Seafloor habitat mapping of the New York Bight incorporating sidescan sonar data
Lathrop, R.G.; Cole, M.; Senyk, N.; Butman, B.
2006-01-01
The efficacy of using sidescan sonar imagery, image classification algorithms and geographic information system (GIS) techniques to characterize the seafloor bottom of the New York Bight were assessed. The resulting seafloor bottom type map was compared with fish trawl survey data to determine whether there were any discernable habitat associations. An unsupervised classification with 20 spectral classes was produced using the sidescan sonar imagery, bathymetry and secondarily derived spatial heterogeneity to characterize homogenous regions within the study area. The spectral classes, geologic interpretations of the study region, bathymetry and a bottom landform index were used to produce a seafloor bottom type map of 9 different bottom types. Examination of sediment sample data by bottom type indicated that each bottom type class had a distinct composition of sediments. Analysis of adult summer flounder, Paralichthys dentatus, and adult silver hake, Merluccius bilinearis, presence/absence data from trawl surveys did not show evidence of strong associations between the species distributions and seafloor bottom type. However, the absence of strong habitat associations may be more attributable to the coarse scale and geographic uncertainty of the trawl sampling data than conclusive evidence that no habitat associations exist for these two species. ?? 2006 Elsevier Ltd. All rights reserved.
MAPPING BATHYMETRY AND BOTTOM TYPE IN A SHALLOW ESTUARY
Bathymetry and bottom type are important in characterizing estuaries and their ecology but hard to map, especially in shallow estuaries. Acoustic backscattering was used to remotely sense these properties in the shallow Slocums River Estuary of Massachusetts. Acoustic pulses were...
Classification of bottom composition and bathymetry of shallow waters by passive remote sensing
NASA Astrophysics Data System (ADS)
Spitzer, D.; Dirks, R. W. J.
The use of remote sensing data in the development of algorithms to remove the influence of the watercolumn on upwelling optical signals when mapping the bottom depth and composition in shallow waters. Calculations relating the reflectance spectra to the parameters of the watercolumn and the diverse bottom types are performed and measurements of the underwater reflection coefficient of sandy, mud, and vegetation-type seabottoms are taken. The two-flow radiative transfer model is used. Reflectances within the spectral bands of the Landsat MSS, the Landsat TM, SPOT HVR, and the TIROS-N series AVHRR were computed in order to develop appropriate algorithms suitable for the bottom depth and type mapping. Bottom depth and features appear to be observable down to 3-20 m depending on the water composition and bottom type.
Mapping the seafloor geology offshore of Massachusetts
Barnhardt, Walter A.; Andrews, Brian D.
2006-01-01
Geologic and bathymetric maps help us understand the evolutionary history of the Massachusetts coast and the processes that have shaped it. The maps show the distribution of bottom types (for example, bedrock, gravel, sand, mud) and water depths over large areas of the seafloor. In turn, these two fundamental parameters largely determine the species of flora and fauna that inhabit a particular area. Knowledge of bottom types and water depths provides a framework for mapping benthic habitats and managing marine resources. The need for coastal–zone mapping to inform policy and management is widely recognized as critical for mitigating hazards, creating resource inventories, and tracking environmental changes (National Research Council, 2004; U.S. Commission on Ocean Policy, 2004).
Texture as a basis for acoustic classification of substrate in the nearshore region
NASA Astrophysics Data System (ADS)
Dennison, A.; Wattrus, N. J.
2016-12-01
Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.
Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.
2004-01-01
Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.
Spectrally based mapping of riverbed composition
Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.
2016-01-01
Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range of fluvial environments is needed to substantiate our initial results, this case study suggests that bed composition in shallow, clear-flowing rivers potentially could be mapped remotely.
A spatial framework for representing nearshore ecosystems
NASA Astrophysics Data System (ADS)
Gregr, Edward J.; Lessard, Joanne; Harper, John
2013-08-01
The shallow, coastal regions of the world's oceans are highly productive ecosystems providing important habitat for commercial, forage, endangered, and iconic species. Given the diversity of ecosystem services produced or supported by this ecosystem, a better understanding of its structure and function is central to developing an ecosystem-based approach to management. However this region - termed the ‘white strip' by marine geologists because of the general lack of high-resolution bathymetric data - is dynamic, highly variable, and difficult to access making data collection challenging and expensive. Since substrate is a key indicator of habitat in this important ecosystem, our objective was to create a continuous substrate map from the best available bottom type data. Such data are critical to assessments of species distributions and anthropogenic risk. Using the Strait of Georgia in coastal British Columbia, Canada, as a case study, we demonstrate how such a map can be created from a diversity of sources. Our approach is simple, quantitative, and transparent making it amenable to iterative improvement as data quality and availability improve. We evaluated the ecological performance of our bottom patches using observed shellfish distributions. We found that observations of geoduck clam, an infaunal species, and red urchins, a species preferentially associated with hard bottom, were strongly and significantly associated with our soft and hard patches respectively. Our description of bottom patches also corresponded well with a more traditional, morphological classification of a portion of the study area. To provide subsequent analyses (such as habitat models) with some confidence in the defined bottom type values, we developed a corresponding confidence surface based on the agreement of, and distance between observations. Our continuous map of nearshore bottom patches thus provides a spatial framework to which other types of data, both abiotic (e.g., energy) and biotic, can be attached. As more data are associated with the bottom patches, we anticipate they will become increasingly useful for representing and developing species-habitat relationships, ultimately leading to a comprehensive representation of the nearshore ecosystem.
Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps
NASA Astrophysics Data System (ADS)
Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios
2017-09-01
The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.
Barnhardt, W.A.; Kelley, J.T.; Dickson, S.M.; Belknap, D.F.
1998-01-01
The bedrock-framed seafloor in the northwestern Gulf of Maine is characterized by extreme changes in bathymetric relief and covered with a wide variety of surficial materials. Traditional methods of mapping cannot accurately represent the great heterogeneity of such a glaciated region. A new mapping scheme for complex seafloors, based primarily on the interpretation of side-scan sonar imagery, utilizes four easily recognized units: rock, gravel, sand and mud. In many places, however, the seafloor exhibits a complicated mixture or extremely 'patchy' distribution of the four basic units, which are too small to map individually. Twelve composite units, each a two-component mixture of the basic units, were established to represent this patchiness at a small scale (1:100,000). Using a geographic information system, these and all other available data (seismic profiles, grab samples, submersible dives and cores) were referenced to a common geographic base, superimposed on bathymetric contours and then integrated into surficial geologic maps of the regional inner continental shelf. This digital representation of the seafloor comprises a multidimensional, interactive model complete with explicit attributes (depth, bottom type) that allow for detailed analysis of marine environments.
Processing RoxAnn sonar data to improve its categorization of lake bed surficial sediments
Cholwek, Gary; Bonde, John; Li, Xing; Richards, Carl; Yin, Karen
2000-01-01
To categorize spawning and nursery habitat for lake trout in Minnesota's near shore waters of Lake Superior, data was collected with a single beam echo sounder coupled with a RoxAnn bottom classification sensor. Test areas representative of different bottom surficial substrates were sampled. The collected data consisted of acoustic signals which showed both depth and substrate type. The location of the signals was tagged in real-time with a DGPS. All data was imported into a GIS database. To better interpret the output signal from the RoxAnn, several pattern classifiers were developed by multivariate statistical method. From the data a detailed and accurate map of lake bed bathymetry and surficial substrate types was produced. This map will be of great value to fishery and other natural resource managers.
Klink, Agnieszka; Polechońska, Ludmiła; Cegłowska, Aurelia; Stankiewicz, Andrzej
2016-07-01
The contents of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in leaves of Typha latifolia (broadleaf cattail), water and bottom sediment from 72 study sites designated in different regions of Poland were determined using atomic absorption spectrometry. The aim of the study was to evaluate potential use of T. latifolia in biomonitoring of trace metal pollution. The self-organizing feature map (SOFM) identifying groups of sampling sites with similar concentrations of metals in cattail leaves was able to classify study sites according to similar use and potential sources of pollution. Maps prepared for water and bottom sediment showed corresponding groups of sampling sites which suggested similarity of samples features. High concentrations of Fe, Cd, Cu, and Ni were characteristic for industrial areas. Elevated Pb concentrations were noted in regions with intensive vehicle traffic, while high Mn and Zn contents were reported in leaves from the agricultural area. Manganese content in leaves of T. latifolia was high irrespectively of the concentrations in bottom sediments and water so cattail can be considered the leaf accumulator of Mn. Once trained, SOFMs can be applied in ecological investigations and could form a future basis for recognizing the type of pollution in aquatic environments by analyzing the concentrations of elements in T. latifolia.
Grain size mapping in shallow rivers using spectral information: a lab spectroradiometry perspective
NASA Astrophysics Data System (ADS)
Niroumand-Jadidi, Milad; Vitti, Alfonso
2017-10-01
Every individual attribute of a riverine environment defines the overall spectral signature to be observed by an optical sensor. The spectral characteristic of riverbed is influenced not only by the type but also the roughness of substrates. Motivated by this assumption, potential of optical imagery for mapping grain size of shallow rivers (< 1 m deep) is examined in this research. The previous studies concerned with grain size mapping are all built upon the texture analysis of exposed bed material using very high resolution (i.e. cm resolution) imagery. However, the application of texturebased techniques is limited to very low altitude sensors (e.g. UAVs) to ensure the sufficient spatial resolution. Moreover, these techniques are applicable only in the presence of exposed substrates along the river channel. To address these drawbacks, this study examines the effectiveness of spectral information to make distinction among grain sizes for submerged substrates. Spectroscopic experiments are performed in controlled condition of a hydraulic lab. The spectra are collected over a water flume in a range of water depths and bottoms with several grain sizes. A spectral convolution is performed to match the spectra to WorldView-2 spectral bands. The material type of substrates is considered the same for all the experiments with only variable roughness/size of grains. The spectra observed over dry beds revealed that the brightness/reflectance increases with the grain size across all the spectral bands. Based on this finding, the above-water spectra over a river channel are simulated considering different grain sizes in the bottom. A water column correction method is then used to retrieve the bottom reflectances. Then the inferred bottom reflectances are clustered to segregate among grain sizes. The results indicate high potential of the spectral approach for clustering grain sizes (overall accuracy of 92%) which opens up some horizons for mapping this valuable attribute of rivers using remotely sensed data.
Cochrane, Guy R.; Lafferty, Kevin D.
2002-01-01
Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand covering bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping.
NASA Astrophysics Data System (ADS)
Dennison, Andrew G.
Classification of the seafloor substrate can be done with a variety of methods. These methods include Visual (dives, drop cameras); mechanical (cores, grab samples); acoustic (statistical analysis of echosounder returns). Acoustic methods offer a more powerful and efficient means of collecting useful information about the bottom type. Due to the nature of an acoustic survey, larger areas can be sampled, and by combining the collected data with visual and mechanical survey methods provide greater confidence in the classification of a mapped region. During a multibeam sonar survey, both bathymetric and backscatter data is collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on bottom type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, i.e a muddy area from a rocky area, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing of high-resolution multibeam data can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. The development of a new classification method is described here. It is based upon the analysis of textural features in conjunction with ground truth sampling. The processing and classification result of two geologically distinct areas in nearshore regions of Lake Superior; off the Lester River,MN and Amnicon River, WI are presented here, using the Minnesota Supercomputer Institute's Mesabi computing cluster for initial processing. Processed data is then calibrated using ground truth samples to conduct an accuracy assessment of the surveyed areas. From analysis of high-resolution bathymetry data collected at both survey sites is was possible to successfully calculate a series of measures that describe textural information about the lake floor. Further processing suggests that the features calculated capture a significant amount of statistical information about the lake floor terrain as well. Two sources of error, an anomalous heave and refraction error significantly deteriorated the quality of the processed data and resulting validate results. Ground truth samples used to validate the classification methods utilized for both survey sites, however, resulted in accuracy values ranging from 5 -30 percent at the Amnicon River, and between 60-70 percent for the Lester River. The final results suggest that this new processing methodology does adequately capture textural information about the lake floor and does provide an acceptable classification in the absence of significant data quality issues.
Bottom depth and type for shallow waters: Hyperspectral observations from a blimp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, ZhongPing; Carder, K.; Steward, R.
1997-08-01
In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform formore » the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.« less
Measurement and Mapping of Riverine Environments by Optical Remote Sensing
2011-09-30
proceeded to the publication stage, including a two-part paper describing our work on spectrally-based bathymetric mapping of the Platte River in...copies of these papers are available from the Principal Investigator upon request. For the purposes of this annual report, we emphasize our recently...we receive the actual data, we will use these images to evaluate the feasibility of retrieving, from space , information on the bathymetry, bottom type
Hydrographic surveys of rivers and lakes using a multibeam echosounder mapping system
Huizinga, Richard J.; Heimann, David C.
2018-06-12
A multibeam echosounder is a type of sound navigation and ranging device that uses sound waves to “see” through even murky waters. Unlike a single beam echosounder (also known as a depth sounder or fathometer) that releases a single sound pulse in a single, narrow beam and “listens” for the return echo, a multibeam system emits a multidirectional radial beam to obtain information within a fan-shaped swath. The timing and direction of the returning sound waves provide detailed information on the depth of water and the shape of the river channel, lake bottom, or any underwater features of interest. This information has been used by the U.S. Geological Survey to efficiently generate high-resolution maps of river and lake bottoms.
NASA Astrophysics Data System (ADS)
Ojeda, G. Y.; Gayes, P. T.; van Dolah, R. F.; Schwab, W. C.
2002-12-01
Assessment of the extent and variability of benthic habitats is an important mission of biologists and marine scientists, and has supreme relevance in monitoring and maintaining the offshore resources of coastal nations. Mapping `hard bottoms', in particular, is of critical importance because these are the areas that support sessile benthic habitats and associated fisheries. To quantify the extent and distribution of habitats offshore northern South Carolina, we used a spatially quantitative approach that involved textural analysis of side scan sonar images and training of an artificial neural network classifier. This approach was applied to a 2 m-pixel image mosaic of sonar data collected by the USGS in 1999 and 2000. The entire mosaic covered some 686 km2 and extended between the ~6 m and ~10+ m isobaths off the Grand Strand region of South Carolina. Bottom video transects across selected sites provided 2,119 point observations which were used for image-to-ground control as well as training of the neural network classifier. A sensitivity study of 52 space-domain textural features indicated that 12 of them provided reasonable discriminating power between two end-member bottom types: hard bottom and sand. The selected features were calculated over 5 by 5 pixel windows of the image where video point observations existed. These feature vectors were then fed to a 3-layer neural network classifier, trained with a Levenberg-Marquardt backpropagation algorithm. Registration and display of the output habitat map were performed in GIS. Results of our classification indicate that outcropping Tertiary and Cretaceous strata are exposed over a significant portion of northern South Carolina's inner shelf, consistent with a sediment-starved margin type. The combined surface extent classified as hard bottom was 405 km2 -or 59 % of the imaged area-, while only 281 km2 -or 41 % of the area were classified as sand. In addition, our results provided constraints on the spatial continuity of nearshore benthic habitats. The median surface area of the regions classified as hard bottom (n= 190,521) and sand (n= 234,946) were both equal to the output cell size (100 m2), confirming the `patchy' nature of these habitats and suggesting that these medians probably represent upper bounds rather than estimates of the typical extent of individual patches. Furthermore, comparison of the interpretive habitat map with available swath bathymetry data suggests positive correlation between bathymetry `highs' and the major sandy-bottom areas interpreted with our routine. In contrast, the location of hard bottom areas does not appear to be significantly correlated with major bathymetric features. Our findings are in agreement with published qualitative estimates of hard bottom areas on neighboring North Carolina's inner shelf.
User Guide for the Anvil Threat Cooridor Forecast Tool V2.4 for AWIPS
NASA Technical Reports Server (NTRS)
Barett, Joe H., III; Bauman, William H., III
2008-01-01
The Anvil Tool GUI allows users to select a Data Type, toggle the map refresh on/off, place labels, and choose the Profiler Type (source of the KSC 50 MHz profiler data), the Date- Time of the data, the Center of Plot, and the Station (location of the RAOB or 50 MHz profiler). If the Data Type is Models, the user selects a Fcst Hour (forecast hour) instead of Station. There are menus for User Profiles, Circle Label Options, and Frame Label Options. Labels can be placed near the center circle of the plot and/or at a specified distance and direction from the center of the circle (Center of Plot). The default selection for the map refresh is "ON". When the user creates a new Anvil Tool map with Refresh Map "ON, the plot is automatically displayed in the AWIPS frame. If another Anvil Tool map is already displayed and the user does not change the existing map number shown at the bottom of the GUI, the new Anvil Tool map will overwrite the old one. If the user turns the Refresh Map "OFF", the new Anvil Tool map is created but not automatically displayed. The user can still display the Anvil Tool map through the Maps dropdown menu* as shown in Figure 4.
.mapWrapper #text{border:1px solid #ccc;border-radius:.5em}#container .mapWrapper #text h2{margin:0 0 0.5em 0 }#container .mapWrapper #text h3{margin:0 0 0.5em 0}#container .mapWrapper #text h4{font-size:.9em;margin -bottom:.5em}#container .mapWrapper #text>div{margin-bottom:1.5em}#container .mapWrapper #text>div
NASA Astrophysics Data System (ADS)
LaFrance, Monique; King, John W.; Oakley, Bryan A.; Pratt, Sheldon
2014-07-01
Recent interest in offshore renewable energy within the United States has amplified the need for marine spatial planning to direct management strategies and address competing user demands. To assist this effort in Rhode Island, benthic habitat classification maps were developed for two sites in offshore waters being considered for wind turbine installation. Maps characterizing and representing the distribution and extent of benthic habitats are valuable tools for improving understanding of ecosystem patterns and processes, and promoting scientifically-sound management decisions. This project presented the opportunity to conduct a comparison of the methodologies and resulting map outputs of two classification approaches, “top-down” and “bottom-up” in the two study areas. This comparison was undertaken to improve understanding of mapping methodologies and their applicability, including the bottom-up approach in offshore environments where data density tends to be lower, as well as to provide case studies for scientists and managers to consider for their own areas of interest. Such case studies can offer guidance for future work for assessing methodologies and translating them to other areas. The traditional top-down mapping approach identifies biological community patterns based on communities occurring within geologically defined habitat map units, under the concept that geologic environments contain distinct biological assemblages. Alternatively, the bottom-up approach aims to establish habitat map units centered on biological similarity and then uses statistics to identify relationships with associated environmental parameters and determine habitat boundaries. When applied to the two study areas, both mapping approaches produced habitat classes with distinct macrofaunal assemblages and each established statistically strong and significant biotic-abiotic relationships with geologic features, sediment characteristics, water depth, and/or habitat heterogeneity over various spatial scales. The approaches were also able to integrate various data at differing spatial resolutions. The classification outputs exhibited similar results, including the number of habitat classes generated, the number of species defining the classes, the level of distinction of the biological communities, and dominance by tube-building amphipods. These results indicate that both approaches are able to discern a comparable degree of habitat variability and produce cohesive macrofaunal assemblages. The mapping approaches identify broadly similar benthic habitats at the two study sites and methods were able to distinguish the differing levels of heterogeneity between them. The top-down approach to habitat classification was faster and simpler to accomplish with the data available in this study when compared to the bottom-up approach. Additionally, the top-down approach generated full-coverage habitat classes that are clearly delineated and can easily be interpreted by the map user, which is desirable from a management perspective for providing a more complete assessment of the areas of interest. However, a higher level of biological variability was noted in some of the habitat classes created, indicating that the biological communities present in this area are influenced by factors not captured in the broad-scale geological habitat units used in this approach. The bottom-up approach was valuable in its ability to more clearly define macrofaunal assemblages among habitats, discern finer-scale habitat characteristics, and directly assess the degree of macrofaunal assemblage variability captured by the environmental parameters. From a user perspective, the map is more complex, which may be perceived as a limitation, though likely reflects natural gradations in habitat structure and likely presents a more ecologically realistic portrayal of the study areas. Though more comprehensive, the bottom-up approach in this study was limited by the reliance on full-coverage data to create full-coverage habitat classes. Such classes could only be developed when sediment data was excluded, since this point-sample dataset could not be interpolated due to high spatial heterogeneity of the study areas. Given a higher density of bottom samples, this issue could be rectified. While the top-down approach was more appropriate for this study, both approaches were found to be suitable for mapping and classifying benthic habitats. In the United States, objectives for mapping and classification for renewable energy development have not been well established. Therefore, at this time, the best-suited approach primarily depends on mapping objectives, resource availability, data quality and coverage, and geographical location, as these factors impact the types of data included, the analyses and modeling that can be performed, and the biotic-abiotic relationships identified.
NASA Astrophysics Data System (ADS)
Kutser, Tiit; Vahtmäe, Ele; Martin, Georg
2006-04-01
One of the objectives of monitoring benthic algal cover is to observe short- and long-term changes in species distribution and structure of coastal benthic habitats as indicators of ecological state. Mapping benthic algal cover with conventional methods (diving) provides great accuracy and high resolution, yet is very expensive and is limited by the time and manpower necessary. We measured reflectance spectra of three indicator species for the Baltic Sea: Cladophora glomerata (green macroalgae), Furcellaria lumbricalis (red macroalgae), and Fucus vesiculosus (brown macroalgae) and used a bio-optical model in an attempt to estimate whether these algae are separable from each other and sandy bottom or deep water by means of satellite remote sensing. Our modelling results indicate that to some extent it is possible to map the studied species with multispectral satellite sensors in turbid waters. However, the depths where the macroalgae can be detected are often shallower than the maximum depths where the studied species usually grow. In waters deeper than just a few meters, the differences between the studied bottom types are seen only in band 2 (green) of the multispectral sensors under investigation. It means that multispectral sensors are capable of detecting difference in brightness only in one band which is insufficient for recognition of different bottom types in waters where no or few in situ data are available. Configuration of MERIS spectral bands allows the recognition of red, green and brown macroalgae based on their spectral signatures provided the algal belts are wider than MERIS spatial resolution. Commercial stock of F. lumbricalis in West-Estonian Archipelago covers area where MERIS 300 m spatial resolution is adequate. However, strong attenuation of light in the water column and signal to noise ratio of the sensor do not allow mapping of Furcellaria down to maximum depths where it occurs.
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
Ground-penetrating radar--A tool for mapping reservoirs and lakes
Truman, C.C.; Asmussen, L.E.; Allison, H.D.
1991-01-01
Ground-penetrating radar was evaluated as a tool for mapping reservoir and lake bottoms and providing stage-storage information. An impulse radar was used on a 1.4-ha (3.5-acre) reservoir with 31 transects located 6.1 m (20 feet) apart. Depth of water and lateral extent of the lake bottom were accurately measured by ground-penetrating radar. A linear (positive) relationship existed between measured water depth and ground-penetrating radar-determined water depth (R2=0.989). Ground-penetrating radar data were used to create a contour map of the lake bottom. Relationships between water (contour) elevation and water surface area and volume were established. Ground-penetrating radar proved to be a useful tool for mapping lakes, detecting lake bottom variations, locating old stream channels, and determining water depths. The technology provides accurate, continuous profile data in a relatively short time compared to traditional surveying and depth-sounding techniques.
NASA Astrophysics Data System (ADS)
Baumstark, René; Duffey, Renee; Pu, Ruiliang
2016-11-01
The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps were created from WorldView-2 satellite imagery using an Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study suggests an alternative for mapping deeper, offshore habitats capable of producing higher thematic and spatial resolution maps compared to those created with the traditional photo-interpretation method.
NASA Astrophysics Data System (ADS)
Baumstark, R. D.; Duffey, R.; Pu, R.
2016-12-01
The offshore extent of seagrass habitat along the West Florida (USA) coast represents an important corridor for inshore-offshore migration of economically important fish and shellfish. Surviving at the fringe of light requirements, offshore seagrass beds are sensitive to changes in water clarity. Beyond and intermingled with the offshore seagrass areas are large swaths of colonized hard bottom. These offshore habitats of the West Florida coast have lacked mapping efforts needed for status and trends monitoring. The objective of this study was to propose an object-based classification method for mapping offshore habitats and to compare results to traditional photo-interpreted maps. Benthic maps depicting the spatial distribution and percent biological cover were created from WorldView-2 satellite imagery using Object Based Image Analysis (OBIA) method and a visual photo-interpretation method. A logistic regression analysis identified depth and distance from shore as significant parameters for discriminating spectrally similar seagrass and colonized hard bottom features. Seagrass, colonized hard bottom and unconsolidated sediment (sand) were mapped with 78% overall accuracy using the OBIA method compared to 71% overall accuracy using the photo-interpretation method. This study presents an alternative for mapping deeper, offshore habitats capable of producing higher thematic (percent biological cover) and spatial resolution maps compared to those created with the traditional photo-interpretation method.
NASA Astrophysics Data System (ADS)
Beisiegel, K.; Zettler, M. L.; Darr, A.; Schiele, K.; Schwarzer, K.; Richter, P.
2016-02-01
Since the vast majority of global seafloor habitats are characterized by soft sediments, hard substrata represent rarities hosting species and functional groups not found elsewhere. The same holds true for the enclosed and brackish Baltic Sea, where hard substrata occur patchy and infrequent. Subtidal low-relief terrains with homogenous mud and sand flats form the predominant benthic substrate and the associated infaunal communities are well described. In contrast, the diverse, primarily epibenthic assemblages on subtidal hard bottoms received far less attention. Since 2011 a team of geologists and biologists aims to map the subtidal habitats and biotopes. On joint cruises, geologists use side scan sonar to map the seafloor sediments while ground truthing is performed in collaboration with biologists. Biogenic concretions like mussel beds and hard structures of geogenic origin like stones and glacial boulders form the predominant hard substrata in the German Baltic Sea. These habitats are subsequently investigated using frame sampling by SCUBA diving, dredges or towed photo/video platforms. The type of hard substratum, salinity and light availability seem to be the most important natural factors that determine the epibenthic community composition. Identified geological substrata and biological communities are matched with biotopes of the HELCOM Underwater biotope and habitat classification system. Predictive modeling approaches are used to generate biotope specific distribution patterns, based on biological point samples, area-wide sediment distribution maps and measured/modeled environmental parameters. The resulting hard-bottom biotope maps, combining geological and biological information, complement the existing area-wide biotope map of soft sediment communities. The maps are important tools both for the scientific community to understand the functioning of marine ecosystems as well as for nature conservation, e.g. for the implementation of MPA management plans and for the development of monitoring concepts and the red list classification of biotopes.
Deep-sea benthic habitats modeling and mapping in a NE Atlantic seamount (Galicia Bank)
NASA Astrophysics Data System (ADS)
Serrano, A.; González-Irusta, J. M.; Punzón, A.; García-Alegre, A.; Lourido, A.; Ríos, P.; Blanco, M.; Gómez-Ballesteros, M.; Druet, M.; Cristobo, J.; Cartes, J. E.
2017-08-01
This study presents the results of seafloor habitat identification and mapping of a NE Atlantic deep seamount. An ;assemble first, predict later; approach has been followed to identify and map the benthic habitats of the Galicia Bank (NW Iberian). Biotic patterns inferred from the survey data have been used to drive the definition of benthic assemblages using multivariate tools. Eight assemblages, four hard substrates and four sedimentary ones, have been described from a matrix of structural species. Distribution of these assemblages was correlated with environmental factors (multibeam and backscatter data) using binomial GAMs. Finally, the distribution model of each assemblage was applied to produce continuous maps and pooled in a final map with the distribution of the main benthic habitats. Depth and substrate type are key factors when determining soft bottom communities, whereas rocky habitat distribution is mainly explained by rock slope and orientation. Enrichment by northern water masses (LSW) arriving to GB and possible zooplankton biomass increase at vertical-steep walls by ;bottom trapping; can explain the higher diversity of habitat providing filter-feeders at slope rocky breaks. These results concerning vulnerable species and habitats, such as Lophelia and Madrepora communities and black and bamboo coral aggregations were the basis of the Spanish proposal of inclusion within the Natura 2000 network. The aim of the present study was to establish the scientific criteria needed for managing and protecting those environmental values.
Clark, Allan K.; Robert R. Morris,
2015-01-01
The hydrostratigraphic units of the Edwards and Trinity aquifers have been mapped and described herein using a classification system developed by Choquette and Pray (1970), which is based on porosity types being fabric or not-fabric selective. The naming of hydrostratigraphic units is also based on preexisting names and topographic or historical features that occur in outcrop. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is VIII hydrostratigraphic unit. The mapped hydrostratigraphic units of the upper Trinity aquifer are, from top to bottom: the cavernous, Camp Bullis, upper evaporite, fossiliferous, and lower evaporite and they are interval equivalent to the upper member of the Glen Rose Limestone. The middle Trinity aquifer (interval equivalent to the lower member of the Glen Rose Limestone) contains, from top to bottom: the Bulverde, Little Blanco, Twin Sisters, Doeppenschmidt, Rust, and Honey Creek hydrostratigraphic units. The lower part of the middle Trinity aquifer is formed by the Hensell, Cow Creek, and Hammett hydrostratigraphic units which are interval equivalent to the Hensell Sand Member, the Cow Creek Limestone, and the Hammett Shale Member, respectively, of the Pearsall Formation.
Mapping the occurrence of tree damage in the forests of the northern United States
Randall S. Morin; Scott A. Pugh; Jim. Steinman
2016-01-01
The U.S. Forest Service Forest Inventory and Analysis Program uses visual inspections of trees from bottom to top to record damage that is likely to prevent survival, reduce growth, or hinder capability to produce marketable products. This report describes the types of damage and occurrence as measured across the 24-state northern region between 2009 and 2013....
NASA: First Map Of Thawed Areas Under Greenland Ice Sheet
2017-12-08
NASA researchers have helped produce the first map showing what parts of the bottom of the massive Greenland Ice Sheet are thawed – key information in better predicting how the ice sheet will react to a warming climate. Greenland’s thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth’s depths. Knowing whether Greenland’s ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future, But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Now, a new study synthesizes several methods to infer the Greenland Ice Sheet’s basal thermal state –whether the bottom of the ice is melted or not– leading to the first map that identifies frozen and thawed areas across the whole ice sheet. Map caption: This first-of-a-kind map, showing which parts of the bottom of the Greenland Ice Sheet are likely thawed (red), frozen (blue) or still uncertain (gray), will help scientists better predict how the ice will flow in a warming climate. Credit: NASA Earth Observatory/Jesse Allen Read more: go.nasa.gov/2avKgl2 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
White, S. M.; Maschmeyer, C.; Anderson, E.; Knapp, C. C.; Brantley, D.
2017-12-01
Offshore of northern South Carolina holds considerable potential for wind energy development. This study describes a method for comprehensive and efficient evaluation of the geological framework and archaeological artifacts in potential Bureau of Ocean Energy Management lease blocks located 12 km offshore Myrtle Beach, South Carolina. Identification of cultural artifacts and potential critical habitats on the seafloor is critical to support for lease blocks designation, but must be done primarily using sonar data with limited visual data. We used bathymetry and backscatter to create 6 m seafloor grids of slope, and gray-level co-occurrence matrices: homogeneity, entropy, and second-moment. Supervised automated classification using an adaptive neuro-fuzzy inference system (ANFIS) in Matlab scripts provided comprehensive evaluation of the seafloor in the study area. Coastal Carolina University collected EM3002 multibeam sonar from the R/V Coastal Explorer on multiple cruises in 2015-2016 in a 32 km by 9 km area. We processed the multibeam using QPS Qimera and Fledermaus Geocoder to produce bathymetric and backscatter datasets gridded at 0.5 m with estimated 0.1 m vertical resolution. During Fall 2016, Coastal Carolina University collected ground-referenced tow-camera imagery of 68 km in 4 different sites within the multibeam survey zone. We created a ground-reference bottom-type dataset with over 75,000 reference points from the imagery. We extracted slope, backscatter intensity, and the first principal component of backscatter textures to each point. We trained an adaptive neuro-fuzzy inference system (ANFIS) on 2,500 points representing three classes: soft-bottom, hard-bottom, and cultural artifact, 101 km2 is soft-bottom, 1.5 km2 is rocky outcrop or hard-bottom, and there were 3 locations of cultural artifacts. Our classification is > 88% accurate. The extent of human artifacts, such as sunken ships and artificial reefs, are under-represented by 60% in our classification as the classifier confused flat parts with relatively flat sand data. 100% of testing data representing rocky portions of the seafloor were correctly classified. The use of machine-learning classifiers to determine seafloor-type provides a new solution to habitat mapping and offshore engineering problems.
NASA Technical Reports Server (NTRS)
Anderson, J. E.; Kalcic, M. T. (Principal Investigator)
1982-01-01
Digital processed aircraft-acquired thematic mapping simulator (TMS) data collected during the winter season over a forested site in southern Mississippi are presented to investigate the utility of TMS data for use in forest inventories and monitoring. Analyses indicated that TMS data are capable of delineating the mixed forest land cover type to an accuracy of 92.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct, respectively. The figures reflect the performance for products produced using the best subset of channels for each forest cover type. It was found that the choice of channels (subsets) has a significant effect on the accuracy of classification produced, and that the same channels are not the most desirable for all three forest types studied. Both supervised and unsupervised spectral signature development techniques are evaluated; the unsupervised methods proved unacceptable for the three forest types considered.
Clay deposits of the Connecticut River Valley, Connecticut: a special problem in land management
Langer, William H.
1972-01-01
When man first settled the United States, two natural features favored settlement; flat land that was easy to build on and to farm, and a nearby river that could act as a source of water, transportation, and power. The Connecticut River Valley from Middletown, Ct. north past the Connecticut-Massachusetts state line satisfied these two needs, and was favored by many early Americans in New England. This area remains an area of rapid urbanization, partly because of the broad flat lowlands. The subdued topography of this area is due in large part to deposition of fine-grained materials into glacial Lake Hitchcock. This lake was formed during the Wisconsinan age when southward drainage in the Triassic valley of Connecticut was dammed by glacial drift in the area of Rocky Hill, Connecticut. Lake Hitchcock grew to and beyond St. Johnsbury, Vt. with much of the lake being filled with cyclical lake-bottom deposits during the 2,290 to 2,350 years of its life. Aside from the relative flatness inherent in the deposition of fine-grained lake-bottom deposits, these deposits present very few characteristics that are favorable for urbanization. Favorable characteristics are possible sources of clay for manufacturing and possible sources for waste storage sites. Unfavorable characteristics include low water yields resulting in poor urban water-supply sources, and very low flows in streams during dry periods; low percolation rates resulting In drainage and septic problems; and low or uneven bearing strength which create problems in construction. Fine-grained lake-bottom deposits have been mapped for six quadrangles in the Connecticut Valley lowlands; the quadrangles of Windsor Locks, Broad Brook, Hartford North, Manchester, Hartford South, and Glastonbury (all located in Connecticut). All the maps were prepared from existing information including well and test hole data on file at the Water Resources Division in Hartford, surficial geologic quadrangle maps, and bedrock contour maps. The maps also reflect geologic interpretations of the history of glacial Lake Hitchcock. The Hartford North maps were prepared as test maps to determine if the project was feasible. They were prepared using the previously described information plus additional subsurface data obtained from engineering firms and the State Highway Department. During preparation of the maps, an arcuate-shaped, ice-contact deposit composed of coarse sand and gravel was delineated in the Broad Brook and Windsor Locks quadrangles. This feature marks the location of a zone of stagnant ice In front of and marginal to active ice to the north. Two types of maps were prepared for the area in study; Thickness of the Principal Clay Deposit, and Thickness of Material Overlying the Principal Clay Deposit. The term "principal clay deposit" refers to the fine-grained lake-bottom deposits of Glacial Lake Hitchcock. These maps define the distribution of the deposit, and show the thickness of the deposit in 50 foot intervals and the thickness of the material overlying the deposit In 20 foot intervals. The maps indicate that much of the area is underlain with substantial thicknesses of finegrained lake-bottom deposits (50 feet thick or greater), and that much of the deposit is within 20 feet of the surface. The maps included in this report can be used for land-use planning. Uses include location of favorable sites for specific uses such as landfills, utility corridors, heavy construction, etc; location of problem areas for specific land uses; identification of possible problems for specific areas; design and construction cost estimates; and prospecting for exploitable clay deposits. It Is suggested that, for effective planning, these maps be used together or in conjunction with other maps such as maps showing surface materials, depth to bedrock, depth to water table, and flood prone areas.
ERIC Educational Resources Information Center
Hegarty, Mary; Canham, Matt S.; Fabrikant, Sara I.
2010-01-01
Three experiments examined how bottom-up and top-down processes interact when people view and make inferences from complex visual displays (weather maps). Bottom-up effects of display design were investigated by manipulating the relative visual salience of task-relevant and task-irrelevant information across different maps. Top-down effects of…
Maps based on 53 GHz (5.7 mm wavelength)
NASA Technical Reports Server (NTRS)
2002-01-01
Maps based on 53 GHz (5.7 mm wavelength) observations made with the DMR over the entire 4-year mission (top) on a scale from 0 - 4 K, showing the near-uniformity of the CMB brightness, (middle) on a scale intended to enhance the contrast due to the dipole described in the slide 19 caption, and (bottom) following subtraction of the dipole component. Emission from the Milky Way Galaxy is evident in the bottom image. See slide 19 caption for information about map smoothing and projection.
NASA Astrophysics Data System (ADS)
Garza-Perez, J. R.; Rankey, E. C.; Rodriguez-Vázquez, R. A.; Naranjo-Garcia, M. J.
2017-12-01
Extensive and consistent high-resolution seafloor mapping is a difficult task involving important financial resources, intensive field work and careful planning; thus there is a paucity of this type of mapping products both in spatial distribution and through time. Remote sensed imagery has supported continuous mapping efforts elsewhere, but extensive seafloor mapping, even in shallow regions keeps being elusive. Challenges to this effort include cloud cover, surface sun-glint, and water turbidity caused by sediment resuspension and primary productivity. Nevertheless, using high-quality satellite imagery (Landsat-8 OLI -30x30m/pixel- and GeoEye-1 -2x2m/pixel) and rigorous pre-processing (atmospheric correction, de-glinting and water-column light extinction compensation), resulting data contribute towards the advancement of seafloor mapping. The Yucatan Peninsula in México is a carbonate ramp devoid of significant orographic features and surface water bodies. Its submerged portion is the Campeche Bank, gently sloping towards the Gulf of Mexico. The bottom features several distinct blankets composed by medium-fine sediment (dominated by pelecypods, gastropods, foraminifera, lithoclasts, calcareous peloids and algal nodules, Halimeda plaques and coralline algae fragments), and a reef unit with several bank-type coral reefs. Outside the coral reefs, biotic cover down to 20 m deep is dominated by macroalgae (red, brown, green), coralline and filamentous algae with sharp seasonal changes in abundance, from almost nil during north-winds (Oct. - Jan.) to high during dry (Feb.- May) and rainy seasons (Jun. - Sept.), with changes of dominance by algae groups between dry and rainy seasons. This bloom is favored by increases in sunlight and nutrients carried by the Caribbean current upwelling washing the Campeche Bank. Beyond 20 m depth, sandy plains dominate the seascape. Corals, octocorals, sponges and tunicates are spatially restricted to bottoms with thin layers of sediment where limestone pavement or low complexity outcrops provide grounds for sessile biota settlement. These areas provide refuge and have high fish abundance and biomass as well as biodiversity including several economic important species, and mapping products support the decision making process for fisheries management.
Peculiar Features in Patterns of Ancient Light
2013-03-21
ESA Planck mission has imaged the oldest light in our universe. The top map shows Planck all-sky map of the cosmic microwave background, whereas the bottom map shows the largest-scale features of the map.
Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E
2014-12-15
In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.
Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland
2012-01-01
Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.
NASA Astrophysics Data System (ADS)
White, S. M.; McClinton, J. T.
2011-12-01
Beyond the ability of modern near-bottom sonar systems to deliver air-photo-like images of the seafloor to help guide fieldwork, there is a tremendous amount of information hidden within sonar data that is rarely exploited for geologic mapping. Seafloor texture, backscatter amplitude, seafloor slope and roughness data can provide clues about seafloor geology but not straightforward to interpret. We present techniques for seafloor classification in volcanic terrains that integrate the capability of high-resolution, near-bottom sonar instruments to cover extensive areas of seafloor with the ability of visual mapping to discriminate differences in volcanic terrain. These techniques are adapted from the standard practices of terrestrial remote-sensing for use in the deep seafloor volcanic environment. A combination of sonar backscatter and bathymetry is used to supplement the direct seafloor visual observations by geologists to make quasi-geologic thematic maps that are consistent, objective, and most importantly spatially complete. We have taken two approaches to producing thematic maps of the seafloor for the accurate mapping of fine-scale lava morphology (e.g. pillow, lobate and sheet lava) and for the differentiation of distinct seafloor terrain types on a larger scale (e.g. hummocky or smooth). Mapping lava morphology is most accurate using fuzzy logic capable of making inferences between similar morphotypes (e.g. pillow and lobate) and where high-resolution side-scan and bathymetry data coexist. We present examples of lava morphology maps from the Galápagos Spreading Center that show the results from several analyses using different types of input data. Lava morphology is an important source of information on volcanic emplacement and eruptive dynamics. Terrain modeling can be accomplished at any resolution level, depending on the desired use of the model. For volcanic processes, input data needs to be at the appropriate scale to resolve individual volcanic features on the seafloor (e.g. small haystacks and lava channels). We present examples from the East Pacific Rise, which shows that the number of volcanic terrains differs from the tectonic provinces defined by following the spreading axis. Our terrain modeling suggests that differences in ocean crust construction and evolution can be meaningfully identified and explored without a priori assumptions about the geologic processes in a given region.
Living macromolluscs from a paleo-reef region on the northeastern Venezuelan continental shelf
NASA Astrophysics Data System (ADS)
Buitrago, Joaquín; Capelo, Juan; Gutiérrez, Javier; Rada, Martín; Hernández, Ricardo; Grune, Sylvia
2006-02-01
Drowned reefs, fossil reefs or paleo-reefs, are important ecologically as areas of high biodiversity, foraging, shelter environment, and as areas supporting the spawning aggregations of economically important reef fish species. This is particularly significant when the structures are situated in a wide soft-bottom continental shelf. The presence of limestone structures, fossil reefs and pinnacles dating from circa 8 to 9 ka, to the north of the Paria Peninsula in north-eastern Venezuela, has been known to local fishermen for decades. Using echograms obtained during acoustic fisheries evaluations and the scarce previously available information, an improved location map of hard-bottom structures was made. Benthic samples to study macromolluscs were taken at depths between 54 and 93 m using an unmodified 2-m beam trawl. Four trawl samples were located over fossil reef areas while another four were situated in soft-bottom valleys between limestone structures. Fossil reefs in the area showed a highly patchy distribution. A total of 91 species from 43 Bivalvia, Gastropoda and Scaphopoda families were found, Gastropoda being the dominant class with 49 species. Paleo-reef-covered areas showed higher species richness and only 21% of the species found were common to both substrates. Gastropods Tonna maculosa and Polystira albida were the most abundant species and occurred in both substrate types. Bivalve life habits, a mixture of organism-substrate relationships, shell fixation, mobility and feeding type, differed significantly according to bottom type. Six species are recorded for the first time for eastern Venezuelan waters. Bottom heterogeneity plays an important role in marine ecosystems, providing shelter to fish populations and may be significant as breeding and nursery areas. Its presence in a region with biogeographical interest, situated in the confluence of three major provinces and with oceanographic conditions varying seasonally from upwelling dominated to Orinoco River discharges, makes this the area of interest and it should be evaluated as a possible Marine Protected Area.
The use of Sentinel-2 imagery for seagrass mapping: Kalloni Gulf (Lesvos Island, Greece) case study
NASA Astrophysics Data System (ADS)
Topouzelis, Konstantinos; Charalampis Spondylidis, Spyridon; Papakonstantinou, Apostolos; Soulakellis, Nikolaos
2016-08-01
Seagrass meadows play a significant role in ecosystems by stabilizing sediment and improving water clarity, which enhances seagrass growing conditions. It is high on the priority of EU legislation to map and protect them. The traditional use of medium spatial resolution satellite imagery e.g. Landsat-8 (30m) is very useful for mapping seagrass meadows on a regional scale. However, the availability of Sentinel-2 data, the recent ESA's satellite with its payload Multi-Spectral Instrument (MSI) is expected to improve the mapping accuracy. MSI designed to improve coastline studies due to its enhanced spatial and spectral capabilities e.g. optical bands with 10m spatial resolution. The present work examines the quality of Sentinel-2 images for seagrass mapping, the ability of each band in detection and discrimination of different habitats and estimates the accuracy of seagrass mapping. After pre-processing steps, e.g. radiometric calibration and atmospheric correction, image classified into four classes. Classification classes included sub-bottom composition e.g. seagrass, soft bottom, and hard bottom. Concrete vectors describing the areas covered by seagrass extracted from the high-resolution satellite image and used as in situ measurements. The developed methodology applied in the Gulf of Kalloni, (Lesvos Island - Greece). Results showed that Sentinel-2 images can be robustly used for seagrass mapping due to their spatial resolution, band availability and radiometric accuracy.
Global terrestrial Human Footprint maps for 1993 and 2009
Venter, Oscar; Sanderson, Eric W.; Magrach, Ainhoa; Allan, James R.; Beher, Jutta; Jones, Kendall R.; Possingham, Hugh P.; Laurance, William F.; Wood, Peter; Fekete, Balázs M.; Levy, Marc A.; Watson, James E.M.
2016-01-01
Remotely-sensed and bottom-up survey information were compiled on eight variables measuring the direct and indirect human pressures on the environment globally in 1993 and 2009. This represents not only the most current information of its type, but also the first temporally-consistent set of Human Footprint maps. Data on human pressures were acquired or developed for: 1) built environments, 2) population density, 3) electric infrastructure, 4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable waterways. Pressures were then overlaid to create the standardized Human Footprint maps for all non-Antarctic land areas. A validation analysis using scored pressures from 3114×1 km2 random sample plots revealed strong agreement with the Human Footprint maps. We anticipate that the Human Footprint maps will find a range of uses as proxies for human disturbance of natural systems. The updated maps should provide an increased understanding of the human pressures that drive macro-ecological patterns, as well as for tracking environmental change and informing conservation science and application. PMID:27552448
Salient region detection by fusing bottom-up and top-down features extracted from a single image.
Tian, Huawei; Fang, Yuming; Zhao, Yao; Lin, Weisi; Ni, Rongrong; Zhu, Zhenfeng
2014-10-01
Recently, some global contrast-based salient region detection models have been proposed based on only the low-level feature of color. It is necessary to consider both color and orientation features to overcome their limitations, and thus improve the performance of salient region detection for images with low-contrast in color and high-contrast in orientation. In addition, the existing fusion methods for different feature maps, like the simple averaging method and the selective method, are not effective sufficiently. To overcome these limitations of existing salient region detection models, we propose a novel salient region model based on the bottom-up and top-down mechanisms: the color contrast and orientation contrast are adopted to calculate the bottom-up feature maps, while the top-down cue of depth-from-focus from the same single image is used to guide the generation of final salient regions, since depth-from-focus reflects the photographer's preference and knowledge of the task. A more general and effective fusion method is designed to combine the bottom-up feature maps. According to the degree-of-scattering and eccentricities of feature maps, the proposed fusion method can assign adaptive weights to different feature maps to reflect the confidence level of each feature map. The depth-from-focus of the image as a significant top-down feature for visual attention in the image is used to guide the salient regions during the fusion process; with its aid, the proposed fusion method can filter out the background and highlight salient regions for the image. Experimental results show that the proposed model outperforms the state-of-the-art models on three public available data sets.
Bounding the error on bottom estimation for multi-angle swath bathymetry sonar
NASA Astrophysics Data System (ADS)
Mullins, Geoff K.; Bird, John S.
2005-04-01
With the recent introduction of multi-angle swath bathymetry (MASB) sonar to the commercial marketplace (e.g., Benthos Inc., C3D sonar, 2004), additions must be made to the current sonar lexicon. The correct interpretation of measurements made with MASB sonar, which uses filled transducer arrays to compute angle-of-arrival information (AOA) from backscattered signal, is essential not only for mapping, but for applications such as statistical bottom classification. In this paper it is shown that aside from uncorrelated channel to channel noise, there exists a tradeoff between effects that govern the error bounds on bottom estimation for surfaces having shallow grazing angle and surfaces distributed along a radial arc centered at the transducer. In the first case, as the bottom aligns with the radial direction to the receiver, footprint shift and shallow grazing angle effects dominate the uncertainty in physical bottom position (surface aligns along a single AOA). Alternatively, if signal from a radial arc arrives, a single AOA is usually estimated (not necessarily at the average location of the surface). Through theoretical treatment, simulation, and field measurements, the aforementioned factors affecting MASB bottom mapping are examined. [Work supported by NSERC.
NASA Technical Reports Server (NTRS)
Trumbull, J. V. A. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Three Skylab earth resources passes over Puerto Rico and St. Croix on 6 June and 30 November 1973 and 18 January 1974 resulted in color photography and multispectral photography and scanner imagery. Bathymetric and turbid water features are differentiable by use of the multispectral data. Photography allows mapping of coral reefs, offshore sand deposits, areas of coastal erosion, and patterns of sediment transport. Bottom sediment types could not be differentiated. Patterns of bottom dwelling biologic communities are well portrayed but are difficult to differentiate from bathymetric detail. Effluent discharges and oil slicks are readily detected and are differentiated from other phenomena by the persistence of their images into the longer wavelength multispectral bands.
Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013
Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland
2014-01-01
Maximum groundwater temperatures at the bottom of the logs ranged from 11.2 to 15.4 degrees Celsius. Geothermal gradients were generally higher than those typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 4 of the 10 wells studied but only obscured the part of the geothermal gradient signal where groundwater actually flowed into, out of, or through the well. Temperature gradients varied by mapped bedrock type but can also vary by localized differences in mineralogy or rock type within the wells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virnstein, R.; Tepera, M.; Beazley, L.
1997-06-01
A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less
Automatic Polyp Detection via A Novel Unified Bottom-up and Top-down Saliency Approach.
Yuan, Yixuan; Li, Dengwang; Meng, Max Q-H
2017-07-31
In this paper, we propose a novel automatic computer-aided method to detect polyps for colonoscopy videos. To find the perceptually and semantically meaningful salient polyp regions, we first segment images into multilevel superpixels. Each level corresponds to different sizes of superpixels. Rather than adopting hand-designed features to describe these superpixels in images, we employ sparse autoencoder (SAE) to learn discriminative features in an unsupervised way. Then a novel unified bottom-up and top-down saliency method is proposed to detect polyps. In the first stage, we propose a weak bottom-up (WBU) saliency map by fusing the contrast based saliency and object-center based saliency together. The contrast based saliency map highlights image parts that show different appearances compared with surrounding areas while the object-center based saliency map emphasizes the center of the salient object. In the second stage, a strong classifier with Multiple Kernel Boosting (MKB) is learned to calculate the strong top-down (STD) saliency map based on samples directly from the obtained multi-level WBU saliency maps. We finally integrate these two stage saliency maps from all levels together to highlight polyps. Experiment results achieve 0.818 recall for saliency calculation, validating the effectiveness of our method. Extensive experiments on public polyp datasets demonstrate that the proposed saliency algorithm performs favorably against state-of-the-art saliency methods to detect polyps.
50 kHz bottom backscattering measurements from two types of artificially roughened sandy bottoms
NASA Astrophysics Data System (ADS)
Son, Su-Uk; Cho, Sungho; Choi, Jee Woong
2016-07-01
Laboratory measurements of 50 kHz bottom backscattering strengths as a function of grazing angle were performed on the sandy bottom of a water tank; two types of bottom roughnesses, a relatively smooth interface and a rough interface, were created on the bottom surface. The roughness profiles of the two interface types were measured directly using an ultrasound arrival time difference of 5 MHz and then were Fourier transformed to obtain the roughness power spectra. The measured backscattering strengths increased from -29 to 0 dB with increasing grazing angle from 35 to 86°, which were compared to theoretical backscattering model predictions. The comparison results implied that bottom roughness is a key factor in accurately predicting bottom scattering for a sandy bottom.
Poppe, L.J.; Knebel, H.J.; Mlodzinska, Z.J.; Hastings, M.E.; Seekins, B.A.
2000-01-01
The surficial sediment distribution within Long Island Sound has been mapped and described using bottom samples, photography, and sidescan sonar, combined with information from the geologic literature. The distributions of sediment type and total organic carbon (TOC) reveal several broad trends that are largely related to the sea-floor geology, the bathymetry, and the effects of modern tidal- and wind-driven currents. Sediment types are most heterogeneous in bathymetrically complex and shallow nearshore areas; the heterogeneity diminishes and the texture fines with decreasing bottom-current energy. Lag deposits of gravel and gravelly sand dominate the surficial sediment texture in areas where bottom currents are the strongest (such as where tidal flow is constricted) and where glacial till crops out at the sea floor. Sand is the dominant sediment type in areas characterized by active sediment transport and in shallow areas affected by fine-grained winnowing. Silty sand and sand-silt-clay mark transitions within the basin from higher- to lower-energy environments, suggesting a diminished hydraulic ability to sort and transport sediment. Clayey silt and silty clay are the dominant sediment types accumulating in the central and western basins and in other areas characterized by long-term depositional environments. The amount of TOC in the sediments of Long Island Sound varies inversely with sediment grain size. Concentrations average more than 1.9% (dry weight) in clayey silt, but are less than 0.4% in sand. Generally, values for TOC increase both toward the west in the Sound and from the shallow margins to the deeper parts of the basin floor. Our data also suggest that TOC concentrations can vary seasonally.
Feasibility study for airborne fluorescence/reflectivity lidar bathymetry
NASA Astrophysics Data System (ADS)
Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika
2012-06-01
There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.
Enhanced Management of and Access to Hurricane Sandy Ocean and Coastal Mapping Data
NASA Astrophysics Data System (ADS)
Eakins, B.; Neufeld, D.; Varner, J. D.; McLean, S. J.
2014-12-01
NOAA's National Geophysical Data Center (NGDC) has significantly improved the discovery and delivery of its geophysical data holdings, initially targeting ocean and coastal mapping (OCM) data in the U.S. coastal region impacted by Hurricane Sandy in 2012. We have developed a browser-based, interactive interface that permits users to refine their initial map-driven data-type choices prior to bulk download (e.g., by selecting individual surveys), including the ability to choose ancillary files, such as reports or derived products. Initial OCM data types now available in a U.S. East Coast map viewer, as well as underlying web services, include: NOS hydrographic soundings and multibeam sonar bathymetry. Future releases will include trackline geophysics, airborne topographic and bathymetric-topographic lidar, bottom sample descriptions, and digital elevation models.This effort also includes working collaboratively with other NOAA offices and partners to develop automated methods to receive and verify data, stage data for archive, and notify data providers when ingest and archive are completed. We have also developed improved metadata tools to parse XML and auto-populate OCM data catalogs, support the web-based creation and editing of ISO-compliant metadata records, and register metadata in appropriate data portals. This effort supports a variety of NOAA mission requirements, from safe navigation to coastal flood forecasting and habitat characterization.
Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor
Kobryn, Halina T.; Wouters, Kristin; Beckley, Lynnath E.; Heege, Thomas
2013-01-01
Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas. PMID:23922921
NASA Astrophysics Data System (ADS)
Sokolov, S. Yu.; Moroz, E. A.; Abramova, A. S.; Zarayskaya, Yu. A.; Dobrolubova, K. O.
2017-07-01
On cruises 25 (2007) and 28 (2011) of the R/V Akademik Nikolai Strakhov in the northern part of the Barents Sea, the Geological Institute, Russian Academy of Sciences, conducted comprehensive research on the bottom relief and upper part of the sedimentary cover profile under the auspices of the International Polar Year program. One of the instrument components was the SeaBat 8111 shallow-water multibeam echo sounder, which can map the acoustic field similarly to a side scan sonar, which records the response both from the bottom and from the water column. In the operations area, intense sound scattering objects produced by the discharge of deep fluid flows are detected in the water column. The sound scattering objects and pockmarks in the bottom relief are related to anomalies in hydrocarbon gas concentrations in bottom sediments. The sound scattering objects are localized over Triassic sequences outcropping from the bottom. The most intense degassing processes manifest themselves near the contact of the Triassic sequences and Jurassic clay deposits, as well as over deep depressions in a field of Bouguer anomalies related to the basement of the Jurassic-Cretaceous rift system
Numerical modeling of marine Gravity data for tsunami hazard zone mapping
NASA Astrophysics Data System (ADS)
Porwal, Nipun
2012-07-01
Tsunami is a series of ocean wave with very high wavelengths ranges from 10 to 500 km. Therefore tsunamis act as shallow water waves and hard to predict from various methods. Bottom Pressure Recorders of Poseidon class considered as a preeminent method to detect tsunami waves but Acoustic Modem in Ocean Bottom Pressure (OBP) sensors placed in the vicinity of trenches having depth of more than 6000m fails to propel OBP data to Surface Buoys. Therefore this paper is developed for numerical modeling of Gravity field coefficients from Bureau Gravimetric International (BGI) which do not play a central role in the study of geodesy, satellite orbit computation, & geophysics but by mathematical transformation of gravity field coefficients using Normalized Legendre Polynomial high resolution ocean bottom pressure (OBP) data is generated. Real time sea level monitored OBP data of 0.3° by 1° spatial resolution using Kalman filter (kf080) for past 10 years by Estimating the Circulation and Climate of the Ocean (ECCO) has been correlated with OBP data from gravity field coefficients which attribute a feasible study on future tsunami detection system from space and in identification of most suitable sites to place OBP sensors near deep trenches. The Levitus Climatological temperature and salinity are assimilated into the version of the MITGCM using the ad-joint method to obtain the sea height segment. Then TOPEX/Poseidon satellite altimeter, surface momentum, heat, and freshwater fluxes from NCEP reanalysis product and the dynamic ocean topography DOT_DNSCMSS08_EGM08 is used to interpret sea-bottom elevation. Then all datasets are associated under raster calculator in ArcGIS 9.3 using Boolean Intersection Algebra Method and proximal analysis tools with high resolution sea floor topographic map. Afterward tsunami prone area and suitable sites for set up of BPR as analyzed in this research is authenticated by using Passive microwave radiometry system for Tsunami Hazard Zone Mapping by network of seismometers. Thus using such methodology for early Tsunami Hazard Zone Mapping also increase accuracy and reduce time period for tsunami predictions. KEYWORDS:, Tsunami, Gravity Field Coefficients, Ocean Bottom Pressure, ECCO, BGI, Sea Bottom Temperature, Sea Floor Topography.
Contrasting vertical and horizontal representations of affect in emotional visual search.
Damjanovic, Ljubica; Santiago, Julio
2016-02-01
Independent lines of evidence suggest that the representation of emotional evaluation recruits both vertical and horizontal spatial mappings. These two spatial mappings differ in their experiential origins and their productivity, and available data suggest that they differ in their saliency. Yet, no study has so far compared their relative strength in an attentional orienting reaction time task that affords the simultaneous manifestation of both types of mapping. Here, we investigated this question using a visual search task with emotional faces. We presented angry and happy face targets and neutral distracter faces in top, bottom, left, and right locations on the computer screen. Conceptual congruency effects were observed along the vertical dimension supporting the 'up = good' metaphor, but not along the horizontal dimension. This asymmetrical processing pattern was observed when faces were presented in a cropped (Experiment 1) and whole (Experiment 2) format. These findings suggest that the 'up = good' metaphor is more salient and readily activated than the 'right = good' metaphor, and that the former outcompetes the latter when the task context affords the simultaneous activation of both mappings.
Polar Maps of Thermal and Epithermal Neutrons
2002-05-28
Observations by NASA Mars Odyssey spacecraft show views of the polar regions of Mars in thermal neutrons top and epithermal neutrons bottom. In these maps, deep blue indicates a low amount of neutrons and red indicates a high amount.
A Bottom Gravity Survey of the Continental Shelf Between Point Lobos and Point Sur, California.
From an occupation of 68 ocean bottom and 38 land gravity stations between Pt. Lobos and Pt. Sur, California, a complete Bouguer anomaly map was...produced and analyzed. The steps in data reduction leading to the complete Bouguer anomaly field are presented, unique features of which are associated
NASA Astrophysics Data System (ADS)
Manessa, Masita Dwi Mandini; Kanno, Ariyo; Sagawa, Tatsuyuki; Sekine, Masahiko; Nurdin, Nurjannah
2018-01-01
Lyzenga's multispectral bathymetry formula has attracted considerable interest due to its simplicity. However, there has been little discussion of the effect that variation in optical conditions and bottom types-which commonly appears in coral reef environments-has on this formula's results. The present paper evaluates Lyzenga's multispectral bathymetry formula for a variety of optical conditions and bottom types. A noiseless dataset of above-water remote sensing reflectance from WorldView-2 images over Case-1 shallow coral reef water is simulated using a radiative transfer model. The simulation-based assessment shows that Lyzenga's formula performs robustly, with adequate generality and good accuracy, under a range of conditions. As expected, the influence of bottom type on depth estimation accuracy is far greater than the influence of other optical parameters, i.e., chlorophyll-a concentration and solar zenith angle. Further, based on the simulation dataset, Lyzenga's formula estimates depth when the bottom type is unknown almost as accurately as when the bottom type is known. This study provides a better understanding of Lyzenga's multispectral bathymetry formula under various optical conditions and bottom types.
Mind Mapping in Executive Education: Applications and Outcomes.
ERIC Educational Resources Information Center
Mento, Anthony J.; Martinelli, Patrick; Jones, Raymond M.
1999-01-01
Illustrates the technique of mind mapping as applied in executive education and management development. Indicates that most of the 70 students surveyed appreciated its use for recall and creative thinking, although some prefer a top-to-bottom, linear outline approach. (SK)
Site assessment using echo sounding, side scan sonar and sub-bottom profiling.
DOT National Transportation Integrated Search
2014-02-01
The primary objective of this research is to use multifaceted geophysical data techniques in order to better map karst terrain beneath : standing bodies of water. This study may help providing stronger mapping techniques for future bridge and dam con...
15. Site plan, 1915, bottom half With CT214, photocopied from ...
15. Site plan, 1915, bottom half With CT-2-14, photocopied from an ozalid print, 'Map of Plant of Sentinel Manufacturing Co.,' Folio 2, EWC. The Sentinel Manufacturing Co. produced gas stoves. They leased the Whitney Armory buildings about 1915. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT
Bottom friction. A practical approach to modelling coastal oceanography
NASA Astrophysics Data System (ADS)
Bolanos, Rodolfo; Jensen, Palle; Kofoed-Hansen, Henrik; Tornsfeldt Sørensen, Jacob
2017-04-01
Coastal processes imply the interaction of the atmosphere, the sea, the coastline and the bottom. The spatial gradients in this area are normally large, induced by orographic and bathymetric features. Although nowadays it is possible to obtain high-resolution bathymetry, the details of the seabed, e.g. sediment type, presence of biological material and living organisms are not available. Additionally, these properties as well as bathymetry can also be highly dynamic. These bottom characteristics are very important to describe the boundary layer of currents and waves and control to a large degree the dissipation of flows. The bottom friction is thus typically a calibration parameter in numerical modelling of coastal processes. In this work, we assess this process and put it into context of other physical processes uncertainties influencing wind-waves and currents in the coastal areas. A case study in the North Sea is used, particularly the west coast of Denmark, where water depth of less than 30 m cover a wide fringe along the coast, where several offshore wind farm developments are being carried out. We use the hydrodynamic model MIKE 21 HD and the spectral wave model MIKE 21 SW to simulate atmosphere and tidal induced flows and the wind wave generation and propagation. Both models represent state of the art and have been developed for flexible meshes, ideal for coastal oceanography as they can better represent coastlines and allow a variable spatial resolution within the domain. Sensitivity tests to bottom friction formulations are carried out into context of other processes (e.g. model forcing uncertainties, wind and wave interactions, wind drag coefficient). Additionally, a map of varying bottom properties is generated based on a literature survey to explore the impact of the spatial variability. Assessment of different approaches is made in order to establish a best practice regarding bottom friction and coastal oceanographic modelling. Its contribution is also assessed during storm conditions, where its most evident impact is expected as waves are affected by the bottom processes in larger areas, making bottom dissipation more efficient. We use available waves and current measurements in the North Sea (e.g. Ekofisk, Fino platforms and some other coastal stations at the west coast of Denmark) to quantify the importance of processes influencing waves and currents in the coastal zone and putting it in the context of the importance of bottom friction and other processes uncertainties.
NASA Astrophysics Data System (ADS)
Etnoyer, P. J.; Salgado, E.; Stierhoff, K.; Wickes, L.; Nehasil, S.; Kracker, L.; Lauermann, A.; Rosen, D.; Caldow, C.
2015-12-01
Southern California's deep-sea corals are diverse and abundant, but subject to multiple stressors, including corallivory, ocean acidification, and commercial bottom fishing. NOAA has surveyed these habitats using a remotely operated vehicle (ROV) since 2003. The ROV was equipped with high-resolution cameras to document deep-water groundfish and their habitat in a series of research expeditions from 2003 - 2011. Recent surveys 2011-2015 focused on in-situ measures of aragonite saturation and habitat mapping in notable habitats identified in previous years. Surveys mapped abundance and diversity of fishes and corals, as well as commercial fisheries landings and frequency of fishing gear. A novel priority setting algorithm was developed to identify hotspots of diversity and fishing intensity, and to determine where future conservation efforts may be warranted. High density coral aggregations identified in these analyses were also used to guide recent multibeam mapping efforts. The maps suggest a large extent of unexplored and unprotected hard-bottom habitat in the mesophotic zone and deep-sea reaches of Channel Islands National Marine Sanctuary.
NIMS Spectral Maps of Jupiter Great Red Spot
1998-03-26
The Near-Infrared Mapping Spectrometer (NIMS) instrument looks at Jupiter's Great Red Spot, in these views from June 26, 1996. NIMS studies infrared wavelengths of light that our eye cannot see. These maps are at four different infrared wavelengths, each one picked to reveal something different about the atmosphere. The top image is a false color map of a wavelength that is at the red edge of our ability to see. It shows the shapes of features that we would see with our eyes. The second map is of ammonia ice, red showing where the most ice is, blue where none exists. The differences between this and the first image are due to the amount and size of ammonia ice crystals. The third map down is from a wavelength that shows cloud heights, with the highest clouds in red, and the lowest in blue. The bottom map uses a wavelength that shows the hot Jupiter shining through the clouds. Red represents the thinnest clouds, and blue is thickest where it is more difficult to see below. Comparing the bottom two images, note that the highest clouds are in the center of the Great Red Spot, while there are relatively few clouds around the edges. http://photojournal.jpl.nasa.gov/catalog/PIA00501
A Synthesis of the Basal Thermal State of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Macgregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Aschwanden, A.; Clow, G. D.; Colgan, W. T.; Gogineni, S. P.; Morlighem, M.; Nowicki, S. M. J.; Paden, J. D.;
2016-01-01
Greenland's thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth's depths. Knowing whether Greenland's ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future. But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Our study synthesizes several independent methods to infer the Greenland Ice Sheet's basal thermal state -whether the bottom of the ice is melted or not-leading to the first map that identifies frozen and thawed areas across the whole ice sheet. This map will guide targets for future investigations of the Greenland Ice Sheet toward the most vulnerable and poorly understood regions, ultimately improving our understanding of its dynamics and contribution to future sea-level rise. It is of particular relevance to ongoing Operation IceBridge activities and future large-scale airborne missions over Greenland.
Bottom morphology in the Song Hau distributary channel, Mekong River Delta, Vietnam
NASA Astrophysics Data System (ADS)
Allison, Mead A.; Dallon Weathers, H.; Meselhe, Ehab A.
2017-09-01
Field studies in the Song Hau distributary of the Mekong Delta in Vietnam conducted at high (Sept.-Oct 2014) and low (March 2015) Mekong River discharge are utilized to examine channel bottom morphology and links with sediment transport in the system. Multibeam bathymetric mapping surveys over the entire channel complex in the lower 80 km of the distributary channel, and over 12- to 24-h tidal periods at six transect locations in the reach are used to characterize bottom type and change on seasonal and tidal timescales, supplemented by bottom sampling. The results of this study indicate that the largest proportion of channel floor (up to 80% of the total area) is composed of substratum outcrops of relict sediment units deposited during the progradation of the delta in the last 3.5 ka. These take the form of outcrops that are either (1) steep-sided, tabular channel floor, (2) steep-sided sidewall, or (3) relatively flat channel floor. Flatter outcrops of channel floor substratum are identified by the presence of sedimentary furrows (<0.5 m deep) incised into the channel bottom that are exposed at high discharge and oriented along channel and laterally continuous for kilometers. These furrows are persistent in location and extent across tidal cycles and appear to be incised into relict units, sometimes with a thin surficial layer of modern sediment observable in bottom grabs. The extent of substratum exposure, greater than that observed previously in low tidal energy systems like the Mississippi River, may relate both to a relatively low sand supply from the catchment, and/or to an efficient transfer of both sand and mud through this tidally energetic channel. Sand bottom areas forming dunes, comprise about 19% of the channel floor over the study area and are generally less than a few meters thick except on bar extensions of mid-channel islands. Both sandy and substratum areas are mantled by soft muds 0.25-1 m thick during low discharge in the estuarine section of the study area. This mud mantling appears to be a key control on bottom sourcing of sand to suspension. An understanding of channel bottom morphology, particularly mobility and erodibility of sediments, is valuable for setting up morphodynamic models of channel evolution that can be used to test system response to anthropogenic alterations in the catchment and rising sea levels.
The nappes of the Lepontine dome: the influence of tectonic inheritance on their deformation style
NASA Astrophysics Data System (ADS)
Schenker, Filippo Luca; Ambrosi, Christian; Scapozza, Cristian; Czerki, Dorota; Castelletti, Claudio; Maino, Matteo; Gouffon, Yves
2017-04-01
The Lepontine dome exposes the tectonostratigraphy of the Central Alps, from bottom-to-top, the subpenninic gneissic nappes of the Leventina, Simano, Adula/Cima-Lunga and Maggia. These units were part of a post-Variscan gneissic crust, which was intensely intruded by several generations of granitoids forming laccoliths and dikes of different shapes and sizes within paragneisses, augengneisses and amphibolites. During the Alpine orogenic cycle this initial and complex geological architecture was reshaped into a fold and thrust belt. We present the effect of these initial rheological anomalies along the Leventina, Simano and Adula/Cima-Lunga units through the geological map of the Osogna sheet (Swiss National Map no. 1293,1:25'000) together with structural and metamorphic data. The geological map shows that the Simano and Adula/Cima-Lunga units have an internal and lateral lithological variation at different scales as illustrated by the geological cross-sections. All lithologies present a penetrative amphibolite-facies foliation, which can vary in intensity among the rock-types. On the foliation plane a mineral and stretching lineation is visible dipping NW or SE, depending on the plane dip direction. The kinematic analysis indicates a top-to-the NW shearing. Despite this consistent structural data showing a regional dominant fabric, the folds (generally with a fold-axis parallel to the lineation) show different styles, depending on the thickness and the rock-type of the folded horizon and matrix, do not form laterally continuous structures and often are not cylindrical. As a consequence, such structures are interpreted as local perturbation rather than structures of regional importance. Furthermore, the Leventina and the Simano boundary is locally incongruent with the tectonic contact of the published maps. The amphibolite and paragneisses, used in the past as nappe divider, result to be deformed magmatic xenoliths. Therefore we present evidence (i) of a bottom-to-top top-to-the-foreland deformation gradient between the Leventina and Adula/Cima-Lunga units, (ii) within this shearing, the inherited rheological heterogeneities in the units lead to non-coaxial ductile deformation complicating the tectonic understanding and (iii) the boundary between the Leventina and the Simano units was a magmatic contact, questioning the allochthonous character of the Simano unit.
Near-bottom Multibeam Survey Capabilities in the US National Deep Submergence Facility (Invited)
NASA Astrophysics Data System (ADS)
Yoerger, D. R.; McCue, S. J.; Jason; Sentry Operations Groups
2010-12-01
The US National Deep Submergence Facility (NDSF) provides near-bottom multibeam mapping capabilities from the autonomous underwater vehicle Sentry and the remotely operated vehicle Jason. These vehicles can be used to depths of 4500 and 6500m respectively. Both vehicles are equipped with Reson 7125 400khz multibeam sonars as well as compatible navigation equipment (inertial navigation systems, doppler velocity logs, and acoustic navigation systems). These vehicles have produced maps of rugged Mid-Ocean Ridge terrain in the Galapagos Rift, natural oil and gas seeps off the coast of Southern California, deep coral sites in the Gulf of Mexico, and sites for the Ocean Observing Initiative off the coast of Oregon. Multibeam surveys are conducted from heights between 20 and 80 meters, allowing the scientific user to select the tradeoff between resolution and coverage rate. In addition to conventional bathymetric mapping, the systems have used to image methane bubble plumes from natural seeps. This talk will provide summaries of these mapping efforts and describe the data processing pipeline used to produce maps shortly after each dive. Development efforts to reduce navigational errors and reconcile discrepancies between adjacent swaths will also be described.
Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie
2015-01-01
Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant scale for biodiversity conservation. PMID:26266542
Bouligand, C.; Glen, J.M.G.; Blakely, R.J.
2009-01-01
We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal structure of the western United States.
Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie
2015-01-01
Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant scale for biodiversity conservation.
Mapping of submerged vegetation using remote sensing technology
NASA Technical Reports Server (NTRS)
Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.
1981-01-01
Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.
Photocopy: Composite Map of Crossing Site by Daniel J. Mordell ...
Photocopy: Composite Map of Crossing Site by Daniel J. Mordell from Canal Society of New York State. Bottoming Out: Useful and Interesting Notes Collected for Members of the Canal Society of New York State. Vol. 18-19. Syracuse, 1962. - Erie Canal (Enlarged), Schoharie Creek Aqueduct, Spanning Schoharie Creek, Fort Hunter, Montgomery County, NY
Complex carbonate and clastic stratigraphy of the inner shelf off west-central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locker, S.D.; Doyle, L.J.; Hine, A.C.
1990-05-01
The near surface stratigraphy (< 30 m) of the inner shelf off the west coast of Florida was investigated using high-resolution seismic, side-scan sonar, and continuous underwater video camera coverage. The simultaneous operation of all three systems provided a unique opportunity to calibrate acoustic data with actual video images of the sea floor in a geologically complex area characterized by limestone dissolution structures, hard-bottom exposures, and overlain by a limited supply of terrigenous clastics. Three principle bottom types, grass, sand, and hard-bottom mapped using video and side-scan sonographs, show a correlation with two subsurface stratigraphic zones. The nearshore subsurface zonemore » extending to 6-7 m water depth is characterized by flat or rolling strata and sinkholes that increase in size (200-1,200 m in diameter) and become more numerous further offshore. This zone is truncated by a major erosional unconformity overlain by a thin (<3 m) sequence of Holocene sediment, which together form a terrace upon which the Anclote Key barrier island formed. The offshore subsurface zone (7-11 m water depth) exhibits irregular and discontinuous high-amplitude flat or inclined reflections and few sinkholes. Offshore, extensive hard-bottom exposures are common with discontinuous sediment that occur as lenses or sand waves. The complex stratigraphy of the west Florida shelf includes outcropping Neogene limestones that have undergone dissolution during sea level lowstands. Carbonates and clastics dispersed during multiple sea level changes overlie the Neogene limestones. Dissolution styles and erosional unconformities produced bedrock topography and now control modern geological and biological processes.« less
NASA Technical Reports Server (NTRS)
Metzger, Stephen M.
1993-01-01
The utilization of modest equipment and software revealed bottom contours and water column conditions of a dynamic water body. Classroom discussions of field techniques and equipment capabilities followed by exercises with the data sets in cause-and-effect analysis all contributed to participatory education in the process of science. This project is presented as a case study of the value of engaging secondary and collegiate level students in planning, executing and appraising a real world investigation which they can directly relate to. A 1 km wide bay, experiencing marsh inflow, along an 8 km long lake situated 120 km north of Ottawa, Canada, on the glaciated Canadian Precambrian Shield was mapped in midsummer for submerged topography, bottom composition, temperature profile, turbudity, dissolved oxygen and biota distribution. Low level aerial photographs scanned into image processing software are permitting spatial classification of bottom variations in biology and geology. Instrumentation consisted of a portable sport fishing SONAR depth finder, an electronic lead line multiprobe with photocell, thermistor and dissolved oxygen sensors, a selective depth water sampler, portable pH meter, an underwater camera mounted on a home-made platform with a bottom-contact trigger and a disposable underwater camera for shallow survey work. Sampling transects were referenced using a Brunton hand transit triangulating several shore markers.
Mapping beneath the seafloor: AUV sub-bottom profilers, sediment thickness and resource potential
NASA Astrophysics Data System (ADS)
Yeo, I. A.; Vardy, M. E.; Holwell, D.; North, L.; Murton, B. J.
2017-12-01
Most AUV seafloor exploration focuses primarily on collecting high-resolution bathymetric and backscatter data in order to identify and map features of interest. Sub-bottom profiler data provides an essential third dimension that can illuminate not only the thickness of overlying sediment packets, but also the scale and tectonic setting of surface features. In this study we present results of high-resolution sub-bottom profiler surveys of Tropic Seamount, a 3000m tall, 40km wide, flat-topped gyot located 400km south of the Canary Islands. We show how the application of AUV derived sub-bottom profiler data can be used to assess the thickness and extent of ferromanganese crusts covering the summit and underlying thin pelagic sediment cover. Bespoke chirp signals at two altitudes were used to increase the likelihood of resolving thin (tens of cm) layers of crust. Drill cores were obtained from an ROV and used to constrain and calibrate the profiler data. The cores show variable crustal thicknesses of zero to 14 cm of FeMn crustal cover over a partially phosphoritised, vuggy, often poorly lithified limestone basement. Initial measurements of sound velocities suggest differences between the limestone basement and the crust of only a few hundred meters per second. Sub-cores, drilled from large samples collected during the cruise were analysed in the NOC Acoustic Pulse Tube and with X-Ray Computer Tomography to better understand how variations in lithology, crustal thickness, surface texture and internal structure affect the returning geoacoustic signal. We discuss the pros and cons of different surveying patterns, altitudes and chirps, the relative usefulness of sub-bottom profiler data in different environments, and the value added by sub-bottom profiler surveying as opposed to bathymetric surveying alone.
NASA Astrophysics Data System (ADS)
Gutsche, J. R.; Trembanis, A. C.
2010-12-01
With advances in lake bottom mapping it has been observed that modern microbialites, much like the ancient stromatolites, thrive in freshwater lake environments. Previously collected data shows that a diverse community of living stromatolites are present within Pavilion Lake (Laval et al., 2000, Lim et al., 2009). An additional comprehensive data set was collected in June-July 2010. By building on the previous dataset it is possible to compare two high-resolution geoacoustic datasets. Using Autonomous Underwater Vehicles (AUVs) as exploration platforms to conduct surveys of the lake bottom, very high-resolution sonar data has been collected. The data collected in June-July 2010 is composed of 125 km of AUV trackline. This length of trackline allowed for survey coverage of nearly the entire lake bottom. The Gavia AUV used for this survey collected bathymetry data collocated with backscatter information. The data has been processed and gridded to 1m, with specific high value areas gridded to a finer 0.5m. The bathymetric data was compiled to create a base map of the floor of Pavilion Lake. Backscatter data was also collected and processed using the same 1m grid resolution. After the backscatter data was processed, it was draped over the bathymetry map of Pavilion Lake. The tools offered within the Fledermaus software package allow for the bathymetry data to be analyzed with respect to slope and rugosity. By analyzing this dense phase measuring bathymetric sonar of the lake bottom, with respect to slope and rugosity, it is possible to map the morphological trends of the stromatolites. Additionally, the ability to compare two datasets allows for erosional changes in the lake bottom to be identified. The bathymetry data allows for the quantitative analysis of bed forms within Pavilion Lake, allowing for a better understanding of microbialite morphologies. The backscatter data is increasingly important to the Pavilion Lake project because of the location and general surroundings of the lake. The lake itself is located in a limestone canyon, which frequently sustains erosional episodes. The backscatter data allows for the differentiation between erosional deposits and microbial mounds. The combination of backscatter and bathymetry allows for a further understanding of bedforms and microbialite growth patterns.
NASA Astrophysics Data System (ADS)
Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane
2016-08-01
Shelf-margin carbonate mounds in water depths of 116-135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the "Sticky Grounds", trend along slope, are 5-15 m in relief with base diameters of 5-30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem management and planning of future oil and gas activities in this outer continental shelf region.
Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane
2016-01-01
Shelf-margin carbonate mounds in water depths of 116–135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the “Sticky Grounds”, trend along slope, are 5–15 m in relief with base diameters of 5–30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem management and planning of future oil and gas activities in this outer continental shelf region.
Sea bottom topography imaging with SAR
NASA Technical Reports Server (NTRS)
Vanderkooij, M. W. A.; Wensink, G. J.; Vogelzang, J.
1992-01-01
It is well known that under favorable meteorological and hydrodynamical conditions the bottom topography of shallow seas can be mapped with airborne or spaceborne imaging radar. This phenomenon was observed for the first time in 1969 by de Loor and co-workers in Q-band Side Looking Airborne Radar (SLAR) imagery of sandwaves in the North Sea. It is now generally accepted that the imaging mechanism consists of three steps: (1) interaction between (tidal) current and bottom topography causes spatial modulations in the surface current velocity; (2) modulations in the surface current velocity give rise to variations in the spectrum of wind-generated waves, as described by the action balance equation; and (3) variations in the wave spectrum show up as intensity modulations in radar imagery. In order to predict radar backscatter modulations caused by sandwaves, an imaging model, covering the three steps, was developed by the Dutch Sea Bottom Topography Group. This model and some model results will be shown. On 16 Aug. 1989 an experiment was performed with the polarimetric P-, L-, and C-band synthetic aperture radar (SAR) of NASA/JPL. One scene was recorded in SAR mode. On 12 Jul. 1991 another three scenes were recorded, of which one was in the ATI-mode (Along-Track Interferometer). These experiments took place in the test area of the Sea Bottom Topography Group, 30 km off the Dutch coast, where the bottom topography is dominated by sand waves. In-situ data were gathered by a ship in the test area and on 'Measuring Platform Noordwijk', 20 km from the center of the test area. The radar images made during the experiment were compared with digitized maps of the bottom. Furthermore, the profiles of radar backscatter modulation were compared with the results of the model. During the workshop some preliminary results of the ATI measurements will be shown.
Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts
Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.
2015-01-07
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
NASA Astrophysics Data System (ADS)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
Detection gas presence in lakes bottom sediments based on seismic investigations.
NASA Astrophysics Data System (ADS)
Krylov, Pavel; Nurgaliev, Danis; Yasonov, Pavel
2017-04-01
Seismic investigations are used for various tasks, such as the study of the bottom sediments properties, finding sunken objects, reconstruction the reservoir history, etc. Detailed seismic investigation has been carried out in the southern part of Lake Bol'shoe Yarovoe (Altai Krai), Lake Sunukul (Chelyabinsk region), Lake Kisegach to map the bottom sediments and features associated with the presence of gas. The obtained results demonstrate that various types of gas can be recognized in lakes sediments, such as pockmarks, acoustic turbidity, gas flares, seeps. These features, on the one hand, prevent the reconstruction of sequence stratigraphic patterns and, on the other hand, contribute to understanding of the processes of gas formation and migration in the sediments, possible impacts of these processes on the formation of sediments enriched in the organic matter. Also, it helps to recognize these processes in the ancient sediments. The paper points out the importance of studying the formation of methane in lake sediments, because it plays an important role in the climate change. The work was carried out according to the Russia Government's Program of Competitive Growth of Kazan Federal University, supported by the grant provided to the Kazan State University for performing the state program in the field of scientific research, and partially supported by the Russian Foundation for Basic research (grant nos. 16-35-00452).
Experiment on Finite Amplitude Sound Propagation in a Fluid with a Strong Sound Speed Gradient
NASA Astrophysics Data System (ADS)
Hobæk, H.; Voll, A.˚.; Fardal, R.; Calise, L.
2006-05-01
A closed tank of dimensions 0.5 × 0.5 × 2.7 m3, filled with a mixture of ethanol and water to produce an almost linear sound speed profile with a gradient near 450 (m/s)/m, served the purpose for investigating shocked sound wave propagation in a stratified environment. As the sound speed profile evolved by diffusion a number of different measurements were taken, both in areas with caustics, shadow zones, along the main beam and along the bottom. After about one year, part of the fluid was re-mixed to obtain a pronounced sound speed maximum some 20 cm above the bottom. The high intensity sound was produced by a plane circular piston type sound source with near-field length 45 cm and half power angle 0.8° at 1.1 MHz, placed near one end of the tank. Its tilt angle and depth could be varied. A 0.5 mm diameter PVDF needle hydrophone (Precision Acoustics) mapped the sound field in a vertical slice in the range 0.9 - 2.4 m, remotely controlled by a PC. We present results from measurements in a shadow zone and along the bottom. The latter, in particular, displays unexpected amplitude variations. The project was funded by the European Commission, contract number G4RD-CT-2000-00398.
Petras, Daniel; Heiss, Paul; Süssmuth, Roderich D; Calvete, Juan J
2015-06-05
We report on the first application of top-down mass spectrometry in snake venomics. De novo sequence tags generated by, and ProSight Lite supported analysis of, combined collisional based dissotiations (CID and HCD) recorded in a hybrid LTQ Orbitrap instrument in data-dependent mode identified a number of proteins from different toxin families, namely, 11 three-finger toxins (7-7.9 kDa), a Kunitz-type inhibitor (6.3 kDa), ohanin (11.9 kDa), a novel phospholipase A2 molecule (13.8 kDa), and the cysteine-rich secretory protein (CRISP) ophanin (25 kDa) from Indonesian king cobra venom. Complementary bottom-up MS/MS analyses contributed to the completion of a locus-resolved venom phenotypic map for Ophiophagus hannah, the world's longest venomous snake and a species of medical concern across its wide distribution range in forests from India to Southeast Asia. Its venom composition, comprising 32-35 proteins/peptides from 10 protein families, is dominated by α-neurotoxins and convincingly explains the main neurotoxic effects of human envenoming caused by king cobra bite. The integration of efficient chromatographic separation of the venom's components and locus-resolved toxin identification through top-down and bottom-up MS/MS-based species-specific database searching and de novo sequencing holds promise that the future will be bright for the field of venom research.
Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn
2017-06-02
Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.
Art across the Curriculum: Ellipse Clips
ERIC Educational Resources Information Center
Sartorius, Tara Cady
2011-01-01
This article discusses Al Souza's "Orlando City Maps," which was created not by adding colored ink to paper, but by cutting the printed paper away. Seven layers of pages are stacked upon one another and, except for the intact bottom layer, oval-shaped holes are cut through each page to reveal the layers below. When designing "Orlando City Maps,"…
Pluto Topography and Composition Map
2017-09-28
These maps are from New Horizons' data on the topography (top) and composition (bottom) of Pluto's surface. In the high-resolution topographical map, the highlighted red region is high in elevation. The map below, showing the composition, indicates the same section also contains methane, color-coded in orange. One can see the orange features spread into the fuzzier, lower-resolution data that covers the rest of the globe, meaning those areas, too, are high in methane, and therefore likely to be high in elevation. https://photojournal.jpl.nasa.gov/catalog/PIA22036
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.
2017-05-01
We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.
NASA Astrophysics Data System (ADS)
Li, Dong; Tang, Cheng; Xia, Chunlei; Zhang, Hua
2017-02-01
Artificial reefs (ARs) are effective means to maintain fishery resources and to restore ecological environment in coastal waters. ARs have been widely constructed along the Chinese coast. However, understanding of benthic habitats in the vicinity of ARs is limited, hindering effective fisheries and aquacultural management. Multibeam echosounder (MBES) is an advanced acoustic instrument capable of efficiently generating large-scale maps of benthic environments at fine resolutions. The objective of this study is to develop a technical approach to characterize, classify, and map shallow coastal areas with ARs using an MBES. An automated classification method is designed and tested to process bathymetric and backscatter data from MBES and transform the variables into simple, easily visualized maps. To reduce the redundancy in acoustic variables, a principal component analysis (PCA) is used to condense the highly collinear dataset. An acoustic benthic map of bottom sediments is classified using an iterative self-organizing data analysis technique (ISODATA). The approach is tested with MBES surveys in a 1.15 km2 fish farm with a high density of ARs off the Yantai coast in northern China. Using this method, 3 basic benthic habitats (sandy bottom, muddy sediments, and ARs) are distinguished. The results of the classification are validated using sediment samples and underwater surveys. Our study shows that the use of MBES is an effective method for acoustic mapping and classification of ARs.
NASA Astrophysics Data System (ADS)
Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens
2018-06-01
This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian approach which also correlates well with ground truth data (r2 > 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.
The "triad" approach, including analysis of the total content of toxicants, bioassay of bottom sediments, and the study of the structure of zoo- and phytobenthos communities, was used in assessing the quality of bottom sediments. It has been found that the studied bottom sediment...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venteris, Erik R.; May, Cassandra
2014-04-23
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locationsmore » did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.« less
Venteris, Erik R.; May, Cassandra J.
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat. PMID:24759834
Venteris, Erik R; May, Cassandra J
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.
ERIC Educational Resources Information Center
Krejsler, John B.
2013-01-01
Drawing on Foucauldian genealogy, the article maps major sources and trajectories of the evidence discourse. This enables scrutiny of the current struggle about "evidence" for "What Works" in education and social welfare. Evidence discourse is identified as emerging from the medical field as a bottom-up professional strategy.…
Hegarty, Mary; Canham, Matt S; Fabrikant, Sara I
2010-01-01
Three experiments examined how bottom-up and top-down processes interact when people view and make inferences from complex visual displays (weather maps). Bottom-up effects of display design were investigated by manipulating the relative visual salience of task-relevant and task-irrelevant information across different maps. Top-down effects of domain knowledge were investigated by examining performance and eye fixations before and after participants learned relevant meteorological principles. Map design and knowledge interacted such that salience had no effect on performance before participants learned the meteorological principles; however, after learning, participants were more accurate if they viewed maps that made task-relevant information more visually salient. Effects of display design on task performance were somewhat dissociated from effects of display design on eye fixations. The results support a model in which eye fixations are directed primarily by top-down factors (task and domain knowledge). They suggest that good display design facilitates performance not just by guiding where viewers look in a complex display but also by facilitating processing of the visual features that represent task-relevant information at a given display location. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Ostrand, William D.; Gotthardt, Tracey A.; Howlin, Shay; Robards, Martin D.
2005-01-01
We modeled habitat selection by Pacific sand lance (Ammodytes hexapterus) by examining their distribution in relation to water depth, distance to shore, bottom slope, bottom type, distance from sand bottom, and shoreline type. Through both logistic regression and classification tree models, we compared the characteristics of 29 known sand lance locations to 58 randomly selected sites. The best models indicated a strong selection of shallow water by sand lance, with weaker association between sand lance distribution and beach shorelines, sand bottoms, distance to shore, bottom slope, and distance to the nearest sand bottom. We applied an information-theoretic approach to the interpretation of the logistic regression analysis and determined importance values of 0.99, 0.54, 0.52, 0.44, 0.39, and 0.25 for depth, beach shorelines, sand bottom, distance to shore, gradual bottom slope, and distance to the nearest sand bottom, respectively. The classification tree model indicated that sand lance selected shallow-water habitats and remained near sand bottoms when located in habitats with depths between 40 and 60 m. All sand lance locations were at depths <60 m and 93% occurred at depths <40 m. Probable reasons for the modeled relationships between the distribution of sand lance and the independent variables are discussed.
Thompson, Ryan F.
2014-01-01
Shoreline erosion rates along Lake Sharpe, a Missouri River reservoir, near the community of Lower Brule, South Dakota, were studied previously during 2011–12 by the U.S. Geological Survey, the Lower Brule Sioux Tribe, and Oglala Lakota College. The rapid shoreline retreat has caused many detrimental effects along the shoreline of Lake Sharpe, including losses of cultural sites, recreation access points, wildlife habitat, irrigated cropland, and landmass. The Lower Brule Sioux Tribe is considering options to reduce or stop erosion. One such option for consideration is the placement of discontinuous rock breakwater structures in shallow water to reduce wave action at shore. Information on the depth of water and stability characteristics of bottom material in nearshore areas of Lake Sharpe is needed by the Lower Brule Sioux Tribe to develop structural mitigation alternatives. To help address this need, a bathymetric survey of nearshore areas of Lake Sharpe near Lower Brule, South Dakota, was completed in 2013 by the U.S. Geological Survey in cooperation with the Lower Brule Sioux Tribe.HYPACK® hydrographic survey software was used to plan data collection transects for a 7-mile reach of Lake Sharpe shoreline near Lower Brule, South Dakota. Regular data collection transects and oblique transects were planned to allow for quality-assurance/quality-control comparisons.Two methods of data collection were used in the bathymetric survey: (1) measurement from a boat using bathymetric instrumentation where water was more than 2 feet deep, and (2) wading using Real-Time Kinematic Global Navigation Satellite System equipment on shore and where water was shallower than 2 feet deep. A dual frequency, 24- or 200-kilohertz narrow beam, depth transducer was used in conjunction with a Teledyne Odom CV100 dual frequency echosounder for boat-based data collection. In water too shallow for boat navigation, the elevation and nature of the reservoir bottom were mapped using Real-Time Kinematic Global Navigation Satellite System equipment.Once the data collection effort was completed, data editing was performed in HYPACK® to remove erroneous data points and to apply water-surface elevations. Maps were developed separately for water depth and bottom elevation for the study area. Lines of equal water depth for 2, 3, 3.5, 4, and 5 feet from the water surface to the lake bottom were mapped in nearshore areas of Lake Sharpe. Overall, water depths stay shallow for quite a distance from shore. In the 288 transects that crossed a 2 foot depth line, this depth occurred an average of 88 feet from shore. Similarly, in the 317 transects that crossed a 3 foot depth line, this did not occur until an average of 343 feet from shore. Elevation contours of the lake bottom were mapped primarily for elevations ranging from 1,419 to 1,416 feet above North American Vertical Datum of 1988.Horizontal errors of the Real-Time Kinematic Global Navigation Satellite System equipment for the study area are essentially inconsequential because water depth and bottom elevation were determined to change relatively slowly. The estimated vertical error associated with the Real-Time Kinematic Global Navigation Satellite System equipment for the study area ranges from 0.6 to 0.9 inch. This vertical error is small relative to the accuracy of the bathymetric data.Accuracy assessments of the data collected for this study were computed according to the National Standard for Spatial Data Accuracy. The maps showing the lines of equal water depth and elevation contours of the lake bottom are able to support a 1-foot contour interval at National Standards for Spatial Data Accuracy vertical accuracy standards, which require a vertical root mean squared error of 0.30 foot or better and a fundamental vertical accuracy calculated at the 95-percent confidence level of 0.60 foot or better.
Participating in the Geospatial Web: Collaborative Mapping, Social Networks and Participatory GIS
NASA Astrophysics Data System (ADS)
Rouse, L. Jesse; Bergeron, Susan J.; Harris, Trevor M.
In 2005, Google, Microsoft and Yahoo! released free Web mapping applications that opened up digital mapping to mainstream Internet users. Importantly, these companies also released free APIs for their platforms, allowing users to geo-locate and map their own data. These initiatives have spurred the growth of the Geospatial Web and represent spatially aware online communities and new ways of enabling communities to share information from the bottom up. This chapter explores how the emerging Geospatial Web can meet some of the fundamental needs of Participatory GIS projects to incorporate local knowledge into GIS, as well as promote public access and collaborative mapping.
NASA Astrophysics Data System (ADS)
Menéndez Duarte, Rosana; Marquínez, Jorge
2002-02-01
Analysis of the spatial distribution of rockfall deposits at a regional scale (over an area of 250 km 2 of northern Spain) using a cartographic database supported by a Geographic Information System (GIS) reveals several relationships between rockfall activity and environmental variables. Recent rockfall activity is inferred when recent scree is preserved at the bottom of the rock slopes. In order to identify the slope source areas of the scree we have mapped the deposit's drainage basin, applying topographic criteria, and we have combined these basins with the rock slopes map. A method for setting the basin boundaries automatically will replace manual cartography. This method is based on algorithms available within many commercial software programs and originally planned to analyse the behaviour of fluids over a topographic surface. The results obtained by combining the rockfall area source map with the geology and DTM show the relationships between the distribution of rockfall deposits and lithology, elevation and slope of the rockwall and a strong control of the joint type and density. Elevation influence on rockfall has been associated with climatic variations with elevation. Other variables, such as orientation, show complex influences that are difficult to interpret.
NASA Astrophysics Data System (ADS)
Jia, D.; Feng, Y.; Liu, J.; Yao, X.; Zhang, Z.; Ye, T.
2017-12-01
1. Working BackgroundCurrent Status of Geological Prospecting: Detecting boundaries and bottoms, making ore search nearby; Seeing the stars, not seeing the Moon; Deep prospecting, undesirable results. The reasons of these problems are the regional metallogenic backgroud unclear and the metallogenic backgroud of the exploration regions unknown. Accordingly, Development and Research Center, CGS organized a geological setting research, in detail investigate metallogenic geological features and acquire mineralization information. 2. Technical SchemeCore research content is prediction elements of Metallogenic Structure. Adopt unified technical requirements from top to bottom, and technical route from bottom to top; Divide elements of mineral forecast and characteristics of geological structure into five elements for research and expression; Make full use of geophysical, geochemical and remote sensing inferences for the interpretation of macro information. After eight years the great project was completed. 3. Main AchievementsInnovation of basic maps compilation content of geological background, reinforce of geological structure data base of potentiality valuation. Preparation of geotectonic facies maps in different scales and professions, providing brand-new geologic background for potentiality assessment, promoting Chinese geotectonic research to the new height. Preparation of 3,375 geological structure thematic base maps of detecting working area in 6 kinds of prediction methods, providing base working maps, rock assemblage, structure of the protolith of geologic body / mineralization / ore controlling for mineral prediction of 25 ores. Enrichment and development of geotectonic facies analysis method, establishment of metallogenic background research thoughts and approach system for assessment of national mineral resources potentiality for the first time. 4. Application EffectOrientation——More and better results with less effort. Positioning——Have a definite object in view. Heart calm down——Confidence.
Directional antennas for electromagnetic mapping in a borehole
Reagor, David Wesley; Nguyen, Doan Ngoc; Ashworth, Stephen Paul
2017-05-02
A bottom hole assembly used for a field operation is disclosed herein. The bottom hole assembly can include at least one directional antenna disposed on an outer surface of a first tubing pipe of a tubing string, where the at least one directional antenna receives a first electric current from at least one power source, where the first electric current generates a first magnetic field that radiates from the at least one directional antenna into a formation. The bottom hole assembly can also include at least one receiver disposed on a second tubing pipe of the tubing string, where the at least one receiver receives the first magnetic field returning from the formation.
Classification of wetlands and deepwater habitats of the United States
Cowardin, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T.
1985-01-01
This classification, to be used in a new inventory of wetlands and deepwater habitats of the United States, is intended to describe ecological taxa, arrange them in a system useful to resource managers, furnish units for mapping, and provide uniformity of concepts and terms. Wetlands are defined by plants (hydrophytes), soils (hydric soils), and frequency of flooding. Ecologically related areas of deep water, traditionally not considered wetlands, are included in the classification as deepwater habitats.Systems form the highest level of the classification hierarchy; five are defined-Marine, Estuarine, Riverine, Lacustrine, and Palustrine. Marine and Estuarine Systems each have two Subsystems, Subtidal and Intertidal; the Riverine System has four Subsystems, Tidal, Lower Perennial, Upper Perennial, and Intermittent; the Lacustrine has two, Littoral and Limnetic; and the Palustrine has no Subsystems.Within the Subsystems, Classes are based on substrate material and flooding regime, or on vegetative life form. The same Classes may appear under one or more of the Systems or Subsystems. Six Classes are based on substrate and flooding regime: (1) Rock Bottom with a substrate of bedrock, boulders, or stones; (2) Unconsolidated Bottom with a substrate of cobbles, gravel, sand, mud, or organic material; (3) Rocky Shore with the same substrates as Rock Bottom; (4) Unconsolidated Shore with the same substrates as Unconsolidated Bottom; (5) Streambed with any of the substrates; and (6) Reef with a substrate composed of the living and dead remains of invertebrates (corals, mollusks, or worms). The bottom Classes, (1) and (2) above, are flooded all or most of the time and the shore Classes, (3) and (4), are exposed most of the time. The Class Streambed is restricted to channels of intermittent streams and tidal channels that are dewatered at low tide. The life form of the dominant vegetation defines the five Classes based on vegetative form: (1) Aquatic Bed, dominated by plants that grow principally on or below the surface of the water; (2) Moss-Lichen Wetland, dominated by mosses or lichens; (3) Emergent Wetland, dominated by emergent herbaceous angiosperms; (4) Scrub-Shrub Wetland, dominated by shrubs or small trees; and (5) Forested Wetland, dominated by large trees.The Dominance Type, which is named for the dominant plant or animal forms, is the lowest level of the classification hierarchy. Only examples are provided for this level; Dominance Types must be developed by individual users of the classification.Modifying terms applied to the Classes or Subclasses are essential for use of the system. In tidal areas, the type and duration of flooding are described by four Water Regime Modifiers: subtidal, irregularly exposed, regularly flooded, and irregularly flooded. In nontidal areas, eight Regimes are used: permanently flooded, intermittently exposed, semipermanently flooded, seasonally flooded, saturated, temporarily flooded, intermittently flooded, and artificially flooded. A hierarchical system of Water Chemistry Modifiers, adapted from the Venice System, is used to describe the salinity of the water. Fresh waters are further divided on the basis of pH. Use of a hierarchical system of soil modifiers taken directly from U.S. soil taxonomy is also required. Special modifiers are used where appropriate: excavated, impounded, diked, partly drained, farmed, and artificial.Regional differences important to wetland ecology are described through a regionalization that combines a system developed for inland areas by R. G. Bailey in 1976 with our Marine and Estuarine provinces.The structure of the classification allows it to be used at any of several hierarchical levels. Special data required for detailed application of the system are frequently unavailable, and thus data gathering may be prerequisite to classification. Development of rules by the user will be required for specific map scales. Dominance Types and relationships of plant and anima
Classification of wetlands and deepwater habitats of the United States
Cowardin, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T.
1979-01-01
This classification, to be used in a new inventory of wetlands and deepwater habitats of the United States, is intended to describe ecological taxa, arrange them in a system useful to resource managers, furnish units for mapping, and provide uniformity of concepts and terms. Wetlands are defined by plants (hydrophytes), soils (hydric soils), and frequency of flooding. Ecologically related areas of deep water, traditionally not considered wetlands, are included in the classification as deepwater habitats.Systems form the highest level of the classification hierarchy; five are defined--Marine, Estuarine, Riverine, Lacustrine, and Palustrine. Marine and Estuarine systems each have two subsystems, Subtidal and Intertidal; the Riverine system has four subsystems, Tidal, Lower Perennial, Upper Perennial, and Intermittent; the Lacustrine has two, Littoral and Limnetic; and the Palustrine has no subsystem.Within the subsystems, classes are based on substrate material and flooding regime, or on vegetative life form. The same classes may appear under one or more of the systems or subsystems. Six classes are based on substrate and flooding regime: (1) Rock Bottom with a substrate of bedrock, boulders, or stones; (2) Unconsolidated Bottom with a substrate of cobbles, gravel, sand, mud, or organic material; (3) Rocky Shore with the same substrate as Rock Bottom; (4) Unconsolidated Shore with the same substrate as Unconsolidated Bottom; (5) Streambed with any of the substrates; and (6) Reef with a substrate composed of the living and dead remains of invertebrates (corals, mollusks, or worms). The bottom classes, (1) and (2) above, are flooded all or most of the time and the shore classes, (3) and (4), are exposed most of the time. The class Streambed is restricted to channels of intermittent streams and tidal channels that are dewatered at low tide. The life form of the dominant vegetation defines the five classes based on vegetative form: (1) Aquatic Bed, dominated by plants that grow principally on or below the surface of the water; (2) Moss-Lichen Wetland, dominated by mosses or lichens; (3) Emergent Wetland, dominated by emergent herbaceous angiosperms; (4) Scrub-Shrub Wetland, dominated by shrubs or small trees; and (5) Forested Wetland, dominated by large trees.The dominance type, which is named for the dominant plant or animal forms, is the lowest level of the classification hierarchy. Only examples are provided for this level; dominance types must be developed by individual users of the classification.Modifying terms applied to the classes or subclasses are essential for use of the system. In tidal areas, the type and duration of flooding are described by four water regime modifiers: subtidal, irregularly exposed, regularly flooded, and irregularly flooded. In nontidal areas, six regimes are used: permanently flooded, intermittently exposed, semipermanently flooded, seasonally flooded, saturated, temporarily flooded, intermittently flooded, and artificially flooded. A hierarchical system of water chemistry modifiers, adapted from the Venice System, is used to describe the salinity of the water. Fresh waters are further divided on the basis of pH. Use of a hierarchical system of soil modifiers taken directly from U.S. soil taxonomy is also required. Special modifiers are used where appropriate: excavated, impounded, diked, partly drained, farmed, and artificial.Regional differences important to wetland ecology are described through a regionalization that combines a system developed for inland areas by R. G. Bailey in 1976 with our Marine and Estuarine provinces.The structure of the classification allows it to be used at any of several hierarchical levels. Special data required for detailed application of the system are frequently unavailable, and thus data gathering may be prerequisite to classification. Development of rules by the user will be required for specific map scales. Dominance types and relationships of plant and animal co
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
Mendoza-Carranza, Manuel; Ejarque, Elisabet; Nagelkerke, Leopold A J
2018-01-01
Tropical small-scale fisheries are typical for providing complex multivariate data, due to their diversity in fishing techniques and highly diverse species composition. In this paper we used for the first time a supervised Self-Organizing Map (xyf-SOM), to recognize and understand the internal heterogeneity of a tropical marine small-scale fishery, using as model the fishery fleet of San Pedro port, Tabasco, Mexico. We used multivariate data from commercial logbooks, including the following four factors: fish species (47), gear types (bottom longline, vertical line+shark longline and vertical line), season (cold, warm), and inter-annual variation (2007-2012). The size of the xyf-SOM, a fundamental characteristic to improve its predictive quality, was optimized for the minimum distance between objects and the maximum prediction rate. The xyf-SOM successfully classified individual fishing trips in relation to the four factors included in the model. Prediction percentages were high (80-100%) for bottom longline and vertical line + shark longline, but lower prediction values were obtained for vertical line (51-74%) fishery. A confusion matrix indicated that classification errors occurred within the same fishing gear. Prediction rates were validated by generating confidence interval using bootstrap. The xyf-SOM showed that not all the fishing trips were targeting the most abundant species and the catch rates were not symmetrically distributed around the mean. Also, the species composition is not homogeneous among fishing trips. Despite the complexity of the data, the xyf-SOM proved to be an excellent tool to identify trends in complex scenarios, emphasizing the diverse and complex patterns that characterize tropical small scale-fishery fleets.
Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico
NASA Astrophysics Data System (ADS)
MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.
2012-12-01
Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.
NASA Astrophysics Data System (ADS)
Jeon, Chanhyung; Park, Jae-Hun; Kim, Dong Guk; Kim, Eung; Jeon, Dongchull
2018-04-01
An array of 5 pressure-recording inverted echo sounders (PIESs) was deployed along the Jason-2 214 ground track in the North Equatorial Current (NEC) region of the western Pacific Ocean for about 2 years from June 2012. Round-trip acoustic travel time from the bottom to the sea surface and bottom pressure measurements from PIES were converted to sea level anomaly (SLA). AVISO along-track mono-mission SLA (Mono-SLA), reference mapped SLA (Ref-MSLA), and up-to-date mapped SLA (Upd-MSLA) products were used for comparison with PIESderived SLA (η tot). Comparisons of η tot with Mono-SLA revealed that hump artifact errors significantly contaminate the Mono-SLA. Differences of η tot from both Ref-MSLA and Upd-MSLA decreased as the hump errors were reduced in mapped SLA products. Comparisons of Mono-SLA measurements at crossover points of ground tracks near the observation sites revealed large differences though the time differences of their measurements were only 1.53 and 4.58 days. Comparisons between Mono-SLA and mapped SLA suggested that mapped SLA smooths out the hump artifact errors by taking values between the two discrepant Mono-SLA measurements at the crossover points. Consequently, mapped SLA showed better agreement with η tot at our observation sites. AVISO mapped sea surface height (SSH) products are the preferable dataset for studying SSH variability in the NEC region of the western Pacific, though some portions of hump artifact errors seem to still remain in them.
NIMS Spectral Maps of Jupiter's Great Red Spot
NASA Technical Reports Server (NTRS)
1996-01-01
The Near-Infrared Mapping Spectrometer (NIMS) instrument looks at Jupiter's Great Red Spot, in these views from June 26, 1996. NIMS studies infrared wavelengths of light that our eye cannot see. These maps are at four different infrared wavelengths, each one picked to reveal something different about the atmosphere.
The top image is a false color map of a wavelength that is at the red edge of our ability to see. It shows the shapes of features that we would see with our eyes.The second map is of ammonia ice, red showing where the most ice is, blue where none exists. The differences between this and the first image are due to the amount and size of ammonia ice crystals.The third map down is from a wavelength that shows cloud heights, with the highest clouds in red, and the lowest in blue.The bottom map uses a wavelength that shows the hot Jupiter shining through the clouds. Red represents the thinnest clouds, and blue is thickest where it is more difficult to see below. Comparing the bottom two images, note that the highest clouds are in the center of the Great Red Spot, while there are relatively few clouds around the edges.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America
Boyle, T.P.; Caziani, S.M.; Waltermire, R.G.
2004-01-01
The diverse set of wetlands in southern altiplano of South America supports a number of endemic and migratory waterbirds. These species include endangered endemic flamingos and shorebirds that nest in North America and winter in the altiplano. This research developed maps from nine Landsat Thematic Mapper (TM) images (254,300 km2) to provide an inventory of aquatic waterbird habitats. Image processing software was used to produce a map with a classification of wetlands according to the habitat requirements of different types of waterbirds. A hierarchical procedure was used to, first, isolate the bodies of water within the TM image; second, execute an unsupervised classification on the subsetted image to produce 300 signatures of cover types, which were further subdivided as necessary. Third, each of the classifications was examined in the light of field data and personal experience for relevance to the determination of the various habitat types. Finally, the signatures were applied to the entire image and other adjacent images to yield a map depicting the location of the various waterbird habitats in the southern altiplano. The data sets referenced with a global positioning system receiver were used to test the classification system. Multivariate analysis of the bird communities censused at each lake by individual habitats indicated a salinity gradient, and then the depth of the water separated the birds. Multivariate analysis of the chemical and physical data from the lakes showed that the variation in lakes were significantly associated with difference in depth, transparency, latitude, elevation, and pH. The presence of gravel bottoms was also one of the qualities distinguishing a group of lakes. This information will be directly useful to the Flamingo Census Project and serve as an element for risk assessment for future development.
The impact on floats or hulls during landing as affected by bottom width
NASA Technical Reports Server (NTRS)
Mewes, E
1936-01-01
For floats and hulls having V bottoms the impact force does not necessarily increase with increasing width. Therefore, the weight of the float landing gear, side walls, and other parts, and of the fuselage construction need not be increased with increasing bottom width, but the weight of the bottom construction itself, on the other hand, does not increase with increase in bottom width and is largely determined by the type of construction.
The character and amplitude of ‘discontinuous’ bottom-simulating reflections in marine seismic data
Hillman, Jess I. T.; Cook, Ann E.; Sawyer, Derek E.; ...
2016-11-22
Bottom-simulating reflections (BSRs) identified in seismic data are well documented; and are commonly interpreted to indicate the presence of gas hydrates along continental margins, as well as to estimate regional volumes of gas hydrate. A BSR is defined as a reflection that sub-parallels the seafloor but is opposite in polarity and cross-cuts dipping sedimentary strata. BSRs form as a result of a strong negative acoustic impedance contrast. BSRs, however, are a diverse seismic phenomena that manifest in strikingly contrasting ways in different geological settings, and in different seismic data types. We investigate the characteristics of BSRs, using conventional and highmore » resolution, 2D and 3D seismic data sets in three locations: the Terrebonne and Orca Basins in the Gulf of Mexico, and Blake Ridge on the US Atlantic Margin. The acquisition geometry and frequency content of the seismic data significantly impact the resultant character of BSRs, as observed with depth and amplitude maps of the BSRs. Furthermore, our amplitude maps reinforce the concept that the BSR represents a zone, over which the transition from hydrate to free gas occurs, as opposed to the conventional model of the BSR occurring at a single interface. Our results show that a BSR can be mapped in three dimensions but it is not spatially continuous, at least not at the basin scale. Rather, a BSR manifests itself as a discontinuous, or patchy, reflection and only at local scales is it continuous. We suggest the discontinuous nature of BSRs is the result of variable saturation and distribution of free gas and hydrate, acquisition geometry and frequency content of the recorded seismic data. Lastly, the commonly accepted definition of a BSR should be broadened with careful consideration of these factors, to represent the uppermost extent of enhanced amplitude at the shallowest occurrence of free gas trapped by overlying hydrate-bearing sediments.« less
The character and amplitude of 'discontinuous' bottom-simulating reflections in marine seismic data
NASA Astrophysics Data System (ADS)
Hillman, Jess I. T.; Cook, Ann E.; Sawyer, Derek E.; Küçük, H. Mert; Goldberg, David S.
2017-02-01
Bottom-simulating reflections (BSRs) identified in seismic data are well documented; and are commonly interpreted to indicate the presence of gas hydrates along continental margins, as well as to estimate regional volumes of gas hydrate. A BSR is defined as a reflection that sub-parallels the seafloor but is opposite in polarity and cross-cuts dipping sedimentary strata. BSRs form as a result of a strong negative acoustic impedance contrast. BSRs, however, are a diverse seismic phenomena that manifest in strikingly contrasting ways in different geological settings, and in different seismic data types. We investigate the characteristics of BSRs, using conventional and high resolution, 2D and 3D seismic data sets in three locations: the Terrebonne and Orca Basins in the Gulf of Mexico, and Blake Ridge on the US Atlantic Margin. The acquisition geometry and frequency content of the seismic data significantly impact the resultant character of BSRs, as observed with depth and amplitude maps of the BSRs. Furthermore, our amplitude maps reinforce the concept that the BSR represents a zone, over which the transition from hydrate to free gas occurs, as opposed to the conventional model of the BSR occurring at a single interface. Our results show that a BSR can be mapped in three dimensions but it is not spatially continuous, at least not at the basin scale. Rather, a BSR manifests itself as a discontinuous, or patchy, reflection and only at local scales is it continuous. We suggest the discontinuous nature of BSRs is the result of variable saturation and distribution of free gas and hydrate, acquisition geometry and frequency content of the recorded seismic data. The commonly accepted definition of a BSR should be broadened with careful consideration of these factors, to represent the uppermost extent of enhanced amplitude at the shallowest occurrence of free gas trapped by overlying hydrate-bearing sediments.
The character and amplitude of ‘discontinuous’ bottom-simulating reflections in marine seismic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Jess I. T.; Cook, Ann E.; Sawyer, Derek E.
Bottom-simulating reflections (BSRs) identified in seismic data are well documented; and are commonly interpreted to indicate the presence of gas hydrates along continental margins, as well as to estimate regional volumes of gas hydrate. A BSR is defined as a reflection that sub-parallels the seafloor but is opposite in polarity and cross-cuts dipping sedimentary strata. BSRs form as a result of a strong negative acoustic impedance contrast. BSRs, however, are a diverse seismic phenomena that manifest in strikingly contrasting ways in different geological settings, and in different seismic data types. We investigate the characteristics of BSRs, using conventional and highmore » resolution, 2D and 3D seismic data sets in three locations: the Terrebonne and Orca Basins in the Gulf of Mexico, and Blake Ridge on the US Atlantic Margin. The acquisition geometry and frequency content of the seismic data significantly impact the resultant character of BSRs, as observed with depth and amplitude maps of the BSRs. Furthermore, our amplitude maps reinforce the concept that the BSR represents a zone, over which the transition from hydrate to free gas occurs, as opposed to the conventional model of the BSR occurring at a single interface. Our results show that a BSR can be mapped in three dimensions but it is not spatially continuous, at least not at the basin scale. Rather, a BSR manifests itself as a discontinuous, or patchy, reflection and only at local scales is it continuous. We suggest the discontinuous nature of BSRs is the result of variable saturation and distribution of free gas and hydrate, acquisition geometry and frequency content of the recorded seismic data. Lastly, the commonly accepted definition of a BSR should be broadened with careful consideration of these factors, to represent the uppermost extent of enhanced amplitude at the shallowest occurrence of free gas trapped by overlying hydrate-bearing sediments.« less
A visual salience map in the primate frontal eye field.
Thompson, Kirk G; Bichot, Narcisse P
2005-01-01
Models of attention and saccade target selection propose that within the brain there is a topographic map of visual salience that combines bottom-up and top-down influences to identify locations for further processing. The results of a series of experiments with monkeys performing visual search tasks have identified a population of frontal eye field (FEF) visually responsive neurons that exhibit all of the characteristics of a visual salience map. The activity of these FEF neurons is not sensitive to specific features of visual stimuli; but instead, their activity evolves over time to select the target of the search array. This selective activation reflects both the bottom-up intrinsic conspicuousness of the stimuli and the top-down knowledge and goals of the viewer. The peak response within FEF specifies the target for the overt gaze shift. However, the selective activity in FEF is not in itself a motor command because the magnitude of activation reflects the relative behavioral significance of the different stimuli in the visual scene and occurs even when no saccade is made. Identifying a visual salience map in FEF validates the theoretical concept of a salience map in many models of attention. In addition, it strengthens the emerging view that FEF is not only involved in producing overt gaze shifts, but is also important for directing covert spatial attention.
NASA Astrophysics Data System (ADS)
Otaki, Takayoshi; Hamana, Masahiro; Tanoe, Hideaki; Miyazaki, Nobuyuki; Shibuno, Takuro; Komatsu, Teruhisa
2015-06-01
Most demersal fishes maintain strong relations with bottom substrates and bottom depths and/or topography during their lives. It is important to know these relations to for understand their lives. In Tokyo Bay, red stingray, Dasyatis akajei, classified as near-threatened species by IUCN, has increased since the 1980s. It is a top predator and engages in ecosystem engineer by mixing the sand bed surface through burring behavior, and greatly influences a coastal ecosystem. It is reported that this species invades in plage and tidal flats and has sometimes injured beachgoers and people gathering clams in Tokyo bay. Thus, it is necessary to know its behavior and habitat use to avoid accidents and to better conserve the biodiversity of ecosystems. However, previous studies have not examined its relationship with the bottom environment. This study aims to describe its behavior in relation to the bottom environment. We sounded three dimensional bottom topography of their habitat off Kaneda Cove in Tokyo Bay with interferometric sidescan sonar system and traced the movement of red stingrays by attaching a data logger system to survey their migration. The results revealed that red stingray repeated vertical movement between the surface and bottom, and used not only sand beds but also rocky beds.
Multilayer apparent magnetization mapping approach and its application in mineral exploration
NASA Astrophysics Data System (ADS)
Guo, L.; Meng, X.; Chen, Z.
2016-12-01
Apparent magnetization mapping is a technique to estimate magnetization distribution in the subsurface from the observed magnetic data. It has been applied for geologic mapping and mineral exploration for decades. Apparent magnetization mapping usually models the magnetic layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the magnetic anomalies in the space or frequency domain to determine the magnetization of each prism. The conventional mapping approaches usually assume that magnetic sources contain no remanent magnetization. However, such assumptions are not always valid in mineral exploration of metallic ores. In this case, the negligence of the remanence will result in large geologic deviation or the occurrence of negative magnetization. One alternate strategy is to transform the observed magnetic anomalies into some quantities that are insensitive or weakly sensitive to the remanence and then subsequently to perform inversion on these quantities, without needing any a priori information about remanent magnetization. Such kinds of quantities include the amplitude of the magnetic total field anomaly (AMA), and the normalized magnetic source strength (NSS). Here, we present a space-domain inversion approach for multilayer magnetization mapping based on the AMA for reducing effects of remanence. In the real world, magnetization usually varies vertically in the subsurface. If we use only one-layer model for mapping, the result is simply vertical superposition of different magnetization distributions. Hence, a multi-layer model for mapping would be a more realistic approach. We test the approach on the real data from a metallic deposit area in North China. The results demonstrated that our approach is feasible and produces considerable magnetization distribution from top layer to bottom layer in the subsurface.
Deusser, Rebecca E.; Schwab, William C.; Denny, Jane F.
2002-01-01
Researchers of the sea-floor mapping facility at the U.S. Geological Survey (USGS) Woods Hole Field Center in Woods Hole, Mass., use state-of-the-art technology to produce accurate geologic maps of the sea floor. In addition to basic bathymetry and morphology, sea-floor maps may contain information about the distribution of sand resources, patterns of coastal erosion, pathways of pollutant transport, and geologic controls on marine biological habitats. The maps may also show areas of human impacts, such as disturbance by bottom fishing and pollution caused by offshore waste disposal. The maps provide a framework for scientific research and provide critical information to decisionmakers who oversee resources in the coastal ocean.
Baldwin, Wayne E.; Foster, David S.; Pendleton, Elizabeth A.; Barnhardt, Walter A.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.
2016-09-02
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs/video, and surficial sediment samples collected within the 494-square-kilometer study area. Interpretations of seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
Atmospheric Science Data Center
2014-05-15
... 2004. The color-coded maps (along the bottom) provide a quantitative measurement of the sunlight reflected from these surfaces, and the ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...
NASA Astrophysics Data System (ADS)
Cochrane, G. R.; Hodson, T. O.; Allee, R.; Cicchetti, G.; Finkbeiner, M.; Goodin, K.; Handley, L.; Madden, C.; Mayer, G.; Shumchenia, E.
2012-12-01
The U S Geological Survey (USGS) is one of four primary organizations (along with the National Oceanographic and Atmospheric Administration, the Evironmental Protection Agency, and NatureServe) responsible for the development of the Coastal and Marine Ecological Classification Standard (CMECS) over the past decade. In June 2012 the Federal Geographic Data Committee approved CMECS as the first-ever comprehensive federal standard for classifying and describing coastal and marine ecosystems. The USGS has pioneered the application of CMECS in Glacier Bay, Alaska as part of its Seafloor Mapping and Benthic Habitat Studies Project. This presentation briefly describes the standard and its application as part of geological survey studies in the Western Arm of Glacier Bay. CMECS offers a simple, standard framework and common terminology for describing natural and human influenced ecosystems from the upper tidal reaches of estuaries to the deepest portions of the ocean. The framework is organized into two settings, biogeographic and aquatic, and four components, water column, geoform, substrate, and biotic. Each describes a separate aspect of the environment and biota. Settings and components can be used in combination or independently to describe ecosystem features. The hierarchical arrangement of units of the settings and components allows users to apply CMECS to the scale and specificity that best suits their needs. Modifiers allow users to customize the classification to meet specific needs. Biotopes can be described when there is a need for more detailed information on the biota and their environment. USGS efforts focused primarily on the substrate and geoform components. Previous research has demonstrated three classes of bottom type that can be derived from multibeam data that in part determine the distribution of benthic organisms: soft, flat bottom, mixed bottom including coarse sediment and low-relief rock with low to moderate rugosity, and rugose, hard bottom. The West Arm of Glacier Bay has all of these habitats, with the greatest abundance being soft, flat bottom. In Glacier Bay, species associated with soft, flat bottom habitats include gastropods, algae, flatfish, Tanner crabs, shrimp, sea pen, and other crustaceans; soft corals and sponge dominate areas of boulder and rock substrate. Video observations in the West Arm suggest that geological-biological associations found in central Glacier Bay to be at least partially analogous to associations in the West Arm. Given that soft, mud substrate is the most prevalent habitat in the West Arm, it is expected that the species associated with a soft bottom in the bay proper are the most abundant types of species within the West Arm. While mud is the dominant substrate throughout the fjord, the upper and lower West Arm are potentially very different environments due to the spatially and temporally heterogeneous influence of glaciation and associated effects on fjord hydrologic and oceanographic conditions. Therefore, we expect variations in the distribution of species and the development of biotopes for Glacier Bay will require data applicable to the full spectrum of CMECS components.
Sea-floor-mounted rotating side-scan sonar for making time-lapse sonographs
Rubin, David M.; McCulloch, David S.; Hill, H. R.
1983-01-01
Records that are collected with this system offer several advantages over records that are collected with towed systems. Bottom features are presented in nearly true plan geometry, and transducer yaw, pitch, and roll are eliminated. Most importantly, repeated observations can be made from a single point, and bedform movements of <50 cm can be measured. In quiet seas the maximum useful range of the system varies from 30 m (for mapping ripples) to 200 m (for mapping 10-m wavelength sand waves) to 450 m or more (for mapping gravel patches).
Using National Coastal Condition Assessment Underwater Video to Investigate Nearshore Substrate Type
A comprehensive method for describing bottom types in Great Lakes nearshore regions (<30 m deep and <5 km from shore) would enhance our ability to target monitoring efforts. Dredges are ineffective at sampling hard bottoms (bedrock/boulder/cobble) and other habitat features. We a...
1996-06-01
FAMILY OF STANDARD FOUNDATION TYPES TYPE 6 TYPE _TYPE 18 TYPE 24 C o m p u t e r M o d e l Hull Mounted Bottom Shell Gril lage C o m p u t e r M o d... Gril lage S T A N D A R D FOUNDATION TYPE 1 C o m p u t e r M o d e l Hull Mounted Bottom Shell Frame 3. FLANGE BENDING LONGITUDINAL L FRAME BENDING 2
Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics
NASA Astrophysics Data System (ADS)
Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.
2018-01-01
Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.
The geology of Six Mile Reef, eastern Long Island Sound
Poppe, L.J.; Denny, J.F.; Williams, S.J.; Moser, M.S.; Forfinski, N.A.; Stewart, H.F.; Doran, E.F.
2007-01-01
Digital terrain models, which can be produced from multibeam bathymetric data, are ordered arrays of depths for a number of sea-floor positions sampled at regularly spaced intervals. These models provide valuable base maps for marine geological interpretations that help define the variability of the sea floor (one of the primary controls of benthic habitat diversity), improve our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats, and provide a detailed framework to guide and assist future research, monitoring, and management activities. The bathymetry interpreted herein was processed from data collected by National Oceanic and Atmospheric Administration vessels during hydrographic surveys H11361 and H11252. These surveys mapped roughly 156 km² of sea floor in the vicinity of Six Mile Reef, an area of eastern Long Island Sound where the sea floor is characterized by fields of large sand waves and an east-west decreasing gradient of bottom tidal-current speeds (fig. 1). Interpretations of the bathymetry are supplemented by concurrently collected seismic reflection data, as well as archived historic seismic profiles, sediment samples and bottom photography collected as part of a long-standing geologic mapping partnership between the State of Connecticut and the U.S. Geological Survey (fig. 2). The purpose of this digital report is 1) to provide the acoustic data layers produced during the above mentioned surveys, 2) to use them to describe the sea-floor character and bedform morphologies near Six Mile Reef, and 3) to relate these descriptions to ongoing processes and sedimentary environments.
Census-independent population mapping in northern Nigeria
Weber, Eric M.; Seaman, Vincent Y.; Stewart, Robert N.; ...
2017-10-21
Although remote sensing has long been used to aid in the estimation of population, it has usually been in the context of spatial disaggregation of national census data, with the census counts serving both as observational data for specifying models and as constraints on model outputs. Here we present a framework for estimating populations from the bottom up, entirely independently of national census data, a critical need in areas without recent and reliable census data. To make observations of population density, we replace national census data with a microcensus, in which we enumerate population for a sample of small areasmore » within the states of Kano and Kaduna in northern Nigeria. Using supervised texture-based classifiers with very high resolution satellite imagery, we produce a binary map of human settlement at 8-meter resolution across the two states and then a more refined classification consisting of 7 residential types and 1 non-residential type. Using the residential types and a model linking them to the population density observations, we produce population estimates across the two states in a gridded raster format, at approximately 90-meter resolution. We also demonstrate a simulation framework for capturing uncertainty and presenting estimates as prediction intervals for any region of interest of any size and composition within the study region. As a result, used in concert with previously published demographic estimates, our population estimates allowed for predictions of the population under 5 in ten administrative wards that fit strongly with reference data collected during polio vaccination campaigns.« less
Census-independent population mapping in northern Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Eric M.; Seaman, Vincent Y.; Stewart, Robert N.
Although remote sensing has long been used to aid in the estimation of population, it has usually been in the context of spatial disaggregation of national census data, with the census counts serving both as observational data for specifying models and as constraints on model outputs. Here we present a framework for estimating populations from the bottom up, entirely independently of national census data, a critical need in areas without recent and reliable census data. To make observations of population density, we replace national census data with a microcensus, in which we enumerate population for a sample of small areasmore » within the states of Kano and Kaduna in northern Nigeria. Using supervised texture-based classifiers with very high resolution satellite imagery, we produce a binary map of human settlement at 8-meter resolution across the two states and then a more refined classification consisting of 7 residential types and 1 non-residential type. Using the residential types and a model linking them to the population density observations, we produce population estimates across the two states in a gridded raster format, at approximately 90-meter resolution. We also demonstrate a simulation framework for capturing uncertainty and presenting estimates as prediction intervals for any region of interest of any size and composition within the study region. As a result, used in concert with previously published demographic estimates, our population estimates allowed for predictions of the population under 5 in ten administrative wards that fit strongly with reference data collected during polio vaccination campaigns.« less
Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L
2008-08-01
The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.
Clark, Allan K.; Golab, James A.; Morris, Robert E.
2016-09-13
This report presents the geologic framework, hydrostratigraphy, and ichnology of the Trinity and Edwards Groups in the Blanco, Payton, and Rough Hollow 7.5-minute quadrangles in Blanco, Comal, Hays, and Kendall Counties, Texas. Rocks exposed in the study area are of the Lower Cretaceous Trinity Group and lower part of the Fort Terrett Formation of the Lower Cretaceous Edwards Group. The mapped units in the study area are the Hammett Shale, Cow Creek Limestone, Hensell Sand, and Glen Rose Limestone of the Trinity Group and the lower portion of the Fort Terrett Formation of the Edwards Group. The Glen Rose Limestone is composed of the Lower and Upper Members. These Trinity Group rocks contain the upper and middle Trinity aquifers. The only remaining outcrops of the Edwards Group are the basal nodular member of the Fort Terrett Formation, which caps several hills in the northern portion of the study area. These rocks were deposited in an open marine to supratidal flats environment. The faulting and fracturing in the study area are part of the Balcones fault zone, an extensional system of faults that generally trends southwest to northeast in south-central Texas.The hydrostratigraphic units of the Edwards and Trinity aquifers were mapped and described using a classification system based on fabric-selective or not-fabric-selective porosity types. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is hydrostratigraphic unit VIII. The mapped hydrostratigraphic units of the upper Trinity aquifer are (from top to bottom) the Camp Bullis, upper evaporite, fossiliferous, and lower evaporite which are interval equivalent to the Upper Member of the Glen Rose Limestone. The middle Trinity aquifer encompasses (from top to bottom) the Lower Member of the Glen Rose Limestone, the Hensell Sand Member, and the Cow Creek Limestone Member of the Pearsall Formation. The Lower Member of the Glen Rose Limestone is subdivided into six informal hydrostratigraphic units (from top to bottom) the Bulverde, Little Blanco, Twin Sisters, Doeppenschmidt, Rust, and Honey Creek hydrostratigraphic units.This study used the ichnofabric index scale to interpret the amount of bioturbation in the field. Most of the geologic units in the study area are assigned to the Cruziana and Thalassinoides ichnofacies consistent with interpretations of a tidal-dominated open marine environment (sublittoral zone). Ichnofossil assemblages are dominated by Thalassinoides networks, but also contain Cruziana, Ophiomorpha, Paleophycus, Planolites, and Serpulid traces.
2013-09-27
These two images compare topographic maps of the giant asteroid Vesta as discerned by NASA Hubble Space Telescope top and as seen by NASA Dawn spacecraft bottom. Hubble has been in an orbit around Earth, while Dawn orbited Vesta from 2011 to 2012.
2011-01-26
This infrared image, showing thermal radiation at a wavelength of 9.7 microns, was obtained by the Gemini North Telescope in Hawaii. The bright white and yellow features at bottom are the aftermath of an impactor hitting Jupiter on July 19, 2009.
Mapping benthic macroalgal communities in the coastal zone using CHRIS-PROBA mode 2 images
NASA Astrophysics Data System (ADS)
Casal, G.; Kutser, T.; Domínguez-Gómez, J. A.; Sánchez-Carnero, N.; Freire, J.
2011-09-01
The ecological importance of benthic macroalgal communities in coastal ecosystems has been recognised worldwide and the application of remote sensing to study these communities presents certain advantages respect to in situ methods. The present study used three CHRIS-PROBA images to analyse macroalgal communities distribution in the Seno de Corcubión (NW Spain). The use of this sensor represent a challenge given that its design, build and deployment programme is intended to follow the principles of the "faster, better, cheaper". To assess the application of this sensor to macroalgal mapping, two types of classifications were carried out: Maximum Likelihood and Spectral Angle Mapper (SAM). Maximum Likelihood classifier showed positive results, reaching overall accuracy percentages higher than 90% and kappa coefficients higher than 0.80 for the bottom classes shallow submerged sand, deep submerged sand, macroalgae less than 5 m and macroalgae between 5 and 10 m depth. The differentiation among macroalgal groups using SAM classifications showed positive results for green seaweeds although the differentiation between brown and red algae was not clear in the study area.
Appalachian piedmont regolith: Relations of saprolite and residual soils to rock-type
Pavich, M.J.
1996-01-01
Saprolite is a major product of rock weathering on the Appalachian Piedmont from New Jersey to Alabama. On the Piedmont, it is the primary substrate from which residual soils are developed. Properties of saprolite and residual soils are highly related to their parent rocks. Studies of cores and outcrops illustrate that rock structure and mineralogy control upland regolith zonation. Saprolite develops by in situ chemical alteration of a wide variety of mafic to highly silicic rocks. Thickness of upland saprolite varies from a few meters on mafic rocks to tens of meters on silicic rocks. Saprolite thickness decreases with increasing slope and saprolite is generally thin or absent in valley bottoms. Massive residual subsoils and soils develop by physical and chemical processes that alter the upper few meters of saprolite. The fabric, texture and mineralogy of residual soils are distinctly different from underlying saprolite. The boundary between soil and saprolite is often gradual, and often a zone of low permeability. Geologic maps are useful guides to Piedmont regolith thickness and zonation. In regional design studies, geologic maps and regolith characteristics can be useful in environmental decision-making.
NASA Astrophysics Data System (ADS)
Tao, C.; Zhang, G.; Li, H.; Zhou, J.; Liu, W.; Deng, X.; Chen, S.
2013-12-01
The seabed deposits type and distribution are very complex at the hydrothermal field. In this paper, we provided an approach to study the seabed deposits classification at the Precious Stone Mountain hydrothermal field (PSMHF) using MultiBeam sonar data (Figure 1). The PSMHF was found in the Galapogas microplate at the Leg 3 of the Chinese COMRA 21st Cruise. Using this approach, the seabed deposits at the PSMHF are mainly classified into three types, which are rock, breccia and sediment, respectively. We can find the distribution of the three types of seabed deposits according to the sonar back-scattering data. The rocks are mostly distributed around the hydrothermal vent. The breccia are located at the foot of the vent. Most sediments are distributed at the southwest to the vent due to bottom current. Combining with seabed video, TV-Grab sample and the backscatter data, we draw the map of the seabed deposits distribution at the PSMHF (Figure 2). Figure 1 The flow chart of the seabed deposits classification approach Figure 2 The seabed deposits distribution of the PSMHF
The Evolution of the Lower Missouri River: National Mapping Discipline Research at Lisbon Bottom
,
2002-01-01
Before 1800, the Missouri River was one of North America's most diverse and dynamic ecosystems. During the past 200 years, civil engineering has transformed it into a navigation system regulated by reservoirs and confined by bank stabilization and flood control structures. These modifications have reduced seasonal flow variability and sediment load and have disconnected the river from backwater, off-channel, and floodplain habitats. Flooding along the Lower Missouri River in 1993 and again in 1996 created a side-channel chute across Lisbon Bottom, a well-formed loop bottom near Glasgow, Mo. The formation and subsequent development of the chute have provided USGS scientists with a glimpse of a preregulated Missouri River. Knowledge of geologic characteristics and processes in an alluvial setting like Lisbon Bottom provides a scientific basis for floodplain management. This knowledge is also vital to a complete understanding of riverine habitat disturbance, recovery, and rehabilitation. A critical component of this knowledge is an understanding of the spatial and temporal relationships between riverine habitats and geomorphic processes.
Ejarque, Elisabet; Nagelkerke, Leopold A. J.
2018-01-01
Tropical small-scale fisheries are typical for providing complex multivariate data, due to their diversity in fishing techniques and highly diverse species composition. In this paper we used for the first time a supervised Self-Organizing Map (xyf-SOM), to recognize and understand the internal heterogeneity of a tropical marine small-scale fishery, using as model the fishery fleet of San Pedro port, Tabasco, Mexico. We used multivariate data from commercial logbooks, including the following four factors: fish species (47), gear types (bottom longline, vertical line+shark longline and vertical line), season (cold, warm), and inter-annual variation (2007–2012). The size of the xyf-SOM, a fundamental characteristic to improve its predictive quality, was optimized for the minimum distance between objects and the maximum prediction rate. The xyf-SOM successfully classified individual fishing trips in relation to the four factors included in the model. Prediction percentages were high (80–100%) for bottom longline and vertical line + shark longline, but lower prediction values were obtained for vertical line (51–74%) fishery. A confusion matrix indicated that classification errors occurred within the same fishing gear. Prediction rates were validated by generating confidence interval using bootstrap. The xyf-SOM showed that not all the fishing trips were targeting the most abundant species and the catch rates were not symmetrically distributed around the mean. Also, the species composition is not homogeneous among fishing trips. Despite the complexity of the data, the xyf-SOM proved to be an excellent tool to identify trends in complex scenarios, emphasizing the diverse and complex patterns that characterize tropical small scale-fishery fleets. PMID:29782501
Bookstrom, Arthur A.; Box, Stephen E.; Jackson, Berne L.; Brandt, Theodore R.; Derkey, Pamela D.; Munts, Steven R.
1999-01-01
The Coeur d'Alene (CdA) River channel and its floodplain in north Idaho are mostly covered by metal-enriched sediments, partially derived from upstream mining, milling and smelting wastes. Relative to uncontaminated sediments of the region, metal-enriched sediments are highly enriched in silver, lead, zinc, arsenic, antimony and mercury, copper, cadmium, manganese, and iron. Widespread distribution of metal-enriched sediments has resulted from over a century of mining in the CdA mining district (upstream), poor mine-waste containment practices during the first 80 years of mining, and an ongoing series of over-bank floods. Previously deposited metal-enriched sediments continue to be eroded and transported down-valley and onto the floodplain during floods. The centerpiece of this report is a Digital Map Surficial Geology, Wetlands and Deepwater Habitats of the Coeur d'Alene (CdA) River valley (sheets 1 and 2). The map covers the river, its floodplain, and adjacent hills, from the confluence of the North and South Forks of the CdA River to its mouth and delta front on CdA Lake, 43 linear km (26 mi) to the southwest (river distance 58 km or 36 mi). Also included are the following derivative theme maps: 1. Wetland System Map; 2. Wetland Class Map; 3. Wetland Subclass Map; 4. Floodplain Map; 5. Water Regime Map; 6. Sediment-Type Map; 7. Redox Map; 8. pH Map; and 9. Agricultural Land Map. The CdA River is braided and has a cobble-gravel bottom from the confluence to Cataldo Flats, 8 linear km (5 mi) down-valley. Erosional remnants of up to four alluvial terraces are present locally, and all are within the floodplain, as defined by the area flooded in February of 1996. High-water (overflow) channels and partly filled channel scars braid across some alluvial terraces, toward down-valley marshes and (or) oxbow ponds, which drain back to the river. Near Cataldo Flats, the river gradient flattens, and the river coalesces into a single channel with a large friction-dominated central sand bar at Cataldo Landing. Metal-enriched sediments that were dredged from the central sand bar were deposited on Cataldo Flats, to form extensive dredge-spoil deposits. From the central sand bar to CdA Lake, thick deposits of metal-enriched sand partially fill the middle of the pre-mining-era channel along straight reaches, and form point-bars along the inside margins of meander bends. Metal-enriched sand and silt form oxidized bank-wedge deposits along riverside margins of pre-mining-era levees of gray silty mud. Metal-enriched levee sand deposits extend across bank wedges and natural levees, generally thinning and fining away from the river, toward lateral marshes and lakes, where dark gray metal-enriched silt and mud overlie silty peat, deposited before the mining era. Distributary streams and man-made canals locally diverge from the river, connecting it to lateral marshes and lakes, and metal-enriched sand splays locally fan out across the floodplain. At the mouth of the river, a bouyancy-dominated river-mouth bar crests beyond the ends of the emergent levees. Thick delta-front deposits of metal-enriched sand slope from the river-mouth bar to the bottom of CdA Lake.
49 CFR 537.7 - Pre-model year and mid-model year reports.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... List the model types in order of increasing average inertia weight from top to bottom down the left... form. List the model types in order of increasing average inertia weight from top to bottom down the... trucks in your fleet that meet the mild and strong hybrid vehicle definitions. For each mild and strong...
49 CFR 537.7 - Pre-model year and mid-model year reports.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... List the model types in order of increasing average inertia weight from top to bottom down the left... form. List the model types in order of increasing average inertia weight from top to bottom down the... trucks in your fleet that meet the mild and strong hybrid vehicle definitions. For each mild and strong...
Contaminant distribution and accumulation in the surface sediments of Long Island Sound
Mecray, E.L.; Buchholtz ten Brink, Marilyn R.
2000-01-01
The distribution of contaminants in surface sediments has been measured and mapped as part of a U.S. Geological Survey study of the sediment quality and dynamics of Long Island Sound. Surface samples from 219 stations were analyzed for trace (Ag, Ba, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn and Zr) and major (Al, Fe, Mn, Ca, and Ti) elements, grain size, and Clostridium perfringens spores. Principal Components Analysis was used to identify metals that may covary as a function of common sources or geochemistry. The metallic elements generally have higher concentrations in fine-grained deposits, and their transport and depositional patterns mimic those of small particles. Fine-grained particles are remobilized and transported from areas of high bottom energy and deposited in less dynamic regions of the Sound. Metal concentrations in bottom sediments are high in the western part of the Sound and low in the bottom-scoured regions of the eastern Sound. The sediment chemistry was compared to model results (Signell et al., 1998) and maps of sedimentary environments (Knebel et al., 1999) to better understand the processes responsible for contaminant distribution across the Sound. Metal concentrations were normalized to grain-size and the resulting ratios are uniform in the depositional basins of the Sound and show residual signals in the eastern end as well as in some local areas. The preferential transport of fine-grained material from regions of high bottom stress is probably the dominant factor controlling the metal concentrations in different regions of Long Island Sound. This physical redistribution has implications for environmental management in the region.
California State Waters Map Series: Drakes Bay and vicinity, California
Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.
2015-01-01
Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.
Sidescan-sonar mapping of benthic trawl marks on the shelf and slope off Eureka, California
Friedlander, A.M.; Boehlert, G.W.; Field, M.E.; Mason, J.E.; Gardner, J.V.; Dartnell, P.
1999-01-01
The abundance and orientation of trawl marks was quantified over an extensive portion (>2700 km2) of the Eureka, California, outer shelf and slope, an important commercial bottom trawling ground for such high-value species as rockfish, sole, and sablefish. Fishing logbook data indicate that the entire reporting area was trawled about one and a half times on an average annual basis and that some areas were trawled over three times annually. High-resolution sidescan-sonar images of the study area revealed deep gouges on the seafloor, caused by heavy steel trawl doors that act to weigh down and spread open the bottom trawls. These trawl marks are commonly oriented parallel to bathymetric contours and many could be traced for several kilometers. Trawl marks showed a quadratic relationship in relation to water depth, with the greatest number of trawl marks observed at ~400 m. There was a significant positive correlation between the number of trawl marks observed on the sidescan images and the number of annual trawl hours logged within reporting areas. This finding indicates that acoustic remote sensing is a promising independent approach to evaluate fishing effort on a scale consistent with commercial fishing activities. Bottom trawling gear is known to modify seafloor habitats by altering benthic habitat complexity and by removing or damaging infauna and sessile organisms. Identifying the extent of trawling in these areas may help determine the effects of this type of fishing gear on the benthos and develop indices of habitat disturbance caused by fishing activities.
Mapping The Brightness Of The Ocean Bottoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milazzo, Damien Michael
2016-03-25
This is a presentation that describes some of the work LANL is doing in the way of; describing the lithology of the ocean floor; use of data to describe natural radioisotopes; and the determination of minerals that can be neutron activated.
Beauchaine, Theodore P; Zisner, Aimee
2017-09-01
Motivational models of psychopathology have long been advanced by psychophysiologists, and have provided key insights into neurobiological mechanisms of a wide range of psychiatric disorders. These accounts emphasize individual differences in activity and reactivity of bottom-up, subcortical neural systems of approach and avoidance in affecting behavior. Largely independent literatures emphasize the roles of top-down, cortical deficits in emotion regulation and executive function in conferring vulnerability to psychopathology. To date however, few models effectively integrate functions performed by bottom-up emotion generation system with those performed by top-down emotion regulation systems in accounting for alternative expressions of psychopathology. In this article, we present such a model, and describe how it accommodates the well replicated bifactor structure of psychopathology. We describe how excessive approach motivation maps directly into externalizing liability, how excessive passive avoidance motivation maps directly into internalizing liability, and how emotion dysregulation and executive function map onto general liability. This approach is consistent with the Research Domain Criteria initiative, which assumes that a limited number of brain systems interact to confer vulnerability to many if not most forms of psychopathology. Copyright © 2017 Elsevier B.V. All rights reserved.
Marine geodetic control for geoidal profile mapping across the Puerto Rican Trench
NASA Technical Reports Server (NTRS)
Fubara, D. M.; Mourad, A. G.
1975-01-01
A marine geodetic control was established for the northern end of the geoidal profile mapping experiment across the Puerto Rican Trench by determining the three-dimensional geodetic coordinates of the four ocean-bottom mounted acoustic transponders. The data reduction techniques employed and analytical processes involved are described. Before applying the analytical techniques to the field data, they were tested with simulated data and proven to be effective in theory as well as in practice.
Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis.
Vidal, Mayra C; Murphy, Shannon M
2018-01-01
Primary consumers are under strong selection from resource ('bottom-up') and consumer ('top-down') controls, but the relative importance of these selective forces is unknown. We performed a meta-analysis to compare the strength of top-down and bottom-up forces on consumer fitness, considering multiple predictors that can modulate these effects: diet breadth, feeding guild, habitat/environment, type of bottom-up effects, type of top-down effects and how consumer fitness effects are measured. We focused our analyses on the most diverse group of primary consumers, herbivorous insects, and found that in general top-down forces were stronger than bottom-up forces. Notably, chewing, sucking and gall-making herbivores were more affected by top-down than bottom-up forces, top-down forces were stronger than bottom-up in both natural and controlled (cultivated) environments, and parasitoids and predators had equally strong top-down effects on insect herbivores. Future studies should broaden the scope of focal consumers, particularly in understudied terrestrial systems, guilds, taxonomic groups and top-down controls (e.g. pathogens), and test for more complex indirect community interactions. Our results demonstrate the surprising strength of forces exerted by natural enemies on herbivorous insects, and thus the necessity of using a tri-trophic approach when studying insect-plant interactions. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Ossés de Eicker, Margarita; Zah, Rainer; Triviño, Rubén; Hurni, Hans
The spatial accuracy of top-down traffic emission inventory maps obtained with a simplified disaggregation method based on street density was assessed in seven mid-sized Chilean cities. Each top-down emission inventory map was compared against a reference, namely a more accurate bottom-up emission inventory map from the same study area. The comparison was carried out using a combination of numerical indicators and visual interpretation. Statistically significant differences were found between the seven cities with regard to the spatial accuracy of their top-down emission inventory maps. In compact cities with a simple street network and a single center, a good accuracy of the spatial distribution of emissions was achieved with correlation values>0.8 with respect to the bottom-up emission inventory of reference. In contrast, the simplified disaggregation method is not suitable for complex cities consisting of interconnected nuclei, resulting in correlation values<0.5. Although top-down disaggregation of traffic emissions generally exhibits low accuracy, the accuracy is significantly higher in compact cities and might be further improved by applying a correction factor for the city center. Therefore, the method can be used by local environmental authorities in cities with limited resources and with little knowledge on the pollution situation to get an overview on the spatial distribution of the emissions generated by traffic activities.
Two-Stage Magma Mixing and Initial Phase of the 1667 Plinian Eruption of Tarumai Volcano
NASA Astrophysics Data System (ADS)
Tomiya, A.; Takeuchi, S.
2009-12-01
Plinian eruptions can eject high-viscosity low-T magma with high crystal content. Several mechanisms have been proposed, such as remobilization by addition of volatile from high-T magma (Bachmann & Bergantz, 2006) and precursory eruption of low-viscosity hybrid magma between low-T and high-T magmas (Pallister et al., 1996; Takeuchi & Nakamura, 2001). We discuss this matter by analysis on a Plinian eruption of Tarumai Volcano. Tarumai (Tarumae) is one of the most active volcanoes in Japan. The 1667 eruption is the first one in historical time after thousands of years of dormancy, and one of the largest eruptions (VEI 5) in the volcano (Soya & Sato, 1980). The major eruptive product, Ta-b pumice, is andesite, consisting of abundant phenocrysts (20-40 %) and rhyolitic glass (Soya, 1971; Furukawa, 1998; Nakagawa et al., 2006). Hiraga & Nakagawa (2000) reported that the bulk rock was homogeneous (SiO2 = 58-62 wt.%) from subunit b8 (lower) to b1 (upper). On the other hand, Takeuchi (2001) found that the bottom layer of b8 (b8-bottom) was more mafic (SiO2 = 56-58 wt.%) and interpreted it as precursory hybrid magma. We analyzed phenocrysts in b8-bottom and other subunits of Ta-b, and compared their compositions and textures. The followings are obtained. Plagioclase: the compositions and textures are similar among the subunits; some phenocrysts are calcic with a homogeneous core of An > 90, whereas most have a complex texture with An 65 to 75. Orthopyroxene/clinopyroxene: the compositions and textures are similar among the subunits; most phenocrysts have a homogeneous core of Mg* 62 to 68 for orthopyroxene and Mg* 70 to 74 for clinopyroxene; those in b8-bottom show reverse zonings. Olivine: there are few phenocrysts and they often coexist with the calcic plagioclase. Magnetite: the compositions are homogeneous (Usp 30 to 34, Mg/Mn 5 to 7; type-1) except for those in b8-bottom; there are two types of phenocrysts in b8-bottom, Usp 30 to 34, Mg/Mn 7 to 9 (type-2) and Usp 23 to 25, Mg/Mn > 10 (type-3) with no type-1 (classification based on Nakagawa et al. (2006)); magnetite inclusions in pyroxene phenocrysts in b8-bottom are, however, type-1. According to the observations, we propose two-stage magma mixing as follows. Prior to the 1667 eruption, there are high-T mafic magma with olivine, calcic plagioclase and type-3 magnetite, and low-T main magma with two pyroxenes, other types of plagioclase and type-1 magnetite (and few ilmenite). The first-stage mixing between the two magmas formed the precursory hybrid magma, but could not prompt the magma to erupt immediately. In the hybrid magma, type-1 and -3 magnetite rehomogenized into type-2 due to rapid cation diffusion, but magnetite inclusions in pyroxene remained type-1. Then, the second-stage mixing between the hybrid magma and the high-T magma occurred, and just after the mixing (with no rehomogenization of type-3 magnetite) the eruption began. Following the hybrid magma (b8-bottom), the main magma erupted. Considering the diffusion coefficients of Ti and Mg in magnetite, the period between the two mixings was several years, whereas the period between the second mixing and the eruption was less than weeks. The two-stage mixing of high-T magma enabled the high-viscosity phenocryst-rich magma to erupt.
Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Frank, Scott D; Odom, Robert I; Collis, Jon M
2013-03-01
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.
1998-03-26
These observations of Jupiter equator in thermal heat emission were made by NASA Infrared Telescope Facility top panel within hours of the Near-Infrared Mapping Spectrometer NIMS instrument image middle inset and the spectra bottom.
Bottom Topographic Changes of Poyang Lake During Past Decade Using Multi-temporal Satellite Images
NASA Astrophysics Data System (ADS)
Zhang, S.
2015-12-01
Poyang Lake, as a well-known international wetland in the Ramsar Convention List, is the largest freshwater lake in China. It plays crucial ecological role in flood storage and biological diversity. Poyang Lake is facing increasingly serious water crises, including seasonal dry-up, decreased wetland area, and water resource shortage, all of which are closely related to progressive bottom topographic changes over recent years. Time-series of bottom topography would contribute to our understanding of the lake's evolution during the past several decades. However, commonly used methods for mapping bottom topography fail to frequently update quality bathymetric data for Poyang Lake restricted by weather and accessibility. These deficiencies have limited our ability to characterize the bottom topographic changes and understanding lake erosion or deposition trend. To fill the gap, we construct a decadal bottom topography of Poyang Lake with a total of 146 time series medium resolution satellite images based on the Waterline Method. It was found that Poyang Lake has eroded with a rate of -14.4 cm/ yr from 2000 to 2010. The erosion trend was attributed to the impacts of human activities, especially the operation of the Three Gorge Dams, sand excavation, and the implementation of water conservancy project. A decadal quantitative understanding bottom topography of Poyang Lake might provide a foundation to model the lake evolutionary processes and assist both researchers and local policymakers in ecological management, wetland protection and lake navigation safety.
Preliminary studies leading toward the development of a LIDAR bathymetry mapping instrument
NASA Astrophysics Data System (ADS)
Hill, John M.; Krenek, Brendan D.; Kunz, Terry D.; Krabill, William; Stetina, Fran
1993-02-01
The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface reflectivity.
Preliminary Studies Leading Toward the Development of a LIDAR Bathymetry Mapping Instrument
NASA Technical Reports Server (NTRS)
Hill, John M.; Krenek, Brendan D.; Kunz, Terry D.; Krabill, William; Stetina, Fran
1993-01-01
The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface reflectivity.
NASA Astrophysics Data System (ADS)
Lee, Jung-Youl; Seo, Il-Seok; Ma, Seong-Min; Kim, Hyeon-Soo; Kim, Jin-Woong; Kim, DoOh; Cross, Andrew
2013-03-01
The migration to a 3D implementation for NAND flash devices is seen as the leading contender to replace traditional planar NAND architectures. However the strategy of replacing shrinking design rules with greater aspect ratios is not without its own set of challenges. The yield-limiting defect challenges for the planar NAND front end were primarily bridges, protrusions and residues at the bottom of the gates, while the primary challenges for front end 3D NAND is buried particles, voids and bridges in the top, middle and bottom of high aspect ratio structures. Of particular interest are the yield challenges in the channel hole process module and developing an understanding of the contribution of litho and etch defectivity for this challenging new integration scheme. The key defectivity and process challenges in this module are missing, misshapen channel holes or under-etched channel holes as well as reducing noise sources related to other none yield limiting defect types and noise related to the process integration scheme. These challenges are expected to amplify as the memory density increases. In this study we show that a broadband brightfield approach to defect monitoring can be uniquely effective for the channel hole module. This approach is correlated to end-of-line (EOL) Wafer Bin Map for verification of capability.
NASA Astrophysics Data System (ADS)
Zasadni, Jerzy; Kłapyta, Piotr
2016-01-01
The Pięć Stawów Polskich-Roztoka Valley in the High Tatras (Western Carpathians) features typical alpine-type relief with a deeply incised glacial trough and large, compound trough head cirque. The prominent hypsographic maximum in the valley (1680-2000 m) along with a broad cirque bottom had provided a vast space for recording glacial and periglacial landforms, specifically the most recent Lateglacial advances. The valley has been intensively studied before in the context of glacial chronology. In this paper, we re-establish the post-Last Glacial Maximum (LGM) glacial chronology of the valley via detailed geomorphologic mapping, equilibrium line altitude (ELA) reconstruction, and Schmidt hammer (SH) dating, along with a critical review of previously published cosmogenic exposure age data (36Cl) and lacustrine sediment chronology. Our results indicate that the first four of the five distinguished Lateglacial stages (Roztoka I-III, Pusta I) occurred before the Bølling/Allerød (B/A) interstadial; thus, virtually the entire valley became deglaciated in course of the Oldest Dryas cold phase. A distinct reorganization of deglacial patterns from valley-type to marginal-type occurred before B/A warming when the ELA increased above the valley hypsographic maximum concentrated at the cirque bottom elevation. It shows that noticeable deglaciation step can be caused due to topographic reason with a minimal climate forcing. This points also to an important role of glaciated valley hypsography in regulating the distribution of moraines which is rarely taken into account in paleoglaciological reconstructions. We infer that glaciers vanished in the Tatra Mountains during the B/A interstadial. Later, a renewed advance during the Younger Dryas (Pusta II) formed a nearly continuous, festoon shaped pattern of moraines and rock glaciers in close distance to cirque backwalls. Furthermore, we discus some paleoenvironmental significance of the geomorphological record in the valley, as well, the applicability of SH dating in constructing glacial chronology.
Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation
NASA Astrophysics Data System (ADS)
Ohshima, Kay I.; Nihashi, Sohey; Iwamoto, Katsushi
2016-12-01
Global overturning circulation is driven by density differences. Saline water rejected during sea-ice formation in polynyas is the main source of dense water, and thus sea-ice production is a key factor in the overturning circulation. Due to difficulties associated with in situ observation, sea-ice production and its interannual variability have not been well understood until recently. Methods to estimate sea-ice production on large scales have been developed using heat flux calculations based on satellite microwave radiometer data. Using these methods, we present the mapping of sea-ice production with the same definition and scale globally, and review the polynya ice production and its relationship with dense/bottom water. The mapping demonstrates that ice production rate is high in Antarctic coastal polynyas, in contrast to Arctic coastal polynyas. This is consistent with the formation of Antarctic Bottom Water (AABW), the densest water mass which occupies the abyssal layer of the global ocean. The Ross Ice Shelf polynya has by far the highest ice production in the Southern Hemisphere. The Cape Darnley polynya (65°E-69°E) is found to be the second highest production area and recent observations revealed that this is the missing (fourth) source of AABW. In the region off the Mertz Glacier Tongue (MGT), the third source of AABW, sea-ice production decreased by as much as 40 %, due to the MGT calving in early 2010, resulting in a significant decrease in AABW production. The Okhotsk Northwestern polynya exhibits the highest ice production in the Northern Hemisphere, and the resultant dense water formation leads to overturning in the North Pacific, extending to the intermediate layer. Estimates of its ice production show a significant decrease over the past 30-50 years, likely causing the weakening of the North Pacific overturning. These regions demonstrate the strong linkage between variabilities of sea-ice production and bottom/intermediate water formation. The mapping has also provided surface boundary conditions and validation data of heat- and salt-flux associated with sea-ice formation/melting for various ocean and coupled models.
Shallow Water Habitat Mapping in Cape Cod National Seashore: A Post-Hurricane Sandy Study
NASA Astrophysics Data System (ADS)
Borrelli, M.; Smith, T.; Legare, B.; Mittermayr, A.
2017-12-01
Hurricane Sandy had a dramatic impact along coastal areas in proximity to landfall in late October 2012, and those impacts have been well-documented in terrestrial coastal settings. However, due to the lack of data on submerged marine habitats, similar subtidal impact studies have been limited. This study, one of four contemporaneous studies commissioned by the US National Park Service, developed maps of submerged shallow water marine habitats in and around Cape Cod National Seashore, Massachusetts. All four studies used similar methods of data collection, processing and analysis for the production of habitat maps. One of the motivations for the larger study conducted in the four coastal parks was to provide park managers with a baseline inventory of submerged marine habitats, against which to measure change after future storm events and other natural and anthropogenic phenomena. In this study data from a phase-measuring sidescan sonar, bottom grab samples, seismic reflection profiling, and sediment coring were all used to develop submerged marine habitat maps using the Coastal and Marine Ecological Classification Standard (CMECS). Vessel-based acoustic surveys (n = 76) were conducted in extreme shallow water across four embayments from 2014-2016. Sidescan sonar imagery covering 83.37 km2 was collected, and within that area, 49.53 km2 of co-located bathymetric data were collected with a mean depth of 4.00 m. Bottom grab samples (n = 476) to sample macroinvertebrates and sediments (along with other water column and habitat data) were collected, and these data were used along with the geophysical and coring data to develop final habitat maps using the CMECS framework.
Multiple Aspects of the Southern California Wildfires as Seen by NASA's AVIRIS
2017-12-15
NASA's Airborne Visible Infrared Imaging Spectrometer instrument (AVIRIS), flying aboard a NASA Armstrong Flight Research Center high-altitude ER-2 aircraft, observed wildfires burning in Southern California on Dec. 5-7, 2017. AVIRIS is an imaging spectrometer that observes light in visible and infrared wavelengths, measuring the full spectrum of radiated energy. Unlike regular cameras with three colors, AVIRIS has 224 spectral channels, measuring contiguously from the visible through the shortwave infrared. Data from these flights, compared against measurements acquired earlier in the year, show many ways this one instrument can improve both our understanding of fire risk and the response to fires in progress. The top row in this image compilation shows pre-fire data acquired from June 2017. At top left is a visible-wavelength image similar to what our own eyes would see. The top middle image is a map of surface composition based on analyzing the full electromagnetic spectrum, revealing green vegetated areas and non-photosynthetic vegetation that is potential fuel as well as non-vegetated surfaces that may slow an advancing fire. The image at top right is a remote measurement of the water in tree canopies, a proxy for how much moisture is in the vegetation. The bottom row in the compilation shows data acquired from the Thomas fire in progress in December 2017. At bottom left is a visible wavelength image. The bottom middle image is an infrared image, with red at 2,250 nanometers showing fire energy, green at 1,650 nanometers showing the surface through the smoke, and blue at 1,000 nanometers showing the smoke itself. The image at bottom right is a fire temperature map using spectroscopic analysis to measure fire thermal emission recorded in the AVIRIS spectra. https://photojournal.jpl.nasa.gov/catalog/PIA22194
NASA Astrophysics Data System (ADS)
Habel, Michal; Babinski, Zygmunt; Szatten, Dawid
2017-11-01
The paper presents the results of analyses of structural changes of the Vistula River bottom, in a section of direct influence of the bridge in Torun (Northern Poland) fitted with one pier in the form of a central island. The pier limits a free water flow by reducing the active width of the riverbed by 12%. In 2011, data on the bottom morphology was collected, i.e. before commencing bridge construction works, throughout the whole building period - 38 measurements. Specific river depth measurements are carried out with SBES and then bathymetric maps are drawn up every two months. The tests cover the active Vistula river channel of 390 - 420 metres in width, from 730+40 to 732+30 river kilometre. The paper includes the results of morphometric analyses of vertical and horizontal changes of the river bottom surrounded by the bridge piers. The seasonality of scour holes and inclination of accumulative forms (sand bars) in the relevant river reach was analysed. Morphometric analyses were performed on raster bases with GIS tools, including the Map Algebra algorithm. The obtained results shown that scour holes/pools of up to 10 metres in depth and exceeding 1200 metres in length are formed in the tested river segment. Scour holes within the pier appeared in specific periods. Constant scour holes were found at the riverbank, and the rate of their movement down the river was 0.6 to 1.3 m per day. The tests are conducted as part of a project ordered by the City of Torun titled `Monitoring Hydrotechniczny Inwestycji Mostowej 2011 - 2014' (Hydrotechnical Monitoring of the Bridge Investment, period 2011 - 2014).
Hydrologic controls on basin-scale distribution of benthic macroinvertebrates
NASA Astrophysics Data System (ADS)
Bertuzzo, E.; Ceola, S.; Singer, G. A.; Battin, T. J.; Montanari, A.; Rinaldo, A.
2013-12-01
The presentation deals with the role of streamflow variability on basin-scale distributions of benthic macroinvertebrates. Specifically, we present a probabilistic analysis of the impacts of the variability along the river network of relevant hydraulic variables on the density of benthic macroinvertebrate species. The relevance of this work is based on the implications of the predictability of macroinvertebrate patterns within a catchment on fluvial ecosystem health, being macroinvertebrates commonly used as sensitive indicators, and on the effects of anthropogenic activity. The analytical tools presented here outline a novel procedure of general nature aiming at a spatially-explicit quantitative assessment of how near-bed flow variability affects benthic macroinvertebrate abundance. Moving from the analytical characterization of the at-a-site probability distribution functions (pdfs) of streamflow and bottom shear stress, a spatial extension to a whole river network is performed aiming at the definition of spatial maps of streamflow and bottom shear stress. Then, bottom shear stress pdf, coupled with habitat suitability curves (e.g., empirical relations between species density and bottom shear stress) derived from field studies are used to produce maps of macroinvertebrate suitability to shear stress conditions. Thus, moving from measured hydrologic conditions, possible effects of river streamflow alterations on macroinvertebrate densities may be fairly assessed. We apply this framework to an Austrian river network, used as benchmark for the analysis, for which rainfall and streamflow time-series and river network hydraulic properties and macroinvertebrate density data are available. A comparison between observed vs "modeled" species' density in three locations along the examined river network is also presented. Although the proposed approach focuses on a single controlling factor, it shows important implications with water resources management and fluvial ecosystem protection.
Using multiple gears to assess acoustic detectability and biomass of fish species in lake superior
Yule, D.L.; Adams, J.V.; Stockwell, J.D.; Gorman, O.T.
2007-01-01
Recent predator demand and prey supply studies suggest that an annual daytime bottom trawl survey of Lake Superior underestimates prey fish biomass. A multiple-gear (acoustics, bottom trawl, and midwater trawl) nighttime survey has been recommended, but before abandoning a long-term daytime survey the effectiveness of night sampling of important prey species must be verified. We sampled three bottom depths (30, 60, and 120 m) at a Lake Superior site where the fish community included all commercially and ecologically important species. Day and night samples were collected within 48 h at all depths during eight different periods (one new and one full moon period during both early summer and late summer to early fall over 2 years). Biomass of demersal and benthic species was higher in night bottom trawl samples than in day bottom trawl samples. Night acoustic collections showed that pelagic fish typically occupied water cooler than 15°C and light levels less than 0.001 lx. Using biomass in night bottom trawls and acoustic biomass above the bottom trawl path, we calculated an index of acoustic detectability for each species. Ciscoes Coregonus artedi, kiyis C. kiyi, and rainbow smeltOsmerus mordax left the bottom at night, whereas bloaters C. hoyi stayed nearer the bottom. We compared the biomass of important prey species estimated with two survey types: day bottom trawls and night estimates of the entire water column (bottom trawl biomass plus acoustic biomass). The biomass of large ciscoes (>200 mm) was significantly greater when measured at night than when measured during daylight, but the differences for other sizes of important species did not vary significantly by survey type. Nighttime of late summer is a period when conditions for biomass estimation are largely invariant, and all important prey species can be sampled using a multiple-gear approach.
Onuki, Yoshinori; Funatani, Chiaki; Yamamoto, Yoshihisa; Fukami, Toshiro; Koide, Tatsuo; Hayashi, Yoshihiro; Takayama, Kozo
2017-01-01
A moisturizing cream mixed with a steroid ointment is frequently prescribed to patients suffering from atopic dermatitis. However, there is a concern that the mixing operation causes destabilization. The present study was performed to investigate the stability of such preparations closely using magnetic resonance imaging (MRI). As sample preparations, five commercial moisturizing creams that are popular in Japan were mixed with an ointment base, a white petrolatum, at a volume ratio of 1 : 1. The mixed preparations were stored at 60°C to accelerate the destabilization processes. Subsequently, the phase separations induced by the storage test were monitored using MRI. Using advanced MR technologies including spin-spin relaxation time (T 2 ) mapping and MR spectroscopy, we successfully characterized the phase-separation behavior of the test samples. For most samples, phase separations developed by the bleeding of liquid oil components. From a sample consisting of an oil-in-water-type cream, Urepearl Cream 10%, a distinct phase-separation mode was observed, which was initiated by the aqueous component separating from the bottom part of the sample. The resultant phase separation was the most distinct among the test samples. To investigate the phase separation quantitatively and objectively, we conducted a histogram analysis on the acquired T 2 maps. The water-in-oil type creams were found to be much more stable after mixing with ointment base than those of oil-in-water type creams. This finding strongly supported the validity of the mixing operation traditionally conducted in pharmacies.
Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; King, Sarah L.; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.
2016-01-01
Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a “bottom up” mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation. PMID:27129252
75 FR 61377 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... Township of Pulaski. downstream of Willow Tree Estate. Approximately 144 feet None +814 upstream of Willow.... Tributary to Walnut Bottom Run...... Approximately 720 feet None +901 Township of White. upstream of... Township Hall, 1234 State Route 18, Aliquippa, PA 15001. Township of White Maps are available for...
RESEARCH PROJECT A: MAPPING DISPARITIES IN BIRTH OUTCOMES
Buxton, H.T.; Shernoff, P.K.; Smolensky, D.A.
1989-01-01
Accurate delineation of the internal hydrogeologic structure of Long Island, NY is integral to the understanding and management of the groundwater system. This report presents a computerized data base of hydrogeologic correlations for 3,146 wells on Long Island and adjacent parts of New York City. The data base includes the well identification number, the latitude-longitude of the well location, the altitude of land surface at the well and of the bottom of the drilled hole, and the altitude of the top of the major hydrogeologic units penetrated by the well. A computer program is included that allows retrieval of selected types of data for all of, or any local area of, Long Island. These data retrievals are a valuable aid to the construction of hydrogeologic surface maps. (USGS)
Sensory cortex limits cortical maps and drives top-down plasticity in thalamocortical circuits
Zembrzycki, Andreas; Chou, Shen-Ju; Ashery-Padan, Ruth; Stoykova, Anastassia; O’Leary, Dennis D.M.
2013-01-01
Summary Primary somatosensory cortex (S1) contains a complete body map that mirrors subcortical maps developed by peripheral sensory input projecting to sensory hindbrain, thalamus, then S1. Peripheral changes during development alter these maps through ‘bottom-up’ plasticity. Unknown is how S1 size influences map organization and if an altered S1 map feedbacks to affect subcortical maps. We show in mice that S1 is significantly reduced by cortex-specific deletion of Pax6, resulting in a reduced body map and loss of body representations by exclusion of later-differentiating sensory thalamocortical input. An initially normal sensory thalamus was re-patterned to match the aberrant S1 map by apoptotic deletion of thalamic neurons representing body parts with axons excluded from S1. Deleted representations were rescued by altering competition between thalamocortical axons by sensory deprivation or increasing S1. Thus, S1 size determined resolution and completeness of body maps and engaged ‘top-down’ plasticity that re-patterned sensory thalamus to match S1. PMID:23831966
Mapping bathymetry in an active surf zone with the WorldView2 multispectral satellite
NASA Astrophysics Data System (ADS)
Trimble, S. M.; Houser, C.; Brander, R.; Chirico, P.
2015-12-01
Rip currents are strong, narrow seaward flows of water that originate in the surf zones of many global beaches. They are related to hundreds of international drownings each year, but exact numbers are difficult to calculate due to logistical difficulties in obtaining accurate incident reports. Annual average rip current fatalities are estimated to be ~100, 53 and 21 in the United States (US), Costa Rica, and Australia respectively. Current warning systems (e.g. National Weather Service) do not account for fine resolution nearshore bathymetry because it is difficult to capture. The method shown here could provide frequent, high resolution maps of nearshore bathymetry at a scale required for improved rip prediction and warning. This study demonstrates a method for mapping bathymetry in the surf zone (20m deep and less), specifically within rip channels, because rips form at topographically low spots in the bathymetry as a result of feedback amongst waves, substrate, and antecedent bathymetry. The methods employ the Digital Globe WorldView2 (WV2) multispectral satellite and field measurements of depth to generate maps of the changing bathymetry at two embayed, rip-prone beaches: Playa Cocles, Puerto Viejo de Talamanca, Costa Rica, and Bondi Beach, Sydney, Australia. WV2 has a 1.1 day pass-over rate with 1.84m ground pixel resolution of 8 bands, including 'yellow' (585-625 nm) and 'coastal blue' (400-450 nm). The data is used to classify bottom type and to map depth to the return in multiple bands. The methodology is tested at each site for algorithm consistency between dates, and again for applicability between sites.
Barry, K.M.; Cavers, D.A.; Kneale, C.W.
2011-01-01
In July and September of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, MS, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. This project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the sub-bottom profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.
Proteomics goes forensic: Detection and mapping of blood signatures in fingermarks.
Deininger, Lisa; Patel, Ekta; Clench, Malcolm R; Sears, Vaughn; Sammon, Chris; Francese, Simona
2016-06-01
A bottom up in situ proteomic method has been developed enabling the mapping of multiple blood signatures on the intact ridges of blood fingermarks by Matrix Assisted Laser Desorption Mass Spectrometry Imaging (MALDI-MSI). This method, at a proof of concept stage, builds upon recently published work demonstrating the opportunity to profile and identify multiple blood signatures in bloodstains via a bottom up proteomic approach. The present protocol addresses the limitation of the previously developed profiling method with respect to destructivity; destructivity should be avoided for evidence such as blood fingermarks, where the ridge detail must be preserved in order to provide the associative link between the biometric information and the events of bloodshed. Using a blood mark reference model, trypsin concentration and spraying conditions have been optimised within the technical constraints of the depositor eventually employed; the application of MALDI-MSI and Ion Mobility MS have enabled the detection, confirmation and visualisation of blood signatures directly onto the ridge pattern. These results are to be considered a first insight into a method eventually informing investigations (and judicial debates) of violent crimes in which the reliable and non-destructive detection and mapping of blood in fingermarks is paramount to reconstruct the events of bloodshed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessing the Gap Between Top-down and Bottom-up Measured Methane Emissions in Indianapolis, IN.
NASA Astrophysics Data System (ADS)
Prasad, K.; Lamb, B. K.; Cambaliza, M. O. L.; Shepson, P. B.; Stirm, B. H.; Salmon, O. E.; Lavoie, T. N.; Lauvaux, T.; Ferrara, T.; Howard, T.; Edburg, S. L.; Whetstone, J. R.
2014-12-01
Releases of methane (CH4) from the natural gas supply chain in the United States account for approximately 30% of the total US CH4 emissions. However, there continues to be large questions regarding the accuracy of current emission inventories for methane emissions from natural gas usage. In this paper, we describe results from top-down and bottom-up measurements of methane emissions from the large isolated city of Indianapolis. The top-down results are based on aircraft mass balance and tower based inverse modeling methods, while the bottom-up results are based on direct component sampling at metering and regulating stations, surface enclosure measurements of surveyed pipeline leaks, and tracer/modeling methods for other urban sources. Mobile mapping of methane urban concentrations was also used to identify significant sources and to show an urban-wide low level enhancement of methane levels. The residual difference between top-down and bottom-up measured emissions is large and cannot be fully explained in terms of the uncertainties in top-down and bottom-up emission measurements and estimates. Thus, the residual appears to be, at least partly, attributed to a significant wide-spread diffusive source. Analyses are included to estimate the size and nature of this diffusive source.
A three dimensional Dirichlet-to-Neumann map for surface waves over topography
NASA Astrophysics Data System (ADS)
Nachbin, Andre; Andrade, David
2016-11-01
We consider three dimensional surface water waves in the potential theory regime. The bottom topography can have a quite general profile. In the case of linear waves the Dirichlet-to-Neumann operator is formulated in a matrix decomposition form. Computational simulations illustrate the performance of the method. Two dimensional periodic bottom variations are considered in both the Bragg resonance regime as well as the rapidly varying (homogenized) regime. In the three-dimensional case we use the Luneburg lens-shaped submerged mound, which promotes the focusing of the underlying rays. FAPERJ Cientistas do Nosso Estado Grant 102917/2011 and ANP/PRH-32.
Real-world visual search is dominated by top-down guidance.
Chen, Xin; Zelinsky, Gregory J
2006-11-01
How do bottom-up and top-down guidance signals combine to guide search behavior? Observers searched for a target either with or without a preview (top-down manipulation) or a color singleton (bottom-up manipulation) among the display objects. With a preview, reaction times were faster and more initial eye movements were guided to the target; the singleton failed to attract initial saccades under these conditions. Only in the absence of a preview did subjects preferentially fixate the color singleton. We conclude that the search for realistic objects is guided primarily by top-down control. Implications for saliency map models of visual search are discussed.
NASA Technical Reports Server (NTRS)
Smrekar, S. E.; Anderson, F. S.
2005-01-01
We have calculated admittance spectra using the spatio-spectral method [14] for Venus by moving the central location of the spectrum over a 1 grid, create 360x180 admittance spectra. We invert the observed admittance using top-loading (TL), hot spot (HS), and bottom loading (BL) models, resulting in elastic, crustal, and lithospheric thickness estimates (Te, Zc, and Zl) [0]. The result is a global map for interpreting subsurface structure. Estimated values of Te and Zc concur with previous TL local admittance results, but BL estimates indicate larger values than previously suspected.
Knebel, Harley J.; Circe, Ronald C.
1995-01-01
This report illustrates, describes, and briefly discusses the acoustic and textural characteristics and the distribution of bottom sedimentary environments in Boston Harbor and Massachusetts Bay. The study is an outgrowth of a larger research program designed to understand the regional processes that distribute sediments and related contaminants in the area. The report highlights the major findings presented in recent papers by Knebel and others (1991), Knebel, (1993), and Knebel and Circe (1995). The reader is urged to consult the full text of these earlier papers for a more definitive treatment of the data and for appropriate supporting references.
30 CFR 75.372 - Mine ventilation map.
Code of Federal Regulations, 2010 CFR
2010-07-01
... at each opening. (8) The elevation at the top and bottom of each shaft and slope, and shaft and slope... of all ventilation controls, including permanent stoppings, overcasts, undercasts, regulators, seals... seals for each worked-out area. (19) The entry height, velocity and direction of the air current at or...
How Do Trait Dimensions Map onto ADHD Symptom Domains?
ERIC Educational Resources Information Center
Martel, Michelle M.; Nigg, Joel T.; von Eye, Alexander
2009-01-01
Theories of Attention-Deficit/Hyperactivity Disorder (ADHD) implicate dysfunctional regulation mechanisms that have been conceptually grouped into "top-down" control and "bottom-up" affective/reactive processes. This dual-process account can be invoked in relation to temperament or personality traits and may clarify how traits relate to ADHD. Two…
ERIC Educational Resources Information Center
Science and Children, 1989
1989-01-01
Describes an underwater expedition which will allow students to participate in activities without being physically present. Provides a list of participating museums and examples of activities from curriculum materials which include a poster, bathymetric map, and 25 lessons. (RT)
30 CFR 75.1505 - Escapeway maps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY... or the miners' work stations to the surface or the exits at the bottom of the shaft or slope, refuge... made. (c) Informing affected miners. Miners underground on a shift when any such change is made shall...
ERIC Educational Resources Information Center
Caniglia, Guido; John, Beatrice; Kohler, Martin; Bellina, Leonie; Wiek, Arnim; Rojas, Christopher; Laubichler, Manfred D.; Lang, Daniel
2016-01-01
Purpose: This paper aims to present an experience-based learning framework that provides a bottom-up, student-centered entrance point for the development of systems thinking, normative and collaborative competencies in sustainability. Design/methodology/approach: The framework combines mental mapping with exploratory walking. It interweaves…
NASA Astrophysics Data System (ADS)
Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert
2004-11-01
Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.
California State Waters Map Series Data Catalog
Golden, Nadine E.
2013-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps and associated data layers through the collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. CSMP has divided coastal California into 110 map blocks (fig. 1), each to be published individually as USGS Scientific Investigations Maps (SIMs) at a scale of 1:24,000. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. This CSMP data catalog contains much of the data used to prepare the SIMs in the California State Waters Map Series. Other data that were used to prepare the maps were compiled from previously published sources (for example, onshore geology) and, thus, are not included herein.
49 CFR 236.557 - Receiver; location with respect to rail.
Code of Federal Regulations, 2010 CFR
2010-10-01
... inert roadway element type shall be maintained with bottom of the receiver at a height above the plane..., shall be maintained with the bottom of the receiver at a height above the plane of the tops of the rails...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luczkovich, J.J.; Wagner, T.W.; Michalek, J.L.
In order to monitor changes caused by local and global human actions to a coral reef ecosystem, we sea-truthed a natural color Landsat TM image prepared for a coastal region of the northwestern Dominican Republic and recorded average water depth, precise geographical positions, and bottom types (seagrass, 15 sites; coral reef, ten sites; and sand, six sites). There were no significant differences in depth for the bottom type groups. The depths ranged from 0 to 16.1 m. Mean digital counts of seagrass and coral reef sites did not differ significantly in any band. A multivariate analysis of variance using allmore » three bands gave similar results. A ratio of the green/blue bands (TM 2/TM 1) showed there was a spectral shift associated with increasing depth, but not bottom type. Due to small-scale patchiness, seagrass and coral areas were difficult to distinguish, but sandy areas can be distinguished using Landsat TM imagery and our methods. 12 refs.« less
Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.
Lee, H K; Kim, H K; Hwang, E A
2010-02-01
Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.
Ultraclean single, double, and triple carbon nanotube quantum dots with recessed Re bottom gates
NASA Astrophysics Data System (ADS)
Jung, Minkyung; Schindele, Jens; Nau, Stefan; Weiss, Markus; Baumgartner, Andreas; Schoenenberger, Christian
2014-03-01
Ultraclean carbon nanotubes (CNTs) that are free from disorder provide a promising platform to manipulate single electron or hole spins for quantum information. Here, we demonstrate that ultraclean single, double, and triple quantum dots (QDs) can be formed reliably in a CNT by a straightforward fabrication technique. The QDs are electrostatically defined in the CNT by closely spaced metallic bottom gates deposited in trenches in Silicon dioxide by sputter deposition of Re. The carbon nanotubes are then grown by chemical vapor deposition (CVD) across the trenches and contacted using conventional electron beam lithography. The devices exhibit reproducibly the characteristics of ultraclean QDs behavior even after the subsequent electron beam lithography and chemical processing steps. We demonstrate the high quality using CNT devices with two narrow bottom gates and one global back gate. Tunable by the gate voltages, the device can be operated in four different regimes: i) fully p-type with ballistic transport between the outermost contacts (over a length of 700 nm), ii) clean n-type single QD behavior where a QD can be induced by either the left or the right bottom gate, iii) n-type double QD and iv) triple bipolar QD where the middle QD has opposite doping (p-type). Research at Basel is supported by the NCCR-Nano, NCCR-QIST, ERC project QUEST, and FP7 project SE2ND.
GROUTING TECHNIQUES IN BOTTOM SEALING OF HAZARDOUS WASTE SITES
Bottom sealing of hazardous waste sites involves the injection or insertion of an inert impermeable and continuous horizontal barrier in soil below the source of contamination. This type of containment strategy could be used in conjunction with other technology such as slurry wal...
Ackerman, Seth D.; Butman, Bradford; Barnhardt, Walter A.; Danforth, William W.; Crocker, James M.
2006-01-01
This report presents the surficial geologic framework data and information for the sea floor of Boston Harbor and Approaches, Massachusetts (fig. 1.1). This mapping was conducted as part of a cooperative program between the U.S. Geological Survey (USGS), the Massachusetts Office of Coastal Zone Management (CZM), and the National Oceanic and Atmospheric Administration (NOAA). The primary objective of this project was to provide sea floor geologic information and maps of Boston Harbor to aid resource management, scientific research, industry and the public. A secondary objective was to test the feasibility of using NOAA hydrographic survey data, normally collected to update navigation charts, to create maps of the sea floor suitable for geologic and habitat interpretations. Defining sea-floor geology is the first steps toward managing ocean resources and assessing environmental changes due to natural or human activity. The geophysical data for these maps were collected as part of hydrographic surveys carried out by NOAA in 2000 and 2001 (fig. 1.2). Bottom photographs, video, and samples of the sediments were collected in September 2004 to help in the interpretation of the geophysical data. Included in this report are high-resolution maps of the sea floor, at a scale of 1:25,000; the data used to create these maps in Geographic Information Systems (GIS) format; a GIS project; and a gallery of photographs of the sea floor. Companion maps of sea floor to the north Boston Harbor and Approaches are presented by Barnhardt and others (2006) and to the east by Butman and others (2003a,b,c). See Butman and others (2004) for a map of Massachusetts Bay at a scale of 1:125,000. The sections of this report are listed in the navigation bar along the left-hand margin of this page. Section 1 (this section) introduces the report. Section 2 presents the large-format map sheets. Section 3 describes data collection, processing, and analysis. Section 4 summarizes the geologic history of the region and discusses geomorphic and anthropogenic features within the study area. Section 4 also provides references that contain additional information about the region. Appendix 1 provides GIS layers of all the data collected in this study, Appendix 2 contains the grain size textural analyses of sediment samples, and Appendix 3 contains bottom photographs of the sea floor in JPG format.
Bottom-up and top-down emotion generation: implications for emotion regulation
Misra, Supriya; Prasad, Aditya K.; Pereira, Sean C.; Gross, James J.
2012-01-01
Emotion regulation plays a crucial role in adaptive functioning and mounting evidence suggests that some emotion regulation strategies are often more effective than others. However, little attention has been paid to the different ways emotions can be generated: from the ‘bottom-up’ (in response to inherently emotional perceptual properties of the stimulus) or ‘top-down’ (in response to cognitive evaluations). Based on a process priming principle, we hypothesized that mode of emotion generation would interact with subsequent emotion regulation. Specifically, we predicted that top-down emotions would be more successfully regulated by a top-down regulation strategy than bottom-up emotions. To test this hypothesis, we induced bottom-up and top-down emotions, and asked participants to decrease the negative impact of these emotions using cognitive reappraisal. We observed the predicted interaction between generation and regulation in two measures of emotional responding. As measured by self-reported affect, cognitive reappraisal was more successful on top-down generated emotions than bottom-up generated emotions. Neurally, reappraisal of bottom-up generated emotions resulted in a paradoxical increase of amygdala activity. This interaction between mode of emotion generation and subsequent regulation should be taken into account when comparing of the efficacy of different types of emotion regulation, as well as when reappraisal is used to treat different types of clinical disorders. PMID:21296865
Southern U.S. Soil Moisture Map
2015-05-19
Southern U.S. NASA's SMAP soil moisture retrievals from April 27, 2015, when severe storms were affecting Texas. Top: radiometer data alone. Bottom: combined radar and radiometer data with a resolution of 5.6 miles (9 kilometers). The combined product reveals more detailed surface soil moisture features. http://photojournal.jpl.nasa.gov/catalog/PIA19338
Commentary on "Management Education and the Base of the Pyramid"
ERIC Educational Resources Information Center
Rosile, Grace Ann
2008-01-01
This commentary asks some critical questions concerning the article "Management Education and the Base of the Pyramid" included in this special issue. Are "bottom of the pyramid" (BOP) multidisciplinary action project (MAP) students prepared to critically assess the impact of their interventions beyond a narrow definition of profit in complex and…
U-Boats in the Bay of Biscay. An Essay in Operations Analysis
1990-01-01
an approach was once seen as the only way to write large com- puter programs from scratch: beginners who mistakenly work from the bottom up generate...178-79 Flowchart . See Models and Analyses Hitler, Adolph (Chancellor), 4, 26, Map 156, 162 "Force multiplier" concept, 118 Hohentwiel aircraft-warning
ERIC Educational Resources Information Center
Race, Elizabeth A.; Shanker, Shanti; Wagner, Anthony D.
2009-01-01
Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through…
NASA Astrophysics Data System (ADS)
Boubekraoui, Souad; Courteaud, Michel; Aubert, Maurice; Albouy, Yves; Coudray, Jean
1998-12-01
In order to investigate aquifers, several geophysical surveys have been carried out in the Baril area of the southern flank of Piton de la Fournaise volcano on Reunion in the Indian Ocean using audiomagnetotelluric (AMT), very-low-frequency (VLF) and self-potential (SP) methods. We present the results with emphasis on a comparison between SP data and the findings of geoelectric surveys. AMT soundings have indicated, from the surface downward, three layers: (i) resistive volcanic rocks, (ii) an intermediate resistivity layer, and (iii) a conductive basement attributed to a seawater-bearing aquifer. VLF measurements allow the mapping of the first layer apparent resistivity, and therefore its bottom, when the true resistivity is supposed to be isotropic and homogenous. When this assumption does not hold, only the SP method permits the mapping of this bottom. Because of the good agreement between the SP and electromagnetic results, we propose the SP method as the first tool that should be used in studying shallow hydrogeological structures in volcanic areas.
Space-based detection of missing sulfur dioxide sources of global air pollution
NASA Astrophysics Data System (ADS)
McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna
2016-07-01
Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world--over a third are clustered around the Persian Gulf--and add up to 7 to 14 Tg of SO2 yr-1, or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.
Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution
NASA Technical Reports Server (NTRS)
McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna
2016-01-01
Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.
Oyster resource zones of the Barataria and Terrebonne estuaries of Louisiana
Melancon, E.; Soniat, T.; Cheramie, V.; Dugas, R.; Barras, J.; Lagarde, M.
1998-01-01
A 1:100,000 scale map delineating the subtidal oyster resource zones within the Barataria and Terrebonne estuaries was developed. Strategies to accomplish the task included interviews with Louisiana oystermen and state biologists to develop a draft map, field sampling to document oyster (Crassostrea virginica), Dermo (Perkinsus marinus), and oyster drill (Stramonita haemastoma) abundances, use of historical salinity data to aid in map verification, and public meetings to allow comment on a draft before final map preparation. Four oyster resource zones were delineated on the final map: a dry zone where subtidal oysters may be found when salinities increase, a wet zone where subtidal oysters may be found when salinities are suppressed, a wet-dry zone where subtidal oysters may be consistently found due to favorable salinities, and a high-salinity zone where natural oyster populations are predominantly found in intertidal and shallow waters. The dry zone is largely coincident with the brackish-marsh habitat, with some intermediate-type marsh. The wet-dry zone is found at the interface of the brackish and saline marshes, but extends further seaward than up-estuary. The wet zone and the high salinity zones are areas of mostly open water fringed by salt marshes. The dry zone encompasses 91,775 hectares, of which 48,788 hectares are water (53%). The wet zone encompasses 83,525 hectares, of which 66,958 hectares are water (80%). The wet-dry zone encompasses 171,893 hectares, of which 104,733 hectares are water (61%). The high salinity zone encompasses 125,705 hectares, of which 113,369 hectares are water (90%). There is a clear trend of increasing water habitat in the four zones over the past 30 years, and oysters are now cultivated on bottoms that were once marsh. The map should be useful in managing the effects upon oysters of freshwater diversions into the estuaries. It provides a pre-diversion record of the location of oyster resource zones and should prove helpful in the seaward relocation of oysters leases.
Geophysical and sampling data from the inner continental shelf: Duxbury to Hull, Massachusetts
Barnhardt, Walter A.; Ackerman, Seth D.; Andrews, Brian D.; Baldwin, Wayne E.
2010-01-01
The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have cooperated to map approximately 200 km² of the Massachusetts inner continental shelf between Duxbury and Hull. This report contains geophysical and geological data collected by the USGS on three cruises between 2006 and 2007. These USGS data are supplemented with a National Oceanic and Atmospheric Administration (NOAA) hydrographic survey conducted in 2003 to update navigation charts. The geophysical data include (1) swath bathymetry from interferometric sonar and multibeam echosounders, (2) acoustic backscatter from sidescan sonar and multibeam echosounders, and (3) subsurface stratigraphy and structure from seismic-reflection profilers. The geological data include sediment samples, seafloor photographs, and bottom videos. These spatial data support research on the influence sea-level change and sediment supply have on coastal evolution, and on efforts to understand the type, distribution, and quality of subtidal marine habitats in the Massachusetts coastal ocean.
Evaluation of concrete incorporating bottom ash as a natural aggregates replacement.
Andrade, L B; Rocha, J C; Cheriaf, M
2007-01-01
A study on the incorporation of coal bottom ash from thermoelectric power stations as a substitute material for natural sand in the production of concrete is here presented. The normally coarse, fused, glassy texture of bottom ash makes it an ideal substitute for natural aggregates. The use of bottom ash in concrete presents several technical challenges: the physical and mineralogical characteristics of the bottom ash; the effect on water demand and the participation on cements hydratation. In the production of the concrete, substitutions in volume were used. Two different ways to employ bottom ash were used to make up the mix proportions: one considering the natural humidity present in the porous particles and the other not considering it, seeking to maintain the same strength. These considerations are fundamental given that the process of bottom ash extraction is carried out through moisture. Mechanical tests by compressive strength were performed and the elastic modulus was determined. An analysis of the influence of bottom ash in the formation of pores was carried out through tests for the water loss by air drying and water uptake by capillary absorption. The results show that the higher the bottom ash contents in the concrete, the worse the performance regarding moisture transport. However, for one bottom ash concrete type, the mechanical properties were maintained.
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
Propagation and Signal Modeling
NASA Astrophysics Data System (ADS)
Jensen, Finn B.
The use of sound in the sea is ubiquitous: Apart from the military aspect of trying to detect an adversary’s mines and submarines, ship-mounted sonars measure water depth, ship speed, and the presence of fish shoals. Side-scan systems are used for mapping the bottom topography, sub-bottom profilers for getting information about the deeper layering, and other sonar systems for locating pipelines and cables on the seafloor. Sound is also used for navigating submerged vehicles, for underwater communications and for tracking marine mammals. Finally, in the realm of ‘acoustical oceanography’ and ‘ocean acoustic tomography,’ sound is used for measuring physical parameters of the ocean environment and for monitoring oceanic processes [1-6].
Bathymetry and acoustic backscatter-outer mainland shelf, eastern Santa Barbara Channel, California
Dartnell, Peter; Finlayson, David P.; Ritchie, Andrew C.; Cochrane, Guy R.; Erdey, Mercedes D.
2012-01-01
In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from the outer shelf region of the eastern Santa Barbara Channel, California. These surveys were conducted in cooperation with the Bureau of Ocean Energy Management (BOEM). BOEM is interested in maps of hard-bottom substrates, particularly natural outcrops that support reef communities in areas near oil and gas extraction activity. The surveys were conducted using the USGS R/V Parke Snavely, outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.
46 CFR 174.050 - Stability on bottom.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Stability on bottom. 174.050 Section 174.050 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.050...
46 CFR 174.050 - Stability on bottom.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Stability on bottom. 174.050 Section 174.050 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.050...
USGS-NPS Servicewide Benthic Mapping Program (SBMP) workshop report
Moses, Christopher S.; Nayagandhi, Amar; Brock, John; Beavers, Rebecca
2010-01-01
The National Park Service (NPS) Inventory and Monitoring (I&M) Program recently allocated funds to initiate a benthic mapping program in ocean and Great Lakes parks in alignment with the NPS Ocean Park Stewardship 2007-2008 Action Plan. Seventy-four (ocean and Great Lakes) parks, spanning more than 5,000 miles of coastline, many affected by increasing coastal storms and other natural and anthropogenic processes, make the development of a Servicewide Benthic Mapping Program (SBMP) timely. The resulting maps and associated reports will be provided to NPS managers in a consistent servicewide format to help park managers protect and manage the 3 million acres of submerged National Park System natural and cultural resources. Of the 74 ocean and Great Lakes park units, the 40 parks with submerged acreage will be the focus in the early years of the SBMP. The NPS and U.S. Geological Survey (USGS) convened a workshop (June 3-5, 2008) in Lakewood, CO. The assembly of experts from the NPS and other Federal and non-Federal agencies clarified the needs and goals of the NPS SBMP and was one of the key first steps in designing the benthic mapping program. The central needs for individual parks, park networks, and regions identified by workshop participants were maps including bathymetry, bottom type, geology, and biology. This workshop, although not an exhaustive survey of data-acquisition technologies, highlighted the more promising technologies being used, existing sources of data, and the need for partnerships to leverage resources. Workshop products include recommended classification schemes and management approaches for consistent application and products similar to other long-term NPS benthic mapping efforts. As part of the SBMP, recommendations from this workshop, including application of an improved version of the Coastal and Marine Ecological Classification Standard (CMECS), will be tested in several pilot parks. In 2008, in conjunction with the findings of this workshop, the NPS funded benthic mapping projects in Glacier Bay National Park and Preserve, Golden Gate National Recreational Area, Sleeping Bear Dunes National Lakeshore, Gulf Islands National Seashore, Virgin Islands National Park, and Virgin Islands Coral Reef National Monument.
A Decade Remote Sensing River Bathymetry with the Experimental Advanced Airborne Research LiDAR
NASA Astrophysics Data System (ADS)
Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.; Skinner, K.
2012-12-01
Since 2002, the first generation of the Experimental Advanced Airborne Research LiDAR (EAARL-A) sensor has been deployed for mapping rivers and streams. We present and summarize the results of comparisons between ground truth surveys and bathymetry collected by the EAARL-A sensor in a suite of rivers across the United States. These comparisons include reaches on the Platte River (NE), Boise and Deadwood Rivers (ID), Blue and Colorado Rivers (CO), Klamath and Trinity Rivers (CA), and the Shenandoah River (VA). In addition to diverse channel morphologies (braided, single thread, and meandering) these rivers possess a variety of substrates (sand, gravel, and bedrock) and a wide range of optical characteristics which influence the attenuation and scattering of laser energy through the water column. Root mean square errors between ground truth elevations and those measured by the EAARL-A ranged from 0.15-m in rivers with relatively low turbidity and highly reflective sandy bottoms to over 0.5-m in turbid rivers with less reflective substrates. Mapping accuracy with the EAARL-A has proved challenging in pools where bottom returns are either absent in waveforms or are of such low intensity that they are treated as noise by waveform processing algorithms. Resolving bathymetry in shallow depths where near surface and bottom returns are typically convolved also presents difficulties for waveform processing routines. The results of these evaluations provide an empirical framework to discuss the capabilities and limitations of the EAARL-A sensor as well as previous generations of post-processing software for extracting bathymetry from complex waveforms. These experiences and field studies not only provide benchmarks for the evaluation of the next generation of bathymetric LiDARs for use in river mapping, but also highlight the importance of developing and standardizing more rigorous methods to characterize substrate reflectance and in-situ optical properties at study sites. They also point out the continued necessity of ground truth data for algorithm refinement and survey verification.
Human Activities on the Deep Seafloor in the North East Atlantic: An Assessment of Spatial Extent
Benn, Angela R.; Weaver, Philip P.; Billet, David S. M.; van den Hove, Sybille; Murdock, Andrew P.; Doneghan, Gemma B.; Le Bas, Tim
2010-01-01
Background Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. Methodology The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Principal Findings Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. Conclusions/Significance To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity. PMID:20856885
Human activities on the deep seafloor in the North East Atlantic: an assessment of spatial extent.
Benn, Angela R; Weaver, Philip P; Billet, David S M; van den Hove, Sybille; Murdock, Andrew P; Doneghan, Gemma B; Le Bas, Tim
2010-09-13
Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity.
NASA Astrophysics Data System (ADS)
Miller, D.; Trembanis, A. C.; Kennedy, E.; Rusch, H.; Rothermel, E.
2016-02-01
The National Park Service has partnered with faculty and students at the University of Delaware to map the length of Assateague Island and sample benthic communities there for two purposes: (1) to provide a complete inventory of benthic habitats and their biota, and (2) to determine if any changes from a pre-storm survey can be ascribed to Superstorm Sandy in 2012. During the 2014 and 2015 field seasons over 75 km2 of high-resolution ( 50 cm/pixel) side-scan sonar and collocated bathymetry were collected with a surface vessel mounted bathy side-scan sonar (EdgeTech 6205), spanning the shore from depths of less than 2 m out to a distance of approximately 1 nautical mile and depths of 10-12 m. Furthermore, we have resampled using standard methodology (modified Young grab and 0.5-mm sieve) a subset of the previously sampled benthic stations that represent all sediment classes identified in prior studies. Additionally, we have obtained novel data with our ROV and AUV assets, including finer scale bottom video and multibeam bathymetry, at specifically chosen locations in order to enhance understanding of the benthic habitat and bottom type changes. In addition to providing a habitat and faunal inventory for resource management purposes, we will compare our side scan and benthic survey data to the pre-storm 2011 data products with comparable coverage. To date we have found that ArcGIS and ENVI sediment classifications agree well with those from the 2011 study, but spatially we note more areas of finer sediments and less of gravel. As was expected, 2014 benthic assemblages differ significantly among sediment classes (PRIMER ANOSIM), and sediment class is the best predictor of the benthic community (PERMANOVA+ distance-based RDA). Our goal here is to use consistent analytical approaches to characterize changes that occur over season and inter-annual time scales. This is a critical step toward attributing sediment, habitat and biological changes to Superstorm Sandy.
Observations of Near-Bottom Currents with Low-Cost SeaHorse Tilt Current Meters
2010-09-30
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Observations of Near-Bottom Currents with Low-Cost SeaHorse Tilt...sheremet/ SeaHorse LONG-TERM GOALS The SeaHorse TCM is a low-cost, easy to use, robust current meter based on the drag principle. Use of a large...2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Observations of Near-Bottom Currents with Low-Cost SeaHorse
What is the Problem? Where is the Work? Getting to the Bottom of Social Action
2010-10-20
MSA MORS SSUCO 10-10 “What is the problem? Where is the work? Getting to the bottom of social action” Mark Addleson School of Public Policy, George...Mason University Military Operations Research Society Symposium Social Sciences Underpinnings of Complex Operations October 20, 2010 Report...REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE ’What is the problem? Where is the work? Getting to the bottom of social
NASA Astrophysics Data System (ADS)
Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Li, Yi-Jin
2010-06-01
A three-dimensional finite element model for phase change random access memory is established to simulate electric, thermal and phase state distribution during (SET) operation. The model is applied to simulate the SET behaviors of the heater addition structure (HS) and the ring-type contact in the bottom electrode (RIB) structure. The simulation results indicate that the small bottom electrode contactor (BEC) is beneficial for heat efficiency and reliability in the HS cell, and the bottom electrode contactor with size Fx = 80 nm is a good choice for the RIB cell. Also shown is that the appropriate SET pulse time is 100 ns for the low power consumption and fast operation.
Processing and evaluation of riverine waveforms acquired by an experimental bathymetric LiDAR
NASA Astrophysics Data System (ADS)
Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.
2010-12-01
Accurate mapping of fluvial environments with airborne bathymetric LiDAR is challenged not only by environmental characteristics but also the development and application of software routines to post-process the recorded laser waveforms. During a bathymetric LiDAR survey, the transmission of the green-wavelength laser pulses through the water column is influenced by a number of factors including turbidity, the presence of organic material, and the reflectivity of the streambed. For backscattered laser pulses returned from the river bottom and digitized by the LiDAR detector, post-processing software is needed to interpret and identify distinct inflections in the reflected waveform. Relevant features of this energy signal include the air-water interface, volume reflection from the water column itself, and, ideally, a strong return from the bottom. We discuss our efforts to acquire, analyze, and interpret riverine surveys using the USGS Experimental Advanced Airborne Research LiDAR (EAARL) in a variety of fluvial environments. Initial processing of data collected in the Trinity River, California, using the EAARL Airborne Lidar Processing Software (ALPS) highlighted the difficulty of retrieving a distinct bottom signal in deep pools. Examination of laser waveforms from these pools indicated that weak bottom reflections were often neglected by a trailing edge algorithm used by ALPS to process shallow riverine waveforms. For the Trinity waveforms, this algorithm had a tendency to identify earlier inflections as the bottom, resulting in a shallow bias. Similarly, an EAARL survey along the upper Colorado River, Colorado, also revealed the inadequacy of the trailing edge algorithm for detecting weak bottom reflections. We developed an alternative waveform processing routine by exporting digitized laser waveforms from ALPS, computing the local extrema, and fitting Gaussian curves to the convolved backscatter. Our field data indicate that these techniques improved the definition of pool areas dominated by weak bottom reflections. These processing techniques are also being tested for EAARL surveys collected along the Platte and Klamath Rivers where environmental conditions have resulted in suppressed or convolved bottom reflections.
Turbidity distribution in the Atlantic Ocean
Eittreim, S.; Thorndike, E.M.; Sullivan, L.
1976-01-01
The regional coverage of Lamont nephelometer data in the North and South Atlantic can be used to map seawater turbidity at all depths. At the level of the clearest water, in the mid-depth regions, the turbidity distribution primarily reflects the pattern of productivity in the surface waters. This suggests that the 'background' turbidity level in the oceans is largely a function of biogenic fallout. The bottom waters of the western Atlantic generally exhibit large increases in turbidity. The most intense benthic nepheloid layers are in the southwestern Argentine basin and northern North American basin; the lowest bottom water turbidity in the western Atlantic is in the equatorial regions. Both the Argentine and North American basin bottom waters appear to derive their high turbidity largely from local resuspension of terrigenous input in these basins. In contrast to the west, the eastern Atlantic basins show very low turbidities with the exception of three regions: the Mediterranean outflow area, the Cape basin, and the West European basin. ?? 1976.
NASA Astrophysics Data System (ADS)
Attias, Eric; Weitemeyer, Karen; Hölz, Sebastian; Naif, Samer; Minshull, Tim A.; Best, Angus I.; Haroon, Amir; Jegen-Kulcsar, Marion; Berndt, Christian
2018-06-01
We present high-resolution resistivity imaging of gas hydrate pipe-like structures, as derived from marine controlled-source electromagnetic (CSEM) inversions that combine towed and ocean-bottom electric field receiver data, acquired from the Nyegga region, offshore Norway. Two-dimensional CSEM inversions applied to the towed receiver data detected four new prominent vertical resistive features that are likely gas hydrate structures, located in proximity to a major gas hydrate pipe-like structure, known as the CNE03 pockmark. The resistivity model resulting from the CSEM data inversion resolved the CNE03 hydrate structure in high resolution, as inferred by comparison to seismically constrained inversions. Our results indicate that shallow gas hydrate vertical features can be delineated effectively by inverting both ocean-bottom and towed receiver CSEM data simultaneously. The approach applied here can be utilised to map and monitor seafloor mineralisation, freshwater reservoirs, CO2 sequestration sites and near-surface geothermal systems.
Mashour, George A.; Hudetz, Anthony G.
2017-01-01
There has been controversy regarding the precise mechanisms of anesthetic-induced unconsciousness, with two salient approaches that have emerged within systems neuroscience. One prominent approach is the “bottom up” paradigm, which argues that anesthetics suppress consciousness by modulating sleep-wake nuclei and neural circuits in the brainstem and diencephalon that have evolved to control arousal states. Another approach is the “top-down” paradigm, which argues that anesthetics suppress consciousness by modulating the cortical and thalamocortical circuits involved in the integration of neural information. In this article, we synthesize these approaches by mapping bottom-up and top-down mechanisms of general anesthetics to two distinct but inter-related dimensions of consciousness: level and content. We show how this explains certain empirical observations regarding the diversity of anesthetic drug effects. We conclude with a more nuanced discussion of how levels and contents of consciousness interact to generate subjective experience and what this implies for the mechanisms of anesthetic-induced unconsciousness. PMID:28676745
Mashour, George A; Hudetz, Anthony G
2017-01-01
There has been controversy regarding the precise mechanisms of anesthetic-induced unconsciousness, with two salient approaches that have emerged within systems neuroscience. One prominent approach is the "bottom up" paradigm, which argues that anesthetics suppress consciousness by modulating sleep-wake nuclei and neural circuits in the brainstem and diencephalon that have evolved to control arousal states. Another approach is the "top-down" paradigm, which argues that anesthetics suppress consciousness by modulating the cortical and thalamocortical circuits involved in the integration of neural information. In this article, we synthesize these approaches by mapping bottom-up and top-down mechanisms of general anesthetics to two distinct but inter-related dimensions of consciousness: level and content. We show how this explains certain empirical observations regarding the diversity of anesthetic drug effects. We conclude with a more nuanced discussion of how levels and contents of consciousness interact to generate subjective experience and what this implies for the mechanisms of anesthetic-induced unconsciousness.
An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structures
Jedari Salami, S.; Sadighi, M.; Shakeri, M.; Moeinfar, M.
2013-01-01
The effects of adding an extra layer within a sandwich panel and two different core types in top and bottom cores on low velocity impact loadings are studied experimentally in this paper. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Low velocity impact tests were carried out by drop hammer testing machine to the clamped multilayer sandwich panels with expanded polypropylene (EPP) and polyurethane rigid (PUR) in the top and bottom cores. Local displacement of the top core, contact force and deflection of the sandwich panel were obtained for different locations of the internal sheet; meanwhile the EPP and PUR were used in the top and bottom cores alternatively. It was found that the core material type has made significant role in improving the sandwich panel's behavior compared with the effect of extra layer location. PMID:24453804
A Flexible Socioeconomic Scenarios Framework for the Study of Plausible Arctic Futures
NASA Astrophysics Data System (ADS)
Reissell, A. K.; Peters, G. P.; Riahi, K.; Kroglund, M.; Lovecraft, A. L.; Nilsson, A. E.; Preston, B. L.; van Ruijven, B. J.
2016-12-01
Future developments of the Arctic region are associated with different drivers of change - climate, environmental, and socio-economic - and their interactions, and are highly uncertain. The uncertainty poses challenges for decision-making, calling for development of new analytical frameworks. Scenarios - coherent narratives describing potential futures, pathways to futures, and drivers of change along the way - can be used to explore the consequences of the key uncertainties, particularly in the long-term. In a participatory scenarios workshop, we used both top-down and bottom-up approaches for the development of a flexible socioeconomic scenarios framework. The top-down approach was linked to the global Integrated Assessment Modeling framework and its Shared Socio-Economic Pathways (SSPs), developing an Arctic extension of the set of five storylines on the main socioeconomic uncertainties in global climate change research. The bottom-up approach included participatory development of narratives originating from within the Arctic region. For extension of global SSPs to the regional level, we compared the key elements in the global SSPs (Population, Human Development, Economy & Lifestyle, Policies & Institutions, Technology, and Environment & Natural Resources) and key elements in the Arctic. Additional key elements for the Arctic scenarios include, for example, seasonal migration, the large role of traditional knowledge and culture, mixed economy, nested governance structure, human and environmental security, quality of infrastructure. The bottom-up derived results suggested that the scenarios developed independent of the SSPs could be mapped back to the SSPs to demonstrate consistency with respect to representing similar boundary conditions. The two approaches are complimentary, as the top-down approach can be used to set the global socio-economic and climate boundary conditions, and the bottom-up approach providing the regional context. One key uncertainty and driving force is the demand for resources (global or regional) that was mapped against the role of governance as well as adaptive and transformative capacity among actors within the Arctic. Resources demand has significant influence on the society, culture, economy and environment of the Arctic.
Couch, Richard W.; Gemperle, Michael
1982-01-01
Spectral analysis of aeromagnetic data collected over 6orth-central California during the summer of 1980 aided in determining magnetic-source bottom depths beneath the survey area. Five regions of shallow magnetic source bottom depths were detected: 1) Secret Spring Mountain and National Lava Beds Monument area, 2) the Mount Shasta area, 3) the Eddys Mountain area, 4) the Big Valley Mountains area, and 5) an area northeast of Lassen Peak. Except for the Eddys Mountain area, all regions exhibiting shallow depths are suggested to be due to elevated Curie-point isotherms. The elevated Curie-point depth beneath Secret Spring Mountain and the National Lava Beds Monument area was found to be 4-7 km BSL (Below Sea Level) and is an extension of a zone mapped beneath an area immediately to the north in Oregon. A similar depth was detected for the Mount Shasta area and the area northeast of Lassen Peak. A depth of 4-6 km BSL was detected beneath the Big Valley Mountains area. The shallow Curie-point depths beneath Secret Spring Mountain, Mount Shasta, Big Valley Mountains, and the area northeast of Lassen Peak appear to form a segmented Zone of elevated Curie-point isotherm depths which underlies the High Cascade Mountains and Modoc Plateau in north-central California. A small area of shallow depths to magnetic-source bottoms, 4-5 km BSL, beneath the Eddys Mountain area is attributed to a lithologic boundary rather than an elevated Curie-point isotherm. Deeper magnetic source bottom depths were mapped throughout the remainder of the study area, with depths greater than 9 km BSL indicated beneath Lassen Peak and greater than ii km BSL indicated beneath the Western Cascades, Eastern Klamath Mountains, and Great Valley.
Polar Maps of Thermal and Epithermal Neutrons
NASA Technical Reports Server (NTRS)
2002-01-01
Observations by NASA's 2001 Mars Odyssey spacecraft show views of the polar regions of Mars in thermal neutrons (top) and epithermal neutrons (bottom). In these maps, deep blue indicates a low amount of neutrons, and red indicates a high amount. Thermal neutrons are sensitive to the presence of hydrogen and the presence of carbon dioxide, in this case 'dry ice' frost. The red area in the upper right map indicates that about one meter (three feet) of carbon dioxide frost covers the surface around the north pole, as it does every Mars winter in the polar regions. An enhancement of thermal neutrons close to the south pole, seen as a light green color on the upper left map, indicates the presence of residual carbon dioxide in the south polar cap, even though the annual frost dissipated from that region during southern summer. Soil enriched with hydrogen is indicated by the deep blue colors on the epithermal maps (bottom), showing a low intensity of epithermal neutrons. The deep blue areas in the polar regions are believed to contain up to 50 percent water ice in the upper one meter (three feet) of the soil. The views shown here are of measurements made during the first three months of mapping using the neutron spectrometer instrument, part of the gamma ray spectrometer instrument suite. Topographic features are superimposed on the map for geographic reference.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Effect of bottom slope on the nonlinear triad interactions in shallow water
NASA Astrophysics Data System (ADS)
Chen, Hongzhou; Tang, Xiaocheng; Zhang, Ri; Gao, Junliang
2018-05-01
This paper aims at investigating the effect of bottom slope to the nonlinear triad interactions for irregular waves propagating in shallow water. The physical experiments are conducted in a wave flume with respect to the transformation of waves propagating on three bottom slopes ( β = 1/15, 1/30, and 1/45). Irregular waves with different type of breaking that are mechanically generated based on JONSWAP spectra are used for the test. The obviously different variations of spectra measured on each bottom reveal a crucial role of slope effect in the energy transfer between harmonics. The wavelet-based bispectrum were used to examine the bottom slope effect on the nonlinear triad interactions. Results show that the different bottom slopes which waves are propagated on will cause a significant discrepancy of triad interactions. Then, the discussions on the summed bicoherence which denote the distribution of phase coupling on each frequency further clarify the effect of bottom slope. Furthermore, the summed of the real and imaginary parts of bispectrum which could reflect the intensity of frequency components participating in the wave skewness and asymmetry were also investigated. Results indicate that the value of these parameters will increase as the bottom slope gets steeper.
Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark
Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B.; Greve, Mogens H.
2014-01-01
Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0−5, 5−15, 15−30, 30−60 and 60−100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg−1 was reported for 0−5 cm soil, whereas there was on average 2.2 g SOC kg−1 at 60−100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg−1 was found at 60−100 cm soil depth. Average SOC stock for 0−30 cm was 72 t ha−1 and in the top 1 m there was 120 t SOC ha−1. In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories. PMID:25137066
NASA Astrophysics Data System (ADS)
Selkoe, K. A.; Halpern, B. S.; Ebert, C. M.; Franklin, E. C.; Selig, E. R.; Casey, K. S.; Bruno, J.; Toonen, R. J.
2009-09-01
Effective and comprehensive regional-scale marine conservation requires fine-grained data on the spatial patterns of threats and their overlap. To address this need for the Papahānaumokuākea Marine National Monument (Monument) in Hawaii, USA, spatial data on 14 recent anthropogenic threats specific to this region were gathered or created, including alien species, bottom fishing, lobster trap fishing, ship-based pollution, ship strike risks, marine debris, research diving, research equipment installation, research wildlife sacrifice, and several anthropogenic climate change threats i.e., increase in ultraviolet (UV) radiation, seawater acidification, the number of warm ocean temperature anomalies relevant to disease outbreaks and coral bleaching, and sea level rise. These data were combined with habitat maps and expert judgment on the vulnerability of different habitat types in the Monument to estimate spatial patterns of current cumulative impact at 1 ha (0.01 km2) resolution. Cumulative impact was greatest for shallow reef areas and peaked at Maro Reef, where 13 of the 14 threats overlapped in places. Ocean temperature variation associated with disease outbreaks was found to have the highest predicted impact overall, followed closely by other climate-related threats, none of which have easily tractable management solutions at the regional scale. High impact threats most tractable to regional management relate to ship traffic. Sensitivity analyses show that the results are robust to both data availability and quality. Managers can use these maps to (1) inform management and surveillance priorities based on the ranking of threats and their distributions, (2) guide permitting decisions based on cumulative impacts, and (3) choose areas to monitor for climate change effects. Furthermore, this regional analysis can serve as a case study for managers elsewhere interested in assessing and mapping region-specific cumulative human impacts.
Digital mapping of soil organic carbon contents and stocks in Denmark.
Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H
2014-01-01
Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories.
The effect of linguistic and visual salience in visual world studies.
Cavicchio, Federica; Melcher, David; Poesio, Massimo
2014-01-01
Research using the visual world paradigm has demonstrated that visual input has a rapid effect on language interpretation tasks such as reference resolution and, conversely, that linguistic material-including verbs, prepositions and adjectives-can influence fixations to potential referents. More recent research has started to explore how this effect of linguistic input on fixations is mediated by properties of the visual stimulus, in particular by visual salience. In the present study we further explored the role of salience in the visual world paradigm manipulating language-driven salience and visual salience. Specifically, we tested how linguistic salience (i.e., the greater accessibility of linguistically introduced entities) and visual salience (bottom-up attention grabbing visual aspects) interact. We recorded participants' eye-movements during a MapTask, asking them to look from landmark to landmark displayed upon a map while hearing direction-giving instructions. The landmarks were of comparable size and color, except in the Visual Salience condition, in which one landmark had been made more visually salient. In the Linguistic Salience conditions, the instructions included references to an object not on the map. Response times and fixations were recorded. Visual Salience influenced the time course of fixations at both the beginning and the end of the trial but did not show a significant effect on response times. Linguistic Salience reduced response times and increased fixations to landmarks when they were associated to a Linguistic Salient entity not present itself on the map. When the target landmark was both visually and linguistically salient, it was fixated longer, but fixations were quicker when the target item was linguistically salient only. Our results suggest that the two types of salience work in parallel and that linguistic salience affects fixations even when the entity is not visually present.
NASA Astrophysics Data System (ADS)
Ferrini, V.; Fornari, D. J.; Shank, T.; Tivey, M.; Kelley, D. S.; Glickson, D.; Carbotte, S. M.; Howland, J.; Whitcomb, L. L.; Yoerger, D.
2004-12-01
Recent field programs at the East Pacific Rise and Juan de Fuca Ridge have resulted in the refinement of data processing protocols that enable the rapid creation of high-resolution (meter-scale) bathymetric maps from pencil-beam altimetric sonar data that are routinely collected during DSV Alvin dives. With the development of the appropriate processing tools, the Imagenex sonar, a permanent sensor on Alvin, can be used by a broad range of scientists permitting the analysis of various data sets within the context of high-quality bathymetric maps. The data processing protocol integrates depth data recorded with Alvin's Paroscientific pressure sensor with bathymetric soundings collected with an Imagenex 675 kHz articulating (scanning) sonar system, and high-resolution navigational data acquired with DVLNAV, which includes bottom lock Doppler sonar and long baseline (LBL) navigation. Together these data allow us, for the first time, to visualize portions of Ridge 2000 Integrated Study Sites (ISS) at 1-m vertical and horizontal resolution. These maps resolve morphological details of structures within the summit trough at scales that are relevant to biological communities (e.g. hydrothermal vents, lava pillars, trough walls), thus providing the important geologic context necessary to better understand spatial patterns associated with integrated biological-hydrothermal-geological processes. The Imagenex sonar is also a permanent sensor on the Jason2 ROV, which is also equipped with an SM2000 (200 kHz) near-bottom multibeam sonar. In the future, it is envisioned that near-bottom multibeam sonars will be standard sensors on all National Deep Submergence Facility (NDSF) vehicles. Streamlining data processing protocols makes these datasets more accessible to NDSF users and ensures broad compatibility between data formats among NDSF vehicle systems and allied vehicles (e.g. ABE). Establishing data processing protocols and software suites, routinely calibrating sensors (e.g. Paroscientific depth sensors), and ensuring good navigational benchmarks between various cruises to the Ridge 2000 ISS improves the capability and quality of rapidly produced high-resolution bathymetric maps enabling users to optimize their diving programs. This is especially important within the context of augmenting high-resolution bathymetric data collection in ISS areas (several cruises to the same area over multiple years) and investigating possible changes in seafloor topography, hydrothermal vent features and/or biological communities that are related to tectonic or volcanic events.
Ice Types in the Beaufort Sea, Alaska
NASA Technical Reports Server (NTRS)
2003-01-01
Determining the amount and type of sea ice in the polar oceans is crucial to improving our knowledge and understanding of polar weather and long term climate fluctuations. These views from two satellite remote sensing instruments; the synthetic aperture radar (SAR) on board the RADARSAT satellite and the Multi-angle Imaging SpectroRadiometer (MISR), illustrate different methods that may be used to assess sea ice type. Sea ice in the Beaufort Sea off the north coast of Alaska was classified and mapped in these concurrent images acquired March 19, 2001 and mapped to the same geographic area.To identify sea ice types, the National Oceanic and Atmospheric Administration (NOAA) National Ice Center constructs ice charts using several data sources including RADARSAT SAR images such as the one shown at left. SAR classifies sea ice types primarily by how the surface and subsurface roughness influence radar backscatter. In the SAR image, white lines delineate different sea ice zones as identified by the National Ice Center. Regions of mostly multi-year ice (A) are separated from regions with large amounts of first year and younger ice (B-D), and the dashed white line at bottom marks the coastline. In general, sea ice types that exhibit increased radar backscatter appear bright in SAR and are identified as rougher, older ice types. Younger, smoother ice types appear dark to SAR. Near the top of the SAR image, however, red arrows point to bright areas in which large, crystalline 'frost flowers' have formed on young, thin ice, causing this young ice type to exhibit an increased radar backscatter. Frost flowers are strongly backscattering at radar wavelengths (cm) due to both surface roughness and the high salinity of frost flowers, which causes them to be highly reflective to radar energy.Surface roughness is also registered by MISR, although the roughness observed is at a different spatial scale. Older, rougher ice areas are predominantly backward scattering to the MISR cameras, whereas younger, smoother ice types are predominantly forward scattering. The MISR map at right was generated using a statistical classification routine (called ISODATA) and analyzed using ice charts from the National Ice Center. Five classes of sea ice were found based upon the classification of MISR angular data. These are described, based on interpretation of the SAR image, by the image key. Very smooth ice areas that are predominantly forward scattering are colored red. Frost flowers are largely smooth to the MISR visible band sensor and are mapped as forward scattering. Areas mapped as blue are predominantly backward scattering, and the other three classes have statistically distinct angular signatures and fall within the middle of the forward/backward scattering continuum. Some areas that may be first year or younger ice between the multi year ice floes are not discernible to SAR, illustrating how MISR potentially can make a unique contribution to sea ice mapping.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. This data product was generated from a portion of the imagery acquired during Terra orbit 6663. The MISR image has been cropped to include an area that is 200 kilometers wide, and utilizes data from blocks 30 to 33 within World Reference System-2 path 71.MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk
NASA Astrophysics Data System (ADS)
Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan
2017-11-01
The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.
NASA Astrophysics Data System (ADS)
Bazhenova, E.; Zarayskaya, Y.; Wigley, R. A.; Anderson, R.; Falconer, R. K. H.; Kearns, T.; Martin, T.; Minami, H.; Roperez, J.; Rosedee, A.; Sade, H.; Seeboruth, S.; Simpson, B.; Sumiyoshi, M.; Tinmouth, N.; Zwolak, K.
2017-12-01
In preparation for the XPRIZE 2017 Round 1, a new sea-floor mapping system has been assembled based on an Unmanned Surface Vessel (USV) coupled with an Autonomous Underwater Vehicle (AUV). USV operation allows reducing logistics costs, while the AUV provides enhanced maneuverability and high accuracy of stabilization for the mapping missions. The AUV is equipped with a high-resolution interferometric synthetic aperture sonar (HISAS) and a multibeam sonar (MBES), covering a wide bathymetry swath and the nadir, respectively. Typically operating at 20 to 40 m altitude, the HISAS is capable of providing SAS imagery with 4 x 4 cm resolution and bathymetry with 40 x 40 cm resolution throughout the swath. Smaller areas of interest (50 x 50 m) can be further examined using the Spot processing technique, to produce SAS imagery with 2 x 2 cm resolution and high- resolution SAS bathymetry with 5 x 5 cm resolution. This allows multi-aspect imaging and examination of seabed geological features at different scales. Advanced data post-processing can be performed to produce 3D images of objects and explore their structure using the shadow contrast and shape. Being an interferometric system, the HISAS collects data for both imagery and bathymetry in the same swath. This improves the robustness for SAS in areas with significant relief. In the standard survey mode, the HISAS can typically collect SAS data at 2.6 km2/hr over relatively flat ground. Another limiting factor to the HISAS data coverage and quality is the vehicle stability influenced by downslope and cross currents and the resulting vehicle's speed. From experience, the best coverage occurs at a vehicle speed of around 2 m/s. At slower speeds the vehicle starts to lose steerage leading to degradation of tracking and navigation performance, which harms the focusing algorithm that creates the SAS data. For the AUV mission planning in unknown areas or in case of highly variable conditions at the study site, MBES reconnaissance data can be acquired at higher altitudes prior to running the AUV close to the seabed. Additionally, the MBES is used to collect the acoustic bottom reflectivity (backscatter) data, which allows further sea-floor characterization and potentially description of sediment types and marine bottom habitats, such as coral reefs, deep sea hydrothermal vents etc.
Rhesus monkeys (Macaca mulatta) map number onto space
Drucker, Caroline B.; Brannon, Elizabeth M.
2014-01-01
Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. PMID:24762923
Peters, K.E.; Bird, K.J.; Keller, M.A.; Lillis, P.G.; Magoon, L.B.
2003-01-01
Four source rock units on the North Slope were identified, characterized, and mapped to better understand the origin of petroleum in the area: Hue-gamma ray zone (Hue-GRZ), pebble shale unit, Kingak Shale, and Shublik Formation. Rock-Eval pyrolysis, total organic carbon analysis, and well logs were used to map the present-day thickness, organic quantity (TOC), quality (hydrogen index, HI), and thermal maturity (Tmax) of each unit. To map these units, we screened all available geochemical data for wells in the study area and assumed that the top and bottom of the oil window occur at Tmax of ~440° and 470°C, respectively. Based on several assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original organic richness prior to thermal maturation.
Naval EarthMap Observer: overview and data processing
NASA Astrophysics Data System (ADS)
Bowles, Jeffrey H.; Davis, Curtiss O.; Carney, Megan; Clamons, Dean; Gao, Bo-Cai; Gillis, David; Kappus, Mary E.; Lamela, G.; Montes, Marcos J.; Palmadesso, Peter J.; Rhea, J.; Snyder, William A.
1999-12-01
We present an overview of the Naval EarthMap Observer (NEMO) spacecraft and then focus on the processing of NEMO data both on-board the spacecraft and on the ground. The NEMO spacecraft provides for Joint Naval needs and demonstrates the use of hyperspectral imagery for the characterization of the littoral environment and for littoral ocean model development. NEMO is being funded jointly by the U.S. government and commercial partners. The Coastal Ocean Imaging Spectrometer (COIS) is the primary instrument on the NEMO and covers the spectral range from 400 to 2500 nm at 10-nm resolution with either 30 or 60 m work GSD. The hyperspectral data is processed on-board the NEMO using NRL's Optical Real-time Automated Spectral Identification System (ORASIS) algorithm that provides for real time analysis, feature extraction and greater than 10:1 data compression. The high compression factor allows for ground coverage of greater than 106 km2/day. Calibration of the sensor is done with a combination of moon imaging, using an onboard light source and vicarious calibration using a number of earth sites being monitored for that purpose. The data will be atmospherically corrected using ATREM. Algorithms will also be available to determine water clarity, bathymetry and bottom type.
A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.
Huvenne, Veerle A I; Tyler, Paul A; Masson, Doug G; Fisher, Elizabeth H; Hauton, Chris; Hühnerbach, Veit; Le Bas, Timothy P; Wolff, George A
2011-01-01
Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.
A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge in Submarine Canyon
Huvenne, Veerle A. I.; Tyler, Paul A.; Masson, Doug G.; Fisher, Elizabeth H.; Hauton, Chris; Hühnerbach, Veit; Le Bas, Timothy P.; Wolff, George A.
2011-01-01
Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked – quite literally – and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input) to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin. PMID:22194903
NASA Astrophysics Data System (ADS)
Castillo-López, Elena; Dominguez, Jose Antonio; Pereda, Raúl; de Luis, Julio Manuel; Pérez, Ruben; Piña, Felipe
2017-10-01
Accurate determination of water depth is indispensable in multiple aspects of civil engineering (dock construction, dikes, submarines outfalls, trench control, etc.). To determine the type of atmospheric correction most appropriate for the depth estimation, different accuracies are required. Accuracy in bathymetric information is highly dependent on the atmospheric correction made to the imagery. The reduction of effects such as glint and cross-track illumination in homogeneous shallow-water areas improves the results of the depth estimations. The aim of this work is to assess the best atmospheric correction method for the estimation of depth in shallow waters, considering that reflectance values cannot be greater than 1.5 % because otherwise the background would not be seen. This paper addresses the use of hyperspectral imagery to quantitative bathymetric mapping and explores one of the most common problems when attempting to extract depth information in conditions of variable water types and bottom reflectances. The current work assesses the accuracy of some classical bathymetric algorithms (Polcyn-Lyzenga, Philpot, Benny-Dawson, Hamilton, principal component analysis) when four different atmospheric correction methods are applied and water depth is derived. No atmospheric correction is valid for all type of coastal waters, but in heterogeneous shallow water the model of atmospheric correction 6S offers good results.
Zones of coastal hypoxia revealed by satellite scanning have implications for strategic fishing
NASA Technical Reports Server (NTRS)
Leming, T. D.; Stuntz, W. E.
1984-01-01
Little is known about the spatial and temporal scales of hypoxic bottom water areas that occur along the inner continental shelf of Texas and Louisiana. Because hypoxia appears to be related to surface chlorophyll and temperature, which can both be measured with the Coastal Zone Color Scanner aboard the Nimbus 7 satellite, an attempt has been made to determine whether conditions favorable for the formation of hypoxia could be detected and monitored from space. A linear discriminant function has identified areas of bottom water hypoxia detected by research vessels up to 10 days after satellite overpass, and predicted hypoxic areas without resort to research vessel data. Such space mapping may be of consequence for marine resource management and exploitation.
NASA Astrophysics Data System (ADS)
Petrov, O. V.; Morozov, A.; Shokalsky, S.; Leonov, Y.; Grikurov, G.; Poselov, V.; Pospelov, I.; Kashubin, S.
2011-12-01
In 2003 geological surveys of circum-arctic states initiated the international project "Atlas of Geological Maps of Circumpolar Arctic at 1:5 000000 scale". The project received active support of the UNESCO Commission for the Geological Map of the World (CGMW) and engaged a number of scientists from national academies of sciences and universities. Magnetic and gravity maps were prepared and printed by the Norwegian Geological Survey, and geological map was produced by the Geological Survey of Canada. Completion of these maps made possible compilation of a new Tectonic Map of the Arctic (TeMAr), and this work is now in progress with Russian Geological Research Institute (VSEGEI) in the lead of joint international activities. The map area (north of 60o N) includes three distinct roughly concentric zones. The outer onshore rim is composed of predominantly mature continental crust whose structure and history are illustrated on the map by the age of consolidation of craton basements and orogenic belts. The zone of offshore shelf basins is unique in dimensions with respect to other continental margins of the world. Its deep structure can in most cases be positively related to thinning and rifting of consolidated crust, sometimes to the extent of disruption of its upper layer, whereas the pre-rift evolution can be inferred from geophysical data and extrapolation of geological evidence from the mainland and island archipelagoes. The central Arctic core is occupied by abyssal deeps and intervening bathymetric highs. The Eurasia basin is commonly recognized as a typical oceanic opening separating the Barents-Kara and Lomonosov Ridge passive margins, but geodynamic evolution of Amerasia basin are subject to much controversy, despite significant intensification of earth science researchin the recent years. A growing support to the concept of predominance in the Amerasia basin of continental crust, particularly in the area concealed under High Arctic Large Igneous Province, is based on two lines of evidence: (1) seismic studies and gravity modeling of deep structure of the Earth's crust suggesting a continuity of its main layers from Central Arctic bathymetric highs to the adjoining shelves, and (2) geochrolology and isotope geochemistry of bottom rocks in the central Arctic Ocean indicating the likely occurrence here of Paleozoic supracrustal bedrock possibly resting on a Precambrian basement. In the process of compilation activities all possible effort will be made to reflect in the new international tectonic map our current understanding of present-day distribution of crust types in the Arctic. It will be illustrated by smaller-scale insets depicting, along with the crust types, additional information used for their recognition (e.g. depth to Moho, total sediment thickness, geotransects, etc. This will help to integrate geological history of Central Arctic Ocean with its continental rim and provide a sound basis for testing various paleogeodynamic models.
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Hagen, R.; Hart, P.; Czarnecki, M.; Nishimura, C.; Hutchinson, D. R.
2005-12-01
The purpose of this project was to conduct detailed surface mapping of one of the areas drilled by the Joint Industry Project with ChevronTexaco to understand gas hydrates in the Gulf of Mexico. The gently sloping, mostly flat floor of the Mississippi Canyon is interrupted by mounds and depressions that presumably reflect the complex geology and geohydrology related to turbidite deposition and pervasive salt tectonism. The seafloor mounds we mapped in this study occur in approximately 1300 water depth along the floor of the Mississippi Canyon in lease block areas Atwater Valley 13 and 14. High resolution sidescan sonar (100 kHz and 500 kHz) backscatter imagery, and chirp sub-bottom profiler data were collected using the DT1 deep-towed oceanographic mapping instrument, concentrating on the region directly adjacent to and surrounding two mounds identified as, mounds D and F, and in the region directly adjacent to and surrounding the mounds. The backscatter data have been mosaiced and normalized to provide information on the shape and extent of the mounds, the possible lateral extent of fauna, such as mussel and clam fields on the mounds, possible seep related flows and the occurrence of carbonate material. The extent of a mudflow can be mapped on the southeastern side of mound F. Previously collected bottom camera images have been used to ground-truth the backscatter information. Coincident with the collection of backscatter information was the collection of very high-resolution bathymetric data. Together, the backscatter and bathymetric data show extremely high-resolution detail about the shape, relief, and morphology of the mounds. This information, coupled with porewater chemistry and heatflow data form a coherent picture of possible mechanics for fluid venting and flora/fauna of the seeps in this region.
Burns, K E; Haysom, H E; Higgins, A M; Waters, N; Tahiri, R; Rushford, K; Dunstan, T; Saxby, K; Kaplan, Z; Chunilal, S; McQuilten, Z K; Wood, E M
2018-04-10
To describe the methodology to estimate the total cost of administration of a single unit of red blood cells (RBC) in adults with beta thalassaemia major in an Australian specialist haemoglobinopathy centre. Beta thalassaemia major is a genetic disorder of haemoglobin associated with multiple end-organ complications and typically requiring lifelong RBC transfusion therapy. New therapeutic agents are becoming available based on advances in understanding of the disorder and its consequences. Assessment of the true total cost of transfusion, incorporating both product and activity costs, is required in order to evaluate the benefits and costs of these new therapies. We describe the bottom-up, time-driven, activity-based costing methodology used to develop process maps to provide a step-by-step outline of the entire transfusion pathway. Detailed flowcharts for each process are described. Direct observations and timing of the process maps document all activities, resources, staff, equipment and consumables in detail. The analysis will include costs associated with performing these processes, including resources and consumables. Sensitivity analyses will be performed to determine the impact of different staffing levels, timings and probabilities associated with performing different tasks. Thirty-one process maps have been developed, with over 600 individual activities requiring multiple timings. These will be used for future detailed cost analyses. Detailed process maps using bottom-up, time-driven, activity-based costing for determining the cost of RBC transfusion in thalassaemia major have been developed. These could be adapted for wider use to understand and compare the costs and complexities of transfusion in other settings. © 2018 British Blood Transfusion Society.
Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems
NASA Astrophysics Data System (ADS)
Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.
2015-12-01
Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.
Innovative Technique for High-Accuracy Remote Monitoring of Surface Water
NASA Astrophysics Data System (ADS)
Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.
2016-12-01
Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.
NASA Astrophysics Data System (ADS)
Loubere, Paul
1994-10-01
An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN toAGU's FTP account using ANONYMOUS as the usemame andGUEST as the password. Go to the right directory by typing CDAPEND. Type LS to see what files are available. Type GET and thename of the file to get it. Finally, type EXIT to leave the system.)(Paper 94PA01624, Quantitative estimation of surface oceanproductivity and bottom water concentration using benthicforaminifera, by P. Loubere). Diskette may be ordered from AmericanGeophysical Union, 2000 Florida Avenue, N.W., Washington, DC20009; $15.00. Payment must accompany order.Quantitative estimation of surface ocean productivity and bottom water oxygen concentration with benthic foraminifera was attempted using 70 samples from equatorial and North Pacific surface sediments. These samples come from a well defined depth range in the ocean, between 2200 and 3200 m, so that depth related factors do not interfere with the estimation. Samples were selected so that foraminifera were well preserved in the sediments and temperature and salinity were nearly uniform (T = 1.5° C; S = 34.6‰). The sample set was also assembled so as to minimize the correlation often seen between surface ocean productivity and bottom water oxygen values (r² = 0.23 for prediction purposes in this case). This procedure reduced the chances of spurious results due to correlations between the environmental variables. The samples encompass a range of productivities from about 25 to >300 gC m-2 yr-1, and a bottom water oxygen range from 1.8 to 3.5 ml/L. Benthic foraminiferal assemblages were quantified using the >62 µm fraction of the sediments and 46 taxon categories. MANOVA multivariate regression was used to project the faunal matrix onto the two environmental dimensions using published values for productivity and bottom water oxygen to calibrate this operation. The success of this regression was measured with the multivariate r² which was 0.98 for the productivity dimension and 0.96 for the oxygen dimension. These high coefficients indicate that both environmental variables are strongly imbedded in the faunal data matrix. Analysis of the beta regression coefficients shows that the environmental signals are carried by groups of taxa which are consistent with previous work characterizing benthic foraminiferal responses to productivity and bottom water oxygen. The results of this study suggest that benthic foraminiferal assemblages can be used for quantitative reconstruction of surface ocean productivity and bottom water oxygen concentrations if suitable surface sediment calibration data sets are developed and appropriate means for detecting no-analog samples are found.
Compensated geothermal gradient: new map of old data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M.W.
1986-05-01
Bottom-hole temperature measurement is one of the oldest forms of downhole information acquired by the oil industry. Old and new geothermal maps that are based on these measurements have invariably been drawn with an assumed constant or average ground surface temperature over the mapped areas. However, near ground-surface equilibrium temperature is a variable rather than a constant over any region; therefore, old and current geothermal gradient mapping methods give a false impression of the true thermal level of subsurface strata, and may lead to erroneous results of temperature-based calculations, such as the TTI. In this paper, a geothermal mapping methodmore » is presented in which extrapolated surface temperature is coupled with the corresponding geothermal gradient over the mapped area. The method was tested on areas in the Middle East and Africa. Results indicate that it is especially effective in delineating loci of vertical geothermal heat flux carried upwards by ascending subsurface fluids; such areas are preferential sites for hydrocarbon entrapment, especially in young sedimentary basins where migration is still in progress.« less
Reconstructing Unrooted Phylogenetic Trees from Symbolic Ternary Metrics.
Grünewald, Stefan; Long, Yangjing; Wu, Yaokun
2018-03-09
Böcker and Dress (Adv Math 138:105-125, 1998) presented a 1-to-1 correspondence between symbolically dated rooted trees and symbolic ultrametrics. We consider the corresponding problem for unrooted trees. More precisely, given a tree T with leaf set X and a proper vertex coloring of its interior vertices, we can map every triple of three different leaves to the color of its median vertex. We characterize all ternary maps that can be obtained in this way in terms of 4- and 5-point conditions, and we show that the corresponding tree and its coloring can be reconstructed from a ternary map that satisfies those conditions. Further, we give an additional condition that characterizes whether the tree is binary, and we describe an algorithm that reconstructs general trees in a bottom-up fashion.
Mapping of sea bottom topography
NASA Technical Reports Server (NTRS)
Calkoen, C. J.; Wensink, G. J.; Hesselmans, G. H. F. M.
1992-01-01
Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected.
Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L.
2012-01-01
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory. PMID:22761923
Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L
2012-01-01
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.
NASA Astrophysics Data System (ADS)
Steffen, K.; Huff, R. D.; Cullen, N.; Rignot, E.; Stewart, C.; Jenkins, A.
2003-12-01
Petermann Gletscher is the largest and most influential outlet glacier in central northern Greenland. Located at 81 N, 60 W, it drains an area of 71,580 km2, with a discharge of 12 cubic km of ice per year into the Arctic Ocean. We finished a second field season in spring 2003 collecting in situ data on local climate, ice velocity, strain rates, ice thickness profiles and bottom melt rates of the floating ice tongue. Last years findings have been confirmed that large channels of several hundred meters in depth at the underside of the floating ice tongue are running roughly parallel to the flow direction. We mapped these channels using ground penetrating radar at 25 MHz frequency and multi-phase radar in profiling mode over half of the glacier's width. In addition, NASA airborne laser altimeter data was collected along and cross-glacier for accurate assessment of surface topography. We will present a 3-D model of the floating ice tongue and provide hypothesis of the origin and mechanism that caused these large ice channels at the bottom of the floating ice tongue. Multi-phase radar point measurements revealed interesting results of bottom melt rates, which exceed all previous estimates. It is worth mentioned that the largest bottom melt rates were not found at the grounding line, which is common on ice shelves in the Antarctica. In addition, GPS tidal motion has been measured over one lunar cycle at the flex zone and on the free floating ice tongue and the result will be compared to historic measurements made at the beginning of last century. The surface climate has been recorded by two automatic weather stations over a 12 month period, and the local climate of this remote region will be presented.
Ecological Subregions: Sections and Subsections for the conterminous United States
D.T. Cleland; J.A. Freeouf; J.E. Keys; G.J. Nowacki; C.A. Carpenter; W.H. McNab
2007-01-01
This map and accompanying descriptions were developed through participation with numerous individuals from federal and state agencies and non-governmental organizations using criteria defined in the National Hierarchical Framework of Ecological Units. Delineation generally involved the âtop-down approachâ of subdividing section level units. A âbottom-up approachâ was...
NASA Astrophysics Data System (ADS)
Montoya, Paula; Ballesteros, José; Gervás, Pablo
2015-04-01
The increasing complexity of space use and resource cycles in cities, demands an understanding of the built environment as "ecological": enabling mutation while remaining balanced and biologically sustainable. Designing man`s environment is no longer a question of defining types, but rather an act of inserting changes within a complex system. Architecture and urban planning have become increasingly aware of their condition as system-oriented disciplines, and they are in the process of developing the necessary languages, design tools, and alliances. We will argue the relevance of parametric maps as one of the most powerful of those tools, in terms of their potential for adaptive prototype design, convergence of disciplines, and collaborative work. Cities need to change in order to survive. As the main human landscape (by 2050 75% of the world's population will live in urban areas) cities follow biological patterns of behaviour, constantly replacing their cells, renovating infrastructure systems and refining methods for energy provision and waste management. They need to adapt constantly. As responsive entities, they develop their own protocols for reaction to environmental change and challenge the increasing pressure of several issues related to scale: population, mobility, water and energy supply, pollution... The representation of these urban issues on maps becomes crucial for understanding and addressing them in design. Maps enhanced with parametric tools are relational and not only they register environmental dynamics but they allow adaptation of the system through interwoven parameters of mutation. Citizens are taking part in decisions and becoming aware of their role as urban experts in a bottom-up design process of the cities where they live. Modern tools for dynamic visualisation and collaborative edition of maps have an important role to play in this process. More and more people consult maps on hand-held devices as part of their daily routine. The advent of open access collaborative maps allows them to actively extend and modify these maps by uploading data of their own design. This can generate an immense amount of unique information that is publicly available. The work of architects, planners, and political agents can be informed by the contributions of a community of volunteer cartographers. Counter-cartographies built through collaboration arise from spontaneous processes of knowledge and data collection, and demand continuous non-commercial revision. Both scientific and non-academic users have direct access to geostrategic information and actively take part in exploring, recording and inserting their contrasted contributions into the way in which our world is described. This proposal explores the idea of a counter-cartography as a collection of maps that unveil territorial environmental conditions different from those shown in official maps. By using parametric tools we can incorporate information of this type directly into architectural documents and generate interlaced changes in the design. A parametric map is a flexible yet accurate tool for design and discovery: it integrates multiple particular views into a precise physical context that culminates in a generative design. Working with complex maps in this way is gradually becoming the ultimate document for designing the city in an integrated manner.
Kulkarni, Vrushali M; Rathod, Virendra K
2014-03-01
The present work deals with the mapping of an ultrasonic bath for the maximum extraction of mangiferin from Mangifera indica leaves. I3(-) liberation experiments (chemical transformations) and extraction (physical transformations) were carried out at different locations in an ultrasonic bath and compared. The experimental findings indicated a similar trend in variation in an ultrasonic bath by both these methods. Various parameters such as position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power which affect the extraction yield have been studied in detail. Maximum yield of mangiferin obtained was approximately 31 mg/g at optimized parameters: distance of 2.54 cm above the bottom of the bath, 7 cm diameter of vessel, flat bottom vessel, 6.35 cm liquid height, 122 W input power and 25 kHz frequency. The present work indicates that the position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power have significant effect on the extraction yield. This work can be used as a base for all ultrasonic baths to obtain maximum efficiency for ultrasound assisted extraction. Copyright © 2013 Elsevier B.V. All rights reserved.
Particle Mass in Deep-Water Benthic Nepheloid Layers: a Global Synthesis
NASA Astrophysics Data System (ADS)
Mishonov, A. V.; Gardner, W. D.; Richardson, M. J.
2016-12-01
The mass of particles in benthic nepheloid layers in the deep ocean is mapped using profiles of beam attenuation coefficient obtained with transmissometers interfaced with CTDs during WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and other programs during the last four decades using data from over 8000 profiles from >70 cruises. We map the maximum concentration of particle mass near the seafloor and integrate the particle mass throughout the benthic nepheloid layer. In the Atlantic Ocean particle mass is greater in areas where eddy kinetic energy is high in overlying waters. Areas of high bottom particle concentrations and integrated benthic nepheloid layer particle loads include the western North Atlantic beneath the Gulf Stream meanders and eddies, Argentine Basin, parts of the Southern Ocean and areas around South Africa. Particle concentrations are low in most of the Pacific and tropical and subtropical Atlantic away from margins. This synthesis is useful for GEOTRACES and other global programs where knowing particle distribution is critical for understanding trace metal absorption, sediment-water exchange and near-bottom processes. Additionally, our synthesis provides baseline data to identify where mining of metal-rich nodules and metal sulfides on the seafloor may impact the benthic environment.
Quantification of soil erosion and transport processes in the in the Myjava Hill Land
NASA Astrophysics Data System (ADS)
Hlavcová, Kamila; Kohnová, Silvia; Velisková, Yvetta; Studvová, Zuzana; Socuvka, Valentin; Németová, Zuzana; Duregová, Maria
2017-04-01
The aim of the study is a complex analysis of soil erosion processes and proposals for erosion control in the region of the Myjava Hill Land located in western Slovakia. The Myjava Hill Land is characteristic of quick runoff response, intensive soil erosion by water and related muddy floods, which are determined by both natural and socio-economic conditions. In this paper a case study in the Svacenický Creek catchment, with a focus on the quantification of soil loss from the agriculturally arable lands and sediment transport to the dry water reservoir (polder) of the Svacenický Creek is presented. Erosion, sediment transport, and the deposition of sediments in the water reservoir represent a significant impact on its operation, mainly with regard to reducing its accumulation volume. For the analysis of the soil loss and sediment transport from the Svacenický Creek catchment, the Universal Soil Loss Equation, the USLE 2D, and the Sediment Delivery Ratio (SDR) models were applied. Because the resulting values of the soil loss exceeded the values of the tolerated soil loss, erosion control measures by strip cropping were designed. Strip cropping is based on altering crop strips with protective (infiltration) strips. The effectiveness of the protective (infiltration) strips for reducing runoff from the basin by the SCS-CN method was estimated. Monitoring the morphological parameters of bottom sediments and their changes over time is crucial information in the field of water reservoir operations. In September 2015, the AUV EcoMapper was used to gather the data information on the Svacenický Creek reservoir. The data includes information about the sediment depths and parameters of the water quality. The results of the surveying are GIS datasets and maps, which provide a higher resolution of the bathymetric data and contours of the bottom reservoir. To display the relief of the bottom, the ArcMap 10.1. software was used. Based on the current status of the bottom bathymetry, the current status of the clogging of the reservoir was evaluated. After an evaluation of all the analyses, we can conclude that within five years of the acceptance run, 10,515 m3 of bottom sediments accumulated in the Svacenický Creek reservoir.
Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure
NASA Astrophysics Data System (ADS)
Brown, W. S.; Marques, G. M.
2013-07-01
High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper Outer Zone subregion (33m) bottom current lateral shear and water column stretching/squashing was significant in modulating the eddy motion. We conclude that the transient eddy motions in the GSC region are phase eddies that accompany the change of tide across the GSC and are (1) generated by bottom stress gradients in the shallower nearshore - an issue which needs to be better understood for improved future forecasting.
Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O
2014-01-14
There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.
Studies of Visual Attention in Physics Problem Solving
ERIC Educational Resources Information Center
Madsen, Adrian M.
2013-01-01
The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes--top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and…
46 CFR 171.065 - Subdivision requirements- Type I.
Code of Federal Regulations, 2011 CFR
2011-10-01
... located above the inner bottom forward or aft of the machinery space in cubic feet. P=the volume of... volume of the machinery space and the volumes of any fuel tanks which are located above the inner bottom... and the total volume of passenger spaces above the margin line. (c) The distance A in Figure 171.065...
46 CFR 171.065 - Subdivision requirements- Type I.
Code of Federal Regulations, 2014 CFR
2014-10-01
... located above the inner bottom forward or aft of the machinery space in cubic feet. P=the volume of... volume of the machinery space and the volumes of any fuel tanks which are located above the inner bottom... and the total volume of passenger spaces above the margin line. (c) The distance A in Figure 171.065...
46 CFR 171.065 - Subdivision requirements- Type I.
Code of Federal Regulations, 2013 CFR
2013-10-01
... located above the inner bottom forward or aft of the machinery space in cubic feet. P=the volume of... volume of the machinery space and the volumes of any fuel tanks which are located above the inner bottom... and the total volume of passenger spaces above the margin line. (c) The distance A in Figure 171.065...
46 CFR 171.065 - Subdivision requirements- Type I.
Code of Federal Regulations, 2012 CFR
2012-10-01
... located above the inner bottom forward or aft of the machinery space in cubic feet. P=the volume of... volume of the machinery space and the volumes of any fuel tanks which are located above the inner bottom... and the total volume of passenger spaces above the margin line. (c) The distance A in Figure 171.065...
49 CFR 178.811 - Bottom lift test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... passing the test. For all IBC design types designed to be lifted from the base, there may be no permanent deformation which renders the IBC unsafe for transportation and no loss of contents. [Amdt. 178-103, 59 FR... bottom lift test. The IBC must be loaded to 1.25 times its maximum permissible gross mass, the load being...
Mapping of Hot/Cold Springs in a Large Lake Using Thermal Remote Sensing and In-situ Measurement
NASA Astrophysics Data System (ADS)
Gurcan, T.; Kurtulus, B.; Avşar
2016-12-01
In this study, in-situ measurement and thermal infrared imagery was used to map hot and cold springs of Köyceǧiz Lake in Turkey, which is one of the biggest open coastal lakes in the world. In-situ surface, depth water temperature, climatic data and bathymetry measurement were collected using data loggers. Landsat 8 TIRS Band 10 (Thermal Infrared Sensors) images were compared with in-situ measurements. Electrical conductivity, pH and salinity measurement were also collected at the bottom of the lake to better understand the groundwater discharge evidence in the lake. In-situ measurement were interpolated using Empirical Bayesian Kriging (EBK). In-Situ measurement and Landsat 8 Images were compared pixel by pixel and appropriate regression equation were calculated according to best coefficient of correlation (R2). The results show that in-situ measurement of temperature at surface of the Köyceǧiz Lake has a good correlation for several cases (R2 ≥ 0.7) with Landsat 8 TIR images (Figure1). The mapping results of in-situ measurements also reveal that at the north east part of the Köyceǧiz Lake there exist several evidence of cold spring at the bottom of the Lake. Hot spring evidence were located at the South-West part of the Köyceǧiz Lake near the Sultaniye region. In this regard, we would like to thank TUBITAK project (112Y137) for their financial support.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
NASA Astrophysics Data System (ADS)
Petersen, Marcell Elo; Maar, Marie; Larsen, Janus; Møller, Eva Friis; Hansen, Per Juel
2017-05-01
The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model ERGOM was validated and applied in a local set-up of the Kattegat, Denmark, using the off-line Flexsem framework. The model scenarios were conducted by changing the forcing by ± 20% of nutrient inputs (bottom-up) and mesozooplankton mortality (top-down), and both types of forcing combined. The model results showed that cascading effects operated differently depending on the forcing type. In the single-forcing bottom-up scenarios, the cascade directions were in the same direction as the forcing. For scenarios involving top-down, there was a skipped-level-transmission in the trophic responses that was either attenuated or amplified at different trophic levels. On a seasonal scale, bottom-up forcing showed strongest response during winter-spring for DIN and Chl a concentrations, whereas top-down forcing had the highest cascade strength during summer for Chl a concentrations and microzooplankton biomass. On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient input and mesozooplankton mortality calling for the need of an integrated management of marine areas exploited by human activities.
Contact Trees: Network Visualization beyond Nodes and Edges
Sallaberry, Arnaud; Fu, Yang-chih; Ho, Hwai-Chung; Ma, Kwan-Liu
2016-01-01
Node-Link diagrams make it possible to take a quick glance at how nodes (or actors) in a network are connected by edges (or ties). A conventional network diagram of a “contact tree” maps out a root and branches that represent the structure of nodes and edges, often without further specifying leaves or fruits that would have grown from small branches. By furnishing such a network structure with leaves and fruits, we reveal details about “contacts” in our ContactTrees upon which ties and relationships are constructed. Our elegant design employs a bottom-up approach that resembles a recent attempt to understand subjective well-being by means of a series of emotions. Such a bottom-up approach to social-network studies decomposes each tie into a series of interactions or contacts, which can help deepen our understanding of the complexity embedded in a network structure. Unlike previous network visualizations, ContactTrees highlight how relationships form and change based upon interactions among actors, as well as how relationships and networks vary by contact attributes. Based on a botanical tree metaphor, the design is easy to construct and the resulting tree-like visualization can display many properties at both tie and contact levels, thus recapturing a key ingredient missing from conventional techniques of network visualization. We demonstrate ContactTrees using data sets consisting of up to three waves of 3-month contact diaries over the 2004-2012 period, and discuss how this design can be applied to other types of datasets. PMID:26784350
Geophysical Mapping of the South Carolina Offshore for Wind Energy Development
NASA Astrophysics Data System (ADS)
Brantley, D.; Knapp, C. C.; Battista, B.; Stone, J.
2017-12-01
The Bureau of Ocean Energy Management (BOEM) has identified potential Wind Energy Areas (WEA's) on the continental shelf of South Carolina characterized by good wind resource potential and minimal environmental and societal use conflicts based on existing regional data sets. A multi-sensor geophysical survey has been initiated to provide a more thorough determination of the shallow geologic framework and bottom habitat and cultural resources potential to further refine future wind farm siting. The most recent phase of deposition (Pleistocene; <1.8 Mya) took place during repeated, large-scale (120 m) sea-level changes which resulted in extensive exposure and inundation of the shelf. The shallow subsurface of the near-shore environment under consideration for wind energy development requires thorough analysis of seabed bottom type, seafloor roughness and geomorphology, potential sites of cultural resources and features such as active and inactive faults, filled channels, and potential slope instabilities which would have a considerable potential impact on sitting installations for wind energy. The study is focused on the inner shelf from 18 to 26 km offshore of North Myrtle Beach, SC. The collaborative effort is generating multibeam, and side scan sonar, CHIRP sub-bottom and magnetometer data. Across the region a thin veneer of sediments overlies indurated Tertiary deposits. The Tertiary geologic section is locally scoured and influenced small channels and probable karstification and enduring fluid exchange across the sea floor which has been previously identified in the region. The sea floor exhibits large-scale (100s of meters) low relief shore-perpendicular bedforms similar to those found within the shoreface and innermost shelf though the SC Coastal Erosion Study. Post-processed bathymetry shows a radial distribution of coast-perpendicular features that transition between two coastal processes: 1) there is the sediment distribution caused by the longshore currents and wave energy, and 2) there are areas related to the coastal inlets that disrupt the primary sedimentation patterns and impose patterns of terrestrial sedimentation such as those from rivers, deltas and estuaries.
Scanning Capacitance Microscopy | Materials Science | NREL
obtained using scanning capacitance microscopy. Top Right: Image of p-type and n-type material, obtained 'fingers' of light-colored n-type material on a yellow and blue background representing p-type material ; measurement data were obtained using scanning capacitance microscopy. Bottom Right: Image of p-type and n-type
Relationship of geological and geothermal field properties: Midcontinent area, USA, an example
Forster, A.; Merriam, D.F.; Brower, J.C.
1993-01-01
Quantitative approaches to data analysis in the last decade have become important in basin modeling and mineral-resource estimation. The interrelation of geological, geophysical, geochemical, and geohydrological variables is important in adjusting a model to a real-world situation. Revealing the interdependences of variables can contribute in understanding the processes interacting in sedimentary basins. It is reasonably simple to compare spatial data of the same type but more difficult if different properties are involved. Statistical techniques, such as cluster analysis or principal components analysis, or some algebraic approaches can be used to ascertain the relations of standardized spatial data. In this example, structural configuration on five different stratigraphic horizons, one total sediment thickness map, and four maps of geothermal data were copared. As expected, the structural maps are highly related because all had undergone about the same deformation with differing degrees of intensity. The temperature gradients derived (1) from shallow borehole logging measurements under equilibrium conditions with the surrounding rock, and (2) from non-equilibrium bottom-hole temperatures (BHT) from deeper depths are mainly independent of each other. This was expected and confirmed also for the two temperature maps at 1000 ft which were constructed using both types of gradient values. Thus, it is evident that the use of a 2-point (BHT and surface temperature) straightline calculation of a mean temperature gradient gives different information about the geothermal regime than using gradients from temperatures logged under equilibrium conditions. Nevertheless, it is useful to determine to what a degree the larger dataset of nonequilibrium temperatures could reflect quantitative relationships to geologic conditions. Comparing all maps of geothermal information vs. the structural and the sediment thickness maps, it was determined that all correlations are moderately negative or slightly positive. These results are clearly shown by the cluster analysis and the principal components. Considering a close relationship between temperature and thermal conductivity of the sediments as observed for most of the Midcontinent area and relatively homogeneous heat-flow density conditions for the study area these results support the following assumptions: (1) undifferentiated geothermal gradients, computed from temperatures of different depth intervals and differing sediment properties, cannot contribute to an improved understanding of the temperature structure and its controls within the sedimentary cover, and (2) the quantitative approach of revealing such relations needs refined datasets of temperature information valid for the different depth levels or stratigraphic units. ?? 1993 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Novak, Andrej; Šmuc, Andrej
2016-04-01
The Planica-Tamar valley is located in the Julian Alps in north-west Slovenia. The Planica-Tamar valley represents typical mountain glacial valley bounded by steep, mainly carbonate cliffs with some glacial deposits still preserved. The valley is currently being filled with numerous Holocene sediments deposited by rock falls, landslides, mass gravity flows and fluvial flows. These deposits are forming active or inactive interfingering talus slopes, alluvial and debris-flow fans, all of them with a complex history of sedimentation and erosion forming unconformity bounded sedimentary units. In order to make a thorough analysis of these deposits a detailed geomorphological map in a scale of 1:10 000 has been made. Six different types of sedimentary deposits were defined and mapped. These are moraines, lacustrine sediments, fluvio-glacial deposits, talus slopes, debris fans and alluvial fans. Other mapped features also include shape of ravines, their depths, ridges and direction of sedimentary flow. Additionally areas of active, semi-active and inactive sedimentation were marked. Moraines forms a ridge in the bottom of the valleys and are composed of unconsolidated, poorly sorted, subangular grains ranging from clay size to a few cubic meters big blocks. Lacustrine sediments are represented by laminated well sorted sand and silt, while fluvio-glacial deposits are composed of washed out subrounded sands and gravels. Talus slope deposits are characterised by clast-supported poorly sorted very angular gravel. Debris flow fans are represented by extremely poorly sorted matrix-supported gravels with grain size ranging from clay to few cubic meters big blocks. Alluvial fans are composed by variety of sedimentary textures. Sediments at the fan apex are clast-supported poorly sorted very angular gravels with up to a few cubic meters big block. In the middle part of the fan the sieve deposits are common, while in the distal parts a few centimeters thick layers of sand and moderately sorted clast or sandy matrix-supported angular gravels occur. In cross-sections of alluvial fans distinct palaeosoil horizons are present indicating longer inactivity of that part of the fan. The geomorphological map forms a base for further research and thorough analysis of Quaternary deposits in order to reconstruct the Holocene dynamic of triggering and sedimentation of different types of slope deposits and relate them to base rock geology, tectonic and local/regional climate events. Key words: geomorphological mapping, Holocene slope deposits, alluvial fans, debris fans, Alpine geomorphology.
An acoustic backscatter thermometer for remotely mapping seafloor water temperature
NASA Astrophysics Data System (ADS)
Jackson, Darrell R.; Dworski, J. George
1992-01-01
A bottom-mounted, circularly scanning sonar operating at 40 kHz has been used to map changes in water sound speed over a circular region 150 m in diameter. If it is assumed that the salinity remains constant, the change in sound speed can be converted to a change in temperature. For the present system, the spatial resolution is 7.5 m and the temperature resolution is 0.05°C. The technique is based on comparison of successive sonar scans by means of a correlation algorithm. The algorithm is illustrated using data from the Sediment Transport Events on Slopes and Shelves (STRESS) experiment.
NASA Astrophysics Data System (ADS)
Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, Giordano; Ortolani, Michele
2016-09-01
We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film is determined, and bow-tie antennas are designed, fabricated, and embedded in a polymer. By using a near-field photoexpansion mapping technique at λ = 5.8 μm, we demonstrate the existence in the antenna gap of an electromagnetic energy density hotspot of diameter below 100 nm and confinement volume 105 times smaller than λ3.
NASA Technical Reports Server (NTRS)
1998-01-01
A recently discovered black spot in Jupiter's clouds is darker than any feature ever before observed on the giant planet. The spot may be the result of a downward spiraling wind that blows away high clouds and reveals deeper, very dark cloud layers. These three panels depict the same area of Jupiter's atmosphere. A map of Jovian temperatures near 250 millibar pressure (top) panel is derived from the photopolarimeter-radiometer instrument on NASA's Galileo Jupiter orbiter. This map is compared with maps derived from images of the same area in visible light (middle panel)and thermal radiation sensitive to cloud-top temperatures (bottom panel).
The single downward-pointing arrow in the top panel indicates the location of a warm area that corresponds to the position of a so-called 'black spot'(shown in the middle panel), a feature that is about a year old. Features this dark are rare on Jupiter. The bottom panel, sensitive to temperatures at Jupiter's cloud tops, shows this feature as a bright object, meaning that upper-level cold clouds are missing - allowing us to see deeper into Jupiter's warmer interior. The dark visible appearance of the feature than most likely represents the color of very deep clouds. The warm temperatures and cloud-free conditions imply that this feature is a region where dry upper-atmospheric gas is being forced to converge, is warmed up and then forced to descend, clearing out clouds. It is the opposite of wet, upwelling gas in areas such as Jupiter's Great Red Spot or white ovals. On the other hand, it is unlike the dry and relatively cloudless feature into which the Galileo probe descended in 1995, because that region had the same temperatures as its surroundings and did not appear nearly as dark as this new spot.The temperatures sampled by the photopolarimeter radiometer are near the top of Jupiter's troposphere, where wind motions control the atmosphere. The top row of arrows shows the location of temperature waves in a warm region of the atmosphere. These types of waves have never been seen before. What is interesting about these waves is both that they are 'channeled' within the warm band at the top of the panel, and that they appear to have no counterpart in the visible cloud structure. Thermal waves have already been seen in Jupiter that are independent of the cloud structure, but those waves were much larger in size. This is the first time Jupiter's temperatures have been mapped at a spatial resolution better than 2,000 kilometers (1,243 miles), allowing these waves to be detected.These maps include an area on Jupiter between approximately the equator and 40 degrees south latitude, covering about 60 degrees of longitude. They were taken in late September during the spacecraft's 17th orbit.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.NASA Astrophysics Data System (ADS)
Koloskov, Evgenii
2017-04-01
The report examines modern hydrographic technologies for the Russian northern seas investigations. The new hydro acoustics methods for seabed study are discussed. It presents stages of seafloor relief studies in the Russian Arctic seas since the 1950s and the obtained results. At the beginning of the 21st century an entirely new phase of bathymetric investigations began with the use of Multibeam Echosounders (MB) and modern hydrographic software. The software tools to process and analyze the bathymetry, and more recently to characterize the seabed from the backscatter, are available in a majority of modern sonar systems. Besides the bathymetry and sonar data, modern MB can produce water column images. These hydrographic technologies provide the possibility to achieve a high level of the seafloor topography. The latest generation of hydrographic MB now has the ability to provide the water column images along with the seafloor. The gas seeps from multibeam water column data can be distantly discerned against the seabed relief background with the aid of the Fledermause software package ("FMMidwater" module). The ability to integrate the water column data with the seafoor and other information,in an integrated geospatial and temporal environment, enhanced the analysis and interpretation of the data which is essential for marine geological research and investigations. The modern hydrographic equipment presents the ability to integrate the MB digital relief models (DTM) and sub bottom profiler data. This provide the possibility to obtain not only the detailed seabed topography, but also the additional information concerning the structure of under bottom soil layers and presence of the endogenous objects in near bottom environment. The importance of the hydrographic software tools needed to process and analyze the bathymetry and water column data are emphasized. The practical importance of the water column and bottom profiler data processing for the submarine gas-hydrates survey is stated. The attention is paid to the implementation of the parametric sub bottom profilers - the low frequency sonar for the sea bottom vertical section investigation. The ability for the integrated presentation of the multibeam bathymetry and vertical curtains in the 3D environment are discussed. As an example of the modern swath survey results achieved with Kongsberg EM2040CD MB and hydrographic information technology QINSy/ Fledermause, are discussed and presented. This survey was performed for the RosNeft company in the Kara sea. Recommendations for the implementation of the multi beam echo sounder and parametric sub bottom profiler for the combined hydrographic and submarine gas-hydrates survey in the Russian northern seas are delivered.The gas-hydrate survey guidelines using MB and QINSy/Fledermause software are provided. The hydrographic software tools used to process and analyze the bathymetry can create the seafloor DTM with the high degree of resolution and provide 3D visualization.These new possibilities provide such realistic view of the sea bottom relief and environment that can be characterized as the marine landscapes. Thus it became possible to investigate the relief morphological peculiarities and obtain the information about the relief genesis. This opens the new opportunities for using the acoustic techniques for varies types of marine activity including the bottom environmental study. The appearance of the bottom thermokarst activity derived from the high resolution DTM generated from the real time MB data is presented. The bottom thermokarst provides the potential threat for underwater pipelines and other submarine communications. The arctic bottom relief peculiarities are also covered including grounded hummock traces and dome-shaped elevations. The investigation of such bottom land forms has become possible recently as the result of implementing the wide swath survey methods. Such unique relief features are in general related to seabed gas venting in the form of the submarine gas-hydrates seeps. The opportunities for investigation of the morphological relief peculiarities and getting the new information is mportant also for varies types of marine activity including the marine ecology study. The arctic sea specific microrelief images are provided to show the abnormality of the bottom surface. The main attention is paid to specific and bottom features such as trenches the grounded hummock traces and dome-shaped elevations of the Pingo-type-unique forms of microrelief usually confined to the bottom gas flow in the form of methane emissions. The attention is also paid to the consequences of the global climate change and its influence on the bottom sole. Key words: hydrographic technologies, hydro acoustics methods, swathe survey, sea bottom vertical section, submarine gas-hydrates, submarine permafrost, seafloor gas venting,multi beam echo sounder, parametric sub bottom profiler.
Saltation movement of large spherical particles
NASA Astrophysics Data System (ADS)
Chara, Z.; Dolansky, J.; Kysela, B.
2017-07-01
The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.
D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane
2007-01-01
Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...
Map showing bottom topography of the Pacific Continental Margin, Cape Mendocino to Point Conception
Chase, T.E.; Wilde, Pat; Normark, W.R.; Evenden, G.I.; Miller, C.P.; Seekins, B.A.; Young, J. D.; Grim, M.S.; Lief, C.J.
1992-01-01
Wilde, Pat, Chase, T.E., Holmes, M.L., Normark, W.R., Thomas, J.A., McCulloch, D.S., and Kulm, L.D., 1978, Oceanographic data off northern California-southern Oregon 40° to 43° North including the Gorda Deep Sea Fan: Berkeley, University of California, Lawrence Berkeley Laboratory Publication 251, scale 1:815,482 at 42° latitude.
Organic sedimentary deposits in Titan's dry lakebeds: Probable evaporite
Barnes, J.W.; Bow, J.; Schwartz, J.; Brown, R.H.; Soderblom, J.M.; Hayes, A.G.; Vixie, G.; Le, Mouelic S.; Rodriguez, S.; Sotin, Christophe; Jaumann, R.; Stephan, K.; Soderblom, L.A.; Clark, R.N.; Buratti, B.J.; Baines, K.H.; Nicholson, P.D.
2011-01-01
We report the discovery of organic sedimentary deposits at the bottom of dry lakebeds near Titan's north pole in observations from the Cassini Visual and Infrared Mapping Spectrometer (VIMS). We show evidence that the deposits are evaporitic, making Titan just the third known planetary body with evaporitic processes after Earth and Mars, and is the first that uses a solvent other than water. ?? 2011 Elsevier Inc.
2015-10-29
In addition to transmitting new high-resolution images and other data on the familiar close-approach hemispheres of Pluto and Charon, NASA's New Horizons spacecraft is also returning images -- such as this one -- to improve maps of other regions. This image was taken by the New Horizons Long Range Reconnaissance Imager (LORRI) on the morning of July 13, 2015, from a range of 1.03 million miles (1.7 million kilometers) and has a resolution of 5.1 miles (8.3 kilometers) per pixel. It provides fascinating new details to help the science team map the informally named Krun Macula (the prominent dark spot at the bottom of the image) and the complex terrain east and northeast of Pluto's "heart" (Tombaugh Regio). Pluto's north pole is on the planet's disk at the 12 o'clock position of this image. http://photojournal.jpl.nasa.gov/catalog/PIA20037
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.
2001-01-01
Northeast Yellowstone National Park (YNP) has a diversity of forest, range, and wetland cover types. Several remote sensing studies have recently been done in this area, including the NASA Earth Observations Commercial Applications Program (EOCAP) hyperspectral project conducted by Yellowstone Ecosystems Studies (YES) on the use of hyperspectral imaging for assessing riparian and in-stream habitats. In 1999, YES and NASA's Commercial Remote Sensing Program Office began collaborative study of this area, assessing the potential of synergistic use of hyperspectral, synthetic aperture radar (SAR), and multiband thermal data for mapping forest, range, and wetland land cover. Since the beginning, a quality 'reference' land cover map has been desired as a tool for developing and validating other land cover maps produced during the project. This paper recounts an effort to produce such a reference land cover map using low-altitude Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and unsupervised classification techniques. The main objective of this study is to assess ISODATA classification for mapping land cover in Northeast YNP using select bands of low-altitude AVIRIS data. A secondary, more long-term objective is to assess the potential for improving ISODATA-based classification of land cover through use of principal components analysis and minimum noise fraction (MNF) techniques. This paper will primarily report on work regarding the primary research objective. This study focuses on an AVIRIS cube acquired on July 23, 1999, by the confluence of Soda Butte Creek with the Lamar River. Range and wetland habitats dominate the image with forested habitats being a comparatively minor component of the scene. The scene generally tracks from southwest to northeast. Most of the scene is valley bottom with some lower side slopes occurring on the western portion. Elevations within the AVIRIS scene range from approximately 1998 to 2165 m above sea level, based on US Geological Survey (USGS) 30-m digital elevation model (DEM) data. Despain and the National Park Service (NPS) provide additional description of the study area.
NASA Astrophysics Data System (ADS)
Steffen, K.; Huff, R. D.; Cullen, N.; Rignot, E.; Bauder, A.
2004-12-01
Petermann Gletscher is the largest and most influential outlet glacier in central northern Greenland. Located at 81 N, 60 W, it drains an area of 71,580 km2, with a discharge of 12 cubic km of ice per year into the Arctic Ocean. We finished a third field season in spring 2004 collecting in situ data on local climate, ice velocity, ice thickness profiles and bottom melt rates of the floating ice tongue. In addition, water properties (salinity and temperature profiles) in large, channel-like bottom cavities beneath the floating ice tongue were measured. The melt rates in these "channels" are in excess of 10 m/y and probably responsible for most of the mass loss of the Petermann Gletscher. The ocean measurements will be discussed in comparison with other ocean-profile soundings in the region. The bottom topography of the floating ice tongue has been mapped for some regions using surface-based ground penetrating radar at 25 MHz frequency and NASA aircraft radar profiles. A new map showing these under-ice features will be presented. GPS tidal motion has been measured over one lunar cycle at the flex zone and on the free floating ice tongue. These results will be compared to historic measurements made at the beginning of last century. A "worm-like" sheer feature of 80 m in height and several km in length has been studied using differential GPS readings. The mean velocity of the floating tongue ice is 1.08 km/y in that region, whereas the ice along the margin has a 30%-reduced flow speed, resulting in this strange looking sheer feature. Finally, the mass balance of the floating ice tongue will be discussed based on in situ measurements, aircraft profiles, satellite data, and model approximations.
McBride, Sebastian; Huelse, Martin; Lee, Mark
2013-01-01
Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as 'active vision', to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of 'where' and 'what' information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate 'active' visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a 'priority map'.
An object-based visual attention model for robotic applications.
Yu, Yuanlong; Mann, George K I; Gosine, Raymond G
2010-10-01
By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.
Reuse potential of low-calcium bottom ash as aggregate through pelletization.
Geetha, S; Ramamurthy, K
2010-01-01
Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.
Levels of theory and types of theoretical explanation in theoretical physics
NASA Astrophysics Data System (ADS)
Flores, Francisco J.
In Newtonian physics, there is a clear distinction between a 'framework theory', a collection of general physical principles and definitions of physical terms, and theories that describe specific causal interactions such as gravitation, i.e., 'interaction theories'. I argue that this distinction between levels of theory can also be found in the context of Special Relativity and that recognizing it is essential for a philosophical account of how laws are explained in this theory. As a case study, I consider the history of derivations of mass-energy equivalence which shows, I argue, that there are two distinct types of theoretical explanations (i.e., explanations of laws) in physics. One type is best characterized by the 'top-down' account of scientific explanation, while the other is more accurately described by the 'bottom-up' account. What is significant, I argue, is that the type of explanation a law receives depends on whether it is part of the framework theory or part of an interaction theory. The former only receive 'top-down' explanations while the latter can also receive 'bottom- up' explanations. Thus, I argue that current debates regarding 'top-down' vs 'bottom-up' views of scientific explanation can be clarified by recognizing the distinction between two levels of physical theory.
Implementing An Image Understanding System Architecture Using Pipe
NASA Astrophysics Data System (ADS)
Luck, Randall L.
1988-03-01
This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.
Talaty, Mukul; Patel, Sona; Esquenazi, Alberto
2016-01-01
Rocker bottom shoes have recently gained considerable popularity, likely in part because of the many purported benefits, including reducing joint loading and toning muscles. Scientific inquiry about these benefits has not kept pace with the increased usage of this shoe type. A fundamental premise of rocker bottom shoes is that they transform hard, flat, level surfaces into more uneven ones. Published studies have described a variety of such shoes-all having a somewhat rounded bottom and a cut heel region or a cut forefoot region, or both (double rocker). Despite the fundamentally similar shoe geometries, the reported effects of rocker bottom shoes on gait biomechanics have varied considerably. Ten healthy subjects agreed to participate in the present study and were given appropriately sized Masai Barefoot Technology (St. Louis, MO), Skechers(™) (Manhattan Beach, CA), and New Balance (Boston, MA) conventional walking shoes. After a 12-day accommodation period, the subjects walked wearing each shoe while 3-dimensional motion and force data were collected in the gait laboratory. The key findings included (1) increased trunk flexion, decreased ankle plantarflexion range, and reduced plantarflexion moment in the early stance; (2) increased ankle dorsiflexion and knee flexor moment in the midstance; (3) decreased peak ankle plantarflexion in the late stance; and (4) decreased ankle plantarflexion and decreased hip flexor and knee extensor moments in the pre-swing and into swing phase. The walking speed was unconstrained and was maintained across all shoe types. A biomechanical explanation is suggested for the observed changes. Suggestions for cautions are provided for using rocker bottom shoes in patients with neuromuscular insufficiency. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Rhesus monkeys (Macaca mulatta) map number onto space.
Drucker, Caroline B; Brannon, Elizabeth M
2014-07-01
Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. Copyright © 2014 Elsevier B.V. All rights reserved.
Correlated evolution between mode of larval development and habitat in muricid gastropods.
Pappalardo, Paula; Rodríguez-Serrano, Enrique; Fernández, Miriam
2014-01-01
Larval modes of development affect evolutionary processes and influence the distribution of marine invertebrates in the ocean. The decrease in pelagic development toward higher latitudes is one of the patterns of distribution most frequently discussed in marine organisms (Thorson's rule), which has been related to increased larval mortality associated with long pelagic durations in colder waters. However, the type of substrate occupied by adults has been suggested to influence the generality of the latitudinal patterns in larval development. To help understand how the environment affects the evolution of larval types we evaluated the association between larval development and habitat using gastropods of the Muricidae family as a model group. To achieve this goal, we collected information on latitudinal distribution, sea water temperature, larval development and type of substrate occupied by adults. We constructed a molecular phylogeny for 45 species of muricids to estimate the ancestral character states and to assess the relationship between traits using comparative methods in a Bayesian framework. Our results showed high probability for a common ancestor of the muricids with nonpelagic (and nonfeeding) development, that lived in hard bottoms and cold temperatures. From this ancestor, a pelagic feeding larva evolved three times, and some species shifted to warmer temperatures or sand bottoms. The evolution of larval development was not independent of habitat; the most probable evolutionary route reconstructed in the analysis of correlated evolution showed that type of larval development may change in soft bottoms but in hard bottoms this change is highly unlikely. Lower sea water temperatures were associated with nonpelagic modes of development, supporting Thorson's rule. We show how environmental pressures can favor a particular mode of larval development or transitions between larval modes and discuss the reacquisition of feeding larva in muricids gastropods.
Three Dimensional Underwater Sound Propagation Over Sloping Bottoms
NASA Astrophysics Data System (ADS)
Glegg, Stewart A. L.; Riley, J. M.
This article reviews the work which has been carried out over the past few years on three dimensional underwater sound propagation over sloping bottoms. When sound propagates across a slope three dimensional effects can cause shadow zones and mode cut off effects to occur, which could not be predicted by a two dimensional model. For many years the theory for this type of propagation over realistic ocean floors, which can support both compressional and shear waves, eluded workers in this field. Recently the complete solution for the acoustic field in a "wedge domain with penetrable boundaries" has been developed, and this has allowed for complete understanding of three dimensional bottom interacting sound propagation. These theories have been verified by a series of laboratory scale experiments and excellent agreement has been obtained. However only one full scale ocean experiment has been carried out on three dimensional, bottom interacting, acoustic propagation. This showed significant horizontal refraction of sound propagating across a continental slope and further verifies the importance of bottom slopes on underwater sound propagation.
A reusable knowledge acquisition shell: KASH
NASA Technical Reports Server (NTRS)
Westphal, Christopher; Williams, Stephen; Keech, Virginia
1991-01-01
KASH (Knowledge Acquisition SHell) is proposed to assist a knowledge engineer by providing a set of utilities for constructing knowledge acquisition sessions based on interviewing techniques. The information elicited from domain experts during the sessions is guided by a question dependency graph (QDG). The QDG defined by the knowledge engineer, consists of a series of control questions about the domain that are used to organize the knowledge of an expert. The content information supplies by the expert, in response to the questions, is represented in the form of a concept map. These maps can be constructed in a top-down or bottom-up manner by the QDG and used by KASH to generate the rules for a large class of expert system domains. Additionally, the concept maps can support the representation of temporal knowledge. The high degree of reusability encountered in the QDG and concept maps can vastly reduce the development times and costs associated with producing intelligent decision aids, training programs, and process control functions.
Evaluation of factors affecting resolution of shallow water bottom features
NASA Technical Reports Server (NTRS)
Mason, C. C.; Norris, D. R.; Browne, I. D.
1972-01-01
To ensure good aerial photography, the effects that factors such as submergence depth, sun angle, film and filter type, exposure, aircraft altitude, and polarization have on the photographic resolution of an underwater object must be determined. Various subjects were photographed, such as the deck of a small submersible, colored and gray scale panels, and natural bottom features. No underwater resolution target was used.
NASA Astrophysics Data System (ADS)
Liu, F.; Joiner, J.; Choi, S.; Krotkov, N. A.; Li, C.; Fioletov, V. E.; McLinden, C. A.
2017-12-01
Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor have been used to detect emissions from large point sources using an innovative estimation technique. Emissions from about 500 sources have been quantified individually based on OMI observations, accounting for about a half of total reported anthropogenic SO2 emissions. We developed a new emission inventory, OMI-HTAP, by combining these OMI-based emission estimates and the conventional bottom-up inventory. OMI-HTAP includes OMI-based estimates for over 400 point sources and is gap-filled with the emission grid map of the latest available global bottom-up emission inventory (HTAP v2.2) for the rest of sources. We have evaluated the OMI-HTAP inventory by performing simulations with the Goddard Earth Observing System version 5 (GEOS-5) model. The GEOS-5 simulated SO2 concentrations driven by both the HTAP and the OMI-HTAP inventory were compared against in-situ and satellite measurements. Results show that the OMI-HTAP inventory improves the model agreement with observations, in particular over the US, India and the Middle East. Additionally, simulations with the OMI-HTAP inventory capture the major trends of anthropogenic SO2 emissions over the world and highlight the influence of missing sources in the bottom-up inventory.
A comprehensive three-dimensional cortical map of vowel space.
Scharinger, Mathias; Idsardi, William J; Poe, Samantha
2011-12-01
Mammalian cortex is known to contain various kinds of spatial encoding schemes for sensory information including retinotopic, somatosensory, and tonotopic maps. Tonotopic maps are especially interesting for human speech sound processing because they encode linguistically salient acoustic properties. In this study, we mapped the entire vowel space of a language (Turkish) onto cortical locations by using the magnetic N1 (M100), an auditory-evoked component that peaks approximately 100 msec after auditory stimulus onset. We found that dipole locations could be structured into two distinct maps, one for vowels produced with the tongue positioned toward the front of the mouth (front vowels) and one for vowels produced in the back of the mouth (back vowels). Furthermore, we found spatial gradients in lateral-medial, anterior-posterior, and inferior-superior dimensions that encoded the phonetic, categorical distinctions between all the vowels of Turkish. Statistical model comparisons of the dipole locations suggest that the spatial encoding scheme is not entirely based on acoustic bottom-up information but crucially involves featural-phonetic top-down modulation. Thus, multiple areas of excitation along the unidimensional basilar membrane are mapped into higher dimensional representations in auditory cortex.
Water turbidity optical meter using optical fiber array for topographical distribution analysis
NASA Astrophysics Data System (ADS)
Mutter, Kussay Nugamesh; Mat Jafri, Mohd Zubir; Yeoh, Stephenie
2017-06-01
This work is presenting an analysis study for using optical fiber array as turbidity meter and topographical distribution. Although many studies have been figure out of utilizing optical fibers as sensors for turbidity measurements, still the topographical map of suspended particles in water as rare as expected among all of works in literatures in this scope. The effect of suspended particles are highly affect the water quality which varies according to the source of these particles. A two dimensional array of optical fibers in a 1 litter rectangular plastic container with 2 cm cladding off sensing portion prepared to point out 632.8 nm laser power at each fiber location at the container center. The overall output map of the optical power were found in an inhomogeneous distribution such that the top to down layers of a present water sample show different magnitudes. Each sample prepared by mixing a distilled water with large grains sand, small grains sand, glucose and salt. All with different amount of concentration which measured by refractometer and turbidity meter. The measurements were done in different times i.e. from 10 min to 60 min. This is to let the heavy particles to move down and accumulate at the bottom of the container. The results were as expected which had a gradually topographical map from low power at top layers into high power at bottom layers. There are many applications can be implemented of this study such as transport vehicles fuel meter, to measure the purity of tanks, and monitoring the fluids quality in pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deichmann, Gregor; Marcon, Valentina; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de
Molecular simulations of soft matter systems have been performed in recent years using a variety of systematically coarse-grained models. With these models, structural or thermodynamic properties can be quite accurately represented while the prediction of dynamic properties remains difficult, especially for multi-component systems. In this work, we use constraint molecular dynamics simulations for calculating dissipative pair forces which are used together with conditional reversible work (CRW) conservative forces in dissipative particle dynamics (DPD) simulations. The combined CRW-DPD approach aims to extend the representability of CRW models to dynamic properties and uses a bottom-up approach. Dissipative pair forces are derived frommore » fluctuations of the direct atomistic forces between mapped groups. The conservative CRW potential is obtained from a similar series of constraint dynamics simulations and represents the reversible work performed to couple the direct atomistic interactions between the mapped atom groups. Neopentane, tetrachloromethane, cyclohexane, and n-hexane have been considered as model systems. These molecular liquids are simulated with atomistic molecular dynamics, coarse-grained molecular dynamics, and DPD. We find that the CRW-DPD models reproduce the liquid structure and diffusive dynamics of the liquid systems in reasonable agreement with the atomistic models when using single-site mapping schemes with beads containing five or six heavy atoms. For a two-site representation of n-hexane (3 carbons per bead), time scale separation can no longer be assumed and the DPD approach consequently fails to reproduce the atomistic dynamics.« less
Anchor ice, seabed freezing, and sediment dynamics in shallow arctic seas
Reimnitz, E.; Kempema, E.W.; Barnes, P.W.
1987-01-01
Diving investigations confirm previous circumstantial evidence of seafloor freezing and anchor ice accretion during freeze-up storms in the Alaskan Beaufort Sea. These related bottom types were found to be continuous from shore to 2 m depth and spotty to 4.5 m depth. The concretelike nature of frozen bottom, where present, should prohibit sediment transport by any conceivable wave or current regime during the freezing storm. But elsewhere, anchor ice lifts coarse material off the bottom and incorporates it into the ice canopy, thereby leading to significant ice rafting of shallow shelf sediment and likely sediment loss to the deep sea. -from Authors
Geophysical Data from Offshore of the Chandeleur Islands, Eastern Mississippi Delta
Baldwin, Wayne E.; Pendleton, Elizabeth A.; Twichell, David C.
2009-01-01
This report contains the geophysical and geospatial data that were collected during two cruises on the R/V Acadiana along the eastern, offshore side of the Chandeleur Islands in 2006 and 2007. Data were acquired with the following equipment: a Systems Engineering and Assessment, Ltd., SwathPlus interferometric sonar; a Klein 3000 dual-frequency sidescan sonar; and an EdgeTech 512i chirp sub-bottom profiling system. The long-term goal of this mapping effort is to produce high-quality, high-resolution geologic maps and geophysical interpretations that can be utilized to investigate the impact of Hurricane Katrina, identify sand resources within the region, and make predictions regarding the future evolution of this coastal system.
Deconvolution single shot multibox detector for supermarket commodity detection and classification
NASA Astrophysics Data System (ADS)
Li, Dejian; Li, Jian; Nie, Binling; Sun, Shouqian
2017-07-01
This paper proposes an image detection model to detect and classify supermarkets shelves' commodity. Based on the principle of the features directly affects the accuracy of the final classification, feature maps are performed to combine high level features with bottom level features. Then set some fixed anchors on those feature maps, finally the label and the position of commodity is generated by doing a box regression and classification. In this work, we proposed a model named Deconvolutiuon Single Shot MultiBox Detector, we evaluated the model using 300 images photographed from real supermarket shelves. Followed the same protocol in other recent methods, the results showed that our model outperformed other baseline methods.
NASA Astrophysics Data System (ADS)
Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne
2013-04-01
Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats. Previously described hummocky terrain associated with extensive, long-term burrowing activity by golden tilefish (Lopholatilus chamaeleonticeps) was clearly delineated along the canyon rims. Bedform fields and potential current deposits observed along the upper portion of canyon walls suggest the presence of intense bottom currents flowing parallel to canyon axis. A benthic habitat map of Hudson Canyon head was produced by integration of the different datasets. The distribution of habitats was primarily inferred from geophysical data characteristics. Furthermore habitat characteristics can be related to sedimentary and oceanographic processes acting on the seafloor. Comparison and refinement of bathymetric and backscatter imagery with ground truth data enabled validation of acoustic classification of the seafloor, allowing the definition of morpho-acoustic classes corresponding to as many habitats, and to extend the predictive results over larger areas.
Winston P. Smith; Howard E. Hunt; W. Kent Townley
2001-01-01
To characterize bird species composition,relative abundance,and habitat affinities,spot-mapping and strip-count censuses were conducted in an old-growth stand and adjacent second-growth tracts in Moro Bottoms Natural Area, Arkansas, during 1991 and 1992. More species were recorded on the old-growth site (S =35) as compared to the second-growth grid (S =32). Similarly...
Grim, M.S.; Chase, T.E.; Evenden, G.I.; Holmes, M.L.; Normark, W.R.; Wilde, Pat; Fox, C.J.; Lief, C.J.; Seekins, B.A.
1992-01-01
Wilde, Pat, Chase, T.E., Holmes, M.L., Normark, W.R., Thomas, J.A., McCulloch, D.S., and Kulm, L.D., 1978, Oceanographic data off northern California-southern Oregon 40° to 43° North including the Gorda Deep Sea Fan: Berkeley, University of California, Lawrence Berkeley Laboratory Publication 251, scale 1:815,482 at 42° latitude.
Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves
2015-05-27
leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific objectives of this now-terminated project consisted of: • Using Large...particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field observations from the New Jersey shelf to identify the...mapping. Finally, the generated resuspended particle distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or
Lake Mohave Geophysical Survey 2002: GIS Data Release
Cross, VeeAnn A.; Foster, David S.; Twichell, David C.
2005-01-01
This CD-ROM contains sidescan-sonar imagery, sub-bottom reflection profiles, and an interpretive map derived from these data. These data were collected in Lake Mohave, a reservoir behind the Davis Dam and below the Hoover Dam on the Colorado River. These data are veiwable within an Environmental system Research Institute, Inc. (ESRI) Geographic Information system (GIS) ArcView 3.2 project file stored on this CD-ROM
Mapping of accumulated nitrogen in the sediment pore water of a eutrophic lake in Iowa, USA
Iqbal, M.Z.; Fields, C.L.
2009-01-01
A large pool of nitrogen in the sediment pore fluid of a eutrophic lake in Iowa, USA, was mapped in this study. Previously, the lake had supported fishing and boating, but today it no longer supports its designated uses as a recreational water body. In the top 5 cm of the lake bottom, the pore water nitrogen ranges between 3.1 and 1,250 ??g/cm3 of sediments, with an average of 160.3 ??g/cm3. Vertically, nitrate concentrations were measured as 153 ??g/cm3 at 0-10 cm, 162 ??g/cm3 at 10-20 cm, and 32 ??g/cm3 at 20-30 cm. Nitrate mass distribution was quantified as 3.67 ?? 103 kg (65%) in the bottom sediments, 172 kg (3%) in suspended particulates, and 1.83 ?? 103 kg (32%) in the dissolved phase. Soil runoff nutrients arrive at the lake from the heavily fertilized lands in the watershed. Upon sedimentation, a large mass of nitrogen desorbs from mineral particles to the relatively immobile pore fluid. Under favorable conditions, this nitrogen diffuses back into the water column, thereby dramatically limiting the lake's capability to process incoming nutrients from farmlands. Consequently, a condition of oxygen deficiency disrupts the post-season biological activities in the lake. ?? 2008 Springer-Verlag.
Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel
2016-01-01
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221
Biomonitoring using invasive species in a large Lake: Dreissena distribution maps hypoxic zones
Karatayev, Alexander Y.; Burlakova, Lyubov E.; Mehler, Knut; Bocaniov, Serghei A.; Collingsworth, Paris D.; Warren, Glenn; Kraus, Richard T.; Hinchey, Elizabeth K.
2017-01-01
Due to cultural eutrophication and global climate change, an exponential increase in the number and extent of hypoxic zones in marine and freshwater ecosystems has been observed in the last few decades. Hypoxia, or low dissolved oxygen (DO) concentrations, can produce strong negative ecological impacts and, therefore, is a management concern. We measured biomass and densities of Dreissena in Lake Erie, as well as bottom DO in 2014 using 19 high frequency data loggers distributed throughout the central basin to validate a three-dimensional hydrodynamic-ecological lake model. We found that a deep, offshore hypoxic zone was formed by early August, restricting the Dreissena population to shallow areas of the central basin. Deeper than 20 m, where bottom hypoxia routinely develops, only young of the year mussels were found in small numbers, indicating restricted recruitment and survival of young Dreissena. We suggest that monitoring Dreissenadistribution can be an effective tool for mapping the extent and frequency of hypoxia in freshwater. In addition, our results suggest that an anticipated decrease in the spatial extent of hypoxia resulting from nutrient management has the potential to increase the spatial extent of profundal habitat in the central basin available for Dreissena expansion.
NASA Astrophysics Data System (ADS)
Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E.; Waser, Rainer
2014-11-01
We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.
Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E; Waser, Rainer
2014-11-10
We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.
Temperature dependence of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11/ferromagnetic bilayers
NASA Astrophysics Data System (ADS)
Yamato, T.; Kume, T.; Kato, T.; Tsunashima, S.; Iwata, S.
Temperature dependence of the exchange anisotropy was investigated for (0 0 1)-oriented top-type Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and bottom-type Ni 80Fe 20 (3 nm)/Mn 89Pt 11 (30 nm) and Co 90Fe 10 (3 nm)/Mn 89Pt 11 (30 nm) bilayers. The top-type MnPt/NiFe bilayers exhibited both 1 and 4-fold anisotropies in their in-plane torque curves at 80 K. For tAF=3 nm, rapid decrease of 1-fold component and gradual decrease of 4-fold component were observed with increasing temperature. While for tAF=30 nm, the 1 and 4-fold anisotropies decreased similarly with temperature. In the bottom-type bilayers, by using CoFe ferromagnetic layer, the 4-fold anisotropy was found to become twice as that of the NiFe/MnPt bilayer.
Industrial Application Study on New-Type Mixed-Flow Fluidized Bed Bottom Ash Cooler
NASA Astrophysics Data System (ADS)
Zeng, B.; Lu, X. F.; Liu, H. Z.
As a key auxiliary device of CFB boiler, the bottom ash cooler (BAC) has a direct influence on secure and economic operation of the boiler. The operating situation of domestic CFB power plant is complex and changeable with a bad coal-fired condition. The principle for designing BAC suitable for the bad coal-fired condition and high parameter CFB boilers was summarized in this paper. Meanwhile, a new-type mixed-flow fluidized bed bottom ash cooler was successfully designed on the basis of the comprehensive investigation on the existing BAC s merits and drawbacks. Using coarse/fine slag separation technology and micro-bubbling fluidization are the significant characteristics of this new BAC. This paper also puts great emphasis on its industrial test in a 460t/h CFB boiler. The results indicate that it achieves significant separation of the coarse/fine slag, an obvious cooling effect, no slag block and coking phenomenon, and continuous stable operation. Figs 7, Tabs 4 and Refs 11.
Resolving the chemical nature of nanodesigned silica surface obtained via a bottom-up approach.
Rahma, Hakim; Buffeteau, Thierry; Belin, Colette; Le Bourdon, Gwenaëlle; Degueil, Marie; Bennetau, Bernard; Vellutini, Luc; Heuzé, Karine
2013-08-14
The covalent grafting on silica surfaces of a functional dendritic organosilane coupling agent inserted, in a long alkyl chain monolayer, is described. In this paper, we show that depending on experimental parameters, particularly the solvent, it is possible to obtain a nanodesigned surface via a bottom-up approach. Thus, we succeed in the formation of both homogeneous dense monolayer and a heterogeneous dense monolayer, the latter being characterized by a nanosized volcano-type pattern (4-6 nm of height, 100 nm of width, and around 3 volcanos/μm(2)) randomly distributed over the surface. The dendritic attribute of the grafted silylated coupling agent affords enough anchoring sites to immobilize covalently functional gold nanoparticles (GNPs), coated with amino PEG polymer to resolve the chemical nature of the surfaces and especially the volcano type nanopattern structures of the heterogeneous monolayer. Thus, the versatile surface chemistry developed herein is particularly challenging as the nanodesign is straightforward achieved in a bottom-up approach without any specific lithography device.
M2 tidal effects in greater cook strait, New Zealand
NASA Astrophysics Data System (ADS)
Kibblewhite, Alick C.; Ash, David E.
1980-05-01
The application of a M2 nonlinear numerical tidal model to the shelf seas of central New Zealand (~38.500 km2 area) is described. It has provided a preliminary assessment of tidal and residual currents, bottom stress, energy dissipation, and the stratification index. The existence of a permanent, tidally driven mesoscale eddy (~75 km diameter) is predicted nort of D'Urville Island. Large spatial gradients in bottom stress qualitatively agree with many features of the surficial sediment distribution. A comparison of all available bulk stratification data with the h/u3 stratification index clearly demonstrates the dominance of tidal versus wind mixing over the control of summer stratification. A potential application of the model to fisheries science is suggested through a comparison of the stratification index contour map and some observations of squid fishing vessel locations.
M 2 tidal effects in greater Cook Strait, New Zealand
NASA Astrophysics Data System (ADS)
Bowman, Malcolm J.; Kibblewhite, Alick C.; Ash, David E.
1980-05-01
The application of an M2 nonlinear numerical tidal model to the shelf seas of central New Zealand (˜38,500 km2 area) is described. It has provided a preliminary assessment of tidal and residual currents, bottom stress, energy dissipation, and the stratification index. The existence of a permanent, tidally driven mesoscale eddy (˜75 km diameter) is predicted north of D'Urville Island. Large spatial gradients in bottom stress qualitatively agree with many features of the surficial sediment distribution. A comparison of all available bulk stratification data with the h/u3 stratification index clearly demonstrates the dominance of tidal versus wind mixing over the control of summer stratification. A potential application of the model to fisheries science is suggested through a comparison of the stratification index contour map and some observations of squid fishing vessel locations.
Mechanical Slosh Models for Rocket-Propelled Spacecraft
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Alaniz, Abram; Yang, Lee; Powers. Joseph; Hall, Charles
2013-01-01
Several analytical mechanical slosh models for a cylindrical tank with flat bottom are reviewed. Even though spacecrafts use cylinder shaped tanks, most of those tanks usually have elliptical domes. To extend the application of the analytical models for a cylindrical tank with elliptical domes, the modified slosh parameter models are proposed in this report by mapping an elliptical dome cylindrical tank to a flat top/bottom cylindrical tank while maintaining the equivalent liquid volume. For the low Bond number case, the low-g slosh models were also studied. Those low-g models can be used for Bond number > 10. The current low-g slosh models were also modified to extend their applications for the case that liquid height is smaller than the tank radius. All modified slosh models are implemented in MATLAB m-functions and are collected in the developed MST (Mechanical Slosh Toolbox).
Underwater MASW to evaluate stiffness of water-bottom sediments
Park, C.B.; Miller, R.D.; Xia, J.; Ivanov, J.; Sonnichsen, G.V.; Hunter, J.A.; Good, R.L.; Burns, R.A.; Christian, H.
2005-01-01
The multichannel analysis of surface waves (MASW) is initially intended as a land survey method to investigate the near-surface materials for their elastic properties. The acquired data are first analyzed for dispersion characteristics and, from these the shear-wave velocity is estimated using an inversion technique. Land applications show the potential of the MASW method to map 2D bedrock surface, zones of low strength, Poisson's ratio, voids, as well as to generate shear-wave profiles for various othe geotechnical problems. An overview is given of several underwater applications of the MASW method to characterize stiffness distribution of water-bottom sediments. The first application details the survey under shallow-water (1-6 m) in the Fraser River (Canada). The second application is an innovative experimental marine seismic survey in the North Atlantic Ocean near oil fields in Grand Bank offshore Newfoundland.
Photographic evaluation of the impacts of bottom fishing on benthic epifauna
Collie, J.S.; Escanero, G.A.; Valentine, P.C.
2000-01-01
The gravel sediment habitat on the northern edge of Georges Bank (East coast of North America) is an important nursery area for juvenile fish, and the site of a productive scallop fishery. During two cruises to this area in 1994 we made photographic transects at sites of varying depths that experience varying degrees of disturbance from otter trawling and scallop dredging. Differences between sites were quantified by analyzing videos and still photographs of the sea bottom. Videos were analyzed for sediment types and organism abundance. In the still photos, the percentages of the bottom covered by bushy, plant-like organisms and colonial worm tubes (Filograna implexa) were determined, as was the presence/absence of encrusting bryozoa. Non-colonial organisms were also identified as specifically as possible and sediment type was quantified. Significant differences between disturbed and undisturbed areas were found for the variables measured in the still photos; colonial epifaunal species were conspicuously less abundant at disturbed sites. Results from the videos and still photos were generally consistent although less detail was visible in the videos. Emergent colonial epifauna provide a complex habitat for shrimp, polychaetes, brittle stars and small fish at undisturbed sites. Bottom fishing removes this epifauna, thereby reducing the complexity and species diversity of the benthic community. (C) 2000 International Council for the Exploration of the Sea.
Ahlstrom, Christina; Barkema, Herman W; Stevenson, Karen; Zadoks, Ruth N; Biek, Roman; Kao, Rowland; Trewby, Hannah; Haupstein, Deb; Kelton, David F; Fecteau, Gilles; Labrecque, Olivia; Keefe, Greg P; McKenna, Shawn L B; De Buck, Jeroen
2015-03-08
Mycobacterium avium subsp. paratuberculosis (MAP), the causative bacterium of Johne's disease in dairy cattle, is widespread in the Canadian dairy industry and has significant economic and animal welfare implications. An understanding of the population dynamics of MAP can be used to identify introduction events, improve control efforts and target transmission pathways, although this requires an adequate understanding of MAP diversity and distribution between herds and across the country. Whole genome sequencing (WGS) offers a detailed assessment of the SNP-level diversity and genetic relationship of isolates, whereas several molecular typing techniques used to investigate the molecular epidemiology of MAP, such as variable number of tandem repeat (VNTR) typing, target relatively unstable repetitive elements in the genome that may be too unpredictable to draw accurate conclusions. The objective of this study was to evaluate the diversity of bovine MAP isolates in Canadian dairy herds using WGS and then determine if VNTR typing can distinguish truly related and unrelated isolates. Phylogenetic analysis based on 3,039 SNPs identified through WGS of 124 MAP isolates identified eight genetically distinct subtypes in dairy herds from seven Canadian provinces, with the dominant type including over 80% of MAP isolates. VNTR typing of 527 MAP isolates identified 12 types, including "bison type" isolates, from seven different herds. At a national level, MAP isolates differed from each other by 1-2 to 239-240 SNPs, regardless of whether they belonged to the same or different VNTR types. A herd-level analysis of MAP isolates demonstrated that VNTR typing may both over-estimate and under-estimate the relatedness of MAP isolates found within a single herd. The presence of multiple MAP subtypes in Canada suggests multiple introductions into the country including what has now become one dominant type, an important finding for Johne's disease control. VNTR typing often failed to identify closely and distantly related isolates, limiting the applicability of using this typing scheme to study the molecular epidemiology of MAP at a national and herd-level.
Race, Elizabeth A; Shanker, Shanti; Wagner, Anthony D
2009-09-01
Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through which learning from the past decreases demands on the prefrontal executive system. Manipulation of learning at three levels of representation-stimulus, decision, and response-revealed dissociable neural priming effects in distinct frontotemporal regions, supporting a multiprocess model of neural priming. Critically, three distinct patterns of neural priming were identified in lateral frontal cortex, indicating that frontal computational demands are reduced by three forms of learning: (a) cortical tuning of stimulus-specific representations, (b) retrieval of learned stimulus-decision mappings, and (c) retrieval of learned stimulus-response mappings. The topographic distribution of these neural priming effects suggests a rostrocaudal organization of executive function in lateral frontal cortex.
Attention, Intention, and Priority in the Parietal Lobe
Bisley, James W.; Goldberg, Michael E.
2013-01-01
For many years there has been a debate about the role of the parietal lobe in the generation of behavior. Does it generate movement plans (intention) or choose objects in the environment for further processing? To answer this, we focus on the lateral intraparietal area (LIP), an area that has been shown to play independent roles in target selection for saccades and the generation of visual attention. Based on results from a variety of tasks, we propose that LIP acts as a priority map in which objects are represented by activity proportional to their behavioral priority. We present evidence to show that the priority map combines bottom-up inputs like a rapid visual response with an array of top-down signals like a saccade plan. The spatial location representing the peak of the map is used by the oculomotor system to target saccades and by the visual system to guide visual attention. PMID:20192813
NASA Astrophysics Data System (ADS)
Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Font, J.
2012-12-01
Remote sensing platforms onboard satellites provide synoptic maps of ocean surface and thus an accurate picture of many processes taking place in the ocean at mesoscale and sub-mesoscale levels mainly can be gained. Since the first ocean observation satellites these images has been exploited to assess ocean processes; however, extracting further dynamic information from remote sensing maps generally implies a higher degree of processing complexity, involving the use of numerical models and assimilation schemes. A critical variable for the understanding the climate system is Sea Surface Salinity (SSS). The arrival of SMOS and Aquarius missions has given us access to SSS in a regular basis. However, those images still suffer of many acquisition and processing issues, what precludes gaining a complete picture of ocean surface dynamics. In order to favor the oceanographic exploitation of SMOS and Aquarius maps new filtering schemes need to be devised. During the last years a new branch of image processing techniques applied to ocean observation has arisen with force, namely multiscale/multifractal analysis. Different scalars submitted to the action of the ocean flow develop an identical inner structure (multifractal structure) that can be revealed by means of the appropriate analysis tools (singularity analysis). These tools allow for instance to characterize surface currents from snapshots of different scalars (Turiel et al, Ocean Sciences, 2009). In this work we go further away, with the introduction of a new method to blend different types of scalar in a single map of improved quality. The method does not imply the introduction of any parameter, nor relies in any numerical model, but in the assumption that the action of the oceanic flow leads to the same multifractal structure in any ocean variable. The method allows, for instance, to use the multifractal structure coming from SST images to improve the quality of SSS maps (as illustrated in the figure). It can also be applied to merge SMOS and Aquarius maps to increase the quality and spatial coverage.; Top row: 10-day MW SST (left), SMOS SSS (middle), and SSS resulting from fusing SST singularities (right). Bottom row: Associated singularity exponents. Brighter colors are associated to most singular (i.e., negative) exponents.
Applicability of Aerial Green LiDAR to a Large River in the Western United States
NASA Astrophysics Data System (ADS)
Conner, J. T.; Welcker, C. W.; Cooper, C.; Faux, R.; Butler, M.; Nayegandhi, A.
2013-12-01
In October 2012, aerial green LiDAR data were collected in the Snake River (within Idaho and Oregon) to test this emerging technology in a large river with poor water clarity. Six study areas (total of 30 river miles spread out over 250 river miles) were chosen to represent a variety of depths, channel types, and surface conditions to test the accuracy, depth penetration, data density of aerial green LiDAR. These characteristics along with cost and speed of acquisition were compared to other bathymetric survey techniques including rod surveys (total station and RTK-GPS), single-beam sonar, and multibeam echosounder (MBES). The green LiDAR system typically measured returns from the riverbed through 1-2 meters of water, which was less than one Secchi depth. However, in areas with steep banks or aquatic macrophytes, LiDAR returns from the riverbed were less frequent or non-existent. In areas of good return density, depths measured from green LiDAR data corresponded well with previously collected data sets from traditional bathymetric survey techniques. In such areas, the green LiDAR point density was much higher than both rod and single beam sonar surveys, yet lower than MBES. The green LiDAR survey was also collected more efficiently than all other methods. In the Snake River, green LiDAR does not provide a method to map the entire riverbed as it only receives bottom returns in shallow water, typically at the channel margins. However, green LiDAR does provide survey data that is an excellent complement to MBES, which is more effective at surveying the deeper portions of the channel. In some cases, the green LiDAR was able to provide data in areas that the MBES could not, often due to issues with navigating the survey boat in shallow water. Even where both MBES and green LiDAR mapped the river bottom, green LiDAR often provides more accurate data through a better angle of incidence and less shadowing than the MBES survey. For one MBES survey in 2013, the green LiDAR data was used to create a map of shallow hazards to be avoided during the survey for the safety of the crew and the MBES equipment. While green LiDAR does not provide a single solution to all large river surveying problems, when combined with MBES it allows for more complete, more efficient, and safer surveys in a large river.
Guidelines for Media Selection.
ERIC Educational Resources Information Center
Heeren, Elske; Verwijs, Carla; Moonen, Jef
This paper presents two types of approaches to media selection--rational-choice approaches and social-influence approaches. It is argued that designers should combine the two types of approaches in a bottom-up/top-down media-selection process. As examples of the two types of approaches, two conceptual frameworks are described--task/media fit and…
Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska
Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.
2000-01-01
Introduction The U.S. Geological Survey has a long history of exploring marine geology in the Gulf of Alaska. As part of a cooperative program with other federal and state agencies, the USGS is investigating the relations between ocean-floor geology and benthic marine biohabitats. This bottom sediment map, compiled from published literature will help marine biologists develop an understanding of sea-floor geology in relation to various biological habitats. The pattern of sea-floor sedimentation and bottom morphology in the Gulf of Alaska reflects a complex interplay of regional tectonism, glacial advances and retreats, oceanic and tidal currents, waves, storms, eustatic change, and gravity-driven processes. This map, based on numerous cruises during the period of 1970-1996, shows distribution of bottom sediments in areas of study on the continental shelf. The samples were collected with piston, box, and gravity corers, and grab samplers. The interpretations of sediment distribution are the products of sediment size analyses combined with interpretations of high-resolution seismic reflection profiles. The sea floor was separated into several areas as follows: Cook Inlet -- Hazards studies in this embayment emphasized sediment distribution, sediment dynamics, bedforms, shallow faults, and seafloor stability. Migrating mega-sandwaves, driven by strong tidal currents, influence seabed habitats and stability of the seafloor, especially near pipelines and drilling platforms. The coarseness of the bottom sediment reinforces the influence of the strong tidal currents on the seafloor habitats. Kodiak Shelf -- Tectonic framework studies demonstrate the development of an accretionary wedge as the Pacific Plate underthrusts the Alaskan landmass. Seismic data across the accretionary wedge reveal anomalies indicative of fluid/gas vent sites in this segment of the continental margin. Geologic hazards research shows that movement along numerous shallow faults poses a risk to sea floor structures. Sea-floor sediment on shallow banks is eroded by seasonal wave-generated currents. The winnowing action of the large storm waves results in concentrations of gravel over broad segments of the Kodiak shelf. Northeastern Gulf of Alaska -- Tectonic framework studies demonstrate that rocks of distant origin (Yakutat terrane) are currently attached to and moving with the Pacific Plate, as it collides with and is subducted beneath southern Alaska. This collision process has led to pronounced structural deformation of the continental margin and adjacent southern Alaska. Consequences include rapidly rising mountains and high fluvial and glacial sedimentation rates on the adjacent margin and ocean floor. The northeastern Gulf of Alaska shelf also has concentrations of winnowed (lag) gravel on Tarr Bank and on the outer shelf southeast of Yakutat Bay. Between Kayak Island and Yakutat Bay the outer shelf consists of pebbly mud (diamict). This diamict is a product of glacial marine sedimentation during the Pleistocene and is present today as a relict sediment. A prograding wedge of Holocene sediment consisting of nearshore sand grading seaward into clayey silt and silty clay covers the relict pebbly mud to mid-shelf and beyond. Shelf and slope channel systems transport glacially derived sediment across the continental margin into Surveyor Channel, an abyssal fan and channel system that reaches over 1,000 km to the Aleutian Trench.
Inter-annual variability of North Sea plaice spawning habitat
NASA Astrophysics Data System (ADS)
Loots, C.; Vaz, S.; Koubbi, P.; Planque, B.; Coppin, F.; Verin, Y.
2010-11-01
Potential spawning habitat is defined as the area where environmental conditions are suitable for spawning to occur. Spawning adult data from the first quarter (January-March) of the International Bottom Trawl Survey have been used to study the inter-annual variability of the potential spawning habitat of North Sea plaice from 1980 to 2007. Generalised additive models (GAM) were used to create a model that related five environmental variables (depth, bottom temperature and salinity, seabed stress and sediment type) to presence-absence and abundance of spawning adults. Then, the habitat model was applied each year from 1970 to 2007 to predict inter-annual variability of the potential spawning habitat. Predicted responses obtained by GAM for each year were mapped using kriging. A hierarchical classification associated with a correspondence analysis was performed to cluster spawning suitable areas and to determine how they evolved across years. The potential spawning habitat was consistent with historical spawning ground locations described in the literature from eggs surveys. It was also found that the potential spawning habitat varied across years. Suitable areas were located in the southern part of the North Sea and along the eastern coast of England and Scotland in the eighties; they expanded further north from the nineties. Annual survey distributions did not show such northward expansion and remained located in the southern North Sea. This suggests that this species' actual spatial distribution remains stable against changing environmental conditions, and that the potential spawning habitat is not fully occupied. Changes in environmental conditions appear to remain within plaice environmental ranges, meaning that other factors may control the spatial distribution of plaice spawning habitat.
Bayesian analogy with relational transformations.
Lu, Hongjing; Chen, Dawn; Holyoak, Keith J
2012-07-01
How can humans acquire relational representations that enable analogical inference and other forms of high-level reasoning? Using comparative relations as a model domain, we explore the possibility that bottom-up learning mechanisms applied to objects coded as feature vectors can yield representations of relations sufficient to solve analogy problems. We introduce Bayesian analogy with relational transformations (BART) and apply the model to the task of learning first-order comparative relations (e.g., larger, smaller, fiercer, meeker) from a set of animal pairs. Inputs are coded by vectors of continuous-valued features, based either on human magnitude ratings, normed feature ratings (De Deyne et al., 2008), or outputs of the topics model (Griffiths, Steyvers, & Tenenbaum, 2007). Bootstrapping from empirical priors, the model is able to induce first-order relations represented as probabilistic weight distributions, even when given positive examples only. These learned representations allow classification of novel instantiations of the relations and yield a symbolic distance effect of the sort obtained with both humans and other primates. BART then transforms its learned weight distributions by importance-guided mapping, thereby placing distinct dimensions into correspondence. These transformed representations allow BART to reliably solve 4-term analogies (e.g., larger:smaller::fiercer:meeker), a type of reasoning that is arguably specific to humans. Our results provide a proof-of-concept that structured analogies can be solved with representations induced from unstructured feature vectors by mechanisms that operate in a largely bottom-up fashion. We discuss potential implications for algorithmic and neural models of relational thinking, as well as for the evolution of abstract thought. Copyright 2012 APA, all rights reserved.
Goldman, M.; Gvirtzman, H.; Hurwitz, S.
2004-01-01
An extensive time domain electromagnetic (TDEM) survey covering the Sea of Galilee with a dense grid of points has been recently carried out. A total of 269 offshore and 33 supplementary onshore TDEM soundings were performed along six N-S and ten W-E profiles and at selected points both offshore and onshore along the whole coastal line. The interpreted resistivities were calibrated with the direct salinity measurements in the Haon-2 borehole and relatively deep (5 m) cores taken from the lake bottom. It was found that resistivities below 1 ohm-m are solely indicative of groundwater salinity exceeding 10,000 mg Cl/l. Such low resistivities (high salinities) were detected at depths greater than 15 m below almost the entire bottom of the lake. At some parts of the lake, particularly in the south, the saline water was detected at shallower depths, sometimes at a few meters below the bottom. Relatively high resistivity (fresh groundwater) was found along the margins of the lake down to roughly 100 m, the maximum exploration depth of the system. The detected sharp lateral contrasts at the lake margin between high and low resistivities coincide with the faults separating the carbonate and clastic units, respectively. The geometry of the fresh/saline groundwater interface below the central part of the lake is very similar to the shape of the lake bottom, probably due to the diffusive salt transport from the bottom sediments to the lake water. The above geophysical observations suggest differentsalt transport mechanisms from the sediments to the central part of the lake (diffusion) and from regional aquifers to the margins of the lake (advection). ?? 2004 Science From Israel/LPPLtd.
Fujisawa, Mariko; Kobayashi, Kazuhiko; Johnston, Peter; New, Mark
2015-01-01
Agriculture is one of the most vulnerable sectors to climate change. Farmers have been exposed to multiple stressors including climate change, and they have managed to adapt to those risks. The adaptation actions undertaken by farmers and their decision making are, however, only poorly understood. By studying adaptation practices undertaken by apple farmers in three regions: Nagano and Kazuno in Japan and Elgin in South Africa, we categorize the adaptation actions into two types: farmer initiated bottom-up adaptation and institution led top-down adaptation. We found that the driver which differentiates the type of adaptation likely adopted was strongly related to the farmers’ characteristics, particularly their dependence on the institutions, e.g. the farmers’ cooperative, in selling their products. The farmers who rely on the farmers’ cooperative for their sales are likely to adopt the institution-led adaptation, whereas the farmers who have established their own sales channels tend to start innovative actions by bottom-up. We further argue that even though the two types have contrasting features, the combinations of the both types of adaptations could lead to more successful adaptation particularly in agriculture. This study also emphasizes that more farm-level studies for various crops and regions are warranted to provide substantial feedbacks to adaptation policy. PMID:25822534
NASA Astrophysics Data System (ADS)
Picard, K.; Nanson, R.; Huang, Z.; Nichol, S.; McCulloch, M.
2017-12-01
The acquisition of high resolution marine geophysical data has intensified in recent years (e.g. multibeam echo-sounding, sub-bottom profiling). This progress provides the opportunity to classify and map the seafloor in greater detail, using new methods that preserve the links between processes and morphology. Geoscience Australia has developed a new genetic classification approach, nested within the Harris et al (2014) global seafloor mapping framework. The approach divides parent units into sub-features based on established classification schemes and feature descriptors defined by Bradwell et al. (2016: http://nora.nerc.ac.uk/), the International Hydrographic Organization (https://www.iho.int) and the Coastal Marine and Ecological Classification Standard (https://www.cmecscatalog.org). Owing to the ecological significance of submarine canyon systems in particular, much recent attention has focused on defining their variation in form and process, whereby they can be classified using a range of topographic metrics, fluvial dis/connection and shelf-incising status. The Perth Canyon is incised into the continental slope and shelf of southwest Australia, covering an area of >1500 km2 and extending from 4700 m water depth to the shelf break in 170 m. The canyon sits within a Marine Protected Area, incorporating a Marine National Park and Habitat Protection Zone in recognition of its benthic and pelagic biodiversity values. However, detailed information of the spatial patterns of the seabed habitats that influence this biodiversity is lacking. Here we use 20 m resolution bathymetry and acoustic backscatter data acquired in 2015 by the Schmidt Ocean Institute plus sub-bottom datasets and sediment samples collected Geoscience Australia in 2005 to apply the new geomorphic classification system to the Perth Canyon. This presentation will show the results of the geomorphic feature mapping of the canyon and its application to better defining potential benthic habitats.
High-Resolution Mapping of Kick`em Jenny Submarine Volcano and Associated Landslides
NASA Astrophysics Data System (ADS)
Ruchala, T. L.; Carey, S.; Hart, L.; Chen, M.; Scott, C.; Tominaga, M.; Dondin, F. J. Y.; Fujii, M.
2016-02-01
To understand the physical and geological processes that drive the volcanism and control the morphology of Kick`em Jenny (KEJ) volcano, the only active submarine volcano in the in the Lesser Antilles volcanic arc, we conducted near-source, high-resolution mapping of KEJ and its subsurface using the Remotely Operated Vehicle (ROV) Hercules during cruise NA054 of the E/V Nautilus (Sept.-Oct. 2014). Shipboard bathymetric data (EM302 system) and slope analysis maps were used to decipher the detailed seafloor morphology surrounding KEJ. Multiple generations of submarine landslides and canyons were observed, suggesting the area has been hosting dynamic sediment transport systems at multiple scales over time. Some of them might have been associated by past eruptions. Clear contacts between partially lithified carbonate sediments and volcanic formations were identified from ROV videos at the middle of the landslide slope face. Detailed observations of facies on these exposures provide constraints on the time intervals between landslide events along the western slope of KEJ. ROV video imagery also identified outcrops of columnar basalts located in the middle of the landslide deposits. These are similar in appearance to those observed in the KEJ crater during previous ROV dives, indicating a possible travel distance of volcanic materials from the crater region along landslide path. High-resolution photo mosaics, bathymetry, and magnetic data acquired by ROV Hercules were used to investigate geological processes and the possible volcanic source of landslide material within the KEJ crater. Mapping in the northwestern part of the crater floor revealed distinctive regions, including (i) microbial mats, (ii) active hydrothermal vent sites; (iii) landforms curved by channelized bottom current where seafloor is outcropped; and (iv) coarse scree the distribution of which may correlate with the distance from the crater rim. Near-bottom magnetic profiles show coherent magnetic signatures with correlatable high amplitude anomalies located in the middle of the KEJ crater.
NASA Astrophysics Data System (ADS)
Andersson, T.
2015-12-01
Lagoa das Furnas is a crater lake located in an area exposed to geohazards from earthquakes and volcanic activity on the island São Miguel in the Azores Archipelago. The Furnas volcanic center has a long history of earthquakes and volcanic activity. The area is relatively well studied except for the lake floor. Therefore, a high resolution geophysical and geological mapping survey was conducted at Lagoa das Furnas. Sidescan sonar was used to map the surface of the lake floor and single beam sonar was used to acquire sub-bottom profiles. In addition to the geophysical mapping, sediment surface sampling and core drilling were carried out followed by geochemical analyses of the retrieved material. The mapped data permitted a characterization of the floor of Lagoa das Furnas and revealed several volcanic features including fumarolic activity and a previously uninvestigated volcanic cone in the southern part of the lake. In order to unravel the origin of this cone several methods were applied, including analyses of tephra and minerals collected from the cone itself and from nearby deposits of two known eruptions, Furnas I and Furnas 1630. Sedimentological, petrological, geochemical and geochronological studies of pyroclastic deposits from the cone suggest a subaqueous eruption linked to the Furnas 1630 eruption. The chemistry of glass and crystal fragments sampled from the cone suggests that it is composed of more evolved magma than that of the main Furnas 1630, implying that the lake cone is likely a product of the last eruptional phase. According to historical records, two of three lakes were lost due the Furnas 1630 eruption. The results of this study show that the remaining lake is most likely Lagoa das Furnas, which consequently must have existed before the 1630 eruption.
NASA Technical Reports Server (NTRS)
Gibson, David M.; Spisz, Thomas S.; Taylor, Jeff C.; Zalameda, Joseph N.; Horvath, Thomas J.; Tomek, Deborah M.; Tietjen, Alan B.; Tack, Steve; Bush, Brett C.
2010-01-01
We provide the first geometrically accurate (i.e., 3-D) temperature maps of the entire windward surface of the Space Shuttle during hypersonic reentry. To accomplish this task we began with estimated surface temperatures derived from CFD models at integral high Mach numbers and used them, the Shuttle's surface properties and reasonable estimates of the sensor-to-target geometry to predict the emitted spectral radiance from the surface (in units of W sr-1 m-2 nm-1). These data were converted to sensor counts using properties of the sensor (e.g. aperture, spectral band, and various efficiencies), the expected background, and the atmosphere transmission to inform the optimal settings for the near-infrared and midwave IR cameras on the Cast Glance aircraft. Once these data were collected, calibrated, edited, registered and co-added we formed both 2-D maps of the scene in the above units and 3-D maps of the bottom surface in temperature that could be compared with not only the initial inputs but also thermocouple data from the Shuttle itself. The 3-D temperature mapping process was based on the initial radiance modeling process. Here temperatures were guessed for each node in a well-resolved 3-D framework, a radiance model was produced and compared to the processed imagery, and corrections to the temperature were estimated until the iterative process converged. This process did very well in characterizing the temperature structure of the large asymmetric boundary layer transition the covered much of the starboard bottom surface of STS-119 Discovery. Both internally estimated accuracies and differences with CFD models and thermocouple measurements are at most a few percent. The technique did less well characterizing the temperature structure of the turbulent wedge behind the trip due to limitations in understanding the true sensor resolution. (Note: Those less inclined to read the entire paper are encouraged to read an Executive Summary provided at the end.)
Summertime sea surface temperature fronts associated with upwelling around the Taiwan Bank
NASA Astrophysics Data System (ADS)
Lan, Kuo-Wei; Kawamura, Hiroshi; Lee, Ming-An; Chang, Yi; Chan, Jui-Wen; Liao, Cheng-Hsin
2009-04-01
It is well known that upwelling of subsurface water is dominant around the Taiwan Bank (TB) and the Penghu (PH) Islands in the southern Taiwan Strait in summertime. Sea surface temperature (SST) frontal features and related phenomena around the TB upwelling and the PH upwelling were investigated using long-term AVHRR (1996-2005) and SeaWiFS (1998-2005) data received at the station of National Taiwan Ocean University. SST and chlorophyll-a (Chl-a) images with a spatial resolution of 0.01° were generated and used for the monthly SST and Chl-a maps. SST fronts were extracted from each SST images and gradient magnitudes (GMs); the orientations were derived for the SST fronts. Monthly maps of cold fronts where the cooler SSTs were over a shallower bottom were produced from the orientation. Areas with high GMs (0.1-0.2 °C/km) with characteristic shapes appeared at geographically fixed positions around the TB/PH upwelling region where SSTs were lower than the surrounding waters. The well-shaped high GMs corresponded to cold fronts. Two areas with high Chl-a were found around the TB and PH Islands. The southern border of the high-Chl-a area in the TB upwelling area was outlined by the high-GM area. Shipboard measurements of snapshot vertical sections of temperature (T) and salinity (S) along the PH Channel showed a dome structure east of PH Islands, over which low SST and high GM in the maps of the corresponding month were present. Clear evidence of upwelling (vertically uniform distributions of T and S) was indicated at the TB edge in the T and S sections close to TB upwelling. This case of upwelling may be caused by bottom currents ascending the TB slope as pointed out by previous studies. The position of low SSTs in the monthly maps matched the upwelling area, and the high GMs corresponded to the area of eastern surface fronts in the T/S sections.
Innovative method for optimizing Side-Scan Sonar mapping: The blind band unveiled
NASA Astrophysics Data System (ADS)
Pergent, Gérard; Monnier, Briac; Clabaut, Philippe; Gascon, Gilles; Pergent-Martini, Christine; Valette-Sansevin, Audrey
2017-07-01
Over the past few years, the mapping of Mediterranean marine habitats has become a priority for scientists, environment managers and stakeholders, in particular in order to comply with European directives (Water Framework Directive and Marine Strategy Framework Directive) and to implement legislation to ensure their conservation. Side-scan sonar (SSS) is recognised as one of the most effective tool for underwater mapping. However, interpretation of acoustic data (sonograms) requires extensive field calibration and the ground-truthing process remains essential. Several techniques are commonly used, with sampling methods involving grabs, scuba diving observations or Remotely Operated Vehicle (ROV) underwater video recordings. All these techniques are time consuming, expensive and only provide sporadic informations. In the present study, the possibility of coupling a camera with a SSS and acquiring underwater videos in a continuous way has been tested. During the 'PosidCorse' oceanographic survey carried out along the eastern coast of Corsica, optical and acoustic data were respectively obtained using a GoPro™ camera and a Klein 3000™ SSS. Thereby, five profiles were performed between 10 and 50 m depth, corresponding to more than 20 km of data acquisition. The vertical images recorded with the camera fixed under the SSS and positioned facing downwards provided photo mosaics of very good quality corresponding to the entire sonograms's blind band. From the photo mosaics, 94% of the different bottom types and main habitats have been identified; specific structures linked to hydrodynamics conditions, anthropic and biological activities have also been observed as well as the substrate on which the Posidonia oceanica meadow grows. The association between acoustic data and underwater videos has proved to be a non-destructive and cost-effective method for ground-truthing in marine habitats mapping. Nevertheless, in order to optimize the results over the next surveys, certain limitations will need to be remedied.
Note On The Ross Sea Shelf Water Downflow Processes (antarctica)
NASA Astrophysics Data System (ADS)
Bergamasco, A.; Defendi, V.; Spezie, G.; Budillon, G.; Carniel, S.
In the framework of the CLIMA Project of the Italian National Program for Research in Antarctica, three different experimental data sets were acquired along the continental shelf break; two of them (in 1997 and 2001) close to Cape Adare, the 1998 one in the middle of the Ross Sea (i.e. 75 S, 177 W). The investigations were chosen in order to explore the downslope flow of the bottom waters produced in the Ross Sea, namely the High Salinity Shelf Water (HSSW, the densest water mass of the southern ocean coming from its formation site in the polynya region in Terra Nova bay), and the Ice Shelf Water (ISW, originated below the Ross Ice Shelf and outflowing northward). Both bottom waters spill over the shelf edge and mix with the Circumpolar Deep Water (CDW) contributing to the formation of the Antarctic Bottom Waters (AABW). Interpreting temperature, salinity and density maps in terms of cascading processes, both HSSW and ISW overflows are evidenced during, respectively, 1997 and 1998. During the 2001 acquisition there is no presence of HSSW along the shelf break, nevertheless distribution captures the evidence of a downslope flow process.
The growth of carbon chains in IRC +10216 mapped with ALMA⋆
Agúndez, M.; Cernicharo, J.; Quintana-Lacaci, G.; Castro-Carrizo, A.; Velilla Prieto, L.; Marcelino, N.; Guélin, M.; Joblin, C.; Martín-Gago, J. A.; Gottlieb, C. A.; Patel, N. A.; McCarthy, M. C.
2017-01-01
Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon chains in the C-star envelope IRC +10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of λ 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of ~1″. The spatial distribution of all these species is a hollow, 5-10″ wide, spherical shell located at a radius of 10-20″ from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2″ wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals. PMID:28469283
Kee, Dohyung; Jun, Gyuchan Thomas; Waterson, Patrick; Haslam, Roger
2017-03-01
The South Korea Sewol ferry accident in April 2014 claimed the lives of over 300 passengers and led to criminal charges of 399 personnel concerned including imprisonment of 154 of them as of Oct 2014. Blame and punishment culture can be prevalent in a more hierarchical society like South Korea as shown in the aftermath of this disaster. This study aims to analyse the South Korea ferry accident using Rasmussen's risk management framework and the associated AcciMap technique and to propose recommendations drawn from an AcciMap-based focus group with systems safety experts. The data for the accident analysis were collected mainly from an interim investigation report by the Board of Audit and Inspection of Korea and major South Korean and foreign newspapers. The analysis showed that the accident was attributed to many contributing factors arising from front-line operators, management, regulators and government. It also showed how the multiple factors including economic, social and political pressures and individual workload contributed to the accident and how they affected each other. This AcciMap was presented to 27 safety researchers and experts at 'the legacy of Jens Rasmussen' symposium adjunct to ODAM2014. Their recommendations were captured through a focus group. The four main recommendations include forgive (no blame and punishment on individuals), analyse (socio-technical system-based), learn (from why things do not go wrong) and change (bottom-up safety culture and safety system management). The findings offer important insights into how this type of accident should be understood, analysed and the subsequent response. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Map-Based Service Supporting Different Types of Geographic Knowledge for the Public
Zhou, Mengjie; Wang, Rui; Tian, Jing; Ye, Ning; Mai, Shumin
2016-01-01
The internet enables the rapid and easy creation, storage, and transfer of knowledge; however, services that transfer geographic knowledge and facilitate the public understanding of geographic knowledge are still underdeveloped to date. Existing online maps (or atlases) can support limited types of geographic knowledge. In this study, we propose a framework for map-based services to represent and transfer different types of geographic knowledge to the public. A map-based service provides tools to ensure the effective transfer of geographic knowledge. We discuss the types of geographic knowledge that should be represented and transferred to the public, and we propose guidelines and a method to represent various types of knowledge through a map-based service. To facilitate the effective transfer of geographic knowledge, tools such as auxiliary background knowledge and auxiliary map-reading tools are provided through interactions with maps. An experiment conducted to illustrate our idea and to evaluate the usefulness of the map-based service is described; the results demonstrate that the map-based service is useful for transferring different types of geographic knowledge. PMID:27045314
A Map-Based Service Supporting Different Types of Geographic Knowledge for the Public.
Zhou, Mengjie; Wang, Rui; Tian, Jing; Ye, Ning; Mai, Shumin
2016-01-01
The internet enables the rapid and easy creation, storage, and transfer of knowledge; however, services that transfer geographic knowledge and facilitate the public understanding of geographic knowledge are still underdeveloped to date. Existing online maps (or atlases) can support limited types of geographic knowledge. In this study, we propose a framework for map-based services to represent and transfer different types of geographic knowledge to the public. A map-based service provides tools to ensure the effective transfer of geographic knowledge. We discuss the types of geographic knowledge that should be represented and transferred to the public, and we propose guidelines and a method to represent various types of knowledge through a map-based service. To facilitate the effective transfer of geographic knowledge, tools such as auxiliary background knowledge and auxiliary map-reading tools are provided through interactions with maps. An experiment conducted to illustrate our idea and to evaluate the usefulness of the map-based service is described; the results demonstrate that the map-based service is useful for transferring different types of geographic knowledge.
LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)
NASA Astrophysics Data System (ADS)
Shrestha, K.; Carter, W. E.; Slatton, K. C.
2009-12-01
Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the sensitivity of the sensor by changing the PMT supply voltage. For heavily turbid water, the multi-photon state (2300 V, 2.5*10^5 gain) was not sufficient for feature identification. Extraction of the bottom signal in a heavily turbid suspension necessitated maximum MCP-PMT gain (2500 V, 8*10^5 gain). Extrapolation of bathymetric test results suggest that the density of data points from the sea bottom should be sufficient to establish near-shore depths (up to 5 m) at a spatial resolution of 1 meter, in moderately turbid water. Initial airborne tests over fresh water lakes in central Florida indicate that scan patterns containing near nadir laser points produce strong returns from the surface of the water that cause oscillations in the PMT—preventing the detection of the lake bottom in shallow clear water. These results suggest that it may be necessary to tilt the sensor head in its mount, or use a scan pattern that does not include nadir points, such as a circular scan, for bathymetric mapping. Additional tests are ongoing to optimize the performance of the CATS LSNR airborne LIDAR system for both high spatial resolution terrain mapping and shallow water bathymetric mapping.
Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom
NASA Astrophysics Data System (ADS)
Compelli, A.; Ivanov, R.; Todorov, M.
2017-12-01
A single incompressible, inviscid, irrotational fluid medium bounded by a free surface and varying bottom is considered. The Hamiltonian of the system is expressed in terms of the so-called Dirichlet-Neumann operators. The equations for the surface waves are presented in Hamiltonian form. Specific scaling of the variables is selected which leads to approximations of Boussinesq and Korteweg-de Vries (KdV) types, taking into account the effect of the slowly varying bottom. The arising KdV equation with variable coefficients is studied numerically when the initial condition is in the form of the one-soliton solution for the initial depth. This article is part of the theme issue 'Nonlinear water waves'.
Relative Positioning of Ocean Bottom Benchmarks.
1985-12-01
SCHOOL Monterey, California IDTIC -" . % LECTE .! . ,/, : FEB 1 4 1g86J THESIS RELATIVE POSITIONING D- OF OCEAN BOTTOM BENCHMARKS by LFeng-Yu Kuo LA...December 1985 Thesis Advisors: N. K. Saxena S. P. Tucker Approved for public release; distribution unlimited. 86 2 1 4 25 UNCLASSIFIED - 1SECURITY...NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Relative Positioning Master’s Thesis ; of December 1985
2013-09-01
history of ocean measurements and of Ocean Bottom Seismometers in particular. This background will also discuss previous work on beamforming seismic...unsuccessful. The measured bearings changed in a seemingly random fashion despite high signal to noise (SNR). This result is in agreement with other...capabilities increase. One of the types of sensors used in OOSs is the Ocean Bottom Seismometer. These sensors are primarily used to measure
Clostridium botulinum in Scottish fish farms and farmed trout.
Burns, G F; Williams, H
1975-02-01
Rainbow trout and specimens of pond mud were collected from three fish farms and examined for the presence of Clostridium botulinum. Two of the farms were constructed with concrete channels and one was mud-bottomed. Cl. botulinum was isolated only from the mud-bottomed farm (24% of muds), and the isolates were all non-proteolytic type B. The implications of the presence of Cl. botulinum spores in the mud of fish farms is discussed.
NASA Technical Reports Server (NTRS)
2004-01-01
This map of the Mars Exploration Rover Opportunity's new neighborhood at Meridiani Planum, Mars, shows the surface features used to locate the rover. By imaging these 'bumps' on the horizon from the perspective of the rover, mission members were able to pin down the rover's precise location. The image consists of data from the Mars Global Surveyor orbiter, the Mars Odyssey orbiter and the descent image motion estimation system located on the bottom of the rover.
A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.
Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed
2012-08-24
We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.
Distribution of Bottom Trawling Effort in the Yellow Sea and East China Sea
Zhang, Shengmao; Jin, Shaofei; Zhang, Heng; Fan, Wei; Tang, Fenghua; Yang, Shenglong
2016-01-01
Bottom trawling is one of the most efficient fishing activities, but serious and persistent ecological issues have been observed by fishers, scientists and fishery managers. Although China has applied the Beidou fishing vessel position monitoring system (VMS) to manage trawlers since 2006, little is known regarding the impacts of trawling on the sea bottom environments. In this study, continuous VMS data of the 1403 single-rig otter trawlers registered in the Xiangshan Port, 3.9% of the total trawlers in China, were used to map the trawling effort in 2013. We used the accumulated distance (AD), accumulated power distance (APD), and trawling intensity as indexes to express the trawling efforts in the Yellow Sea (YS) and East China Sea (ECS). Our results show that all three indexes had similar patterns in the YS and ECS, and indicated a higher fishing effort of fishing grounds that were near the port. On average, the seabed was trawled 0.73 times in 2013 over the entire fishing region, and 51.38% of the total fishing grounds were with no fishing activities. Because of VMS data from only a small proportion of Chinese trawlers was calculated fishing intensity, more VMS data is required to illustrate the overall trawling effort in China seas. Our results enable fishery managers to identify the distribution of bottom trawling activities in the YS and ECS, and hence to make effective fishery policy. PMID:27855215
Depth to Curie temperature or magnetic sources bottom in the Lesser Antilles Arc volcanic area
NASA Astrophysics Data System (ADS)
Gailler, Lydie-Sarah; Martelet, Guillaume; Thinon, Isabelle; Münch, Philippe; Arcay, Diane
2015-04-01
In the continuation of the innovative study carried out at the scale of La Réunion Island to generalize Curie Point Depth (CPD) determinations at the scale of oceanic volcanic islands, we present here a similar work at the scale of the Lesser Antilles Arc. Assuming that magnetic anomalies are concentrated within the oceanic crust and using the growing assumption of a magnetized upper mantle, the Curie depth should become deeper as the oceanic lithosphere becomes older (i.e. thicker). We use the magnetic anomaly map computed by Gailler et al. (2013), completed and extended with the global Earth Magnetic Anomaly Grid (EMAG2) (Maus et al., 2007). The calculated magnetic sources bottom lies at depths between 18 and 32 km and exhibits a complex topography, presumably caused by the combination of various magmatic and tectonic crustal structures in this complex subduction context. The correlations between our depth to magnetic sources bottom and the large scale bathymetric and geophysical studies provide an interesting overview of the Lesser Antilles Arc structuring. The Inner Arc is mainly associated with a deepening of the depth to magnetic sources bottom. On the contrary, a huge doming appears along the central Lesser Antilles Arc, consistent with the seismic imaging (Kopp et al., 2011). This uprise of our calculated magnetic surface extents southeastern to the Guadeloupe Island in the direction of the Tiburon Ridge following the abnormal transverse component of the subduction in the N130°E direction defined by Gailler et al. (2013). A strong lateral narrowing of this doming is evidenced southern of Dominique Island where the two arcs converge. In this central area, the averaged depth of the magnetic sources bottom is also larger than expected in the case of classical oceanic crust. This is in agreement with previous interpretation of an original oceanic crust thickened by deep magmatic processes and underplating prior to the evolution of the Lesser Antilles Arc (Diebold, 2009). To the NE, the five main axis of deformation imaged from geophysical and bathymetric studies are well correlated with the larger bulged area of the magnetic sources bottom which also seems to underline the large scale deformation and faulting of the Outer arc. Along this latter, our map is correlated with the accretionary prism, the subduction trench, and the large scale gravity scheme. We also perform 2D thermo-mechanical simulations of the Lesser Antilles subduction zone to model the thermal structure of the fore-arc/arc domain at steady-state. Water transfers associated to slab dehydration and overlying rock hydration are modeled, including a simple hydrous strength weakening law. Simulations show that asthenospheric flows are strongly enhanced in the hydrated mantle wedge, yielding a significant reheating of the fore-arc domain, consistent with what is suggested by magnetic data.
NASA Astrophysics Data System (ADS)
Nesterova, Olga; Tregubova, Valentina; Semal, Victoria; Vasenev, Ivan
2017-04-01
The nature and distribution of organic carbon in marine waters depends on: 1) biological productivity and revenue of the autochthonous organic matter to the bottom; 2) sediment grain-size composition and conditions of dumping, which in turn depends of hydrothermic regime, topography, speed River mist and received major erosion products; 3) living conditions of the benthos (the quantity consumed of OM, gas regime of habitats, physiological capacity of heterotrophs). Autochthonous OM of phytoplankton plays a dominant role in the processes of formation of humus in aquatic conditions. Bottom sediments at different distance from the shoreline to depths from 0.5 up to 480 m of the Sea of Japan, which are formed in various conditions of facies, were selected as the objects of study. There is no clear relationships to the amount of organic matter in bottom sediments on the characteristics of the distribution and nature of living matter in the oceans and seas. This is because the process of sedimentation and fossilization of organic matter on the seabed and the ocean floor depends on many factors (currents, depth). Humus of studied bottom sediments in composition can be attributed mainly to the humic type. Nonhydrolyzing rest is 70-90%. This is characteristic of bottom sediments formed in facial types of small bays, internal coastal shelf bights and the underwater slope. At a fraction of the carbon of humic acids in organic matter, ranging from 4 to 80% of the amount of humic and fulvic acids. Fulvic acids content is much less. This is due to more favourable conservation situation of humic acids in precipitation with high content of organic matter, whereas fulvic acids in aquatic environments are more labile and almost not dumped. Despite the fact humic acids are not the most stable component (s), however, with increased content of humic acids, the mobility of organic matter and removing it from the bottom sediments are reduced. Internal shelf facies of the Great Peter Bay is the most diverse on the content of the various components of the bottom sediments humus. This is because modern processes of sedimentations and humus formation are active in this zone. The greatest concentration of organic matter in conjunction with the submarine and coastal slope at depths of more than 120 m. Slight variations parameters that characterize the composition of humus, are notable for all bottom sediments, as well as the marine environment, largely cancels the General conditions of humus formation around the basin of the Sea of Japan. Organic substance moving in the water colomn and transforms. Only sustainable to mineralization of organic substance reaches the bottom.
Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan.
Yang, Renbo; Liao, Wing-Ping; Wu, Pin-Han
2012-08-15
Approximately 19.2% of Taiwan's municipal solid waste (MSW) that passes through incineration disposal is converted into ashes (including bottom ash and fly ash). Although bottom ash can pass nearly all of the standards of the toxicity characteristic leaching procedure (TCLP), its high chloride content makes its reuse limited; it generally cannot be used as a fine aggregate material in concrete applications. This research examined washing four types of bottom ash (BA) and fly ash (FA) with water to reduce their chloride content. The optimal water intensity for washing pretreated bottom ash was found to be 7-8L of water per kg of bottom ash, and the optimal water intensity for washing untreated fly ash was found to be 20-25 L of water per kg of fly ash. Based on regression analyses of the chloride concentrations of the leachates and their electrical conductivity (EC) values, each MSW incineration plant has its own ash characteristics as well as a specific regression line in bottom or fly ash leachate. Clearly, it is possible to monitor the EC values of the leachates online by estimation from regression equations to determine the chloride concentrations in the leachates. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in Salmonella
Paytubi, Sonia; Cansado, Cintia; Madrid, Cristina; Balsalobre, Carlos
2017-01-01
Salmonella is one of the most frequently reported causes of foodborne illness worldwide. Non-typhoidal serovars cause gastroenteritis in humans. Salmonella can grow on surfaces forming biofilms, contributing to its persistence since biofilms are difficult to eradicate due to the high resistance to antimicrobials and disinfectants. It has been described that there are two crucial biofilm promoting factors in Salmonella: curli and cellulose. The expression of both factors is coordinately regulated by the transcriptional regulator CsgD. Most biofilm studies of Salmonella have been performed by growing bacteria in low osmolarity rich medium and low temperature (25°C). In such conditions, the biofilm is formed at the air–liquid interface (pellicle biofilm). Remarkably, when Salmonella grow in minimal medium, biofilm formation switches from the air–liquid interface to the solid–liquid interface (bottom biofilm). In this report, the switching between pellicle and bottom biofilm has been characterized. Our data indicate that curli, but not cellulose, is crucial for the formation of both kinds of biofilms. In minimal medium, conditions promoting formation of bottom biofilm, a high transcriptional expression of csgD and consequently of the genes involved in the synthesis of curli and cellulose was detected. The nutritional status of the cells seems to be pivotal for the spatial distribution of the biofilms formed. When bacteria is growing in minimal medium the addition of amino acids downregulates the expression of csgB and causes the switch between bottom and pellicle biofilm. The crosstalk between general metabolism and biofilm formation is also highlighted by the fact that the metabolic sensor cAMP modulates the type of biofilm generated by Salmonella. Moreover, cAMP regulates transcriptional expression of csgD and stimulates pellicle biofilm formation, suggesting that the physiological conditions define the type of biofilm formed by Salmonella. The consequences of the switching between pellicle and bottom biofilm during either infection or survival in natural environments remain undercover. PMID:29163440
Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in Salmonella.
Paytubi, Sonia; Cansado, Cintia; Madrid, Cristina; Balsalobre, Carlos
2017-01-01
Salmonella is one of the most frequently reported causes of foodborne illness worldwide. Non-typhoidal serovars cause gastroenteritis in humans. Salmonella can grow on surfaces forming biofilms, contributing to its persistence since biofilms are difficult to eradicate due to the high resistance to antimicrobials and disinfectants. It has been described that there are two crucial biofilm promoting factors in Salmonella : curli and cellulose. The expression of both factors is coordinately regulated by the transcriptional regulator CsgD. Most biofilm studies of Salmonella have been performed by growing bacteria in low osmolarity rich medium and low temperature (25°C). In such conditions, the biofilm is formed at the air-liquid interface (pellicle biofilm). Remarkably, when Salmonella grow in minimal medium, biofilm formation switches from the air-liquid interface to the solid-liquid interface (bottom biofilm). In this report, the switching between pellicle and bottom biofilm has been characterized. Our data indicate that curli, but not cellulose, is crucial for the formation of both kinds of biofilms. In minimal medium, conditions promoting formation of bottom biofilm, a high transcriptional expression of csgD and consequently of the genes involved in the synthesis of curli and cellulose was detected. The nutritional status of the cells seems to be pivotal for the spatial distribution of the biofilms formed. When bacteria is growing in minimal medium the addition of amino acids downregulates the expression of csgB and causes the switch between bottom and pellicle biofilm. The crosstalk between general metabolism and biofilm formation is also highlighted by the fact that the metabolic sensor cAMP modulates the type of biofilm generated by Salmonella . Moreover, cAMP regulates transcriptional expression of csgD and stimulates pellicle biofilm formation, suggesting that the physiological conditions define the type of biofilm formed by Salmonella . The consequences of the switching between pellicle and bottom biofilm during either infection or survival in natural environments remain undercover.
The Seabed and Shallow Geology Mapping of the Porcupine Bank, West of Ireland
NASA Astrophysics Data System (ADS)
Thébaudeau, B.; Monteys, X.; McCarron, S. G.
2016-02-01
The "Porcupine Bank" is a bathymetric high of over 40,000 km2 linked to the western shelf of Ireland which lies between 51-54° N and 11-15° W approximately 100 km west of Ireland. Water depths are as shallow as 145 m over the "Porcupine Ridge". The Bank's location on the north eastern fringe of the Atlantic Ocean, in a critical position between the shelf edge and the main land and along the line of the Polar Front, means it may contain significant indications of glacial/interglacial changes in northern hemisphere climate and in North Atlantic Ocean circulation. But it also means that it consists of strategically important marine environments with very likely future developmental pressures. Peer-reviewed publications on the geology of the Bank are very limited and this current state of knowledge will hamper any marine ecosystem research and protection. This paper will describe the first results of a research project aiming at filling the gap of our understanding of the region's shallow geology and subseabed resources and characteristics. As a first step, seabed geomorphology mapping using high resolution MBES and sub bottom data have highlighted a wealth of glacially derived features such as iceberg scours and elongated ridges whose formation could be directly influenced by the presence of ice on or nearby the bank. Other features interpreted as sand waves could help understand relict or modern currents. In addition to these surface features, this paper introduces recent geological mapping of the shallow stratigraphy of the bank using 2D seismic and sub bottom profiler data collected at a high density correlated with recently collected vibro-cores. The seismic units and corresponding lithofacies (some with radiocarbon dates) are consistently described and a regional correlation built.
NASA Astrophysics Data System (ADS)
Ochałek, Agnieszka; Lipecki, Tomasz; Jaśkowski, Wojciech; Jabłoński, Mateusz
2018-03-01
The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements - an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.
Thermal Analysis of Reinforced Concrete Tank for Conditioning Wood by FEM Method
NASA Astrophysics Data System (ADS)
Błaszczyński, Tomasz; Babiak, Michał; Wielentejczyk, Przemysław
2017-10-01
The article introduces the analysis of a RC tank for conditioning wood carried out using the FEM (Finite Element Method). A temperature gradient distribution increase resulting from the influence of hot liquid filling the tank was defined. Values of gradients in border sections of the tank walls and the bottom were defined on the basis of the isotherm method. The obtained results were compared with empirical formulas from literature. Strength analyses were also carried out. Additionally, the problematic aspects of elongated monolithic tanks for liquids were introduced, especially regarding large temperature gradients and the means of necessary technical solutions. The use of the FEM method for designing engineering objects is, nowadays, an irreplaceable solution. In the case of the discussed tank, a spatial model of the construction mapping its actual performance was constructed in order to correctly estimate the necessary dimensions of wall and bottom sections, as well as reinforcement.
Representation and disconnection in imaginal neglect.
Rode, G; Cotton, F; Revol, P; Jacquin-Courtois, S; Rossetti, Y; Bartolomeo, P
2010-08-01
Patients with neglect failure to detect, orient, or respond to stimuli from a spatially confined region, usually on their left side. Often, the presence of perceptual input increases left omissions, while sensory deprivation decreases them, possibly by removing attention-catching right-sided stimuli (Bartolomeo, 2007). However, such an influence of visual deprivation on representational neglect was not observed in patients while they were imagining a map of France (Rode et al., 2007). Therefore, these patients with imaginal neglect either failed to generate the left side of mental images (Bisiach & Luzzatti, 1978), or suffered from a co-occurrence of deficits in automatic (bottom-up) and voluntary (top-down) orienting of attention. However, in Rode et al.'s experiment visual input was not directly relevant to the task; moreover, distraction from visual input might primarily manifest itself when representation guides somatomotor actions, beyond those involved in the generation and mental exploration of an internal map (Thomas, 1999). To explore these possibilities, we asked a patient with right hemisphere damage, R.D., to explore visual and imagined versions of a map of France in three conditions: (1) 'imagine the map in your mind' (imaginal); (2) 'describe a real map' (visual); and (3) 'list the names of French towns' (propositional). For the imaginal and visual conditions, verbal and manual pointing responses were collected; the task was also given before and after mental rotation of the map by 180 degrees . R.D. mentioned more towns on the right side of the map in the imaginal and visual conditions, but showed no representational deficit in the propositional condition. The rightward inner exploration bias in the imaginal and visual conditions was similar in magnitude and was not influenced by mental rotation or response type (verbal responses or manual pointing to locations on a map), thus suggesting that the representational deficit was robust and independent of perceptual input in R.D. Structural and diffusion MRI demonstrated damage to several white matter tracts in the right hemisphere and to the splenium of corpus callosum. A second right-brain damaged patient (P.P.), who showed signs of visual but not imaginal neglect, had damage to the same intra-hemispheric tracts, but the callosal connections were spared. Imaginal neglect in R.D. may result from fronto-parietal dysfunction impairing orientation towards left-sided items and posterior callosal disconnection preventing the symmetrical processing of spatial information from long-term memory. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Ackerman, Seth D.; Pappal, Adrienne L.; Huntley, Emily C.; Blackwood, Dann S.; Schwab, William C.
2015-01-01
Sea-floor sample collection is an important component of a statewide cooperative mapping effort between the U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM). Sediment grab samples, bottom photographs, and video transects were collected within Vineyard Sound and Buzzards Bay in 2010 aboard the research vesselConnecticut. This report contains sample data and related information, including analyses of surficial-sediment grab samples, locations and images of sea-floor photography, survey lines along which sea-floor video was collected, and a classification of benthic biota observed in sea-floor photographs and based on the Coastal and Marine Ecological Classification Standard (CMECS). These sample data and analyses information are used to verify interpretations of geophysical data and are an essential part of geologic maps of the sea floor. These data also provide a valuable inventory of benthic habitat and resources. Geographic information system (GIS) data, maps, and interpretations, produced through the USGS and CZM mapping cooperative, are intended to aid efforts to manage coastal and marine resources and to provide baseline information for research focused on coastal evolution and environmental change.
Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J
2011-09-01
In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.
Seafloor habitat mapping and classification in Glacier Bay, Alaska: Phase 1 & 2 1996-2004
Hooge, Philip N.; Carlson, Paul R.; Mondragon, Jennifer; Etherington, Lisa L.; Cochran, G.R.
2004-01-01
Glacier Bay is a diverse fjord ecosystem with multiple sills, numerous tidewater glaciers and a highly complex oceanographic system. The Bay was completely glaciated prior to the 1700’s and subsequently experienced the fastest glacial retreat recorded in historical times. Currently, some of the highest sedimentation rates ever observed occur in the Bay, along with rapid uplift (up to 2.5 cm/year) due to a combination of plate tectonics and isostatic rebound. Glacier Bay is the second deepest fjord in Alaska, with depths over 500 meters. This variety of physical processes and bathymetry creates many diverse habitats within a relatively small area (1,255 km2 ). Habitat can be defined as the locality, including resources and environmental conditions, occupied by a species or population of organisms (Morrison et al 1992). Mapping and characterization of benthic habitat is crucial to an understanding of marine species and can serve a variety of purposes including: understanding species distributions and improving stock assessments, designing special management areas and marine protected areas, monitoring and protecting important habitats, and assessing habitat change due to natural or human impacts. In 1996, Congress recognized the importance of understanding benthic habitat for fisheries management by reauthorizing the Magnuson-Stevens Fishery Conservation and Management Act and amending it with the Sustainable Fisheries Act (SFA). This amendment emphasizes the importance of habitat protection to healthy fisheries and requires identification of essential fish habitat in management decisions. Recently, the National Park Service’s Ocean Stewardship Strategy identified the creation of benthic habitat maps and sediment maps as crucial components to complete basic ocean park resource inventories (Davis 2003). Glacier Bay National Park managers currently have very limited knowledge about the bathymetry, sediment types, and various marine habitats of ecological importance in the Park. Ocean floor bathymetry and sediment type are the building blocks of marine communities. Bottom type and shape affects the kinds of benthic communities that develop in a particular environment as well as the oceanographic conditions that communities are subject to. Accurate mapping of the ocean floor is essential for park manager’s understanding of existing marine communities and will be important in assessing human induced changes (e.g., vessel traffic and commercial fishing), biological change (e.g., rapid sea otter recolonization), and geological processes of change (e.g., deglaciation). Information on animal-habitat relationships, particularly within a marine reserve framework, will be valuable to agencies making decisions about critical habitats, marine reserve design, as well as fishery management. Identification and mapping of benthic habitat provides National Park Service mangers with tools to increase the effectiveness of resource management. The primary objective of this project is to investigate the geological characteristics of the biological habitats of halibut, Dungeness crab, king crab, and Tanner crab within Glacier Bay National Park. Additionally, habitat classification of shallow water regions of Glacier Bay will provide crucial information on the relationship between benthic habitat features and the abundance of benthic prey items for a variety of marine predators, including sea ducks, the rapidly increasing population of sea otters, and other marine mammals.
Methods of measurement of exploratory well impacts, offshore Florida
Dustan, Phillip A.; Kindinger, Jack L.; Lidz, B.H.; Hudson, J.H.
1990-01-01
Six offshore oil well tests were drilled off Key West in the late 1950s and early 1960s. Two wells were drilled on coral bottom, two on carbonate sand, and two on mixed turtle grass and gorgonian/sponge hardbottom. After locating the sites with a proton magnetometer; several underwater assessment methods were used to measure the ecological impacts of drilling. Because of differing environments and bottom types, no single method was applicable at every site.
Bottom-up or top-down: unit cost estimation of tuberculosis diagnostic tests in India.
Rupert, S; Vassall, A; Raizada, N; Khaparde, S D; Boehme, C; Salhotra, V S; Sachdeva, K S; Nair, S A; Hoog, A H Van't
2017-04-01
Of 18 sites that participated in an implementation study of the Xpert® MTB/RIF assay in India, we selected five microscopy centres and two reference laboratories. To obtain unit costs of diagnostic tests for tuberculosis (TB) and drug-resistant TB. Laboratories were purposely selected to capture regional variations and different laboratory types. Both bottom-up and the top-down methods were used to estimate unit costs. At the microscopy centres, mean bottom-up unit costs were respectively US$0.83 (range US$0.60-US$1.10) and US$12.29 (US$11.61-US$12.89) for sputum smear microscopy and Xpert. At the reference laboratories, mean unit costs were US$1.69 for the decontamination procedure, US$9.83 for a solid culture, US$11.06 for a liquid culture, US$29.88 for a drug susceptibility test, and US$18.18 for a line-probe assay. Top-down mean unit cost estimates were higher for all tests, and for sputum smear microscopy and Xpert these increased to respectively US$1.51 and US$13.58. The difference between bottom-up and top-down estimates was greatest for tests performed at the reference laboratories. These unit costs for TB diagnostics can be used to estimate resource requirements and cost-effectiveness in India, taking into account geographical location, laboratory type and capacity utilisation.
Singh, Ajay Vir; Chauhan, Devendra Singh; Singh, Abhinendra; Singh, Pravin Kumar; Sohal, Jagdip Singh; Singh, Shoor Vir
2015-01-01
Of the three major genotypes of Mycobacterium avium subspecies paratuberculosis (MAP), 'Bison type' is most prevalent genotype in the domestic livestock species of the country, and has also been recovered from patients suffering from Crohn's disease. Recently, a new assay based on IS1311 locus 2 PCR- restriction endonuclease analysis (REA) was designed to distinguish between 'Indian Bison type' and non-Indian genotypes. The present study investigated discriminatory potential of this new assay while screening of a panel of MAP isolates of diverse genotypes and from different geographical regions. A total of 53 mycobacterial isolates (41 MAP and 12 mycobacterium other than MAP), three MAP genomic DNA and 36 MAP positive faecal DNA samples from different livestock species (cattle, buffaloes, goat, sheep and bison) and geographical regions (India, Canada, USA, Spain and Portugal) were included in the study. The extracted DNA samples (n=92) were analyzed for the presence of MAP specific sequences (IS900, ISMav 2 and HspX) using PCR. DNA samples were further subjected to genotype differentiation using IS1311 PCR-REA and IS1311 L2 PCR-REA methods. All the DNA samples (except DNA from non-MAP mycobacterial isolates) were positive for all the three MAP specific sequences based PCRs. IS1311 PCR-REA showed that MAP DNA samples of Indian origin belonged to 'Bison type'. Whereas, of the total 19 non-Indian MAP DNA samples, 2, 15 and 2 were genotyped as 'Bison type', 'Cattle type' and 'Sheep type', respectively. IS1311 L2 PCR-REA method showed different restriction profiles of 'Bison type' genotype as compared to non-Indian DNA samples. IS1311 L2 PCR-REA method successfully discriminated 'Indian Bison type' from other non-Indian genotypes and showed potential to be future epidemiological tool and for genotyping of MAP isolates.
NASA Astrophysics Data System (ADS)
Mengual, Baptiste; Cayocca, Florence; Le Hir, Pierre; Draye, Robin; Laffargue, Pascal; Vincent, Benoit; Garlan, Thierry
2016-09-01
Sea trials were performed on two zones with different fishing efforts on the continental shelf of the Bay of Biscay (`Grande-Vasière' area of muddy sand) in order to assess particulate matter resuspension and seabed disturbances (i.e., penetration, reworking, grain size changes) induced by different types of trawls. Optical and acoustic measurements made in the water column indicate a significant trawling-induced resuspension mainly due to the scraping action of doors. It manifests as a highly dynamic turbid plume confined near the seabed, where suspended sediment concentrations can reach 200 mg l-1. Concentration levels measured behind an "alternative" configuration (trawls with jumper doors instead of classical doors penetrating the sediment) are significantly lower (around 10-20 mg l-1), which indicates a potential limiting impact regarding the seabed. Grain size analyses of the surficial sediment led to highlight a potential reworking influence of bottom trawling. On the intensively trawled zone, this reworking manifests as an upward coarsening trend in the first 5 cm of the cores. A significant decrease in mud content (30 %) has been also witnessed on this zone between 1967 and 2014, which suggests an influence on the seabed evolution. The geometric analysis of bottom tracks (4-5-cm depth, 20-cm width) observed with a benthic video sledge was used to compute an experimental trawling-induced erosion rate of 0.13 kg m-2. This erosion rate was combined with fishing effort data, in order to estimate trawling-induced erosion fluxes which were then compared to natural erosion fluxes over the Grande-Vasière at monthly, seasonal and annual scales. Winter storms control the annual resuspended load and trawling contribution to annual resuspension is in the order of 1 %. However, results show that trawling resuspension can become dominant during the fishing high season (i.e., until several times the natural one in summer). In addition, the contribution of trawling-induced resuspension is shown to increase with water depth, because of the rapid decay of wave effects. Finally, the seasonal evolution of the respective contributions for erosion (mainly trawling and waves) could be mapped for the whole study area.
High-resolution geologic mapping of the inner continental shelf: Nahant to Gloucester, Massachusetts
Barnhardt, Walter A.; Andrews, Brian D.; Butman, Bradford
2006-01-01
This report presents high-resolution maps of the seafloor offshore of Massachusetts, from Nahant to Gloucester. Approximately 134 km² of the inner shelf were mapped with a focus on the nearshore region in water depths less than 40 m (fig. 1.1). The maps were prepared as part of a cooperative mapping program between the U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM). They are based on marine geophysical data, sediment sampling, and bottom photography obtained on two research cruises carried out in 2003 and 2004. The primary objective of this program is to develop a suite of seafloor maps that provide geologic information for management of coastal and marine resources. Accurate maps of seafloor geology are important first steps toward protecting fish habitat, delineating marine reserves, and assessing environmental changes due to natural or human impacts. The maps also provide a geologic framework for scientific research, industry and the public. The organization of this report is outlined in the navigation bar along the left-hand margin of the page. This is section 1, the introduction. Section 2 briefly describes the mapping products contained in this report and has links to large-format map sheets, that can be viewed on line or downloaded. Section 3 is a description of the data collection, processing, and analysis procedures used to create the map products. Section 4 examines the geologic framework and late Quaternary evolution of the region, and presents two different strategies for mapping the complex seafloor. This report also contains four appendices that include GIS layers of all data collected in this study, and copies of the sample and photographic data used to validate the interpretations.
NASA Astrophysics Data System (ADS)
Bostater, Charles R.; Oney, Taylor S.; Rotkiske, Tyler; Aziz, Samin; Morrisette, Charles; Callahan, Kelby; Mcallister, Devin
2017-10-01
Hyperspectral signatures and imagery collected during the spring and summer of 2017 and 2016 are presented. Ground sampling distances (GSD) and pixel sizes were sampled from just over a meter to less than 4.0 mm. A pushbroom hyperspectral imager was used to calculate bidirectional reflectance factor (BRF) signatures. Hyperspectral signatures of different water types and bottom habitats such as submerged seagrasses, drift algae and algal bloom waters were scanned using a high spectral and digital resolution solid state spectrograph. WorldView-3 satellite imagery with minimal water wave sun glint effects was used to demonstrate the ability to detect bottom features using a derivative reflectance spectroscopy approach with the 1.3 m GSD multispectral satellite channels centered at the solar induced fluorescence band. The hyperspectral remote sensing data collected from the Banana River and Indian River Lagoon watersheds represents previously unknown signatures to be used in satellite and airborne remote sensing of water in turbid waters along the US Atlantic Ocean coastal region and the Florida littoral zone.
Are pre-crater mounds gas-inflated?
NASA Astrophysics Data System (ADS)
Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam
2017-04-01
Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre-crater mounds are still debatable. Our hypothesis initially does not involve pingo origin of pre-crater mounds for several reasons, among which were the initial depth (70 m) and width (18 m) of the crater void, frozen walls and bottom, no traces of sub-lake talik, an important control for pingo formation, and more. Pre-crater mounds are closer to frost-heave mounds in size (4-7 m high and 30-60 m in diameter). Yet frost-heave mounds like palsa or lithalsa have segregated ice lenses closer to the surface, total thickness of these lenses is equal to the height of the mound. Pre-crater mounds have at least 20 m of tabular ground ice in the section that has no manifestation in the mound height or diameter. All above-mentioned leads to the conclusion that pre-crater mounds form because of gas inflation rather than regular frost heave process involving moisture migration towards the freezing front. This research is supported by Russian Science Foundation Grant 16-17-10203.
Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad Ramnarine
2012-01-01
Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...
Stroh, E.D.; Struckhoff, M.A.
2009-01-01
We compared the extent to which exotic species are associated with horse trails, old roads, and intact communities within three native vegetation types in Ozark National Scenic Riverways, Missouri. We used a general linear model procedure and a Bonferroni multiple comparison test to compare exotic species richness, exotic to native species ratios, and exotic species percent cover across three usage types (horse trails, old roads, and intact communities) and three community types (river bottoms, upland waterways, and glades). We found that both exotic species richness and the ratio of exotic species to native species were greater in plots located along horse trails than in plots located either in intact native communities or along old roads. Native community types did not differ in the number of exotic species present, but river bottoms had a significantly higher exotic to native species ratio than glades. Continued introduction of exotic plant propagules may explain why horse trails contain more exotic species than other areas in a highly disturbed landscape.
Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer
2014-01-01
A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952
Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom.
Compelli, A; Ivanov, R; Todorov, M
2018-01-28
A single incompressible, inviscid, irrotational fluid medium bounded by a free surface and varying bottom is considered. The Hamiltonian of the system is expressed in terms of the so-called Dirichlet-Neumann operators. The equations for the surface waves are presented in Hamiltonian form. Specific scaling of the variables is selected which leads to approximations of Boussinesq and Korteweg-de Vries (KdV) types, taking into account the effect of the slowly varying bottom. The arising KdV equation with variable coefficients is studied numerically when the initial condition is in the form of the one-soliton solution for the initial depth.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
Slamming pressures on the bottom of a free-falling vertical wedge
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Judge, C. Q.
2013-11-01
High-speed planing boats are subjected to repeat impacts due to slamming, which can cause structural damage and injury to passengers. A first step in understanding and predicting the physics of a craft re-entering the water after becoming partially airborne is an experimental vertical drop test of a prismastic wedge (deadrise angle, β =20° beam, B = 300 mm; and length, L = 600 mm). The acrylic wedge was mounted to a rig allowing it to free-fall into a deep-water tank (5.2m × 5.2m × 4.2m deep) from heights 0 <= H <= 635 mm, measured from the keel to the free surface. The wedge was instrumented to record vertical position, acceleration, and pressure on the bottom surface. A pressure mapping system, capable of measuring several points over the area of the thin (0.1 mm) film sensor at sampling rates up to 20 kHz, is used and compared to surface-mounted pressure transducers (sampled at 10 kHz). A high speed camera (1000 fps, resolution of 1920 × 1200 pixels) is mounted above the wedge model to record the wetted surface as the wedge descended below the free surface. The pressure measurements taken with both conventional surface pressure transducers and the pressure mapping system agree within 10% of the peak pressure values (0.7 bar, typical). Supported by the Office of Naval Research.
Nakajima, Midori; Wong, Simeon; Widjaja, Elysa; Baba, Shiro; Okanishi, Tohru; Takada, Lynne; Sato, Yosuke; Iwata, Hiroki; Sogabe, Maya; Morooka, Hikaru; Whitney, Robyn; Ueda, Yuki; Ito, Tomoshiro; Yagyu, Kazuyori; Ochi, Ayako; Carter Snead, O; Rutka, James T; Drake, James M; Doesburg, Sam; Takeuchi, Fumiya; Shiraishi, Hideaki; Otsubo, Hiroshi
2018-06-01
To investigate whether advanced dynamic statistical parametric mapping (AdSPM) using magnetoencephalography (MEG) can better localize focal cortical dysplasia at bottom of sulcus (FCDB). We analyzed 15 children with diagnosis of FCDB in surgical specimen and 3 T MRI by using MEG. Using AdSPM, we analyzed a ±50 ms epoch relative to each single moving dipole (SMD) and applied summation technique to estimate the source activity. The most active area in AdSPM was defined as the location of AdSPM spike source. We compared spatial congruence between MRI-visible FCDB and (1) dipole cluster in SMD method; and (2) AdSPM spike source. AdSPM localized FCDB in 12 (80%) of 15 children whereas dipole cluster localized six (40%). AdSPM spike source was concordant within seizure onset zone in nine (82%) of 11 children with intracranial video EEG. Eleven children with resective surgery achieved seizure freedom with follow-up period of 1.9 ± 1.5 years. Ten (91%) of them had an AdSPM spike source in the resection area. AdSPM can noninvasively and neurophysiologically localize epileptogenic FCDB, whether it overlaps with the dipole cluster or not. This is the first study to localize epileptogenic FCDB using MEG. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, Arijit; Singh, Sarnam; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, Ch. Sudhakar; Gupta, Stutee; Pujar, Girish; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, Poonam; Singh, J. S.; Chitale, Vishwas; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, Deepak; Karnatak, Harish; Saran, Sameer; Giriraj, A.; Padalia, Hitendra; Kale, Manish; Nandy, Subrato; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, Chiranjibi; Singh, D. K.; Devagiri, G. M.; Talukdar, Gautam; Panigrahy, Rabindra K.; Singh, Harnam; Sharma, J. R.; Haridasan, K.; Trivedi, Shivam; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, Madhura; Nagabhatla, Nidhi; Prasad, Nupoor; Tripathi, O. P.; Prasad, P. Rama Chandra; Dash, Pushpa; Qureshi, Qamer; Tripathi, S. K.; Ramesh, B. R.; Gowda, Balakrishnan; Tomar, Sanjay; Romshoo, Shakil; Giriraj, Shilpa; Ravan, Shirish A.; Behera, Soumit Kumar; Paul, Subrato; Das, Ashesh Kumar; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, Uma; Menon, A. R. R.; Srivastava, Gaurav; Neeti; Sharma, Subrat; Mohapatra, U. B.; Peddi, Ashok; Rashid, Humayun; Salroo, Irfan; Krishna, P. Hari; Hajra, P. K.; Vergheese, A. O.; Matin, Shafique; Chaudhary, Swapnil A.; Ghosh, Sonali; Lakshmi, Udaya; Rawat, Deepshikha; Ambastha, Kalpana; Malik, Akhtar H.; Devi, B. S. S.; Gowda, Balakrishna; Sharma, K. C.; Mukharjee, Prashant; Sharma, Ajay; Davidar, Priya; Raju, R. R. Venkata; Katewa, S. S.; Kant, Shashi; Raju, Vatsavaya S.; Uniyal, B. P.; Debnath, Bijan; Rout, D. K.; Thapa, Rajesh; Joseph, Shijo; Chhetri, Pradeep; Ramachandran, Reshma M.
2015-07-01
A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge's life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (http://bis.iirs.gov.in).
,
1996-01-01
Many people want maps that show an area of the United States as it existed many years ago. These are called historical maps, and there are two types. The most common type consists of special maps prepared by commercial firms to show such historical features as battle-fields, military routes, or the paths taken by famous travelers. Typically, these maps are for sale to tourists at the sites of historical events. The other type is the truly old map--one compiled by a surveyor or cartographer many years ago. Lewis and Clark, for example, made maps of their journeys into the Northwest Territories in 1803-6, and originals of some of these maps still exist.
Ryazantsev, Mikhail N; Jamal, Adeel; Maeda, Satoshi; Morokuma, Keiji
2015-11-07
Detailed kinetic models (DKMs) are the most fundamental "bottom-up" approaches to computational investigation of the pyrolysis and oxidation of fuels. The weakest points of existing DKMs are incomplete information about the reaction types that can be involved in the potential energy surfaces (PESs) in pyrolysis and oxidation processes. Also, the computational thermodynamic parameters available in the literature vary widely with the level of theory employed. More sophisticated models require improvement both in our knowledge of the type of the reactions involved and the consistency of thermodynamic and kinetic parameters. In this paper, we aim to address these issues by developing ab initio models that can be used to describe early stages of pyrolysis of C1-C3 hydrocarbons. We applied a recently developed global reaction route mapping (GRRM) strategy to systematically investigate the PES of the pyrolysis of C1-C3 hydrocarbons at a consistent level of theory. The reactions are classified into 14 reaction types. The critical points on the PES for all reactions in the network are calculated at the highly accurate UCCSD(T)-F12b/cc-pVTZ//UM06-2X/cc-pVTZ level of theory. The data reported in this paper can be used for first principle calculations of kinetic constants and for a subsequent study on modeling the evolution of the species from the reaction network of the pyrolysis and oxidation of C1-C3 hydrocarbons.
Cost of Illness of Multiple Sclerosis - A Systematic Review
Ernstsson, Olivia; Gyllensten, Hanna; Alexanderson, Kristina; Tinghög, Petter; Friberg, Emilie; Norlund, Anders
2016-01-01
Background Cost-of-illness (COI) studies of Multiple Sclerosis (MS) are vital components for describing the economic burden of MS, and are frequently used in model studies of interventions of MS. We conducted a systematic review of studies estimating the COI of MS, to compare costs between studies and examine cost drivers, emphasizing generalizability and methodological choices. Material and method A literature search on studies published in English on COI of MS was performed in PubMed for the period January 1969 to January 2014, resulting in 1,326 publications. A mapping of studies using a bottom-up approach or top-down approach, respectively, was conducted for the 48 studies assessed as relevant. In a second analysis, the cost estimates were compared between the 29 studies that used a societal perspective on costs, human capital approach for indirect costs, presenting number of patients included, time-period studied, and year of price level used. Results The mapping showed that bottom-up studies and prevalence approaches were most common. The cost ratios between different severity levels within studies were relatively stable, to the ratio of 1 to 2 to 3 for disability level categories. Drugs were the main cost drivers for MS-patients with low disease severity, representing 29% to 82% of all costs in this patient group, while the main cost components for groups with more advanced MS symptoms were production losses due to MS and informal care, together representing 17% to 67% of costs in those groups. Conclusion The bottom-up method and prevalence approach dominated in studies of COI of MS. Our findings show that there are difficulties in comparing absolute costs across studies, nevertheless, the relative costs expressed as cost ratios, comparing different severity levels, showed higher resemblance. Costs of drugs were main cost drivers for less severe MS and informal care and production losses for the most severe MS. PMID:27411042
The land morphology approach to flood risk mapping: An application to Portugal.
Cunha, N S; Magalhães, M R; Domingos, T; Abreu, M M; Küpfer, C
2017-05-15
In the last decades, the increasing vulnerability of floodplains is linked to societal changes such as population density growth, land use changes, water use patterns, among other factors. Land morphology directly influences surface water flow, transport of sediments, soil genesis, local climate and vegetation distribution. Therefore, the land morphology, the land used and management directly influences flood risks genesis. However, attention is not always given to the underlying geomorphological and ecological processes that influence the dynamic of rivers and their floodplains. Floodplains are considered a part of a larger system called Wet System (WS). The WS includes permanent and temporary streams, water bodies, wetlands and valley bottoms. Valley bottom is a broad concept which comprehends not only floodplains but also flat and concave areas, contiguous to streams, in which slope is less than 5%. This will be addressed through a consistent method based on a land morphology approach that classifies landforms according to their hydrological position in the watershed. This method is based on flat areas (slopes less than 5%), surface curvature and hydrological features. The comparison between WS and flood risk data from the Portuguese Environmental Agency for the main rivers of mainland Portugal showed that in downstream areas of watersheds, valley bottoms are coincident with floodplains modelled by hydrological methods. Mapping WS has a particular interest in analysing river ecosystems position and function in the landscape, from upstream to downstream areas in the watershed. This morphological approach is less demanding data and time-consuming than hydrological methods and can be used as the preliminary delimitation of floodplains and potential flood risk areas in situations where there is no hydrological data available. The results were also compared with the land use/cover map at a national level and detailed in Trancão river basin, located in Lisbon metropolitan area, an urbanized basin that suffered heavy flooding in the last decades. This study also contributes to a better understanding of the basin morphology at a local-scale and the effects of soil sealing in downstream flood risks. This work will contribute to the understanding of the morphology, ecology and land use of watersheds that could be used to reduce runoff and downstream flood risk. This can be accomplished by using natural water retention and infiltration methods or higher-level based planning instead of a reaction to local decisions on flood hazards. This morphological approach to map landforms, including wet system, is a valuable tool to assist policy makers and planners in flood risk and land use management, floodplain restoration, agricultural land management practices, and location of human activities according to ecological suitability. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Juan, S.; Lo Iacono, C.; Demestre, M.
2013-01-01
Eleven sites were located on Mediterranean continental shelves to explore the link between the physical characteristics and epibenthic fauna from soft-sediment habitats. These sites, at 32-82 m in depth, were associated with fishing grounds and the trawling intensity was estimated at the site scale to assess the effects of trawling on benthic communities. Each site was surveyed with Multi-Beam (bathymetry and backscatter), side-scan sonar, benthic grabs and a surface dredge. The sites were clustered in three habitat types. Habitat 1, with moderate trawling disturbance, was characterised by homogeneous mud and associated epifauna that was also highly homogeneous across sites. Habitat 2, with sandy mud and scattered gravel and rocks, had a high abundance of sessile suspension feeders that probably attach to the coarser substratum and benefit from the low fishing disturbance in these sites. Habitat 3 included sites with heterogeneous sediments with maërl as the prevailing biocenosis and having the highest species richness, despite being subjected to variable trawling intensity. Statistical models were used to relate environmental parameters and the species abundance. More than 3 physical variables were necessary to explain the epifaunal patterns across sites, including the percentage of mud, sediment heterogeneity and fishing effort. These analyses are an essential step for extrapolating information from benthic samples to the larger scale of habitats, mapped through acoustic surveys. Despite this, a good integration is required between the mapping of physical habitat distribution and the ecological knowledge of communities.
Heider, Katharina; Lopez, Juan Miguel Rodriguez; Scheffran, Jürgen
2018-03-14
Due to the availability of Web 2.0 technologies, volunteered geographic information (VGI) is on the rise. This new type of data is available on many topics and on different scales. Thus, it has become interesting for research. This article deals with the collective potential of VGI and remote sensing to detect peri-urbanization in the conservation zone of Mexico City. On the one hand, remote sensing identifies horizontal urban expansion, and on the other hand, VGI of ecological complaints provides data about informal settlements. This enables the combination of top-down approaches (remote sensing) and bottom-up approaches (ecological complaints). Within the analysis, we identify areas of high urbanization as well as complaint densities and bring them together in a multi-scale analysis using Geographic Information Systems (GIS). Furthermore, we investigate the influence of settlement patterns and main roads on the peri-urbanization process in Mexico City using OpenStreetMap. Peri-urbanization is detected especially in the transition zone between the urban and rural (conservation) area and near main roads as well as settlements.
Spectral saliency via automatic adaptive amplitude spectrum analysis
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan
2016-03-01
Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.
Broshears, R.E.
1991-01-01
To better-understand and predict the potential effect of dredging on water quality at Reelfoot Lake, chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water. Chemical analyses were conducted on samples of lake water, bottom sediment, and elutriate water collected at five stations in the lake during November 1988. Lake water was of the calcium magnesium bicarbonate type with an average dissolved-solids concentration of 120 milligrams per liter. Trace constituents were present in bottom sediments at concentrations representative of their average relative abundance in the earth?s crust. Elutriate waters prepared by mixing bottom sediment and lake water had suspended-solids concentrations as high as 2,000 milligrams per liter which exerted significant oxygen demand Trace constituents in the unfiltered elutriate waters were elevated with respect to lake water; elevated concentrations were attributable to the increased suspended-solids concentrations. Concentrations of total-recoverable copper, lead., and zinc in many elutriate waters exceeded U.S. Environmental Protection Agency?s water-quality criteria for the protection of freshwater aquatic life. The toxicity of elutriate waters, as measured by a 48-hour bioassay with Ceriodaphnia dubia, was low.
Development of Bottom Oil Recovery Systems. Revised
2014-02-01
designed a recovery system based on dredging technology. It could handle harsh wind /wave conditions but has significant logistical requirements, due...Knots m/s Meter(s) per second M/T Motor tanker M/V Motor vessel m Meter or meters m2 Square meters m3 Cubic meters MBTA Migratory Bird ...usable for some bottom types. Wind 30 kts (45-kt gusts) Wave 0-2m (0-5ft) Current 0-2 kts Lightning ɝmiles Minimum depth of about 9m (30 ft
2008-01-01
phenomena. The work of Bergeron et al. [7] was subsequently extended by Braid [8] to incorporate different charge sizes, soil types and improved...place, a series of water hoses is placed in pit bottom to allow the introduction of water into the pit from the bottom. Next, approximately 14.2m3 of... Braid , 17th International MABS Symposium, Las Vegas, USA, June 2002. [8]. M. P. Braid , Defence R&D Canada, Suffield Special Publication, DRES SSSP
Ocean Current Effects on Marine Seismic Systems and Deployments.
1982-01-01
UNCLASSIFIED NOROA-TN 132 N 44, i . 4- iv L~~~ Kr~4~ !jj A r qt4 : ~’~A71 I0 AII ABSTRACT Upper level and near bottom current measurements were made...indicated a variable yet generally slow 1 " current regime which posed minimal threat of cable entanglement. Current [ measurements made 5 m off bottom during...diameters a iv -ALI-- - 1. 1. Introduction Two types of physical oceanographic measurements were supplied by NORDA Code 331 In support of the March-April
Hydrochemistry of the Tumen River Estuary, Sea of Japan
NASA Astrophysics Data System (ADS)
Tishchenko, P. Ya.; Semkin, P. Yu.; Pavlova, G. Yu.; Tishchenko, P. P.; Lobanov, V. B.; Marjash, A. A.; Mikhailik, T. A.; Sagalaev, S. G.; Sergeev, A. F.; Tibenko, E. Yu.; Khodorenko, N. D.; Chichkin, R. V.; Shvetsova, M. G.; Shkirnikova, E. M.
2018-03-01
The hydrological and hydrochemical parameters of the Tumen River estuary were collected at 13 stations in May and October 2015. Vertical temperature, conductivity, dissolved oxygen, chlorophyll fluorescence, and turbidity profiles were obtained. Water was sampled from the surface and bottom layer. The water samples were analyzed for major ions, pH, salinity, concentrations of dissolved oxygen, major nutrients, dissolved organic carbon, humic matter, and δ18O and δD isotopes. This estuary is attributed to microtidal type with a flushing time of about 10 h. A phytoplakton bloom occurred in the top layer of the estuary. For surface horizons, the hydrochemical parameters show a linear correlation with salinity. In the bottom horizons, all these parameters, except for major ions and δ18O and δD isotopes, reveal substantial nonconservative behavior. The nonconservative behavior of the hydrochemical parameters in the bottom waters was mainly caused by degradation of the phytoplankton biomass at the water/sediment interface. Hypoxic conditions were established in the bottom waters of the estuary in May.
Ordered versus Unordered Map for Primitive Data Types
2015-09-01
mapped to some element. C++ provides two types of map containers within the standard template library, the std ::map and the std ::unordered_map...classes. As the name implies, the containers main functional difference is that the elements in the std ::map are ordered by the key, and the std ...unordered_map are not ordered based on their key. The std ::unordered_map elements are placed into “buckets” based on a hash value computed for their key
Chemical composition of sediments from White Sea, Russian Arctic
NASA Astrophysics Data System (ADS)
Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr
2010-05-01
The White Sea, the only Russian inland sea, is located on the north of outlying districts of the European part of Russia, belongs to Arctic Ocean. Area of water of sea occupies about 90 tousend square kilometers. The sea can be divided into some general parts: neck, funnel, basin and 4 Bays: Dvina Bay, Kandalaksha Bay, Mezen Bay and Onega Bay. The purpose of this work was geochemical mapping of the surface sediments of this area. The main tasks were: compilation data base of element composition of the surface sediments, geochemical mapping of each element, research of the anormal concentration of elements on the surface. To detect the content of chemical elements several methods were used: atomic absorption spectrometry (P.P. Shirshov Institute of Oceanology); neutron activation analysis (Vernadsky Institute of Geochemistry and Analytical Chemistry), total and organic carbon analysis, photometric method to detection Si, Al, P (P.P. Shirshov Institute of Oceanology). Bulk composition is one of the fundamental characteristics of sediments and bottom deposites of modern basins. Coarse-grained sediments with portion of pelitic component <50% is spread on the shallow area (Kandalaksha Bay), in areas with high hydrodynamic activity of near-bottom water. Under the conditions of their low activity, fine-grained facies are common(>80%). Character of elements distribution correlates with facial distribution of sediments from White Sea. According to litologic description, bottom surface of Dvina Bay is practically everywhere covered by layer of fine-grained sand. In the border area between Dvina Bay and White Sea basin on terraced subwater slope aleurite politic silts are abundant. They tend to exhange down the slope to clay silts. In Onega Bay fractions of non-deposition are observed. They are characterized by wide spread of thin blanket poorgraded sediments, which are likely to be relic. Relief of Kandalakscha Bay bottom is presented as alternation of abyssal fosses (near 300 m) with silles and elevations (<20 m), and also numerous islands. Thus variety of sediment composition is observed here - from rules and gravels to fine-grained clay silts [1]. The map of distribution of chemical elements was created by using bulk composition data with the help of program ArcView. Mn distribution in sedimentation mass is largely determed by influence of redox diagenesis. Reactive form of Mn dominates over less moving, litogenic form in sedimation mass of White Sea. Litogenic form remains in sediment, reactive form moves into silt near-bottom water, resulting Mn migration both in sediment and near-bottom layer of marine water. Mn oxidizes on the contact with oxygen of marine water and alters into insoluble form MnO2, causing Mn enrichment of surface layer of sediments. Highly movable silt deposit MnO2 and enriched by Mn suspension are moved by underflow and accumulate in bottom depressions and in central part of the sea, which is quite wide from both places of original sedimentation and run off sources [2]. Thus, the interrelation between granulometric composition of sediment and materials concentration can be shown by the example of Mn. Local conditions, leading to accumulation of clastic components, are: 1. Rise of content in sand owning to separation of heavy minerals 2. Rise of content in surface, mainly sandy clay sediments owning to presence of concretions 3. Rise of content in lower bunches roof owning to diagenetic contraction. Authors thank academic Lisitsyn for encourage, Andrey Apletalin for valuable help, and everybody, who helped in field and laboratory research of the White sea sediments. Work was being done under the auspices of Russian foundation of basic research (grants 09-05-10081, 09-05-00658 and 08-05-00860), RSA presidiums program of 17 fundamental researches (project 17.1). References: 1.Kuzmina T., Lein A., Lutchsheva L., Murdmaa I., Novigatsky A., Shevchenko V. Chemical composition of White Sea's sediments // Litology and mineral deposits . 2009. - № 2. - P 115-132. 2.Nevessky E., Medvedev V. , Kalinenko V. White sea, sedimentation and holocoen developmental history. - Moscow.: Nauka, 1977. - 236 p. 3.White Sea and it water collection affected by climatic and antropogenic factors. / under the editorship of Terzhevik A., Filatov N. - Petrozavodsk.: Karelsky nauchny centr RAN, 2007. - 335p
Towards improved bottom-up inventories of methane from the European land surface
NASA Astrophysics Data System (ADS)
Grunwald, Dennis; Fender, Ann-Catrin; Erasmi, Stefan; Jungkunst, Hermann F.
2012-05-01
Forests and wetlands are generally seen as opposites in the methane cycle of terrestrial ecosystems. Wetlands are sources for atmospheric methane and forest soils sinks. However, this greenhouse gas is also emitted by wet forest soils, which is commonly disregarded due to lacking information on their spatial distribution. Here, we estimated the potential bias made for the European methane budget of terrestrial ecosystems when neglecting wet forest ecosystems but including rice paddies and latest estimates for lakes. We appointed distinct annual methane rates for individual land use types based on a literature survey and weighted them according to their European area. This was performed separately for four major ecozones (cold, temperate, continental and Mediterranean). Three approaches were applied: (1) the mean values for forests and wetlands were calculated in three different scenarios, (2) assuming that boreal needle-leaved evergreen forest with a low tree cover (<40%) is predominately forested wetland (3) assuming different shares of wet forest ecosystems in individual forest areas. For the net balance 2.8 Tg CH4-C a-1 were calculated which includes emissions from rice paddies (0.2 Tg CH4-C a-1) and from lakes (2.5 Tg CH4-C a-1). The different approaches for the net balances that included wet forest ecosystems mainly ranged between 4.6 and 6.7 Tg CH4-C a-1. The results suggest that wet forest ecosystems are approximately as important as wetlands for the European methane balance. European bottom-up inventories are improved best by more accurate mapping of wetlands both within and outside forests and more flux data for lakes and continental wetlands.
Object detection via eye tracking and fringe restraint
NASA Astrophysics Data System (ADS)
Pan, Fei; Zhang, Hanming; Zeng, Ying; Tong, Li; Yan, Bin
2017-07-01
Object detection is a computer vision problem which caught a large amount of attention. But the candidate boundingboxes extracted from only image features may end up with false-detection due to the semantic gap between the top-down and the bottom up information. In this paper, we propose a novel method for generating object bounding-boxes proposals using the combination of eye fixation point, saliency detection and edges. The new method obtains a fixation orientated Gaussian map, optimizes the map through single-layer cellular automata, and derives bounding-boxes from the optimized map on three levels. Then we score the boxes by combining all the information above, and choose the box with the highest score to be the final box. We perform an evaluation of our method by comparing with previous state-ofthe art approaches on the challenging POET datasets, the images of which are chosen from PASCAL VOC 2012. Our method outperforms them on small scale objects while comparable to them in general.
Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data
NASA Technical Reports Server (NTRS)
Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan
2013-01-01
High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.
Wanty, Richard B.; Wang, Bronwen; Vohden, Jim; Day, Warren C.; Gough, Larry P.; Gough, Larry P.; Day, Warren C.
2007-01-01
The thickest (>3 meters) and most extensive aufeis (100’s of meters to kilometers along valleys) coincided with locations of laterally extensive (>5 kilometers) mapped high-angle brittle fault zones, suggesting that the fault zones are hydraulically conductive. Additional evidence of water flow is provided by observed changes in stream-water chemistry in reaches in which aufeis forms, despite a lack of surface tributaries. Minor or no aufeis was observed in many other drainage valleys where no laterally extensive structures have been mapped, implying that aufeis formation results from more than a topographic effect or discharge from bank storage. Thus, the presence of thick, laterally extensive aufeis in highgradient streams may be a useful aid to geologic structural mapping in arctic and subarctic climates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, D.L.; Wagner, J.B.
1988-09-01
Before siting oil and gas platforms on the sea floor as artificial reefs offshore Louisiana, potentially hazardous and unstable geologic conditions must be identified and evaluated to assess their possible impacts on platform stability. Geologic and man-made features can be identified and assessed from high-resolution geophysical techniques (3.5-7.0 kHz echograms, single-channel seismic, and side-scan sonar). Such features include faults, diapirs, scarps, channels, gas seeps, irregular sea floor topography, mass wasting deposits (slumps, slides, and debris flows), pipelines, and other subsea marine equipment. Geotechnical techniques are utilized to determine lithologic and physical properties of the sediments for correlation with the geophysicalmore » data. These techniques are used to develop a series of geologic maps, cross sections, and pipeline and platform-location maps. Construction of echo-character maps from 3.5-kHz data provides an analysis of near-bottom sedimentation processes (turbidity currents and debris flows).« less
The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention
Bekisz, Marek; Bogdan, Wojciech; Ghazaryan, Anaida; Waleszczyk, Wioletta J.; Kublik, Ewa; Wróbel, Andrzej
2016-01-01
Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation. PMID:26730705
A hybrid 3D spatial access method based on quadtrees and R-trees for globe data
NASA Astrophysics Data System (ADS)
Gong, Jun; Ke, Shengnan; Li, Xiaomin; Qi, Shuhua
2009-10-01
3D spatial access method for globe data is very crucial technique for virtual earth. This paper presents a brand-new maintenance method to index 3d objects distributed on the whole surface of the earth, which integrates the 1:1,000,000- scale topographic map tiles, Quad-tree and R-tree. Furthermore, when traditional methods are extended into 3d space, the performance of spatial index deteriorates badly, for example 3D R-tree. In order to effectively solve this difficult problem, a new algorithm of dynamic R-tree is put forward, which includes two sub-procedures, namely node-choosing and node-split. In the node-choosing algorithm, a new strategy is adopted, not like the traditional mode which is from top to bottom, but firstly from bottom to top then from top to bottom. This strategy can effectively solve the negative influence of node overlap. In the node-split algorithm, 2-to-3 split mode substitutes the traditional 1-to-2 mode, which can better concern the shape and size of nodes. Because of the rational tree shape, this R-tree method can easily integrate the concept of LOD. Therefore, it will be later implemented in commercial DBMS and adopted in time-crucial 3d GIS system.
Wigman, J T W; van Os, J; Borsboom, D; Wardenaar, K J; Epskamp, S; Klippel, A; Viechtbauer, W; Myin-Germeys, I; Wichers, M
2015-08-01
It has been suggested that the structure of psychopathology is best described as a complex network of components that interact in dynamic ways. The goal of the present paper was to examine the concept of psychopathology from a network perspective, combining complementary top-down and bottom-up approaches using momentary assessment techniques. A pooled Experience Sampling Method (ESM) dataset of three groups (individuals with a diagnosis of depression, psychotic disorder or no diagnosis) was used (pooled N = 599). The top-down approach explored the network structure of mental states across different diagnostic categories. For this purpose, networks of five momentary mental states ('cheerful', 'content', 'down', 'insecure' and 'suspicious') were compared between the three groups. The complementary bottom-up approach used principal component analysis to explore whether empirically derived network structures yield meaningful higher order clusters. Individuals with a clinical diagnosis had more strongly connected moment-to-moment network structures, especially the depressed group. This group also showed more interconnections specifically between positive and negative mental states than the psychotic group. In the bottom-up approach, all possible connections between mental states were clustered into seven main components that together captured the main characteristics of the network dynamics. Our combination of (i) comparing network structure of mental states across three diagnostically different groups and (ii) searching for trans-diagnostic network components across all pooled individuals showed that these two approaches yield different, complementary perspectives in the field of psychopathology. The network paradigm therefore may be useful to map transdiagnostic processes.
Fabrizio, Mary C.; Adams, Jean V.; Curtis, Gary L.
1997-01-01
The Lake Michigan fish community has been monitored since the 1960s with bottom trawls, and since the late 1980s with acoustics and midwater trawls. These sampling tools are limited to different habitats: bottom trawls sample fish near bottom in areas with smooth substrates, and acoustic methods sample fish throughout the water column above all substrate types. We compared estimates of fish densities and species richness from daytime bottom trawling with those estimated from night-time acoustic and midwater trawling at a range of depths in northeastern Lake Michigan in summer 1995. We examined estimates of total fish density as well as densities of alewife Alosa pseudoharengus (Wilson), bloater Coregonus hoyi (Gill), and rainbow smelt Osmerus mordax (Mitchell) because these three species are the dominant forage of large piscivores in Lake Michigan. In shallow water (18 m), we detected more species but fewer fish (in fish/ha and kg/ha) with bottom trawls than with acoustic-midwater trawling. Large aggregations of rainbow smelt were detected by acoustic-midwater trawling at 18 m and contributed to the differences in total fish density estimates between gears at this depth. Numerical and biomass densitites of bloaters from all depths were significantly higher when based on bottom trawl samples than on acoustic-midwater trawling, and this probably contributed to the observed significant difference between methods for total fish densities (kg/ha) at 55 m. Significantly fewer alewives per ha were estimated from bottom trawling than from acoustics-midwater trawling at 55 m, and in deeper waters, no alewives were taken by bottom trawling. The differences detected between gears resulted from alewife, bloater, and rainbow smelt vertical distributions, which varied with lake depth and time of day. Because Lake Michigan fishes are both demersal and pelagic, a single sampling method cannot be used to completely describe characteristics of the fish community.
A SiC LDMOS with electric field modulation by a step compound drift region
NASA Astrophysics Data System (ADS)
Bao, Meng-tian; Wang, Ying; Yu, Cheng-hao; Cao, Fei
2018-07-01
In this paper, we propose a SiC LDMOS structure with a step compound drift region (SC-LDMOS). The proposed device has a compound drift region which consists of an n-type top layer, a step p-type middle layer and an n-type bottom layer. The step p-type middle layer can introduce two new electric field peaks and uniform the distribution of the electric field in the n-type top layer, which can modulate the surface electric field and improve the breakdown voltage of the proposed structure. In addition, the n-type bottom layer is applied under the heavy doping p-type middle layer,which contributes to realize the charge balance. Furthermore, it can also increase the doping concentration of the n-type top layer, which can decrease the on resistance of the proposed device. As a simulated result, the proposed device obtain a high BV of 976 V and a low Rsp,on of 7.74 mΩ·cm2. Compared with the conventional single REUSRF LDMOS and triple RESURF LDMOS, BV of proposed device is enhanced by 42.5% and 14.7%, respectively and Rsp,on is reduced by 37.3% and 30.9%, respectively. Meanwhile, the switching delays of the proposed device are significantly shorter than the conventional triple RESURF LDMOS.
NASA Astrophysics Data System (ADS)
Bezhenar, Roman; Jung, Kyung Tae; Maderich, Vladimir; Willemsen, Stefan; de With, Govert; Qiao, Fangli
2015-04-01
A catastrophic earthquake and tsunami occurred on March 11, 2011 and severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) that resulted in an uncontrolled release of radioactivity into air and ocean. Around 80% of the radioactivity released due to the FDNPP accident in March-April 2011 was either directly discharged into the ocean or deposited onto the ocean surface from the atmosphere. A large amount of long-lived radionuclides (mainly Cs-137) were released into the environment. The concentration of radionuclides in the ocean reached a maximum in mid-April of 2011, and then gradually decreased. From 2011 the concentration of Cs-137 in water essentially fell except the area around the FDNPP where leaks of contaminated water are continued. However, in the bottom sediment high concentrations of Cs-137 were found in the first months after the accident and slowly decreased with time. Therefore, it should be expected that a time delay is found of sediment-bound radionuclides in marine organisms. For the modeling of radionuclide transfer from highly polluted bottom sediments to marine organisms the dynamical food chain model BURN-POSEIDON (Heling et al, 2002; Maderich et al., 2014) was extended. In this model marine organisms are grouped into a limited number of classes based on their trophic level and type of species. These include: phytoplankton, zooplankton, fishes (two types: piscivorous and non-piscivorous), crustaceans, and molluscs for pelagic food chain and bottom sediment invertebrates, demersal fishes and bottom predators for benthic food chain and whole water column predators feeding by pelagial and benthic fishes. Bottom invertebrates consume organic parts of bottom sediments with adsorbed radionuclides which then migrate through the food chain. All organisms take radionuclides directly from water as well as via food. In fishes where radioactivity is not homogeneously distributed over all tissues of the organism, it is assumed that radionuclide accumulates in a specific tissue called target tissue. This tissue (bone, flesh, stomach, and organs) controls the overall elimination rate of the nuclide in the organism. The model prediction for the coastal area around the FDNPP agree well with observations. In addition the effects from the Chernobyl accident on the Baltic Sea are modelled and these results also are in good agreement with available data. These results demonstrate the importance of the benthic food chain in long-term transfer of radionuclides from high polluted bottom sediments to the marine organisms. The developed model can be applied for different regions of the World Ocean.
49 CFR 178.970 - Bottom lift test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Large Packagings design types designed to be lifted from the base, there may be no permanent deformation which renders the Large Packaging unsafe for transport and there must be no loss of contents. ... permissible gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design types...
49 CFR 178.970 - Bottom lift test.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Packagings design types designed to be lifted from the base, there may be no permanent deformation which renders the Large Packaging unsafe for transport and there must be no loss of contents. ... gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design types must be...
49 CFR 178.970 - Bottom lift test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Packagings design types designed to be lifted from the base, there may be no permanent deformation which renders the Large Packaging unsafe for transport and there must be no loss of contents. ... gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design types must be...
49 CFR 178.970 - Bottom lift test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Packagings design types designed to be lifted from the base, there may be no permanent deformation which renders the Large Packaging unsafe for transport and there must be no loss of contents. ... gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design types must be...
49 CFR 178.970 - Bottom lift test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Packagings design types designed to be lifted from the base, there may be no permanent deformation which renders the Large Packaging unsafe for transport and there must be no loss of contents. ... gross mass, the load being evenly distributed. (c) Test method. All Large Packaging design types must be...
Non-Unitary Boson Mapping and Its Application to Nuclear Collective Motions
NASA Astrophysics Data System (ADS)
Takada, K.
First, the general theory of boson mapping for even-number many-fermion systems is surveyed. In order to overcome the confusion concerning the so-called unphysical or spurious states in the boson mapping, the correct concept of the unphysical states is precisely given in a clear-cut way. Next, a method to apply the boson mapping to a truncated many-fermion Hilbert space consisting of collective phonons is proposed, by putting special emphasis on the Dyson-type non-unitary boson mapping. On the basis of this method, it becomes possible for the first time to apply the Dyson-type boson mapping to analyses of collective motions in realistic nuclei. This method is also extended to be applicable to odd-number-fermion systems. As known well, the Dyson-type boson mapping is a non-unitary transformation and it gives a non-Hermitian boson Hamiltonian. It is not easy (but not impossible) to solve the eigenstates of the non-Hermitian Hamiltonian. A Hermitian treatment of this non-Hermitian eigenvalue problem is discussed and it is shown that this treatment is a very good approximation. Using this Hermitian treatment, we can obtain the normal-ordered Holstein-Primakoff-type boson expansion in the multi-collective-phonon subspace. Thereby the convergence of the boson expansion can be tested. Some examples of application of the Dyson-type non-unitary boson mapping to simplified models and realistic nuclei are also shown, and we can see that it is quite useful for analysis of the collective motions in realistic nuclei. In contrast to the above-mentioned ordinary type of boson mapping, which may be called a ``static'' boson mapping, the Dyson-type non-unitary selfconsistent-collective-coordinate method is discussed. The latter is, so to speak, a ``dynamical'' boson mapping, which is a dynamical extension of the ordinary boson mapping to be capable to include the coupling effects from the non-collective degrees of freedom selfconsistently. Thus all of the Dyson-type non-unitary boson mapping from A to Z is summarized in this paper.
NASA Astrophysics Data System (ADS)
Oberle, F. J.; Cheriton, O. M.; Hanebuth, T. J. J.
2014-12-01
The effect of bottom trawling activities on continental shelves has been a topic of interest for both fishery resource studies and ecological impact studies for a while. However, the impact of demersal fishing gear was almost exclusively studied from a perspective of its effects on benthic fauna, but recently it has also attracted attention due to its profound impact on sediments. Here we present the first study to quantify the trawling-induced sediment resuspension effect by combining satellite-based spatial patterns of bottom trawling with quantitative measurements of induced sediment plumes. This study examined high-resolution GPS vessel monitoring data from one year (2011-2012) to quantify the sedimentary budget caused by bottom trawling activity for the entire NW Iberian shelf, an area that is widely affected by chronic (continuous and intensive) commercial bottom trawling and is exemplary for many other narrow shelves worldwide. By filtering the GPS data by vessel type, vessel speed, and geometry of the trawl path, we resolved geographically detailed bottom trawling activities with varying local trawling intensities depending both on legal restrictions and bedrock geomorphology. Initial results show that trawling-induced resuspended sediments mark a significant if not dominant factor for a source to sink sedimentary budget, as they are calculated to be approximately two times as large as fluvial sedimentary input to the shelf. Ultimately, these results not only allow for a trawling affected sediment budget but also significantly help with marine management decisions by allowing to predict the mobilization and transport of sediment caused by bottom trawling gear at the level of a specific fishing fleet or ecosystem.
National Park Service Vegetation Inventory Program, Cuyahoga Valley National Park, Ohio
Hop, Kevin D.; Drake, J.; Strassman, Andrew C.; Hoy, Erin E.; Menard, Shannon; Jakusz, J.W.; Dieck, J.J.
2013-01-01
The National Park Service (NPS) Vegetation Inventory Program (VIP) is an effort to classify, describe, and map existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VIP is managed by the NPS Biological Resources Management Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey (USGS) Vegetation Characterization Program lends a cooperative role in the NPS VIP. The USGS Upper Midwest Environmental Sciences Center, NatureServe, and NPS Cuyahoga Valley National Park (CUVA) have completed vegetation classification and mapping of CUVA.Mappers, ecologists, and botanists collaborated to identify and describe vegetation types within the National Vegetation Classification Standard (NVCS) and to determine how best to map them by using aerial imagery. The team collected data from 221 vegetation plots within CUVA to develop detailed descriptions of vegetation types. Data from 50 verification sites were also collected to test both the key to vegetation types and the application of vegetation types to a sample set of map polygons. Furthermore, data from 647 accuracy assessment (AA) sites were collected (of which 643 were used to test accuracy of the vegetation map layer). These data sets led to the identification of 45 vegetation types at the association level in the NVCS at CUVA.A total of 44 map classes were developed to map the vegetation and general land cover of CUVA, including the following: 29 map classes represent natural/semi-natural vegetation types in the NVCS, 12 map classes represent cultural vegetation (agricultural and developed) in the NVCS, and 3 map classes represent non-vegetation features (open-water bodies). Features were interpreted from viewing color-infrared digital aerial imagery dated October 2010 (during peak leaf-phenology change of trees) via digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems (GIS). The interpreted data were digitally and spatially referenced, thus making the spatial database layers usable in GIS. Polygon units were mapped to either a 0.5 ha or 0.25 ha minimum mapping unit, depending on vegetation type.A geodatabase containing various feature-class layers and tables shows the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, verification sites, AA sites, project boundary extent, and aerial photographic centers. The feature-class layer and relate tables for the CUVA vegetation map provides 4,640 polygons of detailed attribute data covering 13,288.4 ha, with an average polygon size of 2.9 ha.Summary reports generated from the vegetation map layer show map classes representing natural/semi-natural types in the NVCS apply to 4,151 polygons (89.4% of polygons) and cover 11,225.0 ha (84.5%) of the map extent. Of these polygons, the map layer shows CUVA to be 74.4% forest (9,888.8 ha), 2.5% shrubland (329.7 ha), and 7.6% herbaceous vegetation cover (1,006.5 ha). Map classes representing cultural types in the NVCS apply to 435 polygons (9.4% of polygons) and cover 1,825.7 ha (13.7%) of the map extent. Map classes representing non-NVCS units (open water) apply to 54 polygons (1.2% of polygons) and cover 237.7 ha (1.8%) of the map extent.A thematic AA study was conducted of map classes representing natural/semi-natural types in the NVCS. Results present an overall accuracy of 80.7% (kappa index of 79.5%) based on data from 643 of the 647 AA sites. Most individual map-class themes exceed the NPS VIP standard of 80% with a 90% confidence interval.The CUVA vegetation mapping project delivers many geospatial and vegetation data products in hardcopy and/or digital formats. These products consist of an in-depth project report discussing methods and results, which include descriptions and a dichotomous key to vegetation types, map classification and map-class descriptions, and a contingency table showing AA results. The suite of products also includes a database of vegetation plots, verification sites, and AA sites; digital pictures of field sites; field data sheets; aerial photographic imagery; hardcopy and digital maps; and a geodatabase of vegetation types and land cover (map layer), fieldwork locations (vegetation plots, verification sites, and AA sites), aerial photographic index, project boundary, and metadata. All geospatial products are projected in Universal Transverse Mercator, Zone 17, by using the North American Datum of 1983. Information on the NPS VIP and completed park mapping projects are located on the Internet at
Regional Geological Maps of the Northeast Pacific - Standard Navy Ocean Area NP-9
1978-01-01
creates the next Washington, and British Columbia. All the land area, except island in the chain. Thus, many island chains, for example. the that seaward of...the San Andreas Fault of California, is part of Hawaiian Islands , seem to indicate the path of the plate over the North American Plate. such "hot...turbiditc deposition from the nearby been deposited by bottom currents, volcanic sources such as the Hawaiian Islands and from the deposition of sediments
Dangerous nutrients: evolution of phytoplankton resource uptake subject to virus attack.
Menge, Duncan N L; Weitz, Joshua S
2009-03-07
Phytoplankton need multiple resources to grow and reproduce (such as nitrogen, phosphorus, and iron), but the receptors through which they acquire resources are, in many cases, the same channels through which viruses attack. Therefore, phytoplankton can face a bottom-up vs. top-down tradeoff in receptor allocation: Optimize resource uptake or minimize virus attack? We investigate this top-down vs. bottom-up tradeoff using an evolutionary ecology model of multiple essential resources, specialist viruses that attack through the resource receptors, and a phytoplankton population that can evolve to alter the fraction of receptors used for each resource/virus type. Without viruses present the singular continuously stable strategy is to allocate receptors such that resources are co-limiting, which also minimizes the equilibrium concentrations of both resources. Only one virus type can be present at equilibrium (because phytoplankton, in this model, are a single resource for viruses), and when a virus type is present, it controls the equilibrium phytoplankton population size. Despite this top-down control on equilibrium densities, bottom-up control determines the evolutionary outcome. Regardless of which virus type is present, the allocation strategy that yields co-limitation between the two resources is continuously stable. This is true even when the virus type attacking through the limiting resource channel is present, even though selection for co-limitation in this case decreases the equilibrium phytoplankton population and does not decrease the equilibrium concentration of the limiting resource. Therefore, although moving toward co-limitation and decreasing the equilibrium concentration of the limiting resource often co-occur in models, it is co-limitation, and not necessarily the lowest equilibrium concentration of the limiting resource, that is the result of selection. This result adds to the growing body of literature suggesting that co-limitation at equilibrium is a winning strategy.
Defect sensitive etching of hexagonal boron nitride single crystals
NASA Astrophysics Data System (ADS)
Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam
2017-12-01
Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.
Influence of aerosol estimation on coastal water products retrieved from HICO images
NASA Astrophysics Data System (ADS)
Patterson, Karen W.; Lamela, Gia
2011-06-01
The Hyperspectral Imager for the Coastal Ocean (HICO) is a hyperspectral sensor which was launched to the International Space Station in September 2009. The Naval Research Laboratory (NRL) has been developing the Coastal Water Signatures Toolkit (CWST) to estimate water depth, bottom type and water column constituents such as chlorophyll, suspended sediments and chromophoric dissolved organic matter from hyperspectral imagery. The CWST uses a look-up table approach, comparing remote sensing reflectance spectra observed in an image to a database of modeled spectra for pre-determined water column constituents, depth and bottom type. In order to successfully use this approach, the remote sensing reflectances must be accurate which implies accurately correcting for the atmospheric contribution to the HICO top of the atmosphere radiances. One tool the NRL is using to atmospherically correct HICO imagery is Correction of Coastal Ocean Atmospheres (COCOA), which is based on Tafkaa 6S. One of the user input parameters to COCOA is aerosol optical depth or aerosol visibility, which can vary rapidly over short distances in coastal waters. Changes to the aerosol thickness results in changes to the magnitude of the remote sensing reflectances. As such, the CWST retrievals for water constituents, depth and bottom type can be expected to vary in like fashion. This work is an illustration of the variability in CWST retrievals due to inaccurate aerosol thickness estimation during atmospheric correction of HICO images.
Model Prediction Results for 2007 Ultrasonic Benchmark Problems
NASA Astrophysics Data System (ADS)
Kim, Hak-Joon; Song, Sung-Jin
2008-02-01
The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.
IntegratedMap: a Web interface for integrating genetic map data.
Yang, Hongyu; Wang, Hongyu; Gingle, Alan R
2005-05-01
IntegratedMap is a Web application and database schema for storing and interactively displaying genetic map data. Its Web interface includes a menu for direct chromosome/linkage group selection, a search form for selection based on mapped object location and linkage group displays. An overview display provides convenient access to the full range of mapped and anchored object types with genetic locus details, such as numbers, types and names of mapped/anchored objects displayed in a compact scrollable list box that automatically updates based on selected map location and object type. Also, multilinkage group and localized map views are available along with links that can be configured for integration with other Web resources. IntegratedMap is implemented in C#/ASP.NET and the package, including a MySQL schema creation script, is available from http://cggc.agtec.uga.edu/Data/download.asp
Temporal relation between top-down and bottom-up processing in lexical tone perception
Shuai, Lan; Gong, Tao
2013-01-01
Speech perception entails both top-down processing that relies primarily on language experience and bottom-up processing that depends mainly on instant auditory input. Previous models of speech perception often claim that bottom-up processing occurs in an early time window, whereas top-down processing takes place in a late time window after stimulus onset. In this paper, we evaluated the temporal relation of both types of processing in lexical tone perception. We conducted a series of event-related potential (ERP) experiments that recruited Mandarin participants and adopted three experimental paradigms, namely dichotic listening, lexical decision with phonological priming, and semantic violation. By systematically analyzing the lateralization patterns of the early and late ERP components that are observed in these experiments, we discovered that: auditory processing of pitch variations in tones, as a bottom-up effect, elicited greater right hemisphere activation; in contrast, linguistic processing of lexical tones, as a top-down effect, elicited greater left hemisphere activation. We also found that both types of processing co-occurred in both the early (around 200 ms) and late (around 300–500 ms) time windows, which supported a parallel model of lexical tone perception. Unlike the previous view that language processing is special and performed by dedicated neural circuitry, our study have elucidated that language processing can be decomposed into general cognitive functions (e.g., sensory and memory) and share neural resources with these functions. PMID:24723863
NASA Astrophysics Data System (ADS)
Zhang, M.; English, D. C.; Hu, C.; Carlson, P. R., Jr.; Muller-Karger, F. E.; Toro-Farmer, G.; Herwitz, S. R.
2016-02-01
An atmospheric correction algorithm has been developed for AISA imagery over optically shallow waters in Sugarloaf Key of the Florida Keys. The AISA data were collected repeatedly during several days in May 2012, October 2012, and May 2013. A non-zero near-infrared (NIR) remote sensing reflectance (Rrs) was accounted for through iterations, based on the relationship of field-measured Rrs between the NIR and red wavelengths. Validation showed mean ratios of 0.94 to 1.002 between AISA-derived and field-measured Rrs in the blue to red wavelengths, with uncertainties generally < 0.002 sr-1. Such an approach led to observations of diurnal changes of AISA-derived Rrs from repeated measurements over waters with bottom types of seagrass meadow, sand, and patch reef, which were driven by tides and/or winds depending on the bottom types. Rrs generally increased with decreasing tidal height and increasing wind speed, with more changes observed over sandy bottom than over seagrass as explained by changes in water turbidity (light attenuation) and bottom contributions. Some of these changes are larger than two times of the Rrs uncertainties from the AISA retrievals, therefore representing statistically significant changes that can be well observed from airborne measurements. The case study suggests that repeated airborne measurements may be used to study short-term changes in shallow water environments, and such a capacity may be enhanced with future geostationary satellite missions specifically designed to observe coastal ecosystems.
Successful Teaching, Learning, and Use of Digital Mapping Technology in Mazvihwa, Rural Zimbabwe
NASA Astrophysics Data System (ADS)
Eitzel Solera, M. V.; Madzoro, S.; Solera, J.; Mhike Hove, E.; Changarara, A.; Ndlovu, D.; Chirindira, A.; Ndlovu, A.; Gwatipedza, S.; Mhizha, M.; Ndlovu, M.
2016-12-01
Participatory mapping is now a staple of community-based work around the world. Particularly for indigenous and rural peoples, it can represent a new avenue for environmental justice and can be a tool for culturally appropriate management of local ecosystems. We present a successful example of teaching and learning digital mapping technology in rural Zimbabwe. Our digital mapping project is part of the long-term community-based participatory research of The Muonde Trust in Mazvihwa, Zimbabwe. By gathering and distributing local knowledge and also bringing in visitors to share knowledge, Muonde has been able to spread relevant information among rural farmers. The authors were all members of Muonde or were Muonde's visitors, and were mentors and learners of digital mapping technologies at different times. Key successful characteristics of participants included patience, compassion, openness, perseverance, respect, and humility. Important mentoring strategies included: 1) instruction in Shona and in English, 2) locally relevant examples, assignments, and analogies motivated by real needs, 3) using a variety of teaching methods for different learning modalities, 4) building on and modifying familiar teaching methods, and 5) paying attention to the social and relational aspects of teaching and learning. The Muonde mapping team has used their new skills for a wide variety of purposes, including: identifying, discussing, and acting on emerging needs; using digital mapping for land-use and agropastoral planning; and using mapping as a tool for recording and telling important historical and cultural stories. Digital mapping has built self-confidence as well as providing employable skills and giving Muonde more visibility to other local and national non-governmental organizations, utility companies, and educational institutions. Digital mapping, as taught in a bottom-up, collaborative way, has proven to be both accessible and of enormous practical use to rural Zimbabweans.
Geochemical exploration for mineralized breccia pipes in northern Arizona, U.S.A.
Wenrich, K.J.
1986-01-01
Thousands of solution-collapse breccia pipe crop out in the canyons and on the plateaus of northern Arizona. Over 80 of these are known to contain U or Cu mineralized rock. The high-grade U ore associated with potentially economic concentrations of Ag, Pb, Zn, Cu, Co and Ni in some of these pipes has continued to stimulate mining and exploration activity in northern Arizona, despite periods of depressed U prices. Large expanses of northern Arizona are comprised of undissected high plateaus; recognition of pipes in these areas is particularly important because mining access to the plateaus is far better than to the canyons. The small size of the pipes, generally less than 600 ft (200 m) in diameter, and limited rock outcrop on the plateaus, compounds the recognition problem. Although the breccia pipes, which bottom in the Mississippian Redwall Limestone, are occasionally exposed on the plateaus as circular features, so are unmineralized near-surface collapse features that bottom in the Permian Kaibab and Toroweap Formations. The distinction between these two classes of circular features is critical during exploration for this unique type of U deposit. Various geochemical and geophysical exploration methods have been tested over these classes of collapse features. Because of the small size of the deposits, and the low-level geochemical signatures in the overlying rock that are rarely dispersed for distances in excess of several hundred feet, most reconnaissance geochemical surveys, such as hydrogeochemistry or stream sediment, will not delineete mineralized pipes. Several types of detailed geochemical surveys made over collapse features, located through examination of aerial photographs and later field mapping, have been successful at delineating collapse features from the surrounding host rock: (1) Rock geochemistry commonly shows low level Ag, As, Ba, Co, Cu, Ni, Pb, Se and Zn anomalies over mineralized breccia pipes; (2) Soil surveys appear to have the greatest potential for distinguishing mineralized breccia pipes from the surrounding terrane. Although the soil anomalies are only twice the background concentrations for most anomalous elements, traverses made over collapse features show consistent enrichment inside of the feature as compared to outside; (3) B. Cereus surveys over a known mineralized pipe show significantly more anomalous samples collected from within the ring fracture than from outside of the breccia pipe; (4) Helium soil-gas surveys were made over 7 collapse features with discouraging results from 5 of the 7 features. Geophysical surveys indicate that scaler audio-magnetotelluric (AMT) and E-field telluric profile data show diagnostic conductivity differences over mineralized pipes as compared to the surrounding terrane. These surveys, coupled with the geochemical surveys conducted as detailed studies over features mapped by field and aerial photograph examination, can be a significant asset in the selection of potential breccia pipes for drilling. ?? 1986.
NASA Astrophysics Data System (ADS)
Kramer, K.; Shedd, W. W.
2017-12-01
In May, 2017, the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) published a high-resolution seafloor map of the northern Gulf of Mexico region. The new map, derived from 3-D seismic surveys, provides the scientific community with enhanced resolution and reveals previously undiscovered and poorly resolved geologic features of the continental slope, salt minibasin province, abyssal plain, Mississippi Fan, and the Florida Shelf and Escarpment. It becomes an even more powerful scientific tool when paired with BOEM's public database of 35,000 seafloor features, identifying natural hydrocarbon seeps, hard grounds, mud volcanoes, sediment flows, pockmarks, slumps, and many others. BOEM has mapped the Gulf of Mexico seafloor since 1998 in a regulatory mission to identify natural oil and gas seeps and protect the coral and chemosynthetic communities growing at those sites. The nineteen-year mapping effort, still ongoing, resulted in the creation of the 1.4-billion pixel map and the seafloor features database. With these tools and continual collaboration with academia, professional scientific institutions, and the offshore energy industry, BOEM will continue to incorporate new data to update and expand these two resources on a regular basis. They can be downloaded for free from BOEM's website at https://www.boem.gov/Gulf-of-Mexico-Deepwater-Bathymetry/ and https://www.boem.gov/Seismic-Water-Bottom-Anomalies-Map-Gallery/.
Channel Bottom Morphology in the Deltaic Reach of the Song Hau (mekong) River Channel in Vietnam
NASA Astrophysics Data System (ADS)
Allison, M. A.; Weathers, H. D., III; Meselhe, E. A.
2016-02-01
Boat-based, channel bathymetry and bankline elevation studies were conducted in the tidal and estuarine Mekong River channel using multibeam bathymetry and LIDAR corrected for elevation by RTK satellite positioning. Two mapping campaigns, one at high discharge in October 2014 and one at low discharge in March 2015, were conducted in the lower 100 km reach of the Song Hau distributary channel to (1) examine bottom morphology and its relationship to sediment transport, and (2) to provide information to setup the grid for a multi-dimensional and reduced complexity models of channel hydrodynamics and sediment dynamics. Sand fields were identified in multibeam data by the presence of dunes that were as large as 2-4 m high and 40-80 m wavelength and by clean sands in bottom grabs. Extensive areas of sand at the head and toe of mid-channel islands displayed 10-25 m diameter circular pits that could be correlated with bucket dredge, sand mining activities observed at some of the sites. Large areas of the channel floor were relict (containing little or no modern sediment) in the high discharge campaign, identifiable by the presence of along channel erosional furrows and terraced outcrops along the channel floor and margins. Laterally extensive flat areas were also observed in the channel thalweg. Both these and the relict areas were sampled by bottom grab as stiff silty clays. Complex cross-channel combinations of these morphologies were observed in some transects, suggesting strong bottom steering of tidal and riverine currents. Relative to high discharge, transects above and below the salt penetration limit showed evidence of shallowing in the thalweg and adjacent sloping areas at low discharge in March 2015. This shallowing, combined with the reduced extent of sand fields and furrowed areas, and soft muds in grabs, suggests seasonal trapping of fine grained sediment is occurring by estuarine and tidal circulation.
Accurate and reproducible functional maps in 127 human cell types via 2D genome segmentation
Hardison, Ross C.
2017-01-01
Abstract The Roadmap Epigenomics Consortium has published whole-genome functional annotation maps in 127 human cell types by integrating data from studies of multiple epigenetic marks. These maps have been widely used for studying gene regulation in cell type-specific contexts and predicting the functional impact of DNA mutations on disease. Here, we present a new map of functional elements produced by applying a method called IDEAS on the same data. The method has several unique advantages and outperforms existing methods, including that used by the Roadmap Epigenomics Consortium. Using five categories of independent experimental datasets, we compared the IDEAS and Roadmap Epigenomics maps. While the overall concordance between the two maps is high, the maps differ substantially in the prediction details and in their consistency of annotation of a given genomic position across cell types. The annotation from IDEAS is uniformly more accurate than the Roadmap Epigenomics annotation and the improvement is substantial based on several criteria. We further introduce a pipeline that improves the reproducibility of functional annotation maps. Thus, we provide a high-quality map of candidate functional regions across 127 human cell types and compare the quality of different annotation methods in order to facilitate biomedical research in epigenomics. PMID:28973456
Updating categorical soil maps using limited survey data by Bayesian Markov chain cosimulation.
Li, Weidong; Zhang, Chuanrong; Dey, Dipak K; Willig, Michael R
2013-01-01
Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited survey data provided that qualified legacy maps are available. A case study using synthetic data demonstrates that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty. We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data.
Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation
Dey, Dipak K.; Willig, Michael R.
2013-01-01
Updating categorical soil maps is necessary for providing current, higher-quality soil data to agricultural and environmental management but may not require a costly thorough field survey because latest legacy maps may only need limited corrections. This study suggests a Markov chain random field (MCRF) sequential cosimulation (Co-MCSS) method for updating categorical soil maps using limited survey data provided that qualified legacy maps are available. A case study using synthetic data demonstrates that Co-MCSS can appreciably improve simulation accuracy of soil types with both contributions from a legacy map and limited sample data. The method indicates the following characteristics: (1) if a soil type indicates no change in an update survey or it has been reclassified into another type that similarly evinces no change, it will be simply reproduced in the updated map; (2) if a soil type has changes in some places, it will be simulated with uncertainty quantified by occurrence probability maps; (3) if a soil type has no change in an area but evinces changes in other distant areas, it still can be captured in the area with unobvious uncertainty. We concluded that Co-MCSS might be a practical method for updating categorical soil maps with limited survey data. PMID:24027447
Myers, Jeffrey D.
2012-01-01
Maps are often used to convey information generated by models, for example, modeled cancer risk from air pollution. The concrete nature of images, such as maps, may convey more certainty than warranted for modeled information. Three map features were selected to communicate the uncertainty of modeled cancer risk: (a) map contours appeared in or out of focus, (b) one or three colors were used, and (c) a verbal-relative or numeric risk expression was used in the legend. Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk beliefs at four assigned map locations that varied by risk level. We applied an integrated conceptual framework to conduct this full factorial experiment with 32 maps that varied by the three dichotomous features and four risk levels; 826 university students participated. Data was analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk expression generated more ambiguity than their counterparts. Focused contours generated stronger risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information processing suggest why iconic visual features of incremental shading and contour focus had the strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk expression show promise for fostering appropriate levels of ambiguity. PMID:22985196
Bottom-Up Gazetteers: Learning from the Implicit Semantics of Geotags
NASA Astrophysics Data System (ADS)
Keßler, Carsten; Maué, Patrick; Heuer, Jan Torben; Bartoschek, Thomas
As directories of named places, gazetteers link the names to geographic footprints and place types. Most existing gazetteers are managed strictly top-down: entries can only be added or changed by the responsible toponymic authority. The covered vocabulary is therefore often limited to an administrative view on places, using only official place names. In this paper, we propose a bottom-up approach for gazetteer building based on geotagged photos harvested from the web. We discuss the building blocks of a geotag and how they relate to each other to formally define the notion of a geotag. Based on this formalization, we introduce an extraction process for gazetteer entries that captures the emergent semantics of collections of geotagged photos and provides a group-cognitive perspective on named places. Using an experimental setup based on clustering and filtering algorithms, we demonstrate how to identify place names and assign adequate geographic footprints. The results for three different place names (Soho, Camino de Santiago and Kilimanjaro), representing different geographic feature types, are evaluated and compared to the results obtained from traditional gazetteers. Finally, we sketch how our approach can be combined with other (for example, linguistic) approaches and discuss how such a bottom-up gazetteer can complement existing gazetteers.
May, L E; Kieffer, J D
2017-01-01
The swimming performance and associated swimming behaviour (i.e. substratum-skimming, station-holding and free swimming) were assessed in shortnose sturgeon Acipenser brevirostrum during critical swimming and endurance swimming tests over a rough and a smooth substratum. It was hypothesized that the addition of a rough substratum in the swimming flume may provide a surface for the A. brevirostrum to grip and offer an energetic advantage. Substratum type did not affect the critical swimming performance, but A. brevirostrum consistently performed more bottom behaviours (i.e. substratum-skimming and station-holding) while on a smooth substratum. Acipenser brevirostrum had little contact with the rough substratum until the velocity was >1 body length s -1 . Endurance swimming time was significantly lower for A. brevirostrum over the rough bottom at the highest velocity (30 cm s -1 ) which may be attributed to the observed increase in free swimming and decrease in bottom behaviours. During endurance swimming, the rough substratum was mainly used at intermediate velocities, suggesting that there may be a stability cost associated with being in contact with the rough substratum at certain velocities. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Wagner, Jamie K. S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee
2013-08-01
Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25-70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.
Wagner, Jamie K.S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee
2013-01-01
Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25–70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.
This paper presents a fuzzy set-based method of mapping spatial accuracy of thematic map and computing several ecological indicators while taking into account spatial variation of accuracy associated with different land cover types and other factors (e.g., slope, soil type, etc.)...
Map generation in unknown environments by AUKF-SLAM using line segment-type and point-type landmarks
NASA Astrophysics Data System (ADS)
Nishihta, Sho; Maeyama, Shoichi; Watanebe, Keigo
2018-02-01
Recently, autonomous mobile robots that collect information at disaster sites are being developed. Since it is difficult to obtain maps in advance in disaster sites, the robots being capable of autonomous movement under unknown environments are required. For this objective, the robots have to build maps, as well as the estimation of self-location. This is called a SLAM problem. In particular, AUKF-SLAM which uses corners in the environment as point-type landmarks has been developed as a solution method so far. However, when the robots move in an environment like a corridor consisting of few point-type features, the accuracy of self-location estimated by the landmark is decreased and it causes some distortions in the map. In this research, we propose AUKF-SLAM which uses walls in the environment as a line segment-type landmark. We demonstrate that the robot can generate maps in unknown environment by AUKF-SLAM, using line segment-type and point-type landmarks.
Bosch, Thijs; Verkade, Erwin; van Luit, Martijn; Pot, Bruno; Vauterin, Paul; Burggrave, Ronald; Savelkoul, Paul; Kluytmans, Jan; Schouls, Leo
2013-01-01
After its emergence in 2003, a livestock-associated (LA-)MRSA clade (CC398) has caused an impressive increase in the number of isolates submitted for the Dutch national MRSA surveillance and now comprises 40% of all isolates. The currently used molecular typing techniques have limited discriminatory power for this MRSA clade, which hampers studies on the origin and transmission routes. Recently, a new molecular analysis technique named whole genome mapping was introduced. This method creates high-resolution, ordered whole genome restriction maps that may have potential for strain typing. In this study, we assessed and validated the capability of whole genome mapping to differentiate LA-MRSA isolates. Multiple validation experiments showed that whole genome mapping produced highly reproducible results. Assessment of the technique on two well-documented MRSA outbreaks showed that whole genome mapping was able to confirm one outbreak, but revealed major differences between the maps of a second, indicating that not all isolates belonged to this outbreak. Whole genome mapping of LA-MRSA isolates that were epidemiologically unlinked provided a much higher discriminatory power than spa-typing or MLVA. In contrast, maps created from LA-MRSA isolates obtained during a proven LA-MRSA outbreak were nearly indistinguishable showing that transmission of LA-MRSA can be detected by whole genome mapping. Finally, whole genome maps of LA-MRSA isolates originating from two unrelated veterinarians and their household members showed that veterinarians may carry and transmit different LA-MRSA strains at the same time. No such conclusions could be drawn based spa-typing and MLVA. Although PFGE seems to be suitable for molecular typing of LA-MRSA, WGM provides a much higher discriminatory power. Furthermore, whole genome mapping can provide a comparison with other maps within 2 days after the bacterial culture is received, making it suitable to investigate transmission events and outbreaks caused by LA-MRSA. PMID:23805225
Identification of bedforms in lower cook inlet, Alaska
Bouma, A.H.; Rappeport, M.L.; Orlando, R.C.; Hampton, M.A.
1980-01-01
The seafloor of the central part of lower Cook Inlet, Alaska, is characterized by the presence of different sizes and types of bedforms. The bedforms in the sandy sediments include straight-crested to sinuous to lunate ripples, small, medium, and large sand waves, sand ridges, sand ribbons, and sand patches. In addition, rocky and pebbly seafloor has been identified. The water depth ranges from 25 to 120 m, and surface currents average 3.8 kt (2 m/s). Bottom currents have been measured at as much as 42 cm/s at 1 m above bottom. Underwater television observations have shown that the rate of sand transport is lower than expected because small amounts of clay and organic matter appear to inhibit remobilization. Only during the last 1 to 2 h of ebb and flood stages of spring tides, and during storms, does significant transport occur. Comparison of data from high-resolution seismic profiling systems, side-scan sonar, bottom television and camera, and bottom sampling shows that bottom and bedform interpretations based solely on sonographs can be in error. Measuring the length of 'acoustic shadows' on sonographs to obtain bedform heights gives dimensions that are too large by factors of 3-7. Bottom television investigations revealed that the troughs between small sand waves are flat and carpeted by shell fragments. Such coarse material has a high acoustic reflectance that is not related to slope or height and can lead to false interpretations on bedform dimensions. Our observations have shown that small sand waves commonly superimposed on larger ones are slightly higher than those present on flat hard bottom but are still less than calculated from acoustic shadows. Where the bottom is rather smooth or contains elevations small enough to be masked by bathymetric 'noise' caused by the pitching of the vessel, sonographs typically show either small sand waves, sand ribbons, sand patches, rocks, or smooth bottom. The smooth-bottom category can vary widely from ripples to gravelly or shelly or to small rocks with biological overgrowth as verified by television observations. Our observations have clearly demonstrated the need for an integrated multi-scale observation and sampling program in order to classify the bottom characteristics and to provide quantitative data for transport calculations. ?? 1980.
NASA Astrophysics Data System (ADS)
McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.
2002-12-01
There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types. Acoustic backscatter imagery corresponds well with the AVIRIS data in the middle to outer study area, implying a close correspondence between seafloor character and optical reflectance. AVIRIS data in the inner study area show poorer correspondence with the acoustic facies, indicating greater water column effects (turbidity). Acoustic backscatter as a proxy for bottom albedo, in conjunction with multibeam bathymetry data, will allow for more precise modeling of the optical signal in coastal environments.
21 CFR 145.125 - Canned cherries.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Varietal types and styles. The optional cherry ingredients referred to in paragraph (a)(1) of this section..., cloves, and cinnamon oil”. (ii) The color type and style of the cherry ingredient as provided in... such quantity is 3 pounds or more. The bottom of the sieve is No. 8 woven-wire cloth that complies with...
Wave-flume experiments of soft-rock cliff erosion under monochromatic waves
NASA Astrophysics Data System (ADS)
Regard, Vincent; Astruc, Dominique; Caplain, Bastien
2017-04-01
We investigate how cliffs erode under wave attack. Rocky coast erosion works through cycles, each one corresponding to three successive phases: (i) notch creation at cliff toe by mechanical action of waves, (ii) cliff fracturation leading to collapse, and (iii) evacuation of scree aprons by waves and currents. We performed experiments in a 5m x 14cm x 25cm wave flume (15 cm water depth) to investigate how waves are eroding a rocky coast. The cliff is made of wet sand and models a relatively soft rock. We used 3 different grain size (D50 = 0.28-0.41-0.48 mm), changing the cliff rheology. Waves are monochromatic; their height and period differ for the various experiments. Actual wave parameters are estimated by capacitive probes located offshore. The experiments are monitored by two video cameras both on the side and above the flume. Pictures are taken at a rate of 1Hz during the first 4h and then the rate is decreased to 0.1Hz till the end of experiment (about 1 day). The monitoring ensure a confident characterization of experiments in terms of waves (surf similarity parameter ξ and the incident wave energy flux F) and in terms of sediment (Dean number Ω and Shields number θb at breakers). Experiments begin by an initial phase of quick cliff retreat. Then the system evolves with slower cliff retreat. We focus on bottom morphology which we characterize in function of wave forcing (ξ, F). We show that the bottom morphology mainly depends on ξ. For our reference sediment (Dm = 0.41 mm), we observed: (i) surging breakers on a steep terrace (type T1) for ξ > 0.65; (ii)collapsing breakers on a bared profile attached to the inner platform (type T2) for 0.55< ξ <0.6; (iii) spilling breakers on gentle terrace (type T3) for F < 1.3 W/m and 0.55< ξ <0.6. Another bottom morphology, type T4, displays two sub-systems, an outer system with a double-bar profile where breaking waves are plunging, and an inner system with a T1, T2 or T3 profile. Some of these bottom morphologies are unsteady with sandbar oscillation. When changing sediment grain size, we observed that the bottom typology is similar but evolves in function of the Ω value. Finally, we observed that the cliff recession is proportional to F, is not monotonic with ξ and decreases with the sediment grain diameter.
Rocker bottom soles alter the postural response to backward translation during stance.
Albright, Bruce C; Woodhull-Smith, Whitney M
2009-07-01
Shoes with rocker bottom soles are utilized by persons with diabetic peripheral neuropathy to reduce plantar pressures during gait. This population also has a high risk for falls. This study analyzed the effects of shoes with rocker bottom soles on the postural response during perturbed stance. Participants were 20 healthy subjects (16 women, 4 men) ages 22-25 years. Canvas shoes were modified by the addition of crepe sole material to represent two forms of rocker bottom shoes and a control shoe. Subjects stood on a dynamic force plate programmed to move backward at a velocity that produced an automatic postural response without stepping. Force plate data were collected for five trials per shoe type. Sway variables for center of pressure (COP) and center of mass (COM) included: mean sway amplitude, sway variance, time to peak, anterior and posterior peak velocities, functional stability margin, and peak duration time. Compared to control, both the experimental shoes had significantly larger COP and COM values for mean sway amplitude, sway variance and peak duration. The functional stability margins were significantly smaller for the experimental shoes while their anterior and posterior peak velocities were slower and time to peaks were significantly longer. In young healthy adults, shoes with rocker bottom soles had a destabilizing effect to perturbed stance, thereby increasing the potential for imbalance. These results raise concerns that footwear with rocker bottom sole modifications to accommodate an insensate foot may increase the risk of falls.
Wave trapping by dual porous barriers near a wall in the presence of bottom undulation
NASA Astrophysics Data System (ADS)
Kaligatla, R. B.; Manisha; Sahoo, T.
2017-09-01
Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.
Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM
NASA Astrophysics Data System (ADS)
Zhang, Ming-Ming; Jia, Ze; Ren, Tian-Ling
2009-05-01
The effects of electrodes on the properties of capacitors applied in ferroelectric random access memories (FeRAM) are investigated in this work. Pt and Ir are used as bottom and top electrodes (BE and TE), respectively, in sol-gel Pb(Zr xTi 1-x)O 3 (PZT) based capacitors. Bottom electrodes are found to play a dominant role in the properties of PZT films and capacitors. Capacitors using Pt as bottom electrode have larger remnant polarization (2Pr) than those using Ir which may result from the different orientations of PZT films. The higher Schottky barrier, more dense film and smaller roughness are believed to be the reasons for the better leakage performance of capacitors using Pt as bottom electrodes. Different vacancies types and interface conditions are believed to be the main reasons for the better fatigue (less than 10% initial 2Pr loss after 10 11 fatigue cycles) and better imprint properties of TE/PZT/Ir capacitors. Top electrodes are found to have smaller impact on the properties of capacitors compared with bottom electrodes. A decrease in 2Pr is found when Ir is used as top electrode instead of Pt for PZT/Pt, which is believed to be caused by the stress resulting from lattice mismatch. The different thermal processes that top and bottom electrodes suffered are believed to be the reason for the different impacts they have on capacitors.
Species-environment relationships and potential for distribution modelling in coastal waters
NASA Astrophysics Data System (ADS)
Snickars, M.; Gullström, M.; Sundblad, G.; Bergström, U.; Downie, A.-L.; Lindegarth, M.; Mattila, J.
2014-01-01
Due to increasing pressure on the marine environment there is a growing need to understand species-environment relationships. To provide background for prioritising among variables (predictors) for use in distribution models, the relevance of predictors for benthic species was reviewed using the coastal Baltic Sea as a case-study area. Significant relationships for three response groups (fish, macroinvertebrates, macrovegetation) and six predictor categories (bottom topography, biotic features, hydrography, wave exposure, substrate and spatiotemporal variability) were extracted from 145 queried peer-reviewed field-studies covering three decades and six subregions. In addition, the occurrence of interaction among predictors was analysed. Hydrography was most often found in significant relationships, had low level of interaction with other predictors, but also had the most non-significant relationships. Depth and wave exposure were important in all subregions and are readily available, increasing their applicability for cross-regional modelling efforts. Otherwise, effort to model species distributions may prove challenging at larger scale as the relevance of predictors differed among both response groups and regions. Fish and hard bottom macrovegetation have the largest modelling potential, as they are structured by a set of predictors that at the same time are accurately mapped. A general importance of biotic features implies that these need to be accounted for in distribution modelling, but the mapping of most biotic features is challenging, which currently lowers the applicability. The presence of interactions suggests that predictive methods allowing for interactive effects are preferable. Detailing these complexities is important for future distribution modelling.
Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China
NASA Astrophysics Data System (ADS)
Wu, Meilin; Wang, Youshao; Dong, Junde; Sun, Fulin; Wang, Yutu; Hong, Yiguo
2017-03-01
A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organizing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.
GIS Methodic and New Database for Magmatic Rocks. Application for Atlantic Oceanic Magmatism.
NASA Astrophysics Data System (ADS)
Asavin, A. M.
2001-12-01
There are several geochemical Databases in INTERNET available now. There one of the main peculiarities of stored geochemical information is geographical coordinates of each samples in those Databases. As rule the software of this Database use spatial information only for users interface search procedures. In the other side, GIS-software (Geographical Information System software),for example ARC/INFO software which using for creation and analyzing special geological, geochemical and geophysical e-map, have been deeply involved with geographical coordinates for of samples. We join peculiarities GIS systems and relational geochemical Database from special software. Our geochemical information system created in Vernadsky Geological State Museum and institute of Geochemistry and Analytical Chemistry from Moscow. Now we tested system with data of geochemistry oceanic rock from Atlantic and Pacific oceans, about 10000 chemical analysis. GIS information content consist from e-map covers Wold Globes. Parts of these maps are Atlantic ocean covers gravica map (with grid 2''), oceanic bottom hot stream, altimeteric maps, seismic activity, tectonic map and geological map. Combination of this information content makes possible created new geochemical maps and combination of spatial analysis and numerical geochemical modeling of volcanic process in ocean segment. Now we tested information system on thick client technology. Interface between GIS system Arc/View and Database resides in special multiply SQL-queries sequence. The result of the above gueries were simple DBF-file with geographical coordinates. This file act at the instant of creation geochemical and other special e-map from oceanic region. We used more complex method for geophysical data. From ARC\\View we created grid cover for polygon spatial geophysical information.
Geologic map of the Maumee quadrangle, Searcy and Marion Counties, Arkansas
Turner, Kenzie J.; Hudson, Mark R.
2010-01-01
This map summarizes the geology of the Maumee 7.5-minute quadrangle in northern Arkansas. The map area is in the Ozark plateaus region on the southern flank of the Ozark dome. The Springfield Plateau, composed of Mississippian cherty limestone, overlies the Salem Plateau, composed of Ordovician carbonate and clastic rocks, with areas of Silurian rocks in between. Erosion related to the Buffalo River and its tributaries, Tomahawk, Water, and Dry Creeks, has exposed a 1,200-ft-thick section of Mississippian, Silurian, and Ordovician rocks mildly deformed by faults and folds. An approximately 130-mile-long corridor along the Buffalo River forms the Buffalo National River that is administered by the National Park Service. McKnight (1935) mapped the geology of the Maumee quadrangle as part of a larger 1:125,000-scale map focused on understanding the lead and zinc deposits common in the area. Detailed new mapping for this study was compiled using a Geographic Information System (GIS) at 1:24,000 scale. Site location and elevation were obtained by using a Global Positioning Satellite (GPS) receiver in conjunction with a U.S. Geological Survey 7.5-minute topographic map and barometric altimeter. U.S. Geological Survey 10-m digital elevation model data were used to derive a hill-shade-relief map used along with digital orthophotographs to map ledge-forming units between field sites. Bedding attitudes were measured in drainage bottoms and on well-exposed ledges. Bedding measured at less than 2 degree dip is indicated as horizontal. Structure contours constructed for the base of the Boone Formation are constrained by field-determined elevations on both upper and lower formation contacts.
Bou Kheir, Rania; Greve, Mogens H; Bøcher, Peder K; Greve, Mette B; Larsen, René; McCloy, Keith
2010-05-01
Soil organic carbon (SOC) is one of the most important carbon stocks globally and has large potential to affect global climate. Distribution patterns of SOC in Denmark constitute a nation-wide baseline for studies on soil carbon changes (with respect to Kyoto protocol). This paper predicts and maps the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature, plan curvature, profile curvature, flow accumulation, specific catchment area, tangent slope, tangent curvature, steady-state wetness index, Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI) and Soil Color Index (SCI) were generated to statistically explain SOC field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME) and the lowest number of nodes (N) as well are: (i) the tree (T1) combining all of the parameters (ME=29.5%; N=54); (ii) the tree (T2) based on the parent material, soil type and landscape type (ME=31.5%; N=14); and (iii) the tree (T3) constructed using parent material, soil type, landscape type, elevation, tangent slope and SCI (ME=30%; N=39). The produced SOC maps at 1:50,000 cartographic scale using these trees are highly matching with coincidence values equal to 90.5% (Map T1/Map T2), 95% (Map T1/Map T3) and 91% (Map T2/Map T3). The overall accuracies of these maps once compared with field observations were estimated to be 69.54% (Map T1), 68.87% (Map T2) and 69.41% (Map T3). The proposed tree models are relatively simple, and may be also applied to other areas. Copyright 2010 Elsevier Ltd. All rights reserved.
Modeling aspects of the surface reconstruction problem
NASA Astrophysics Data System (ADS)
Toth, Charles K.; Melykuti, Gabor
1994-08-01
The ultimate goal of digital photogrammetry is to automatically produce digital maps which may in turn form the basis of GIS. Virtually all work in surface reconstruction deals with various kinds of approximations and constraints that are applied. In this paper we extend these concepts in various ways. For one, matching is performed in object space. Thus, matching and densification (modeling) is performed in the same reference system. Another extension concerns the solution of the second sub-problem. Rather than simply densifying (interpolating) the surface, we propose to model it. This combined top-down and bottom-up approach is performed in scale space, whereby the model is refined until compatibility between the data and expectations is reached. The paper focuses on the modeling aspects of the surface reconstruction problem. Obviously, the top-down and bottom-up model descriptions ought to be in a form which allows the generation and verification of hypotheses. Another crucial question is the degree of a priori scene knowledge necessary to constrain the solution space.
Age of the Scan Basin (Scotia Sea)
NASA Astrophysics Data System (ADS)
Schreider, Al. A.; Schreider, A. A.; Galindo-Zaldivar, J.; Maldonado, A.; Sazhneva, A. E.; Evsenko, E. I.
2017-03-01
Integrated geological and geophysical analysis of the anomalous magnetic field along with the previously unpublished profiles of Spanish expeditions onboard the R/V Hesperides and international databases of geomagnetic data processed in the context of the global tectonics concepts made it possible to identify paleomagnetic anomalies C11-C15 and compile the first map of the bottom geochronology of the Scan Basin. Unlike in earlier known publications, the paleoaxis of spreading does extend northeast, but approximately at an angle of 345°. According to calculations, spreading began 35.294‒35.706 Ma ago during chron C15r, and the spreading paleoaxis was abandoned 29.527‒29.970 Ma ago during chron C11n.2n. Thus, the destruction of the American-Antarctic bridge in the region joining the Bruce and Discovery banks with formation of oceanic crust in the Scan Basin started about 36 Ma ago. Regular spreading of the bottom has been continuing for about 6 Ma at a average rate close to 1.8 cm/year.
Soils of Walker Branch Watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lietzke, D.A.
1994-01-01
The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 usingmore » a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research indicates that most of this silty material is the result of slope wash processed during the Holocene Age. Residual soils of the watershed were related to the underlying geologic formations by their morphology and types of chert. Colluvial soils were identified and mapped whenever the colluvium thickness exceeded 20 in. (50 cm). Except for the ancient colluvial soils (colluvium without a present-day source area), colluvial soils were not separated according to their geologic age, but stacked colluvial deposits are located in low footslope landforms. Colluvial soils in the watershed were identified and mapped according to their morphologic properties that would influence the perching and subsurface movement of water. Alluvial soils were restricted to present floodplains, low fan terraces, and low fan deltas. Nearly all alluvial soils contained very young surficial sediments derived from slopewash resulting from land clearing and subsequent agricultural activities.« less
Component processes in voluntary task switching.
Demanet, Jelle; Liefooghe, Baptist
2014-05-01
The present study investigated the involvement of bottom-up and top-down control in task-switching situations in which tasks are selected on a voluntary basis. We tested for indices of both types of control in the reduction in switch cost that is observed when more time is available before executing a task. Participants had to indicate their task choice overtly prior to the actual task execution, and two time intervals were manipulated: the interval between the task-execution response of the previous trial and task-indication response of the current trial and the interval between task-indication response and task-execution response of a particular trial. In Experiment 1, the length of these intervals was manipulated orthogonally, and indices for top-down and bottom-up control were observed. Concerned with the validity of these results, Experiments 2-3 additionally discouraged participants from preparing the upcoming task before their task-indication response. Indices for bottom-up control remained, but not for top-down control. The characteristics of top-down and bottom-up control in voluntary task switching and task switching in general are discussed.
The Fishery Performance Indicators: A Management Tool for Triple Bottom Line Outcomes
Anderson, James L.; Anderson, Christopher M.; Chu, Jingjie; Meredith, Jennifer; Asche, Frank; Sylvia, Gil; Smith, Martin D.; Anggraeni, Dessy; Arthur, Robert; Guttormsen, Atle; McCluney, Jessica K.; Ward, Tim; Akpalu, Wisdom; Eggert, Håkan; Flores, Jimely; Freeman, Matthew A.; Holland, Daniel S.; Knapp, Gunnar; Kobayashi, Mimako; Larkin, Sherry; MacLauchlin, Kari; Schnier, Kurt; Soboil, Mark; Tveteras, Sigbjorn; Uchida, Hirotsugu; Valderrama, Diego
2015-01-01
Pursuit of the triple bottom line of economic, community and ecological sustainability has increased the complexity of fishery management; fisheries assessments require new types of data and analysis to guide science-based policy in addition to traditional biological information and modeling. We introduce the Fishery Performance Indicators (FPIs), a broadly applicable and flexible tool for assessing performance in individual fisheries, and for establishing cross-sectional links between enabling conditions, management strategies and triple bottom line outcomes. Conceptually separating measures of performance, the FPIs use 68 individual outcome metrics—coded on a 1 to 5 scale based on expert assessment to facilitate application to data poor fisheries and sectors—that can be partitioned into sector-based or triple-bottom-line sustainability-based interpretative indicators. Variation among outcomes is explained with 54 similarly structured metrics of inputs, management approaches and enabling conditions. Using 61 initial fishery case studies drawn from industrial and developing countries around the world, we demonstrate the inferential importance of tracking economic and community outcomes, in addition to resource status. PMID:25946194
The role of holistic processing in judgments of facial attractiveness.
Abbas, Zara-Angela; Duchaine, Bradley
2008-01-01
Previous work has demonstrated that facial identity recognition, expression recognition, gender categorisation, and race categorisation rely on a holistic representation. Here we examine whether a holistic representation is also used for judgments of facial attractiveness. Like past studies, we used the composite paradigm to assess holistic processing (Young et al 1987, Perception 16 747-759). Experiment 1 showed that top halves of upright faces are judged to be more attractive when aligned with an attractive bottom half than when aligned with an unattractive bottom half. To assess whether this effect resulted from holistic processing or more general effects, we examined the impact of the attractive and unattractive bottom halves when upright halves were misaligned and when aligned and misaligned halves were presented upside-down. The bottom halves had no effect in either condition. These results demonstrate that the perceptual processes underlying upright facial-attractiveness judgments represent the face holistically. Our findings with attractiveness judgments and previous demonstrations involving other aspects of face processing suggest that a common holistic representation is used for most types of face processing.
Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose
NASA Astrophysics Data System (ADS)
Behzad, Hamed; Panahi, Roozbeh
2017-06-01
In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.
Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).
Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen
2009-03-01
Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.
NASA Astrophysics Data System (ADS)
Yun, Changho; Kim, Kiseon
2006-04-01
For the passive star-coupled wavelength-division multiple-access (WDMA) network, a modified accelerative preallocation WDMA (MAP-WDMA) media access control (MAC) protocol is proposed, which is based on AP-WDMA. To show the advantages of MAP-WDMA as an adequate MAC protocol for the network over AP-WDMA, the channel utilization, the channel-access delay, and the latency of MAP-WDMA are investigated and compared with those of AP-WDMA under various data traffic patterns, including uniform, quasi-uniform type, disconnected type, mesh type, and ring type data traffics, as well as the assumption that a given number of network stations is equal to that of channels, in other words, without channel sharing. As a result, the channel utilization of MAP-WDMA can be competitive with respect to that of AP-WDMA at the expense of insignificantly higher latency. Namely, if the number of network stations is small, MAP-WDMA provides better channel utilization for uniform, quasi-uniform-type, and disconnected-type data traffics at all data traffic loads, as well as for mesh and ring-type data traffics at low data traffic loads. Otherwise, MAP-WDMA only outperforms AP-WDMA for the first three data traffics at higher data traffic loads. In the aspect of channel-access delay, MAP-WDMA gives better performance than AP-WDMA, regardless of data traffic patterns and the number of network stations.
CMap 1.01: a comparative mapping application for the internet
USDA-ARS?s Scientific Manuscript database
CMap is a web-based tool for displaying and comparing maps of any type and from any species. A user can compare an unlimited number of maps, view pair-wise comparisons of known correspondences, and search for maps or for features by name, species, type and accession. CMap is freely available, can ...
Increasing the availability of national mapping products.
Roney, J.I.; Ogilvie, B.C.
1981-01-01
A discussion of the means employed by the US Geological Survey to facilitate map usage, covering aspects of project Map Accessibility Program including special rolled and folded map packaging, new market testing, parks and campgrounds program, expanded map dealer program, new booklet-type State sales index and catalog and new USGS map reference code. The USGS is seen as the producer of a tremendous nation-wide inventory of topographic and related map products available in unprecedented types, formats and scales, and as endeavouring to increase access to its products. The new USGS map reference code is appended. -J.C.Stone
Pendleton, Elizabeth E.; Barnhardt, Walter A.; Baldwin, Wayne E.; Foster, David S.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.
2015-10-26
A series of maps that describe the distribution and texture of sea-floor sediments and physiographic zones of Massachusetts State waters from Nahant to Salisbury, Massachusetts, including western Massachusetts Bay, have been produced by using high-resolution geophysical data (interferometric and multibeam swath bathymetry, lidar bathymetry, backscatter intensity, and seismic reflection profiles), sediment samples, and bottom photographs. These interpretations are intended to aid statewide efforts to inventory and manage coastal and marine resources, link with existing data interpretations, and provide information for research focused on coastal evolution and environmental change. Marine geologic mapping of the inner continental shelf of Massachusetts is a statewide cooperative effort of the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management.
Motion streaks do not influence the perceived position of stationary flashed objects.
Pavan, Andrea; Bellacosa Marotti, Rosilari
2012-01-01
In the present study, we investigated whether motion streaks, produced by fast moving dots Geisler 1999, distort the positional map of stationary flashed objects producing the well-known motion-induced position shift illusion (MIPS). The illusion relies on motion-processing mechanisms that induce local distortions in the positional map of the stimulus which is derived by shape-processing mechanisms. To measure the MIPS, two horizontally offset Gaussian blobs, placed above and below a central fixation point, were flashed over two fields of dots moving in opposite directions. Subjects judged the position of the top Gaussian blob relative to the bottom one. The results showed that neither fast (motion streaks) nor slow moving dots influenced the perceived spatial position of the stationary flashed objects, suggesting that background motion does not interact with the shape-processing mechanisms involved in MIPS.
Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters
NASA Technical Reports Server (NTRS)
Miller, Richard L.; McKee, Brent A.
2004-01-01
High concentrations of suspended particulate matter in coastal waters directly effect or govern numerous water column and benthic processes. The concentration of suspended sediments derived from bottom sediment resuspension or discharge of sediment-laden rivers is highly variable over a wide range of time and space scales. Although there has been considerable effort to use remotely sensed images to provide synoptic maps of suspended particulate matter, there are limited routine applications of this technology due in-part to the low spatial resolution, long revisit period, or cost of most remotely sensed data. In contrast, near daily coverage of medium-resolution data is available from the MODIS Terra instrument without charge from several data distribution gateways. Equally important, several display and processing programs are available that operate on low cost computers.
Lentle, Roger G.; Hulls, Corrin M.
2018-01-01
The uses and limitations of the various techniques of video spatiotemporal mapping based on change in diameter (D-type ST maps), change in longitudinal strain rate (L-type ST maps), change in area strain rate (A-type ST maps), and change in luminous intensity of reflected light (I-maps) are described, along with their use in quantifying motility of the wall of hollow structures of smooth muscle such as the gut. Hence ST-methods for determining the size, speed of propagation and frequency of contraction in the wall of gut compartments of differing geometric configurations are discussed. We also discuss the shortcomings and problems that are inherent in the various methods and the use of techniques to avoid or minimize them. This discussion includes, the inability of D-type ST maps to indicate the site of a contraction that does not reduce the diameter of a gut segment, the manipulation of axis [the line of interest (LOI)] of L-maps to determine the true axis of propagation of a contraction, problems with anterior curvature of gut segments and the use of adjunct image analysis techniques that enhance particular features of the maps. PMID:29686624
Putting Pluto's Geology on the Map
2016-02-11
This geological map covers a portion of Pluto's surface that measures 1,290 miles (2,070 kilometers) from top to bottom, and includes the vast nitrogen-ice plain informally named Sputnik Planum and surrounding terrain. The map is overlain with colors that represent different geological terrains. Each terrain, or unit, is defined by its texture and morphology -- smooth, pitted, craggy, hummocky or ridged, for example. How well a unit can be defined depends on the resolution of the images that cover it. All of the terrain in this map has been imaged at a resolution of approximately 1,050 feet (320 meters) per pixel or better, meaning scientists can map units with relative confidence. The various blue and greenish units that fill the center of the map represent different textures seen across Sputnik Planum, from the cellular terrain in the center and north, to the smooth and pitted plains in the south. The black lines represent the troughs that mark the boundaries of cellular regions in the nitrogen ice. The purple unit represents the chaotic, blocky mountain ranges that line Sputnik's western border, and the pink unit represents the scattered, floating hills at its eastern edge. The possible cryovolcanic feature informally named Wright Mons is mapped in red in the southern corner of the map. The rugged highlands of the informally named Cthulhu Regio is mapped in dark brown along the western edge, and is pockmarked by many large impact craters, mapped in yellow. The base map for this geologic map is a mosaic of 12 images obtained by the Long Range Reconnaissance Imager (LORRI) at a resolution of 1,280 feet (about 390 meters) per pixel. The mosaic was obtained at a range of approximately 48,000 miles (77,300 kilometers) from Pluto, about an hour and 40 minutes before New Horizons' closest approach on July 14, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA20465
Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru
2009-02-01
Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.
Optimal designs of bioretention cells in shallow groundwater
NASA Astrophysics Data System (ADS)
Zhang, K.; Chui, T. F. M.
2017-12-01
Bioretention cells, as one representative low impact development practices, have been proved to be effective in controlling surface runoff, removing pollutants and recharging groundwater. However, they are often not recommended in shallow groundwater areas due to potential groundwater pollution, reduction in runoff control performance and groundwater drainage through the underdrain. Most design guidelines only require a minimum distance between bioretention cell bottom and seasonal high groundwater table without guiding the design of bioretention cells to mitigate the problem of shallow groundwater. This study therefore proposed some design recommendations of bioretention cells for different rainfall runoff loads, native soil types and initial water table depths. A variably saturated flow model was employed to conduct event-based simulations on one single hypothetical bioretention cell in shallow groundwater, which was calibrated using experimental and simulation data of an on-site bioretention cell. A wide range of climatic and geophysical factors (i.e. initial groundwater depths, native soils, rainfall runoff loads) and bioretention designs (i.e. media soil types and underdrain sizes) were considered. Surface runoff reduction, time before groundwater mound formation, as well as maximum height of groundwater mound were evaluated. Less-permeable media types (i.e. sandy loam) are recommended in areas with many extreme rainfall events (i.e. 40 - 70 mm/h or larger) and of shallower groundwater, which can better protect groundwater from mounding and possibly contamination although may slightly compromise the runoff control performance. For areas having seasonal high groundwater table of 0 - 1 m below bioretention bottom, underdrain is recommended to maintain good infiltration capacity without draining groundwater. However, underdrain is not recommended for areas of groundwater table always near or above the bioretention bottom, only if an impermeable sheet is added. Generally, groundwater interference is a concern only when groundwater table is above 1 - 2.5 m below bioretention bottom and runoff loads are very high. The results of this study overall could benefit the implementation of bioretention cells in shallow groundwater areas, and the establishment of relevant design guidelines.
Evaluations of carbon fluxes estimated by top-down and bottom-up approaches
NASA Astrophysics Data System (ADS)
Murakami, K.; Sasai, T.; Kato, S.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.; Nasahara, K.; Matsunaga, T.
2013-12-01
There are two types of estimating carbon fluxes using satellite observation data, and these are referred to as top-down and bottom-up approaches. Many uncertainties are however still remain in these carbon flux estimations, because the true values of carbon flux are still unclear and estimations vary according to the type of the model (e.g. a transport model, a process based model) and input data. The CO2 fluxes in these approaches are estimated by using different satellite data such as the distribution of CO2 concentration in the top-down approach and the land cover information (e.g. leaf area, surface temperature) in the bottom-up approach. The satellite-based CO2 flux estimations with reduced uncertainty can be used efficiently for identifications of large emission area and carbon stocks of forest area. In this study, we evaluated the carbon flux estimates from two approaches by comparing with each other. The Greenhouse gases Observing SATellite (GOSAT) has been observing atmospheric CO2 concentrations since 2009. GOSAT L4A data product is the monthly CO2 flux estimations for 64 sub-continental regions and is estimated by using GOSAT FTS SWIR L2 XCO2 data and atmospheric tracer transport model. We used GOSAT L4A CO2 flux as top-down approach estimations and net ecosystem productions (NEP) estimated by the diagnostic type biosphere model BEAMS as bottom-up approach estimations. BEAMS NEP is only natural land CO2 flux, so we used GOSAT L4A CO2 flux after subtraction of anthropogenic CO2 emissions and oceanic CO2 flux. We compared with two approach in temperate north-east Asia region. This region is covered by grassland and crop land (about 60 %), forest (about 20 %) and bare ground (about 20 %). The temporal variation for one year period was indicated similar trends between two approaches. Furthermore we show the comparison of CO2 flux estimations in other sub-continental regions.
Surficial geologic map of Berrien County, Michigan, and the adjacent offshore area of Lake Michigan
Stone, Byron D.; Kincare, Kevin A.; O'Leary, Dennis W.; Newell, Wayne L.; Taylor, Emily M.; Williams, Van S.; Lundstrom, Scott C.; Abraham, Jared E.; Powers, Michael H.
2017-12-13
The surficial geologic map of Berrien County, southwestern Michigan (sheet 1), shows the distribution of glacial and postglacial deposits at the land surface and in the adjacent offshore area of Lake Michigan. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics, stratigraphic relationships, and age. Drill-hole information correlated in cross sections provides details of typical stratigraphic sequences that compose one or more penetrated geologic map units. A new bedrock geologic map (on sheet 2) includes contours of the altitude of the eroded top of bedrock and shows the distribution of middle Paleozoic shale and carbonate units in the subcrop. A sediment thickness map (also on sheet 2) portrays the extent of as much as 150 meters of surficial materials that overlie the bedrock surface.The major physical features of the county are related principally to deposits of the last Laurentide ice sheet that advanced and then retreated back through the region from about 19,000 to 14,000 radiocarbon years before present. Glacial and postglacial deposits underlie the entire county; shale bedrock crops out only in the adjacent offshore area on the bottom of Lake Michigan. All glacial deposits and glacial meltwater deposits in Berrien County are related to the late Wisconsinan glacial advances of the Lake Michigan ice lobe and its three regional recessional moraines, which cross the county as three north-northeast-trending belts.From east to west (oldest to youngest), the three moraine belts are known as the Kalamazoo, Valparaiso, and Lake Border morainic systems. The till-ridge morainic systems (Lake Border and local Valparaiso morainic systems) consist of multiple, elongate moraine ridges separated by till plains and lake-bottom plains. Tills in ground and end moraines in Berrien County are distinguished as informal units, and are correlated with three proposed regional till units in southwestern Michigan, characterized as clayey till, loamy till, or sandy loamy till that are based in part on correlation of silty tills and clay mineralogy. The stratified morainic systems (local Valparaiso and Kalamazoo morainic systems) are composed of multiple ice-marginal glacial-lake deltas and glaciolacustrine fans that form a contiguous array of deposits, welded together at their onlapping contacts, further related by the accordant altitudes of their delta topset plains. Their bounding ice-contact slopes repeatedly are aligned parallel to the regional trend of the receding ice margin. Ice-marginal (ice-contact) deltas were deposited in glacial lakes that expanded northward as the ice sheet retreated. Glaciofluvial topset beds, which overlie deltaic foreset and bottomset facies, fine away from the ice margin. Stratified deposits associated with the Valparaiso moraine were deposited in glacial Lakes Madron and Dowagiac. Subsequent deposits of glacial Lake Baroda preceded basin-wide deposits associated with various levels of Lake Michigan.Sheet 2 includes a series of 10 map figures that show cut-away three-dimensional time slices of the stratigraphic succession, from basal tills on bedrock, to ice-marginal deltas in the three large proglacial lakes, to stacked till/lake-bottom deposits related to the Lake Border ice margin readvances, to young deposits of glacial Lake Chicago and younger phases of other glacial lakes and the Chippewa lake lowstand.The pamphlet contains a discussion of the stratigraphic framework, descriptions of each depositional unit, and graphic logs of U.S. Geological Survey stratigraphic drill holes. The pamphlet also relates the geologic history of Berrien County, beginning with bedrock Paleozoic marine deposits, continuing through erosional effects of multiple glaciations and the detailed steps of late Wisconsinan ice-margin recession as recorded in the moraines, and the rise and fall of postglacial lake levels in the Lake Michigan basin.
Hop, Kevin D.; Strassman, Andrew C.; Hall, Mark; Menard, Shannon; Largay, Ery; Sattler, Stephanie; Hoy, Erin E.; Ruhser, Janis; Hlavacek, Enrika; Dieck, Jennifer
2017-01-01
The National Park Service (NPS) Vegetation Mapping Inventory (VMI) Program classifies, describes, and maps existing vegetation of national park units for the NPS Natural Resource Inventory and Monitoring (I&M) Program. The NPS VMI Program is managed by the NPS I&M Division and provides baseline vegetation information to the NPS Natural Resource I&M Program. The U.S. Geological Survey Upper Midwest Environmental Sciences Center, NatureServe, NPS Northeast Temperate Network, and NPS Appalachian National Scenic Trail (APPA) have completed vegetation classification and mapping of APPA for the NPS VMI Program.Mappers, ecologists, and botanists collaborated to affirm vegetation types within the U.S. National Vegetation Classification (USNVC) of APPA and to determine how best to map the vegetation types by using aerial imagery. Analyses of data from 1,618 vegetation plots were used to describe USNVC associations of APPA. Data from 289 verification sites were collected to test the field key to vegetation associations and the application of vegetation associations to a sample set of map polygons. Data from 269 validation sites were collected to assess vegetation mapping prior to submitting the vegetation map for accuracy assessment (AA). Data from 3,265 AA sites were collected, of which 3,204 were used to test accuracy of the vegetation map layer. The collective of these datasets affirmed 280 USNVC associations for the APPA vegetation mapping project.To map the vegetation and land cover of APPA, 169 map classes were developed. The 169 map classes consist of 150 that represent natural (including ruderal) vegetation types in the USNVC, 11 that represent cultural (agricultural and developed) vegetation types in the USNVC, 5 that represent natural landscapes with catastrophic disturbance or some other modification to natural vegetation preventing accurate classification in the USNVC, and 3 that represent nonvegetated water (non-USNVC). Features were interpreted from viewing 4-band digital aerial imagery using digital onscreen three-dimensional stereoscopic workflow systems in geographic information systems (GIS). (Digital aerial imagery was collected each fall during 2009–11 to capture leaf-phenology change of hardwood trees across the latitudinal range of APPA.) The interpreted data were digitally and spatially referenced, thus making the spatial-database layers usable in GIS. Polygon units were mapped to either a 0.5-hectare (ha) or 0.25-ha minimum mapping unit, depending on vegetation type or scenario; however, polygon units were mapped to 0.1 ha for alpine vegetation.A geodatabase containing various feature-class layers and tables provide locations and support data to USNVC vegetation types (vegetation map layer), vegetation plots, verification sites, validation sites, AA sites, project boundary extent and zones, and aerial image centers and flight lines. The feature-class layer and related tables of the vegetation map layer provide 30,395 polygons of detailed attribute data covering 110,919.7 ha, with an average polygon size of 3.6 ha; the vegetation map coincides closely with the administrative boundary for APPA.Summary reports generated from the vegetation map layer of the map classes representing USNVC natural (including ruderal) vegetation types apply to 28,242 polygons (92.9% of polygons) and cover 106,413.0 ha (95.9%) of the map extent for APPA. The map layer indicates APPA to be 92.4% forest and woodland (102,480.8 ha), 1.7% shrubland (1866.3 ha), and 1.8% herbaceous cover (2,065.9 ha). Map classes representing park-special vegetation (undefined in the USNVC) apply to 58 polygons (0.2% of polygons) and cover 404.3 ha (0.4%) of the map extent. Map classes representing USNVC cultural types apply to 1,777 polygons (5.8% of polygons) and cover 2,516.3 ha (2.3%) of the map extent. Map classes representing nonvegetated water (non-USNVC) apply to 332 polygons (1.1% of polygons) and cover 1,586.2 ha (1.4%) of the map extent.
NASA Astrophysics Data System (ADS)
Yang, J.; Kim, K. B.; Choi, Y.; Kang, J.
2018-04-01
A depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between pixilated scintillation crystal layers was developed and experimentally evaluated. The detector consists of 2-layers of 4×4 LYSO array arranged with a 3.37 mm pitch. Horizontal-striped glasses with 1×4 array with different thickness of 3, 4 and 5 mm were inserted between top- and bottom-crystal layers. Bottom surface of bottom-layer was optically coupled to a 4×4 GAPD array. Sixteen output signals from DOI-PET detector were multiplexed by modified resistive charge division (RCD) networks and multiplexed signals were fed into custom-made charge-sensitive preamplifiers. The four amplified signals were digitized and recorded by the custom-made DAQ system based on FPGA. The four digitized outputs were post-processed and converted to flood histograms for each interaction event. Experimental results revealed that all crystal pixels were clearly identified on the 2D flood histogram without overlapping. Patterns of the 2D flood histogram were constituted with arrangements of [bottom–top–bottom–top–\\ldots–top–bottom–top–bottom] crystal responses in X-direction. These could be achieved by employing horizontal-striped glass that controlled the extent of light dispersion towards the X-direction in crystal layers for generation of a different position mapping for each layer and the modified RCD network that controls degree of charge sharing in readout electronics for reduction of identification error. This study demonstrated the proposed DOI-PET detector can extract the 3D γ-ray interaction position without considerable performance degradation of PET detector from the 2D flood histogram.
ICESat-2 bathymetry: an empirical feasibility assessment using MABEL
NASA Astrophysics Data System (ADS)
Forfinski, Nick; Parrish, Christopher
2016-10-01
The feasibility of deriving bathymetry from data acquired with ATLAS, the photon-counting lidar on NASA's upcoming ICESat-2 satellite, is assessed empirically by examining data from NASA's airborne ICESat-2 simulator, MABEL. The primary objectives of ICESat-2 will be to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, the 6-beam, green-wavelength photon-counting lidar, combined with the 91-day repeat period and near-polar orbit, may provide unique opportunities to measure coastal bathymetry in remote, poorly-mapped areas of the globe. The study focuses on high-probability bottom returns in Keweenaw Bay, Lake Superior, acquired during the "Transit to KPMD" MABEL mission in August, 2012 at an AGL altitude of 20,000 m. Water-surface and bottom returns were identified and manually classified using MABEL Viewer, an in-house prototype data-explorer web application. Water-surface returns were observed in 12 green channels, and bottom returns were observed in 10 channels. Comparing each channel's mean water-surface elevation to a regional NOAA Nowcast water-level estimate revealed channel-specific elevation biases that were corrected for in our bathymetry estimation procedure. Additionally, a first-order refraction correction was applied to each bottom return. Agreement between the refraction-corrected depth profile and NOAA data acquired two years earlier by Fugro LADS with the LADS Mk II airborne system indicates that MABEL reliably detected bathymetry in depths up to 8 m, with an RMS difference of 0.7 m. In addition to feeding coastal bathymetry models, MABEL (and potentially ICESat-2 ATLAS) has the potential to seed algorithms for bathymetry retrieval from passive, multispectral satellite imagery by providing reference depths.
Shape perception simultaneously up- and downregulates neural activity in the primary visual cortex.
Kok, Peter; de Lange, Floris P
2014-07-07
An essential part of visual perception is the grouping of local elements (such as edges and lines) into coherent shapes. Previous studies have shown that this grouping process modulates neural activity in the primary visual cortex (V1) that is signaling the local elements [1-4]. However, the nature of this modulation is controversial. Some studies find that shape perception reduces neural activity in V1 [2, 5, 6], while others report increased V1 activity during shape perception [1, 3, 4, 7-10]. Neurocomputational theories that cast perception as a generative process [11-13] propose that feedback connections carry predictions (i.e., the generative model), while feedforward connections signal the mismatch between top-down predictions and bottom-up inputs. Within this framework, the effect of feedback on early visual cortex may be either enhancing or suppressive, depending on whether the feedback signal is met by congruent bottom-up input. Here, we tested this hypothesis by quantifying the spatial profile of neural activity in V1 during the perception of illusory shapes using population receptive field mapping. We find that shape perception concurrently increases neural activity in regions of V1 that have a receptive field on the shape but do not receive bottom-up input and suppresses activity in regions of V1 that receive bottom-up input that is predicted by the shape. These effects were not modulated by task requirements. Together, these findings suggest that shape perception changes lower-order sensory representations in a highly specific and automatic manner, in line with theories that cast perception in terms of hierarchical generative models. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tegowski, J.; Zajfert, G.
2014-12-01
Carbon Capture & Storage (CCS) efficiently prevents the release of anthropogenic CO2 into the atmosphere. We investigate a potential site in the Polish Sector of the Baltic Sea (B3 field site), consisting in a depleted oil and gas reservoir. An area ca. 30 x 8 km was surveyed along 138 acoustic transects, realised from R/V St. Barbara in 2012 and combining multibeam echosounder, sidescan sonar and sub-bottom profiler. Preparation of CCS sites requires accurate knowledge of the subsurface structure of the seafloor, in particular deposit compactness. Gas leaks in the water column were monitored, along with the structure of upper sediment layers. Our analyses show the shallow sub-seabed is layered, and quantified the spatial distribution of gas diffusion chimneys and seabed effusion craters. Remote detection of gas-containing surface sediments can be rather complex if bubbles are not emitted directly into the overlying water and thus detectable acoustically. The heterogeneity of gassy sediments makes conventional bottom sampling methods inefficient. Therefore, we propose a new approach to identification, mapping, and monitoring of potentially gassy surface sediments, based on wavelet analysis of echo signal envelopes of a chirp sub-bottom profiler (EdgeTech SB-0512). Each echo envelope was subjected to wavelet transformation, whose coefficients were used to calculate wavelet energies. The set of echo envelope parameters was input to fuzzy logic and c-means algorithms. The resulting classification highlights seafloor areas with different subsurface morphological features, which can indicate gassy sediments. This work has been conducted under EC FP7-CP-IP project No. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2).
30 CFR 280.30 - What activities will not require environmental analysis?
Code of Federal Regulations, 2010 CFR
2010-07-01
... types of activities include: (a) Gravity and magnetometric observations and measurements; (b) Bottom and..., including the setting of instruments; (g) Sampling by box core or grab sampler to determine seabed...
Advances in analytical instrumentation have not only increased the number and types of chemicals measured, but reduced the quantitation limits, allowing these chemicals to be detected at progressively lower concentrations in various environmental matrices. Such analytical advanc...
Do different attention capture paradigms measure different types of capture?
Roque, Nelson A; Wright, Timothy J; Boot, Walter R
2016-10-01
When something captures our attention, why does it do so? This topic has been hotly debated, with some arguing that attention is captured only by salient stimuli (bottom-up view) and others arguing capture is always due to a match between a stimulus and our goals (top-down view). Many different paradigms have provided evidence for 1 view or the other. If either of these strong views are correct, then capture represents a unitary phenomenon, and there should be a high correlation between capture in these paradigms. But if there are different types of capture (top-down, bottom-up), then some attention capture effects should be correlated and some should not. In 2 studies, we collected data from several paradigms used in support of claims of top-down and bottom-up capture in relatively large samples of participants. Contrary to either prediction, measures of capture were not strongly correlated. Results suggest that capture may in fact be strongly determined by idiosyncratic task demands and strategies. Relevant to this lack of relations among tasks, we observed that classic measures of attention capture demonstrated low reliability, especially among measures used to support bottom-up capture. Implications for the low reliability of capture measures are discussed. We also observed that the proportion of participants demonstrating a pattern of responses consistent with capture varied widely among classic measures of capture. Overall, results demonstrate that, even for relatively simple laboratory measures of attention, there are still important gaps in knowledge regarding what these paradigms measure and how they are related.
NASA Astrophysics Data System (ADS)
Roggenstein, E. B.; Gray, G.
2013-12-01
The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (COOPS) manages three national observing system programs. These are the National Water level Observation Network (NWLON) (210 stations), the 23 NOAA/Physical Oceanographic Real-Time Systems (PORTS), and National Currents Observing Program (NCOP) (approximately 70 deployments/year). In support of its mission COOPS operates and maintains a number of small boats. During vessel operations, side-scan sonar data are at times needed to provide information about bottom structure for future work in the area. For example, potential hazards, obstructions, or bottom morphology features that have not been identified on localized charts for a given area could be used to inform decisions on planned installations. Side-scan sonar capability is also important when attempting to reacquire bottom mounts that fail to surface at the conclusion of a current meter survey. Structure mapping and side-scan capabilities have been added to recent consumer-level, commercial, off-the-shelf fathometers, generally intended for recreational, commercial fishing, and diving applications. We are proposing to investigate these systems' viability for meeting survey requirements. We assess their ability to provide a flexible alternative to research/commercial oceanographic level side-scan system at a significant cost savings. Such systems could provide important information to support scientific missions that require qualitative seafloor imagery.
49 CFR 176.97 - Prohibition of dump scows.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Prohibition of dump scows. 176.97 Section 176.97... Requirements for Barges § 176.97 Prohibition of dump scows. Dump scows are barges having cargo carrying compartments of the hopper type and fitted with a bottom dump or a side dump. This type of barge is prohibited...
49 CFR 176.97 - Prohibition of dump scows.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Prohibition of dump scows. 176.97 Section 176.97... Requirements for Barges § 176.97 Prohibition of dump scows. Dump scows are barges having cargo carrying compartments of the hopper type and fitted with a bottom dump or a side dump. This type of barge is prohibited...
Zaprowski, Brent J.; Evenson, Edward B.; Pazzaglia, Frank J.; Epstein, Jack B.
2001-01-01
Geomorphic research in the Black Hills and northern High Plains poses an intriguing hypothesis for the Cenozoic evolution of this salient of the Laramide Rockies. Most recently, geologists have appealed to late Cenozoic epeirogenic uplift or climate change to explain the post-Laramide unroofing of the Rockies. On the basis of field mapping and the interpretation of long-valley profiles, we conclude that the propagation of knickzones is the primary mechanism for exhumation in the Black Hills. Long profiles of major drainages show discrete breaks in the slope of the channel gradient that are not coincident with changes in rock type. We use the term knickzones to describe these features because their profiles are broadly convex over tens of kilometers. At and below the knickzone, the channel is incising into bedrock, abandoning a flood plain, and forming a terrace. Above the knickzone, the channel is much less incised, resulting in a broad valley bottom. Numerous examples of stream piracy are documented, and in each case, the capture is recorded in the same terrace level. These observations are consistent with migrating knickzones that have swept through Black Hills streams, rearranging drainages in their wake. We demonstrate there are two knickzone fronts associated with mapped terraces. Preliminary field evidence of soil development shows that these terraces are time transgressive in nature. Our data strongly suggest that knickzone propagation must be considered a viable mechanism driving late Cenozoic fluvial incision and exhumation of the northern High Plains and adjacent northern Rocky Mountains.
NASA Astrophysics Data System (ADS)
Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.
2007-12-01
Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.
NASA Astrophysics Data System (ADS)
Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.
2004-12-01
Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.
Billingsley, George H.; Block, Debra L.; Dyer, Helen C.
2006-01-01
This map is a product of a cooperative project of the U.S. Geological Survey, the U.S. National Park Service, and the Bureau of Land Management to provide geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead National Recreation Area, Grand Canyon-Parashant-National Monument, and adjacent lands in northwestern Arizona. This map is a synthesis of previous and new geologic mapping that encompasses the Peach Springs 30' x 60' quadrangle, Arizona. The geologic data will support future geologic, biologic, hydrologic, and other science resource studies of this area conducted by the National Park Service, the Hualapai Indian Tribe, the Bureau of Land Management, the State of Arizona, and private organizations. The Colorado River and its tributaries have dissected the southwestern Colorado Plateau into what is now the southwestern part of Grand Canyon. The erosion of Grand Canyon has exposed about 426 m (1,400 ft) of Proterozoic crystalline metamorphic rocks and granite, about 1,450 m (4,760 ft) of Paleozoic strata, and about 300 m (1,000 ft) of Tertiary sedimentary rocks. Outcrops of Proterozoic crystalline rocks are exposed at the bottom of Grand Canyon at Granite Park from Colorado River Mile 207 to 209, at Mile 212, and in the Lower Granite Gorge from Colorado River Mile 216 to 262, and along the Grand Wash Cliffs in the southwest corner of the map area.
1990-02-19
Range : 60,000 miles These images are two versions of a near-infrafed map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft.The map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees F) ahining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about 170 degrees F, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slsivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of clocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and clocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps.
1990-02-10
Range : 60,000 miles These images are two versions of a near-infrafed map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft.The map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees F) ahining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about 170 degrees F, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slsivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of clocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and clocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps.
Activation of Antitumorigenic Stat3beta in Breast Cancer by Splicing Redirection
2013-07-01
putative mapped ESEs (shown in green). (B) (Top) RT-PCR and (Bottom) Western Blot analysis of STAT3 a/b levels in MDA-MB-435s cells treated with...codon (PTC), ultimately causing RNA degradation following nonsense mediated decay (NMD). (B) RT-PCR and Western Blot analysis of STAT3 α/β levels in MDA...MB-435s cells treated with 16µM of ST6, ST7 or INV for 4 days. α-tubulin was used as loading control. (C) RT-PCR and Western Blot analysis of STAT3
South San Francisco Bay, California
Dartnell, Peter; Gibbons, Helen
2007-01-01
View eastward. Elevations in mapped area color coded: purple (approx 15 m below sea level) to red-orange (approx 90 m above sea level). South San Francisco Bay is very shallow, with a mean water depth of 2.7 m (8.9 ft). Trapezoidal depression near San Mateo Bridge is where sediment has been extracted for use in cement production and as bay fill. Land from USGS digital orthophotographs (DOQs) overlaid on USGS digital elevation models (DEMs). Distance across bottom of image approx 11 km (7 mi); vertical exaggeration 1.5X.
Sentinel-2 Level 2A Prototype Processor: Architecture, Algorithms And First Results
NASA Astrophysics Data System (ADS)
Muller-Wilm, Uwe; Louis, Jerome; Richter, Rudolf; Gascon, Ferran; Niezette, Marc
2013-12-01
Sen2Core is a prototype processor for Sentinel-2 Level 2A product processing and formatting. The processor is developed for and with ESA and performs the tasks of Atmospheric Correction and Scene Classification of Level 1C input data. Level 2A outputs are: Bottom-Of- Atmosphere (BOA) corrected reflectance images, Aerosol Optical Thickness-, Water Vapour-, Scene Classification maps and Quality indicators, including cloud and snow probabilities. The Level 2A Product Formatting performed by the processor follows the specification of the Level 1C User Product.
Temporal and spatial mapping of red grouper Epinephelus morio sound production.
Wall, C C; Simard, P; Lindemuth, M; Lembke, C; Naar, D F; Hu, C; Barnes, B B; Muller-Karger, F E; Mann, D A
2014-11-01
The goals of this project were to determine the daily, seasonal and spatial patterns of red grouper Epinephelus morio sound production on the West Florida Shelf (WFS) using passive acoustics. An 11 month time series of acoustic data from fixed recorders deployed at a known E. morio aggregation site showed that E. morio produce sounds throughout the day and during all months of the year. Increased calling (number of files containing E. morio sound) was correlated to sunrise and sunset, and peaked in late summer (July and August) and early winter (November and December). Due to the ubiquitous production of sound, large-scale spatial mapping across the WFS of E. morio sound production was feasible using recordings from shorter duration-fixed location recorders and autonomous underwater vehicles (AUVs). Epinephelus morio were primarily recorded in waters 15-93 m deep, with increased sound production detected in hard bottom areas and within the Steamboat Lumps Marine Protected Area (Steamboat Lumps). AUV tracks through Steamboat Lumps, an offshore marine reserve where E. morio hole excavations have been previously mapped, showed that hydrophone-integrated AUVs could accurately map the location of soniferous fish over spatial scales of <1 km. The results show that passive acoustics is an effective, non-invasive tool to map the distribution of this species over large spatial scales. © 2014 The Fisheries Society of the British Isles.
Comparison of Point Matching Techniques for Road Network Matching
NASA Astrophysics Data System (ADS)
Hackeloeer, A.; Klasing, K.; Krisp, J. M.; Meng, L.
2013-05-01
Map conflation investigates the unique identification of geographical entities across different maps depicting the same geographic region. It involves a matching process which aims to find commonalities between geographic features. A specific subdomain of conflation called Road Network Matching establishes correspondences between road networks of different maps on multiple layers of abstraction, ranging from elementary point locations to high-level structures such as road segments or even subgraphs derived from the induced graph of a road network. The process of identifying points located on different maps by means of geometrical, topological and semantical information is called point matching. This paper provides an overview of various techniques for point matching, which is a fundamental requirement for subsequent matching steps focusing on complex high-level entities in geospatial networks. Common point matching approaches as well as certain combinations of these are described, classified and evaluated. Furthermore, a novel similarity metric called the Exact Angular Index is introduced, which considers both topological and geometrical aspects. The results offer a basis for further research on a bottom-up matching process for complex map features, which must rely upon findings derived from suitable point matching algorithms. In the context of Road Network Matching, reliable point matches provide an immediate starting point for finding matches between line segments describing the geometry and topology of road networks, which may in turn be used for performing a structural high-level matching on the network level.
Martínez-Graña, A M; Silva, P G; Goy, J L; Elez, J; Valdés, V; Zazo, C
2017-04-15
Geomorphology is fundamental to landscape analysis, as it represents the main parameter that determines the land spatial configuration and facilitates reliefs classification. The goal of this article is the elaboration of thematic maps that enable the determination of different landscape units and elaboration of quality and vulnerability synthetic maps for landscape fragility assessment prior to planning human activities. For two natural spaces, the final synthetic maps were created with direct (visual-perceptual features) and indirect (cartographic models and 3D simulations) methods from thematic maps with GIS technique. This enabled the creation of intrinsic and extrinsic landscape quality maps showing sectors needing most preservation, as well as intrinsic and extrinsic landscape fragility maps (environment response capacity or vulnerability towards human actions). The resulting map shows absorption capacity for areas of maximum and/or minimum human intervention. Sectors of high absorption capacity (minimum need for preservation) are found where the incidence of human intervention is minimum: escarpment bottoms, fitted rivers, sinuous high lands with thick vegetation coverage and valley interiors, or those areas with high landscape quality, low fragility and high absorption capacity, whose average values are found across lower hillsides of some valleys, and sectors with low absorption capacity (areas needing most preservation) found mainly in the inner parts of natural spaces: peaks and upper hillsides, synclines flanks and scattered areas. For the integral analysis of landscape, a mapping methodology has been set. It comprises a valid criterion for rational and sustainable planning, management and protection of natural spaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Ground-penetrating radar: use and misuse
NASA Astrophysics Data System (ADS)
Olhoeft, Gary R.
1999-10-01
Ground penetrating radar (GPR) has been used to explore the subsurface of the earth since 1929. Over the past 70 years, it has been widely used, misused and abused. Use includes agriculture, archaeology, environmental and geotechnical site characterization, minerals, groundwater and permafrost exploration, tunnel, utility, and unexploded ordnance location, dam inspection, and much more. Misuse includes mistaking above ground reflections for subsurface events or mapping things from off to the side as if they were directly below, synthetic aperture processing of dispersive data, minimum phase deconvolution, locating objects smaller than resolution limits of the wavelength in the ground, ignoring Fresnel zone limitations in mapping subsurface structure, processing radar data through seismic software packages without allowing for the differences, mapping the bottom of metal pipes from the top, claiming to see through thousands of feet of sediments, and more. GPR is also being abused as the regulatory environment changes and the radiofrequency spectrum is becoming more crowded by cellular phones, pagers, garage door openers, wireless computer networks, and the like. It is often thought to be a source of interference (though it never is) and it is increasingly interfered with by other radiofrequency transmitters.
Estuarine Salinity Mapping From Airborne Radiometry
NASA Astrophysics Data System (ADS)
Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.
2016-12-01
Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.
32 CFR Appendix C to Part 290 - For Official Use Only
Code of Federal Regulations, 2013 CFR
2013-07-01
... the top and bottom with the highest security classification of information appearing on the page. (iii... the additional expense balanced against the degree of sensitivity of the type of FOUO information...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) if such quantity is 1.4 kilograms (3 pounds) or more. The bottom of the sieve is woven-wire cloth.... A collection of primary containers or units of the same size, type, and style manufactured or packed...
Code of Federal Regulations, 2011 CFR
2011-04-01
...) if such quantity is 1.4 kilograms (3 pounds) or more. The bottom of the sieve is woven-wire cloth.... A collection of primary containers or units of the same size, type, and style manufactured or packed...
Dissociable Effects of Aging and Mild Cognitive Impairment on Bottom-Up Audiovisual Integration.
Festa, Elena K; Katz, Andrew P; Ott, Brian R; Tremont, Geoffrey; Heindel, William C
2017-01-01
Effective audiovisual sensory integration involves dynamic changes in functional connectivity between superior temporal sulcus and primary sensory areas. This study examined whether disrupted connectivity in early Alzheimer's disease (AD) produces impaired audiovisual integration under conditions requiring greater corticocortical interactions. Audiovisual speech integration was examined in healthy young adult controls (YC), healthy elderly controls (EC), and patients with amnestic mild cognitive impairment (MCI) using McGurk-type stimuli (providing either congruent or incongruent audiovisual speech information) under conditions differing in the strength of bottom-up support and the degree of top-down lexical asymmetry. All groups accurately identified auditory speech under congruent audiovisual conditions, and displayed high levels of visual bias under strong bottom-up incongruent conditions. Under weak bottom-up incongruent conditions, however, EC and amnestic MCI groups displayed opposite patterns of performance, with enhanced visual bias in the EC group and reduced visual bias in the MCI group relative to the YC group. Moreover, there was no overlap between the EC and MCI groups in individual visual bias scores reflecting the change in audiovisual integration from the strong to the weak stimulus conditions. Top-down lexicality influences on visual biasing were observed only in the MCI patients under weaker bottom-up conditions. Results support a deficit in bottom-up audiovisual integration in early AD attributable to disruptions in corticocortical connectivity. Given that this deficit is not simply an exacerbation of changes associated with healthy aging, tests of audiovisual speech integration may serve as sensitive and specific markers of the earliest cognitive change associated with AD.
Clearcut mapping and forest type mapping in eastern forests with LANDSAT data
NASA Technical Reports Server (NTRS)
Sutherland, K.
1981-01-01
The development and use of signature packages which provide a forest type map and which identify clearcut areas is discussed. The type map divides the forest land into three categories: softwood, mixed wood, and hardwood. The user defines each of these categories and adjusts the signature package to fit his needs. Success in identifying clearcuts and their stage of regrowth was demonstrated in New Hampshire where clearcuts range in size from 5 to 100 acres with between 30 and 40 acres being the most common.
Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Otvos, Ervin; Giardino, Marco
2002-01-01
A chain of barrier islands provides protection against hurricanes and severe storms along the south and southeastern shores of the United States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4-meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5-meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Gorges. Classification accuracy is being addressed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.
Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Otvos, Ervin; Giardino, Marco
2003-01-01
A chain of barrier islands provides protection against hurricanes and severe storms along the southern and southeastern shores of the Unites States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4 meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5 meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Georges. Classification accuracy is being assessed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.
Earth observations taken from shuttle orbiter Discovery on STS-70 mission
1995-07-21
STS070-717-011 (13-22 JULY 1995) --- Volcanic landscapes with a thin dusting of snow appear in this near-vertical view of the dry, high spine of the Andes Mountains at around 28 degrees south latitude. Strong westerly winds (from left) have blown the snow off the highest volcanic peaks (center and bottom): many of these peaks rise higher than 20,000 feet. A small, dry lake appears top right, the white color derived from salts. The border between Argentina and Chile winds from volcano to volcano and passes just left of the small blue lake (left center). Black lava flows can be detected bottom right. The larger area of brown-pink rocks (bottom rock) is also an area of volcanic rocks, of a type known as ash flow tuffs which are violently extruded, often in volumes measured in cubic kilometers.