposition is found in basins to the north of the erosional valley but similar sedimentation is also found even further north, beyond intervening high topography. The thickest sediment deposit near the Carnegie Ridge is actually found on the southern flank of the ridge, more than 100 km to the south of the survey area. Digital chirp sub-bottom profiler data combined with high-resolution seismic illustrate changes in sedimentation and erosion on the Carnegie Ridge, highlighting the dynamic sedimentary environment.

  2. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    NASA Astrophysics Data System (ADS)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  3. Exploring the erodibility of sediments and harmful algal blooms in the Gulf of Maine

    USGS Publications Warehouse

    Butman, Bradford; Dickhudt, Patrick J.; Keafer, Bruce A.

    2012-01-01

    Investigators at the U.S. Geological Survey (USGS) are cooperating with scientists at Woods Hole Oceanographic Institution (WHOI) to investigate harmful algal blooms along the New England coast in the Gulf of Maine. These blooms are caused by cysts of the dinoflagellate Alexandrium fundyense that overwinter in the bottom sediments and germinate in spring. Depending on conditions such as temperature, light, nutrient levels, and currents, these single-celled organismscan create a bloom along the coast, called ‘red tides.’Shellfish that have ingested these cells in sufficient concentration can become toxic to humans and require that the shellfisheries be closed. After the spring bloom, the organisms form cysts that sink to the sea floor and are sequestered in the bottom sediments over the winter.

  4. Is the extent of glaciation limited by marine gas-hydrates?

    USGS Publications Warehouse

    Paull, Charles K.; Ussler, William; Dillon, William P.

    1991-01-01

    Methane may have been released to the atmosphere during the Quaternary from Arctic shelf gas-hydrates as a result of thermal decomposition caused by climatic warming and rising sea-level; this release of methane (a greenhouse gas) may represent a positive feedback on global warming [Revelle, 1983; Kvenvolden, 1988a; Nisbet, 1990]. We consider the response to sea-level changes by the immense amount of gas-hydrate that exists in continental rise sediments, and suggest that the reverse situation may apply—that release of methane trapped in the deep-sea sediments as gas-hydrates may provide a negative feedback to advancing glaciation. Methane is likely to be released from deep-sea gas-hydrates as sea-level falls because methane gas-hydrates decompose with pressure decrease. Methane would be released to sediment pore space at shallow sub-bottom depths (100's of meters beneath the seafloor, commonly at water depths of 500 to 4,000 m) producing zones of markedly decreased sediment strength, leading to slumping [Carpenter, 1981; Kayen, 1988] and abrupt release of the gas. Methane is likely to be released to the atmosphere in spikes that become larger and more frequent as glaciation progresses. Because addition of methane to the atmosphere warms the planet, this process provides a negative feedback to glaciation, and could trigger deglaciation.

  5. Sediment movement along the U.S. east coast continental shelf-I. Estimates of bottom stress using the Grant-Madsen model and near-bottom wave and current measurements

    USGS Publications Warehouse

    Lyne, V.D.; Butman, B.; Grant, W.D.

    1990-01-01

    Bottom stress is calculated for several long-term time-series observations, made on the U.S. east coast continental shelf during winter, using the wave-current interaction and moveable bed models of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808; 1982, Journal of Geophysical Research, 87, 469-482). The wave and current measurements were obtained by means of a bottom tripod system which measured current using a Savonius rotor and vane and waves by means of a pressure sensor. The variables were burst sampled about 10% of the time. Wave energy was reasonably resolved, although aliased by wave groupiness, and wave period was accurate to 1-2 s during large storms. Errors in current speed and direction depend on the speed of the mean current relative to the wave current. In general, errors in bottom stress caused by uncertainties in measured current speed and wave characteristics were 10-20%. During storms, the bottom stress calculated using the Grant-Madsen models exceeded stress computed from conventional drag laws by a factor of about 1.5 on average and 3 or more during storm peaks. Thus, even in water as deep as 80 m, oscillatory near-bottom currents associated with surface gravity waves of period 12 s or longer will contribute substantially to bottom stress. Given that the Grant-Madsen model is correct, parameterizations of bottom stress that do not incorporate wave effects will substantially underestimate stress and sediment transport in this region of the continental shelf.

  6. Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland--contamination and bioaccumulation study.

    PubMed

    Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa

    2015-12-01

    This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred.

  7. Measurements of Sediment Transport in the Western Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Sherwood, C. R.; Hill, P. S.

    2003-12-01

    Instrumented bottom tripods were deployed at two depths (10 and 20 m) off the mouth of the Chienti River in the western Adriatic Sea from November 2002 to May 2003 as part of the EuroSTRATAFORM Po and Apennine Sediment Transport and Accumulation (PASTA) Experiment. Waves, currents, and proxies for suspended-sediment concentrations were measured with upward-looking acoustic Doppler current meters, downward looking pulse-coherent acoustic Doppler profilers, single-point acoustic Doppler velocimeters, and acoustic and optical backscatter sensors. Flow was dominated by the western Adriatic coastal current (WACC) during the experiment. Mean southward alongshore velocity 2 m below the surface was 0.10 m/s at the 10-m site and 0.23 m/s at the 20-m site, and flow was modulated by tides, winds, and fluctuating riverflow. The largest waves (3 m significant height) were generated by winds from the southeast during a Sirocco event in late November that generated one of the few episodes of sustained northward flow and sediment transport. Most of the time, however, sediment resuspension and transport was dominated by Bora events, when downwelling-favorable winds from the northeast generated waves that resuspended sediment and simultaneously enhanced southward flow in the WACC. Mean flow near the bottom was slightly offshore at the 20-m site (0.01 m/s at 3 m above the bottom), but there was no significant correlation between downwelling and wave-induced resuspension, and cross-shelf sediment fluxes were small. The combination of persistent southward flow with low rates of cross-shelf leakage makes the WACC an efficient conduit for sediment past the Chienti region. If these observations are representative of typical winter conditions along the entire western Adriatic, they may help explain the enigmatic development of Holocene shelf-edge clinoforms that have formed hundreds of kilometers south of the Po River, which provides most of the sediment to the Adriatic Sea. Future data analysis and modeling is planned to investigate the mechanism(s) that apparently limit(s) sediment leakage from the WACC.

  8. Reconstructing water level in Hoyo Negro, Quintana Roo, Mexico, implications for early Paleoamerican and faunal access

    NASA Astrophysics Data System (ADS)

    Collins, S. V.; Reinhardt, E. G.; Rissolo, D.; Chatters, J. C.; Nava Blank, A.; Luna Erreguerena, P.

    2015-09-01

    The skeletal remains of a Paleoamerican (Naia; HN5/48) and extinct megafauna were found at -40 to -43 mbsl in a submerged dissolution chamber named Hoyo Negro (HN) in the Sac Actun Cave System, Yucatan Peninsula, Mexico. The human remains were dated to between 12 and 13 Ka, making these remains the oldest securely dated in the Yucatan. Twelve sediment cores were used to reconstruct the Holocene flooding history of the now phreatic cave passages and cenotes (Ich Balam, Oasis) that connect to HN. Four facies were found: 1. bat guano and Seed (SF), 2. lime Mud (MF), 3. Calcite Rafts (CRF) and 4. Organic Matter/Calcite Rafts (OM/CRF) which were defined by their lithologic characteristics and ostracod, foraminifera and testate amoebae content. Basal radiocarbon ages (AMS) of aquatic sediments (SF) combined with cave bottom and ceiling height profiles determined the history of flooding in HN and when access was restricted for human and animal entry. Our results show that the bottom of HN was flooded at least by 9850 cal yr BP but likely earlier. We also found, that the pit became inaccessible for human and animal entry at ≈8100 cal yr BP, when water reaching the cave ceiling effectively prevented entry. Water level continued to rise between ≈6000 and 8100 cal yr BP, filling the cave passages and entry points to HN (Cenotes Ich Balam and Oasis). Analysis of cave facies revealed that both Holocene sea-level rise and cave ceiling height determined the configuration of airways and the deposition of floating and bat derived OM (guano and seeds). Calcite rafts, which form on the water surface, are also dependent on the presence of airways but can also form in isolated air domes in the cave ceiling that affect their loci of deposition on the cave bottom. These results indicated that aquatic cave sedimentation is transient in time and space, necessitating extraction of multiple cores to determine a limit after which flooding occurred.

  9. Evidence of strong ocean heating during glacial periods

    NASA Astrophysics Data System (ADS)

    Zimov, S. A.; Zimov, N.

    2013-12-01

    Numerous hypotheses have addressed glacial-interglacial climatic dynamics, but none of them explain the sharp 25C temperature increase in Greenland in the last deglaciation (Cuffey et al. 1995; Dahl-Jensen et al. 1998). These robust data were obtained through analyzing the temperature profile in the Greenland ice sheet where cold from the last glaciation is preserved in the depth of the glacial sheet. We suggest that during glaciations the ocean accumulated energy: interior ocean water heated up to ~20-30C and during deglaciation this energy is released. In the analogy with reconstructing the ice sheet temperature profiles, the most reliable proof of ocean interior warming during the last glaciation is the heat flux profiles in the bottom sediments. In the final reports based on temperature measurements conducted during the DSDP (Deep Sea Drilling Project) it is stated that heat flux in the bottom sediments doesn't vary with depth and consequently there were no substantial temperature changes in the ocean interior during the last glacial cycle, and heat flux on the surface of the ocean bottom is the geothermal heat flux (Erickson et al., 1975, Hyndman et al., 1987). However, we have critically investigated data in all initial reports of all deep sea drilling projects and have noticed that all temperature data show that heat flow decreases strongly with depth (a minimum of 40 mW/m2), i.e. most of the heat flux detected on the surface of the ocean floor is not the geothermal heat flux but remaining heat that bottom sediments release. Sharp shifts in heat flow are seen within boreholes at depths crossing gas hydrate bottom. All this means that during the last glacial period interior water temperature was on 25-30C degrees warmer. Conversely, in isolated seas heat flow in the sediments shows little change with depth.

  10. Channel Bottom Morphology in the Deltaic Reach of the Song Hau (mekong) River Channel in Vietnam

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; Weathers, H. D., III; Meselhe, E. A.

    2016-02-01

    Boat-based, channel bathymetry and bankline elevation studies were conducted in the tidal and estuarine Mekong River channel using multibeam bathymetry and LIDAR corrected for elevation by RTK satellite positioning. Two mapping campaigns, one at high discharge in October 2014 and one at low discharge in March 2015, were conducted in the lower 100 km reach of the Song Hau distributary channel to (1) examine bottom morphology and its relationship to sediment transport, and (2) to provide information to setup the grid for a multi-dimensional and reduced complexity models of channel hydrodynamics and sediment dynamics. Sand fields were identified in multibeam data by the presence of dunes that were as large as 2-4 m high and 40-80 m wavelength and by clean sands in bottom grabs. Extensive areas of sand at the head and toe of mid-channel islands displayed 10-25 m diameter circular pits that could be correlated with bucket dredge, sand mining activities observed at some of the sites. Large areas of the channel floor were relict (containing little or no modern sediment) in the high discharge campaign, identifiable by the presence of along channel erosional furrows and terraced outcrops along the channel floor and margins. Laterally extensive flat areas were also observed in the channel thalweg. Both these and the relict areas were sampled by bottom grab as stiff silty clays. Complex cross-channel combinations of these morphologies were observed in some transects, suggesting strong bottom steering of tidal and riverine currents. Relative to high discharge, transects above and below the salt penetration limit showed evidence of shallowing in the thalweg and adjacent sloping areas at low discharge in March 2015. This shallowing, combined with the reduced extent of sand fields and furrowed areas, and soft muds in grabs, suggests seasonal trapping of fine grained sediment is occurring by estuarine and tidal circulation.

  11. Chemical Data for Detailed Studies of Irrigation Drainage in the Salton Sea Area, California, 1995?2001

    USGS Publications Warehouse

    Schroeder, Roy A.

    2004-01-01

    The primary purpose of this report is to present all chemical data from the Salton Sea area collected by the U.S. Geological Survey between 1995 and 2001. The data were collected primarily for the Department of the Interior's National Irrigation Water Quality Program (NIWQP). The report also contains a brief summary and citation to investigations done for the NIWQP between 1992 and 1995. The NIWQP began studies in the Salton Sea area in 1986 to evaluate effects on the environment from potential toxins, especially selenium, in irrigation-induced drainage. This data report is a companion to several reports published from the earlier studies and to interpretive publications that make use of historical and recent data from this area. Data reported herein are from five collection studies. Water, bottom material, and suspended sediment collected in 1995-96 from the New River, the lower Colorado River, and the All-American Canal were analyzed for elements, semi-volatile (extractable) organic compounds, and organochlorine compounds. Sufficient suspended sediment for chemical analyses was obtained by tangential-flow filtration. A grab sample of surficial bottom sediment collected from near the deepest part of the Salton Sea in 1996 was analyzed for 44 elements and organic and inorganic carbon. High selenium concentration confirmed the effective transfer (sequestration) of selenium into the bottom sediment. Similar grab samples were collected 2 years later (1998) from 11 locations in the Salton Sea and analyzed for elements, as before, and also for nutrients, organochlorine compounds, and polycyclic aromatic hydrocarbons. Nutrients were measured in bottom water, and water-column profiles were obtained for pH, conductance, temperature, and dissolved oxygen. Element and nutrient concentrations were obtained in 1999 from cores at 2 of the above 11 sites, in the north subbasin of the Salton Sea. The most-recent study reported herein was done in 2001 and contains element data on suspended material isolated by continuous-flow centrifugation on samples collected in transects extending out from the Whitewater, the Alamo, and the New Rivers into the Salton Sea. Chemical data on suspended sediment and bottom material from tributory rivers and the Salton Sea itself show that many insoluble constituents, including selenium and DDE, are concentrated in the fine-grained, organic- and carbonate-rich bottom sediment from deep areas near the center of the Salton Sea. Data also show that selenium and arsenic are markedly enriched in seston (plankton, partially-degraded algal detritus, and mineral matter that compose suspended particulates in the lake) collected just below the water surface in the Salton Sea. This result indicates that bio-concentration in primary producers in the water column provides an important pathway whereby high selenium residues accumulate in fish and fish-eating birds at the Salton Sea.

  12. We're Gonna Crush It! Sediment Creation through Destruction

    ERIC Educational Resources Information Center

    Parrish, Chelsea L.; Curran, Mary Carla; Sajwan, Kenneth S.

    2015-01-01

    Why are there only crumbs left at the bottom of the cereal box? Many factors, such as package handling, have caused the cereal pieces to break down into crumbs. This explanation is also related to the process of creating sediment from rocks. Sediment is created by weathering over millions of years, and it is deposited all over the world by…

  13. Physical and chemical properties of water and sediments, Grand Portage and Wauswaugoning Bays, Lake Superior, Grand Portage Indian Reservation, northeastern Minnesota, 1993-96

    USGS Publications Warehouse

    Ruhl, J.F.

    1997-01-01

    This report is a compilation of data on the physical and chemical properties of water and sediments in Grand Portage and Wauswaugoning Bays of Lake Superior along the shoreline of the Grand Portage Indian Reservation. The data were collected during 1993-96 by the U.S. Geological Survey in cooperation with the Grand Portage Indian Reservation. The data include: (1) temperature, pH, and specific conductance measurements and dissolved oxygen concentrations; (2) Secchi disk transparency, alkalinity, and turbidity measurements; (3) fecal Coliform and fecal Streptococcal bacteria colony counts (per 100 milliliters of sample water); (4) major and minor ion, nutrient, and trace-metal concentrations; (5) dissolved and suspended residue concentrations; (6) pesticide, phenol, and asbestos concentrations; (7) suspended sediment trace-metal concentrations; and (8) bottom sediment trace-metal concentrations. Water samples were collected from nine sites; suspended and bottom sediment samples were collected from five sites. The data in this report can be used to evaluate present water-quality conditions and as a reference to monitor potential long-term changes in these conditions.

  14. Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.

    PubMed

    Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali

    2017-11-01

    Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.

  15. MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS

    EPA Science Inventory

    A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...

  16. Storm-induced redistribution of deepwater sediments in Lake Ontario

    USGS Publications Warehouse

    Halfman, J.D.; Dittman, D.E.; Owens, R.W.; Etherington, M.D.

    2006-01-01

    High-resolution seismic reflection profiles, side-scan sonar profiles, and surface sediment analyses for grain size (% sand, silt & clay), total organic carbon content, and carbonate content along shore-perpendicular transects offshore of Olcott and Rochester in Lake Ontario were utilized to investigate cm-thick sands or absence of deep-water postglacial sediments in water depths of 130 to 165 m. These deepwater sands were observed as each transect approached and occupied the "sills," identified by earlier researchers, between the three deepest basins of the lake. The results reveal thin (0 to 5-cm) postglacial sediments, lake floor lineations, and sand-rich, organic, and carbonate poor sediments at the deepwater sites (> 130 m) along both transects at depths significantly below wave base, epilimnetic currents, and internal wave activity. These sediments are anomalous compared to shallower sediments observed in this study and deeper sediments reported by earlier research, and are interpreted to indicate winnowing and resuspension of the postglacial muds. We hypothesize that the mid-lake confluence of the two-gyre surface current system set up by strong storm events extends down to the lake floor when the lake is isothermal, and resuspends and winnows lake floor sediment at these locations. Furthermore, we believe that sedimentation is more likely to be influenced by bottom currents at these at these sites than in the deeper basins because these sites are located on bathymetric highs between deeper depositional basins of the lake, and the bathymetric constriction may intensify any bottom current activity at these sites.

  17. Evaluation of Pollution Level in Zolotoy Rog Bay (Peter the Great Gulf, the Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Kazachkova, Y.; Lazareva, L.; Petukhov, V.

    2017-11-01

    The results of the hydrochemical research of water and bottom sediments of the Zolotoy Rog Bay in July 2015 are presented below. It is shown that, as a result of a large amount of polluted sewage entering The Zolotoy Rog Bay, the concentrations of organic substances (BOD5) and petroleum hydrocarbons in the water exceed the MPC. The concentrations of heavy metals in soils exceed both the background level and the level of permissible values. As a result of the calculation of the bottom accumulation (CBA) coefficient for oil hydrocarbons, the situation in the Zolotoy Rog Bay can be classified as an ecological disaster. According to the total pollution index (Zc) of heavy metals, the bottom sediments of the Zolotoy Rog Bay are characterized as strongly and very strongly polluted.

  18. Sediment transport in Norton Sound, Alaska

    USGS Publications Warehouse

    Drake, D.E.; Cacchione, D.A.; Muench, R.D.; Nelson, C.H.

    1980-01-01

    The Yukon River, the largest single source of Bering Sea sediment, delivers >95% of its sediment load at the southwest corner of Norton Sound during the ice-free months of late May through October. During this period, surface winds in the northern Bering Sea area are generally light from the south and southwest, and surface waves are not significant. Although wind stress may cause some transport of low-density turbid surface water into the head of Norton Sound, the most significant transport of Yukon River suspended matter occurs within advective currents flowing north across the outer part of the sound. The thickest accumulations of modern Yukon silt and very fine sand occur beneath this persistent current. We monitored temporal variations in bottom currents, pressure, and suspended-matter concentrations within this major transport pathway for 80 days in the summer of 1977 using a Geological Processes Bottom Environmental (GEOPROBE) tripod system. The record reveals two distinctive periods of bottom flow and sediment transport: an initial 59 days (July 8-September 5) of fair-weather conditions, characterized by tidally dominated currents and relatively low, stable suspended-matter concentrations; and a 21-day period (September 5-September 26) during which several storms traversed the northern Bering Sea, mean suspended-matter concentrations near the bottom increased by a factor of five, and the earlier tidal dominance was overshadowed by wind-driven and oscillatory wave-generated currents. Friction velocities (u*) at the GEOPROBE site were generally subcritical during the initial fair-weather period. In contrast, the 21-day stormy period was characterized by u* values that exceeded the critical level of 1.3 cm/s more than 60% of the time. The GEPROBE data suggest that the very fine sand constituting about 50% of the sediment on the outer part of the Yukon prodelta is transported during a few late-summer and fall storms each year. A conservative estimate shows that suspended-matter transport during the storms in September 1977 was equal to four months of fair-weather transport. ?? 1980.

  19. Mathematical modelling for distribution of heavy metals in estuary area of Red River (Vietnam)

    NASA Astrophysics Data System (ADS)

    Nguyen, N. T. T.; Volkova, I. V.

    2018-05-01

    In this paper, the authors studied the features of spatial distribution of some heavy metals (Pb, Hg, As) in the system “suspended substance - bottom sediments” in the mouth area of the Red River (Vietnam). A mathematical modelling for diffusion processes of heavy metals in a suspended form, in bottom sediments and the spatial analysis for the results of these models were proposed and implemented. The studies were carried out during main hydrological seasons of 2014 - 2016 (during the flood and inter-natal periods). The propagation of heavy metals was modeled by solving the equation of turbulent diffusion. A spatial analysis of the content of heavy metals in the suspended form and in the bottom sediments was implemented by using the interpolation model in ArcGIS 10.2.2. The distribution of Pb, Hg, As concentration of the suspended form and bottom sediment phases in the estuary area of the Red River was characterized by maximum in the mouths of the branches and general decreasing gradient towards the sea. Maximum concentrations of Pb, Hg in suspended forms were observed in the surface layer of water at the river-sea barrier. The content of Hg and As in the estuary region of the Red River was observed in the following order: SSsurf< SSbott< BS; and content of Pb – SS >BS.

  20. Observations and simulations of the bottom nepheloid layer in the Lafourche Trough, Louisiana Continental Shelf

    NASA Astrophysics Data System (ADS)

    Jolliff, J.; Jarosz, E.; Penko, A.; Smith, T.

    2017-12-01

    The "Lafourche Trough" is a mud/silt -dominated, elongate seafloor depression located between transgressive sandy shoals approximately 50 km south of Cocodrie, Louisiana. These irregular bathymetric features are relicts of the abandoned Lafourche delta complex that still have an impact upon coupled sediment-hydrodynamic processes occurring today. Repeated optical and physical oceanographic surveys conducted during the spring of 2015 and winter 2017 reveal persistent bottom nepheloid layers (BNLs) characterized by extreme optical turbidity (beam attenuation 10 m-1, 532 nm). The manifestation and persistence of cohesive sediment BNLs in this area appears to result from a complex interplay between tidal currents, bathymetry, and frontal dynamics along the edge of the Mississippi River plume. Numerical experiments were performed using the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS), an integrated air-sea-wave operational forecasting tool, that includes a simplified numerical sediment resuspension and transport scheme in order to simulate the nepheloid layer observations through the trough. The model results suggest that the wave-current bottom boundary layer is a critical factor in BNL development, and thusly, without wave model integration into COAMPS the system struggles to replicate the observations. Future modeling work will need to explore the potential suppression of physical mixing due to density perturbations along the BNL to fluid mud continuum within the bottom boundary layer.

  1. Defining seascapes for marine unconsolidated shelf sediments in an eastern boundary upwelling region: The southern Benguela as a case study

    NASA Astrophysics Data System (ADS)

    Karenyi, Natasha; Sink, Kerry; Nel, Ronel

    2016-02-01

    Marine unconsolidated sediment habitats, the largest benthic ecosystem, are considered physically controlled ecosystems driven by a number of local physical processes. Depth and sediment type are recognised key drivers of these ecosystems. Seascape (i.e., marine landscape) habitat classifications are based solely on consistent geophysical features and provide an opportunity to define unconsolidated sediment habitats based on processes which may vary in distribution through space and time. This paper aimed to classify unconsolidated sediment seascapes and explore their diversity in an eastern boundary upwelling region at the macro-scale, using the South African west coast as a case study. Physical variables such as sediment grain size, depth and upwelling-related variables (i.e., maximum chlorophyll concentration, austral summer bottom oxygen concentration and sediment organic carbon content) were included in the analyses. These variables were directly measured through sampling, or collated from existing databases and the literature. These data were analysed using multivariate Cluster, Principal Components Ordination and SIMPER analyses (in PRIMER 6 + with PERMANOVA add-in package). There were four main findings; (i) eight seascapes were identified for the South African west coast based on depth, slope, sediment grain size and upwelling-related variables, (ii) three depth zones were distinguished (inner, middle and outer shelf), (iii) seascape diversity in the inner and middle shelves was greater than the outer shelf, and (iv) upwelling-related variables were responsible for the habitat diversity in both inner and middle shelves. This research demonstrates that the inclusion of productivity and its related variables, such as hypoxia and sedimentary organic carbon, in seascape classifications will enhance the ability to distinguish seascapes on continental shelves, where productivity is most variable.

  2. Reservoir Bank Erosion Caused and Influenced by Ice Cover.

    DTIC Science & Technology

    1982-12-01

    8 8. Bank sediment deposited on shorefast ice ------------ 9 9. Sediment frozen to the bottom of ice laid down onto the reservoir bed...end of November 1979 during a storm with 45-mph northwesterly winds-- 17 16. Ice and shore sediment uplifted where an ice pres- sure ridge intersects...restarts at breakup when the ice becomes mobile; the ice scrapes, shoves and scours the shore or bank, and transports sediment away. Figure 1. Narrow zone

  3. The Importance of Fine-Scale Flow Processes and Food Availability in the Maintenance of Soft-Sediment Communities

    DTIC Science & Technology

    1993-02-01

    of the bottom sediments at a given site. From long time -series measurements of the flow and sediment-transport environment on Georges Bank...significantly affect flows and sediment transport depends, in part, on timing . Biological effects on seafloor stability may be more pronounced, for example...potentially can enhance particle retention time within the tube bed via skimming flow (described earlier), although it is unclear if natural populations of

  4. The effect of an oil drilling operation on the trace metal concentrations in offshore bottom sediments of the Campos Basin oil field, SE Brazil.

    PubMed

    Rezende, C E; Lacerda, L D; Ovalle, A R C; Souza, C M M; Gobo, A A R; Santos, D O

    2002-07-01

    The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations.

  5. Influence of environmental and anthropogenic factors at the bottom sediments in a Doce River tributary in Brazil.

    PubMed

    Dos Reis, Deyse Almeida; da Fonseca Santiago, Aníbal; Nascimento, Laura Pereira; Roeser, Hubert Mathias Peter

    2017-03-01

    In developing countries, it is uncommon to find watersheds that have been the object of detailed environmental studies. It makes the assessment of the magnitude of environmental impacts and pollution of these sites difficult. This research demonstrated ways to understand the dynamics of river bottom sediments contamination, even for watersheds with a lack of environmental data. Based on geochemical affinity, we conducted a comprehensive study on the concentration of metals and metalloids. Then, we discussed the probable origin of the concentration of these elements at the bottom sediment along the Matipó River. The Matipó River is an important tributary of the Doce River, which stood out in international headlines because of the mining tailing dam disaster in Mariana, Minas Gerais, in 2015. The bottom sediment samples were taken in 25 stations located along the basin in different seasonal periods. The results showed that copper ([Formula: see text] = 464.7 mg kg -1 ) and zinc ([Formula: see text] = 287.7 mg kg -1 ) probably have natural origin, despite of the high concentrations. Lead ([Formula: see text] = 28.0 mg kg -1 ), chromium ([Formula: see text] = 153.2 mg kg -1 ), and nickel ([Formula: see text] = 41.8 mg kg -1 ) also had high concentrations at some collecting stations, and this probably reflected the local natural conditions. The bedrock of the studying basin is dominantly composed of metabasalts and metatonalites interlayered with calcitic and dolomitic metalimestone. On the other hand, the concentration was worrisome in stations near human activities, possibly due to impacts caused by unsustainably agriculture and livestock.

  6. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of semivolatile organic compounds in bottom sediment by solvent extraction, gel permeation chromatographic fractionation, and capillary-column gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Furlong, E.T.; Vaught, D.G.; Merten, L.M.; Foreman, W.T.; Gates, Paul M.

    1996-01-01

    A method for the determination of 79 semivolatile organic compounds (SOCs) and 4 surrogate compounds in soils and bottom sediment is described. The SOCs are extracted from bottom sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography (GPC). The SOCs then are qualitatively identified and quantitative concentrations determined by capillary-column gas chromatography/mass spectrometry (GC/MS). This method also is designed for an optional simultaneous isolation of polychlorinated biphenyls (PCBs) and organochlorine (OC) insecticides, including toxaphene. When OCs and PCBs are determined, an additional alumina- over-silica column chromatography step follows GPC cleanup, and quantitation is by dual capillary- column gas chromatography with electron-capture detection (GC/ECD). Bottom-sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethane. The extract is concentrated, centrifuged, and then filtered through a 0.2-micrometer polytetrafluoro-ethylene syringe filter. Two aliquots of the sample extract then are quantitatively injected onto two polystyrene- divinylbenzene GPC columns connected in series. The SOCs are eluted with dichloromethane, a fraction containing the SOCs is collected, and some coextracted interferences, including elemental sulfur, are separated and discarded. The SOC-containing GPC fraction then is analyzed by GC/MS. When desired, a second aliquot from GPC is further processed for OCs and PCBs by combined alumina-over-silica column chromatography. The two fractions produced in this cleanup then are analyzed by GC/ECD. This report fully describes and is limited to the determination of SOCs by GC/MS.

  7. Canyon effect and seasonal variability of deep-sea organisms in the NW Mediterranean: Synchronous, year-long captures of ;swimmers; from near-bottom sediment traps in a submarine canyon and its adjacent open slope

    NASA Astrophysics Data System (ADS)

    Romano, C.; Flexas, M. M.; Segura, M.; Román, S.; Bahamon, N.; Gili, J. M.; Sanchez-Vidal, A.; Martin, D.

    2017-11-01

    Numerous organisms, including both passive sinkers and active migrators, are captured in sediment traps together with sediments. By capturing these "swimmers", the traps become an extraordinarily tool to obtain relevant information on the biodiversity and dynamics of deep-sea organisms. Here we analyze near-bottom swimmers larger than 500 μm and their fluxes collected from eight near-bottom sediment traps installed on instrumented moorings deployed nearby Blanes Canyon (BC). Our data, obtained from November 2008 to October 2009 with a sampling rate of 15 days, constitutes the first year-long, continuous time series of the whole swimmers' community collected at different traps and bottom depths (from 300 m to 1800 m) inside a submarine canyon and on its adjacent open slope (OS). The traps captured 2155 specimens belonging to 70 taxa, with Crustacea (mainly Copepoda) and Annelida Polychaeta accounting for more than 90% of the total abundance. Almost half of the identified taxa (33) were only present in BC traps, where mean annual swimmer fluxes per trap were almost one order of magnitude higher than in the OS ones. Temporal variability in swimmer fluxes was more evident in BC than in OS. Fluxes dropped in winter (in coincidence with the stormy period in the region) and remained low until the following spring. In spring, there was a switch in taxa composition, including an increase of planktonic organisms. Additionally, we report drastic effects of extreme events, such as major storms, on deep-sea fauna. The impact of such extreme events along submarine canyon systems calls to rethink the influence of climate-driven phenomena on deep-sea ecosystems and, consequently, on their living resources.

  8. Ensuring very shallow-water sediment properties: case study from Capo Granitola harbour, Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Punzo, Michele; Cavuoto, Giuseppe; Tarallo, Daniela; Di Fiore, Vincenzo

    2017-09-01

    We present high-resolution Vp models of the Capo Granitola harbor, Sicily (Italy) obtained by first arrival traveltime tomography. Seismic data were collected along four hydrophone arrays on the sea-bottom and via a Watergun as seismic source, in order to plan dredging operations in the harbor. Using a hydrophone spacing of 2.5 m and shot spacing of 5 m, very high resolution quality data were recorded. Seismic tomography expands existing knowledge of the harbour subsoil with a penetration of about 20 m, illuminating the Lower Pleistocene bedrock (Marsala calcarenites) that corresponds to high-Vp regions (Vp > 4.5 km/s). Low Vp (1.8-4.5 km/s) deposits belonging to terraced calcarenites (Upper Pleistocene in age) are also well imaged; they are about 8 m thick and lie below loose sand deposits (Vp = 1.5 km/s). The substratum has an articulated morphology; Vp images unravel small steps in the basement probably related to structural discontinuities (e.g., faults). Processing data with 3D techniques enables images of the structure and the thickness of the lithotypes to be reconstructed, thus leading to large-scale, realistic estimates of the total quantity of material to be excavated or dredged. Tomographic profiles permit clear discrimination of the soft sediment above the basement and thus allow the determination of the total volume of sediment above the seismic bedrock, estimated at about 265,000 m3.

  9. Sediment accumulation in San Leandro Bay, Alameda County, California, during the 20th century : a preliminary report

    USGS Publications Warehouse

    Nolan, K.M.; Fuller, C.C.

    1986-01-01

    Major changes made in the configuration of San Leandro Bay, Alameda County, California, during the 20th century have caused rapid sedimentation within parts of the Bay. Opening of the Oakland tidal channel and removal of 97% of the marshlands formerly surrounding the Bay have decreased tidal velocities and volumes. Marshland removal has decreased the tidal prism by about 25%. Comparison of bathymetric surveys indicates that sedimentation in the vicinity of the San Leandro Bay channel averaged 0.7 cm/annum between 1856 and 1984. Lead-210 data collected at four shallow water sites east of the San Leandro Bay channel indicated that sedimentation rates have averaged between 0.06 and 0.28 cm/annum. Because bioturbation of bottom sediments cannot be discounted, better definition of this range in sedimentation rates would required measuring the activity of lead-210 on incoming sediments. In addition to sediment deposited in the vicinity of the San Leandro Bay channel and open, shallow areas to the east, 850,740 cu m of sediment was deposited between 1948 and 1983 in an area dredged at the mouth of San Leandro Creek. All available data indicate that between 1 ,213,000 and 1,364,000 cu m of sediment was deposited in San Leandro Bay between 1948 and 1983. Sediment yield data from an adjacent drainage basin, when combined with inventories of lead-210 and cesium-137, indicate that most of the sediment deposited in San Leandro Bay is coming from resuspension of bottom sediments or from erosion of marshes or shorelines of San Leandro or San Francisco Bay. (Author 's abstract)

  10. Central San Francisco Bay suspended-sediment transport processes and comparison of continuous and discrete measurements of suspended-solids concentrations

    USGS Publications Warehouse

    Schoellhamer, David H.

    1996-01-01

    Sediments are an important component of the San Francisco Bay estuarine system. Potentially toxic substances, such as metals and pesticides, adsorb to sediment particles (Kuwabara and others, 1989; Domagalski and Kuivila, 1993). Sediments on the bottom of the bay provide the habitat for benthic communities that can ingest these substances and introduce them into the food web (Luoma and others, 1985). Nutrients, metals, and other substances are stored in bottom sediments and pore water in which chemical reactions occur and which provide an important source and/or sink to the water column (Hammond and others, 1985; Flegal and others, 1991). The transport and fate of suspended sediment is an important factor in determining the transport and fate of the constituents adsorbed on the sediment. Seasonal changes in sediment erosion and deposition patterns contribute to seasonal changes in the abundance of benthic macroinvertebrates (Nichols and Thompson, 1985). Tidal marshes are an ecologically important habitat that were created and are maintained by sedimentation processes (Atwater and others, 1979). In Suisun Bay, the maximum suspended-sediment concentration marks the position of the turbidity maximum, which is a crucial ecological region in which suspended sediment, nutrients, phytoplankton, zooplankton, larvae, and juvenile fish accumulate (Peterson and others, 1975; Arthur and Ball, 1979; Kimmerer, 1992; Jassby and Powell, 1994). Suspended sediments confine the photic zone to the upper part of the water column, and this limitation on light availability is a major control on phytoplankton production in San Francisco Bay (Cloern, 1987; Cole and Cloern, 1987). Suspended sediments also deposit in ports and shipping channels, which must be dredged to maintain navigation (U.S. Environmental Protection Agency, 1992).

  11. Comparison of the basin-scale effect of dredging operations and natural estuarine processes on suspended sediment concentration

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2002-01-01

    Suspended sediment concentration (SSC) data from San Pablo Bay, California, were analyzed to compare the basin-scale effect of dredging and disposal of dredged material (dredging operations) and natural estuarine processes. The analysis used twelve 3-wk to 5-wk periods of mid-depth and near-bottom SSC data collected at Point San Pablo every 15 min from 1993-1998. Point San Pablo is within a tidal excursion of a dredged-material disposal site. The SSC data were compared to dredging volume, Julian day, and hydrodynamic and meteorological variables that could affect SSC. Kendall's ??, Spearman's ??, and weighted (by the fraction of valid data in each period) Spearman's ??w correlation coefficients of the variables indicated which variables were significantly correlated with SSC. Wind-wave resuspension had the greatest effect on SSC. Median water-surface elevation was the primary factor affecting mid-depth SSC. Greater depths inhibit wind-wave resuspension of bottom sediment and indicate greater influence of less turbid water from down estuary. Seasonal variability in the supply of erodible sediment is the primary factor affecting near-bottom SSC. Natural physical processes in San Pablo Bay are more areally extensive, of equal or longer duration, and as frequent as dredging operations (when occurring), and they affect SSC at the tidal time scale. Natural processes control SSC at Point San Pablo even when dredging operations are occurring.

  12. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin

    USGS Publications Warehouse

    Zheng, Yen; Anderson, Robert F.; VanGeen, A.; Kuwabara, J.

    2000-01-01

    Pore water and sediment Mo concentrations were measured in a suite of multicores collected at four sites along the northeastern flank of the Santa Barbara Basin to examine the connection between authigenic Mo formation and pore water sulfide concentration. Only at the deepest site (580 m), where pore water sulfide concentrations rise to >0.1 ??M right below the sediment water interface, was there active authigenic Mo formation. At shallower sites (550,430, and 340 m), where pore water sulfide concentrations were consistently <0.05 ??M, Mo precipitation was not occuring at the time of sampling. A sulfide concentration of ???0.1 ??M appears to be a threshold for the onset of Mo-Fe-S co-precipitation. A second threshold sulfide concentration of ???100 ??M is required for Mo precipitation without Fe, possibly as Mo-S or as particle-bound Mo. Mass budgets for Mo were constructed by combining pore water and sediment results for Mo with analyses of sediment trap material from Santa Barbara Basin as well as sediment accumulation rates derived from 210Pb. The calculations show that most of the authigenic Mo in the sediment at the deepest site is supplied by diffusion from overlying bottom waters. There is, however, a non-lithogenic particulate Mo associated with sinking particles that contributes ???15% to the total authigenic Mo accumulation. Analysis of sediment trap samples and supernant brine solutions indicates the presence of non-lithogenic particulate Mo, a large fraction of which is easily remobilized and, perhaps, associated with Mn-oxides. Our observations show that even with the very high flux of organic carbon reaching the sediment of Santa Barbara Basin, active formation of sedimentary authigenic Mo requires a bottom water oxygen concentration below 3 ??M. However, small but measurable rates of authigenic Mo accumulation were observed at sites where bottom water oxygen ranged between 5 and 23 ??M, indicating that the formation of authigenic Mo occured in the recent past, but not at the time of sampling. Copyright ?? 2000 Elsevier Science Ltd.

  13. Chemical evolution of the Salton Sea, California: nutrient and selenium dynamics

    USGS Publications Warehouse

    Schroeder, Roy A.; Orem, William H.; Kharaka, Yousif K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (∼44 000 mg l−1 dissolved solids) lake started as fresh water in 1905–07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr−1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  14. Sources and contamination rate of port sediments: evidences from dimensional, mineralogical, and chemical investigations

    NASA Astrophysics Data System (ADS)

    Lucchetti, Gabriella; Cutroneo, Laura; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Canepa, Giuseppe; Capello, Marco

    2017-04-01

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, yards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Due to the many activities that take place in a port, sediments and waters are often contaminated by different kinds of chemicals, such as hydrocarbons, dioxins, pesticides, nutrients, and metals. The contamination rate of a port basin is site specific and depends on the sources of contamination in the nearby urban system as well as the port system itself, such as city discharges and sewers, river intake, vessel traffic, factories (Taylor and Owens, 2009). Moreover, two important sources and vehicles of contaminants are: a) anthropogenic road deposited sediments derived from the runoff of the port and city area, and natural road deposited sediments derived from rivers and torrents, and b) airborne particulate matter and sediments (Taylor and Owens, 2009). The Port of Genoa is situated at the apex of the Ligurian Sea in the north western Mediterranean Sea and is characterised by the presence of several commercial activities that have contributed, over the years, and still contribute today, to the contaminant accumulation in both the water column and the bottom sediments. This port basin includes the mouth of several streams and the mouth of the Bisagno and the Polcevera Torrents, along the banks of which can be found several small towns, quarries, factories, and the suburbs of the city of Genoa, a ferry terminal, different container terminals, marinas, dry docks, the coal power plant of Genoa, and different wastewater treatment plant discharges. Starting from these considerations, we have examined the marine environment of a port from the point of view of the water mass circulation, hydrological characteristics, distribution of the sediment grain size, mineralogical characteristics, and metal concentrations of the bottom sediments. Our results show that, in the case of the Port of Genoa (north western Italy), both the impact of the human activities (such as coal power plant, oil depots, yards, dredging of the bottom sediments, etc.) and the natural processes (such as currents, fresh water and sediment inputs from the torrents), together with the morphology of the basin, are important factors in sediment, water and metal distributions and give rise to a complex environment. Taylor, K.G., Owens, P.N., 2009. Sediments in urban river basins: a review of sediment contaminant dynamics in an environmental system conditioned by human activities. Journal of Soils and Sediments 9: 281-303.

  15. Dispersal of suspended matter in Makasar Strait and the Flores Basin

    NASA Astrophysics Data System (ADS)

    Eisma, D.; Kalf, J.; Karmini, M.; Mook, W. G.; van Put, A.; Bernard, P.; van Grieken, R.

    In November 1984 in Makasar and the Flores Basin water samples were collected (T, S, dissolved O 2, total CO 2), bottom samples (sediment composition) and suspended matter (particle composition, particle size). A sediment trap was moored in the Flores Basin at 4600 m depth for nearly four months, covering the dry season. In the Flores Basin there are indications for bottom flow resuspending bottom material or preventing suspended material from settling; in Makasar Strait there is probably inflow of deep water both from the south and from the north, resulting in a very slow bottom water flor. Bottom deposits in Makasar Strait and the Flores Basin are predominantly terrigenous, with an admixture of organic carbonate and silica (mostly coccoliths). Volcanic material is primarily present near to the volcanoes in the south and reaches the deeper basins by slumping. In the suspended matter no volcanic particles and little planktonic material were found, although the latter form 10 to 15% of the top sediment and of the material deposited in the sediment trap. In suspension particles with a large concentration of tin (Sn) were found associated mainly with iron. They probably come from northern Kalimantan or northern Sulawesi. Suspended matter concentrations were mainly less than 0.5 mg·dm -3, only off the Mahakam river mouth were concentrations higher than 1 mg·dm -3. Particle size was erratic because of the variable composition of the coarser particles in suspension. Organic matter concentrations in suspension (in mg·dm -3) roughly follow the distribution of total suspended matter but organic content (in %) of the suspended matter does not show any trends. All organic matter in suspension is of marine origin except in the Mahakam river and estuary. Deposition rates, as estimated from the sediment trap results, are 150 mg·cm -2·a -1 for the total sediment, 26 mg·cm -2·a -1 for carbonate and 13 mg·cm -2·a -1 for organic matter. Flocs and fibres in suspension were only found in and below the Mahakam river plume that reaches ca 400 km from the river mouth to the southeast, and in surface waters associated with plankton (diatoms). The formation of these flocs (broken-up macroflocs or marine snow) is primarily related to particle concentration, turbulence, and the presence of organisms that produce sticky material or glue particles together.

  16. Benthic iron and phosphorus release from river dominated shelf sediments under varying bottom water O2 concentrations.

    NASA Astrophysics Data System (ADS)

    Ghaisas, N. A.; Maiti, K.; White, J. R.

    2017-12-01

    Phosphorus (P) cycling in coastal ocean is predominantly controlled by river discharge and biogeochemistry of the sediments. In coastal Louisiana, sediment biogeochemistry is strongly influenced by seasonally fluctuating bottom water O2, which, in turn transitions the shelf sediments from being a sink to source of P. Sediment P-fluxes were 9.73 ± 0.76 mg / m2 /d and 0.67±0.16 mg/m2/d under anaerobic and aerobic conditions respectively, indicating a 14 times higher P-efflux from oxygen deprived sediments. A high sedimentary oxygen consumption rate of 889 ± 33.6 mg/m2/d was due to organic matter re-mineralization and resulted in progressively decreasing the water column dissolved O2 , coincident with a P-flux of 7.2 ± 5.5 mg/m2/d from the sediment. Corresponding water column flux of Fe total was 19.7 ± 7.80 mg/m2/d and the sediment-TP decreased from 545 mg/Kg to 513 mg/Kg. A simultaneous increase in pore water Fe and P concentrations in tandem with a 34.6% loss in sedimentary Fe-bound P underscores the importance of O2 on coupled Fe- P biogeochemistry. This study suggests that from a 14,025 sq. km hypoxia area, Louisiana shelf sediments can supply 1.33x105 kg P/day into the water column compared to 0.094 x 105 kg P/day during the fully aerobic water column conditions.

  17. Modes of cross-shore sediment transport on the shoreface of the Middle Atlantic Bight

    USGS Publications Warehouse

    Wright, L.D.; Boon, John D.; Kim, S.C.; List, J.H.

    1991-01-01

    The mechanisms responsible for onshore and offshore sediment fluxes across the shoreface zone seaward of the surf zone were examined in a 3-year field study. The study was conducted in the southern part of the Middle Atlantic Bight in the depth region 7–17 m using instrumented tripods supporting electromagnetic current meters, pressure sensors, suspended sediment concentration sensors, and sonar altimeters. The observations embraced fairweather, moderate energy, swell-dominated, and storm conditions. Cross-shore mean flows ranged from near zero during fairweather to > 20 cm s−1 during the storm; oscillatory flows were on the order of 10 cm s−1 during fairweather and 100 cm s−1 during the storm. Suspended sediment concentrations at about 10 cm above the bed were < 0.1 kg m−3 under fairweather conditions, 1–2 kg m−3 under moderate swell conditions, and > 5 kg m−3 during the storm.Three methods were applied to evaluate the relative importance of incident waves, long-period oscillations, mean flows and gravity in effecting shoreward or seaward sediment flux: (1) an energetics transport model was applied to instantaneous near-bottom velocity data, (2) higher moments of near-bottom flows were estimated and compared, and (3) suspended sediment fluxes were estimated directly from the instantaneous products of cross-shore velocity and suspended sediment concentration. The results show that measurable contributions were made by all four of the processes. Most significantly, mean flows were seen to dominate and cause offshore fluxes during the storm and to contribute significantly to onshore and offshore flux during fairweather and moderate energy. Incident waves were, in all cases, the major source of bed shear stress but also caused shoreward as well as seaward net sediment advection. Low-frequency effects involving wave groups and long-period waves made secondary contributions to cross-shore sediment flux. Contrary to expectations, low-frequency fluxes were just as often shoreward as seaward. Whereas cross-correlations between suspended sediment concentration and the instantaneous near-bottom current speed were high and in phase under storm conditions, they were weak and out of phase during fairweather conditions. This suggests that simple energetics models are probably inadequate for predicting fairweather transport of suspended sediment.

  18. Tests of bed roughness models using field data from the Middle Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Xu, J. P.; Wright, L. D.

    Four bottom roughness models are tested using field data from the inner shelf of the Middle Atlantic Bight. Bottom roughness plays a significant role in calculations of sediment concentration profiles and current velocity profiles. The importance of each of the three parts in the roughness models (grain roughness, ripple roughness and sediment motion roughness) vary depending on forcing conditions. Consistent with the observations of others e.g. Caechione and Drake, 1990 ( The sea, Vol. 9, pp. 729-773); Wiberg and Harris, 1994 ( Journal of Geophysical Research, 99(C1), 775-7879), our results show that the models of Smith and McLean (1977; Journal of Geophysical Research, 82, 1735-1746), Grant and Madsen (1982; Journal of Geophysical Research, 87, 469-481) and Nielsen (1983; Coastal Engineering, 7, 233-257) overestimate the sediment transport roughness under sheet-flow conditions. However, the Nielsen (1983) model can predict the ripple roughness under moderate energy conditions quite well. A refined bottom roughness model is proposed that combines Nielsen's ripple roughness model and a modified sediment motion roughness modelk b=d + 8ννα+ Ωd(ψ' m - ψ c This sediment motion roughness is defined in such a way that it is proportional to the maximum skin friction Shields' parameter. The proportionality constant, Ω, is determined by fitting the modeled roughnesses and shear velocities with the field observations. The calculated velocity profiles and roughness using the refined roughness model, with Ω = 5, compare well to the field observations made under both moderate and high energy conditions at a sandy inner shelf site.

  19. Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2018-06-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  20. Coastal Lake Record of Holocene Paleo-Storms from Northwest Florida

    NASA Astrophysics Data System (ADS)

    Donoghue, J. F.; Coor, J. L.; Wang, Y.; Das, O.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.

    2009-12-01

    The northwest Florida coast of the Gulf of Mexico has an unusually active storm history. Climate records for a study area in the mid-region of the Florida panhandle coast show that 29 hurricanes have made landfall within a 100-km radius during historic time. These events included 9 major storms (category 3 or higher). A longer-term geologic record of major storm impacts is essential for better understanding storm climatology and refining morphodynamic models. The Florida panhandle region contains a series of unique coastal lakes which are long-lived and whose bottom sediments hold a long-term record of coastal storm occurrence. The lakes are normally isolated from the open Gulf, protected behind a near-continuous dune barrier. Lake water is normally fresh to brackish. Lake bottom sediments consist of organic-rich muds. During major storms the dunes are breached and the lakes are temporarily open to marine water and the possibility of sandy overwash. Both a sedimentologic and geochemical signature is imparted to the lake sediments by storm events. Bottom sediment cores have been collected from the lakes. The cores have been subsampled and subjected to sedimentologic, stable isotopic and geochronologic analyses. The result is a sediment history of the lakes, and a record of storm occurrence during the past few millennia. The outcome is a better understanding of the long-term risk of major storms. The findings are being incorporated into a larger model designed to make reliable predictions of the effects of near-future climate change on natural coastal systems and on coastal infrastructure, and to enable cost-effective mitigation and adaptation strategies.

  1. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2017-05-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  2. PAH concentrations in lake sediment decline following ban on coal-tar-based pavement sealants in Austin, Texas

    USGS Publications Warehouse

    Van Metre, Peter C.; Mahler, Barbara J.

    2013-01-01

    Recent studies have concluded that coal-tar-based pavement sealants are a major source of polycyclic aromatic hydrocarbons (PAHs) in urban settings in large parts of the United States. In 2006, Austin, TX, became the first jurisdiction in the U.S. to ban the use of coal-tar sealants. We evaluated the effect of Austin’s ban by analyzing PAHs in sediment cores and bottom-sediment samples collected in 1998, 2000, 2001, 2012, and 2014 from Lady Bird Lake, the principal receiving water body for Austin urban runoff. The sum concentration of the 16 EPA Priority Pollutant PAHs (∑PAH16) in dated core intervals and surficial bottom-sediment samples collected from sites in the lower lake declined about 44% from 1998–2005 to 2006–2014 (means of 7980 and 4500 μg kg–1, respectively), and by 2012–2014, the decline was about 58% (mean of 3320 μg kg–1). Concentrations of ∑PAH16 in bottom sediment from two of three mid-lake sites decreased by about 71 and 35% from 2001 to 2014. Concentrations at a third site increased by about 14% from 2001 to 2014. The decreases since 2006 reverse a 40-year (1959–1998) upward trend. Despite declines in PAH concentrations, PAH profiles and source-receptor modeling results indicate that coal-tar sealants remain the largest PAH source to the lake, implying that PAH concentrations likely will continue to decline as stocks of previously applied sealant gradually become depleted.

  3. Changes in bottom-surface elevations in three reservoirs on the lower Susquehanna River, Pennsylvania and Maryland, following the January 1996 flood; implications for nutrient and sediment loads to Chesapeake Bay

    USGS Publications Warehouse

    Langland, Michael J.; Hainly, Robert A.

    1997-01-01

    The Susquehanna River drains about 27,510 square miles in New York, Pennsylvania, and Maryland, contributes nearly 50 percent of the freshwater discharge to the Chesapeake Bay, and contributes nearly 66 percent of the annual nitrogen load, 40 percent of the phosphorus load, and 25 percent of the suspended-sediment load from non-tidal parts of the Bay during a year of average streamflow. A reservoir system formed by three hydroelectric dams on the lower Susquehanna River is currently trapping a major part of the phosphorus and suspended-sediment loads from the basin and, to a lesser extent, the nitrogen loads.In the summer of 1996, the U. S. Geological Survey collected bathymetric data along 64 cross sections and 40 bottom-sediment samples along 14 selected cross sections in the lower Susquehanna River reservoir system to determine the remaining sediment-storage capacity, refine the current estimate of when the system may reach sediment-storage capacity, document changes in the reservoir system after the January 1996 flood, and determine the remaining nutrient mass in Conowingo Reservoir. Results from the 1996 survey indicate an estimated total of 14,800,000 tons of sediment were scoured from the reservoir system from 1993 (date of previous bathymetric survey) through 1996. This includes the net sediment change of 4,700,000 tons based on volume change in the reservoir system computed from the 1993 and 1996 surveys, the 6,900,000 tons of sediment deposited from 1993 through 1996, and the 3,200,000 tons of sediment transported into the reservoir system during the January 1996 flood. The January 1996 flood, which exceeded a 100-year recurrence interval, scoured about the same amount of sediment that normally would be deposited in the reservoir system during a 4- to 6-year period.Concentrations of total nitrogen in bottom sediments in the Conowingo Reservoir ranged from 1,500 to 6,900 mg/kg (milligrams per kilogram); 75 percent of the concentrations were between 3,000 and 5,000 mg/kg. About 96 percent of the concentrations of total nitrogen consisted of organic nitrogen. Concentrations of total phosphorus in bottom sediments ranged from 286 to 1,390 mg/kg. About 84 percent of the concentrations of total phosphorus were comprised of inorganic phosphorus. The ratio of concentrations of plant-available phosphorus to concentrations of total phosphorus ranged from 0.6 to 3.5 percent; ratios generally decreased in a downstream direction.About 29,000 acre-feet, or 42,000,000 tons, of sediment can be deposited before Conowingo Reservoir reaches sediment-storage capacity. Assuming the average annual sediment-deposition rate remains unchanged and no scour occurs due to floods, the reservoir system could reach sediment-storage capacity in about 17 years. The reservoir system currently is trapping about 2 percent of the nitrogen, 45 percent of the phosphorus, and 70 percent of the suspended sediment transported by the river to the upper Chesapeake Bay. Once the reservoir reaches sediment-storage capacity, an estimated 250-percent increase in the current annual loads of suspended sediment, a 2-percent increase in the current annual loads of total nitrogen, and a 70-percent increase in the current annual loads of total phosphorus from the Susquehanna River to Chesapeake Bay can be expected. If the goal of a 40-percent reduction in controllable phosphorus load from the Susquehanna River Basin is met before the reservoirs reach sediment-storage capacity, the 40-percent reduction goal will probably be exceeded when the reservoir system reaches sediment-storage capacity.

  4. Microbial Communities in Sediments across the Louisiana Continental Shelf

    EPA Science Inventory

    The Louisiana continental Shelf (LCS) is a dynamic system that receives discharges from two large rivers. It has a stratified water column that is mixed by winter storms, hypoxic bottom water from spring to fall, and a muddy seafloor with highly mixed surficial sediments. Spatia...

  5. USE OF SEDIMENT PROFILE IMAGERY TO ESTIMATE NEAR-BOTTOM DISSOLVED OXYGEN REGIMES

    EPA Science Inventory

    The U.S. EPA, Atlantic Ecology Division is developing empirical stressor-response models for nitrogen pollution in partially enclosed coastal systems using dissolved oxygen (DO) as one of the system responses. We are testing a sediment profile image camera as a surrogate indicat...

  6. Bottom Sediment as a Source of Organic Contaminants in Lake Mead, Nevada, USA

    EPA Science Inventory

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities’ flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however,...

  7. Sound Speed and Attenuation in Multiphase Media

    DTIC Science & Technology

    2012-03-15

    wave speeds between 100 to 300 m/s for sandy sediments with porosities of 40-50%. Hastrup [21:121-127] reports empirical relationships that 12...4, pp. 689-692, 1955. [20] R.D. Stoll, Sediment Acoustics, Springer-Verlag, New York, 1989. [21] O. F. Hastrup , Acoustic Bottom Reflectivity

  8. Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia

    PubMed Central

    Vuillemin, Aurèle; Friese, André; Alawi, Mashal; Henny, Cynthia; Nomosatryo, Sulung; Wagner, Dirk; Crowe, Sean A.; Kallmeyer, Jens

    2016-01-01

    Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site—a feature we attribute to the availability of labile organic matter (OM) and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA (eDNA) provided information on aerobic and anaerobic heterotrophs related to Nitrospirae, Chloroflexi, and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking OM. However, eDNA concentrations rapidly decreased with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales, and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments showed that microbial populations perform successive metabolisms related to sulfur, iron, and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments. PMID:27446046

  9. The Late Pleistocene Contourites on Ceara Rise: Stratigraphy, Sedimentology and Paleoceanography

    NASA Astrophysics Data System (ADS)

    Ivanova, E. V.; Murdmaa, I.; Borisov, D.; Seitkalieva, E.; Ovsepyan, E.

    2016-12-01

    The study of sediment cores obtained during the cruises 35 (2012) and 50 (2015) of RV Akademic Ioffe from the Ceara Rise in the western tropical Atlantic strongly supports a significant influence of bottom (contour) currents on the Late Quaternary sedimentation. Seismic evidence of contourites in the study area (migrating contourite sediment waves, furrows) was previously described by Kumar and Embley (1977) and Curry et al. (1995). Widespread distribution of seismic waves on the rise and adjacent areas was suggested by Murdmaa et al (2014) based on the results of high-resolution seismic profiling with SES-2000 deep (4-5 kHz) in 2012. Our sediment cores recovered intercalation of bioturbated clays and silty clays with thin linear or wavy sand and silt layers and lenses implying strong bottom current control on sedimentation. The stratigraphic frame of the reference core AI-3426 retrieved near the summit of the Ceara Rise, at the water depth of 3046 m is based on the foraminiferal (Globorotalia menardii zones), oxygen isotope and AMS-14C data. The core recovered sediments of the last 140 ka with very rich and well-preserved tropical planktic foraminiferal assemblages. G. menardii is common within MIS 1 and 5 and is almost absent in MIS 2-4 and upper MIS 6. The abundance of benthic foraminifers is rather low. However, dominance of Globocassidulina subglobosa in benthic assemblages likely indicates a moderate bottom-current activity on the Ceara Rise during the last glacial. The other 4-5m long sediment cores collected along the seismic profile from the northern and southern slopes demonstrate the similar contourite sedimentological features and insignificant reworking of the Neogene foraminiferal species as inferred from the core AI-3426 along with the significant variations in foraminiferal preservation during the Pleistocene. The study is supported by the projects RSF 14-50-00095, RFBR 14-05-00744 and RFBR 16-35-60111, and Program I3P by RAS.

  10. Polonium-210 accumulates in a lake receiving coal mine discharges-anthropogenic or natural?

    PubMed

    Nelson, A W; Eitrheim, E S; Knight, A W; May, D; Wichman, M D; Forbes, T Z; Schultz, M K

    2017-02-01

    Coal is an integral part of global energy production; however, coal mining is associated with numerous environmental health impacts. It is well documented that coal-mine waste can contaminate the environment with naturally-occurring radionuclides from the uranium-238 ( 238 U) decay series. However, the behavior of the final radionuclide in the 238 U-series, i.e., polonium-210 ( 210 Po) arising from coal-mine waste-water discharge is largely unexplored. Here, results of a year-long (2014-2015) field study, in which the concentrations of 210 Po in sediments and surface water of a lake that receives coal-mine waste-water discharge in West Virginia are presented. Initial measurements identified levels of 210 Po in the lake sediments that were in excess of that which could be attributed to ambient U-series parent radionuclides; and were indicative of discharge site contamination of the lake ecosystem. However, control sediment obtained from a similar lake system in Iowa (an area with no coal mining or unconventional drilling) suggests that the levels of 210 Po in the lake are a natural phenomenon; and are likely unrelated to waste-water treatment discharges. Elevated levels of 210 Po have been reported in lake bottom sediments previously, yet very little information is available on the radioecological implications of 210 Po accumulation in lake bottom sediments. The findings of this study suggest that (Monthly Energy Review, 2016) the natural accumulation and retention of 210 Po in lake sediments may be a greater than previously considered (Chadwick et al., 2013) careful selection of control sites is important to prevent the inappropriate attribution of elevated levels of NORM in lake bottom ecosystems to industrial sources; and (Van Hook, 1979) further investigation of the source-terms and potential impacts on elevated 210 Po in lake-sediment ecosystems is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Self-oscillations in large storages of highly mineralized brines

    NASA Astrophysics Data System (ADS)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Tsiberkin, Kirill; Parshakova, Yanina

    2014-05-01

    One of the stages of the production process at large enrichment plants is settling of aqueous solutions in large technological storages. The present work is devoted to the modeling of hydrodynamic regimes of large storage of highly mineralized brines. The density of brines in these objects depends not only on the content of dissolved macrocomponents, but also on the concentration of fine particulate matter. This leads to the need to consider the dynamics of the suspended sediment under significant density stratification, which greatly complicates the problem. Because of that it is important to develop hydrodynamical models of these objects. A peculiarity of these systems is the possibility of self-oscillatory regimes the mechanism of which is as follows. In warm sunny days, with high solar insolation, the heating of the sediments and bottom water takes place. The bottom water warming and the decrease of its density give rise to flow. The slurry particles composing the sediments are involved in the flow. The heated particles entrained by the flow transfer the heat to the surrounding liquid and increase the absorption of the solar radiation in the volume, which leads to equalization of temperature and convective flow damping. After the particle settling on the bottom the process is repeated. We study the stability of equilibrium of the horizontal liquid layer containing heavy insoluble particles in the presence of evaporation from the free surface and solar radiation absorption by insoluble particles. The time-dependent solution of heat transfer problem is obtained and used for estimate of time of instability onset. It is found that for the layer of saturated brines of potassium chloride of the thickness about 10 m the time for instability onset is about one hour. By using analytical estimates based on the empirical model of turbulence by Prandtl we confirmed the time for the onset of instability and obtained the estimates for the period of self-oscillations. Numerical simulation of the dynamics of suspended sediment in the storage is performed within the framework of two-dimensional unsteady approach taking into account the temperature jumps due to the water evaporation from the free surface and the radiation heating of the sediments. The dynamics of sediment in a rectangular cavity of the length 500 m and depth 10 m is considered. Initially, the water is assumed to be motionless and nonuniformly heated. The calculations show that in the first stage of the process the flows arise near the boundaries of the heated areas. Next, the large-scale vortices with the characteristic size equal to the depth of the storage are formed. The sediment located at the bottom sets into motion and only some portion of sediment located near the bottom remains motionless. Throughout several hours the mass fraction of the suspended particles in water increases, then the flow decays and the sedimentation of particles is observed. This work was supported by RFBR and Perm Region Government (grant 13-01-96040) and by President of Russian Federation (grant 4022.2014.1 for the support of Leading Scientific Schools).

  12. Bottom sediments and pore waters near a hydrothermal vent in Lake Baikal (Frolikha Bay)

    USGS Publications Warehouse

    Granina, L.Z.; Klerkx, J.; Callender, E.; Leermakers, M.; Golobokova, L.P.

    2007-01-01

    We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a hydrothermal vent in Frolikha Bay, Lake Baikal. According to our results, the submarine vent and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine vent have a specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America. ?? 2007.

  13. A NON-STEADY-STATE DIAGENETIC MODEL FOR CHANGES IN SEDIMENT BIOGEOCHEMISTRY IN RESPONSE TO SEASONALLY HYPOXIC/ANOXIC CONDITIONS BENEATH THE MISSISSIPPI RIVER PLUME

    EPA Science Inventory

    Although the bottom waters of many freshwater and marine environments are either permanently oxic or anoxic, there is a growing appreciation that in many bodies of water near-bottom conditions seasonally oscillate between these extreme. Although observational databases for these ...

  14. Fishing activities

    USGS Publications Warehouse

    Oberle, Ferdinand; Puig, Pere; Martin, Jacobo; Micallef, Aaron; Krastel, Sebastian; Savini, Alessandra

    2018-01-01

    Unlike the major anthropogenic changes that terrestrial and coastal habitats underwent during the last centuries such as deforestation, river engineering, agricultural practices or urbanism, those occurring underwater are veiled from our eyes and have continued nearly unnoticed. Only recent advances in remote sensing and deep marine sampling technologies have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention among the scientific community, policy makers and the general public due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.

  15. Quantifying hyporheic exchange in a karst stream using 222Rn

    NASA Astrophysics Data System (ADS)

    Khadka, M. B.; Martin, J. B.; Kurz, M. J.

    2013-12-01

    The hyporheic zone is a critical interface between groundwater and river water environments and is characterized by steep biogeochemical gradients. Understanding how this interface affects solute transport, nutrient cycling and contaminant attenuation is essential for better water resource management of streams. However, this understanding is constrained due to difficulty associated with quantification of exchange of water through the hyporheic zone. We tested a radon (222Rn) method to estimate the hyporheic water residence time and exchange rate in the bottom sediment of the spring-fed Ichetucknee River, north-central Florida. The river, which flows over the top of the unconfined karstic Floridan Aquifer, is characterized by a broad bedrock channel partially in-filled with unconsolidated sediments. Radon (222Rn) activity in the pore waters of the channel sediments differs from the amount expected from sediment production and decay. Although most radon in streams originates from sources in bottom sediments, the Ichetucknee River water has 222Rn activities (251×5 PCi/L) that are nearly twice that of the pore water (128×15 PCi/L). The river water 222Rn activity is consistent with that of the source springs, suggesting the source of Rn in the river is from deep within the aquifer rather than bottom sediments and that the excess 222Rn in the pore water results from hyporheic exchange. Profiles of radon concentrations with depth through the sediments show that the mixing of stream water and pore water extends 35-45 cm below the sediment and water interface. Based on a model that integrates the excess radon with depth, we estimate the water exchange rate to be between 1.1 and 1.6 cm/day with an average value of 1.3×0.2 cm/day. Water that exchanges across the sediment-water interface pumps oxygen into the sediments, thereby enhancing organic carbon remineralization, as well as the production of NH4+ and PO43- and their fluxes from sediments to the stream. As opposed to conventional in-stream tracer injection method which estimates exchange between the stream and both the hyporheic zone and the surface transient storage zone, the 222Rn approach measures the water exchange between stream and hyporheic sediments only. Although the present method is tested on a spring-fed karst stream, it has potential for any freshwater system (e.g. wetland, lake) where distinct radon activity and production between surface water and underlying sediments occur.

  16. Influence of the hydrodynamic conditions on the accessibility of Aristeus antennatus and other demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amores, Angel; Rueda, Lucía; Monserrat, Sebastià; Guijarro, Beatriz; Pasqual, Catalina; Massutí, Enric

    2014-10-01

    Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed on the Sóller fishing ground off northern Mallorca (Western Mediterranean), and the mean ocean surface vorticity in the surrounding areas are compared between 2000 and 2010. A good correlation is found between the rises in the surrounding surface vorticity and the drops in the CPUE of the adult red shrimp. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspension, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity disappearing from the fishing grounds, probably moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accessibility to fishing exploitation. Similar although more intense responses have been observed during the downslope shelf dense water current episodes that occurred in a submarine canyon, northeast of the Iberian peninsula. The proposed mechanism suggesting how the surface vorticity observed can affect the bottom sediments is investigated using a year-long moored near-bottom current meter and a sediment trap moored near the fishing grounds. The relationship between vorticity and catches is also explored for fish species (Galeus melastomus, Micromesistius poutassou, Phycis blennoides) and other crustacean (Geryon longipes and Nephrops norvegicus), considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticity episodes is significant enough to affect the dynamics of the demersal species.

  17. Sediment metabolism on the Louisiana continental shelf - Eldridge

    EPA Science Inventory

    Rates of aerobic and anaerobic sediment metabolism were measured on the Louisiana Continental Shelf during 5 cruises in 2006 and 2007. On each cruise, 3-4 stations were occupied in regions of the shelf that experience summer bottom-water hypoxia. Net DIC, O2, N2, and nutrient f...

  18. Field Validation of Molybdenum Accumulation in Sediments as an Indication of Hypoxic Water Conditions

    EPA Science Inventory

    Accumulation of authigenic molybdenum (Mo) in marine sediments has often been used as qualitative indicator of periods of hypoxic bottom water, but rarely, if ever, used quantitatively. Laboratory experiments have shown that the accumulation rate of Mo may serve as a quantitative...

  19. Enrichment of stream water with fecal indicator organisms from bottom sediments during baseflow periods

    USDA-ARS?s Scientific Manuscript database

    Fecal indicator organisms (FIOs) are generally believed to be present in surface waters due solely to direct deposition of feces or through transport in runoff. However, emerging evidence points toward hyporheic exchange between sediment pore water and the overlying water column during baseflow peri...

  20. EFFECTS OF ON-BOTTOM OYSTER MARICULTURE ON SMALL, SEDIMENT-DWELLING INVERTEBRATES

    EPA Science Inventory

    As part of a programmatic effort to determine estuarine habitat values for ecological risk assessments, quantitative field studies of small ( 0.5 mm), sediment-dwelling invertebrates were conducted in Willapa Bay, WA in July 1998 and Tillamook Bay, OR in July 1999. The six habit...

  1. ASSESSING WATER QUALITY CHANGES IN THE LAKES OF THE NORTHEASTERN UNITED STATES USING SEDIMENT DIATOMS

    EPA Science Inventory

    Diatom assemblages were selected as indicators of lake condition and to assess historical lake water quality changes in 257 lakes in the northeastern United States. The "top" (surface sediments, present-day) and "bottom" (generally from >30 cm deep, representing historical condit...

  2. Microphytobenthos production potential and contribution to bottom layer oxygen dynamics on the inner Louisiana continental shelf

    EPA Science Inventory

    To investigate the relative importance of microphytobenthos (MPB) oxygen (O2) production on a river-dominated shelf, we made sediment core incubation measurements of MPB O2 production and sediment O2 consumption, and compared these to water-column measures of primary production ...

  3. Relation of Lake-Floor Characteristics to the Distribution of Variable Leaf Water-Milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire, 2005

    USGS Publications Warehouse

    Argue, Denise M.; Kiah, Richard G.; Denny, Jane F.; Deacon, Jeffrey R.; Danforth, William W.; Johnston, Craig M.; Smagula, Amy P.

    2007-01-01

    Geophysical, water, and sediment surveys were done to characterize the effects of surficial geology, water and sediment chemistry, and surficial-sediment composition on the distribution of variable leaf water-milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire. Geophysical surveys were conducted in a 180-square-kilometer area, and water-quality and sediment samples were collected from 24 sites in the survey area during July 2005. Swath-bathymetric data revealed that Moultonborough Bay ranged in depth from less than 1 meter (m) to about 15 m and contained three embayments. Seismic-reflection profiles revealed erosion of the underlying bedrock and subsequent deposition of glaciolacustrine and Holocene lacustrine sediments within the survey area. Sediment thickness ranged from 5 m along the shoreward margins to more than 15 m in the embayments. Data from sidescan sonar, surficial-sediment samples, bottom photographs, and video revealed three distinct lake-floor environments: rocky nearshore, mixed nearshore, and muddy basin. Rocky nearshore environments were found in shallow water (less than 5 m deep) and contained sediments ranging from coarse silt to very coarse sand. Mixed nearshore environments also were found in shallow water and contained sediments ranging from silt to coarse sand with different densities of aquatic vegetation. Muddy basin environments contained the finest-grained sediments, ranging from fine to medium silt, and were in the deepest waters of the bay. Acoustic Ground Discrimination Systems (AGDS) survey data revealed that 86 percent of the littoral zone (the area along the margins of the bay and islands that extends from 0 to 4.3 m in water depth) contained submerged aquatic vegetation (SAV) in varying densities: approximately 36 percent contained SAV bottom cover of 25 percent or less, 43 percent contained SAV bottom cover of more than 25 and less than 75 percent, and approximately 7 percent contained SAV bottom cover of more than 75 percent. SAV included variable leaf water-milfoil, native milfoil, bassweed, pipewort, and other species, which were predominantly found near shoreward margins and at depths ranging from less than 1 to 4 m. AGDS data were used in a Geographic Information System to generate an interpolated map that distinguished variable leaf water-milfoil from other SAV. Furthermore, these data were used to isolate areas susceptible to variable leaf water-milfoil growth. Approximately 21 percent of the littoral zone contained dense beds (more than 59 percent bottom cover) of variable leaf water-milfoil, and an additional 44 percent was determined to be susceptible to variable leaf water-milfoil infestation. Depths differed significantly between sites with variable leaf water-milfoil and sites with other SAV (p = 0.04). Variable leaf water-milfoil was found at depths that ranged from 1 to 4 m, and other SAV had a depth range of 1 to 2 m. Although variable leaf water-milfoil was observed at greater depths than other SAV, it was not observed below the photic zone. Analysis of constituent concentrations from the water column, interstitial pore water, and sediment showed little correlation with the presence of variable leaf water-milfoil, with two exceptions. Iron concentrations were significantly lower at variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Similarly, the percentage of total organic carbon also was significantly lower at the variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Surficial-sediment-grain size had the greatest correlation to the presence of variable leaf water-milfoil. Variable leaf water-milfoil was predominantly growing in areas of coarse sand (median grain-size 0.62 millimeters). Surficial-sediment-grain size was also correlated with total ammonia plus organic nitrogen (Rho = 0.47; p = 0.02) and with total phosphorus (Rho = 0.44; p = 0.05) concentrations in interstitial pore-water samples.

  4. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  5. Mercury concentrations in estuarine sediments, Lavaca and Matagorda bays, Texas, 1992

    USGS Publications Warehouse

    Brown, David S.; Snyder, Grant L.; Taylor, R. Lynn

    1998-01-01

    U.S. Environmental Protection Agency Method 7471 (Cold Vapor Atomic Absorption) was an acceptable analytical method for determining the total mercury concentrations in the Lavaca-Matagorda Bays estuarine sediment samples. Measurement of additional trace metals would aid in the characterization of total mercury concentrations and in the identification of concentrator/collector relations that are principally responsible for the adsorption of mercurous compounds to particulates in the bottom sediments.

  6. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake

    NASA Astrophysics Data System (ADS)

    Herndon, Elizabeth M.; Havig, Jeff R.; Singer, David M.; McCormick, Michael L.; Kump, Lee R.

    2018-06-01

    Manganese and iron are redox-sensitive elements that yield clues about biogeochemistry and redox conditions both in modern environments and in the geologic past. Here, we investigated Mn and Fe-bearing minerals preserved in basin sediments underlying Fayetteville Green Lake, a redox-stratified lake that serves as a geochemical analogue for Paleoproterozoic oceans. Synchrotron-source microprobe techniques (μXRF, μXANES, and μXRD) and bulk geochemical analyses were used to examine the microscale distribution and speciation of Mn, Fe, and S as a function of depth in the top 48 cm of anoxic lake sediments. Manganese was primarily associated with calcite grains as a manganese-rich carbonate that precipitated in the chemocline of the water column and settled through the euxinic basin to collect in lake sediments. Iron was preserved in framboidal iron sulfides that precipitated in euxinic bottom waters and underwent transformation to pyrite and marcasite in the sediments. Previous studies attribute the formation of manganese-rich carbonates to the diagenetic alteration of manganese oxides deposited in basins underlying oxygenated water. Our study challenges this paradigm by providing evidence that Mn-bearing carbonates form in the water column and accumulate in sediments below anoxic waters. Consequently, manganoan carbonates preserved in the rock record do not necessarily denote the presence of oxygenated bottom waters in ocean basins.

  7. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ferré, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.

    2008-08-01

    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998-April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×10 6 t y -1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×10 9 t y -1). However the net resuspension (erosion/deposition budget) for trawling (0.4×10 6 t y -1) was only one order of magnitude lower than that for waves and currents (9.2×10 6 t y -1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts) and took place primarily at the southwestern end of the Gulf. Off-shelf transport was favoured during the winter 1999 by a very intense episode of dense shelf water cascading. Export of sediment resuspended by trawls (0.4×10 6 t y -1) was one order of magnitude lower than export associated with natural resuspension (8.5×10 6 t y -1). Trawling-induced resuspension is thought to represent one-third of the total export of suspended sediment from the shelf. A simulation combining both resuspension processes reveals no significant changes in resuspension and export rates compared with the sum of each individual process, suggesting the absence of interference between both processes.

  8. Authigenic Uranium in Eastern Equatorial Pacific Sediments

    NASA Astrophysics Data System (ADS)

    Marcantonio, F.; Lyle, M. W.; Loveley, M. R.; Ibrahim, R.

    2014-12-01

    Authigenic U concentrations have been used as an indicator of redox state in marine sediments. Soluble U(VI) in porewaters is reduced to insoluble U(IV) under suboxic conditions setting up a diffusion gradient through which U in bottom waters is supplied to reducing sediments. Researchers have used sedimentary redox enrichment of U as a tool to identify past redox changes, which may be caused by changes in organic carbon rain rates and/or bottom water oxygen levels. Differentiating between these two explanations is important, as the former is tied to the use of authigenic U as a paleoproductivity proxy. We examined sediments from 4 sediment cores retrieved from two different localities in the Panama Basin in the eastern equatorial Pacific. Two cores were retrieved from the northern Panama basin at the Cocos Ridge, (4JC at 5° 44.7'N 85° 45.5' W, 1730 m depth; 8JC at 6° 14.0'N 86° 2.6' W, 1993 m depth), and two were retrieved from the south at the Carnegie Ridge, (11JC at 0° 41.6'S 85° 20.0' W, 2452 m depth; 17JC at 0° 10.8'S 85° 52.0' W, 2846 m depth). Using 230Th systematics and seismic profiling at each of the sites, we've identified significant sediment winnowing (4JC and 11JC) and focusing (8JC and 17JC). At all sites, we believe that changes in age-model-derived sand (i.e., >63µm) mass accumulation rates (MAR) best represent changes in rain rates. Glacial rain rates are higher than those in the Holocene by a factor of 2-3 at both sites. Peak Mn levels (>1%), the brown-to-green color transition (which likely represents the oxic/post-oxic boundary), and peak U concentrations all appear in the same order with increasing depth down core. At the Carnegie sites, where MARs are greater than those at the Cocos sites, increases in authigenic U (up to 4 ppm) occur during the mid- to late Holocene at depths of 10-15 cm. At the Cocos sites, increases in authigenic U (up to 12 ppm) occur lower in the sediment column (25-30 cm) during the late glacial. The decrease in sediment MAR (and, likely, productivity) between the last glacial and the Holocene has most likely driven the syndiagenetic enrichment of U at these sites by diffusion of bottom water U to slightly beyond the oxic/post-oxic boundary. Hence, changing bottom water oxygen levels are not a requirement to explain authigenic U concentrations in eastern equatorial Pacific sediments.

  9. The Deposition and Accumulation of Microplastics in Marine Sediments and Bottom Water from the Irish Continental Shelf.

    PubMed

    Martin, Jake; Lusher, Amy; Thompson, Richard C; Morley, Audrey

    2017-09-07

    Microplastics are widely dispersed throughout the marine environment. An understanding of the distribution and accumulation of this form of pollution is crucial for gauging environmental risk. Presented here is the first record of plastic contamination, in the 5 mm-250 μm size range, of Irish continental shelf sediments. Sixty-two microplastics were recovered from 10 of 11 stations using box cores. 97% of recovered microplastics were found to reside shallower than 2.5 cm sediment depth, with the area of highest microplastic concentration being the water-sediment interface and top 0.5 cm of sediments (66%). Microplastics were not found deeper than 3.5 ± 0.5 cm. These findings demonstrate that microplastic contamination is ubiquitous within superficial sediments and bottom water along the western Irish continental shelf. Results highlight that cores need to be at least 4-5 cm deep to quantify the standing stock of microplastics within marine sediments. All recovered microplastics were classified as secondary microplastics as they appear to be remnants of larger items; fibres being the principal form of microplastic pollution (85%), followed by broken fragments (15%). The range of polymer types, colours and physical forms recovered suggests a variety of sources. Further research is needed to understand the mechanisms influencing microplastic transport, deposition, resuspension and subsequent interactions with biota.

  10. Distribution of pollutants from a new paper plant in southern Lake Champlain, Vermont and New York

    USGS Publications Warehouse

    Mason, D.L.; Folger, D.W.; Haupt, R.S.; McGirr, R.R.; Hoyt, W.H.

    1977-01-01

    From November of 1973 to May of 1974, 15 arrays of sediment traps were placed along 33 km of southern Lake Champlain to sample the distribution of effluent from a large paper plant located on the western shore which had commenced operation in 1971. In the arrays located near the effluent diffuser pipeline as much as 2.3 cm of sediment accumulated, whereas elsewhere in the lake less than 1 cm accumulated. In the area of accelerated accumulation, sediments contained high concentrations of several components used in or derived from paper manufacturing. Values for kaolinite, expressed as the ratio of kaolinite to chlorite, for example, were as high as 1.4, anatase (TiO2) concentrations were as high as 0.8%, organic carbon 8.7%, and phosphorus 254 ??g/g; all were more abundant than in sediments collected in traps to the south or north. In surficial bottom sediments collected near each array organic carbon and phosphorus were also higher (4.2% and 127 ??g/g respectively) near the diffuser than elsewhere. Thus, the new plant after three years of production measurably affected the composition of suspended sediment and surficial bottom sediment despite the construction and use of extensive facilities to reduce the flow of pollutants to the lake. ?? 1977 Springer-Verlag New York Inc.

  11. Carbon transport in Monterey Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  12. Earth observations taken from Space Shuttle Columbia during STS-93 mission

    NASA Image and Video Library

    1999-07-25

    STS093-708-062 (23-27 July 1999) --- The STS-93 astronauts took this picture of the Island of Borneo, which is divided among Indonesia, Malaysia and Brunei. The Rajang River meets the South China Sea in the northwestern portion of the Malaysian state of Sarawak. Smoke from both large and small fires is blowing north by the prevailing summer winds. Notice the contrast of dark colored rainforest with the lighter clearings where the largest fires are burning. According to NASA scientists studying the STS-93 photo collection, the sediment plumes along the coast are mostly shoreline erosional materials caught up in longshore currents. The Saribas River can be seen at the bottom.

  13. Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Loubere, Paul

    1994-10-01

    An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN toAGU's FTP account using ANONYMOUS as the usemame andGUEST as the password. Go to the right directory by typing CDAPEND. Type LS to see what files are available. Type GET and thename of the file to get it. Finally, type EXIT to leave the system.)(Paper 94PA01624, Quantitative estimation of surface oceanproductivity and bottom water concentration using benthicforaminifera, by P. Loubere). Diskette may be ordered from AmericanGeophysical Union, 2000 Florida Avenue, N.W., Washington, DC20009; $15.00. Payment must accompany order.Quantitative estimation of surface ocean productivity and bottom water oxygen concentration with benthic foraminifera was attempted using 70 samples from equatorial and North Pacific surface sediments. These samples come from a well defined depth range in the ocean, between 2200 and 3200 m, so that depth related factors do not interfere with the estimation. Samples were selected so that foraminifera were well preserved in the sediments and temperature and salinity were nearly uniform (T = 1.5° C; S = 34.6‰). The sample set was also assembled so as to minimize the correlation often seen between surface ocean productivity and bottom water oxygen values (r² = 0.23 for prediction purposes in this case). This procedure reduced the chances of spurious results due to correlations between the environmental variables. The samples encompass a range of productivities from about 25 to >300 gC m-2 yr-1, and a bottom water oxygen range from 1.8 to 3.5 ml/L. Benthic foraminiferal assemblages were quantified using the >62 µm fraction of the sediments and 46 taxon categories. MANOVA multivariate regression was used to project the faunal matrix onto the two environmental dimensions using published values for productivity and bottom water oxygen to calibrate this operation. The success of this regression was measured with the multivariate r² which was 0.98 for the productivity dimension and 0.96 for the oxygen dimension. These high coefficients indicate that both environmental variables are strongly imbedded in the faunal data matrix. Analysis of the beta regression coefficients shows that the environmental signals are carried by groups of taxa which are consistent with previous work characterizing benthic foraminiferal responses to productivity and bottom water oxygen. The results of this study suggest that benthic foraminiferal assemblages can be used for quantitative reconstruction of surface ocean productivity and bottom water oxygen concentrations if suitable surface sediment calibration data sets are developed and appropriate means for detecting no-analog samples are found.

  14. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    NASA Astrophysics Data System (ADS)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  15. Development of the benethic nepheloid layer on the south Texas continental shelf, western Gulf of Mexico

    USGS Publications Warehouse

    Shideler, G.L.

    1981-01-01

    A monitoring study of suspended sediment on the South Texas Continental Shelf indicates that a turbid benthic nepheloid layer is regionally persistent. A sequence of quasi-synoptic measurements of the water column obtained during six cruises in an 18-month period indicates substantial spatial and temporal variability in nepheloidlayer characteristics. Regionally, the thickness of the shelf nepheloid layer increases both seaward and in a convergent alongshelf direction. Greatest thicknesses occur over a muddy substrate, indicating a causal relationship; maximum observed local thickness is 35 m which occurs along the southern shelf break. Analyses of suspended particulate matter in shelf bottom waters indicate mean concentrations ranging from 49 ?? 104 to 111 ?? 104 particle counts/cc; concentrations persistently increase shoreward throughout the region. Bottom particulate matter is predominantly composed of inorganic detritus. Admixtures of organic skeletal particles, primarily diatoms, are generally present but average less than 10% of the total particulate composition. Texturally, the particulate matter in bottom waters is predominantly poorly sorted sediment composed of very fine silt (3.9-7.8 ??m). The variability in nepheloid-layer characteristics indicates a highly dynamic shelf feature. The relationship of nepheloid-layer characteristics to hydrographic and substrate conditions suggests a conceptual model whereby nepheloid-layer development and maintenance are the results of the resuspension of sea-floor sediment. Bottom turbulence is attributed primarily to vertical shear and shoaling progressive internal waves generated by migrating shelf-water masses, especially oceanic frontal systems, and secondarily to shoaling surface gravity waves. ?? 1981.

  16. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?

    PubMed

    Dijkstra, Nikki; Kraal, Peter; Kuypers, Marcel M M; Schnetger, Bernhard; Slomp, Caroline P

    2014-01-01

    Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III) (oxyhydr)oxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic) basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments.

  17. Overview of the sedimentological processes in the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Benetti, S.; Weaver, P.; Wilson, P.

    2003-04-01

    The sedimentary processes operating within the western North Atlantic continental margin include both along-slope sediment transport, which builds sediment drifts and waves, and down-slope processes involving mass wasting. Sedimentation along a large stretch of the margin (north of 32°N) has been heavily influenced by processes that occurred during glacial times (e.g. cutting of canyons and infilling of abyssal plains) when large volumes of sediment were supplied to the shelf edge either by ice grounded on continental shelves or river discharge. The large area of sea floor occupied by depositional basins and abyssal plains testifies to the dominance of turbidity currents. The widespread presence of slide complexes in this region has been related to earthquakes and melting of gas hydrates. South of 32°N, because of the low sediment supply from rivers even during glacial times and the reduced sedimentation due to the erosive effects of the Gulf Stream, few canyon systems and slides are observed and Tertiary sediment cover is thin and irregular. Turbidity currents filled re-entrant basins in the Florida-Bahama platform. Tectonic activity is primarily responsible for the overall morphology and sedimentation pattern along the Caribbean active margin. Along the whole margin, the reworking of bottom sediments by deep-flowing currents seems to be particularly active during interglacials. To some extent this observation must reflect the diminished effect of downslope transport during interglacials, but our data also contribute to the debate over changes in deep water circulation strength on glacial-interglacial timescales. Strong bottom circulation, an open basin system and high sediment supply have led to the construction of large elongate contourite drifts, mantled by smaller scale bedforms. These drifts are mostly seen in regions protected or distant from the masking influence of turbidity currents and sediment mass movements.

  18. Impacts of Bottom Fishing on Sediment Biogeochemical and Biological Parameters in Cohesive and Non-cohesive Sediments

    NASA Astrophysics Data System (ADS)

    Sciberras, M.; Hiddink, J. G.; Powell, C.; Parker, R.; Krӧger, S.; Bolam, S. G.; Robertson, C.

    2016-02-01

    Sediment resuspension and bed reworking by tides, waves and biological activity are frequent in the energetic coastal environments. Sediment mixing by tides and waves are generally more important in regulating sediment processes in advection-dominated system such as sandy sediments, whereas sediment reworking by bioturbation is more important in diffusion-dominated systems such as muddy sediments. Bottom fishing constitutes an additional significant impact on benthic communities and sediment biogeochemical processes in coastal areas through physical changes in sediment resuspension and mixing and changes to bioturbating fauna. This study examined the biological (macro-infaunal) and biogeochemical responses to fishing at a muddy and sandy site in the Irish Sea that were predominantly impacted by otter trawls and scallop dredges, respectively. The sandy habitat (>90% sand) was typical of a hydrodynamic environment characterized by a diverse array of small infaunal species, low organic carbon levels and fast remineralisation of organic matter in the sediment. The muddier habitat (>65% fines) was dominated by fewer but larger bioturbating species compared to sand, and illustrated highly diffusional solute transport, higher organic carbon content and a shallower oxygen penetration depth. Generally there appeared to be no clear statistically significant changes in the biogeochemistry of the sandy or muddy habitat that could be attributed to different intensities of fishing. However, pore-water nutrient profiles of ammonium, phosphate and silicate provided clear evidence of organic matter burial and/or mixing as a result of trawling at the muddy site. The biogeochemistry at the sandy site appeared to remain dominated by the natural physical environment, so impact of fishing disturbance was less evident. These results suggest that fishing does not have comparable effects on the biology and biogeochemical processes in all benthic habitats.

  19. Larval habitat choice in still water and flume flows by the opportunistic bivalve Mulinia lateralis

    NASA Astrophysics Data System (ADS)

    Grassle, Judith P.; Snelgrove, Paul V. R.; Butman, Cheryl Ann

    Competent pediveligers of the coot clam Mulinia lateralis (Say) clearly preferred an organically-rich mud over abiotic glass beads in 24-h flume experiments, and often demonstrated the same choice in still-water experiments. We hypothesize that peediveligers with characteristic helical swimming paths above the bottom can exercise habitat choice in both still water nad flow, but that the limited swimming ambits of physiologically older periveligers require near-bottom flows to move the larvae between sediment patches so that they can exercise habitat choice. Although M. lateralis larvae are planktotrophic, their ability to delay metamorphosis in the absence of a preferred sediment cue is limited to about five days, a shorter time than the lecithotrophi larvae of the opportunistic polychaete species, Capitella spp. I and II. Field distributions of all three opportunistic species may result, at least in part, from active habitat selection for high-organic sediments by settling larvae.

  20. Bottom-sediment chemistry in Devil's Lake, northeast North Dakota

    USGS Publications Warehouse

    Komor, S.C.

    1994-01-01

    High magnesium calcite 8 mole percent MgCO3 is the most abundant carbonate at the sediment surface. With increasing depth abundances of high magnesium carbonate decrease and abundances of low magnesium calcite aragonite and dolomite increase. Carbon isotope compositions of bulk carbonates range from δ13C = -0.7 to +0.5%. These values are close to equilibrium with dissolved inorganic carbon in lake water (δ13C = -2%) but far from equilibrium with dissolved inorganic carbon in pore water (δ13C = -16.3- -10/0%). Disequilibrium between pore water and carbonates suggests that the carbonates did not recrystallize substantially in the presence of pore water. Therefore the change of carbonate mineral proportions with depth in the sediments is due mainly to temporal changes in the proportions of endogenic, detrital, and biologic carbonates that were deposited on the lake bottom rather than postdepositional carbonate diagenesis.

  1. Furrowed outcrops of Eocene chalk on the lower continental slop offshore New Jersey

    USGS Publications Warehouse

    Robb, James M.; Kirby, John R.; Hampson, John C., Jr.; Gibson, Patricia R.; Hecker, Barbara

    1983-01-01

    A sea bottom of middle Eocene calcareous claystone cut by downslope-trending furrows was observed during an Alvin dive to the mouth of Berkeley Canyon on the continental slope off New Jersey. The furrows are 10 to 50 m apart, 4 to 13 m deep, linear, and nearly parallel in water depths of 2,000 m. They have steep walls and flat floors 3 to 5 m wide, of fine-grained sediment. Mid-range sidescan-sonar images show that similarly furrowed surfaces are found on nearby areas of the lower continental slope, not associated with canyons. The furrows are overlain in places by Pleistocene sediments. Although they show evidence of erosional origin, they do not appear to be related to observed structures, and their straight, parallel pattern is not well understood. A general cover of flocky unconsolidated sediments implies that bottom-current erosion is not active now.

  2. In situ measurement of radioactive contamination of bottom sediments.

    PubMed

    Zhukouski, A; Anshakou, O; Kutsen, S

    2018-04-30

    A gamma spectrometric method is presented for in situ radiation monitoring of bottom sediments with contaminated layer of unknown thickness to be determined. The method, based on the processing of experimental spectra using the results of their simulation by the Monte Carlo method, is proposed and tested in practice. A model for the transport of gamma radiation from deposited radionuclides 137 Cs and 134 Cs to a scintillation detection unit located on the upper surface of the contaminated layer of sediments is considered. The relationship between the effective radius of the contaminated site and the thickness of the layer has been studied. The thickness of the contaminated layer is determined by special analysis of experimental and thickness-dependent simulated spectra. The technique and algorithm developed are verified as a result of full-scale studies performed with the submersible gamma-spectrometer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Coastal eutrophication thresholds: a matter of sediment microbial processes.

    PubMed

    Lehtoranta, Jouni; Ekholm, Petri; Pitkänen, Heikki

    2009-09-01

    In marine sediments, the major anaerobic mineralization processes are Fe(III) oxide reduction and sulfate reduction. In this article, we propose that the two alternative microbial mineralization pathways in sediments exert decisively different impacts on aquatic ecosystems. In systems where iron reduction dominates in the recently deposited sediment layers, the fraction of Fe(III) oxides that is dissolved to Fe(II) upon reduction will ultimately be transported to the oxic layer, where it will be reoxidized. Phosphorus, which is released from Fe(III) oxides and decomposing organic matter from the sediment, will be largely trapped by this newly formed Fe(III) oxide layer. Consequently, there are low concentrations of phosphorus in near-bottom and productive water layers and primary production tends to be limited by phosphorus (State 1). By contrast, in systems where sulfate reduction dominates, Fe(III) oxides are reduced by sulfides. This chemical reduction leads to the formation and permanent burial of iron as solid iron sulfides that are unable to capture phosphorus. In addition, the cycling of iron is blocked, and phosphorus is released to overlying water. Owing to the enrichment of phosphorus in water, the nitrogen : phosphorus ratio is lowered and nitrogen tends to limit algal growth, giving an advantage to nitrogen-fixing blue-green algae (State 2). A major factor causing a shift from State 1 to State 2 is an increase in the flux of labile organic carbon to the bottom sediments; upon accelerating eutrophication a critical point will be reached when the availability of Fe(III) oxides in sediments will be exhausted and sulfate reduction will become dominant. Because the reserves of Fe(III) oxides are replenished only slowly, reversal to State 1 may markedly exceed the time needed to reduce the flux of organic carbon to the sediment. A key factor affecting the sensitivity of a coastal system to such a regime shift is formed by the hydrodynamic alterations that decrease the transport of O2 to the near-bottom water, e.g., due to variations in salinity and temperature stratification.

  4. Tracking Changes in Iron Mineralogy Through Time in Gale Crater and Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Sheppard, R.; Milliken, R.; Russell, J. M.

    2017-12-01

    Iron and other redox-sensitive elements measured in ancient mudstones of Gale Crater, Mars by the Curiosity rover can provide information on past climate and interactions between water and the early atmosphere. Preserved ferrous mineralogy can constrain lake bottom water conditions and potentially the relative position of the oxycline and/or shoreline through the stratigraphic section. Multiple oxidation states in a given assemblage may also indicate a potential energy source for microbes. The X-ray amorphous fraction of all rocks measured in Gale Crater to date is also enigmatic: it can constitute up to 50 wt% of the sediment but the precise composition and formation conditions are unknown. Features similar to those in the martian mudstones are seen in sediments from the terrestrial redox-stratified Lake Towuti, including alternating ferrous and ferric mineralogy and an abundant Fe-rich X-ray amorphous phase. To constrain conditions in the water column and early diagenetic processes, we present trends in chemistry and mineralogy for sediment acquired from soils in the mafic/ultramafic catchment and lake bottom/core samples. The soils contain high abundances of crystalline Fe-oxides (e.g. magnetite, goethite, hematite), whereas sediment from the very surface of the lake bottom maintain high Fe but not in crystalline form based on XRD. This suggests Fe is being rapidly cycled to form amorphous phases after entering the lake. Sequential extractions to isolate highly reactive iron (e.g. ferrihydrite) will be used to confirm the relative abundance of poorly crystalline phases in catchment versus lake sediment. Sediments from a 150 m core representing 1 Myr lake history also maintain high Fe content and distinct alternating bands of red and green sediment, but there are no crystalline Fe-oxides discernible in XRD data. The process(es) and timescale for this switching is not yet known, but understanding the conditions that allow ferrous vs. ferric iron to form, and what other changes happen concurrently with silicates such as clay minerals, may help constrain how to interpret lake sediment chemistry and mineralogy in terms of climate on Earth and Mars.

  5. Mercury deposition and methylmercury formation in Narraguinnep Reservoir, southwestern Colorado, USA

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Goldstein, Harland L.; Reynolds, Richard L.

    2014-01-01

    Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.

  6. Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo rivers, Salton Sea Watershed, California, April 2003

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    This report contains pesticide concentration data for water, and suspended and bed sediment samples collected in April 2003 from twelve sites along the New and Alamo Rivers in the Salton Sea watershed, in southeastern California. The study was done in collaboration with the California State Regional Water Quality Control Board, Colorado River Region, to assess inputs of current-use pesticides associated with water and sediment into the New and Alamo Rivers. Five sites along the New River and seven sites along the Alamo River, downstream of major agricultural drains, were selected and covered the lengths of the rivers from the international boundary to approximately 1.5 km from the river mouths. Sampling from bridges occurred at seven of the twelve sites. At these sites, streamflow measurements were taken. These same sites were also characterized for cross-stream homogeneity by measuring dissolved oxygen, pH, specific conductance, temperature, and suspended solids concentration at several vertical (depths) and horizontal (cross-stream) points across the river. Large volume water samples (200?300 L) were collected for isolation of suspended sediments by flow-through centrifugation. Water from the outflow of the flow-through centrifuge was sampled for the determination of aqueous pesticide concentrations. In addition, bottom sediments were sampled at each site. Current-use pesticides and legacy organochlorine compounds (p,p'-DDT, p,p'-DDE and p,p'-DDD) were extracted from sediments and measured via gas chromatography/mass spectrometry (GC/MS). Organic carbon and percentage of fines were also determined for suspended and bottom sediments. Cross-stream transects of dissolved constituents and suspended sediments showed that the rivers were fairly homogeneous at the sites sampled. Streamflow was higher at the outlet sites, with the Alamo River having higher flow (1,240 cfs) than the New River (798 cfs). Twelve current-use pesticides, one legacy organochlorine compound (p,p'-DDE), and the additive piperonyl butoxide were detected in water samples. Trifluralin was found in the highest concentration of all detected compounds (68.5?599 ng/L) at all sites in both rivers, except for the international boundary sites. Atrazine was also detected in high concentration (51.0?285 ng/L) at several sites. The outlet sites had among the highest numbers of pesticides detected and the international boundary sites had the lowest numbers of pesticides detected for both rivers. The numbers of pesticides detected were greater for the Alamo River than for the New River. Six current-use pesticides and two legacy organochlorines (p,p'-DDE and p,p'-DDD) were found associated with suspended and bed sediments. The DDT metabolite p,p'-DDE was detected in all suspended and bed sediments from the Alamo River, but only at two sites in the New River. Dacthal, chlorpyrifos, pendimethalin, and trifluralin were the most commonly detected current-use pesticides. Trifluralin was the compound found in the highest concentrations in suspended (14.5?120 ng/g) and bed (1.9?9.0 ng/g) sediments. The sites along the Alamo River had more frequent detections of pesticides in suspended and bed sediments when compared with the New River sites. The greatest number of pesticides that were detected in suspended sediments (seven) were in the samples from the Sinclair Road and Harris Road sites. For bottom sediments, the Alamo River outlet site had the greatest number of pesticide detections (eight).

  7. Variability of PAHs and trace metals in the sediments in relation to environmental characteristics of the bottom layer in the middle Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Grilli, Federica; Frapiccini, Emanuela; Campanelli, Alessandra; Guicciardi, Stefano; Marini, Mauro; Marasovic, Ivona; Grbec, Branka; Skejić, Sanda; Ujević, Ivana; Lušić, Jelena

    2015-04-01

    In the framework of the project PERSEUS (Policy-oriented marine Environmental Research in the Southern EUropean Seas), two interdisciplinary surveys were carried out in April 2013 and April 2014 in the middle Adriatic Sea along the Pescara-Sibenik transect (Jabuka Pits area) and Vieste-Split transect (Palagruza Sill area) with Croatian research vessel "Bios II" and the Italian research vessel "G. Dallaporta", respectively. The main objective of these research cruises was the implementation of the Marine Strategy Framework Directive (MSFD) in the Adriatic region for collecting physical, chemical and biological data in order to get a better understanding of whole Adriatic ecosystem. The two transects are already recognised as a key areas for the interception and the study of dense water modification (Zore-Armanda, 1963; Marini et al., 2006; Grilli et al., 2013). Due to seasonal circulation patterns, they are characterized by high temporal variability of the thermohaline structure (Grbec and Morović, 1997; Vilibić, et al., 2004) and other oceanographic parameters. Long term oceanographic records from the Middle Adriatic enable better understanding of the ecosystem response to changes of atmospheric and sea conditions through physical, chemical and biological processes (Marasović et al., 1995). Several oceanographic parameters relevant and useful for the ecosystem assessment of the two areas (temperature, salinity, density, fluorescence, oxygen, nutrients, chlorophyll, phyto- and zoo-plankton as well as selected pollutants , trace metals and Polycyclic Aromatic Hydrocarbons-PAHs in sediments) were collected. In the present work, the variations of PAHs and trace metals concentration in the marine sediments are presented in relation to the physical and chemical characteristics of the bottom layer. A constant influx of metal induces more intense accumulation of anthropogenic metals, especially Cd, in sediment from Jabuka Pit, and the metal content slightly increases towards the Italian coast. The total PAHs concentrations (sum of 16 PAH priority pollutant - US EPA) recorded in the marine sediments during the cruise in April 2013 showed a higher level of PAH contamination in the pits, especially in the central pit (28.5 ng/g d.w.), in comparison to others analyzed samples. The corresponding bottom water in the central pit is characterized by a temperature of 10.9°C, density of 29.6 kg/m3, salinity of 38.6 and low values of DIN (0.55 μmol•l-1). The linear regression between DIN and PAHs showed a significant negative relationship (p ≤ 0.05). This feature implies a possible accumulation of PAHs very likely due to a lower microbial activity as demonstrated by Xu et al. (2014). The physical and chemical characteristics of the bottom layer in these areas could influence the PAHs contamination of the deep sediments. Bibliography: Grbec, B. and Morović, M. (1997): Seasonal thermohaline fluctuations in the middle Adriatic Sea. Nuovo Cimento della Societa Italiana di Fisica C-Geophysics & Space Physics. 20(4): 561-576. Grilli F., Marini M., Book J. W., Campanelli A., Paschini E., Russo A., 2013. Flux of nutrients between the middle and southern Adriatic Sea (Gargano-Split section). Marine Chemistry 153,1-14. Marini, M., Russo, A., Paschini, E., Grilli, F., Campanelli, A., 2006. Short-term physical and chemical variations in the bottom water of middle Adriatic depressions. Climate Research 31, 227-237. Meiying Xu, Qin Zhang, Chunyu Xia, Yuming Zhong, Guoping Sun, Jun Guo, Tong Yuan, Jizhong Zhou and Zhili He, 2014. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. The ISME Journal 8, 1932-1944 | doi:10.1038/ismej.2014.42 Marasović I., Grbec B. & Morović M., 1995. Long term production changes in the Adriatic. Neth. J. of Sea Res. 34 (4): 267-273. Vilibić I., Grbec B. and Supić N., 2004. Dense water generation in the north Adriatic in 1999 and its recirculation along the Jabuka Pit. Deep-Sea Research I, 51, 1457-1474. Zore-Armanda, M. 1963. Les masses d'eau de la Mer Adriatique. Acta Adriat., 10(3): 1-93.

  8. Biogeochemical study of water and bottom sediments from the Khai river - Nha Trang Bay estuarine system, South China Sea

    NASA Astrophysics Data System (ADS)

    Shulga, Natalia; Lobys, Nikolay; Drozdova, Anastasia; Peresypkin, Valery

    2014-05-01

    The present study was carried out in Nha Trang Bay (Southern Vietnam, the South China Sea). The samples of water, suspended matter and bottom sediments were collected in summer 2010-2012 in section from the estuary of the Khai River to the marine part of the bay. The samples were analyzed in the stationary lab of IO RAS, Moscow, by TOC-V-CPH, GC/MS and pirolysis methods. We report here the novel data on sources, transformation and burial of OM coming from the Khai river waters. The investigation is focused on ontent and distribution of suspended matter (SM) in the estuary, dissolved organic carbon (DOC), particulated organic carbon (POC); molecular and group composition of hydrocarbons (n-alkanes, steranes, hopanes) and mercury content in water, SM and bottom sediments. It was found that concentration of POC and SM decrease in the Nha Trang Bay waters from estuary to the open part of the bay. However, major changes in the concentration of SM and POC belong to the zone of salinity gradient.DOC behavior is more stable throughout the study area. Organic-geochemical indicators estimation allowed recognition of genesis and transformation degree of organic matter in the study area. The estuary is characterized by mixed genesis of SM with a predominance of allochthonous organic matter whereas outlying parts of the Nha Trang bay are characterized by autochthonous OM. Composition of OM in sediments reflects regularities identified above, despite of the interannual and seasonal variability in the study area. The investigation reveals a predominance of terrestrial organic matter in the silt sediments of the estuary, transported by the Khai river. Distribution of OM in sediments of marine part of the bay is mosaic, with a predominance of planktonogenic, bacterial or terrestrial input at their complex combination. Local anthropogenic pollution as well as an impact of industrial city effluents are found in river- and seaport areas. According to obtained data sedimentation rate in Nha Trang bay area is 36-118 g/m^2/day in summer season. Sedimentary TOC (%) in samples varies in the range 0.50 - 1.95 in 2010, 0.22 - 1.84 in 2011 and 0.27 - 1.94 in 2012. This variations associated with differences in grain size distribution of sediments and intensity of anthropogenic influence. Mercury (Hg) concentration in the bottom sediments of aquatic systems varies from 2 to 108 ng/g of dry weight. Low concentration of the metal is typical for sediments, where OM is mainly represented by remains of aquatic organisms, while high concentration are common for river- and seaport areas with mainly terrestrial origin. Our study shows terrigenous organic matter is an important agent in the transfer of mercury from land to water ecosystems and Hg migrates in dissolved forms mainly. The reported study was supported by RFBR, research project No:14-05-31059-mol_a.

  9. Estimating hydrodynamic roughness in a wave-dominated environment with a high-resolution acoustic Doppler profiler

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.

    2005-01-01

    Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.

  10. Nutrient Fluxes From Profundal Sediment of Ultra-Oligotrophic Lake Tahoe, California/Nevada: Implications for Water Quality and Management in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Beutel, Marc W.; Horne, Alexander J.

    2018-03-01

    A warming climate is expected to lead to stronger thermal stratification, less frequent deep mixing, and greater potential for bottom water anoxia in deep, temperate oligotrophic lakes. As a result, there is growing interest in understanding nutrient cycling at the profundal sediment-water interface of these rare ecosystems. This paper assessed nutrient content and nutrient flux rates from profundal sediment at Lake Tahoe, California/Nevada, USA. Sediment is a large reservoir of nutrients, with the upper 5 cm containing reduced nitrogen (˜6,300 metric tons) and redox-sensitive phosphorus (˜710 metric tons) equivalent to ˜15 times the annual external load. Experimental results indicate that if deep water in Lake Tahoe goes anoxic, profundal sediment will release appreciable amounts of phosphate (0.13-0.29 mg P/m2·d), ammonia (0.49 mg N/m2·d), and iron to overlaying water. Assuming a 10 year duration of bottom water anoxia followed by a deep-water mixing event, water column phosphate, and ammonia concentrations would increase by an estimated 1.6 µg P/L and 2.9 µg N/L, nearly doubling ambient concentrations. Based on historic nutrient enrichment assays this could lead to a ˜40% increase in algal growth. Iron release could have the dual effect of alleviating nitrate limitation on algal growth while promoting the formation of fine iron oxyhydroxide particles that degrade water clarity. If the depth and frequency of lake mixing decrease in the future as hydrodynamic models suggest, large-scale in-lake management strategies that impede internal nutrient loading in Lake Tahoe, such as bottom water oxygen addition or aluminum salt addition, may need to be considered.

  11. The Evolutionary Ecology of Biotic Association in a Megadiverse Bivalve Superfamily: Sponsorship Required for Permanent Residency in Sediment

    PubMed Central

    Li, Jingchun; Ó Foighil, Diarmaid; Middelfart, Peter

    2012-01-01

    Background Marine lineage diversification is shaped by the interaction of biotic and abiotic factors but our understanding of their relative roles is underdeveloped. The megadiverse bivalve superfamily Galeommatoidea represents a promising study system to address this issue. It is composed of small-bodied clams that are either free-living or have commensal associations with invertebrate hosts. To test if the evolution of this lifestyle dichotomy is correlated with specific ecologies, we have performed a statistical analysis on the lifestyle and habitat preference of 121 species based on 90 source documents. Methodology/Principal Findings Galeommatoidea has significant diversity in the two primary benthic habitats: hard- and soft-bottoms. Hard-bottom dwellers are overwhelmingly free-living, typically hidden within crevices of rocks/coral heads/encrusting epifauna. In contrast, species in soft-bottom habitats are almost exclusively infaunal commensals. These infaunal biotic associations may involve direct attachment to a host, or clustering around its tube/burrow, but all commensals locate within the oxygenated sediment envelope produced by the host’s bioturbation. Conclusions/Significance The formation of commensal associations by galeommatoidean clams is robustly correlated with an abiotic environmental setting: living in sediments (). Sediment-dwelling bivalves are exposed to intense predation pressure that drops markedly with depth of burial. Commensal galeommatoideans routinely attain depth refuges many times their body lengths, independent of siphonal investment, by virtue of their host’s burrowing and bioturbation. In effect, they use their much larger hosts as giant auto-irrigating siphon substitutes. The evolution of biotic associations with infaunal bioturbating hosts may have been a prerequisite for the diversification of Galeommatoidea in sediments and has likely been a key factor in the success of this exceptionally diverse bivalve superfamily. PMID:22905116

  12. 19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER TRIANGULATED CHANNELS AND OUT THE RAISED DUCTS TO FILTRATION PLANT. MOVEABLE BOARDS ON BOTTOM ASSIST IN REMOVING SLUDGE. VIEW LOOKING NORTHEAST. FILTER CONTROL BUILDING AT REAR. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  13. Bottom Penetration at Shallow Grazing Angles II

    DTIC Science & Technology

    1992-06-19

    Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent Properties," J. Acoust. Soc. Am. 77, 1781- 1788 (1985). 35 8. N. P. Chotiros, ’High...Acoust. Soc. Am. 8B1 S131 (1990). 12. M. Stern, A. Bedford, and H. R. Millwater , "Wave Reflection from a Sediment Layer with Depth-Dependent

  14. Effect of a dual inlet channel on cell loading in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2014-11-01

    Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in sensitivity when compared to the single-inlet μFCS. This method is simple and easy to use in design, yet requires no additional time or cost in fabrication. Furthermore, we expect that this approach could potentially be helpful for calculating exact cell loading and counting efficiency for a small input number of cells, such as primary cells and rare cells, in microfluidic channel applications.

  15. Chemical Munitions Search & Assessment-An evaluation of the dumped munitions problem in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Bełdowski, Jacek; Klusek, Zygmunt; Szubska, Marta; Turja, Raisa; Bulczak, Anna I.; Rak, Daniel; Brenner, Matthias; Lang, Thomas; Kotwicki, Lech; Grzelak, Katarzyna; Jakacki, Jaromir; Fricke, Nicolai; Östin, Anders; Olsson, Ulf; Fabisiak, Jacek; Garnaga, Galina; Nyholm, Jenny Rattfelt; Majewski, Piotr; Broeg, Katja; Söderström, Martin; Vanninen, Paula; Popiel, Stanisław; Nawała, Jakub; Lehtonen, Kari; Berglind, Rune; Schmidt, Beata

    2016-06-01

    Chemical Munitions Search & Assessment (CHEMSEA) project has performed studies on chemical weapon (CW) detection, sediment pollution and spreading as well as biological effects of chemical warfare agents (CWAs) dumped in the Baltic Sea. Results suggest that munitions containing CWAs are more scattered on the seafloor than suspected, and previously undocumented dumpsite was discovered in Gdansk Deep. Pollution of sediments with CWA degradation products was local and close to the detected objects; however the pollution range was larger than predicted with theoretical models. Bottom currents observed in the dumpsites were strong enough for sediment re-suspension, and contributed to the transport of polluted sediments. Diversity and density of the faunal communities were poor at the dumping sites in comparison to the reference area, although the direct effects of CWA on benthos organisms were difficult to determine due to hypoxic or even anoxic conditions near the bottom. Equally, the low oxygen might have affected the biological effects assessed in cod and caged blue mussels. Nonetheless, both species showed significantly elevated molecular and cellular level responses at contaminated sites compared to reference sites.

  16. Preface and brief synthesis for the FOODBANCS volume

    NASA Astrophysics Data System (ADS)

    Smith, Craig R.; DeMaster, David J.

    2008-11-01

    In this volume we present results from the FOODBANCS Project, which examined the fate and benthic community impact of summer bloom material on the West Antarctic Peninsula shelf floor. The project involved a 5-cruise, 15-month time-series program in which sediment-trap moorings, core sampling, radiochemical profiling, sediment respirometry, bottom photography, and bottom trawling were used to evaluate: (1) seafloor deposition and lability of POC, (2) patterns of labile POC consumption and sediment mixing by benthos, and (3) seasonal and inter-annual variations in biotic abundance, biomass, reproductive condition, recruitment, and sediment community respiration. We find that the seafloor flux and accumulation of particulate organic carbon on the West Antarctic Peninsula shelf exhibit intense seasonal and interannual variability. Nonetheless, many key benthic processes, including organic-matter degradation, bioturbation, deposit feeding, and faunal abundance, reproduction and recruitment, show relatively muted response to this intense seasonal and inter-annual variability in export flux. We thus hypothesize that benthic ecosystems on the Antarctic shelf act as "low-pass" filters, and may be extremely useful in resolving the impacts of climatic change over periods of years to decades in Antarctic Peninsula region.

  17. Adjustable shear stress erosion and transport flume

    DOEpatents

    Roberts, Jesse D.; Jepsen, Richard A.

    2002-01-01

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  18. Management of Bottom Sediments Containing Toxic Substances: Proceedings of US/Japan Experts Meeting (14th) Held in Yokohama, Japan on 27 February-1 March 1990

    DTIC Science & Technology

    1992-03-01

    sediment without disturbance and to con- fine it in the reclamation area, enclosed by highly watertight revetment . This work was commenced in 1977...to sediment disposal was to construct a highly watertight revetment to reclaim the inner area of the Bay, to dredge sediment from the remaining...October 1977, prior to the major work, installing boundary nets to block fish movement into and out of the work area. In December 1977, however, some local

  19. Data on polychlorinated biphenyls, dieldrin, lead, and cadmium in Wisconsin and Upper Michigan tributaries to Green Bay, July 1987 through April 1988

    USGS Publications Warehouse

    House, L.B.

    1990-01-01

    Neither dieldrin nor cadmium was detected in any of the sampled tributaries. Detectable concentrations of polychlorinated biphenyls and lead were found at only three sites. Polychorinated biphenyls (0.10 microgram per gram) and lead (10 milligrams per kilogram) were found in the bottom sediment of Duck Creek, a western-shore tributary near the city of Green Bay. Lead (10 milligrams per kilogram) also was found in the bottom sediment of the Suamico River near the mouth, about 5 miles north of Duck Creek. Lead (4 micrograms per liter) was detected in a spring-runoff sample from the Fishdam River, a tributary from upper Michigan.

  20. Carbohydrates as indicators of biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lazareva, E. V.; Romankevich, E. A.

    2012-05-01

    A method is presented to study the carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). The analysis of the carbohydrates is based upon the consecutive separation of their fractions with different solvents (water, alkali, and acid). The ratio of the carbohydrate fractions allows one to evaluate the lability of the carbohydrate complex. It is also usable as an indicator of the biogeochemical processes in the ocean, as well of the genesis and the degree of conversion of organic matter in the bottom sediments and nodules. The similarity in the monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.

  1. Water-quality, water-level, and lake-bottom-sediment data collected from the defense fuel supply point and adjacent properties, Hanahan, South Carolina, 1990-96

    USGS Publications Warehouse

    Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.

    1997-01-01

    A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.

  2. Modeling of sedimentation and resuspension processes induced by intensive internal gravity waves in the coastal water systems with the use of the advection-diffusion equation for sediment concentration

    NASA Astrophysics Data System (ADS)

    Rouvinskaya, Ekaterina; Kurkin, Andrey; Kurkina, Oxana

    2017-04-01

    Intensive internal gravity waves influence bottom topography in the coastal zone. They induce substantial flows in the bottom layer that are essential for the formation of suspension and for the sediment transport. It is necessary to develop a mathematical model to predict the state of the seabed near the coastline to assess and ensure safety during the building and operation of the hydraulic engineering constructions. There are many models which are used to predict the impact of storm waves on the sediment transport processes. Such models for the impact of the tsunami waves are also actively developing. In recent years, the influence of intense internal waves on the sedimentation processes is also of a special interest. In this study we adapt one of such models, that is based on the advection-diffusion equation and allows to study processes of resuspension under the influence of internal gravity waves in the coastal zone, for solving the specific practical problems. During the numerical simulation precomputed velocity values are substituted in the advection - diffusion equation for sediment concentration at each time step and each node of the computational grid. Velocity values are obtained by the simulation of the internal waves' dynamics by using the IGW Research software package for numerical integration of fully nonlinear two-dimensional (vertical plane) system of equations of hydrodynamics of inviscid incompressible stratified fluid in the Boussinesq approximation bearing in mind the impact of barotropic tide. It is necessary to set the initial velocity and density distribution in the computational domain, bottom topography, as well as the value of the Coriolis parameter and, if necessary, the parameters of the tidal wave to carry out numerical calculations in the software package IGW Research. To initialize the background conditions of the numerical model we used data records obtained in the summer in the southern part of the shelf zone of Sakhalin Island from 1999 to 2003, provided by SakhNIRO, Russia. The process of assimilation of field data with numerical model is described in detail in our previous studies. It has been shown that process of suspension formation is quite intense for the investigated condition. Concentration of suspended particles significantly increases during the tide, especially on naturally uneven bottom relief as well as on the right boundary of the computational domain (near shoreline). Pronounced nepheloid layer is produced. Its thickness is about 5.6 m. At the phase of low tide, the process of suspension sediment production stops, and suspended particles are beginning to settle because of the small vertical velocities. Thickness of nepheloid layer is actively reduced. Obviously, this should lead to a change in the bottom relief. The presented results of research were obtained with the support of the Russian President's scholarship for young scientists and graduate students SP-2311.2016.5.

  3. Organic matter degradation in surface sediments of the Changjiang estuary: Evidence from amino acids.

    PubMed

    Wang, Kui; Chen, Jianfang; Jin, Haiyan; Li, Hongliang; Zhang, Weiyan

    2018-05-12

    Organic matter degradation is a key component of the processes of carbon preservation and burial in seafloor sediments. The aim of this study was to explore organic matter degradation state within the open-shelf Changjiang Estuary of the East China Sea, using an amino acids-based degradation index (DI) in conjunction with information about organic matter source (marine versus terrestrial), bottom water oxygenation state, and sediment grain size. The relative molar percentages of 17 individual amino acids (characterized using principal component analysis) in surface sediments indicate that organic matter is degraded to varying extents across the estuary seabed. Sediments with DI >0 (relatively labile) were found mostly within a coastal hypoxic area. Sediments of DI less than -1 (relatively refractory) were found near the Changjiang River mouth and the northern and southern parts of the central shelf. We consider DI to be a more reliable indicator of degradation than simple ratios of AAs. DI was inversely correlated with the proportion of terrestrial organic material (F t ) in the sediments, indicating that relatively fresh/labile organic matter was generally associated with marine sources. DI was significantly correlated with F t and bottom water apparent oxygen utilization (AOU bot ) together. The parameter DI and the (labile) amino acid tyrosine were highest in hypoxic areas, suggesting the presence of relatively fresh organic matter, probably due to a combination of marine-source inputs and better preservation of organic matter in the silt and clay sediments of these areas (as compared to sandy sediments). Less degraded organic matter with high amino acids was also favorable to benthic animals. Overall, sedimentary estuarine organic matter was least degraded in areas characterized by marine sources of organic matter, low-oxygen conditions, and fine-grained sediments. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The removal of particle-reactive radionuclides in shallow water: Bottom scavenging versus particle settling of iodine-131 and beryllium-7.

    PubMed

    Montenero, Michael P; Dilbone, Elizabeth K; Waples, James T

    2017-10-01

    In pelagic waters, the removal of particle-reactive radionuclides is controlled by nuclide sorption to particles and subsequent settling by gravity. However, in shallow nearshore waters, the dominant mechanism of nuclide scavenging is not so clear. Understanding how particle-reactive radionuclides are scavenged from the water column is critical if these tracers are to be used as proxies of particle flux in shallow aquatic systems. In this study, we present evidence that the removal of particle-reactive radionuclides in nearshore and turbulent waters is primarily controlled by bottom scavenging. Specifically, we measured both water column and bottom sediment activities of sewage-sourced iodine-131 ( 131 I, t ½ = 8.02 days) and atmospherically-sourced beryllium-7 ( 7 Be, t ½ = 53.3 days) in a semi-enclosed harbor. We show that the water column 7 Be/ 131 I flux ratio that is required to sustain observed harbor bottom inventories of both nuclides is incongruent with 7 Be/ 131 I activity ratios on water column particles, and (2) 131 I and 7 Be derived mass fluxes of particulate matter to the harbor bottom are in concordance with each other and independently made estimates of river sediment loading to the harbor only when bottom scavenging of both particle-bound and dissolved (<0.7 μm) nuclide fractions are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dynamics of particle export on the Northwest Atlantic margin

    NASA Astrophysics Data System (ADS)

    Hwang, Jeomshik; Manganini, Steven J.; Montluçon, Daniel B.; Eglinton, Timothy I.

    2009-10-01

    The Northwest Atlantic margin is characterized by high biological productivity in shelf and slope surface waters. In addition to carbon supply to underlying sediments, the persistent, intermediate depth nepheloid layers emanating from the continental shelves, and bottom nepheloid layers maintained by strong bottom currents associated with the southward flowing Deep Western Boundary Current (DWBC), provide conduits for export of organic carbon over the margin and/or to the interior ocean. As a part of a project to understand dynamics of particulate organic carbon (POC) cycling in this region, we examined the bulk and molecular properties of time-series sediment trap samples obtained at 968 m, 1976 m, and 2938 m depths from a bottom-tethered mooring on the New England slope (water depth, 2988 m). Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low Δ 14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radiocarbon mass balance, about 30% (±10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of resuspended sediment. A strong correlation between Δ 14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles. Our results suggest that lateral transport of organic matter, particularly that resulting from sediment resuspension, should be considered in addition to vertical supply of organic matter derived from primary production, in order to understand carbon cycling and export over continental margins.

  6. The impact of sedimentary coatings on the diagenetic Nd flux

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; McManus, James

    2016-09-01

    Because ocean circulation impacts global heat transport, understanding the relationship between deep ocean circulation and climate is important for predicting the ocean's role in climate change. A common approach to reconstruct ocean circulation patterns employs the neodymium isotope compositions of authigenic phases recovered from marine sediments. In this approach, mild chemical extractions of these phases is thought to yield information regarding the εNd of the bottom waters that are in contact with the underlying sediment package. However, recent pore fluid studies present evidence for neodymium cycling within the upper portions of the marine sediment package that drives a significant benthic flux of neodymium to the ocean. This internal sedimentary cycling has the potential to obfuscate any relationship between the neodymium signature recovered from the authigenic coating and the overlying neodymium signature of the seawater. For this manuscript, we present sedimentary leach results from three sites on the Oregon margin in the northeast Pacific Ocean. Our goal is to examine the potential mechanisms controlling the exchange of Nd between the sedimentary package and the overlying water column, as well as the relationship between the εNd composition of authigenic sedimentary coatings and that of the pore fluid. In our comparison of the neodymium concentrations and isotope compositions from the total sediment, sediment leachates, and pore fluid we find that the leachable components account for about half of the total solid-phase Nd, therefore representing a significant reservoir of reactive Nd within the sediment package. Based on these and other data, we propose that sediment diagenesis determines the εNd of the pore fluid, which in turn controls the εNd of the bottom water. Consistent with this notion, despite having 1 to 2 orders of magnitude greater Nd concentration than the bottom water, the pore fluid is still <0.001% of the total Nd reservoir in the upper sediment column. Therefore, the pore fluid reservoir is too small to maintain a unique signature, and instead must be controlled by the larger reservoir of Nd in the reactive coatings. In addition, to achieve mass balance, we find it necessary to invoke a cryptic radiogenic (εNd of +10) trace mineral source of neodymium within the upper sediment column at our sites. When present, this cryptic trace metal results in more radiogenic pore fluid.

  7. Reconnaissance of chemical and physical characteristics of selected bottom sediments of the Caloosahatchee River and estuary, tributaries, and contiguous bays, Lee County, Florida, July 20-30, 1998

    USGS Publications Warehouse

    Fernandez, Mario; Marot, M.E.; Holmes, C.W.

    1999-01-01

    This report summarizes a reconnaissance study, conducted July 20-30, 1998, of chemical and physical characteristics of recently deposited bottom sediments in the Caloosahatchee River and Estuary. Recently deposited sediments were identified using an isotopic chronometer, Beryllium-7 (7Be), a short-lived radioisotope. Fifty-nine sites were sampled in an area that encompasses the Caloosahatchee River (River) about three miles upstream from the Franklin Lock (S-79), the entire tidally affected length of the river (estuary), and the contiguous water bodies of Matlacha Pass, San Carlos Bay, Estero Bay, Tarpon Bay, and Pine Island Sound in Lee County, Florida. Bottom sediments were sampled for 7Be at 59 sites. From the results of the 7Be analysis, 30 sites were selected for physical and chemical analysis. Sediments were analyzed for particle size, total organic carbon (TOC), trace elements, and toxic organic compounds, using semiquantitative methods for trace elements and organic compounds. The semiquantitative scans of trace elements indicated that cadmium, copper, lead, and zinc concentrations, when normalized to aluminum, were above the natural background range at 24 of 30 sites. Particle size and TOC were used to characterize sediment deposition patterns and organic content. Pesticides, polychlorinated biphenyls (PCBs), and carcinogenic polycyclic aromatic hydrocarbons (CaPAHs) were determined at 30 sites using immunoassay analysis. The semiquantitative immunoassay analyses of toxic organic compounds indicated that all of the samples contained DDT, cyclodienes as chlordane (pesticides), and CaPAHs. PCBs were not detected. Based on analyses of the 30 sites, sediments at 10 of these sites were analyzed for selected trace elements and toxic organic compounds, including pesticides, PCBs, and PAHs, using quantitative laboratory procedures. No arsenic or cadmium was detected. Zinc was detected at two sites with concentrations greater than the lower limit of the range of sediment contaminant concentrations that are usually or always associated with adverse effects (Florida Department of Environmental Protection's Sediment Quality Assessment Guidelines). Organochlorine pesticides were detected at four sites at concentrations below the reporting limits; there were no organophosphorus pesticides or PCBs detected. PAHs were detected at eight sites; however, only four sites had concentrations above the reporting limit.

  8. In Search for Diffuse Hydrothermal Venting at North Pond, Western Flank of the Mid-Atlantic-Ridge

    NASA Astrophysics Data System (ADS)

    Villinger, H. W.; Becker, K.; Hulme, S.; Kaul, N. E.; Müller, P.; Wheat, C. G.

    2015-12-01

    We present results from temperature measurements made with a ROV temperature lance in sediments deposited on the slopes of abyssal hills and small basins surrounding North Pond. North Pond is a ~8x15 km large sediment basin located on ~7 Ma year old crust west of the Mid-Atlantic Ridge at 23°N. Data were collected with the ROV Jason II during cruise MSM37 on the German RV Maria S. Merian in April 2014. The temperature lance consists of a 60 cm long stainless steel tube (o.d. 12 mm) housing 8 thermistors with a spacing of 80 mm, resulting in an active length of 56 cm. Data are logged with an 8-channel data logger (XR-420-T8, RBR, Ottawa) and transmitted online to the control van of the ROV. Data reduction and temperature gradient calculation is done according to the HFRED algorithm (Villinger & Davis, 1987). 90 sites in total were visited, 88 gave good data for temperature gradient calculation. Calculated gradients are usually of good to very good quality. The gradients vary between less than 20 to more than 1000 mK/m reflecting the very heterogeneous distribution of geothermal heat flow. The expected conductive lithospheric heat flow for North Pond is ~190 mW/m2 (geothermal gradient of ~190 mK/m with a thermal conductivity of 1 W/Km). The highest temperature gradients are measured in places where temperature ~50 cm below the sediment-water boundary exceeds bottom water temperature by ~0.5 K . These high temperature gradients may reflect local hydrothermal circulation within the pillow lavas, however no focused discharge was detected. The analysis of temperature measurements made with the ROV-mounted CTD shows clearly detectable bottom water temperature anomalies. We infer that they are either caused by hydrothermal discharge through the thin sediment cover or through unsedimented pillow basalts nearby. Hydrothermal circulation in a North-Pond-like environment appears to be diffuse in nature, hence very difficult if not impossible to detect and to quantify.

  9. Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas

    PubMed Central

    Zhou, Haixia; Dang, Hongyue; Klotz, Martin G.

    2016-01-01

    Ecological evidence suggests that heterotrophic diazotrophs fueled by organic carbon respiration in sediments play an important role in marine nitrogen fixation. However, fundamental knowledge about the identities, abundance, diversity, biogeography, and controlling environmental factors of nitrogen-fixing communities in open ocean sediments is still elusive. Surprisingly, little is known also about nitrogen-fixing communities in sediments of the more research-accessible marginal seas. Here we report on an investigation of the environmental geochemistry and putative diazotrophic microbiota in the sediments of Bohai Sea, an eutrophic marginal sea of the western Pacific Ocean. Diverse and abundant nifH gene sequences were identified and sulfate-reducing bacteria (SRB) were found to be the dominant putative nitrogen-fixing microbes. Community statistical analyses suggested bottom water temperature, bottom water chlorophyll a content (or the covarying turbidity) and sediment porewater Eh (or the covarying pH) as the most significant environmental factors controlling the structure and spatial distribution of the putative diazotrophic communities, while sediment Hg content, sulfide content, and porewater SiO32−-Si content were identified as the key environmental factors correlated positively with the nifH gene abundance in Bohai Sea sediments. Comparative analyses between the Bohai Sea and the northern South China Sea (nSCS) identified a significant composition difference of the putative diazotrophic communities in sediments between the shallow-water (estuarine and nearshore) and deep-water (offshore and deep-sea) environments, and sediment porewater dissolved oxygen content, water depth and in situ temperature as the key environmental factors tentatively controlling the species composition, community structure, and spatial distribution of the marginal sea sediment nifH-harboring microbiota. This confirms the ecophysiological specialization and niche differentiation between the shallow-water and deep-water sediment diazotrophic communities and suggests that the in situ physical and geochemical conditions play a more important role than geographical contiguity in determining the community similarity of the diazotrophic microbiota in marginal sea sediments. PMID:27489551

  10. Accumulation and trace-metal variability of estuarine sediments, St. Bernard delta geomorphic region, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, K.E.

    1995-10-01

    Prior to government regulation, little monitoring of metal discharges into the canals, bayous, and rivers that drain estuarine systems occured. Discharges of trace-metals by industries and municipalities into surface water bodies are presently regulated through the use of Federal and State mandated permit programs. Resource management of economically important estuarine systems has fostered increasing concern over the accumulation of trace-metal pollutants in water, sediments, and biota from these dynamic areas. The acid-leachable concentrations of fourteen trace-metals were determined for 125 bottom sediment samples and 50 core interval samples by plasma emission analysis. Bottom sediments of the St. Bernard estuarom complexmore » consist predominantly of silty clays and clayey silts derived from the erosion of the St. Bernard lobe of the Mississippi River delta and sediments associated with historic crevasses along the Mississippi River. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Trace-metal concentrations from sediments for the study area tend to have greater mean concentrations than Florida estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology. Rates varied from 0.12 to 0.21 cm/yr. Within the 2 cm core intervals, trace-metal concentrations of Ba, Cr, Cd, Pb, and Zn increased by 10% to 18% in sediments accumulated within the last 75 years. Natural trace-metal variability was examined through the use of an aluminum normalization model based on Florida and Louisiana estuarine sediments, basinwide and Gulf Coast trace-metal comparisons, sediment geochronology, and grain-size corrected data. Elevated concentrations of As, Ba, Cd, Pb, V and Zn were noted from sediments associated with oil and gas drilling and production, sandblasting and shipbuilding, dredging, and stormwater, municipal, and industrial discharges.« less

  11. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Columbia Basin Project, Washington, 1991-92

    USGS Publications Warehouse

    Embrey, S.S.; Block, E.K.

    1995-01-01

    The reconnaissance investigation results indicated that irrigation drainage generally has not adversely affected biota in the Columbia Basin Project. Hazards to biota from large concentrations of certain trace elements in water and bottom sediment, and caused by high evaporation rates in irrigated arid lands, are reduced by imported, dilute Columbia River water. However, boron concentrations in aquatic plants might affect waterfowl feeding on these plants and arsenic concentrations in juvenile coots were similar to those in mallard ducklings who exhibited abnormalities after being fed an arsenic-supplemented diet. During irrigation season, concentrations of boron, nitrate, and dissolved solids in water were increased in the southern wasteways because of water reuse. During non-irrigation season, constituent concentrations were large when stream flows are sustained by return water from tile drains and ground water. However, concentrations of dissolved constituents typically did not exceed standards or criteria for humans, freshwater life, or beneficial uses of the water. In water, the herbicide 2,4-D was detected more than any other pesticide and in concentrations from 0.01 to 1.0 microgram per liter. In bottom sediment, organochlorine insecticides were detected in samples from 19 of 21 sites. In fish collected from some wasteways, chlordane, DDT, and dieldrin concentrations occasionally exceeded freshwater protection criteria.

  12. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea).

    PubMed

    Jessen, Gerdhard L; Lichtschlag, Anna; Ramette, Alban; Pantoja, Silvio; Rossel, Pamela E; Schubert, Carsten J; Struck, Ulrich; Boetius, Antje

    2017-02-01

    Bottom-water oxygen supply is a key factor governing the biogeochemistry and community composition of marine sediments. Whether it also determines carbon burial rates remains controversial. We investigated the effect of varying oxygen concentrations (170 to 0 μM O 2 ) on microbial remineralization of organic matter in seafloor sediments and on community diversity of the northwestern Crimean shelf break. This study shows that 50% more organic matter is preserved in surface sediments exposed to hypoxia compared to oxic bottom waters. Hypoxic conditions inhibit bioturbation and decreased remineralization rates even within short periods of a few days. These conditions led to the accumulation of threefold more phytodetritus pigments within 40 years compared to the oxic zone. Bacterial community structure also differed between oxic, hypoxic, and anoxic zones. Functional groups relevant in the degradation of particulate organic matter, such as Flavobacteriia , Gammaproteobacteria , and Deltaproteobacteria , changed with decreasing oxygenation, and the microbial community of the hypoxic zone took longer to degrade similar amounts of deposited reactive matter. We conclude that hypoxic bottom-water conditions-even on short time scales-substantially increase the preservation potential of organic matter because of the negative effects on benthic fauna and particle mixing and by favoring anaerobic processes, including sulfurization of matter.

  13. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea)

    PubMed Central

    Jessen, Gerdhard L.; Lichtschlag, Anna; Ramette, Alban; Pantoja, Silvio; Rossel, Pamela E.; Schubert, Carsten J.; Struck, Ulrich; Boetius, Antje

    2017-01-01

    Bottom-water oxygen supply is a key factor governing the biogeochemistry and community composition of marine sediments. Whether it also determines carbon burial rates remains controversial. We investigated the effect of varying oxygen concentrations (170 to 0 μM O2) on microbial remineralization of organic matter in seafloor sediments and on community diversity of the northwestern Crimean shelf break. This study shows that 50% more organic matter is preserved in surface sediments exposed to hypoxia compared to oxic bottom waters. Hypoxic conditions inhibit bioturbation and decreased remineralization rates even within short periods of a few days. These conditions led to the accumulation of threefold more phytodetritus pigments within 40 years compared to the oxic zone. Bacterial community structure also differed between oxic, hypoxic, and anoxic zones. Functional groups relevant in the degradation of particulate organic matter, such as Flavobacteriia, Gammaproteobacteria, and Deltaproteobacteria, changed with decreasing oxygenation, and the microbial community of the hypoxic zone took longer to degrade similar amounts of deposited reactive matter. We conclude that hypoxic bottom-water conditions—even on short time scales—substantially increase the preservation potential of organic matter because of the negative effects on benthic fauna and particle mixing and by favoring anaerobic processes, including sulfurization of matter. PMID:28246637

  14. Harpacticoid copepod diversity at two physically reworked sites in the deep sea

    NASA Astrophysics Data System (ADS)

    Thistle, David

    1998-01-01

    Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.

  15. Estimated sediment thickness, quality, and toxicity to benthic organisms in selected impoundments in Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2013-01-01

    The U.S. Geological Survey and the Massachusetts Department of Fish and Game, Division of Ecological Restoration, collaborated to collect baseline information on the quantity and quality of sediment impounded behind selected dams in Massachusetts, including sediment thickness and the occurrence of contaminants potentially toxic to benthic organisms. The thicknesses of impounded sediments were measured, and cores of sediment were collected from 32 impoundments in 2004 and 2005. Cores were chemically analyzed, and concentrations of 32 inorganic elements and 108 organic compounds were quantified. Sediment thicknesses varied considerably among the 32 impoundments, with an average thickness of 3.7 feet. Estimated volumes also varied greatly, ranging from 100,000 cubic feet to 81 million cubic feet. Concentrations of toxic contaminants as well as the number of contaminants detected above analytical quantification levels (also known as laboratory reporting levels) varied greatly among sampling locations. Based on measured contaminant concentrations and comparison to published screening thresholds, bottom sediments were predicted to be toxic to bottom-dwelling (benthic) organisms in slightly under 30 percent of the impoundments sampled. Statistically significant relations were found between several of the contaminants and individual indicators of urban land use and industrial activity in the upstream drainage areas of the impoundments. However, models developed to estimate contaminant concentrations at unsampled sites from upstream landscape characteristics had low predictive power, consistent with the long and complex land-use history that is typical of many drainage areas in Massachusetts.

  16. Mathematical and field analysis of longitudinal reservoir infill

    NASA Astrophysics Data System (ADS)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  17. Results of geophysical surveys of glacial deposits near a former waste-disposal site, Nashua, New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Dorgan, Tracy H.

    1995-01-01

    Geophysical investigations were done near a former waste-disposal site in Nashua, New Hampshire to determine the thickness and infer hydraulic characteristics of the glacial sediments that underlie the area. Approximately 5 miles of ground- penetrating radar (GPR) data were collected in the study area by use of dual-80 Megahertz antennas. Three distinct radar-reflection signatures were evident from the data and are interpreted to represent (1) glacial lake-bottom sediments, (2) coarse sand and gravel and (or) sandy glacial till, and (3) bedrock. The GPR signal penetrated as much as 70 feet of sediment in coarse-grained areas, but penetration depth was generally less than 40 feet in extensive areas of fine-grained deposits. Geologic features were evident in many of the profiles. Glacial-lake-bottom sediments were the most common features identified. Other features include deltas deposited in glacial Lake Nashua and lobate fans of sediment deposited subaqueously at the distal end of deltaic sediments. Cross-bedded sands were often identifiable in the deltaic sediments. Seismic-refraction data were also collected at five of the GPR data sites. In most cases, depths to the water table and to the till and (or) bedrock surface indicated by the seismic-refraction data compared favorably with depths calculated from the GPR data. Test holes were drilled at three locations to determine the true depths to radar reflectors and to determine the types of geologic material represented by the various reflectors.

  18. Water and sediment dynamics in the Red River mouth and adjacent coastal zone

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.

    2007-02-01

    The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.

  19. Temporal variation in bed configuration and one-dimensional bottom roughness at the mid-shelf STRESS site

    NASA Astrophysics Data System (ADS)

    Wheatcroft, Robert A.

    1994-08-01

    Time-lapse stereophotographs were taken over a 90-day period from mid-November 1990 to late-February 1991 at a 90-m silt-bottom site on the central California shelf as part of the STRESS (Sediment Transport Events on Shelves and Slopes) project. Five distinct bed configurations were observed, in order of decreasing abundance, these are: (1) bioturbated bed; (2) smoothed bed; (3) current-rippled bed; (4) scour-pitted bed; and (5) wave-rippled bed. Concurrent measurements of the flow field implicate along-shelf currents, rather than waves, as the primary agent forming the physical bed configurations. The presence of a wave-induced cross-shelf gradient in near-bottom suspended sediment during storm events and the redistribution of this sediment by upwelling or downwelling currents is postulated to control the appearance of depositional current-ripples (northwest poleward flow, downwelling) and erosional scour-pits (southeast equatorward flow, upwelling). All physical bed forms are destroyed by bioturbation processes in periods of hours to days. Analytical photogrammetric techniques were used to extract high-resolution sea floor height data from the stereophotographs. Results indicate maximal relief over a 0.25-m 2 area at this site never exceeded 5 cm. Root-mean-square (rms) height varied by a factor of 3 (3.2-9.2 mm) and is a weak function of bed configuration. Current ripples have the largest rms-height, smoothed and scour-pitted beds the smallest. Rms-heights of bioturbated beds are variable and appear to depend on the previously produced physical bed configuration. Changes in rms-height can be abrupt with factor of 2 changes observed over a 12-h period. Horizontal descriptors of roughness such as peak spacing or peak width cannot separate bed configurations. Results from surface slope distributions are broadly coherent with the rms-height data, in that surfaces with large rms-heights have broad slope distributions and vice versa. Slope distribution data also indicate that all bed configurations except the current-rippled bed are isotropic. These preliminary data suggest that time series information is needed to adequately resolve both the micro-scale roughness of the sea floor on continental shelves and the presence of short lived, but potentially flow-diagnostic bed configurations.

  20. A Field Investigation of Water and Salt Movement in Permafrost and the Active Layer

    DTIC Science & Technology

    1993-02-01

    in the submerged continental shelves of the Arctic and Antarctic land masses where pore water salinities of shelf sediments may exceed that of the...thawed sediments would have wanned at all depths, and permafrost would have started to thaw from both the top and the bottom. Eventually, gas...exploration wells (Osterkamp at al., 1985). Destabilization of gas hydrates (by warming the sediments in the continental shelves) during periods of high

  1. 2 - 4 million years of sedimentary processes in the Labrador Sea: implication for North Atlantic stratigraphy

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Saint-Ange, F.; Campbell, C.; Piper, D. J.

    2012-12-01

    Marine sedimentary records from the western North Atlantic show that a significant portion of sediment deposited since the Pliocene originated from the Canadian Shield. In the Labrador Sea, previous studies have shown that bottom currents .strongly influenced sedimentation during the Pliocene, while during the Quaternary, intensification of turbidity current flows related to meltwater events were a dominant factor in supplying sediment to the basin and in the development of the North Atlantic Mid-Ocean Channel (NAMOC). Despite understanding this general pattern of sediment flux, details regarding the transfer of sediment from the Labrador Shelf to deep water and from the Labrador Sea to the North Atlantic remain poorly understood. Our study focuses on sedimentary processes occurring along the Labrador margin since the Pliocene and their consequences on the margin architecture, connection to the NAMOC, and role in sediment flux from the Labrador basin to the Sohm Abyssal Plain. Piston core and high resolution seismic data reveal that during the Pliocene to mid Pleistocene, widespread slope failures led to mass transport deposition along the entire Labrador continental slope. After the mid Pleistocene, sedimentation along the margin was dominated by the combined effects of glaciation and active bottom currents. On the shelf, prograded sedimentary wedges filled troughs and agraded till sheets form intervening banks. On the slope, stacked glaciogenic fans developed seaward of transverse troughs between 400 and 2800 mbsl. On the lower slope, seismic data show thick sediment drifts capped by glacio-marine mud. This unit is draped by well stratified sediment and marks a switch from a contourite dominated regime to a turbidite dominated regime. This shift occurred around 0.5 - 0.8 ka and correlates to the intensification of glaciations. Late Pleistocene sediments on the upper slope consist of stratified sediments related to proglacial plume fall-out. Coarse grained sediments, other than ice rafted detritus, by-passed the upper and middle slope and were transported to the lower slope and deep ocean. Seismic profiles and multibeam data along the Labrador Slope show a complex network of channels, with wide flat-bottomed channels off Saglek Bank to narrow channels off Cartwright Bank. The channels merge around 3000 mbsl to form single wide (~20 km) channels that eventually intersect, or flow parallel to the NAMOC. Rapid development of the NAMOC from the mid to late Pleistocene affected depositional patterns for sediment sourced from the Labrador margin. Downslope-transported sediment from the Labrador margin mostly tends to fill the basin or feed into NAMOC through tributary systems, whereas sediments derived from Hudson Strait feed the NAMOC and eventually the Sohm Abyssal plain. Sediment transported southward by the Western Boundary Undercurrent and Labrador Current likely reflect input along the margin, from Hudson Strait to Orphan Basin. Turbidite spill-over deposits are observed onlapping the continental margin of Labrador and Newfoundland as far south as Newfoundland Ridge.

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in Bowdoin National Wildlife Refuge and adjacent areas of the Milk River basin, northeastern Montana, 1986-87

    USGS Publications Warehouse

    Lambing, J.H.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    Concentrations of trace elements, radiochemicals, and pesticides in the Bowdoin National Wildlife Refuge lakes generally were not substantially larger than those in the water supplied from Dodson South Canal or in irrigation drainage. Concentrations of arsenic (47 micrograms/L), uranium (43 microg/L), and vanadium (51 microg/L) in Dry Lake Unit, and boron (1,000 microg/L) in Lake Bowdoin were notably larger than at other sites. Zinc concentrations in an irrigation drain (56 microg/L) and two shallow domestic wells (40 and 47 microg/L) were elevated relative to other sites. Concentrations of gross alpha radiation (64 picocuries/L) and gross beta radiation (71 picocuries/L) were elevated in Dry Lake Unit. Pesticides concentrations at all sites were 0.08 microg/L or less. Water use guidelines concentrations for boron, cadmium, uranium, zinc, and gross alpha radiation were slightly exceeded at several sites. In general, trace-constituent concentrations measured in the water do not indicate any potential toxicity problems in Bowdoin National Wildlife Refuge; however, highwater conditions in 1986 probably caused dilution of dissolved constituents compared to recent dry years. Trace element concentrations in bottom sediments of the refuge lakes were generally similar to background concentrations in the soils. The only exception was Dry Lake Unit, which had concentrations of chromium (99 micrograms/g), copper (37 microg/g), nickel (37 microg/g), vanadium (160 microg/g), and zinc (120 microg/g) that were about double the mean background concentrations. The maximum selenium concentration in bottom sediment was 0.6 microg/g. Pesticide concentrations in bottom sediments were less than analytical detection limits at all sites. With few exceptions, concentrations of trace elements and pesticides in biota generally were less than values known to produce harmful effects on growth or reproduction. (Lantz-PTT)

  3. Gas chromatographic-mass spectrometric investigation of n-alkanes and carboxylic acids in bottom sediments of the northern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Kenzhegaliev, Akimgali; Zhumagaliev, Sagat; Kenzhegalieva, Dina; Orazbayev, Batyr

    2018-03-01

    Prior to the start of experimental oil production in the Kashagan field (northern part of the Caspian Sea), n-alkanes and carboxylic acids contained in samples obtained from bottom sediments in the area of artificial island "D" were investigated by gas chromatography-mass spectrometry. Concentrations of 10 n-alkanes (composed of C10-C13, C15-C20) and 11 carboxylic acids (composed of C6-C12, C14-C16) were identified and measured. Concentrations of individual alkanes and carboxylic acids in bottom sediments of the various samples varied between 0.001 ÷ 0.88 μg/g and 0.001 ÷ 1.94 μg/g, respectively. Mass spectra, in particular the M+ molecular ion peak and the most intense peaks of fragment ions, are given. The present study illustrates the stability of molecular ions to electronic ionisation and the main fragment ions to the total ion current and shows that the initial fragmentation of alkanes implies radical cleavage of C2H5 rather than CH3. All aliphatic monocarboxylic acids studied were characterised by McLafferty rearrangement leading to the formation of F4 cation-radical with m/z 60 and F3 cation-radical with m/z 88 in the case of ethylhexanoic acid. The formation of oxonium ions presents another important aspect of acid fragmentation. Using mass numbers of oxonium ions and rearrangement ions allows determination of the substitution character in α- and β- C atoms. The essence of our approach is to estimate the infiltration of hydrocarbon fluids from the enclosing formation into sea water, comprising an analysis of derivatives of organic compounds in bottom sediments. Thus, concentrations of derived organic molecules can serve as a basis for estimates of the depth at which hydrocarbon fluids leak, i.e., to serve as an auxiliary technique in the search for hydrocarbon deposits and to repair well leaks.

  4. Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure

    NASA Astrophysics Data System (ADS)

    Pihl, Leif; Svenson, Anders; Moksnes, Per-Olav; Wennhage, Håkan

    1999-06-01

    Distribution and biomass of green algal mats were studied in marine shallow (0-1 m) soft-bottom areas on the Swedish west coast from 1994 to 1996, by combining aerial photography surveys with ground truth sampling. Filamentous green algae, dominated by species of the genera Cladophora and Enteromorpha, were generally present throughout the study area during July and August, and largely absent in late April and early May. These algae occurred at 60 to 90% of the locations investigated during the summer, and were estimated to cover between 30 and 50% of the total area of shallow soft bottoms of the Swedish Skagerrak archipelago. The distributional patterns were similar during the three years of the investigation and appeared unrelated to annual local nutrient inputs from point sources and river discharge. We postulate that the apparent lack of such a relationship is due to an altered state of nutrient dynamics throughout the archipelago. Mechanisms are likely to involve long-term, diffuse elevations in nutrient levels in coastal waters of the Skagerrak and the Kattegat over several decades leading to current eutrophic conditions, exceeding nutrient requirements for abundant filamentous algal growth. Patterns of algal abundance in our study were largely related to physical factors such as exposure to wind, waves and water exchange under conditions where nutrient loads among embayments seemed to be unlimited. Further, our results show that sediments covered by algal mats had higher carbon and nitrogen contents than unvegetated sediments. We hypothesise that sustained high nutrient loads, manifested in extensive biomass of filamentous algae during summer months, are re-mineralised via decay and sedimentation in the benthic realm. Hence, accumulated carbon and nutrients in the sediment could, in turn, constitute the basic pool for future algal mat production overlying soft bottoms in areas where tidal exchange is limited.

  5. Ice rafting of fine-grained sediment, a sorting and transport mechanism, Beaufort Sea, Alaska.

    USGS Publications Warehouse

    Barnes, P.W.; Reimnitz, E.; Fox, D.

    1982-01-01

    The presence of turbid, sediment-rich fast ice in the Arctic is a major factor affecting transport of fine-grained sediment. Observers have documented the widespread, sporadic occurrence of sediment- rich fast ice in both the Beaufort and Bering Seas. The occurrence of sediment in only the upper part of the seasonal fast ice indicates that sediment-rich ice forms early during ice growth. The most likely mechanism requires resuspension of nearshore bottom sediment during storms, accompanied by formation of frazil ice and subsequent lateral advection before the fast ice is stabilized. We estimate that the sediment incorporated in the Beaufort ice canopy formed a significant proportion of the seasonal influx of terrigenous fine-grained sediment. The dominance of fine-grained sediment suggests that in the Arctic and sub-Arctic these size fractions may be ice rafted in greater volumes than the coarse fraction of traditionally recognized ice-rafted sediment. -from Authors

  6. Guidance for Subaqueous Dredged Material Capping.

    DTIC Science & Technology

    1998-06-01

    from Ambrose Channel , over the contaminated sediments. At least two intermediate sur- veys and additional capping were required before capping was...organisms to a given bioturbation depth; reducing contami- nant flux rates to achieve specific sediment, pore water, or water column target...bathymetry, bottom slopes, cur- rents, water depths, water column density stratification, erosion/accretion trends, proximity to navigation channels

  7. Sedimentation across the central California oxygen minimum zone: an alternative coastal upwelling sequence.

    USGS Publications Warehouse

    Vercoutere, T.L.; Mullins, H.T.; McDougall, K.; Thompson, J.B.

    1987-01-01

    Distribution, abundance, and diversity of terrigenous, authigenous, and biogenous material provide evidence of the effect of bottom currents and oxygen minimum zone (OMZ) on continental slope sedimentation offshore central California. Three major OMZ facies are identified, along the upper and lower edges of OMZ and one at its core.-from Authors

  8. Calculating the Diffusive Flux of Persistent Organic Pollutants between Sediments and the Water Column on the Palos Verdes Shelf Superfund Site using Polymeric Passive Samplers

    EPA Science Inventory

    Passive samplers were used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water of a marine Superfund site on the Palos Verdes Shelf, California, USA. Measured concentrations in the porewater and water column at...

  9. The glacimarine sediment budget of the Nares Strait-Petermann Fjord area since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Nielsen, T.; Kamla, E.; Stranne, C.; Eriksson, B.; Jerram, K.

    2016-12-01

    During the Petermann 2015 Expedition of the Swedish icebreaker Oden more than 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) were acquired in Petermann Fjord and Nares Strait in the area immediately outside of the fjord. The sub-bottom profiles reveal a highly-variable distribution of post-glacial sediment that appears to be largely controlled by the rugged relief of the underlying bedrock. Sediment thicknesses are between 0-60 m above bedrock and comprise predominantly acoustically-stratified, homogeneous to transparent acoustic facies. In Petermann Fjord itself unlithified sediment cover typically comprises two units: an underlying acoustically-transparent unit overlain by an acoustically-stratified unit. Both of these units are conformable over scoured and fairly flat bedrock terrain; small basins are present only locally. Outside of the fjord are a few local sedimentary basins containing up to 40 m of stratified basin-fill deposits, and several areas of stacked mass-flow deposits. Glacial lineations both in the fjord and Nares Strait are formed in an acoustically-homogenous unit that underlies stratified and transparent units. In addition to the sub-bottom profiles, approximately 780 line-km of 2D seismic reflection profiles were acquired using an airgun (210 cu in.) and a 300-m long streamer. These profiles have allowed us to map full unlithified sediment thicknesses down to basement in the area. Here we present the results of this mapping and we calculate the volumes of a prominent grounding-zone wedge at the mouth of Petermann Fjord, and smaller GZWs in Kennedy Channel. These features demarcate former still-stand positions of grounded ice retreating through this system, both towards the present-day grounding line of Petermann Glacier and southwards through Nares Strait. Post-glacial sediment volumes are also calculated and the sedimentary processes responsible for their distribution examined. These data, when combined with chronological information, will provide sediment fluxes through the Petermann system and help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly important in light of the recent thinning and acceleration of NW Greenland's marine-terminating outlet glaciers at present.

  10. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in northern New Jersey, 2008.

    PubMed

    Gibs, Jacob; Heckathorn, Heather A; Meyer, Michael T; Klapinski, Frank R; Alebus, Marzooq; Lippincott, Robert L

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature. Published by Elsevier B.V.

  11. Early glaciation already during the Early Miocene in the Amundsen Sea, Southern Pacific: Indications from the distribution of sedimentary sequences

    NASA Astrophysics Data System (ADS)

    Uenzelmann-Neben, Gabriele; Gohl, Karsten

    2014-09-01

    The distribution and internal architecture of seismostratigraphic sequences observed on the Antarctic continental slope and rise are results of sediment transport and deposition by bottom currents and ice sheets. Analysis of seismic reflection data allows to reconstruct sediment input and sediment transport patterns and to infer past changes in climate and oceanography. We observe four seismostratigraphic units which show distinct differences in location and shape of their depocentres and which accumulated at variable sedimentation rates. We used an age-depth model based on DSDP Leg 35 Site 324 for the Plio/Pleistocene and a correlation with seismic reflection characteristics from the Ross and Bellingshausen Seas, which unfortunately has large uncertainties. For the period before 21 Ma, we interpret low energy input of detritus via a palaeo-delta originating in an area of the Amundsen Sea shelf, where a palaeo-ice stream trough (Pine Island Trough East, PITE) is located today, and deposition of this material on the continental rise under sea ice coverage. For the period 21-14.1 Ma we postulate glacial erosion for the hinterland of this part of West Antarctica, which resulted in a larger depocentre and an increase in mass transport deposits. Warming during the Mid Miocene Climatic Optimum resulted in a polythermal ice sheet and led to a higher sediment supply along a broad front but with a focus via two palaeo-ice stream troughs, PITE and Abbot Trough (AT). Most of the glaciogenic debris was transported onto the eastern Amundsen Sea rise where it was shaped into levee-drifts by a re-circulating bottom current. A reduced sediment accumulation in the deep-sea subsequent to the onset of climatic cooling after 14 Ma indicates a reduced sediment supply probably in response to a colder and drier ice sheet. A dynamic ice sheet since 4 Ma delivered material offshore mainly via AT and Pine Island Trough West (PITW). Interaction of this glaciogenic detritus with a west-setting bottom current resulted in the continued formation of levee-drifts in the eastern and central Amundsen Sea.

  12. A multi-factor approach for process-based seabed characterization: example from the northeastern continental margin of the Korean peninsula (East Sea)

    NASA Astrophysics Data System (ADS)

    Cukur, Deniz; Um, In-Kwon; Chun, Jong-Hwa; Kim, So-Ra; Lee, Gwang-Soo; Kim, Yuri; Kong, Gee-Soo; Horozal, Senay; Kim, Seong-Pil

    2018-04-01

    This study investigates sediment transport and depositional processes from a newly collected dataset comprising sub-bottom chirp profiles, multibeam bathymetry, and sediment cores from the northeastern continental margin of Korea in the East Sea (Japan Sea). Twelve echo-types and eleven sedimentary facies have been defined and interpreted as deposits formed by shallow-marine, hemipelagic sedimentation, bottom current, and mass-movement processes. Hemipelagic sedimentation, which is acoustically characterized by undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. The inner and outer continental shelf (<150 m water depth) have been influenced by shallow-marine sedimentary processes. Two slope-parallel canyons, 0.2-2 km wide and up to 30 km long, appear to have acted as possible conduits for turbidity currents from the shallower shelf into the deep basins. Bottom current deposits, expressed as erosional moats immediately below topographic highs, are prevalent on the southern lower slope at water depths of 400-450 m. Mass-movements (i.e., slides/slumps, debris flow deposits) consisting of chaotic facies characterize the lower slope and represent one of the most important sedimentary processes in the study area. Piston cores confirm the presence of mass-transport deposits (MTDs) that are characterized by mud clasts of variable size, shape, and color. Multibeam bathymetry shows that large-scale MTDs are chiefly initiated on the lower slope (400-600 m) with gradients up to 3° and where they produce scarps on the order of 100 m in height. Sandy MTDs also occur on the upper continental slope adjacent to the seaward edge of the shelf terrace. Earthquakes associated with tectonic activity and the development of fluid overpressure is considered as the main conditioning factor for destabilizing the slope sediments. Overall, the sedimentary processes show typical characteristics of a fine-grained clastic slope apron and change down-slope and differ within each physiographic province. Furthermore, the influence of geological inheritance (i.e., structural folds and faults) on geomorphology and sediment facies development is an important additional factor on the lower slopes. Together, these factors provide a rational basis for continental margin seabed characterization.

  13. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    USGS Publications Warehouse

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature.

  14. Reconnaissance-level assessment of water and bottom-sediment quality, including pesticides and mercury, in Yankton Sioux Tribe wetlands, Charles Mix County, South Dakota, June-July 2005

    USGS Publications Warehouse

    Schaap, Bryan D.; Bartholomay, Roy C.

    2006-01-01

    During June and July 2005, water and bottom-sediment samples were collected from selected Yankton Sioux Tribe wetlands within the historic Reservation area of eastern Charles Mix County as part of a reconnaissance-level assessment by the U.S. Geological Survey and Yankton Sioux Tribe. The water samples were analyzed for pesticides and mercury species. In addition, the water samples were analyzed for physical properties and chemical constituents that might help further characterize the water quality of the wetlands. The bottom-sediment samples were analyzed for mercury species. During June 2005, water samples were collected from 19 wetlands and were analyzed for 61 widely used pesticide compounds. Many pesticides were not detected in any of the water samples and many others were detected only at low concentrations in a few of the samples. Thirteen pesticides were detected in water samples from at least one of the wetlands. Atrazine and de-ethyl atrazine were detected at each of the 19 wetlands. The minimum, maximum, and median dissolved atrazine concentrations were 0.056, 0.567, and 0.151 microgram per liter (?g/L), respectively. Four pesticides (alachlor, carbaryl, chlorpyrifos, and dicamba) were detected in only one wetland each. The number of pesticides detected in any of the 19 wetlands ranged from 3 to 8, with a median of 6. In addition to the results for this study, recent previous studies have frequently found atrazine in Lake Andes and the Missouri River, but none of the atrazine concentrations have been greater than 3 ?g/L, the U.S. Environmental Protection Agency's Maximum Contaminant Level for atrazine in drinking water. During June and July 2005, water and bottom-sediment samples were collected from 10 wetlands. Water samples from each of the wetlands were analyzed for major ions, organic carbon, and mercury species, and bottom-sediment samples were analyzed for mercury species. For the whole-water samples, the total mercury concentrations ranged from 1.11 to 29.65 nanograms per liter (ng/L), with a median of 10.56 ng/L. The methylmercury concentrations ranged from 0.45 to 14.03 ng/L, with a median of 2.28 ng/L. For the bottom-sediment samples, the total mercury concentration ranged from 21.3 to 74.6 nanograms per gram (ng/g), with a median of 54.2 ng/g. The methylmercury concentrations ranged from <0.11 to 2.04 ng/g, with a median of 0.78 ng/g. The total mercury concentrations in the water samples were all much less than 2 ?g/L (2,000 ng/L), the U.S. Environmental Protection Agency's Maximum Contaminant Level for mercury in drinking water. However, water samples from four of the wetlands had concentrations larger than 0.012 ?g/L (12 ng/L), the State of South Dakota's chronic standard for surface waters, including wetlands. Maximum methylmercury concentrations for this study are larger than reported concentrations for wetlands in North Dakota and concentrations reported for the Cheyenne River Indian Reservation in South Dakota.

  15. Mapping of accumulated nitrogen in the sediment pore water of a eutrophic lake in Iowa, USA

    USGS Publications Warehouse

    Iqbal, M.Z.; Fields, C.L.

    2009-01-01

    A large pool of nitrogen in the sediment pore fluid of a eutrophic lake in Iowa, USA, was mapped in this study. Previously, the lake had supported fishing and boating, but today it no longer supports its designated uses as a recreational water body. In the top 5 cm of the lake bottom, the pore water nitrogen ranges between 3.1 and 1,250 ??g/cm3 of sediments, with an average of 160.3 ??g/cm3. Vertically, nitrate concentrations were measured as 153 ??g/cm3 at 0-10 cm, 162 ??g/cm3 at 10-20 cm, and 32 ??g/cm3 at 20-30 cm. Nitrate mass distribution was quantified as 3.67 ?? 103 kg (65%) in the bottom sediments, 172 kg (3%) in suspended particulates, and 1.83 ?? 103 kg (32%) in the dissolved phase. Soil runoff nutrients arrive at the lake from the heavily fertilized lands in the watershed. Upon sedimentation, a large mass of nitrogen desorbs from mineral particles to the relatively immobile pore fluid. Under favorable conditions, this nitrogen diffuses back into the water column, thereby dramatically limiting the lake's capability to process incoming nutrients from farmlands. Consequently, a condition of oxygen deficiency disrupts the post-season biological activities in the lake. ?? 2008 Springer-Verlag.

  16. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in and near Walker River Indian Reservation, Nevada 1994-95

    USGS Publications Warehouse

    Thodal, Carl E.; Tuttle, Peter L.

    1996-01-01

    A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated in several biological samples collected throughout the Basin, although concentrations in water and bottom sediment were below analytical reporting limits. Sources of arsenic, boron, and mercury in the Basin are uncertain, but ambient levels reported for a variety of sample matrices collected from western Nevada generally exceed ranges cited as natural background levels. Because these potentially toxic constituents exceeded concern levels in areas that do not directly receive irrigation drainage, concentrations measured in samples collected for this study may not necessarily be attributable to agricultural activities. Diversion of river water for irrigation may have greater effects on beneficial uses of water and on fish and wildlife than does drainage from agricultural areas on the Reservation. In 1994, agricultural water consumption precluded dilution of ground-water seepage to the river channel. This resulted in concentrations of potentially toxic solutes that exceeded levels of concern. Diversion of irrigation water also may have facilitated leaching of potentially toxic solutes from irrigated soil on the Reservation, but during this study all water applied for irrigation on the Reservation was either consumed by evapotranspiration or infiltrated to recharge shallow ground water. No irrigation drainage was found on the Reservation during this study. However, because 1994 samples of ground-water seepage to the Walker River channel exceeded at least six Nevada waterquality standards, water-quality problems may result should ground-water levels rise enough to cause ground-water discharge to the agricultural drain on the Reservation. Nevertheless, the potential for adverse effects from irrigation drainage on the Reservation is believed to be small because surface-water rights for the Walker River Indian Reservation amount to only 2 percent of total surface- water rights in the entire Walker River Basin.

  17. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part II locally re-suspended sediment dynamics

    NASA Astrophysics Data System (ADS)

    Li, Li; Guan, Weibing; He, Zhiguo; Yao, Yanming; Xia, Yuezhang

    2017-11-01

    Xiangshan Bay is a semi-enclosed bay in China, in which tidal flats have been substantially reclaimed to support the development of local economies and society over previous decades. The loss of tidal flats has led to changes of tides and locally suspended sediment in the bay. The effects of tidal flat reduction on locally suspended sediment dynamics was investigated using a numerical model forced by tidal data and calibrated by observed tidal elevation and currents. The model satisfactorily reproduces observed water levels, currents, and suspended sediment concentration in the estuary, and therefore is subsequently applied to analyze the impact of tidal flat reclamation on locally suspended sediment transport. After the loss of the tidal flats from 1963 to 2010, the suspended sediment concentrations (SSC) at the bottom boundary layer were reduced/increased in the outer bay/tidal flat areas due to weakened tidal currents. In the inner bay, the SSC values near the bottom level increased from 1963 to 2003 due to the narrowed bathymetry, and then decreased from 2003 to 2010 because of the reduced tidal prism. The model scenarios suggest that: (1) a reduction of tidal flat areas appears to be the main factor for enhancing the transport of sediments up-estuary, due to the increased Eulerian velocity and tidal pumping; (2) A reduction of tidal flat areas impacts on spatial and temporal SSC distribution: reducing the SSC values in the water areas due to the reduced current; and (3) a tidal flat reduction influences the net sediment fluxes: lessening the erosion and inducing higher/lower landward/seaward sediment transportation.

  18. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... considered a propelling machinery space. (vi) Spaces containing fuel oil settling tanks used solely for the... spaces for fuel tanks, spaces exempt from gross tonnage under § 69.117, and spaces not used or not... bottom frames, floors, or tank top of a double bottom up to the line of the crown. A breadth is measured...

  19. Effectiveness of three best management practices for highway-runoff quality along the Southeast Expressway, Boston, Massachusetts

    USGS Publications Warehouse

    Smith, Kirk P.

    2002-01-01

    Best management practices (BMPs) near highways are designed to reduce the amount of suspended sediment and associated constituents, including debris and litter, discharged from the roadway surface. The effectiveness of a deep-sumped hooded catch basin, three 2-chambered 1,500-gallon oil-grit separators, and mechanized street sweeping in reducing sediment and associated constituents was examined along the Southeast Expressway (Interstate Route 93) in Boston, Massachusetts. Repeated observations of the volume and distribution of bottom material in the oil-grit separators, including data on particle-size distributions, were compared to data from bottom material deposited during the initial 3 years of operation. The performance of catch-basin hoods and the oil-grit separators in reducing floating debris was assessed by examining the quantity of material retained by each structural BMP compared to the quantity of material retained by and discharged from the oil-grit separators, which received flow from the catch basins. The ability of each structural BMP to reduce suspended-sediment loads was assessed by examining (a) the difference in the concentrations of suspended sediment in samples collected simultaneously from the inlet and outlet of each BMP, and (b) the difference between inlet loads and outlet loads during a 14-month monitoring period for the catch basin and one separator, and a 10-month monitoring period for the second separator. The third separator was not monitored continuously; instead, samples were collected from it during three visits separated in time by several months. Suspended-sediment loads for the entire study area were estimated on the basis of the long-term average annual precipitation and the estimated inlet and outlet loads of two of the separators. The effects of mechanized street sweeping were assessed by evaluating the differences between suspended-sediment loads before and after street sweeping, relative to storm precipitation totals, and by comparing the particle-size distributions of sediment samples collected from the sweepers to bottom-material samples collected from the structural BMPs. A mass-balance calculation was used to quantify the accuracy of the estimated sediment-removal efficiency for each structural BMP. The ability of each structural BMP to reduce concentrations of inorganic and organic constituents was assessed by determining the differences in concentrations between the inlets and outlets of the BMPs for four storms. The inlet flows of the separators were sampled during five storms for analysis of fecal-indicator bacteria. The particle-size distribution of bottom material found in the first and second chambers of the separators was similar for all three separators. Consistent collection of floatable debris at the outlet of one separator during 12 storms suggests that floatable debris were not indefinitely retained.Concentrations of suspended sediment in discrete samples of runoff collected from the inlets of the two separators ranged from 8.5 to 7,110 mg/L. Concentrations of suspended sediment in discrete samples of runoff collected from the outlets of the separators ranged from 5 to 2,170 mg/L. The 14-month sediment-removal efficiency was 35 percent for one separator, and 28 percent for the second separator. In the combined-treatment system in this study, where catch basins provided primary suspended-sediment treatment, the separators reduced the mass of the suspended sediment from the pavement by about an additional 18 percent. The concentrations of suspended sediment in discrete samples of runoff collected from the inlet of the catch basin ranged from 32 to 13,600 mg/L. Concentrations of suspended sediment in discrete samples of runoff collected from the outlet of the catch basin ranged from 25.7 to 7,030 mg/L. The sediment-removal efficiency for individual storms during the 14-month monitoring period for the deep-sumped hooded catch basin was 39 percent.The concentrations of 29 in

  20. Distribution of free gas and 3D mirror image structures beneath Sevastopol mud volcano, Black sea, from 3D high resolution wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.

    2016-12-01

    The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.

  1. Drivers, mechanisms and long term variability of bottom seasonal hypoxia in the Black Sea north-western Shelf. Is there any recovery after eutrophication ?

    NASA Astrophysics Data System (ADS)

    Capet, Arthur; Beckers, Jean-Marie; Grégoire, Marilaure

    2013-04-01

    The Black Sea North-western shelf (NWS) is a shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationships that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T ), the amount of semi-labile organic matter in the sediments (C) and the duration of the stratification (D). Eutrophication (N,C) and climate (T ,D) predictors explain a similar amount of variability (~ 35%) when considered separately. A typical timescale of 9.3 years is found to describe the inertia of sediments in the recovering process after eutrophication. From this analysis, we find that under standard conditions (i.e. average atmospheric conditions, sediments in equilibrium with river discharges), the intensity of hypoxia can be linked to the level of nitrate discharge through a non-linear equation (power law). Bottom hypoxia does not affect the whole Black Sea NWS but rather exhibits an important spatial variability. This heterogeneous distribution, in addition to the seasonal fluctuations, complicates the monitoring of bottom hypoxia leading to contradictory conclusions when the interpretation is done from different sets of data. We find that it was the case after 1995 when the recovery process was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses out the urging need of a dedicated monitoring effort in the NWS of the Black Sea focused on the areas and the period of the year concerned by recurrent hypoxic events.

  2. Influence of aerosol estimation on coastal water products retrieved from HICO images

    NASA Astrophysics Data System (ADS)

    Patterson, Karen W.; Lamela, Gia

    2011-06-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is a hyperspectral sensor which was launched to the International Space Station in September 2009. The Naval Research Laboratory (NRL) has been developing the Coastal Water Signatures Toolkit (CWST) to estimate water depth, bottom type and water column constituents such as chlorophyll, suspended sediments and chromophoric dissolved organic matter from hyperspectral imagery. The CWST uses a look-up table approach, comparing remote sensing reflectance spectra observed in an image to a database of modeled spectra for pre-determined water column constituents, depth and bottom type. In order to successfully use this approach, the remote sensing reflectances must be accurate which implies accurately correcting for the atmospheric contribution to the HICO top of the atmosphere radiances. One tool the NRL is using to atmospherically correct HICO imagery is Correction of Coastal Ocean Atmospheres (COCOA), which is based on Tafkaa 6S. One of the user input parameters to COCOA is aerosol optical depth or aerosol visibility, which can vary rapidly over short distances in coastal waters. Changes to the aerosol thickness results in changes to the magnitude of the remote sensing reflectances. As such, the CWST retrievals for water constituents, depth and bottom type can be expected to vary in like fashion. This work is an illustration of the variability in CWST retrievals due to inaccurate aerosol thickness estimation during atmospheric correction of HICO images.

  3. Comparison of vapor concentrations of volatile organic compounds with ground-water concentrations of selected contaminants in sediments beneath the Sudbury River, Ashland, Massachusetts, 2000

    USGS Publications Warehouse

    Campbell, J.P.; Lyford, F.P.; Willey, Richard E.

    2002-01-01

    A mixed plume of contaminants in ground water, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals, near the former Nyanza property in Ashland, Massachusetts, discharges to the Sudbury River upstream and downstream of Mill Pond and a former mill raceway. Polyethylene-membrane vapor-diffusion (PVD) samplers were installed in river-bottom sediments to determine if PVD samplers provide an alternative to ground-water sampling from well points for identifying areas of detectable concentrations of contaminants in sediment pore water near the ground-water and surface-water interface. In August and September 2000, the PVD samplers were installed near well points at depths of 8 to 12 inches in both fine and coarse sediments, whereas the well points were installed at depths of 1 to 5 feet in coarse sediments only. Comparison between vapor and water samples at 29 locations upstream from Mill Pond show that VOC vapor concentrations from PVD samplers in coarse river-bottom sediments are more likely to correspond to ground-water concentrations from well points than PVD samplers installed in fine sediments. Significant correlations based on Kendall's Tau were shown between vapor and ground-water concentrations for trichloroethylene and chlorobenzene for PVD samplers installed in coarse sediments where the fine organic layer that separated the two sampling depths was 1 foot or less in thickness. VOC concentrations from vapor samples also were compared to VOC, SVOC, and metals concentrations from ground-water samples at 10 well points installed upstream and downstream from Mill Pond, and in the former mill raceway. Chlorobenzene vapor concentrations correlated significantly with ground-water concentrations for 5 VOCs, 2 SVOCs, and 10 metals. Trichloroethylene vapor concentrations did not correlate with any of the other ground-water constituents analyzed at the 10 well points. Chlorobenzene detected by use of PVD samplers appears to be a strong indicator of the presence of VOCs, SVOCs, and metals in ground water sampled from well points at this site. Results from PVD samplers indicate that contaminant concentrations in water from well points installed 1 to 5 ft below fine sediments may not reflect concentrations in pore water less than 1 foot below the river bottom. There is insufficient information available to determine if VOC concentrations detected in PVD samplers are useful for identifying detectable aqueous concentrations of SVOCs and metals in sediment pore water at this site. Samples of pore water from a similar depth as PVD samplers are needed for confirmation of this objective.

  4. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  5. Occurrence and distribution of contaminants in bottom sediment and water of the Barron River Canal, Big Cypress National Preserve, Florida

    USGS Publications Warehouse

    Miller, Ronald L.; McPherson, Benjamin F.

    2001-01-01

    Trace elements and organic contaminants in bottom-sediment samples collected from 10 sites on the Barron River Canal and from one site on the Turner River in October 1998 had patterns of distribution that indicated different sources. At some sites on the Barron River Canal, lead, copper, and zinc, normalized to aluminum, exceeded limits normally considered as background and may be enriched by human activities. Polynuclear aromatic hydrocarbons and p-cresol, normalized against organic carbon, had patterns of distribution that indicated local sources of input from a road or vehicular traffic or from an old creosote wood treatment facility. Phthalate esters and the traces elements arsenic, cadmium, and zinc were more widely distributed with the highest normalized concentrations occurring at the Turner River background site, probably due to the high percentage of fine sediment (74% less than 63 micrometers) and high organic carbon concentration (42%) at that site and the binding effect of organic carbon on trace elements and trace organic compounds. Low concentrations of pesticides or pesticide degradation products were detected in bottom sediment (DDD and DDE, each less than 3.5 µg/kg) and water (9 pesticides, each less than 0.06 µ/L), primarily in the northern reach of the Barron River Canal where agriculture is a likely source. Although a few contaminants approached criteria that would indicate adverse effects on aquatic life, none exceeded the criteria, but the potential synergistic effects of mixtures of contaminants found at most sites are not included in the criteria.

  6. Late Quaternary high resolution micropaleontological and sedimentological records in the Gulf of Cadiz.

    NASA Astrophysics Data System (ADS)

    Balestra, B.; Ducassou, E.; Zarikian, C.; Bout-Roumazeilles, V.; Flores, J. A.; Paytan, A.

    2017-12-01

    We present preliminary micropaleontological and sedimentological data from IODP Site U1390 (Expedition 339), located in the central middle slope of the Gulf of Cadiz, since the last glaciation. This site has been targeted for reconstruction of regional paleo-circulation as it shows particularly high sedimentation rates, throughout the Holocene and the Last Glacial Maximum (LGM). We use micropaleontological and sedimentological proxies to understand the bottom current variations through time and the ecological conditions at the sea surface (planktonic foraminifer, pteropod and nannofossil assemblages), and the sea bottom (ostracod assemblages). Eleven samples, chosen at transitions of planktonic foraminifer assemblages, have been dated by AMS radiocarbon analyses. Preliminary results from benthic ostracod assemblages show variations in bottom water ventilation and food supply. Planktonic foraminifer assemblages clearly show the well-known cold events of this period such as the Younger Dryas and Heinrich stadial associated to coarser sediment, and warmer phases such as the Bölling-Allerød associated to muddy sediment. Other bio-events within the Holocene period are also recorded. The preservation of the coccolithophore assemblages is good to moderate. Coccolith abundances (expressed in coccoliths/gr of sediment) show higher values during the Holocene and generally are like assemblages previously reported for the same area. Implications for characterization of the Holocene, the last termination and LGM ecological conditions at high resolution and their potential fluctuations (i.e. amplitude and magnitude) under the influence of the lower core of the Mediterranean Outflow Water (MOW), with this multi proxy approach based on sedimentological, and paleontological data will be discussed.

  7. Dispersal of post-larval macrobenthos in subtidal sedimentary habitats: Roles of vertical diel migration, water column, bedload transport and biological traits' expression

    NASA Astrophysics Data System (ADS)

    Pacheco, Aldo S.; Uribe, Roberto A.; Thiel, Martin; Oliva, Marcelo E.; Riascos, Jose M.

    2013-03-01

    Post-larval dispersal along the sediment-water interface is an important process in the dynamics of macrobenthic populations and communities in marine sublittoral sediments. However, the modes of post-larval dispersal in low energy sublittoral habitats have been poorly documented. Herein we examined the specific dispersal mechanisms (diel vertical migration, water column, and bedload transport) and corresponding biological traits of the dispersing assemblage. At two sublittoral sites (sheltered and exposed) along the northern coast of Chile, we installed different trap types that capture benthic organisms with specific modes of dispersal (active emergence and passive water column drifting) and also by a combination of mechanisms (bedload transport, passive suspension and settlement from the water column). Our results show that even though there were common species in all types of traps, the post-larval macrobenthic assemblage depended on specific mechanisms of dispersal. At the sheltered site, abundant emerging taxa colonized sediments that were placed 0.5 m above the bottom and bedload-transported invertebrates appeared to be associated to the passive drifting of macroalgae. At the exposed site, assemblage dispersal was driven by specific mechanisms e.g. bedload transport and active emergence. At both sites the biological traits "small size, swimming, hard exoskeleton, free living and surface position" were associated to water column and bedload dispersal. This study highlights the importance of (i) the water-sediment interface for dispersal of post-larvae in sublittoral soft-bottom habitat, and (ii) a specific set of biological traits when dispersing either along the bottom or through the water column.

  8. Selected papers in the hydrologic sciences, 1986

    USGS Publications Warehouse

    Subitzky, Seymour

    1986-01-01

    West Point Reservoir is a multiple-purpose project on the Chattahoochee River about 112 river kilometers downstream from Atlanta on the Alabama-Georgia border. Urbanization has placed large demands on the Chattahoochee River, and water quality below Atlanta was degraded even before impoundment. Water-quality, bottom-sediment, and fish-tissue samples were collected from the reservoir to determine whether water-quality problems have occurred subsequent to impoundment. Severe hypolimnetic oxygen deficiency occurred in the reservoir following thermal stratification in the spring of 1978 and 1979. During stratified periods, concentrations of dissolved iron and manganese in the hypolimnion at the dam pool ranged from 0 to 7,700 and 30 to 2,000 micrograms per liter, respectively. During thermally stratified periods, phytoplankton standing crops in the upper lentic section of the reservoir ranged from 39,000 to 670,000 cells per milliliter. A maximum algal growth potential value (U.S. Geological Survey method) of 48.0 milligrams per liter was obtained at the uppermost data-collection station. The primary growth-limiting nutrients were nitrogen in the Iotic section and phosphorus in the lentic section. The highest measured concentrations of volatile solids and total iron, manganese, phosphorus, and organic carbon in sediments occurred in the lentic section of the reservoir, where bottom sediments consist mainly of silt and clay. Polychlorinated biphenyls and chlordane concentrations in the bottom sediments were as high as 740 and 210 micrograms per kilogram, respectively. Concentrations of polychlorinated biphenyls and chlordane in fish tissue ranged from 19 to 3,800 and 6.0 to 280 micrograms per kilogram, respectively.

  9. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  10. Regional Geology of the Southern Lake Erie (Ohio) Bottom: A Seismic Reflection and Vibracore Study.

    DTIC Science & Technology

    1982-12-01

    identify by block number) Geomorphology Sand resources Seismic reflection Lake Erie Sediments Vibracores Ohio 20. ABST’RACT (Cotfme -n 9e~re .ft if...postglacial deposit thicknesses range from 0 to 22 meters and like the till, the postglacial sediment thickens lakeward. The tills were first deposited on an...ihen Data Entered) PREFACE This report is one of three reports which describe results of the Inner Continental Shelf Sediment and Structure (ICONS

  11. Bottom stress measurements on the inner shelf

    USGS Publications Warehouse

    Sherwood, Christopher R.; Scully, Malcolm; Trowbridge, John

    2015-01-01

    Bottom stress shapes the mean circulation patterns, controls sediment transport, and influences benthic habitat in the coastal ocean. Accurate and precise measurements of bottom stress have proved elusive, in part because of the difficulty in separating the turbulent eddies that transport momentum from inviscid wave-induced motions. Direct covariance measurements from a pair of acoustic Doppler velocimeters has proved capable of providing robust estimates, so we designed a mobile platform coined the NIMBBLE for these measurements, and deployed two of them and two more conventional quadpods at seven sites on the inner shelf over a period of seven months. The resulting covariance estimates of stress and bottom roughness were lower than log-fit estimates, especially during calmer periods. Analyses of these data suggest the NIMBBLEs may provide an accurate and practical method for measuring bottom stress.

  12. Spatial and temporal variation of acoustic backscatter in the STRESS experiment

    NASA Astrophysics Data System (ADS)

    Dworski, J. George; Jackson, Darrell R.

    1994-08-01

    Acoustic backscatter measurements were made of the seabed with a bottom mounted, circularly scanning sonar. The placement was at 91 m depth, mid-shelf of Northern California (38° 34'N), site C3 of the experiment STRESS I (1988-1989). Our expectation was that sonar images (70 m radius, 12,000 m 2) would provide a means of observing, over a large field of view, changes in the bottom due to storm-induced sediment transport and due to bioturbation. This expectation was supported in part by towed sonar measurements at 35 kHz over a sandy area in the North Sea, where dramatic spatial variation in the level of the backseattered signal was observed during an Autumn storm on scales of a few km with no concomitant change in sediment grain size [ JACKSONet al. (1986) The Journal of the Acoustical Society of America, 80, 1188-1199]. It appeared possible that storm-driven sediment transport might have been responsible for this patchiness, by altering bottom roughness and by redeposition of suspended material. At the California site, a conventional sonar processing of our data from the STRESS experiment reveals no such dramatic change in backscattered signal level due to storms. The sonar images contain random structures whose time evolution is subtle and difficult to interpret. A much clearer picture of temporal and spatial variations emerges from a processing scheme involving cross-correlation of time-separated acoustic views of the bottom. In effect, the sequence of correlation data images produces a movie in which patches of activity are seen to develop as functions of time. It appears that most of this activity is biological rather than hydrodynamic. A tentative explanation is two-fold. The bottom shear stress might have been considerably greater at the North Sea site (with depth only one-half of the California site). The seafloor at the California site was silty-clayey, and backscatter from such floor is less sensitive to the water-floor interface shape and roughness than it would be to the same parameters of a sandy bottom.

  13. Velocity and bottom-stress measurements in the bottom boundary layer, outer Norton Sound, Alaska.

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Wiberg, P.

    1982-01-01

    We have used long-term measurements of near-bottom velocities at four heights above the sea floor in Norton Sound, Alaska, to compute hourly values of shear velocity u., roughness and bottom-drag coefficient. Maximum sediment resuspension and transport, predicted for periods when the computed value of u. exceeds a critical level, occur during peak tidal currents associated with spring tides. The fortnightly variation in u. is correlated with a distinct nepheloid layer that intensifies and thickens during spring tides and diminishes and thins during neap tides. The passage of a storm near the end of the experiment caused significantly higher u. values than those found during fair weather.-from Authros

  14. Heat flow bounds over the Cascadia margin derived from bottom simulating reflectors and implications for thermal models of subduction

    NASA Astrophysics Data System (ADS)

    Phrampus, Benjamin J.; Harris, Robert N.; Tréhu, Anne M.

    2017-09-01

    Understanding the thermal structure of the Cascadia subduction zone is important for understanding megathrust earthquake processes and seismogenic potential. Currently our understanding of the thermal structure of Cascadia is limited by a lack of high spatial resolution heat flow data and by poor understanding of thermal processes such as hydrothermal fluid circulation in the subducting basement, sediment thickening and dewatering, and frictional heat generation on the plate boundary. Here, using a data set of publically available seismic lines combined with new interpretations of bottom simulating reflector (BSR) distributions, we derive heat flow estimates across the Cascadia margin. Thermal models that account for hydrothermal circulation predict BSR-derived heat flow bounds better than purely conductive models, but still over-predict surface heat flows. We show that when the thermal effects of in-situ sedimentation and of sediment thickening and dewatering due to accretion are included, models with hydrothermal circulation become consistent with our BSR-derived heat flow bounds.

  15. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    PubMed Central

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-01-01

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site. PMID:28589962

  16. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE PAGES

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; ...

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  17. Numerical analysis of eccentric orifice plate using ANSYS Fluent software

    NASA Astrophysics Data System (ADS)

    Zahariea, D.

    2016-11-01

    In this paper the eccentric orifice plate is qualitative analysed as compared with the classical concentric orifice plate from the point of view of sedimentation tendency of solid particles in the fluid whose flow rate is measured. For this purpose, the numerical streamlines pattern will be compared for both orifice plates. The numerical analysis has been performed using ANSYS Fluent software. The methodology of CFD analysis is presented: creating the 3D solid model, fluid domain extraction, meshing, boundary condition, turbulence model, solving algorithm, convergence criterion, results and validation. Analysing the numerical streamlines, for the concentric orifice plate can be clearly observed two circumferential regions of separated flows, upstream and downstream of the orifice plate. The bottom part of these regions are the place where the solid particles could sediment. On the other hand, for the eccentric orifice plate, the streamlines pattern suggest that no sedimentation will occur because at the bottom area of the pipe there are no separated flows.

  18. Offset-vertical seismic profiling for marine gas hydrate exploration: Is it a suitable technique? First results from ODP Leg 164

    USGS Publications Warehouse

    Pecher, I.A.; Holbrook, W.S.; Stephen, R.A.; Hoskins, H.; Lizarralde, D.; Hutchinson, D.R.; Wood, W.T.

    1997-01-01

    Walkaway vertical seismic profiles were acquired during Ocean Drilling Project (ODP) Leg 164 at the Blake Ridge to investigate seismic properties of hydrate-bearing sediments and the zone of free gas beneath them. An evaluation of compressional (P-) wave arrivals Site 994 indicates P-wave anisotrophy in the sediment column. We identified several shear (S-) wave arrivals in the horizontal components of the geophone array in the borehole and in data recorded with an ocean bottom seismometer deployed at the seafloor. S-waves were converted from P-waves at several depth levels in the sediment column. One of the most prominent conversion points appears to be the bottom simulating reflector (BSR). It is likely that other conversion points are located in the zone of low P-wave reflectivity above the BSR. Modeling suggests that a change of the shear modulus is sufficient to cause significant shear conversion without a significant normal-incidence P-wave reflection.

  19. Fatty acid profiles of benthic environment associated with artificial reefs in subtropical Hong Kong.

    PubMed

    Cheung, Siu Gin; Wai, Ho Yin; Shin, Paul K S

    2010-02-01

    Artificial reefs can enhance habitat heterogeneity, especially in seabed degraded by bottom-dredging and trawling. However, the trophodynamics of such reef systems are not well understood. This study provided baseline data on trophic relationships in the benthic environment associated with artificial reefs in late spring and mid summer of subtropical Hong Kong, using fatty acid profiles as an indicator. Data from sediments collected at the reef base, materials from sediment traps deployed on top and bottom of the reefs, total particulate matter from the water column and oyster tissues from reef surface were subjected to principal component analysis. Results showed variations of fatty acid profiles in the total particulate matter, upper sediment trap and oyster tissue samples collected in the two samplings, indicating seasonal, trophodynamic changes within the reef system. The wastes produced by fish aggregating at the reefs can also contribute a source of biodeposits to the nearby benthic environment. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming.

    PubMed

    Hong, Wei-Li; Torres, Marta E; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.

  1. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  2. Quantitative distribution and functional groups of intertidal macrofaunal assemblages in Fildes Peninsula, King George Island, South Shetland Islands, Southern Ocean.

    PubMed

    Liu, Xiaoshou; Wang, Lu; Li, Shuai; Huo, Yuanzi; He, Peimin; Zhang, Zhinan

    2015-10-15

    To evaluate spatial distribution pattern of intertidal macrofauna, quantitative investigation was performed in January to February, 2013 around Fildes Peninsula, King George Island, South Shetland Islands. A total of 34 species were identified, which were dominated by Mollusca, Annelida and Arthropoda. CLUSTER analysis showed that macrofaunal assemblages at sand-bottom sites belonged to one group, which was dominated by Lumbricillus sp. and Kidderia subquadrata. Macrofaunal assemblages at gravel-bottom sites were divided into three groups while Nacella concinna was the dominant species at most sites. The highest values of biomass and Shannon-Wiener diversity index were found in gravel sediment and the highest value of abundance was in sand sediment of eastern coast. In terms of functional group, detritivorous and planktophagous groups had the highest values of abundance and biomass, respectively. Correlation analysis showed that macrofaunal abundance and biomass had significant positive correlations with contents of sediment chlorophyll a, phaeophorbide and organic matter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Selenium in Reservoir Sediment from the Republican River Basin

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  4. Iceberg ploughmark features on bottom surface of the South-Eastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dorokhov, Dmitry; Sivkov, Vadim; Dorokhova, Evgenia; Krechik, Viktor

    2016-04-01

    A detail swath bathymetry, side-scan sonar and acoustic profiling combined with sediment sampling during the 64th cruise of RV "Academic Mstislav Keldysh" (October 2015) allowed to identify new geomorphological features of the South-Eastern Baltic Sea bottom surface. The extended chaotic ploughmarks (furrows) in most cases filled with thin layer of mud were discovered on surface of the Gdansk-Gotland sill glacial deposits. They are observed on the depth of more than 70 m and have depth and width from 1 to 10 m. Most of them are v- or u-shaped stepped depressions. The side-scan records of similar geomorpholoical features are extensively reported from Northern Hemisphere and Antarctica (Goodwin et al., 1985; Dowdeswell et al., 1993). Ploughmarks are attributed to the action of icebergs scouring into the sediment as they touch bottom. We are suggest that furrows discovered in the South-Eastern Baltic Sea are also the result of iceberg scouring during the Baltic Ice Lake stage (more than 11 600 cal yr BP (Bjorck, 2008)). This assumption confirmed by occurrence of fragmental stones and boulders on the sea bottom surface which are good indicators of iceberg rafting (Lisitzin, 2003). Ice ploughmarks at sea bottom surface were not occurred before in the South-Eastern Baltic Sea. The study was financed by Russian Scientific Fund, grant number 14-37-00047. References Bjorck S. The late Quaternary development of the Baltic Sea Basin. In: The BACC Author Team (eds) Assessment of climate change for the Baltic Sea Basin. Springer, Berlin, Heidelberg. 2008. Dowdeswell J. A., Villinger H., Whittington R. J., Marienfeld P. Iceberg scouring in Scoresby Sund and on the East Greenland continental shelf // Marine Geology. V. 111. N. 1-2. 1993. P. 37-53. Goodwin C. R., Finley J. C., Howard L. M. Ice scour bibliography. Environmental Studies Revolving Funds Report No. 010. Ottawa. 1985. 99 pp. Lisitzin A. P. Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past. Springer, Heidelberg, Germany. 2003.

  5. WHISPERS Project on the easternmost slope of the Ross Sea (Antarctica): preliminary results.

    NASA Astrophysics Data System (ADS)

    Olivo, E.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Gales, J. A.; Florindo-Lopez, C.; Kim, S.; Kovacevic, V.; Rebesco, M.

    2017-12-01

    The advance and retreat of the West Antarctic Ice Sheet from the outer continental shelf and the oceanic circulation are the main causes of the depositional processes on the Ross Sea continental slope, at present time and during the most of the Cenozoic. Currently the Antarctic Bottom Water formation is directly linked to the relatively warm Circumpolar Deep Water that, encroaching the continental shelf, mixes with the colder Ross Sea Bottom Water. Detailed multibeam and geological surveys useful to locate and characterize peculiar morphological structures on the bottom are essential to study how the glacial and oceanographic processes interact with the seabed sediments. In the framework of the PNRA-WHISPERS project (XXXIIth Italian Antarctic expedition - January/March 2017), new multibeam bathymetric, sub-bottom chirp, were acquired from the easternmost margin of the Ross Sea, on the southeastern side of the Hayes Bank, usually covered by sea ice. We observed on the upper slope erosional features (incised gullies of likely glacial meltwater origin). A broad scar in the upper slope is characterized by an elongated SSW-NNE ridge (10 km long, 850-1200 m water depth, 2 km wide), that may be a remnants of previous glacial or debris flow deposits, eroded by meltwater outwash discharge at the beginning of grounding ice retreat and by RSBW cascading along the slope, as documented by Expandable Bathy-Thermograph and Acoustic Depth Current Profile data. Sub-bottom chirp profiles crossing this ridge show a very low amplitude reflective sea bed, supporting the hypothesis of its soft sediment nature, in good agreement with a very low acoustic velocity obtained by multichannel seismic data reprocessing. The occurrence of internal stratification on 2D multichannel seismic profiles would discount a gas-fluids related mud volcano origin. No sediment cores were collected, due to bad sea conditions and limited ship time, further data collection would be needed to fully understand the origin of such depositional feature and its relation with slope glacial and oceanographic processes.

  6. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.

    PubMed

    Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim

    2016-01-01

    The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.

  7. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average accumulation rate for Florida Bay of 8.7 cm 1000 yr-1 and suggests that sediment dissolution plays a more important role than sediment transport in loss of sediment from Florida Bay. ?? 2006 Estuarine Research Federation.

  8. Different erosion characteristics of sediment deposits in combined and storm sewers.

    PubMed

    Xu, Zuxin; Wu, Jun; Li, Huaizheng; Liu, Zhenghua; Chen, Keli; Chen, Hao; Xiong, Lijun

    2017-04-01

    To investigate the different erosion patterns of sediments in combined and storm sewers, sediments from three separate sewer systems and two combined sewer systems in urban Shanghai were collected for the flushing experiments. These experiments were conducted with different consolidation periods and shear velocities. As the consolidation period increases, dissolved oxygen exhibits a positive effect on the microbial transformations of organic substrates. Potential structural changes and separations of the surface and bottom layers of sediments are observed. The results also reveal that the organic matter, particle size and moisture have different effects on the erosion resistance of sediments. Furthermore, illicit connections behaved as an important factor affecting the viscosity and static friction force of particles, which directly alter the erosion resistance of sewer sediments.

  9. Experimental study of hydraulics and sediment capture efficiency in catchbasins.

    PubMed

    Tang, Yangbo; Zhu, David Z; Rajaratnam, N; van Duin, Bert

    2016-12-01

    Catchbasins (also known as gully pot in the UK and Australia) are used to receive surface runoff and drain the stormwater into storm sewers. The recent interest in catchbasins is to improve their effectiveness in removing sediments in stormwater. An experimental study was conducted to examine the hydraulic features and sediment capture efficiency in catchbasins, with and without a bottom sump. A sump basin is found to increase the sediment capture efficiency significantly. The effect of inlet control devices, which are commonly used to control the amount of flow into the downstream storm sewer system, is also studied. These devices will increase the water depth in the catchbasin and increase the sediment capture efficiency. Equations are developed for predicting the sediment capture efficiency in catchbasins.

  10. Sediment Transport and Infilling of a Borrow Pit on an Energetic Sandy Ebb Tidal Delta Offshore of Hilton Head Island, South Carolina

    NASA Astrophysics Data System (ADS)

    Wren, A.; Xu, K.; Ma, Y.; Sanger, D.; Van Dolah, R.

    2014-12-01

    Bottom-mounted instrumentation was deployed at two sites on an ebb tidal delta to measure hydrodynamics, sediment transport, and seabed elevation. One site ('borrow site') was 2 km offshore and used as a dredging site for beach nourishment of nearby Hilton Head Island in South Carolina, and the other site ('reference site') was 10 km offshore and not directly impacted by the dredging. In-situ time-series data were collected during two periods after the dredging: March 15 - June 12, 2012('spring') and August 18 - November 18, 2012 ('fall'). At the reference site directional wave spectra and upper water column current velocities were measured, as well as high-resolution current velocity profiles and suspended sediment concentration profiles in the Bottom Boundary Layer (BBL). Seabed elevation and small-scale seabed changes were also measured. At the borrow site seabed elevation and near-bed wave and current velocities were collected using an Acoustic Doppler Velocimeter. Throughout both deployments bottom wave orbital velocities ranged from 0 - 110 m/s at the reference site. Wave orbital velocities were much lower at the borrow site ranging from 10-20 cm/s, as wave energy was dissipated on the extensive and rough sand banks before reaching the borrow site. Suspended sediment concentrations increased throughout the BBL when orbital velocities increased to approximately 20 cm/s. Sediment grain size and critical shear stresses were similar at both sites, therefore, re-suspension due to waves was less frequent at the borrow site. However, sediment concentrations were highly correlated with the tidal cycle at both sites. Semidiurnal tidal currents were similar at the two sites, typically ranging from 0 - 50 cm/s in the BBL. Maximum currents exceeded the critical shear stress and measured suspended sediment concentrations increased during the first hours of the tidal cycle when the tide switched to flood tide. Results indicate waves contributed more to sediment mobility at the reference site, while tidal forcing was the dominant factor at the borrow site. The seabed elevation data corraborates these results as active migrating ripples of 10 cm were measured at the reference site, while changes in seabed elevation at the borrow site were more gradual with approximately 30 cm of net accretion throughout the study.

  11. Properties of the Water Column and Bottom Derived from AVIRIS Data

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.; Chen, F. Robert; Peacock, Thomas G.

    2001-01-01

    Using AVIRIS data as an example, we show in this study that the optical properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom-albedo image shows clear spatial patterns, with end members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. These results suggest that the model and approach used work very well for the retrieval of sub-surface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  12. A long record of extreme wave events in coastal Lake Hamana, Japan

    NASA Astrophysics Data System (ADS)

    Boes, Evelien; Yokoyama, Yusuke; Schmidt, Sabine; Riedesel, Svenja; Fujiwara, Osamu; Nakamura, Atsunori; Garrett, Ed; Heyvaert, Vanessa; Brückner, Helmut; De Batist, Marc

    2017-04-01

    Coastal Lake Hamana is located near the convergent tectonic boundary of the Nankai-Suruga Trough, along which the Philippine Sea slab is subducted underneath the Eurasian Plate, giving rise to repeated tsunamigenic megathrust earthquakes (Mw ≥ 8). A good understanding of the earthquake- and tsunami-triggering mechanisms is crucial in order to better estimate the complexity of seismic risks. Thanks to its accommodation space, Lake Hamana may represent a good archive for past events, such as tsunamis and tropical storms (typhoons), also referred to as "extreme wave" events. Characteristic event layers, consisting of sediment entrained by these extreme waves and their backwash, are witnesses of past marine incursions. By applying a broad range of surveying methods (reflection-seismic profiling, gravity coring, piston coring), sedimentological analyses (CT-scanning, XRF-scanning, multi-sensor core logging, grain size, microfossils etc.) and dating techniques (210Pb/137Cs, 14C, OSL, tephrochronology), we attempt to trace extreme wave event deposits in a multiproxy approach. Seismic imagery shows a vertical stacking of stronger reflectors, interpreted to be coarser-grained sheets deposited by highly energetic waves. Systematic sampling of lake bottom sediments along a transect from ocean-proximal to ocean-distal sites enables us to evaluate vertical and lateral changes in stratigraphy. Ocean-proximal, we observe a sequence of eight sandy units separated by silty background sediments, up to a depth of 8 m into the lake bottom. These sand layers quickly thin out and become finer-grained land-inward. Seismic-to-core correlations show a good fit between the occurrence of strong reflectors and sandy deposits, hence confirming presumptions based on acoustic imagery alone. Sand-rich intervals typically display a higher magnetic susceptibility, density and stronger X-ray attenuation. However, based on textural and structural differences, we can make the distinction between different types of sand units: i) massive to layered sands with a sharp, erosive lower contact, ii) thin, discontinuous sand lenses with a sharp lower contact and iii) inter-fingered sand-rich and silt-rich intervals with a gradual lower contact. Variability in appearance suggests a variety in triggering events too, going from tsunamis, over storm surges (typhoons) to the impact of sea-level changes on the interaction between tidal delta and lacustrine sedimentation. Preliminary dating (210Pb/137Cs) results in sedimentation rates of 0.4 cm/yr for the last 100-150 yr. Two closely-spaced tephra layers are tentatively linked with the reported Osawa Fuji scoria (3090 BP) and Kawago-daira pumice (3150 BP). However, more absolute ages (14C and OSL) are essential in order to obtain an accurate age-depth model and to position events in time. We are proceeding with the age determination of event sand beds based on single-grain OSL dating of feldspars. Whereas quartz appeared to be not suitable for dating, research in onshore archives close to Lake Hamana already proved the suitability of the IRSL50 signal of feldspar.

  13. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    USGS Publications Warehouse

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    The same resuspension effect probably exists in the Tualatin River during storm-runoff events following prolonged periods of low flow, when increased stream velocity may result in the resuspension of bottom sediments. The resuspension causes increased turbidity and increased oxygen demand, resulting in lower instream dissolved oxygen concentrations.

  14. Dissolved oxygen saturation controls PAH biodegradation in freshwater estuary sediments.

    PubMed

    Boyd, T J; Montgomery, M T; Steele, J K; Pohlman, J W; Reatherford, S R; Spargo, B J; Smith, D C

    2005-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in terrestrial and aquatic environments and can represent a significant constituent of the carbon pool in coastal sediments. We report here the results of an 18-month seasonal study of PAH biodegradation and heterotrophic bacterial production and their controlling biogeochemical factors from 186 sediment samples taken in a tidally influenced freshwater estuary. For each sampling event, measurements were averaged from 25-45 stations covering approximately 250 km(2). There was a clear relationship between bacterial production and ambient temperature, but none between production and bottom water dissolved oxygen (DO) % saturation or PAH concentrations. In contrast with other studies, we found no effect of temperature on the biodegradation of naphthalene, phenanthrene, or fluoranthene. PAH mineralization correlated with bottom water DO saturation above 70% (r(2) > 0.99). These results suggest that the proportional utilization of PAH carbon to natural organic carbon is as much as three orders of magnitude higher during cooler months, when water temperatures are lower and DO % saturation is higher. Infusion of cooler, well-oxygenated water to the water column overlying contaminated sediments during the summer months may stimulate PAH metabolism preferentially over non-PAH organic matter.

  15. Modeling seasonal variability of carbonate system parameters at the sediment -water interface in the Baltic Sea (Gdansk Deep)

    NASA Astrophysics Data System (ADS)

    Protsenko, Elizaveta; Yakubov, Shamil; Lessin, Gennady; Yakushev, Evgeniy; Sokołowski, Adam

    2017-04-01

    A one-dimensional fully-coupled benthic pelagic biogeochemical model BROM (Bottom RedOx Model) was used for simulations of seasonal variability of biogeochemical parameters in the upper sediment, Bottom Boundary Layer and the water column in the Gdansk Deep of the Baltic Sea. This model represents key biogeochemical processes of transformation of C, N, P, Si, O, S, Mn, Fe and the processes of vertical transport in the water column and the sediments. The hydrophysical block of BROM was forced by the output calculated with model GETM (General Estuarine Transport Model). In this study we focused on parameters of carbonate system at Baltic Sea, and mainly on their distributions near the sea-water interface. For validating of BROM we used field data (concentrations of main nutrients at water column and porewater of upper sediment) from the Gulf of Gdansk. The model allowed us to simulate the baseline ranges of seasonal variability of pH, Alkalinity, TIC and calcite/aragonite saturation as well as vertical fluxes of carbon in a region potentially selected for the CCS storage. This work was supported by project EEA CO2MARINE and STEMM-CCS.

  16. Small-scale lacustrine drifts in Lake Champlain, Vermont

    USGS Publications Warehouse

    Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas

    2012-01-01

    High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.

  17. Occurrence and distribution of bacterial indicators and pathogens in canal communities along the Texas coast.

    PubMed

    Goyal, S M; Gerba, C P; Melnick, J L

    1977-08-01

    Increased construction of residential canal communities along the southern coastline of the United States has led to a concern about their impact on water quality. Pollution of such dead-end canals is potentially hazardous because of their heavy usage for recreational activities. Coliforms, fecal coliforms, and salmonellae in the surface water and bottom sediments of six selected residential coastal canals were monitored over a period of 17 months. No statistically significant relationship was observed between the organism concentrations and temperature, pH, turbidity, and suspended solids content of water. An inverse relationship between the concentration of indicator organism and salinity of water was found, however, to occur at a 99.9% level of significance. All of the microorganisms studied were found to be present in greater numbers in sediments than in the overlying water, often by a factor of several logs. Heavy rainfall resulted in large increases in the number of organisms in both water and sediment samples. Our results indicate that bottom sediments in the shallow canal systems can act as reservoirs of enteric bacteria, which may be resuspended in response to various environmental factors and recreational activities.

  18. Site 765: Sediment Lithostratigraphy

    USGS Publications Warehouse

    ,

    1990-01-01

    A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.

  19. Occurrence and Trends of Selected Chemical Constituents in Bottom Sediment, Grand Lake O' the Cherokees, Northeast Oklahoma, 1940-2008

    USGS Publications Warehouse

    Juracek, Kyle E.; Becker, Mark F.

    2009-01-01

    After over 100 years of continuous activity, lead and zinc mining in the Tri-State Mining District (hereafter referred to as the TSMD) in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma ended in the 1970s. The mining activity resulted in substantial historical and ongoing input of cadmium, lead, and zinc to the environment including Grand Lake O' the Cherokees (hereafter referred to as Grand Lake), a large reservoir in northeast Oklahoma. To help determine the extent and magnitude of contamination in Grand Lake, a one-year study was conducted by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service. Bottom-sediment coring at five sites was used to investigate the occurrence of cadmium, lead, zinc, and other selected constituents in the bottom sediment of Grand Lake. Cadmium concentrations in the bottom sediment of Grand Lake ranged from 2.3 to 3.6 mg/kg (milligrams per kilogram) with a median of 3.5 mg/kg (5 samples). Compared to an estimated local background concentration of 0.6 mg/kg, the historical mining activity increased cadmium concentrations by about 280 to 500 percent. Lead concentrations ranged from 35 to 102 mg/kg with a median of 59 mg/kg (50 samples). Compared to an estimated local background concentration of 20 mg/kg, the historical mining activity increased lead concentrations by about 75 to 410 percent. The range in zinc concentrations was 380 to 986 mg/kg with a median of 765 mg/kg (50 samples). Compared to an estimated local background concentration of 100 mg/kg, the historical mining activity increased zinc concentrations by about 280 to 890 percent. With the exception of the most upstream coring site, the lead and zinc depositional profiles generally were similar in terms of the range in concentrations measured and the temporal pattern observed. Depositional profiles for lead and zinc indicated mid-core peaks followed by concentrations that decreased since about the 1980s. The depositional profiles reflect the complex interaction of several factors including historical mining and related activities, mine drainage, remediation, landscape stabilization, precipitation and associated runoff, and the erosion and transport of contaminated and clean sediments within the basin. Compared to sediment-quality guidelines, the Grand Lake samples had cadmium concentrations that were substantially less than the general probable-effects concentration (PEC) (4.98 mg/kg) and a TSMD-specific PEC (11.1 mg/kg). The PECs represent the concentration above which toxic biological effects are likely to occur. Likewise, all sediment samples had lead concentrations that were substantially less than the general PEC (128 mg/kg) and a TSMD-specific PEC (150 mg/kg). Zinc concentrations typically exceeded the general PEC (459 mg/kg), but were substantially less than a TSMD-specific PEC (2,083 mg/kg). Throughout the history of Grand Lake, lead and zinc concentrations in the deposited sediment did not approach or exceed the TSMD-specific PECs. As of 2008, legacy effects of mining still included the delivery of contaminated sediment to Grand Lake by the Spring and Neosho Rivers. The Neosho River, with its larger flows and less-contaminated sediment, likely dilutes the load of contaminated sediment delivered to Grand Lake by the Spring River. The information contained in this report provides a baseline of Grand Lake conditions with which to compare future conditions that may represent a response to changes in mining-related activity in the Grand Lake Basin.

  20. Concentration of Natural Gas Hydrate Beneath the Permafrost Zone: Implications for Geochemical and Hydrologic Investigations

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Waseda, A.; Namikawa, T.

    2004-12-01

    Gas hydrates are ice-like solids made of water molecules containing various gas molecules. The geological evaluations have suggested worldwide methane contents of gas hydrate beneath deep sea floors as well as permafrost-related zones to about twice the total reserves of conventional and unconventional hydrocarbon. Scientific and economic interests are increasing in gas hydrate as a new energy resource and a potential greenhouse gas. In 1998 and 2002 Mallik wells were drilled in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data, anomalies of chloride contents in pore waters, core temperature depression as well as visible gas hydrates have confirmed the highly saturated pore-space hydrate as intergranular pore filling within sandy layers, whose saturations are higher than 70% in pore volume. Muddy sediments scarcely contain gas hydrate. The Nankai Trough runs along the Japanese Island, where forearc basins and accretionary prisms developed extensively and BSRs (bottom simulating reflectors) have been recognized widely. The METI Nankai Trough wells in 2000 also revealed the presence of pore-space hydrate filling intergranular pore of sandy layers. It is remarked that there are many similar features in appearance and characteristics between the Mallik and Nankai Trough areas with observations of well-interconnected and highly saturated pore-space hydrate. It is necessary for evaluating subsurface fluid flow behaviors to know both porosity and permeability of gas hydrate-bearing sandy sediments, and measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sands revealed important geologic and sedimentologic controls on the formation and concentration of gas hydrate. It is suggested that the distribution of a porous and coarser-grained sandy sediments is one of the most important factors to control the occurrence of gas hydrates, as well as physicochemical conditions.

  1. Morphology and processes associated with the accumulation of the fine-grained sediment deposit on the southern New England shelf

    USGS Publications Warehouse

    Twichell, David C.; McClennen, Charles E.; Butman, Bradford

    1981-01-01

    A 13,000 km2 area of the southern New England Continental Shelf which is covered by anomalously fine-grained sediment has been surveyed by means of high-resolution, seismic-reflection and side-scan sonar techniques to map its morphology and structure, and a near-bottom instrument system contributed to understanding present activity of the deposit. Seismic-reflection profiles show that the fine-grained deposit, which is as much as 13 m thick, has accumulated during the last transgression because it rests on a reflector that is geomorphically similar to and continuous with the Holocene transgressive sand sheet still exposed on the shelf to the west. The ridge and swale topography comprising the sand sheet on the shelf off New Jersey and Long Island are relict in origin as these same features are found buried under the fine sediment deposit. Southwestward migrating megaripples observed on the sonographs in the eastern part of the deposit are evidence that sediment is still actively accumulating in this area. In the western part of the deposit, where surface sediment is composed of silt plus clay, evidence of present sediment mobility consists of changes in the near-bottom, suspended-matter concentrations primarily associated with storms. Nantucket Shoals and Georges Bank are thought to be the sources for the fine-textured sediment. Storms and strong tidal currents in these shoal areas may still erode available fine-grained material, which then is transported westward by the mean drift to the southern New England Shelf, where a comparatively tranquil environment permits deposition of the fine material.

  2. Architecture and sedimentary processes on the mid-Norwegian continental slope: A 2.7 Myr record from extensive seismic evidence

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2018-07-01

    Quaternary architectural evolution and sedimentary processes on the mid-Norwegian continental slope are investigated using margin-wide three- and two-dimensional seismic datasets. Of ∼100,000 km3 sediments delivered to the mid-Norwegian shelf and slope over the Quaternary, ∼75,000 km3 comprise the slope succession. The structural high of the Vøring Plateau, characterised by initially low (∼1-2°) slope gradients and reduced accommodation space, exerted a strong control over the long-term architectural evolution of the margin. Slope sediment fluxes were higher on the Vøring Plateau area, increasing up to ∼32 km3 ka-1 during the middle Pleistocene, when fast-flowing ice streams advanced to the palaeo-shelf edge. Resulted in a more rapid slope progradation on the Vøring Plateau, these rates of sediment delivery are high compared to the maximum of ∼7 km3 ka-1 in the adjacent sectors of the slope, characterised by steeper slope (∼3-5°), more available accommodation space and smaller or no palaeo-ice streams on the adjacent shelves. In addition to the broad-scale architectural evolution, identification of more than 300 buried slope landforms provides an unprecedented level of detailed, process-based palaeoenvironmental reconstruction. Channels dominate the Early Pleistocene record (∼2.7-0.8 Ma), during which glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Morphologic signature of glacigenic debris-flows appear within the Middle-Late Pleistocene (∼0.8-0 Ma) succession. Their abundance increases towards Late Pleistocene, marking a decreasing role for channelized turbidity currents and dense water flows. This broad-scale palaeo-environmental shift coincides with the intensification of Northern Hemispheric glaciations, highlighting first-order climate control on the sedimentary processes in high-latitude continental slopes.

  3. Reactive transport modeling of nitrogen in Seine River sediments

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  4. Aspects of the bottom sediment of Lake Nakaumi and Honjo area ~ featuring with organic matter and the Sulfides ~

    NASA Astrophysics Data System (ADS)

    Shinohara, R.

    2015-12-01

    Lake Nakaumi is a brackish water located at southwest Japan. Seawater from the Sea of Japan inflows through Sakai-strait, and river water flows through the Oohashi River into this lake. Lake Nakaumi is characterized with hypoxic and/or anoxic condition of bottom water derived with the distinct stratification of salinity in summer season. In this lake, a public project had been carried out for land reclamation since 1963. Honjo Area located to the north part of Lake Nakaumi, was semi-separated from Lake Nakaumi by reclamation dikes constructed for this project at 1981. However, this public project was aborted with the change of social conditions. To the effective utilization of the area, the partial removal of dike was carried out. Seawater from Sakai-strait flows directly into Honjo Area again. Environmental change of the lake is expected by this inflow of the seawater in Lake Nakaumi and Honjo Area after this restoration. It is well known that the surface sediment reflects the environment of lake bottom. The organic matter and the sulfides in sediment are good indicators of sedimentation environment. In this study, we analyzed them by several methods and grasped the bottom environment of both areas after the removal of dikes. We examined the impact of the restoration to both areas by comparing the observations with the past data. Surface sediment samples in Lake Nakaumi and Honjo Area were obtained at 77 and 40 stations, respectively. We collected surface sediment (about 1cm) were for each station, and analyzed total organic carbon (TOC) and total nitrogen (TN) as organic matter, and hydrogen sulfide (H2S) in pore water, total sulfide (TS) and acid volatile sulfide (AVS) as sulfides. TOC contents of Lake Nakaumi and Honjo Area range within 0.0-5.1% and 0.2-4.9%, respectively. TN contents range within 0.0-0.6 % and 0.1-0.6 %. TS contents range within 0.1-2.6% and 0.0-2.0 %. H2S contents range within 0.3-119.0 ppm and 0.5-140.4 ppm. AVS contents range within 0.0-9.4 mg/g and 0.0-5.1 mg/g. In comparison between Lake Nakaumi and Honjo Area, the apparent difference was not detected in H2S and AVS contents, but there was a broad distinction in TS contents. This results shows that Honjo Area deposits significantly little FeS2 contents. It was thought that a difference in the form of sulfide showed a characteristic of Honjo Area.

  5. Assessing the role of bed sediments in the persistence of red mud pollution in a shallow lake (Kinghorn Loch, UK).

    PubMed

    Olszewska, Justyna P; Heal, Kate V; Winfield, Ian J; Eades, Lorna J; Spears, Bryan M

    2017-10-15

    Red mud is a by-product of alumina production. Little is known about the long-term fate of red mud constituents in fresh waters or of the processes regulating recovery of fresh waters following pollution control. In 1983, red mud leachate was diverted away from Kinghorn Loch, UK, after many years of polluting this shallow and monomictic lake. We hypothesised that the redox-sensitive constituents of red mud leachate, phosphorus (P), arsenic (As) and vanadium (V), would persist in the Kinghorn Loch for many years following pollution control as a result of cycling between the lake bed sediment and the overlying water column. To test this hypothesis, we conducted a 12-month field campaign in Kinghorn Loch between May 2012 and April 2013 to quantify the seasonal cycling of P, As, and V in relation to environmental conditions (e.g., dissolved oxygen (DO) concentration, pH, redox chemistry and temperature) in the lake surface and bottom waters. To confirm the mechanisms for P, As and V release, a sediment core incubation experiment was conducted using lake sediment sampled in July 2012, in which DO concentrations were manipulated to create either oxic or anoxic conditions similar to the bed conditions found in the lake. The effects on P, As, and V concentrations and species in the water column were measured daily over an eight-day incubation period. Phosphate (PO 4 -P) and dissolved As concentrations were significantly higher in the bottom waters (75.9 ± 30.2 μg L -1 and 23.5 ± 1.83 μg L -1 , respectively) than in the surface waters (12.9 ± 1.50 μg L -1 and 14.1 ± 2.20 μg L -1 , respectively) in Kinghorn Loch. Sediment release of As and P under anoxic conditions was confirmed by the incubation experiment and by the significant negative correlations between DO and P and As concentrations in the bottom waters of the lake. In contrast, the highest dissolved V concentrations occurred in the bottom waters of Kinghorn Loch under oxic conditions (15.0 ± 3.35 μg L -1 ), with the release from the bed sediment apparently being controlled by a combination of competitive ion concentrations, pH and redox conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Diversity And Abundance Of Deep-Water Coral Mounds In The Straits Of Florida: A Result of Adaptability To Local Environments?

    NASA Astrophysics Data System (ADS)

    Correa, T. B.; Grasmueck, M.; Eberli, G.; Viggiano, D. A.; Rosenberg, A.; Reed, J. K.

    2007-12-01

    To improve the understanding of the Florida-Bahamas deep-water coral mound ecosystem, Autonomous Underwater Vehicle (AUV) surveys were conducted on five coral mound fields throughout the Straits of Florida (three sites at the base of slope of Great Bahama Bank (GBB), one in the middle of the Straits (MS) and one at the base of the Miami Terrace (MT)) in water depths of 590 to 860 m. The AUV provides high-resolution bathymetric maps, sub-bottom profiles and oceanographic data. The AUV survey sites were subsequently groundtruthed via sample collection and video transects, using the Johnson Sealink submersible. Contrary to previous surveys, we found a high diversity in coral mound morphology between sites separated by 15 to 80 km. The MT site is characterized by sinusoidal coral mound ridges, while the MS site contains densely clustered small coral mounds. Meanwhile, mounds of the GBB region are better developed, with some individual mounds reaching up to 90 m in height. Benthic coverage of live corals also differs between sites; the GBB sites are characterized by mounds densely covered by large thickets of live corals, while small thickets of mostly dead corals dominate the MT and MS sites. Several environmental factors may explain these differences. For example, bottom current patterns change between sites. The MT and the MS sites have a unidirectional regime (southward or northward flow, respectively), whereas the GBB sites have a tidal current regime. Sedimentation patterns as depicted by sub-bottom profiles also vary between the sites; coral mounds in the GBB area appear to receive higher sediment input, which can significantly enhance mound growth rates as the reef framework baffles and traps mobile sediments. However, coral mounds that cannot keep-up with the sedimentation rate are buried. Therefore, in the high sedimentation areas of GBB, flourishing live coral mounds are limited to elevated positions (i.e. plateaus, ridges crests) where sediment accumulation is lessened. Corals in these raised locations also benefit from increased exposure to nutrient-rich tidal currents, supporting a denser live coral coverage. Sub-bottom profiles of the MT site show undulating coral ridges developed on top of a relatively flat sub-surface, indicating that antecedent topography is not the only factor determining mound distribution. The integrated AUV data suggest that variable environmental factors, such as sedimentation and current patterns, contribute to the high diversity between coral mound sites of the Straits of Florida. Environmental conditions change over distances of only a few kilometers creating localized and diverse deep-water coral habitats. The deepwater fauna adapts to the local oceanographic and geological conditions. This results in an unexpectedly high abundance of deep-water coral communities with diverse expressions.

  7. Field observation and analysis of wave-current-sediment movement in Caofeidian Sea area in the Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Zuo, Li-qin; Lu, Yong-jun; Wang, Ya-ping; Liu, Huai-xiang

    2014-06-01

    In order to study the mechanism of flow-sediment movement, it is essential to obtain measured data of water hydrodynamic and sediment concentration process with high spatial and temporal resolution in the bottom boundary layer (BBL). Field observations were carried out in the northwest Caofeidian sea area in the Bohai Bay. Near 2 m isobath (under the lowest tidal level), a tripod system was installed with AWAC (Acoustic Wave And Current), ADCP (Acoustic Doppler Current Profilers), OBS-3A (Optical Backscatter Point Sensor), ADV (Acoustic Doppler Velocimeters), etc. The accurate measurement of the bottom boundary layer during a single tidal period was carried out, together with a long-term sediment concentration measurement under different hydrological conditions. All the measured data were used to analyze the characteristics of wave-current-sediment movement and the BBL. Analysis was performed on flow structure, shear stress, roughness, eddy viscosity and other parameters of the BBL. Two major findings were made. Firstly, from the measured data, the three-layer distribution model of the velocity profiles and eddy viscosities in the wave-current BBL are proposed in the observed sea area; secondly, the sediment movement is related closely to wind-waves in the muddy coast area where sediment is clayey silt: 1) The observed suspended sediment concentration under light wind conditions is very low, with the peak value generally smaller than 0.1 kg/m3 and the average value being 0.03 kg/m3; 2) The sediment concentration increases continuously under the gales over 6-7 in Beaufort scale, under a sustained wind action. The measured peak sediment concentration at 0.4 m above the seabed is 0.15-0.32 kg/m3, and the average sediment concentration during wind-wave action is 0.08-0.18 kg/m3, which is about 3-6 times the value under light wind conditions. The critical wave height signaling remarkable changes of sediment concentration is 0.5 m. The results show that the suspended load sediment concentration is mainly influenced by wave-induced sediment suspension.

  8. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-03-31

    ISS027-E-009564 (31 March 2011) --- Agricultural fields along the Shebelle River in Ethiopia are featured in this image photographed by an Expedition 27 crew member on the International Space Station. The Shebelle River supports limited agricultural development within the arid to semi-arid Ogaden Plateau region of southeastern Ethiopia. This detailed photograph illustrates a network of irrigation canals and fields located approximately 42 kilometers to the west-northwest of the city of Gode, Ethiopia. Floodplain sediments and soils are dark brown to gray (center), and contrast with reddish rocks and soils of the adjacent plateau. Water in the Shebelle River, and the irrigation canals, has a bright, mirror-like appearance due to sunglint, or light reflecting off the water surface back towards the observer on the space station. Vegetation in the floodplain (bottom center) and agricultural fields is dark green. The river water supports a variety of crops?the most common being sorghum and maize?as well as grazing for livestock (cattle, sheep, goats, and camels). The Shebelle River has its headwaters in the Ethiopian Highlands, and transports water and sediment 1,000 kilometers to the southeast across Ethiopia, continuing an additional 130 kilometers into neighboring Somalia. The Shebelle River does not reach the Indian Ocean during most years, but disappears into the sands near the coast in Somalia. During periods of heavy rainfall and flooding however, the Shebelle can reach the Indian Ocean.

  9. Impacts of dredged-material disposal on the coastal soft-bottom macrofauna, Saronikos Gulf, Greece.

    PubMed

    Katsiaras, N; Simboura, N; Tsangaris, C; Hatzianestis, I; Pavlidou, A; Kapsimalis, V

    2015-03-01

    Dredged sediments derived by the low course and estuary of the metropolitan river of Athens (Kifissos River) were dumped every day for 21 months to an open-sea site in the Saronikos Gulf. The spoil-ground and surrounding area was monitored prior, during and post to dumping for 24 months, over 6-month intervals. Dumping significantly changed the granulometry of the pre-existing superficial sediments to finer-grained only in the spoil ground and increased the sediment contamination load (aliphatic, polycyclic aromatic hydrocarbons and heavy metals) throughout the study area. Microtox® SPT showed that sediment toxicity levels were high at almost all sampling stations. During dumping, burial of natural soft-bottom habitats degraded severely the communities of the spoil-ground resulting in an almost azoic state, as well as significantly declined the species number and abundance of benthic communities in locations up to 3.2 km away from the spoil-ground, due to dispersion of the spoil and smothering. Benthic indices on the surrounding sites were significantly correlated with hydrocarbon concentrations and sediment toxicity levels. Post to dumping, the macrofauna communities of the spoil-ground were still significantly degraded, but the surrounding areas showed patterns of recovery. However, the high concentrations of aliphatic, polycyclic aromatic hydrocarbons and levels of toxicity persisted in the sediments after the ceasing of dumping operations in the study area, implying the ecological hazard imposed on the area. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Gas hydrate volume estimations on the South Shetland continental margin, Antarctic Peninsula

    USGS Publications Warehouse

    Jin, Y.K.; Lee, M.W.; Kim, Y.; Nam, S.H.; Kim, K.J.

    2003-01-01

    Multi-channel seismic data acquired on the South Shetland margin, northern Antarctic Peninsula, show that Bottom Simulating Reflectors (BSRs) are widespread in the area, implying large volumes of gas hydrates. In order to estimate the volume of gas hydrate in the area, interval velocities were determined using a 1-D velocity inversion method and porosities were deduced from their relationship with sub-bottom depth for terrigenous sediments. Because data such as well logs are not available, we made two baseline models for the velocities and porosities of non-gas hydrate-bearing sediments in the area, considering the velocity jump observed at the shallow sub-bottom depth due to joint contributions of gas hydrate and a shallow unconformity. The difference between the results of the two models is not significant. The parameters used to estimate the total volume of gas hydrate in the study area were 145 km of total length of BSRs identified on seismic profiles, 350 m thickness and 15 km width of gas hydrate-bearing sediments, and 6.3% of the average volume gas hydrate concentration (based on the second baseline model). Assuming that gas hydrates exist only where BSRs are observed, the total volume of gas hydrates along the seismic profiles in the area is about 4.8 ?? 1010 m3 (7.7 ?? 1012 m3 volume of methane at standard temperature and pressure).

  11. Transport of (137)Cs, (241)Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea.

    PubMed

    Lujanienė, G; Remeikaitė-Nikienė, N; Garnaga, G; Jokšas, K; Šilobritienė, B; Stankevičius, A; Šemčuk, S; Kulakauskaitė, I

    2014-01-01

    Activities of (137)Cs, (241)Am and (239,240)Pu were analyzed with special emphasis on better understanding of radionuclide transport from land via the Neman River estuaries to the Baltic Sea and behavior in the marine environment. Although activity concentrations of (137)Cs in water samples collected the Baltic Sea were almost 100 times higher as compared to the Curonian Lagoon, its activities in the bottom sediments were found to be comparable. Activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios indicated a different contribution of the Chernobyl-originated Pu to the suspended particulate matter (SPM) and bottom sediments. The largest amount of the Chernobyl-derived Pu was found in the smallest suspended matter particles of 0.2-1 μm in size collected in the Klaipeda Strait in 2011-2012. The decrease of characteristic activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios towards the global fallout ones in surface soil and the corresponding increase of plutonium (Pu) ratios in the suspended particulate matter and bottom sediments have indicated that the Chernobyl-derived Pu, primarily deposited on the soil surface, was washed out and transported to the Baltic Sea. Behavior of (241)Am was found to be similar to that of Pu isotopes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Bottom RedOx Model (BROM v.1.1): a coupled benthic-pelagic model for simulation of water and sediment biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yakushev, Evgeniy V.; Protsenko, Elizaveta A.; Bruggeman, Jorn; Wallhead, Philip; Pakhomova, Svetlana V.; Yakubov, Shamil Kh.; Bellerby, Richard G. J.; Couture, Raoul-Marie

    2017-02-01

    Interactions between seawater and benthic systems play an important role in global biogeochemical cycling. Benthic fluxes of some chemical elements (e.g., C, N, P, O, Si, Fe, Mn, S) alter the redox state and marine carbonate system (i.e., pH and carbonate saturation state), which in turn modulate the functioning of benthic and pelagic ecosystems. The redox state of the near-bottom layer in many regions can change with time, responding to the supply of organic matter, physical regime, and coastal discharge. We developed a model (BROM) to represent key biogeochemical processes in the water and sediments and to simulate changes occurring in the bottom boundary layer. BROM consists of a transport module (BROM-transport) and several biogeochemical modules that are fully compatible with the Framework for the Aquatic Biogeochemical Models, allowing independent coupling to hydrophysical models in 1-D, 2-D, or 3-D. We demonstrate that BROM is capable of simulating the seasonality in production and mineralization of organic matter as well as the mixing that leads to variations in redox conditions. BROM can be used for analyzing and interpreting data on sediment-water exchange, and for simulating the consequences of forcings such as climate change, external nutrient loading, ocean acidification, carbon storage leakage, and point-source metal pollution.

  13. Mass-physical properties of surficial sediments on the Rhoˆne continental margin: implications for the nepheloid benthic layer

    NASA Astrophysics Data System (ADS)

    Chassefiere, Bernard

    1990-09-01

    Mass-physical properties of the surficial (upper 5 m) sediments on the Gulf of Lions continental margin were analysed, from more than 100 short (1 m) and longer (5 m) cores obtained during several cruises. Data include water content, unit weight, Atterberg limits (liquid limit, plastic limit, plasticity index), shear strength and compression index, and are used to determine: first, the mass property distribution, according to the main parameters influencing mass-physical properties; the relationships between these properties and the nepheloid layer on the shelf. The shoreline (lagoons) and inner shelf are characterized by low density and shear strength and high water content deposits, due to electrochemical flocculation of the sediment. The outer shelf is blanketed by higher density and shear strength and lower water content deposits generated by normal settling of suspended particles. On the inner shelf, during river peak discharges, a short-term thin bottom layer of "yogurt-like" [ FASS (1985) Geomarine Letters, 4, 147-152; FASS (1986) Continental Shelf Research, 6, 189-208] fluid-mud (unit weight lower than 1.3 mg m -3) is supplied, by a bottom nepheloid layer. During stormy periods, this "yogurt-like" layer (about 10 cm thick) partly disappears by resuspension of suspended particulate matter; this is advected, in the bottom nepheloid layer, over the shelf and the canyons within the upper slope.

  14. Chemical quality of bottom sediments in selected streams, Jefferson County, Kentucky, April-July 1992

    USGS Publications Warehouse

    Moore, B.L.; Evaldi, R.D.

    1995-01-01

    Bottom sediments from 25 stream sites in Jefferson County, Ky., were analyzed for percent volatile solids and concentrations of nutrients, major metals, trace elements, miscellaneous inorganic compounds, and selected organic compounds. Statistical high outliers of the constituent concentrations analyzed for in the bottom sediments were defined as a measure of possible elevated concentrations. Statistical high outliers were determined for at least 1 constituent at each of 12 sampling sites in Jefferson County. Of the 10 stream basins sampled in Jefferson County, the Middle Fork Beargrass Basin, Cedar Creek Basin, and Harrods Creek Basin were the only three basins where a statistical high outlier was not found for any of the measured constituents. In the Pennsylvania Run Basin, total volatile solids, nitrate plus nitrite, and endrin constituents were statistical high outliers. Pond Creek was the only basin where five constituents were statistical high outliers-barium, beryllium, cadmium, chromium, and silver. Nitrate plus nitrite and copper constituents were the only statistical high outliers found in the Mill Creek Basin. In the Floyds Fork Basin, nitrate plus nitrite, phosphorus, mercury, and silver constituents were the only statistical high outliers. Ammonia was the only statistical high outlier found in the South Fork Beargrass Basin. In the Goose Creek Basin, mercury and silver constituents were the only statistical high outliers. Cyanide was the only statistical high outlier in the Muddy Fork Basin.

  15. Typha latifolia (broadleaf cattail) as bioindicator of different types of pollution in aquatic ecosystems-application of self-organizing feature map (neural network).

    PubMed

    Klink, Agnieszka; Polechońska, Ludmiła; Cegłowska, Aurelia; Stankiewicz, Andrzej

    2016-07-01

    The contents of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in leaves of Typha latifolia (broadleaf cattail), water and bottom sediment from 72 study sites designated in different regions of Poland were determined using atomic absorption spectrometry. The aim of the study was to evaluate potential use of T. latifolia in biomonitoring of trace metal pollution. The self-organizing feature map (SOFM) identifying groups of sampling sites with similar concentrations of metals in cattail leaves was able to classify study sites according to similar use and potential sources of pollution. Maps prepared for water and bottom sediment showed corresponding groups of sampling sites which suggested similarity of samples features. High concentrations of Fe, Cd, Cu, and Ni were characteristic for industrial areas. Elevated Pb concentrations were noted in regions with intensive vehicle traffic, while high Mn and Zn contents were reported in leaves from the agricultural area. Manganese content in leaves of T. latifolia was high irrespectively of the concentrations in bottom sediments and water so cattail can be considered the leaf accumulator of Mn. Once trained, SOFMs can be applied in ecological investigations and could form a future basis for recognizing the type of pollution in aquatic environments by analyzing the concentrations of elements in T. latifolia.

  16. Assessment of contemporary erosion/sedimentation rates trend within a small well-cultivated catchments using caesium-137 as a chronomarker (on the example of the Republic of Tatarstan, Russia)

    NASA Astrophysics Data System (ADS)

    Sharifullin, Aidar; Gusarov, Artem; Gafurov, Artur; Golosov, Valentin

    2017-04-01

    An analysis of sedimentation at a first order valley bottoms allows us to receive a sufficiently reliable quantitative evaluation of soil losses from the catchment area for two time intervals: 1963-1986 and 1987-2015 and its temporal variability. The studied catchment "Temeva River" with total area 1.13 km2 is located in the northwestern part of the Republic of Tatarstan (the Myósha river basin). Combination methods and approaches were used for evaluation of sediment redistribution for the both time intervals, including detail geodetic survey of the main morphological units of the valley, large scale geomorphological mapping, cesium-137 technique for the sediment dating in the typical locations of the valley bottom, calculation of soil losses using modified version of USLE and State Hydrological Institute models. In addition available information was collected from the local meteorological stations about some climate characteristics dynamics for the period 1950-2015. Landsat images were applied for evaluation of possible changes of land use. Crop management coefficients were calculated separately for the rainfall season and snow-melt using available data about crop-rotation dynamics for the last 55 years. In the results it was found the significant decrease of average annual soil losses from the cultivated part of the "Temeva River" catchment for the period 1987-2015 if it is compare with period 1963-1986. Such conclusion is mainly based on the different sedimentation rates in the valley bottom: for the period of 1963-1986 the average sedimentation rates were 0.92-1.81 cm per year, while the period of 1987-2015 the rates were 0.17-0.50 cm per year. The main reason for this significant decrease sediment redistribution within the catchment is the reduction of surface runoff caused by climate warming in the region. It is led to the reduction of soils freezing depth and water reserves in a snow cover before the snow-melt, and to the sharp decline in the frequency of extreme (storm) precipitation (>50 mm per a day). The influence of agricultural activity on the erosion and sedimentation changeability was insignificant, although some regional variation of crop rotation including an increase in the proportion of perennial grasses obviously caused the decline in soil losses during warm period of year. The similar trend of erosion/sedimentation rates due to mostly climate changes was identified for south-western sector of the East European Plain, but the more serious reduction of erosion rates is established for the Middle Volga region. Keywords: erosion, sedimentation, sediment, caesium-137, dry valley, small catchment, cultivated lands, Republic of Tatarstan, East European Plain.

  17. Sound Speed and Attenuation in Multiphase Media

    DTIC Science & Technology

    2008-09-20

    Stoll [2] report shear wave speeds between 100 to 300 m/s for sandy sediments with porosities of 40-50%. Hastrup [12:121-127] reports empirical...by a factor of 64. The importance of shear wave conversion in bottom reflection has been treated by Hastrup [12] while the depth dependent...843, 1962 [12] O. F. Hastrup , Acoustic Bottom Reflectivity, Technical Report SR-115 SACLANT Undersea Research Centre, La Spezia, Italy, 1986. [13

  18. Near-bottom suspended matter concentration on the Continental Shelf during storms: estimates based on in situ observations of light transmission and a particle size dependent transmissometer calibration

    USGS Publications Warehouse

    Moody, J.A.; Butman, B.; Bothner, Michael H.

    1987-01-01

    A laboratory calibration of Sea Tech and Montedoro-Whitney beam transmissometers shows a linear relation between light attenuation coefficient (cp) and suspended matter concentration (SMC) for natural sediments and for glass beads. However the proportionality constant between cp and SMC depends on the particle diameter and particle type. Thus, to measure SMC, observations of light attenuation must be used with a time-variable calibration when suspended particle characteristics change with time. Because of this variable calibration, time series of light attenuation alone may not directly reflect SMC and must be interpreted with care.The near-bottom concentration of suspended matter during winter storms on the U.S. East Coast Continental Shelf is estimated from light transmission measurements made 2 m above the bottom and from the size distribution of suspended material collected simultaneously in sediment traps 3 m above the bottom. The average concentrations during six storms between December 1979 and February 1980 in the Middle Atlantic Bight ranged from 2 to 4 mg l1 (maximum concentration of 7 mg l1) and 8 to 12 mg l1 (maximum concentration of 22 mg l1) on the south flank of Georges Bank.

  19. Multi-angle backscatter classification and sub-bottom profiling for improved seafloor characterization

    NASA Astrophysics Data System (ADS)

    Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens

    2018-06-01

    This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian approach which also correlates well with ground truth data (r2 > 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.

  20. Beach Erosion and Accretion: Comparison of the Seasonal Influence of Suspended- and Bedload-Sediment Transport at Grays Harbor, Washington, U. S. A.

    NASA Astrophysics Data System (ADS)

    Sherwood, C. R.; Lacy, J. R.; Ruggiero, P.; Kerr, L. A.; Gelfenbaum, G.; Wilson, D. J.

    2001-12-01

    We conducted field studies on the ebb-tidal delta near the entrance to Grays Harbor, Washington in Autumn, 1999 and Spring 2001, with the objectives of 1) providing directional wave data to validate a shoaling and refraction model for the ebb-tidal delta, and 2) measuring forcing (wave- and current-induced near-bottom velocities, accelerations, and shear stresses) and responses (bedforms, suspended-sediment profiles, and sediment fluxes) associated with intervals of beach erosion and accretion. In the Autumn experiment (October - December), tripods were deployed at shallow ( ~14-m) and deep ( ~24-m) sites on the northern, middle, and southern flanks of the ebb tidal. In the Spring experiment (May - mid-July), tripods were redeployed at four sites and a new inshore site ( ~9-m depth), and pressures, current velocities, and suspended-sediment concentrations were measured with 5-MHz acoustic Doppler velocimeters (ADVs), optical backscatterance sensors, upward-looking acoustic Doppler current profilers (ADCPs), a downward-looking pulse-coherent acoustic Doppler profiler (PCADP), and an acoustic backscatterance sensor (ABS). We also measured bedforms with profiling and imaging sonars and estimated Reynolds stresses with a pair of 10-MHz ADVs at the inshore site. Incident waves, nearshore circulation patterns, statistics of near-bottom wave- and current-induced velocities, and sediment fluxes were distinctly different in the two experiments. During the Autumn measurements, the general direction of wave approach shifted from WNW to WSW as the North Pacific weather pattern shifted from summer to winter, and we observed a large storm (offshore significant wave heights Hs of ~8 m) and a sequence of about 8 smaller events with ~4 to 5-m waves. Sediment transport was dominated by storm-induced, downwelling-favorable circulation that transported suspended sediments northward and offshore. Inferred bedload fluxes were directed shoreward, but were much smaller. In contrast, Spring wave conditions were much milder (maximum Hs of ~4 m), and waves approached mostly from the WNW. There were long periods of upwelling-favorable circulation interrupted by intervals of storm-induced northward flow. Net suspended-sediment transport was directed northward at the deeper sites and southward at the inshore sites. Near-bottom transport remained offshore at the deeper sites, but was lower, with negligible net cross-shore component at the shallow sites. The relative contribution of shoreward bedload transport was much larger. These changes in sediment transport outside the breaker zone are consistent with measured changes in beach and bar morphology.

Top