Science.gov

Sample records for bouguer gravity anomalies

  1. Optimization schemes for the inversion of Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Zamora, Azucena

    associated with structural changes [16]; therefore, it complements those geophysical methods with the same depth resolution that sample a different physical property (e.g. electromagnetic surveys sampling electric conductivity) or even those with different depth resolution sampling an alternative physical property (e.g. large scale seismic reflection surveys imaging the crust and top upper mantle using seismic velocity fields). In order to improve the resolution of Bouguer gravity anomalies, and reduce their ambiguity and uncertainty for the modeling of the shallow crust, we propose the implementation of primal-dual interior point methods for the optimization of density structure models through the introduction of physical constraints for transitional areas obtained from previously acquired geophysical data sets. This dissertation presents in Chapter 2 an initial forward model implementation for the calculation of Bouguer gravity anomalies in the Porphyry Copper-Molybdenum (Cu-Mo) Copper Flat Mine region located in Sierra County, New Mexico. In Chapter 3, we present a constrained optimization framework (using interior-point methods) for the inversion of 2-D models of Earth structures delineating density contrasts of anomalous bodies in uniform regions and/or boundaries between layers in layered environments. We implement the proposed algorithm using three different synthetic gravitational data sets with varying complexity. Specifically, we improve the 2-dimensional density structure models by getting rid of unacceptable solutions (geologically unfeasible models or those not satisfying the required constraints) given the reduction of the solution space. Chapter 4 shows the results from the implementation of our algorithm for the inversion of gravitational data obtained from the area surrounding the Porphyry Cu-Mo Cooper Flat Mine in Sierra County, NM. Information obtained from previous induced polarization surveys and core samples served as physical constraints for the

  2. Bouguer Gravity Anomalies Associated with Lunar Craters: Initial Results from the GRAIL Mission

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Zuber, M. T.; Smith, D. E.; Konopliv, A. S.; Park, R. S.; Wieczorek, M. A.; Lemoine, F. G.; Neumann, G. A.; Melosh, H. J.; Thomason, C. J.; Egan, A. F.

    2012-12-01

    During its primary mapping phase, the Gravity Recovery and Interior Laboratory (GRAIL) mission has mapped the gravity field of the Moon to unprecedented resolution, providing a spherical harmonic model of degree and order 420 and quantitatively useful results to a spatial resolution of at least 20 km. Anomalies associated with impact craters, from large mascon basins down to crater diameters less than 30 km, are the dominant features of a GRAIL degree (l) 420 free-air gravity map of the Moon. Here we focus on the Bouguer gravity anomalies associated with intermediate-sized craters, in the diameter range of ~30-230 km. Results from Apollo-era gravity and topography data analyses suggested that the behavior of crater Bouguer anomalies is age-dependent, but the crater database used then was extremely sparse (12 craters). With the GRAIL gravity field we have a vastly larger set of craters to work with and to date have examined ~200 craters. We calculate a finite-amplitude Bouguer correction with a semi-analytical spatial Green's function sampling a spherical harmonic representation of the lunar shape matched to the gravity bandwidth used (l = 2-300). The resulting crater Bouguer anomalies, averaged over the inner part of each crater, fall in a range of approximately -40 to +40 mGal. We compare Bouguer anomalies against lunar age, crater diameter, regional elevation, geographical locale, and geological setting. Results are interpreted in terms of processes that have operated in the lunar crust and upper mantle.

  3. Simple Bouguer gravity anomaly field and the inferred crustal structure of continental Ecuador

    NASA Astrophysics Data System (ADS)

    Feininger, Tomas; Seguin, M. K.

    1983-01-01

    The simple Bouguer gravity anomaly field of continental Ecuador corresponds closely to the physiographic provinces of the country. The Sierra, which includes the Andes and their foothills, is characterized by a pronounced low with values to -292 mgal, which reflects the deep Andean root. Bouguer anomalies over the Oriente become less negative away from the Sierra, chiefly in response to progressive thinning of continental crust eastward. The Costa, between the Sierra and the Pacific shore, in the north has the most positive on-land Bouguer anomalies (+162 mgal) so far known in the Western Hemisphere. This part of the Costa is underlain by an ancient oceanic plate now welded to the northwestern corner of the otherwise continental South American plate.

  4. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  5. A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation

    USGS Publications Warehouse

    Gettings, M.E.

    1983-01-01

    Approximately 2,200 gravity stations on a 10-km2 grid were used to construct a simple Bouguer gravity anomaly map at 1:2,000,000 scale along a 150-km-wide by 850-km-long strip of the Arabian Peninsula from Sanam, southwest of Ar Riyad, through the Farasan Islands and including offshore islands, the coastal plain, and the Hijaz-Asir escarpment from Jiddah to the Yemen border. On the Precambrian Arabian Shield, local positive gravity anomalies are associated with greenstone belts, gneiss domes, and the Najd fault zones. Local negative gravity anomalies correlate with granitic plutonic rocks. A steep gravity gradient of as much as 4 mgal-km-1 marks the continental margin on the coastal plain near the southwestern end of the strip. Bouguer gravity anomaly values range from -10 to +40 mgal southwest of this gradient and from -170 to -100 mgal in a 300-km-wide gravity minimum northeast of the gradient. Farther northeast, the minimum is terminated by a regional gradient of about 0.1 mgal-km-1 that increases toward the Arabian Gulf. The regional gravity anomaly pattern has been modeled by using seismic refraction and Raleigh wave studies, heat-flow measurements, and isostatic considerations as constraints. The model is consistent with the hypothesis of upwelling of hot mantle material beneath the Red Sea and lateral mantle flow beneath the Arabian plate. The model yields best-fitting average crustal densities of 2.80 g-cm-3 (0-20 km depth) and 3.00 g-cm-3 (20-40 km depth) southwest of the Nabitah suture zone and 2.74 g-cm-3 (0-20 km depth) and 2.94 g-cm-3 (20-40 km depth) northeast of the suture zone. The gravity model requires that the crust be about 20 km thick at the continental margin and that the lower crust between the margin and Bishah (lat 20? N., long 42.5? E.) be somewhat denser than the lower crust to the northeast. Detailed correlations between 1:250,000- and 1:500,000-scale geologic maps and the gravity anomaly map suggest that the greenstone belts associated

  6. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  7. Decomposing Worldwide Complete Spherical Bouguer Gravity Anomaly Using 2-D Empirical Method

    NASA Astrophysics Data System (ADS)

    Firdaus, Ruhul; Mey Ekawati, Gestin

    2017-04-01

    Currently available worldwide gravity anomaly data provides a high-resolution (2’×2’) of Complete Spherical Bouguer Anomaly (CSBA) based on the available information of the Earth gravity field from surface and satellite measurements. The data has not only been provided and processed thoroughly but it also has been claimed to be appropriate for various geophysical applications. Therefore, the analysis of gravity anomaly is becoming increasingly significant for the earth sciences as a whole and assisting both shallow and deep geological problems. Earth gravity anomaly has to be analyzed carefully as it has very complex data due to anomaly mixing of the density masses spread over the Earth horizontally and vertically. The bigger the spatial coverage of data (e.g. global scale data), the more severe the data from anomaly mixing due to various wavelength. BEMD is an empirical method supposedly suitable with highly oscillation-mixing data. It can effectively isolate each local anomaly in details and is analogized as successively reverse moving average with local windowing. BEMD is designed to reduce multi-component, non-linear gravity field data to a series of single local anomaly contributions. Anomaly from a single body was assumed as a mono-component signal. The main advantage of BEMD processing techniques is to present the subtle details in the data which are not clearly identified in anomaly maps, without specifying any prior information about the nature of the source bodies. As the result, we have identified regional anomalies due to the drift of continental and oceanic masses considered as crust-regional anomaly (CRA). We remove the CRA from the CBA to provide surface-residual anomaly (SRA) where shallow geologic bodies reveal. Meanwhile, the CRA itself can be used as reference to reduce this high magnitude anomaly from any measurement data to exhibit only shallow body anomaly. Further analysis can be carried out to build a general understanding of the

  8. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    USGS Publications Warehouse

    Plouff, Donald

    1992-01-01

    A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).

  9. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  10. Recalculation of regional and detailed gravity database from Slovak Republic and qualitative interpretation of new generation Bouguer anomaly map

    NASA Astrophysics Data System (ADS)

    Pasteka, Roman; Zahorec, Pavol; Mikuska, Jan; Szalaiova, Viktoria; Papco, Juraj; Krajnak, Martin; Kusnirak, David; Panisova, Jaroslava; Vajda, Peter; Bielik, Miroslav

    2014-05-01

    In this contribution results of the running project "Bouguer anomalies of new generation and the gravimetrical model of Western Carpathians (APVV-0194-10)" are presented. The existing homogenized regional database (212478 points) was enlarged by approximately 107 500 archive detailed gravity measurements. These added gravity values were measured since the year 1976 to the present, therefore they need to be unified and reprocessed. The improved positions of more than 8500 measured points were acquired by digitizing of archive maps (we recognized some local errors within particular data sets). Besides the local errors (due to the wrong positions, heights or gravity of measured points) we have found some areas of systematic errors probably due to the gravity measurement or processing errors. Some of them were confirmed and consequently corrected by field measurements within the frame of current project. Special attention is paid to the recalculation of the terrain corrections - we have used a new developed software as well as the latest version of digital terrain model of Slovakia DMR-3. Main improvement of the new terrain corrections evaluation algorithm is the possibility to calculate it in the real gravimeter position and involving of 3D polyhedral bodies approximation (accepting the spherical approximation of Earth's curvature). We have realized several tests by means of the introduction of non-standard distant relief effects introduction. A new complete Bouguer anomalies map was constructed and transformed by means of higher derivatives operators (tilt derivatives, TDX, theta-derivatives and the new TDXAS transformation), using the regularization approach. A new interesting regional lineament of probably neotectonic character was recognized in the new map of complete Bouguer anomalies and it was confirmed also by realized in-situ field measurements.

  11. GTeC-A versatile MATLAB® tool for a detailed computation of the terrain correction and Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Cella, Federico

    2015-11-01

    Gravity Terrain Correction (GTeC) is a versatile MATLAB® code for terrain correction aimed to this purpose and capable of going beyond the limits of other public domain codes targeted to this aim. It runs with input gravity data (absolute measurements or free air anomalies) at the land/sea surface and with one or more DTMs (indifferently gridded or scattered) at different detail levels. Each of them can be used to calculate the gravity contribution of a concentric terrain zone around the point station with increasing resolution toward the center. The user can choose between two alternative algorithms for terrain modeling. The simplest one considers each grid point as the flat top of a squared prism. For areas closer to the point station a second algorithm can be chosen to better approximate the relief, with respect to others formulas, by means of a tessellation based network formed by triangular prisms. A more precise terrain correction is therefore achieved, especially in presence of high topographic gradients or just outside the sea/land boundaries. In the last case a suitable algorithm was expressly devised to fit the tessellation based network to the irregular trend of the coastline. GTeC calculates also free air anomalies and both plate and curvature corrections, providing also a complete graphic output including topography, free air anomalies, plate correction, total terrain correction, Bouguer anomalies and the terrain effect due to each computational zone. GTeC speeds up CPU times taking advantage from the parallel computing functions and from the vectorization code, both exploited in MATLAB®. Two code versions of GTeC (for normal or parallel computation), executable under MATLAB environment (pcode), are fully available as public domain software. The results of a synthetic case, of a real case at the regional scale and of a microgravity survey carried out at a short scale, are here presented.

  12. On the Optimization of the Inverse Problem for Bouguer Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Velasco, A. A.; Gutierrez, A. E.

    2013-12-01

    Inverse modeling of gravity data presents a very ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting Earth's model. Although implementing 2- and 3-Dimensional gravitational inverse problems can determine the structural composition of the Earth, traditional inverse modeling approaches can be very unstable. A model of the shallow substructure is based on the density contrasts of anomalous bodies -with different densities with respect to a uniform region- or the boundaries between layers in a layered environment. We implement an interior-point method constrained optimization technique to improve the 2-D model of the Earth's structure through the use of known density constraints for transitional areas obtained from previous geological observations (e.g. core samples, seismic surveys, etc.). The proposed technique is applied to both synthetic data and gravitational data previously obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. We find improvements on the models obtained from this optimization scheme given that getting rid of geologically unacceptable models that would otherwise meet the required geophysical properties reduces the solution space.

  13. On different techniques for the calculation of Bouguer gravity anomalies for joint inversion and model fusion of geophysical data in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Zamora, Azucena

    Density variations in the Earth result from different material properties, which reflect the tectonic processes attributed to a region. Density variations can be identified through measurable material properties, such as seismic velocities, gravity field, magnetic field, etc. Gravity anomaly inversions are particularly sensitive to density variations but suffer from significant non-uniqueness. However, using inverse models with gravity Bouguer anomalies and other geophysical data, we can determine three dimensional structural and geological properties of the given area. We explore different techniques for the calculation of Bouguer gravity anomalies for their use in joint inversion of multiple geophysical data sets and a model fusion scheme to integrate complementary geophysical models. Various 2- and 3- dimensional gravity profile forward modeling programs have been developed as variations of existing algorithms in the last decades. The purpose of this study is to determine the most effective gravity forward modeling method that can be used to combine the information provided by complementary datasets, such as gravity and seismic information, to improve the accuracy and resolution of Earth models obtained for the underlying structure of the Rio Grande Rift. In an effort to determine the most appropriate method to use in a joint inversion algorithm and a model fusion approach currently in development, we test each approach by using a model of the Rio Grande Rift obtained from seismic surface wave dispersion and receiver functions. We find that there are different uncertainties associated with each methodology that affect the accuracy achieved by including gravity profile forward modeling. Moreover, there exists an important amount of assumptions about the regions under study that must be taken into account in order to obtain an accurate model of the gravitational acceleration caused by changes in the density of the material in the substructure of the Earth.

  14. Worldwide complete spherical Bouguer and isostatic anomaly maps

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  15. Elevation Difference and Bouguer Anomaly Analysis Tool (EDBAAT) User's Guide

    USGS Publications Warehouse

    Smittle, Aaron M.; Shoberg, Thomas G.

    2017-06-16

    This report describes a software tool that imports gravity anomaly point data from the Gravity Database of the United States (GDUS) of the National Geospatial-Intelligence Agency and University of Texas at El Paso along with elevation data from The National Map (TNM) of the U.S. Geological Survey that lie within a user-specified geographic area of interest. Further, the tool integrates these two sets of data spatially and analyzes the consistency of the elevation of each gravity station from the GDUS with TNM elevation data; it also evaluates the consistency of gravity anomaly data within the GDUS data repository. The tool bins the GDUS data based on user-defined criteria of elevation misfit between the GDUS and TNM elevation data. It also provides users with a list of points from the GDUS data, which have Bouguer anomaly values that are considered outliers (two standard deviations or greater) with respect to other nearby GDUS anomaly data. “Nearby” can be defined by the user at time of execution. These outputs should allow users to quickly and efficiently choose which points from the GDUS would be most useful in reconnaissance studies or in augmenting and extending the range of individual gravity studies.

  16. The origin of lunar mascons - Analysis of the Bouguer gravity associated with Grimaldi

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Dvorak, J.

    Grimaldi is a relatively small multi-ringed basin located on the western limb of the moon. Spacecraft free-air gravity data reveal a mascon associated with the inner ring of this structure, and the topographic correction to the local lunar gravity field indicates a maximum Bouguer anomaly of +90 milligals at an altitude of 70 kilometers. Approximately 20% of this positive Bouguer anomaly can be attributed to the mare material lying within the inner ring of this basin. From a consideration of the Bouguer gravity and structure of large lunar craters comparable in size to the central basin of Grimaldi, it is suggested that the remaining positive Bouguer anomaly is due to a centrally uplifted plug of lunar mantle material. The uplift was caused by inward crustal collapse which also resulted in the formation of the concentric outer scarp of Grimaldi. In addition, an annulus of low density material, probably a combination of ejecta and in situ breccia, is required to fully reproduce the Bouguer gravity signature across this basin. It is proposed that Grimaldi supplies a critical test in the theory of mascon formation: crustal collapse by ring faulting and central uplift to depths of the crust-mantle boundary are requisites

  17. The origin of lunar mascons - Analysis of the Bouguer gravity associated with Grimaldi

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Dvorak, J.

    1981-01-01

    Grimaldi is a relatively small multi-ringed basin located on the western limb of the moon. Spacecraft free-air gravity data reveal a mascon associated with the inner ring of this structure, and the topographic correction to the local lunar gravity field indicates a maximum Bouguer anomaly of +90 milligals at an altitude of 70 kilometers. Approximately 20% of this positive Bouguer anomaly can be attributed to the mare material lying within the inner ring of this basin. From a consideration of the Bouguer gravity and structure of large lunar craters comparable in size to the central basin of Grimaldi, it is suggested that the remaining positive Bouguer anomaly is due to a centrally uplifted plug of lunar mantle material. The uplift was caused by inward crustal collapse which also resulted in the formation of the concentric outer scarp of Grimaldi. In addition, an annulus of low density material, probably a combination of ejecta and in situ breccia, is required to fully reproduce the Bouguer gravity signature across this basin. It is proposed that Grimaldi supplies a critical test in the theory of mascon formation: crustal collapse by ring faulting and central uplift to depths of the crust-mantle boundary are requisites

  18. Separation of Bouguer anomaly map using cellular neural network

    NASA Astrophysics Data System (ADS)

    Albora, A. Muhittin; Ucan, Osman N.; Ozmen, Atilla; Ozkan, Tulay

    2001-02-01

    In this paper, a modern image-processing technique, the Cellular Neural Network (CNN) has been firstly applied to Bouguer anomaly map of synthetic examples and then to data from the Sivas-Divrigi Akdag region. CNN is an analog parallel computing paradigm defined in space and characterized by the locality of connections between processing neurons. The behaviour of the CNN is defined by two template matrices and a template vector. We have optimised the weight coefficients of these templates using the Recurrent Perceptron Learning Algorithm (RPLA). After testing CNN performance on synthetic examples, the CNN approach has been applied to the Bouguer anomaly of Sivas-Divrigi Akdag region and the results match drilling logs done by Mineral Research and Exploration (MTA).

  19. An updated Bouguer anomaly map of south-central West Africa

    USGS Publications Warehouse

    Hastings, David A.

    1983-01-01

    A new Bouguer gravity anomaly map compiled for western Africa adds data for Ghana, Guinea, and Liberia.The new data add detail to a key part of the Eburnean shield and assist in the development of a model of rifting at the time of the Eburnean orogeny, 2000 million years ago. This model includes a framework for the deposition of the region's mineral deposits. The model and existing field data can be used to guide future minerals exploration in the region.

  20. Gravity Anomalies

    NASA Image and Video Library

    2015-04-15

    Analysis of radio tracking data have enabled maps of the gravity field of Mercury to be derived. In this image, overlain on a mosaic obtained by MESSENGER's Mercury Dual Imaging System and illuminated with a shape model determined from stereo-photoclinometry, Mercury's gravity anomalies are depicted in colors. Red tones indicate mass concentrations, centered on the Caloris basin (center) and the Sobkou region (right limb). Such large-scale gravitational anomalies are signatures of subsurface structure and evolution. The north pole is near the top of the sunlit area in this view. http://photojournal.jpl.nasa.gov/catalog/PIA19285

  1. Seismic b-Values, Bouguer Gravity and Heat Flow Data Beneath Eastern Anatolia, Turkey: Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Maden, Nafiz; Öztürk, Serkan

    2015-07-01

    In this paper, we analyze the relationships between the seismic b-values, Bouguer gravity and heat flow data in the Eastern Anatolia region of Turkey. For this purpose, spatial distributions of b-value, Bouguer gravity and heat flow have been presented for different depths and locations. In distinction to previous studies which have used only two parameters (gravity and seismic b-value or heat flow and seismic b-value), we have combined seismic b-values, Bouguer gravity and heat flow data to determine the new results on the active tectonics of the Eastern Anatolia region. Our analysis shows that there are significant and robust correlations amidst the heat flow data, Bouguer gravity anomaly and seismic b-values. The crustal structure is thick in areas where the large negative gravity anomalies and low b-values are observed. On the contrary, the regions with positive gravity anomalies and high b-values are likely to be associated with magma chambers or crustal low-velocity zones. We also provide some evidence suggesting that high b-values and high heat flow values can be related to the magmatic activities beneath the volcanic chain in the Eastern Pontide orogenic belt. Consequently, we have reached some conclusions for the Eastern Anatolia region: (1) The Moho to surface is rather thick and earthquakes are relatively smaller beneath the volcanic chain where the high heat flow values are observed, (2) a southward subduction model could have existed for the development of the Pontides during the late Mesozoic-Cenozoic era, (3) hot and unstable mantle lid zones or a lithosphere deprived of mantle under the study region is much more plausible, (4) a southward movement of the subduction plate and a northward extension of the Black Sea increase the state of stress along the trench axis and decrease the b-value, and (5) these movements may load the stress energy to the fault zones, thereby causing the catastrophic earthquakes in the Eastern Anatolia region.

  2. New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.

  3. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Balmino, G.; Vales, N.; Bonvalot, S.; Briais, A.

    2012-07-01

    The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth's topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid's surface to the Earth's surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1' × 1' equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth's topography-bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical

  4. GRAIL Spots Gravity Anomaly

    NASA Image and Video Library

    2012-12-05

    A 300-mile-long linear gravity anomaly on the far side of the moon has been revealed by gravity gradients measured by NASA GRAIL mission. GRAIL data are shown on the left, with red and blue corresponding to stronger gravity gradients.

  5. Inferred Tectonic Segmentation in the Eastern Central Atlantic Ocean and the African Margin From Mantle Bouguer Anomalies

    NASA Astrophysics Data System (ADS)

    Llanes Estrada, P.; ten Brink, U.; Canales, J.; Carbo Gorosabel, A.; Munoz Martin, A.

    2008-12-01

    The distribution, wavelength and amplitude of the Mantle Bouguer Anomalies (MBA) in the Eastern Central Atlantic Ocean reveal regional variations in crust and-or upper mantle structure. The MBA variations of such anomalies define four corridors, limited by the Oceanographer, D, Kane, South Cape Verde and Vema fracture zones. Within these corridors second order variations are sometimes present, also limited by facture zones. There is no significant change in the MBA across the Atlantis fracture zone, in contrast to observations from the conjugate Western Atlantic Ocean, which we hypothesize, are related to asymmetry in Mid-Atlantic Ridge processes. The MBA segmentation appears to follow flowlines up to the very old oceanic lithosphere adjacent to the continental margin. However, this segmentation does not mimic the MBA segmentation found along the African continental margin, which is characterized by a narrow and intermittent band of high amplitude mantle Bouguer anomalies. The location and shape of the gravity highs and lows along the margin follow the coastal morphology, with gravity lows located in front of capes and highs in front of gulfs. We conclude that the deep structure of the continental margin has been inherited from the first stages of the rifting processes and differs from the general segmentation later produced by sea-floor spreading along the Mid-Atlantic Ridge. Intraplate volcanism, such as the Canary Islands, Cape Verde Islands and Madeira Island is not responsible for the existence of the MBA corridors or their boundaries in the eastern Atlantic Ocean, but instead generates broad areas of large negative MBA that modify the pre- existing gravity signature of the ocean floor.

  6. Processing the Bouguer anomaly map of Biga and the surrounding area by the cellular neural network: application to the southwestern Marmara region

    NASA Astrophysics Data System (ADS)

    Aydogan, D.

    2007-04-01

    An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandirma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more

  7. Band-limited Bouguer gravity identifies new basins on the Moon

    NASA Astrophysics Data System (ADS)

    Featherstone, W. E.; Hirt, C.; Kuhn, M.

    2013-06-01

    Spectral domain forward modeling is used to generate topography-implied gravity for the Moon using data from the Lunar Orbiter Laser Altimeter instrument operated on board the Lunar Reconnaissance Orbiter mission. This is subtracted from Selenological and Engineering Explorer (SELENE)-derived gravity to generate band-limited Bouguer gravity maps of the Moon so as to enhance the gravitational signatures of anomalous mass densities nearer the surface. This procedure adds evidence that two previously postulated basins on the lunar farside, Fitzgerald-Jackson (25°N, 191°E) and to the east of Debye (50°N, 180°E), are indeed real. When applied over the entire lunar surface, band-limited Bouguer gravity reveals the locations of 280 candidate basins that have not been identified when using full-spectrum gravity or topography alone, showing the approach to be of utility. Of the 280 basins, 66 are classified as distinct from their band-limited Bouguer gravity and topographic signatures, making them worthy of further investigation.

  8. Gravity Anomaly Intersects Moon Basin

    NASA Image and Video Library

    2012-12-05

    A linear gravity anomaly intersecting the Crisium basin on the nearside of the moon has been revealed by NASA GRAIL mission. The GRAIL gravity gradient data are shown at left, with the location of the anomaly indicated.

  9. Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian platform in Syria

    SciTech Connect

    Best, J.A.; Barazangi, M. ); Al-Saad, D.; Sawaf, T.; Gebran, A. )

    1990-12-01

    This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40{plus minus}4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.

  10. Depth and density variations of hydrocarbon and mud reservoirs from Bouguer anomaly inversion at the Nirano Mud Volcanic Field, Italy.

    NASA Astrophysics Data System (ADS)

    Carrier, Aurore; Lupi, Matteo; Haddad, Antoine; Baron, Ludovic; Linde, Niklas

    2017-04-01

    Mud volcanoes are dynamic and stress-sensitive geological systems. They are often found in hydrocarbon provinces and could sample underlying reservoir. However those systems are still geophysically poorly investigated and their plumbing structure and flow dynamics is still not very well understood. Because of its accessibility, the Nirano Mud Volcanic Field (NMVF) was targeted as an experimental field to improve our understanding about the plumbing system of mud volcanic structures. Two gravity surveys were performed along dipole-dipole geoelectric profiles. We used the gravimeter Scintrex CG5 and the GPS Leica 1200 to conduct two profiles striking N45 and N135. Wavelength filtering of Bouguer anomalies indicate a 2000 m deep reservoir, two mid-depth reservoirs (i.e., 600 m deep) and three shallow ones (i.e., 100 m deep). Using these observations and previous studies (geology, ERT) as prior information, the Bouguer anomalies were inverted using a gradient-based least-squares method that uses the LSQR algorithm and accounts for data and model covariances. Depth weighting is taken into account by introducing a weighting matrix based on kernel decrease. Unconstrained inversion results suggest at least three subsurface bodies and one deeper one (1000 m deep). Constrained inversion results are in accordance with a model of two sub-spheroidal reservoirs located at about 1500 m depth that are tilted by 30° overlaid by two reservoirs at intermediate depths (i.e. 600 m deep). This is in agreement with the inferred tilting of the Ligurian Units occurring at such depths. Density variations range from 0 to 800 kg/m3. Due to the difficulty to constrain both geometry and density of the investigated reservoirs, complementary information (i.e. seismic and electrical resistivity tomography) will later be used to further improve the results. Despite the degree of nonuniqueness in our investigations, this study represents the first attempt to provide a gravity-based geophysical

  11. Investigating the effect of different terrain modeling techniques on the computation of local gravity anomalies

    NASA Astrophysics Data System (ADS)

    Tsoulis, Dimitrios; Patlakis, Konstantinos

    2017-04-01

    Gravity reductions and gravity anomalies express important tools for the analysis and interpretation of real gravity measurements at all spatial scales. Simple geometries of planar or spherical slabs for the topographic masses underlying the computation point down to a reference height surface produce the traditional definition of simple Bouguer anomalies. However, especially for gravity measurements obtained from local gravity surveys stretching up to only a few tens of kilometers, a detailed consideration of the deviations of the surface topographic relief from the ideal slab geometry is required and necessary in order to obtain the so-called refined Bouguer anomalies. The present contribution examines the further refinement of these computations depending on the exact geometric representation of the topographic surface and the corresponding masses defining the terrain correction quantity. Using as input data 328 surface gravity observations and a 20 km x 15 km Digital Terrain Model with a 50 m x 50 m spatial resolution of a steep terrain area in the Bavarian Alps different sets of gravity anomalies were computed from different geometrical and mathematical approximations of the topographic masses and its corresponding gravitational effect. Right rectangular prisms, polyhedrons, bilinear surfaces, mass-line and mass-prism FFT representations of the terrain effect have been implemented for the evaluation of refined Bouguer gravity anomalies over the 20 km x 15 km region and the computed grids have been compared both against each other as well as with respect to the topographic height.

  12. About the link of intraplate earthquakes allocations for South and North America with gravity field anomalies

    NASA Astrophysics Data System (ADS)

    Ryzhii, B. P.; Nachapkin, N. I.; Milanovsky, S. Yu.

    2003-04-01

    According developed concept the areas heightened intraplate seismicity are connected with the increased silica contents in the rocks, i.e. with patterns of acidic composition and, accordingly, with negative Bouguer gravity anomalies. Done statistical analysis of intraplate allocation of earthquakes on territory of Russia, Africa and Australia has confirmed effect of correlation of their position with areas of negative Bouguer anomalies. In this paper we made pattern analysis of the link of areas heightened intraplate seismicity for South and North America with anomalies of a gravity field - Bouguer and isostatic. If Bouguer anomalies are mainly related to morphology and composition of structural complexes of Earth crust, the isostatic anomalies, as a rule, are connected with acting tectonic forces and characterize a modern stress of Earth crust. For South America we analyzed 139 seismic events, which have occurred in a crust of Brazilian Platform in the period from 1692 to 2002. In regions with negative values of Bouguer anomalies, smaller than its mean for the Platform (-30 mgal), there occur 70% of all earthquakes. The correlation of a magnitude and depth of a hypocenter of earthquake is supervised depending on the value of Bouguer anomalies in its epicenter. In regions with positive values of isostatic anomaly, larger its mean magnitude for the Platform (1 mgal), there occur 77 % of all earthquakes. For North America we analyzed 383 seismic events which have occurred in a crust of North-American Platform in a period with 1929 on 2002. From 383 events 288 (75 %) has taken place in areas with negative values of Bouguer anomalies and 95 (25 %) - with positive values. Thus, the amount of earthquakes recorded in a negative gravitational field, in 4 times exceeds an amount of earthquakes in a positive field. At values of isostatic anomalies close to normal (-10 - 10 mgal) there was 55 % of all earthquakes and 41 % - recorded in ecstatically disturbed regions at values

  13. Non-Newtonian gravity or gravity anomalies?

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.; Chao, B. Fong; Schatten, Kenneth H.; Sager, William W.

    1988-01-01

    Geophysical measurements of G differ from laboratory values, indicating that gravity may be non-Newtonian. A spherical harmonic formulation is presented for the variation of (Newtonian) gravity inside the Earth. Using the GEM-10B Earth Gravitational Field Model, it is shown that long-wavelength gravity anomalies, if not corrected, may masquerade as non-Newtonian gravity by providing significant influences on experimental observation of delta g/delta r and G. An apparent contradiction in other studies is also resolved: i.e., local densities appear in equations when average densities of layers seem to be called for.

  14. Gravity anomaly, lithospheric structure and seismicity of Western Himalayan Syntaxis

    NASA Astrophysics Data System (ADS)

    Tiwari, V. M.; Rajasekhar, R. P.; Mishra, D. C.

    2009-07-01

    A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus-Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate-deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (˜55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram-Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.

  15. New Data Bases and Standards for Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Hildenbrand (Deceased), T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.

    2008-12-01

    derive the predicted or modeled gravity, and thus, anomalies of this class are termed planetary. The most primitive version of a gravity anomaly is simply the difference between the value of gravity predicted by the effect of the reference ellipsoid and the observed gravity anomaly. When the height of the gravity station increases, the ellipsoidal gravity anomaly decreases because of the increased distance of measurement from the anomaly- producing masses. The two primary anomalies in geophysics, which are appropriately classified as planetary anomalies, are the Free-air and Bouguer gravity anomalies. They employ models that account for planetary effects on gravity including the topography of the earth. A second class of anomaly, geological anomalies, includes the modeled gravity effect of known or assumed masses leading to the predicted gravity by using geological data such as densities and crustal thickness. The third class of anomaly, filtered anomalies, removes arbitrary gravity effects of largely unknown sources that are empirically or analytically determined from the nature of the gravity anomalies by filtering.

  16. Comparison of onshore Bouguer anomalies with GOCE Satellite Data in two sections of the Andes: at 29°S and at 39°S.

    NASA Astrophysics Data System (ADS)

    Alvarez, O.; Gimenez, M.; Braitenberg, C.; Martinez, P.

    2012-04-01

    In the present work we compare the Bouguer anomaly obtained from onshore measurements with the Bouguer anomaly obtained from satellite GOCE data along two well known sections of the Andes, at 29°18'S and at 38°45'S. The first gravimetric section, published by Martinez et al. (2006), describes a gravity and altimetric profile that extends over a distance surpassing 800km in Argentina, at 29°18'S. Using gravimetric inversion methods a crustal model was obtained which is in accordance with the main regional geologic structures. This model fits with a dominant collision mechanism that affected ancient blocks and is a two-layer crustal model with lateral density variations. The Chilenia, Cuyania, Famatina System, Pampia and River Plate cratons were detected. From the gravimetric signal we identify beyond doubt the suture zone between the Precordillera and the Famatina System Ranges, as well as the shear zone between the latter ranges and the Velasco Range. The maximum crustal thickness determined beneath the Andean Cordillera at this latitude is 69 km, whereas under the Famatina System and the Velasco Ranges the values obtained are, respectively, 56 km and 46.5 km. The second profile was published by Folguera et al., (2008). The western retroarc of the Southern Andes between 38° and 40°S is formed by a NNW-elongated ridge not associated with stacked thrust sheets. On the contrary, during the last 4-3 Ma this ridge was affected by extensional deformation, regional uplift and related folding on a very broad scale. Receiver function analysis shows that the drainage divide area and adjacent retroarc lie over an attenuated crust. Normal crustal thickness at these latitudes is around 42km, whereas in this part of the retroarc the thickness is less than 32km. The causes for such attenuation have been linked to a moderate steepening of the subducted Nazca plate beneath South American plate, which is suggested by a westward shift and narrowing of the arc during the last 5Ma

  17. Upward Continuation Apply Newly to Process Gravity Anomaly Data in the East China Sea

    NASA Astrophysics Data System (ADS)

    Han, Bo; Zhang, Xunhua; Jiang, Jinyu

    2014-05-01

    The research area lies in the East China Sea and its adjacent area and the concrete is between 120-130 degree of east longitude and 20-30 degree of north latitude and it also lies between Eurasian Plate and Pacific Plate. The structures of the area transform differently and they are namely Uplifted Zone of Zhejiang-Fujian, East China Sea Shelf Basin, Okinawa Trough Back-arc Basin, Ryukyu Arc, Ryukyu trench and Philippine Sea from west to east. Bouguer gravity anomaly can reflect deep structure characters and it is help to judge deep structures. The bouguer gravity anomalies of the area change differently from west to east. The anomalies increase gradually from land to the middle of Okinawa trough and near land anomaly contour strike accords with coastline and the middle of Okinawa trough reflect the highest anomalies in this area. Gravity anomalies re-increase from Ryukyu fore-arc basin to trench and Ryukyu island arc appears the low anomalies. Philippine Sea appears high gravity anomalies background. Upward continuation method has been used to process original gravity anomaly as a common method and its destination is to weaken local anomaly and at last strengthen deep anomaly and it's important to deep structure study. Upward 5 km, 10 km and 20 km have been used to process data and the results been compared. However, the research area is very large and the deep structure is complex, it isn't suitable to use single height to upward continuation processing bouguer gravity anomaly. Then we propose multiple upward heights continuation to process gravity data respectively in different area. We use upward 20km to process data in the area from land to the slope and upward 10km from Okinawa trough to Ryukyu island arc and upward 5km from Ryukyu trench to Philippine Sea. At last we obtain multiple upward height result and the calculated result confirms that it is fit to use this method. Gravity anomalies contours become smoother than before and the deep structures become

  18. Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York

    SciTech Connect

    Revetta, F.A.; O'Brian, B. . Geology Dept.)

    1993-03-01

    Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate with the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.

  19. Spreading rate dependence of gravity anomalies along oceanic transform faults.

    PubMed

    Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J

    2007-07-12

    Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults.

  20. Deformation induced topographic effects in inversion of temporal gravity changes: First look at Free Air and Bouguer terms

    NASA Astrophysics Data System (ADS)

    Vajda, Peter; Zahorec Pavol, Pavol; Papčo, Juraj; Kubová, Anna

    2015-06-01

    We review here the gravitational effects on the temporal (time-lapse) gravity changes induced by the surface deformation (vertical displacements). We focus on two terms, one induced by the displacement of the benchmark (gravity station) in the ambient gravity field, and the other imposed by the attraction of the masses within the topographic deformation rind. The first term, coined often the Free Air Effect (FAE), is the product of the vertical gradient of gravity (VGG) and the vertical displacement of the benchmark. We examine the use of the vertical gradient of normal gravity, typically called the theoretical or normal Free Air Gradient (normal FAG), as a replacement for the true VGG in the FAE, as well as the contribution of the topography to the VGG. We compute a topographic correction to the normal FAG, to offer a better approximation of the VGG, and evaluate its size and shape (spatial behavior) for a volcanic study area selected as the Central Volcanic Complex (CVC) on Tenerife, where this correction reaches 77% of the normal FAG and varies rapidly with terrain. The second term, imposed by the attraction of the vertically displaced topo-masses, referred to here as the Topographic Deformation Effect (TDE) must be computed by numerical evaluation of the Newton volumetric integral. As the effect wanes off quickly with distance, a high resolution DEM is required for its evaluation. In practice this effect is often approximated by the planar or spherical Bouguer deformation effect (BDE). By a synthetic simulation at the CVC of Tenerife we show the difference between the rigorously evaluated TDE and its approximation by the planar BDE. The complete effect, coined here the Deformation Induced Topographic Effect (DITE) is the sum of FAE and TDE. Next we compare by means of synthetic simulations the DITE with two approximations of DITE typically used in practice: one amounting only to the first term in which the VGG is approximated by normal FAG, the other adopting a

  1. The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift

    SciTech Connect

    Cordell, L. ); Zorin, Y.A. ); Keller, G.R. )

    1991-04-10

    An isostatic correction is commonly made to Bouguer anomaly gravity data to remove the gravity effect of isostatic compensation of topographic loads. In the USSR a decompensative correction has then been made to the isostatic gravity anomaly to remove the gravity effect of isostatic compensation of geologic loads as well. The authors employ here calculations in the wave number domain, leading to an efficient and exact solution. In a 1,200 {times} 1,200 km region centered on the Rio Grande rift the decompensative correction ranges from about {minus}35 to +25 mGal. The decompensative anomaly, highlights an arcuate gravity low and a system of gravity highs inferred to reflect prerift welts of mass concentration which have indirectly influenced the position of the rift and its segmentation and zones of accommodation. Under the assumptions made, if the decompensative anomaly is subtracted from the Bouguer anomaly, then the residual is the gravity anomaly field of deep structure, without gravity effects of shallow sources in the upper crust. Using available seismic data to (weakly) constrain the Moho surface, they invert the residual gravity field for topography of the base of the lithosphere. Lithosphere is found to be 200 km thick in the High Plains; 40-50 km in the eastern Great Basin; 75-100 km in the Colorado Plateau, and as thin as 40 km in the southern Rio Grande rift. In the area studied, the thickness of the lithospere is everwhere greater than that of the crust. The separation of gravity effects made possible by the decompensative correction shows how the rift is fundamentally controlled by thinning of the lithosphere, yet in detail is deflected by long-lived tectonic welts in the shallow, brittle crust.

  2. Joint inversion of teleseismic body wave residuals and Joint Inversion of Teleseismic Body Wave Residuals and Bouguer Gravity Data to Constrain the Origin of the Colorado Rockies

    NASA Astrophysics Data System (ADS)

    MacCarthy, J. K.; Aster, R. C.; Hansen, S. M.; Stachnik, J. C.; Dueker, K. G.; Karlstrom, K. E.

    2009-12-01

    The Aspen Anomaly is a low-velocity upper-mantle feature underpinning the highest elevations of the Colorado Rocky Mountains. The anomaly is partially correlated with high elevations, high heat flow, and protracted mid to late-Cenozoic volcanism. In addition, the Precambrian lithosphere-scale weakness known as the Colorado Mineral Belt is partly co-located with the anomaly. Previous seismic studies have suggested that the Aspen Anomaly is a northward extension of low velocities associated with the adjacent Rio Grande rift. Yet, the lack of adequate high-fold seismic sampling has hampered understanding the relationship between the Aspen Anomaly and general features of regional tectonics. Competing end-member models for the anomaly are: 1) upwelling asthenosphere associated with flat-slab roll-back or delamination of the restitic root of the San Juan volcanic field, and/or 2) Laramide thickening and hydraulic weakening of lower lithosphere that promoted subsequent Rayleigh-Taylor instabilities of the lower lithosphere that are flanked by thinned lithosphere, 3) compositional variations due to hydration and/or low-solidus material, 4) a mini-plume or water pipe diapir shed upwards from the 410 km low velocity zone. The time coincident seismic recording by the 59-station PASSCAL CREST array and array and 32 Transportable Array (TA) stations produces a dense sampling with a mean 24 km station spacing, making the Aspen Anomaly a natural target for joint seismic/gravity inversion. We apply an iterative nonlinear inversion methodology using travel time data from CREST/TA seismic stations and Bouguer anomaly data from the Pan-American Center for Earth and Environmental Studies (PACES) geophysical database to produce three-dimensional models of upper mantle velocity anomaly structure. We compare models derived from joint inversions versus those from solely travel time tomography, and evaluate the use of joint techniques and density/velocity scaling relationships to assess

  3. Primary and secondary Bouguer gravity trend analyses and structural implications for Early Proterozoic Kiernan Sills, Iron County, Michigan

    SciTech Connect

    Cogan, M.J.

    1993-03-01

    The Kiernan Sills outcrop at the eastern edge of the Early Proterozoic Penokean orogenic belt. The sills strike north-northwest by south-southeast and extend approximately 20 km. They have been described as differentiated mafic bodies with MORB-like affinities and comagmatic to superposed pillow basalts. The igneous rocks are overlain by deep marine sediments. Petrogenesis of the sills suggests duplication of a single intrusive as opposed to two discrete sills. Penokean deformation is dominated by east-west trending structures from a south over north compressive regime. In the Kiernan Sills area, however, major and minor structural features are oriented north northwest-south southeast. Field evidence shows that this Penokean-oblique trend is primary rather than a reoriented Penokean-related fabric. Therefore, this deformation predated the major Penokean event and occurred during south-southwest over north-northeast compression. The Bouguer data show a 20 mGal difference between points southwest of the sills and points northeast of the sills. Profiles of simple Bouguer gravity data support northeastward emplacement of the sills on thrusts. First derivative contour maps are suggestive of one or more wrench faults oriented east-west along the sills, which were probably coeval with thrust emplacement.

  4. Analysis of gravity anomalies in Maio Island, Cape Verde.

    NASA Astrophysics Data System (ADS)

    Catalao, Joao; Represas, Patricia; Montesinos, Fuensanta; Antunes, Carlos; Madeira, José; Mata, João.

    2010-05-01

    was performed by a stabilized non-linear inversion methodology. A local average terrain density of 2200 kgm-3 was determined by applying a fractal analysis to the free-air anomaly. Topographic gravity effects were computed and the Bouguer anomaly for Maio Island was revealed. The global model was used to estimate the regional field. The resulting residual field shows a single positive anomaly, with a maximum value of 63 mGal. It has an elliptic shape, slightly off-centred with the island, and presenting a long axis trending N20W. A 3-D density contrast model was estimated from the Bouguer anomalies by means of a stabilized non-linear inversion methodology. This gravimetric inversion technique aims to determine the geometry of the sources of the observed gravity field, upon the adjustment of a three dimensional model of prismatic cells which adopt a priori values of density contrast (positive and negative). The density contrast assigned for each cell is determined using a combination of a process of accretion with a search of model changes to achieve a minimum residual between gravity data and model response. Results from the gravity inversion presents a good correlation with the geology of the island of Maio. The structural model obtained depicts a main high density body coinciding with the positive gravity anomaly which dominates the island. This body corresponds to the Basament Complex which is exposed in this area, where the plutonic bodies of essexite/pyroxenite crop out and thus reflect the highest density of those rocks relatively to mafic lava flows and accompanying sediments. The deepest sections of the model show the relation between this body and the earlier growth stage of the island.

  5. Bouguer images of the North American craton

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Bindschadler, D.; Bowring, S.; Eddy, M.; Guinness, E.; Leff, C.

    1985-04-01

    Processing of existing gravity and aeromagnetic data with modern methods is providing new insights into crustal and mantle structures for large parts of the United States and Canada. More than three-quarters of a million ground station readings of gravity are now available for this region. These data offer a wealth of information on crustal and mantle structures when reduced and displayed as Bouguer anomalies, where lateral variations are controlled by the size, shape and densities of underlying materials. Digital image processing techniques were used to generate Bouguer images that display more of the granularity inherent in the data as compared with existing contour maps. A dominant NW-SE linear trend of highs and lows can be seen extending from South Dakota, through Nebaska, and into Missouri. This trend is probably related to features created during an early and perhaps initial episode of crustal assembly by collisional processes. The younger granitic materials are probably a thin cover over an older crust.

  6. Complete Bouguer gravity map of the Nevada Test Site and vicinity, Nevada

    SciTech Connect

    Healey, D.L.; Harris, R.N.; Ponce, D.A.; Oliver, H.W.

    1987-12-31

    About 15,000 gravity stations were used to create the gravity map. Gravity studies at the Nevada Test Site were undertaken to help locate geologically favorable areas for underground nuclear tests and to help characterize potential high-level nuclear waste storage sites. 48 refs. (TEM)

  7. Consistent anomalies of the induced W gravities

    NASA Astrophysics Data System (ADS)

    Abud, Mario; Ader, Jean-Pierre; Cappiello, Luigi

    1996-02-01

    The BRST anomaly which may be present in the induced Wn gravity quantized on the light-cone is evaluated in the geometrical framework of Zucchini. The cocycles linked by the cohomology of the BRST operator to the anomaly are straightforwardly calculated thanks to the analogy between this formulation and the Yang-Mills theory. We give also a conformally covariant formulation of these quantities including the anomaly, which is valid on arbitrary Riemann surfaces. The example of the W3 theory is discussed and a comparison with other candidates for the anomaly available in the literature is presented.

  8. Analyses on Origin of positive gravity anomalies of sedimentary basins of the Ross Sea

    NASA Astrophysics Data System (ADS)

    Gao, Jinyao; Yang, Chunguo; Ji, Fei; Wang, Wei; Shen, Zhongyan

    2017-04-01

    We have adopted gridded products describing surface elevation, ice-thickness and the sea floor and subglacial bed elevation south of 60◦ S from Bedmap2 and north of 60◦ S from JGP95E to calculate Bouguer and isostatic gravity anomaly of the Ross Sea region based on the DTU10 free-air gravity anomaly.Taking a view of the free-air, Bouguer and isostatic gravity anomalies, it is unusual that high values overlay the Victoria Land Basin, Central Trough, Northern Basin and Northern Central Trough while basement highs are associated with low value. A number of studies have attributed the high gravity anomalies across the depocenters to high-density volcanics deep within the basins or magmatic intrusions within the region of the thinned crust or upper mantle (e. g., Edwards et al., 1987). According to the conclusion from Karner et al. (2005), the anticorrelation of gravity anomalies with sediment basement can be reproduced if the flexural strength of the lithosphere during the late Cretaceous rifting is significantly lower than the flexural strength of the lithosphere at the Oligocene and Neogene time of sedimentation. We note that the isostatic gravity anomalies are higher than the free-air gravity anomalies adjacent to the Transantarctic Mountains, and vice versa away from the Transantarctic Mountains. We may ignore the constraints offered by the tranditional isostasy in the local gravity studies of the Ross Sea basins, especially advancing the concept of high density material in the lower crust or upper mantle. In particular, the modeled gravity does not laterally integrate to zero, due to the existence of unbalanced forces induced by mantle. Along the outer shelf uplift zone surrouding Antarctica, the positive gravity belt has higher values in free-air gravity anomalies than those in isostatic gravity anomalies. Meanwhile, the positive gravity belt of isostatic gravity anomalies almost disappears in the background anomalies of 20 mGal to 10 mGal facing the

  9. Gravity anomalies, spatial variation of flexural rigidity, and role of inherited crustal structure in the Aquitaine Basin

    NASA Astrophysics Data System (ADS)

    Angrand, Paul; Ford, Mary; Watts, Anthony; Bell, Rebecca E.

    2016-04-01

    The Aquitaine foreland basin developed from Campanian to Miocene by flexure of the upper (European) plate during the Pyrenean orogeny. The foreland basin forms a syn-orogenic sedimentary wedge up to 6 km thick in the south, thinning rapidly north and has a maximum width of 200 km in the west. The flexural basin was superimposed on a lithosphere previously affected by Apto-Albian hyper-extension. What are the effects of an inherited extremely weak and narrow rifted zone on the behavior of a superimposed flexural foreland basin? Coupled with surface and subsurface data, Bouguer gravity anomalies were used to determine the crustal structure of the northern Pyrenean retrowedge and the flexure of the European plate. In the centre, the basin shows a regional Bouguer anomaly pattern typical of foreland basins with the maximum of syn-orogenic deposits corresponding to a low and the forebulge to a high. However, south of the North Pyrenean Frontal Thrust (NPFT) this regional field is overprinted by strong positive Bouguer anomalies, which correspond to high density bodies (mantle or lower crust) transported along the NPFT. Stratigraphy shows that the central basin evolved as a series of narrow, laterally variable depocentres that migrated north. Shortening is accommodated mainly by thick skinned deformation and local reactivation of salt structures. In the east, the Toulouse Fault separates the central and eastern foreland. The eastern foreland shows a broader zone of negative Bouguer values. This foreland is salt-free and stratigraphy records higher subsidence. The easternmost basin is completely overprinted by the opening of the Gulf of Lion. In the west, the foreland does not show a typical regional gravity anomaly pattern due to overprinting by the opening of the Bay of Biscay. Instead, a major gravity high is centered on the northern Landes High, with a second high centered on the Labourd massif south of the NPFT. Neither the Parentis rift basin nor the salt

  10. Density structure inferred from gravity anomalies in the eastern area of the Itoigawa-Shizuoka Tectonic Line, central Japan

    NASA Astrophysics Data System (ADS)

    Komazawa, Masao

    2004-12-01

    A gravity survey was conducted between October 2002 and December 2003 in and around the eastern area of the Itoigawa-Shizuoka Tectonic Line (ISTL). The total number of measurement points amounted to about 436 and 326 stations were taken at the same points as the seismic survey points. The location and altitude were decided by differential GPS and the accuracy is thought to be within several ten-centimeters. The data was compiled from existing data (Geological Survey of Japan, 2000), so the total number of compiled gravity maps is about 3,540 points. All measured gravity data were referred to the International Gravity Standardization Net 1971 (IGSN71) and the normal gravity values were estimated according to the gravity formula of 1980. Terrain corrections were conducted within a range of 60 km by approximating the real topography to an assemblage of annular prisms interpolated by mesh terrain data and random terrain data of the gravity points. The effect of the sinking of the topography due to the Earth's curvature was taken into consideration. Bouguer corrections within a range of 60 km in arc distances were made using a spherical cap crust formula. The density for both terrain correction and Bouguer corrections was chosen to be 2,670 kg/m3, because the mean surface density of the whole area is estimated to be a slightly large density by the CVUR method. The features of Bouguer anomalies is characterized by a low anomaly in Omachi city, in the northern parts of Matsumoto basin, and a high anomaly in the central highlands, Central Uplift Zone, about 10 km west of Ueda city. The low anomaly shows that the thickness of the sedimentary layer is more than 1 km from 2D/3D automatic analysis.

  11. Gravity map of Brazil: 2. Regional and residual isostatic anomalies and their correlation with major tectonic provinces

    NASA Astrophysics Data System (ADS)

    Ussami, Naomi; de Sá, Nelsi Côgo; Molina, Eder Cassola

    1993-02-01

    An isostatic residual gravity map of Brazil has been computed by removing from a 0.5° × 0.5° Bouguer anomaly grid a regional gravity field calculated for compensating masses of surface topography. The coherence function, a statistical measure of the correlation between Bouguer anomaly and topography, was first computed in order to constrain the compensation mechanism within Brazil. Similar to results for North America and Australia, the coherence function of South America has a broad transition between high and low coherence values, suggesting a combination of tectonic provinces with different flexural rigidities and/or loading processes. In view of this result, we have considered, as a first approximation, a model in which the surface topography is the only load acting on a nonrigid lithosphere. A regional gravity field has been computed assuming Airy-Heiskanen isostasy with compensation at the crust-mantle boundary. The residual gravity map, which was obtained by removing the computed regional gravity field from the observed Bouguer anomaly, shows a long-wavelength N-S trending negative anomaly over most of Brazil. This gravity feature of approximately 3000 km width is the southern continuation of the western North Atlantic negative geoid/gravity anomaly and reaches at least ˜15 mGal in the northern portion of Brazil. Using the upward continued isostatic residual gravity field at 300 km, this long-wavelength component, which may be dynamically induced, has been removed to first approximation. The final isostatic residual gravity anomaly map depicts anomalies with wavelengths between 100 and 1000 km which correlate with major tectonic provinces. Negative anomalies occur mainly over Paleozoic intracratonic and Cretaceous rift-type sedimentary basins, and granitic intrusions and along Proterozoic thrust belts. Positive residual anomalies are generally observed over regions affected by igneous activity and volcanism such as in the Amazon basin and the Paran

  12. Magnetic and gravity anomalies in the Americas

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The cleaning and magnetic tape storage of spherical Earth processing programs are reported. These programs include: NVERTSM which inverts total or vector magnetic anomaly data on a distribution of point dipoles in spherical coordinates; SMFLD which utilizes output from NVERTSM to compute total or vector magnetic anomaly fields for a distribution of point dipoles in spherical coordinates; NVERTG; and GFLD. Abstracts are presented for papers dealing with the mapping and modeling of magnetic and gravity anomalies, and with the verification of crustal components in satellite data.

  13. Newberry Combined Gravity 2016

    DOE Data Explorer

    Kelly Rose

    2016-01-22

    Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.

  14. Anomaly freedom in perturbative loop quantum gravity

    SciTech Connect

    Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.

    2008-09-15

    A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.

  15. Gravity anomaly detection: Apollo/Soyuz

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Kahn, W. D.; Bryan, J. W.; Schmid, P. E.; Wells, W. T.; Conrad, D. T.

    1976-01-01

    The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown.

  16. Topographic gravity modeling for global Bouguer maps to degree 2160: Validation of spectral and spatial domain forward modeling techniques at the 10 microGal level

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Reußner, Elisabeth; Rexer, Moritz; Kuhn, Michael

    2016-09-01

    Over the past years, spectral techniques have become a standard to model Earth's global gravity field to 10 km scales, with the EGM2008 geopotential model being a prominent example. For some geophysical applications of EGM2008, particularly Bouguer gravity computation with spectral techniques, a topographic potential model of adequate resolution is required. However, current topographic potential models have not yet been successfully validated to degree 2160, and notable discrepancies between spectral modeling and Newtonian (numerical) integration well beyond the 10 mGal level have been reported. Here we accurately compute and validate gravity implied by a degree 2160 model of Earth's topographic masses. Our experiments are based on two key strategies, both of which require advanced computational resources. First, we construct a spectrally complete model of the gravity field which is generated by the degree 2160 Earth topography model. This involves expansion of the topographic potential to the 15th integer power of the topography and modeling of short-scale gravity signals to ultrahigh degree of 21,600, translating into unprecedented fine scales of 1 km. Second, we apply Newtonian integration in the space domain with high spatial resolution to reduce discretization errors. Our numerical study demonstrates excellent agreement (8 μGgal RMS) between gravity from both forward modeling techniques and provides insight into the convergence process associated with spectral modeling of gravity signals at very short scales (few km). As key conclusion, our work successfully validates the spectral domain forward modeling technique for degree 2160 topography and increases the confidence in new high-resolution global Bouguer gravity maps.

  17. Long wavelength gravity and topography anomalies

    NASA Technical Reports Server (NTRS)

    Watts, A. B.; Daly, S. F.

    1981-01-01

    It is shown that gravity and topography anomalies on the earth's surface may provide new information about deep processes occurring in the earth, such as those associated with mantle convection. Two main reasons are cited for this. The first is the steady improvement that has occurred in the resolution of the long wavelength gravity field, particularly in the wavelength range of a few hundred to a few thousand km, mainly due to increased coverage of terrestrial gravity measurements and the development of radar altimeters in orbiting satellites. The second reason is the large number of numerical and laboratory experiments of convection in the earth, including some with deformable upper and lower boundaries and temperature-dependent viscosity. The oceans are thought to hold the most promise for determining long wavelength gravity and topography anomalies, since their evolution has been relatively simple in comparison with that of the continents. It is also shown that good correlation between long wavelength gravity and topography anomalies exists over some portions of the ocean floor

  18. Relating mantle convection, epeirogeny and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Ghelichkhan, Siavash; Bunge, Hans-Peter

    2017-04-01

    Spatial variations of crustal thickness and density are the primary cause for most of Earth's topography. Indeed, short- to mid-wavelength topography and gravity anomalies can be explained with a relatively simple model that combines isostatic compensation and elastic support by the lithosphere. As the wavelength increases, however, sub-lithospheric mass anomalies play an increasingly important role, both directly and through the convective stresses that they excite: these convective stresses deform the surface, generating what is called dynamic topography, and complicate the relationship between internal mass anomalies, surface topography and the resulting gravity anomalies. Here we show that this complexity can only be captured by global, self-gravitating, viscously stratified Earth models. Moreover, sub-lithospheric mass anomalies are advected by global mantle convection — unlike near-surface mass anomalies, which stay frozen in the crust and lithosphere. Dynamic topography thus changes in time, causing epeirogenic movements. For this reason, the pattern, timing and amplitudes of past epeirogenic movements are primary geologic observables that can help constrain global mantle convection models.

  19. Flavorful hybrid anomaly-gravity mediation

    SciTech Connect

    Gross, Christian; Hiller, Gudrun

    2011-05-01

    We consider supersymmetric models where anomaly and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of anomaly mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of anomaly mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing energy at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.

  20. The correspondence analysis of the satellite gravity anomalies with the deep lithosphere structure of the East China Sea

    NASA Astrophysics Data System (ADS)

    Yao, C.; Meng, X.; Guo, W.; Zheng, Y.; Gao, D.; Li, H.; He, H.

    2010-12-01

    Based on the satellite gravity data, and the trial analysis of various parameters, the terrain correction and the correction of sea water are carried out to obtain the Bouguer gravity anomalies of the continental shelf of the East China Sea to the Phillipine Basin. The inversion of gravity anomalies and modeling are developed with the constraints of the results of seismic profiles. To infer the deep lithospheric structure of the East China Sea, the shallow geological structure is firstly analyzed. Finally, a gravity model of explanation is provided to demonstrate the site of subduction of the Phillipine plate toward the Eurasia plat, and to show the variation of the Moho and the changes of thickness of lithosphere.

  1. The Origin of the Rodrigues Depth Anomaly: New constraints from integrated gravity inversion

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Gaina, Carmen; Faleide, Jan Inge

    2016-04-01

    This study is focused on the Western Indian Ocean including the Central Indian Ridge. The Rodrigues Ridge is a bathymetric feature (500 km -long and 20 km -wide) situated east of the Mascarene Plateau and Mauritius, with an oblique trend with respect to the underlying seafloor spreading fabric. The trend is also different from the fracture zone and hotspot tracks in this area. The region where the Rodrigues Ridge intersects the Central Indian Ridge is characterized by broad area being shallower than it should be according to standard age-depth relations for oceanic basement. With this contribution we aim to determine key factors controlling the formation of the Rodrigues Ridge and the development of the depth anomaly through time. In order to better constrain the nature and extent of the depth anomaly underlying the Rodrigues Ridge and surrounding region, we have carried out a 3D gravity and bathymetry data analysis. This analysis included an iterative gravity inversion approach linked to the computation of residual topography through the temperature and density model of the crust and upper mantle. We use a refined plate kinematic model of the study area for the time period ca. 30 Ma to the present. The refined kinematic model is an important element for temperature modelling at the ridge-transform intersection. Existing seismological data provide additional constraints for the gravity inversion. The results of the 3D gravity and bathymetry data analysis support the model of enhanced production of crust at the Central Indian Ridge adjacent to the Rodrigues Ridge. The depth anomaly is composed of abrupt Rodrigues Ridge edifice sitting on top a relatively smooth and broad anomaly characterized by crustal thickness between 8 and 13 km. These values are significantly higher than those typical for the crustal thickness generated by slow seafloor spreading at the Central Indian Ridge and other slow spreading ridges. This gives rise to a large negative residual mantle

  2. Trace anomaly and counterterms in designer gravity

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David; Martínez, Cristián

    2016-03-01

    We construct concrete counterterms of the Balasubramanian-Kraus type for Einstein-scalar theories with designer gravity boundary conditions in AdS4, so that the total action is finite on-shell and satisfy a well defined variational principle. We focus on scalar fields with the conformal mass m 2 = -2 l -2 and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the trace anomaly of the dual field theory in the generic case, as well as when there exist logarithmic branches of non-linear origin. As expected, the anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar field. In the case of a vanishing anomaly, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy black hole solutions that, for some particular values of the parameters in the moduli potential, contains solutions of four-dimensional gauged {N}=8 supergravity and its ω-deformation. Using the AdS/CFT duality dictionary, they correspond to triple trace deformations of the dual field theory.

  3. Determination of mean gravity anomalies in the Taiwan Island

    NASA Technical Reports Server (NTRS)

    Chang, Ruey-Gang

    1989-01-01

    The fitting and proper regression coefficients were made of one hundred seventeen 10 x 10' blocks with observed gravity data and corresponding elevation in the Taiwan Island. To compare five different predicted models, and the proper one for the mean gravity anomalies were determined. The predicted gravity anomalies of the non-observed gravity blocks were decided when the coefficients obtained through the model with the weighted mean method. It was suggested that the mean gravity anomalies of 10 x 10' blocks should be made when comprehensive the observed and predicted data.

  4. Axial gravity, massless fermions and trace anomalies

    NASA Astrophysics Data System (ADS)

    Bonora, L.; Cvitan, M.; Prester, P. Dominis; Pereira, A. Duarte; Giaccari, S.; Štemberga, T.

    2017-08-01

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones.

  5. GRAVITY STUDIES IN THE CASCADE RANGE.

    USGS Publications Warehouse

    Finn, Carol; Williams, David

    1983-01-01

    A compatible set of gravity data has been compiled for the entire Cascade Range. From this data set a series of interpretive color gravity maps have been prepared, including a free air anomaly map, Bouguer anomaly map at a principle, and an alternate reduction density, and filtered and derivative versions of the Bouguer anomaly map. The regional anomaly pattern and gradients outline the various geological provinces adjacent to the Cascade Range and delineate major structural elements in the range. The more local anomalies and gradients may delineate low density basin and caldera fill, faults, and shallow plutons. Refs.

  6. Spectral analysis of gravity anomalies and the architecture of tectonic wedging, NE Venezuela and Trinidad

    NASA Astrophysics Data System (ADS)

    Russo, R. M.; Speed, R. C.

    1994-06-01

    We have analyzed the spectral content of free air gravity anomalies in the Caribbean-South American plate boundary zone in order to determine better the near-surface (0-120 km) distribution of crustal and upper mantle elements which give rise to the unusual gravity field of this region. The plate boundary zone in northeastern Venezuela and Trinidad is the site of the world's sea level continental minimum of Bouguer gravity anomalies, yet the region is also one of mild topography (mean value 43 m, maximum 1200 m). We find the mean depths to interfaces of significant density contrast at a variety of depths for portions of the plate boundary zone. We interpret interfaces at 30-35 km and 32 km beneath the Guyana Shield and the Aves Ridge, respectively, to be the Moho. Other shallow interfaces (5-14 km) are most likely sediment cover-basement contacts in the Maturin foreland basin and southern Grenada Basin. Deeper interfaces (54-63 km) we associate with loaded and downwarped continental and oceanic South American lithosphere. The deepest boundaries, at depths of 89-120 km, may be related to detached or detaching oceanic lithosphere overridden by continental South America. We use our results to test the tectonic wedging model of the plate boundary zone recently published by Russo and Speed (1992). We find that the tectonic wedging model adequately describes many of the structural boundaries inferable from our analysis of gravity anomalies but that the model must be modified to include a thinner Guyana Shield crust.

  7. Preliminary interpretation of satellite gravity and magnetic anomalies in the region of the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Chen, C.; Hu, Z.; Du, J.; Wang, Q.

    2011-12-01

    The Philippine Sea, situated in the northwestern Pacific, is one of the largest marginal seas on the Earth. Analysis of the Philippine Sea's intraplate fault tectonic systems and lithosphere's density and magnetism structures has a significant contribution to understanding not only the dynamic principles of subduction and convergence zones but also effect of plate subduction on back-arc area. It is also important to have cognizance for structure evolution of the ocean crust, the tension and extending progress of marginal sea basins and the mechanisms of geodynamics. Meanwhile, it can be a significant approach for researching the evolution of the East China Sea and the South China Sea. Using high-precision gravity forwarding method based on spatial domain in spherical coordinate, we have calculated the Bouguer gravity disturbance (BGD) in the Philippine Sea based on the ETOPO1 1 arc-minute topography & bathymetry data and the gravity field model EIGEN-6C. After removing the gravity effect of the sediments and deep abnormal materials, we make spherical cap harmonic analysis of the residual anomaly and obtain the topography of Moho and apparent-density's distribution of our study area by alternate iteration inversion method. Then, we calculate the distributions of the study area's magnetic anomalies based on the Earth magnetic model NGDC720, reduce to the pole of the study area's magnetic anomalies by the equivalent source method based on spherical prism magnetic forwarding, inverse the processed magnetic anomalies with spherical cap harmonic analysis to obtain the topography of Curie surface and the apparent magnetic susceptibility distribution. Finally, we divide the Philippine Sea block into tectonic units and derive the faults distributions through the analysis of gravity magnetic anomalies' linear characteristics. The results show that West Philippine Basin is divided by Central Basin Ridge into two block units, the tectonic trend of the north block is south

  8. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  9. Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju

    2017-04-01

    The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly

  10. A gravity traverse across northern Africa

    NASA Astrophysics Data System (ADS)

    Brown, C.; Girdler, R. W.; Renner, R. G. B.

    1980-11-01

    A military expedition across the Sahara Desert in 1975 provided an opportunity to obtain gravity data where there were previously few measurements. The expedition crossed northern Africa from the Atlantic Ocean to the Red Sea; 608 gravity measurements were made with a LaCoste Romberg geodetic gravimeter. Apart from filling a gap in world gravity data, the traverse revealed a large negative Bouguer anomaly associated with the Jebel Marra volcanic complex and provided a profile of the negative Bouguer anomaly as the Red Sea is approached. Comparison with the U. S. Defense Mapping Agency Aerospace Center (DMAAC) Bouguer gravity anomaly map of Africa lends confidence to the gravity prediction methods used by the DMAAC.

  11. Constraining Mass Anomalies Using Trans-dimensional Gravity Inversions

    NASA Astrophysics Data System (ADS)

    Izquierdo, K.; Montesi, L.; Lekic, V.

    2016-12-01

    The density structure of planetary interiors constitutes a key constraint on their composition, temperature, and dynamics. This has motivated the development of non-invasive methods to infer 3D distribution of density anomalies within a planet's interior using gravity observations made from the surface or orbit. On Earth, this information can be supplemented by seismic and electromagnetic observations, but such data are generally not available on other planets and inferences must be made from gravity observations alone. Unfortunately, inferences of density anomalies from gravity are non-unique and even the dimensionality of the problem - i.e., the number of density anomalies detectable in the planetary interior - is unknown. In this project, we use the Reversible Jump Markov chain Monte Carlo (RJMCMC) algorithm to approach gravity inversions in a trans-dimensional way, that is, considering the magnitude of the mass, the latitude, longitude, depth and number of anomalies itself as unknowns to be constrained by the observed gravity field at the surface of a planet. Our approach builds upon previous work using trans-dimensional gravity inversions in which the density contrast between the anomaly and the surrounding material is known. We validate the algorithm by analyzing a synthetic gravity field produced by a known density structure and comparing the retrieved and input density structures. We find excellent agreement between the input and retrieved structure when working in 1D and 2D domains. However, in 3D domains, comprehensive exploration of the much larger space of possible models makes search efficiency a key ingredient in successful gravity inversion. We find that upon a sufficiently long RJMCMC run, it is possible to use statistical information to recover a predicted model that matches the real model. We argue that even more complex problems, such as those involving real gravity acceleration data of a planet as the constraint, our trans-dimensional gravity

  12. The nature of the gravity anomalies associated with large young lunar craters

    NASA Technical Reports Server (NTRS)

    Dvorak, J.; Phillips, R. J.

    1977-01-01

    The negative Bouguer anomalies (i.e., mass deficiencies) associated with four young lunar craters are analyzed. Model calculations based on generalizations made from studies of terrestrial impact structures suggest that the major contribution to the Bouguer anomaly for these lunar craters is due to a lens of brecciated material confined within the present crater rim crest and extending vertically to at least a depth of one-third the crater rim diameter. Calculations also reveal a systematic variation in the magnitude of the mass deficiencies with the cube of the crater diameter.

  13. Upgraded gravity anomaly base of the United States

    USGS Publications Warehouse

    Keller, Gordon R.; Hildenbrand, T.G.; Kucks, R.; Roman, D.; Hittelman, A.M.

    2002-01-01

    A concerted effort to compile an upgraded gravity anomaly database, grid, and map for the United States by the end of 2002 is under way. This effort can be considered as the first step in building a data system for gravity measurements, and it builds on existing collaborative efforts. This paper outlines the strategy for assembling the individual map and digital products related to the United States gravity database.

  14. Interpretation of Local Gravity Anomalies in Northern New York

    NASA Astrophysics Data System (ADS)

    Revetta, F. A.

    2004-05-01

    About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic

  15. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Li, Duo; Liu, Yajing

    2017-04-01

    Along-strike segmentation of slow-slip events (SSEs) and nonvolcanic tremors in Cascadia may reflect heterogeneities of the subducting slab or overlying continental lithosphere. However, the nature behind this segmentation is not fully understood. We develop a 3-D model for episodic SSEs in northern and central Cascadia, incorporating both seismological and gravitational observations to constrain the heterogeneities in the megathrust fault properties. The 6 year automatically detected tremors are used to constrain the rate-state friction parameters. The effective normal stress at SSE depths is constrained by along-margin free-air and Bouguer gravity anomalies. The along-strike variation in the long-term plate convergence rate is also taken into consideration. Simulation results show five segments of ˜Mw6.0 SSEs spontaneously appear along the strike, correlated to the distribution of tremor epicenters. Modeled SSE recurrence intervals are equally comparable to GPS observations using both types of gravity anomaly constraints. However, the model constrained by free-air anomaly does a better job in reproducing the cumulative slip as well as more consistent surface displacements with GPS observations. The modeled along-strike segmentation represents the averaged slip release over many SSE cycles, rather than permanent barriers. Individual slow-slip events can still propagate across the boundaries, which may cause interactions between adjacent SSEs, as observed in time-dependent GPS inversions. In addition, the moment-duration scaling is sensitive to the selection of velocity criteria for determining when SSEs occur. Hence, the detection ability of the current GPS network should be considered in the interpretation of slow earthquake source parameter scaling relations.

  16. Lithosphere structure underneath the North China Craton inferred from elevation, gravity and geoid anomalies

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2015-12-01

    The North China Craton (NCC) is a classical example of ancient destroyed cratons. The NCC experienced widespread thermotectonic reactivations in the Phanerozoic. Recent work suggested that the old craton has been significantly modified or destroyed during this process. However, most of the studies were confined to the Eastern NCC, the nature and evolution of the lithosphere beneath the Central and Western NCC was less constrained due to the lack of data. While, recent geodetic data, with the advantages of high resolution and coverage, offers an opportunity to study the deep structure underneath the whole NCC. Here we construct a lithospheric-scale 3D model based on the integration of regional elevation, gravity, geoid and thermal data together with available seismic data. The combined interpretation of these data provides information on the density and temperature distribution at different depth ranges. In the Eastern NCC, a rapid thickness decrease of both crust and lithosphere is reflected, concordant with abrupt changes in surface topography and Bouguer gravity anomaly. Our results together with the widespread magmatic rocks suggest that the Eastern NCC has experienced significant destruction of the lithospheric mantle with substantial modifications and thinning of the crust. In the Central and Western NCC, the generally thick and 'cold' lithosphere suggests that the cratonic mantle root is preserved in the central and western NCC, in agreement with the relatively low heat flow, rare magmatic activity and long-term tectonic stability observed at the surface, with some areas mildly modified as indicated by thin lithosphere.

  17. Characteristics of Marine Gravity Anomaly Reference Maps and Accuracy Analysis of Gravity Matching-Aided Navigation

    PubMed Central

    Wang, Hubiao; Chai, Hua; Xiao, Yaofei; Hsu, Houtse; Wang, Yong

    2017-01-01

    The variation of a marine gravity anomaly reference map is one of the important factors that affect the location accuracy of INS/Gravity integrated navigation systems in underwater navigation. In this study, based on marine gravity anomaly reference maps, new characteristic parameters of the gravity anomaly were constructed. Those characteristic values were calculated for 13 zones (105°–145° E, 0°–40° N) in the Western Pacific area, and simulation experiments of gravity matching-aided navigation were run. The influence of gravity variations on the accuracy of gravity matching-aided navigation was analyzed, and location accuracy of gravity matching in different zones was determined. Studies indicate that the new parameters may better characterize the marine gravity anomaly. Given the precision of current gravimeters and the resolution and accuracy of reference maps, the location accuracy of gravity matching in China’s Western Pacific area is ~1.0–4.0 nautical miles (n miles). In particular, accuracy in regions around the South China Sea and Sulu Sea was the highest, better than 1.5 n miles. The gravity characteristic parameters identified herein and characteristic values calculated in various zones provide a reference for the selection of navigation area and planning of sailing routes under conditions requiring certain navigational accuracy. PMID:28796158

  18. Gravity data of Nevada

    USGS Publications Warehouse

    Ponce, David A.

    1997-01-01

    Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are available on this CD-ROM. About 80,000 gravity stations were compiled primarily from the National Geophysical Data Center and the U.S. Geological Survey. Gravity data was reduced to the Geodetic Reference System of 1967 and adjusted to the Gravity Standardization Net 1971 gravity datum. Data were processed to complete Bouguer and isostatic gravity anomalies by applying standard gravity corrections including terrain and isostatic corrections. Selected principal fact references and a list of sources for data from the National Geophysical Data Center are included.

  19. Study of gravity and magnetic anomalies using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The results of modeling satellite-elevation magnetic and gravity data using the constraints imposed by near surface data and seismic evidence shows that the magnetic minimum can be accounted for by either an intracrustal lithologic variation or by an upwarp of the Curie point isotherm. The long wavelength anomalies of the NOO's-vector magnetic survey of the conterminous U.S. were contoured and processed by various frequency filters to enhance particular characteristics. A preliminary inversion of the data was completed and the anomaly field calculated at 450 km from the equivalent magnet sources to compare with the POGO satellite data. Considerable progress was made in studing the satellite magnetic data of South America and adjacent marine areas. Preliminary versions of the 1 deg free-air gravity anomaly map (20 m gal contour interval) and the high cut (lambda approximately 8 deg) filtered anomaly maps are included.

  20. Detailed gravity anomalies from GEOS-3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1978-01-01

    A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.

  1. Gravity Anomaly Assessment Using Ggms and Airborne Gravity Data Towards Bathymetry Estimation

    NASA Astrophysics Data System (ADS)

    Tugi, A.; Din, A. H. M.; Omar, K. M.; Mardi, A. S.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Yazid, N.

    2016-09-01

    The Earth's potential information is important for exploration of the Earth's gravity field. The techniques of measuring the Earth's gravity using the terrestrial and ship borne technique are time consuming and have limitation on the vast area. With the space-based measuring technique, these limitations can be overcome. The satellite gravity missions such as Challenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), and Gravity-Field and Steady-State Ocean Circulation Explorer Mission (GOCE) has introduced a better way in providing the information on the Earth's gravity field. From these satellite gravity missions, the Global Geopotential Models (GGMs) has been produced from the spherical harmonics coefficient data type. The information of the gravity anomaly can be used to predict the bathymetry because the gravity anomaly and bathymetry have relationships between each other. There are many GGMs that have been published and each of the models gives a different value of the Earth's gravity field information. Therefore, this study is conducted to assess the most reliable GGM for the Malaysian Seas. This study covered the area of the marine area on the South China Sea at Sabah extent. Seven GGMs have been selected from the three satellite gravity missions. The gravity anomalies derived from the GGMs are compared with the airborne gravity anomaly, in order to figure out the correlation (R2) and the root mean square error (RMSE) of the data. From these assessments, the most suitable GGMs for the study area is GOCE model, GO_CONS_GCF_2_TIMR4 with the R2 and RMSE value of 0.7899 and 9.886 mGal, respectively. This selected model will be used in the estimating the bathymetry for Malaysian Seas in future.

  2. Detailed gravity anomalies from Geos 3 satellite altimetry data

    NASA Technical Reports Server (NTRS)

    Gopalapillai, G. S.; Mourad, A. G.

    1979-01-01

    Detailed gravity anomalies are computed from a combination of Geos 3 satellite altimeter and terrestrial gravity data using least-squares principles. The mathematical model used is based on the Stokes' equation modified for a nonglobal solution. Using Geos 3 data in the calibration area, the effects of several anomaly parameter configurations and data densities/distributions on the anomalies and their accuracy estimates are studied. The accuracy estimates for 1 deg x 1 deg mean anomalies from low density altimetry data are of the order of 4 mgal. Comparison of these anomalies with the terrestrial data and also with Rapp's data derived using collocation techniques show rms differences of 7.2 and 4.9 mgal, respectively. Indications are that the anomaly accuracies can be improved to about 2 mgal with high density data. Estimation of 30 in. x 30 in. mean anomalies indicates accuracies of the order of 5 mgal. Proper verification of these results will be possible only when accurate ground truth data become available.

  3. Poisson downward continuation of scattered Helmert's gravity anomalies to mean values on a raster on the geoid using least squares

    NASA Astrophysics Data System (ADS)

    Foroughi, Ismael; Vaníček, Petr; Kingdon, Robert; Novák, Pavel; Sheng, Michael; Santos, Marcelo

    2016-04-01

    .e., around 244000 scattered gravity values, were considered in the context of the target area on the geoid limited by 0gravity anomalies were first transformed into the Helmert space to enable us to continued them down to the geoid. The target area was then broken down into 1 arc-deg squares containing 1 arc-min mean downward continued Helmert's gravity anomalies on the geoid. 36 such squares were finally fused together after testing the fit of continued gravity values along their edges. DC of no-topography (NT) anomalies, a.k.a. spherical complete Bouguer anomalies, will be investigated next.

  4. Long Range Gravity Tests and the Pioneer Anomaly

    NASA Astrophysics Data System (ADS)

    Reynaud, Serge; Jaekel, Marc-Thierry

    Experimental tests of gravity performed in the solar system show a good agreement with general relativity. The latter is, however, challenged by the Pioneer anomaly, which might be pointing at some modification of gravity law at ranges of the order of the size of the solar system. As this question could be related to the puzzles of "dark matter" or "dark energy," it is important to test it with care. There exist metric extensions of general relativity which preserve the well-verified equivalence principle while possibly changing the metric solution in the solar system. Such extensions have the capability to preserve compatibility with existing gravity tests while opening free space for the Pioneer anomaly. They constitute arguments for new mission designs and new space technologies as well as for having a new look at data of already-performed experiments.

  5. Gravity anomalies without geomagnetic disturbances interfere with pigeon homing--a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Entin, Vladimir A; Wolfer, David P; Kanevskyi, Valeryi A; Lipp, Hans-Peter

    2014-11-15

    The gravity vector theory postulates that birds determine their position to set a home course by comparing the memorized gravity vector at the home loft with the local gravity vector at the release site, and that they should adjust their flight course to the gravity anomalies encountered. As gravity anomalies are often intermingled with geomagnetic anomalies, we released experienced pigeons from the center of a strong circular gravity anomaly (25 km diameter) not associated with magnetic anomalies and from a geophysical control site, equidistant from the home loft (91 km). After crossing the border zone of the anomaly--expected to be most critical for pigeon navigation--they dispersed significantly more than control birds, except for those having met a gravity anomaly en route. These data increase the credibility of the gravity vector hypothesis. © 2014. Published by The Company of Biologists Ltd.

  6. Relationship between the regional tectonic activity and crustal structure in the eastern Tibetan plateau discovered by gravity anomaly

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Gao, Rui; Guo, Xiaoyu

    2016-04-01

    The eastern Tibetan plateau has been getting more and more attention because it combines active faults, uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus, a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative (THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks, including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the Songpan-Garze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion, which is coincident with the flowing direction indicated from the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault.

  7. On global gravity anomalies and two-scale mantle convection

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.

    1976-01-01

    The two-scale model of mantle convection developed by Richter and Parsons (1975) predicts that if the depth of the convective layer is about 600 km, then for a plate moving at 10 cm/yr, longitudinal convective rolls will be produced in about 50 million years, and the strike of these rolls indicates the direction of motion of the plate relative to the upper mantle. The paper tests these predictions by examining a new global free air gravity model complete to the 30th degree and order. The free air gravity map developed shows a series of linear positive and negative anomalies (with transverse wavelengths of about 2000 km) spanning the Pacific Ocean, crossing the Pacific rise and striking parallel to the Hawaiian seamounts. It is suggested that the pattern of these anomalies may indicate the presence of longitudinal convective rolls beneath the Pacific plates, a result which tends to support the predictions of Richter and Parsons.

  8. Gravity Anomaly of Polyhedral Bodies Having a Polynomial Density Contrast

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.; Trotta, S.

    2017-07-01

    We analytically evaluate the gravity anomaly associated with a polyhedral body having an arbitrary geometrical shape and a polynomial density contrast in both the horizontal and vertical directions. The gravity anomaly is evaluated at an arbitrary point that does not necessarily coincide with the origin of the reference frame in which the density function is assigned. Density contrast is assumed to be a third-order polynomial as a maximum but the general approach exploited in the paper can be easily extended to higher-order polynomial functions. Invoking recent results of potential theory, the solution derived in the paper is shown to be singularity-free and is expressed as a sum of algebraic quantities that only depend upon the 3D coordinates of the polyhedron vertices and upon the polynomial density function. The accuracy, robustness and effectiveness of the proposed approach are illustrated by numerical comparisons with examples derived from the existing literature.

  9. Inversion of residual gravity anomalies using tuned PSO

    NASA Astrophysics Data System (ADS)

    Roshan, Ravi; Singh, Upendra Kumar

    2017-02-01

    Many kinds of particle swarm optimization (PSO) techniques are now available and various efforts have been made to solve linear and non-linear problems as well as one-dimensional and multi-dimensional problems of geophysical data. Particle swarm optimization is a metaheuristic optimization method that requires intelligent guesswork and a suitable selection of controlling parameters (i.e. inertia weight and acceleration coefficient) for better convergence at global minima. The proposed technique, tuned PSO, is an improved technique of PSO, in which efforts have been made to choose the controlling parameters, and these parameters have been selected after analysing the responses of various possible exercises using synthetic gravity anomalies over various geological sources. The applicability and efficacy of the proposed method is tested and validated using synthetic gravity anomalies over various source geometries. Finally, tuned PSO is applied over field residual gravity anomalies of two different geological terrains to find the model parameters, namely amplitude coefficient factor (A), shape factor (q) and depth (z). The analysed results have been compared with published results obtained by different methods that show a significantly excellent agreement with real model parameters. The results also show that the proposed approach is not only superior to the other methods but also that the strategy has enhanced the exploration capability of the proposed method. Thus tuned PSO is an efficient and more robust technique to achieve an optimal solution with minimal error.

  10. New analytic solutions for modeling vertical gravity gradient anomalies

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Sep; Wessel, Paul

    2016-05-01

    Modern processing of satellite altimetry for use in marine gravimetry involves computing the along-track slopes of observed sea-surface heights, projecting them into east-west and north-south deflection of the vertical grids, and using Laplace's equation to algebraically obtain a grid of the vertical gravity gradient (VGG). The VGG grid is then integrated via overlapping, flat Earth Fourier transforms to yield a free-air anomaly grid. Because of this integration and associated edge effects, the VGG grid retains more short-wavelength information (e.g., fracture zone and seamount signatures) that is of particular importance for plate tectonic investigations. While modeling of gravity anomalies over arbitrary bodies has long been a standard undertaking, similar modeling of VGG anomalies over oceanic features is not commonplace yet. Here we derive analytic solutions for VGG anomalies over simple bodies and arbitrary 2-D and 3-D sources. We demonstrate their usability in determining mass excess and deficiency across the Mendocino fracture zone (a 2-D feature) and find the best bulk density estimate for Jasper seamount (a 3-D feature). The methodologies used herein are implemented in the Generic Mapping Tools, available from gmt.soest.hawaii.edu.

  11. Gravity anomalies in Silurian pinnacle reef trend, southwestern Indiana

    SciTech Connect

    Malinconico, L.L. Jr.; Gognat, T.A.; Scher, P.L. )

    1989-08-01

    Structures produced over the top or along the margins of Silurian Pinnacle reefs have proven to be the source of significant oil production in the eastern Illinois basin. The authors have been able to refine gravity methods that can assist in the exploration of such reef targets. A gravity/density model was developed by combining the 1980 work of Dana at the Wilfred pool (Sullivan County, Indiana) with other lithologic and log data in southwestern Indiana. This model includes the density differences between the reef facies and surrounding lithologies as well as density variations that are the result of compaction of the sedimentary sequence above the reef. The density models suggest that positive gravity anomalies with amplitude between 1.5 to 2.5 mgals might occur over the reefs.

  12. Investigating Gravity Anomalies Associated with Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Miller, E.; Musa, D.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.

    2016-12-01

    Detection of subsurface effects from underground nuclear explosions (UNEs) is an important aspect of the overall characterization of a site and UNE signatures, which is central to the mission of the National Nuclear Security Admistration's Office of Proliferation Detection, Defense Nuclear Non-Prolifeation Research and Development, Underground Nuclear Explosion Signatures Experiment (UNESE). We are conducting an experiment at the Nevada National Security Site (NNSS) that includes the acquisition of ground-based gravity data to contribute to a multi-disciplinary characterization of two UNEs located on Pahute Mesa. For one of the UNEs, the working point for the detonation was in zeolitic ash-flow tuff 600 m below the surface. For the other UNE, the detonation working point was also at a depth 600m below the surface and was located in flow breccias and lavas. No evidence of chimney collapse has been manifested for either of these UNEs, hence a cavity may still in place and may produce a detectable gravity anomaly. Each of the gravity surveys consist of 150 sites which were precisely located using a Trimble 5700 GPS receiver for lateral precision of 2 cm and vertical control of 3 cm. The readings were arranged in radial lines from Surface Ground Zero (SGZ), with spacing 10-20 m near the center, and increasing intervals for the distal portions of the lines, which extended to as much as 200 m from SGZ. Gravity were collected using a LaCoste-Romberg model G gravity meter at one location and a Scintrex G-5 at the other. We present a preliminary look at the gravity data in conjunction with forward modeling of the anticipated anomaly given a suite of possible post-explosion cavity and chimney features.

  13. Gravity survey of the southwestern part of the sourthern Utah geothermal belt

    SciTech Connect

    Green, R.T.; Cook, K.L.

    1981-03-01

    A gravity survey covering an area of 6200 km/sup 2/ was made over the southwestern part of the southern Utah geothermal belt. The objective of the gravity survey is to delineate the geologic structures and assist in the understanding of the geothermal potential of the area. A total of 726 new gravity stations together with 205 existing gravity stations, are reduced to give: (1) a complete Bouguer gravity anomaly map, and (2) a fourth-order residual gravity anomaly map; both maps have a 2-mgal contour interval. The complete Bouguer gravity anomaly map shows an east-trending regional gravity belt with a total relief of about 70 mgal which crosses the central portion of the survey area. The gravity belt is attributed to a crustal lateral density variation of 0.1 gm/cc from a depth of 5 to 15 km.

  14. Causal Anomalies in Kaluza-Klein Gravity Theories

    NASA Astrophysics Data System (ADS)

    Rebouças, M. J.; Teixeira, A. F. F.

    Causal anomalies in two Kaluza-Klein gravity theories are examined, particularly as to whether these theories permit solutions in which the causality principle is violated. It is found that similarly to general relativity the field equations of the space-time-mass Kaluza-Klein (STM-KK) gravity theory do not exclude violation of causality of Gödel type, whereas the induced matter Kaluza-Klein (IM-KK) gravity rules out noncausal Gödel-type models. The induced matter version of general relativity is shown to be an efficient therapy for causal anomalies that occurs in a wide class of noncausal geometries. Perfect fluid and dust Gödel-type solutions of the STM-KK field equations are studied. It is shown that every Gödel-type perfect fluid solution is isometric to the unique dust solution of the STM-KK field equations. The question as to whether 5D Gödel-type noncausal geometries induce any physically acceptable 4D energy-momentum tensor is also addressed.

  15. The quest for the perfect gravity anomaly: Part 2 - Mass effects and anomaly inversion

    USGS Publications Warehouse

    Keller, Gordon R.; Hildenbrand, T.G.; Hinze, W. J.; Li, X.; Ravat, D.; Webring, M.

    2006-01-01

    Gravity anomalies have become an important tool for geologic studies since the widespread use of high-precision gravimeters after the Second World War. More recently the development of instrumentation for airborne gravity observations, procedures for acquiring data from satellite platforms, the readily available Global Positioning System for precise vertical and horizontal control, improved global data bases, and enhancement of computational hardware and software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases that are made available to the geoscience community by broadening their observational holdings and increasing the accuracy and precision of the included data. Currently the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States of America are being revised using new formats and standards. The objective of this paper is to describe the use of the revised standards for gravity data processing and modeling and there impact on geological interpretations. ?? 2005 Society of Exploration Geophysicists.

  16. Use of MAGSAT anomaly data for crustal structure and mineral resources in the US midcontinent

    NASA Technical Reports Server (NTRS)

    Carmichael, R. S. (Principal Investigator)

    1982-01-01

    Progress in the correlation of MAGSAT anomaly maps with geological and geophysical data sets is reported. An excerpt from Bouguer gravity map of the U.S. was filtered to retain wavelengths of 250 km, thus being physically somewhat analogous to MAGSAT data at 400 km height. Residual anomalies were extracted to compare with the satellite magnetics.

  17. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    PubMed

    Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  18. Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study

    PubMed Central

    Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter

    2013-01-01

    The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860

  19. Complex research of the areas of the Moon gravity anomalies.

    NASA Astrophysics Data System (ADS)

    Pugacheva, Svetlana

    The report presents the results of a research study of the lunar surface in the areas of gravity anomalies. The source of gravity anomalies of the Moon are large mascons with a high mass concentration at a depth of volcanic plains and lunar Maria. Formation of mascons is connected with intensive development of basaltic volcanism on the Moon in the early periods of its existence. Many volcanic structures have been found by the Grail spacecraft. These are tectonic structures, basins of impact craters, ancient linear gravity anomalies. The article presents the data of physical and mechanical properties of the surface soil layer of the lunar Maria and gives an assessment of the chemical composition of the soil. All measurements have been performed according to the theoretical models of light scattering on the basis of survey of the lunar surface by in-orbit spacecrafts and analysis of the lunar soil samples. There have been calculated heterogeneity parameters of the surface macro-relief of the lunar Maria: albedo, soil density, average grain diameter of the particles forming the surface layer and the volume fraction occupied by particles. Previous articles showed correlation dependence of the chemical composition of rocks on the macrostructure of the lunar surface. The surface macrostructure was evaluated by comparing the local phase function with the lunar spatial scattering indicatrix. Phase function difference at an 18-degree phase is properly consistent with the chemical composition of the surface layer of soil, in particular with the content of thorium and iron oxide. It can be assumed that mascons include rich KREEP rocks with a high content of thorium and iron oxide. KREEP rocks in the areas of the lunar Maria covered by volcanic lava are probably located on the surface or at a shallow depth.

  20. On estimating gravity anomalies from gradiometer data. [by numerical analysis

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Garza-Robles, R.

    1976-01-01

    The Gravsat-gradiometer mission involves flying a gradiometer on a gravity satellite (Gravsat) which is in a low, polar, and circular orbit. Results are presented of a numerical simulation of the mission which demonstrates that, if the satellite is in a 250-km orbit, 3- and 5-degree gravity anomalies may be estimated with accuracies of 0.03 and 0.01 mm/square second (3 and 1 mgal), respectively. At an altitude of 350 km, the results are 0.07 and 0.025 mm.square second (7 and 2.5 mgal), respectively. These results assume a rotating type gradiometer with a 0.1 -etvos unit accuracy. The results can readily be scaled to reflect another accuracy level.

  1. Continuity of subsurface fault structure revealed by gravity anomaly: the eastern boundary fault zone of the Niigata plain, central Japan

    NASA Astrophysics Data System (ADS)

    Wada, Shigeki; Sawada, Akihiro; Hiramatsu, Yoshihiro; Matsumoto, Nayuta; Okada, Shinsuke; Tanaka, Toshiyuki; Honda, Ryo

    2017-01-01

    We have investigated gravity anomalies around the Niigata plain, which is a sedimentary basin in central Japan bounded by mountains, to examine the continuity of subsurface fault structures of a large fault zone—the eastern boundary fault zone of the Niigata plain (EBFZNP). The features of the Bouguer anomaly and its first horizontal and vertical derivatives clearly illustrate the EBFZNP. The steep first horizontal derivative and the zero isoline of the vertical derivative are clearly recognized along the entire EBFZNP over an area that shows no surface topographic features of an active fault. Two-dimensional density structure analyses also confirm a relationship between the two first derivatives and the subsurface fault structure. Therefore, we conclude that the length of the EBFZNP as an active fault extends to 56 km, which is longer than previously estimated. This length leads to an estimation of a moment magnitude of 7.4 of an expected earthquake from the EBFZNP.[Figure not available: see fulltext.

  2. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di

  3. Gravity anomalies, forearc morphology and seismicity in subduction zones

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Watts, A. B.; Das, S.

    2012-12-01

    We apply spectral averaging techniques to isolate and remove the long-wavelength large-amplitude trench-normal topographic and free-air gravity anomaly "high" and "low" associated with subduction zones. The residual grids generated illuminate the short-wavelength structure of the forearc. Systematic analysis of all subduction boundaries on Earth has enabled a classification of these grids with particular emphasis placed on topography and gravity anomalies observed in the region above the shallow seismogenic portion of the plate interface. The isostatic compensation of these anomalies is investigated using 3D calculations of the gravitational admittance and coherence. In the shallow region of the megathrust, typically within 100 km from the trench, isolated residual anomalies with amplitudes of up to 2.5 km and 125 mGal are generally interpreted as accreted/subducting relief in the form of seamounts and other bathymetric features. While most of these anomalies, which have radii < 50km, are correlated with areas of reduced seismicity, several in regions such as Japan and Java appear to have influenced the nucleation and/or propagation of large magnitude earthquakes. Long-wavelength (500 - >1000 km) trench-parallel forearc ridges with residual anomalies of up to 1.5 km and 150 mGal are identified in approximately one-third of the subduction zones analyzed. Despite great length along strike, these ridges are less than 100 km wide and several appear uncompensated. A high proportion of arc-normal structure and the truncation/morphological transition of trench-parallel forearc ridges is explained through the identification and tracking of pre-existing structure on the over-riding and subducting plates into the seismogenic portion of the plate boundary. Spatial correlations between regions with well-defined trench-parallel forearc ridges and the occurrence of large magnitude interplate earthquakes, in addition to the uncompensated state of these ridges, suggest links

  4. Depth Estimation for Magnetic/Gravity Anomaly Using Model Correction

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Tianyou; Zhu, Peimin; Yang, Yushan; Zhou, Qiaoli; Zhang, Henglei; Chen, Guoxiong

    2017-04-01

    The Tilt-depth method has been widely used to determinate the source depth of a magnetic anomaly. In the present study, we deduce similar Tilt-depth methods for both magnetic and gravity data based on the contact and sphere models and obtain the same equation for a gravity anomaly as that for a magnetic anomaly. The theoretical equations and the model tests show that the routine Tilt-depth method would result in unreliable depth estimation for deep sources. This is due to that the contact model is no longer valid for causative sources under the condition in which the depths of causative sources are significantly larger than their horizontal lengths. Accordingly, we suggest that the Tilt-depth derived from the contact model can be used to detect a shallow source, whereas the Tilt-depth derived from the sphere model can be used to detect a deep source. We propose a weighting method based on the estimated depths from both the contact model and the sphere model to estimate the depth for real data. The model tests suggest that the determined depths from the contact model and the sphere model are shallower and deeper, respectively, than the real depth, while the estimated depth from the proposed method is more close to the actual depth. In the application to the Weigang iron ore located in Jiangsu province, China, the routine Tilt-depth method results in -76% relative error, whereas the proposed method obtains the reliable depth estimation compared with the drill holes. In addition, the proposed method works well in the application for the Shijiaquan iron ore located in Shandong province, China. These results indicate that the proposed weighting equation is a general improvement.

  5. Depth Estimation for Magnetic/Gravity Anomaly Using Model Correction

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Tianyou; Zhu, Peimin; Yang, Yushan; Zhou, Qiaoli; Zhang, Henglei; Chen, Guoxiong

    2017-03-01

    The Tilt-depth method has been widely used to determinate the source depth of a magnetic anomaly. In the present study, we deduce similar Tilt-depth methods for both magnetic and gravity data based on the contact and sphere models and obtain the same equation for a gravity anomaly as that for a magnetic anomaly. The theoretical equations and the model tests show that the routine Tilt-depth method would result in unreliable depth estimation for deep sources. This is due to that the contact model is no longer valid for causative sources under the condition in which the depths of causative sources are significantly larger than their horizontal lengths. Accordingly, we suggest that the Tilt-depth derived from the contact model can be used to detect a shallow source, whereas the Tilt-depth derived from the sphere model can be used to detect a deep source. We propose a weighting method based on the estimated depths from both the contact model and the sphere model to estimate the depth for real data. The model tests suggest that the determined depths from the contact model and the sphere model are shallower and deeper, respectively, than the real depth, while the estimated depth from the proposed method is more close to the actual depth. In the application to the Weigang iron ore located in Jiangsu province, China, the routine Tilt-depth method results in -76% relative error, whereas the proposed method obtains the reliable depth estimation compared with the drill holes. In addition, the proposed method works well in the application for the Shijiaquan iron ore located in Shandong province, China. These results indicate that the proposed weighting equation is a general improvement.

  6. Improving the geological interpretation of magnetic and gravity satellite anomalies

    NASA Technical Reports Server (NTRS)

    Hinze, William J.; Braile, Lawrence W.; Vonfrese, Ralph R. B.

    1987-01-01

    Quantitative analysis of the geologic component of observed satellite magnetic and gravity fields requires accurate isolation of the geologic component of the observations, theoretically sound and viable inversion techniques, and integration of collateral, constraining geologic and geophysical data. A number of significant contributions were made which make quantitative analysis more accurate. These include procedures for: screening and processing orbital data for lithospheric signals based on signal repeatability and wavelength analysis; producing accurate gridded anomaly values at constant elevations from the orbital data by three-dimensional least squares collocation; increasing the stability of equivalent point source inversion and criteria for the selection of the optimum damping parameter; enhancing inversion techniques through an iterative procedure based on the superposition theorem of potential fields; and modeling efficiently regional-scale lithospheric sources of satellite magnetic anomalies. In addition, these techniques were utilized to investigate regional anomaly sources of North and South America and India and to provide constraints to continental reconstruction. Since the inception of this research study, eleven papers were presented with associated published abstracts, three theses were completed, four papers were published or accepted for publication, and an additional manuscript was submitted for publication.

  7. Gravity fields of the terrestrial planets - Long-wavelength anomalies and tectonics

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Lambeck, K.

    1980-01-01

    The paper discusses the gravity and topography data available for four terrestrial planets (earth, moon, Mars, and Venus), with particular emphasis on drawing inferences regarding the relationship of long-wavelength anomalies to tectonics. The discussion covers statistical analyses of global planetary gravity fields, relationship of gravity anomalies to elastic and viscoelastic models, relationship of gravity anomalies to convection models, finite strength, and isostasy (or the state of isostatic compensation). The cases of the earth and the moon are discussed in some detail. A summary of comparative planetology is presented.

  8. The 2017 solar eclipse and Majorana & Allais gravity anomalies

    NASA Astrophysics Data System (ADS)

    Munera, Hector A.

    2017-01-01

    Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce

  9. Global correlation of topographic heights and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Roufosse, M. C.

    1977-01-01

    The short wavelength features were obtained by subtracting a calculated 24th-degree-and-order field from observed data written in 1 deg x 1 deg squares. The correlation between the two residual fields was examined by a program of linear regression. When run on a worldwide scale over oceans and continents separately, the program did not exhibit any correlation; this can be explained by the fact that the worldwide autocorrelation function for residual gravity anomalies falls off much faster as a function of distance than does that for residual topographic heights. The situation was different when the program was used in restricted areas, of the order of 5 deg x 5 deg square. For 30% of the world,fair-to-good correlations were observed, mostly over continents. The slopes of the regression lines are proportional to apparent densities, which offer a large spectrum of values that are being interpreted in terms of features in the upper mantle consistent with available heat-flow, gravity, and seismic data.

  10. Gravity anomalies of the active mud diapirs off southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Hsu, Shu-Kun; Lo, Chung-Liang; Chen, Song-Chuen; Tsai, Ching-Hui; Lin, Jing-Yi; Huang, Yuan-Ping; Huang, Yin-Sheng; Chiu, Shye-Donq; Ma, Yu-Fang

    2015-12-01

    Overpressure and buoyant effect of underlying sediments are generally used to account for the upward motion or formation of submarine mud volcanoes and mud diapirs. In this study, we process and interpret the gravity anomalies associated with the active mud diapirs off SW Taiwan. Geologically, the mud diapirs are just formed and are still very active, thus we can better understand the initial process of the mud diapirs formation through the gravity analysis. Our results show that the density contrasts of the submarine mud diapirs with respect to the surroundings are generally positive. Because the study area is in a tectonically compressive regime and the gas plume venting from the submarine mud volcanoes is very active, we thus infer that mechanically the mud diapirs off SW Taiwan have been formed mainly due to the tectonic compression on the underlying sediments of high pore-fluid pressure, instead of the buoyancy of the buried sediments. The overpressured sediments and fluid are compressed and pushed upwards to pierce the overlying sediments and form the more compacted mud diapirs. The relatively denser material of the mud diapirs probably constrains the flowing courses of the submarine canyons off SW Taiwan, especially for the upper reaches of the Kaoping and Fangliao submarine canyons.

  11. Relationship between characteristics of gravity and magnetic anomalies and the earthquakes in the Longmenshan range and adjacent areas

    NASA Astrophysics Data System (ADS)

    Zhang, Jisheng; Gao, Rui; Zeng, Lingsen; Li, Qiusheng; Guan, Ye; He, Rizheng; Wang, Haiyan; Lu, Zhanwu

    2010-08-01

    The 2008 Wenchuan earthquake and aftershocks occurred along the northeast-trending Longmenshan fault zone in the eastern margin of the Tibetan plateau. The Tibetan plateau has the strongest negative Bouguer gravity anomaly zone in China and is surrounded by the great gravity horizontal gradient belt. The horizontal gradient belt of the observed gravity anomaly in the Longmenshan area is a part of this giant gravity gradient belt. The Longmenshan fault zone is located to the east of this belt. The horizontal gradient belt of the residual gravity anomaly, obtained by removing large effects of sedimentary basin and variations in the crustal thickness, well matches the Longmenshan fault zone. But this belt is located to the east of the horizontal gradient belt of the observed gravity anomalies. The deviation of the two horizontal gradient belts increases from the southwest to the northeast with a maximum of about 40-50 km. A significant difference in density exists in the lower crust and the uppermost mantle between the Songpan-Ganzê block and the Sichuan basin block. The Songpan-Ganzê block is less dense than the Sichuan basin block in the lower crust as well as in the uppermost mantle. The boundary between the two blocks is located to the west of the Wenchuan-Maoxian, Yinxiu-Beichuan, and Anxian-Guanxian faults approximately. The fault plane crosses the lower crust and uppermost mantle. The rigid Sichuan basin block acts as a resistant for the pushing from the Songpan-Ganzê block. Far-field effects of the collision between the Indian and Eurasian plates, might lead to thrust of some brittle layers in the upper crust along the detachment, in the middle crust of the Songpan-Ganzê block. When movement on a large and deep crustal mega-thrust occurs, earthquakes strike the Longmen Shan margin of the Tibetan Plateau. In the Guanxian-Beichuan segment in the southern Longmenshan fault zone, push from the Songpan-Ganzê block is perpendicular to the density boundary

  12. Calculating the Marine Gravity Anomaly of the South China Sea based on the Inverse Stokes Formula

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Jiang, Xiaoguang; Liu, Shanwei; Zheng, Lei; Zang, Jinxia; Zhang, Xuehua; Liu, Longfei

    2016-11-01

    Marine gravity field information has a great significance for the resource, environment and military affairs. As a new way to get marine gravity data, the satellite altimetry technique makes up for what ship measuring means lack. The paper carries out the researches on how altimeter data applied for calculating marine gravity anomaly based on inverse Stokes formula. In the article, the editing of 14-track Jason-1 data over South China Sea for 7 years is for collinear processing and cross-point adjustment. The inverse Stokes formula and fast Flourier transform technique are applied to calculate marine gravity anomaly of the region (0°∼23°N, 103°∼120°E), and to draw gravity anomaly map. Compared with the gravity anomaly by ship observation, RMS is 12.6mGal, and single altimetry satellite has a good precision.

  13. Gravity anomalies, caldera structure, and subsurface geology in the Rotorua area, New Zealand

    SciTech Connect

    Hunt, T.M. )

    1992-04-01

    This paper discusses a re-examination of gravity which indicates that Rotorua Caldera does not have the circular, negative gravity anomaly typical of other rhyolitic calderas. New gravity measurements and residual gravity anomalies in Rotorua City are consistent with numerous rhyolite domes and ignimbrite sheets, interbedded with a thick sequence of poorly-compacted sediments. Within the city a gravity high extends from the shore of Lake Rotorua south to Whakarewarewa and is associated with a buried ridge, formed by the coalescing of two rhyolite domes. A gravity low centered near Linton Park suggests that rhyolites are thin or absent in this area and sediments extend to a depth of about 1 km. A quantitative analysis of the residual gravity anomalies was limited by insufficient information about the density, extent, and thickness of the material underlying the rhyolites, and the uncertainty in the distribution and density of silicification within the sediments.

  14. Gravity Anomalies in the Northern Hawaiian Islands: Evidence for an Alternative Magma Chamber on Kauai and a Conjoined Niihau-Kauai Island

    NASA Astrophysics Data System (ADS)

    Flinders, A. F.; Ito, G.; Garcia, M.; Kim, S.; Appelgate, B.

    2008-12-01

    The shield stage evolution of the islands of Kauai and Niihau are poorly understood. Previous land-based gravity surveys provide only a coarse constraint on the observed gravitational field. Questions as to whether the island of Kauai was formed by a single or multiple shields and the developmental relationship between these neighboring islands are still debated. Our new land-based gravity survey of Kauai and ship-board gravity surveys around both islands identified large complete Bouguer gravitational anomalies under Kauai's Lihue Basin and offshore in the Kaulakahi Channel, a 30-km-long bathymetric ridge connecting the two islands. These gravitational highs are consistent in size and magnitude with those of other Hawaiian islands and imply local zones of high density crust, most likely attributed to magmatic intrusions; e.g. former magma chambers, or rift zones. The Lihue Basin anomaly observed is offset 20 km east from the geologically mapped caldera region. This offset implies either the unlikely case that the shield stage plumbing system connecting the magma chamber and caldera could have been inclined by up to 75 degrees from the vertical, or that the currently mapped caldera is a late feature, unrelated to shield volcanism. The location of the gravitational anomaly, in the Kaulakahi Channel, 20 km east of Niihau is consistent with geologic mapping, which indicates that Niihau is a remnant of an ancient shield volcano centered east of the island. The proximity of the Niihau gravitational anomaly 10 km from the western edge of Kauai supports the hypothesis that the two volcanoes were part of the same island.

  15. The quest for the perfect gravity anomaly: Part 1 - New calculation standards

    USGS Publications Warehouse

    Li, X.; Hildenbrand, T.G.; Hinze, W. J.; Keller, Gordon R.; Ravat, D.; Webring, M.

    2006-01-01

    The North American gravity database together with databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account our enhanced computational power, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining different anomaly components. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. ?? 2005 Society of Exploration Geophysicists.

  16. Gravity anomalies over the Central Indian Ridge between 3∘S and 11∘S, Indian Ocean: Segmentation and crustal structure

    NASA Astrophysics Data System (ADS)

    Samudrala, Kiranmai; Kamesh Raju, K. A.; Rao, P. Rama

    2016-12-01

    High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a 750 km long section of the Central Indian Ridge between 3 ∘S and 11 ∘S have been analysed to understand the crustal structure and the ridge segmentation pattern. The mantle Bouguer anomalies (MBA) and the residual mantle Bouguer anomalies (RMBA) computed in the study area have shown significant variations along the ridge segments that are separated by transform and non-transform discontinuities. The MBA lows observed over the linear ridge segments bounded by well-defined transform faults are attributed to the thickening of the crust at the middle portions of the ridge segments. The estimates of crustal thickness from the RMBA shows an average of 5.2 km thick crust in the axial part of the ridge segments. The MBA and relative RMBA highs along the two non-transform discontinuities suggests a thinner crust of up to 4.0 km. The most significant MBA and RMBA highs were observed over the Vema transform fault suggesting thin crust of 4 km in the deepest part of the transform fault where bathymetry is more than 6000 m. The identified megamullion structures have relative MBA highs suggesting thinner crust. Besides MBA lows along the ridge axis, significant off-axis MBA lows have been noticed, suggesting off-axis mantle upwelling zones indicative of thickening of the crust. The rift valley morphology varies from the typical V-shaped valley to the shallow valley floor with undulations on the inner valley floor. Segments with shallow rift valley floor have depicted well-defined circular MBA lows with persistent RMBA low, suggesting modulation of the valley floor morphology due to the variations in crustal thickness and the mantle temperature. These are supported by thicker crust and weaker lithospheric mantle.

  17. High-resolution airborne gravity imaging over James Ross Island (West Antarctica)

    USGS Publications Warehouse

    Jordan, T.A.; Ferraccioli, F.; Jones, P.C.; Smellie, J.L.; Ghidella, M.; Corr, H. F. J.; Zakrajsek, A.F.

    2007-01-01

    James Ross Island (JRI) exposes a Miocene-Recent alkaline basaltic volcanic complex that developed in a back-arc, east of the northern Antarctic Peninsula. JRI has been the focus of several geological studies because it provides a window on Neogene magmatic processes and paleoenvironments. However, little is known about its internal structure. New airborne gravity data were collected as part of the first high-resolution aerogeophysical survey flown over the island and reveal a prominent negative Bouguer gravity anomaly over Mt Haddington. This is intriguing as basaltic volcanoes are typically associated with positive Bouguer anomalies, linked to underlying mafic intrusions. The negative Bouguer anomaly may be associated with a hitherto unrecognised low-density sub-surface body, such as a breccia-filled caldera, or a partially molten magma chamber.

  18. Procedures and results related to the direct determination of gravity anomalies from satellite and terrestrial gravity data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1974-01-01

    The equations needed for the incorporation of gravity anomalies as unknown parameters in an orbit determination program are described. These equations were implemented in the Geodyn computer program which was used to process optical satellite observations. The arc dependent parameter unknowns, 184 unknown 15 deg and coordinates of 7 tracking stations were considered. Up to 39 arcs (5 to 7 days) involving 10 different satellites, were processed. An anomaly solution from the satellite data and a combination solution with 15 deg terrestrial anomalies were made. The limited data samples indicate that the method works. The 15 deg anomalies from various solutions and the potential coefficients implied by the different solutions are reported.

  19. Oxygen isotope, aeromagnetic, and gravity anomalies associated with hydrothermally altered zones in the Yankee Fork mining district, Custer County, Idaho.

    USGS Publications Warehouse

    Criss, R.E.; Champion, D.E.; McIntyre, D.H.

    1985-01-01

    Anomalous geochemical and geophysical properties correlate spatially with epithermal Ag-Au deposits in altered volcanic rocks. Areas of low 18O, low magnetic susceptibilities, low remanent magnetizations and relatively high rock densities are much larger than the zones of obvious (not shown) hydrothermal alteration. Low aeromagnetic intensities and positive Bouguer anomalies are also associated with the altered rock, as which has delta 18O <6per mille. The altering and mineralizing fluids were Tertiary meteoric waters.-G.J.N.

  20. Crustal structure and gravity anomalies beneath the Rif, northern Morocco: implications for the current tectonics of the Alboran region

    NASA Astrophysics Data System (ADS)

    Petit, Carole; Le Pourhiet, Laetitia; Scalabrino, Bruno; Corsini, Michel; Bonnin, Mickaël; Romagny, Adrien

    2015-07-01

    We analyse Bouguer anomaly data and previously published Moho depths estimated from receiver functions in order to determine the amount of isostatic compensation or uncompensation of the Rif topography in northern Morocco. We use Moho depth variations extracted from receiver function analyses to predict synthetic Bouguer anomalies that are then compared to observed Bouguer anomaly. We find that Moho depth variations due to isostatic compensation of topographic and/or intracrustal loads do not match Moho depth estimates obtained from receiver function analyses. The isostatic misfit map evidences excess crustal root as large as 10 km in the western part of the study area, whereas a `missing' crustal root of ˜5 km appears east of 4.3°E. This excess root/missing topography correlates with the presence of a dense mantle lid, the noticeable southwestward drift of the Western Rif area, and with a current surface uplift. We propose that a delaminated mantle lid progressively detaching westward or southwestward from the overlying crust is responsible for viscous flow of the ductile lower crust beneath the Rif area. This gives rise to isostatic uplift and westward drift due to viscous coupling at the upper/lower crust boundary. At the same time, the presence of this dense sinking mantle lid causes a negative dynamic topography, which explains why the observed topography is too low compared to the crustal thickness.

  1. Analysis of gravity anomaly over coral-reef oil field: Wilfred Pool, Sullivan County, Indiana

    SciTech Connect

    Dana, S.W.

    1980-03-01

    To compare the measured and theoretical gravity anomaly of a typical coral-reef oil field, data were collected from the wilfred Pool, Sullivan County, Indiana. Densities of available core samples from the field were determined and the anomaly was calculated, taking into account the lateral and vertical variation of density and the geologic structure known from core studies and drilling-log records of lithologic types penetrated by the wells. Comparison of the theoretical and actual anomalies indicated a rough correspondence except for several sharp negative anomalies on the flanks of the measured gravity anomaly. Further studies indicated that the negative anomalies are possibly due to fluvial erosion that produced, on the surface of the youngest Pennsylvanian sediments, channels which were later filled with glacial till of lower density than the sediments. 13 figures.

  2. Gravity anomalies, plate tectonics and the lateral growth of Precambrian North America

    NASA Technical Reports Server (NTRS)

    Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.

    1988-01-01

    The widespread gravity coverage of North America provides a picture of the gross structural fabric of the continent via the trends of gravity anomalies. The structural picture so obtained reveals a mosaic of gravity trend domains, many of which correlate closely with structural provinces and orogenic terranes. The gravity trend map, interpreted in the light of plate-tectonic theory, thus provides a new perspective for examining the mode of assembly and growth of North America. Suture zones, palaeosubduction directions, and perhaps, contrasting tectonic histories may be identified using gravity patterns.

  3. Lithologic mapping test for gravity and magnetic anomalies. A case study of gravity-magnetic anomaly profile in the eastern segment of the China-Mongolia border

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Meng, Xiaohong; Chen, Zhaoxi; Liu, Guofeng; Zheng, Yuanman; Wang, Jun; Zhang, Sheng; Zhang, Xingdong; Zheng, Wanqiu

    2015-06-01

    An inversion calculation is usually needed to map lithologies with gravity-magnetic anomalies. A lithological-physical property correspondence can be established by combining data of regional rock density and magnetic susceptibility to build topological equations. In this study, topological calculations were performed using inversion data and combined with physical property data to interpret and map lithologies. Gravity-magnetic profiles from the eastern segment of the China-Mongolia border were used (Jining-Bainaimiao-Ha'ernaode geological-composite geophysical profile) in this paper. Based on gravity-magnetic anomaly inversion, the rock density and magnetic susceptibility data of Bainaimiao and Jining were adopted for lithological inversion. Distribution characteristics of four major types of magmatic rocks within 50 km of the lower half space were obtained, and results of lithologic mapping and tectonic framework were analyzed. The position of convergence between the North China Plate and Siberian Plate was confirmed. Two tectonic stages were identified, namely, interplate squeezing and intraplate deformation. Regional gravity-magnetic field properties were analyzed to discuss the orientation and date of andesites and diorites in the northern part of the survey line. We believe that they have a northeast-southwest orientation similar to gravity-magnetic anomalies of Erenhot-Xilinhot. They resemble the igneous rock near Erenhot because they both indicate magmatic intrusion during the early Carboniferous.

  4. Segmentation in gravity and magnetic anomalies along the U.S. East Coast passive margin: Implications for incipient structure of the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Behn, Mark D.; Lin, Jian

    2000-11-01

    Segmentation is a characteristic feature of seafloor spreading along the global mid-ocean ridge system. While segmentation of active spreading centers has been the focus of much recent research, the process by which a rifted continental margin develops into a segmented mid-ocean ridge is still poorly understood. In this study we investigate the segmentation character of the U.S. East Coast margin through a modeling study of the margin basement structure, magnetics, and gravity anomalies. The East Coast margin is of particular interest because it is one of several rifted continental margins that display thick sequences of high seismic velocity igneous crust, presumably formed during rifting. The East Coast Magnetic Anomaly (ECMA), a distinct total field magnetic high running offshore along the margin, is commonly located seaward of the thickest sections of the high-velocity crust and displays segmentation on length scales (100-120 km) similar to the segmentation observed at the Mid-Atlantic Ridge (MAR). Isostatic gravity anomalies were calculated by removing from free-air gravity the predicted effects of seafloor, sediments, and a crust-mantle model assuming local isostatic compensation. The resultant residuals show a corridor of high anomaly running along the margin, situated close to the maximum thickness of the high seismic velocity crust as determined from the two available seismic refraction lines. Reduction to the pole (R-T-P) of the total field magnetic anomaly shows that after the removal of skewness from the ECMA, the location of the isostatic gravity high is closely correlated to the ECMA. The isostatic gravity high is also segmented but in two distinct wave bands: 100-150 km and 300-500 km. The short-wavelength (100-150 km) segmentation in the R-T-P magnetic and isostatic gravity anomalies is similar in wavelength to segmentation in magnetization and mantle Bouguer anomaly observed along the present-day MAR. The 300-500 km segmentation in the along

  5. Improving the geological interpretation of magnetic and gravity satellite anomalies

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W. (Principal Investigator); Vonfrese, R. R. B.

    1985-01-01

    Current limitations in the quantitative interpretation of satellite-elevation geopotential field data and magnetic anomaly data were investigated along with techniques to overcome them. A major result was the preparation of an improved scalar magnetic anomaly map of South America and adjacent marine areas directly from the original MAGSAT data. In addition, comparisons of South American and Euro-African data show a strong correlation of anomalies along the Atlantic rifted margins of the continents.

  6. An Automatic Method of Direct Interpretation of Residual Gravity Anomaly Profiles due to Spheres and Cylinders

    NASA Astrophysics Data System (ADS)

    Asfahani, J.; Tlas, M.

    2008-05-01

    We have developed a least-squares minimization approach to determine the depth and the amplitude coefficient of a buried structure from residual gravity anomaly profile. This approach is basically based on application of Werner deconvolution method to gravity formulas due to spheres and cylinders, and solving a set of algebraic linear equations to estimate the two-model parameters. The validity of this new method is demonstrated through studying and analyzing two synthetic gravity anomalies, using simulated data generated from a known model with different random error components and a known statistical distribution. After being theoretically proven, this approach was applied on two real field gravity anomalies from Cuba and Sweden. The agreement between the results obtained by the proposed method and those obtained by other interpretation methods is good and comparable. Moreover, the depth obtained by the proposed approach is found to be in very good agreement with that obtained from drilling information.

  7. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Ghelichkhan, Siavash; Bunge, Hans-Peter

    2017-04-01

    Growing evidence from a variety of geologic indicators points to significant topography maintained convectively by viscous stresses in the mantle. However, while gravity is sensitive to dynamically supported topography, there are only small free-air gravity anomalies (< 30 mGal) associated with Earth's long-wavelength topography. This has been used to suggest that surface heights computed assuming a complete isostatic equilibrium provide a good approximation to observed topography. Here we show that the apparent paradox is resolved by the well-established formalism of global, self-gravitating, viscously stratified Earth models. The models predict a complex relation between dynamic topography, mass, and gravity anomalies that is not summarized by a constant admittance—i.e., ratio of gravity anomalies to surface deflections—as one would infer from analytic flow solutions formulated in a half-space.

  8. Crustal structure and gravity anomalies beneath the Rif, northern Morocco: implications for the current tectonics of the Alboran region

    NASA Astrophysics Data System (ADS)

    Petit, Carole; Corsini, Michel; Bonnin, Mickaël; Scalabrino, Bruno; Le Pourhiet, Laetitia; Nolet, Guust; Romagny, Adrien

    2014-05-01

    Topography in orogenic belts results from complex interactions between crustal tectonics, mantle dynamics and surface erosion, all processes leading to more or less important isostatic readjusments. The Alboran region in Western Mediterranean is characterized by curved mountain belts (Rif and Betics) surrounding the Alboran Sea basin, which is composed of an extended continental crust. Several indices advocate for a recent, and possibly still active uplift of the internal Rif units. Current horizontal kinematics of the Rif region are markedly different from the global Iberia-Africa convergence vectors, which has led some authors to propose complex plate boundary geometries in this area, or to infer the presence of a westward-directed, increased basal traction beneath it. Given the protracted geodynamic history of this region, both global plate kinematics and crust and mantle dynamics may actually play a role in the present-day horizontal and vertical movements. In this study, we focus on the role of crust and mantle dynamics on the present-day structure and kinematics of the Rif region. We first analyze Bouguer gravity data together with published Moho depths computed from receiver functions in order to determine the amount of isostatic compensation or un-compensation of the Rif topography. Finally, isostatic anomalies are compared with GPS data and with recently obtained tomographic images, and a schematic model of the current structure and kinematics of the Rif domain is presented. We show that the Rif is characterized by an over-compensated (i.e., too deep Moho) topography west of 4.5°E, suggesting a crustal overthickening associated with a negative dynamic topography. Comparison with kinematic data suggests that lithospheric mantle removal associated with a viscous flow of the lower crust beneath the Rif could explain the deep crustal root as well as the active uplift and westward motion of the Rif region.

  9. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  10. Global accuracy estimates of point and mean undulation differences obtained from gravity disturbances, gravity anomalies and potential coefficients

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1979-01-01

    Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.

  11. Lithospheric structure across the central Tien Shan constrained by gravity anomalies and joint inversions of receiver function and Rayleigh wave dispersion

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Shi, Lei; Gao, Jiayi

    2016-07-01

    Shear wave velocity structure across the central Tien Shan orogeny was generated by jointly inverting Rayleigh wave phase and group velocity with teleseismic P-wave receiver functions at 40 broadband seismic stations. The inferred seismic structure was validated by forward modeling of the complete Bouguer anomaly data. The joint inversion result reveals larger crust thicknesses beneath the Kokshaal (∼68-72 km) and Kyrgyz ranges (∼62-64 km), while other units have crustal thicknesses between 48 and 58 km. A fast velocity layer (Vs = 3.6-3.9 km/s) in the upper crust is found in some seismic stations within the Kazakh Shield. Our models show the presence of high velocity and density layers in the lowermost crust throughout the region, consistent with the presence of mafic/ultramafic lithologies. The large crustal thickness is associated with a thickened mafic layer in the lower crust, indicating that the thickened crust may be partly caused by magmatic underplating. The low velocity and density anomaly in the middle crust, and low upper mantle velocity observed in our model beneath the middle Tien Shan reflect the presence of partial melt in the crust due to the intrusion of hot mantle material. The lack of correlation between Moho depth and topography, together with the gravity results, suggests that the topographic compensation in the central Tien Shan is not confined to the crust. This requires significant support from the mantle to account for the relative high elevation of the middle Tien Shan.

  12. Long-wavelength Magnetic and Gravity Anomaly Correlations of Africa and Europe

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic Shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.

  13. Long-wavelength magnetic and gravity anomaly correlations on Africa and Europe

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Olivier, R.; Hinze, W. J.

    1985-01-01

    Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.

  14. GEOS 3 data processing for the recovery of geoid undulations and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1979-01-01

    The paper discusses the analysis of GEOS 3 altimeter data for the determination of geoid heights and point and mean gravity anomalies. Methods are presented for determining the mean anomalies and mean undulations from the GEOS 3 altimeter data available by the end of September 1977 without having a complete set of precise orbits. The editing of the data is extensive to remove questionable data, although no filtering of the data is carried out. An adjustment process is carried out to eliminate orbit error and altimeter bias. Representative point anomaly values are computed to investigate anomaly behavior across the Bonin Trench and over the Patton seamounts.

  15. The computation of 15 deg and 10 deg equal area block terrestrial free air gravity anomalies

    NASA Technical Reports Server (NTRS)

    Hajela, D. P.

    1973-01-01

    Starting with the set of 23,355 1 deg x 1 deg mean free air gravity anomalies used in Rapp (1972) to form a 5 deg equal area block terrestrial gravity field, the computation of 15 deg equal area block mean free air gravity anomalies is described along with estimates of their standard deviations. A new scheme of an integral division of a 15 deg block into 9 component 300 n. m. blocks, and each 300 n. m. block being subdivided into 25 60 n.mi. blocks, is used. This insures that there is no loss in accuracy, which would have resulted if proportional values according to area were taken of the 5 deg equal area anomalies to form the 15 deg block anomalies. A similar scheme is used for the computation of 10 deg equal area block mean free air gravity anomalies with estimates of their standard deviations. The scheme is general enough to be used for a 30 deg equal area block terrestrial gravity field.

  16. Pioneer Anomaly and Space Accelerometer for Gravity Test

    NASA Astrophysics Data System (ADS)

    Levy, Agnès; Christophe, Bruno; Reynaud, Serge

    2006-06-01

    The Pioneer 10 and 11 spacecraft are subject to an unexplained acceleration which has a constant value of (8.74 1.33) \\cdot 10-10 m\\cdot s-2 and seems to be directed toward the sun. The hypotheses to explain this anomaly are either technical artifacts or new physics. This presentation deals with the unfolding of two aspects of my thesis: Doppler and telemetry data analysis with the objective to investigate the nature of the anomaly, and adapation of an ONERA accelerometer for a future mission in which the anomaly will be confirmed and more precisely measured. The presence of an accelerometer is mandatory for the identification of the anomaly's origin.

  17. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  18. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    SciTech Connect

    Barrau, Aurelien; Calcagni, Gianluca; Grain, Julien E-mail: bojowald@gravity.psu.edu E-mail: julien.grain@ias.u-psud.fr

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  19. Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.

  20. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  1. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  2. Investigation of urban faults in Shenzhen using wavelet multi-scale analysis and modeling of gravity observations

    NASA Astrophysics Data System (ADS)

    Xu, Chuang; Chen, Liang; Liu, Xi-kai

    2016-04-01

    Urban faults in Shenzhen are potential threat to the city security and sustainable development. To improve the knowledge of the Shenzhen fault zone, interpretation and inversion of gravity data were carried out. Bouguer gravity covering the whole Shenzhen city was calculated with a resolution of 1kmx1km. Wavelet multi-scale analysis (MSA) was applied to the Bouguer gravity data to obtain the multilayer residual anomalies corresponding to different depths. In addition, 2D gravity models were constructed along three profiles. The Bouguer gravity anomaly shows a NE-striking high-low-high pattern from northwest to southeast, strongly related to the main faults. According to the result of MSA, the correlation between gravity anomaly and faults is particularly significant from 4 to 12 km depth. The residual gravity with small amplitude in each layer indicates weak tectonic activity in the crust. In the upper layers, positive anomalies along most of faults reveal the upwelling of high-density materials during the past tectonic movements. The multilayer residual anomalies also implicate important information about the faults, such as the vertical extension and the dip direction. The maximum depth of the faults is about 20km. In general, NE-striking faults extend deeper than NW-striking Faults and have a larger dip angle. This study is supported by the National Natural Science Foundation of China (Grant No.41504015) and China Postdoctoral Science Foundation (Grant No.2015M572146).

  3. Conformal anomaly and off-shell extensions of gravity

    NASA Astrophysics Data System (ADS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2017-08-01

    The gauge dependence of the conformal anomaly for spin-3/2 and spin-2 fields in nonconformal supergravities has been a long standing puzzle. In this paper we argue that the "correct" gauge choice is the one that follows from requiring all terms that would imply a violation of the Wess-Zumino consistency condition to be absent in the counterterm, because otherwise the usual link between the anomaly and the one-loop divergence becomes invalid. Remarkably, the "good" choice of gauge is the one that confirms our previous result [K. A. Meissner and H. Nicolai, Phys. Lett. B 772, 169 (2017)., 10.1016/j.physletb.2017.06.031] that a complete cancellation of conformal anomalies in D =4 can only be achieved for N -extended (Poincaré) supergravities with N ≥5 .

  4. Plumes in the mantle. [free air and isostatic gravity anomalies for geophysical interpretation

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1973-01-01

    Free air and isostatic gravity anomalies for the purposes of geophysical interpretation are presented. Evidence for the existance of hotspots in the mantle is reviewed. The prosposed locations of these hotspots are not always associated with positive gravity anomalies. Theoretical analysis based on simplified flow models for the plumes indicates that unless the frictional viscosities are several orders of magnitude smaller than the present estimates of mantle viscosity or alternately, the vertical flows are reduced by about two orders of magnitude, the plume flow will generate implausibly high temperatures.

  5. On the recovery of gravity anomalies from high precision altimeter data

    NASA Technical Reports Server (NTRS)

    Lelgemann, D.

    1976-01-01

    A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.

  6. Gravity anomalies of irregularly shaped two-dimensional bodies with constant horizontal density gradient

    USGS Publications Warehouse

    Pan, Jeng-Jong

    1989-01-01

    An equation to compute the gravity anomalies of two-dimensional (2-D) bodies with density contrast varying with depth (z axis) was developed by Murthy and Rao (1979). I develop an equation for computing the gravity anomalies of 2-D bodies with constant horizontal density gradient. By combining this equation with the equation of Murthy and Rao, I estimate the depth of the sedimentary basin which is adjacent to the master fault associated with the Rio Grande rift in New Mexico, where the density is assumed to decrease basinward from the fault (Cordell, 1979).

  7. Magnetic and gravity anomaly patterns related to hydrocarbon fields in northern West Siberia

    SciTech Connect

    Piskarev, A.L.; Tchernyshev, M.Yu.

    1997-05-01

    A study of the features of gravity and magnetic fields in the vicinity of oil and gas reservoirs in West Siberia demonstrated a spatial relationship with the hydrocarbon deposits. The relevant magnetic and gravity anomalies cover approximately 900,000 km{sup 2} in northern West Siberia. Amplitude and frequency were investigated initially using double Fourier spectrum (DFS) analysis. This was followed by (1) application of transformations, filtering, and moving windows analysis; (2) compilation of maps of regional and local anomalies, and potential field derivatives; and (3) investigation of the distribution of parameters in areas of known deposits. Hydrocarbon deposits are located mostly at the slopes of positive regional gravity and magnetic anomalies which are interpreted as relating to deep riftogenic structures. At the same time, it is established that the location of hydrocarbon depositions coincides commonly with local gravity and magnetic minima generated by lows in basement density and magnetization. All known hydrocarbon deposits in northern West Siberia are in areas characterized by comparatively high gradients of constituent of gravity anomalies with a wavelength of about 90--100 km. These newly revealed links between reservoirs and potential field parameters may be a means to predict new discoveries in poorly explored territories and seas, primarily in Russia`s Arctic shelf.

  8. Mafic and ultramafic rocks of the northwestern Brooks Range of Alaska produce nearly symmetric gravity anomalies

    SciTech Connect

    Morin, R.L. )

    1993-04-01

    An arc of mafic and ultramafic rocks is mapped from Asik Mountain to Siniktanneyak Mountain in the northwestern Brooks Range of Alaska. Gravity data, although not very detailed, have been collected over the region and show some very conspicuous circular or oval gravity highs over portions of the mapped mafic-ultramafic bodies. Bodies which have large associated gravity anomalies are Asik Mountain (80 mGal), Avon Hills (20 mGal), Misheguk Mountain (30 mGal), and Siniktanneyak Mountain (20 mGal). Gabbros of the Siniktanneyak Mountain complex, where the gravity coverage is best, have densities of about 3.0 g/cm[sup 3] while the densities of the surrounding sedimentary rocks are about 2.6 g/cm[sup 3]. Volcanic rocks in the area have average densities of about 2.7 g/cm[sup 3]. Three-dimensional modeling indicates that the largest anomaly, on the southwestern part of the complex, could be caused by a polygonal prism of gabbro with vertical sides, about 6 km across and about 4.5 km deep. A smaller lobe of the anomaly on the northeast of the complex could be caused by another oblong polygonal prism about 4 km long and 2 km wide trending northeast and about 1.5 km deep. Modeling this anomaly with densities lower than gabbro would require greater thicknesses to produce the same anomaly. Modeling each anomaly along this arc in 2 1/2-dimensions shows many possible solutions using different body shapes and different density contrasts. There are several other gravity anomalies in this vicinity which could represent unexposed high density rocks. One such anomaly is in the Maiyumerak Mountains northeast of Asik Mountain (30 mGal). Another anomaly is to the northwest of Asik Mountain (20 mGal). There is also an anomaly at Uchugrak (20 mGal) east of Avan Hills. Although many of the anomalies in this region are poorly controlled, an attempt has been made to interpret the data to show possible solutions.

  9. Kinematic GPS as a source for airborne gravity reduction in the airborne gravity survey of Switzerland

    NASA Astrophysics Data System (ADS)

    Klingelé, E. E.; Cocard, M.; Kahle, H.-G.; Halliday, M.

    1997-04-01

    An airborne gravity survey of Switzerland was performed in a joint project between the Swiss Federal Institute of Technology, Zurich and LaCoste and Romberg Gravity Meters, Inc. The survey was flown in a Twin-Otter aircraft equipped by the Swiss Federal Directorate of Cadastral Surveying. The aircraft was outfitted with three Global Positioning System receivers, one for navigational purpose and two as sources of positioning, velocity, and vertical acceleration for airborne gravity reduction. Four receivers were installed on the ground as reference stations. The gravity data were recorded with a modified LaCoste and Romberg marine gravimeter at a sampling rate of 1 s. Modifications included anti-alias filters and an absolute encoder for the measuring screw. The flights were performed at a barometric altitude of 5100 m above sea level. An airborne Bouguer anomaly map, computed at flight altitude with topographic corrections of up to 167 km and a density of 2670 kg/m3, is presented. Bouguer anomaly values at crossing points between lines flown at comparable altitudes (ΔH<10 m) show differences varying between 1.1 and 2.7 mGal (10-5 m/s2). Comparison of the ground Bouguer anomaly map, upward continued to 5100 m, and the one computed from airborne data shows a strong similarity both in amplitude and wavelength.

  10. Gravity investigation of the Manson impact structure, Iowa

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1993-01-01

    The Manson crater, of probable Cretaceous/Tertiary age, is located in northwestern Iowa (center at 42 deg. 34.44 min N; 94 deg. 33.60 min W). A seismic reflection profile along an east west line across the crater and drill hole data indicate a crater about 35 km in diameter having the classic form for an impact crater, an uplifted central peak composed of uplifted Proterozoic crystalline bedrock, surrounded by a 'moat' filled with impact produced breccia and a ring graben zone composed of tilted fault blocks of the Proterozoic and Paleozoic country rocks. The structure has been significantly eroded. This geologic structure would be expected to produce a significant gravity signature and study of that signature would shed additional light on the details of the crater structure. A gravity study was undertaken to better resolve the crustal structure. The regional Bouguer gravity field is characterized by a southeastward decreasing field. To first order, the Bouguer gravity field can be understood in the context of the geology of the Precambrian basement. The high gravity at the southeast corner is associated with the mid-continent gravity high; the adjacent low to the northwest results from a basin containing low-density clastic sediments shed from the basement high. Modeling of a simple basin and adjacent high predicts much of the observed Bouguer gravity signature. A gravity signature due to structure associated with the Manson impact is not apparent in the Bouguer data. To resolve the gravity signature of the impact, a series of polynomial surfaces were fit to the Bouguer gravity field to isolate the small wavelength residual anomalies. The residual gravity obtained after subtracting a 5th- or 6th-order polynomial seems to remove most of the regional effects and isolate local anomalies. The pattern resolved in the residual gravity is one of a gravity high surrounded by gravity lows and in turn surrounded by isolated gravity highs. The central portion of the crater

  11. Gravity investigation of the Manson impact structure, Iowa

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1993-01-01

    The Manson crater, of probable Cretaceous/Tertiary age, is located in northwestern Iowa (center at 42 deg. 34.44 min N; 94 deg. 33.60 min W). A seismic reflection profile along an east west line across the crater and drill hole data indicate a crater about 35 km in diameter having the classic form for an impact crater, an uplifted central peak composed of uplifted Proterozoic crystalline bedrock, surrounded by a 'moat' filled with impact produced breccia and a ring graben zone composed of tilted fault blocks of the Proterozoic and Paleozoic country rocks. The structure has been significantly eroded. This geologic structure would be expected to produce a significant gravity signature and study of that signature would shed additional light on the details of the crater structure. A gravity study was undertaken to better resolve the crustal structure. The regional Bouguer gravity field is characterized by a southeastward decreasing field. To first order, the Bouguer gravity field can be understood in the context of the geology of the Precambrian basement. The high gravity at the southeast corner is associated with the mid-continent gravity high; the adjacent low to the northwest results from a basin containing low-density clastic sediments shed from the basement high. Modeling of a simple basin and adjacent high predicts much of the observed Bouguer gravity signature. A gravity signature due to structure associated with the Manson impact is not apparent in the Bouguer data. To resolve the gravity signature of the impact, a series of polynomial surfaces were fit to the Bouguer gravity field to isolate the small wavelength residual anomalies. The residual gravity obtained after subtracting a 5th- or 6th-order polynomial seems to remove most of the regional effects and isolate local anomalies. The pattern resolved in the residual gravity is one of a gravity high surrounded by gravity lows and in turn surrounded by isolated gravity highs. The central portion of the crater

  12. Detailed Gravity and Magnetic Survey of the Taylorsville Triassic Basin

    SciTech Connect

    Leftwich, John; Nowroozi, Ali, A.

    1999-10-01

    This work reports the progress on collecting existing gravity data in a rectangular area covering the Richmond and Taylorsville Basins and its vicinity. The area covers one-degree latitude and one degree longitude, starting at 37 North, 77 West and ending at 38 North, 78 West. Dr. David Daniels of the United State Geological Survey supplied us with more than 4900 Bouguer gravity anomalies in this area. The purpose of this report is to present the data in form of several maps and discuss its relation to the geology of the Triassic Basins and its vicinity. Johnson and others (1985) also presented a map of the Bouguer gravity anomaly of this area. However, their map covers a smaller area, and it is based on smaller number of observations.

  13. The relationship between mean anomaly block sizes and spherical harmonic representations. [of earth gravity

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1977-01-01

    The frequently used rule specifying the relationship between a mean gravity anomaly in a block whose side length is theta degrees and a spherical harmonic representation of these data to degree l-bar is examined in light of the smoothing parameter used by Pellinen (1966). It is found that if the smoothing parameter is not considered, mean anomalies computed from potential coefficients can be in error by about 30% of the rms anomaly value. It is suggested that the above mentioned rule should be considered only a crude approximation.

  14. An analysis of the gravity field and tectonic evaluation of the northwestern part of Bangladesh

    NASA Astrophysics Data System (ADS)

    Khan, A. A.; Rahman, T.

    1992-06-01

    The total Bouguer anomaly values of the northwestern part of Bangladesh have been analysed on the basis of the trend, shape and magnitude of the anomaly values. Residual gravity and the second vertical derivatives of gravity show only two near-surface features, viz. the Nilphamari and Rangpur highs. Geological models of the two highs have been constructed on the basis of gravity modelling. Gravity data, in conjunction with aeromagnetic and bore hole data, enable us to propose four tectonic elements of the northwestern part of Bangladesh: the Northern Slope of the Platform, the Stable Platform, the Nawabganj-Gaibandha Intracratonic High and the Southern Part of the Platform.

  15. Regional gravity survey of the Carrizo Mountain area, Arizona and New Mexico

    USGS Publications Warehouse

    Plouff, Donald

    1958-01-01

    A total of 570 gravity stations were established within an area of about 1,000 square miles south of the common corner of Colorado, Utah, Arizona, and New Mexico. The Bouguer gravity anomaly pattern apparently is unrelated to the disposition of minette plugs inasmuch as there probably is little contrast in density between the conduit filling and the surrounding sedimentary rock. Gravity contours associated with an underlying dense mass within the Precambrian basement parallel the Boundary Butte anticlinal structure. The steep gravity anomaly gradient near the southeast corner of the area probably follows the buried, steeply dipping or faulted edge of the Defiance uplift.

  16. Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1981-01-01

    To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.

  17. Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1981-01-01

    To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.

  18. Gravity anomalies of the Northern Hawaiian Islands: Implications on the shield evolutions of Kauai and Niihau

    NASA Astrophysics Data System (ADS)

    Flinders, Ashton F.; Ito, Garrett; Garcia, Michael O.

    2010-08-01

    New land and marine gravity data reveal two positive residual gravity anomalies in the Northern Hawaiian Islands: one over Kaua'i, the other between the islands of Kaua'i and Ni'ihau. These gravitational highs are similar in size and magnitude to those of other Hawaiian volcanoes, indicating local zones of high-density crust, attributed to olivine cumulates in solidified magma reservoirs. The residual gravity high over Kaua'i is located in the Līhu'e Basin, offset 8-12 km east of Kaua'i's geologically mapped caldera. This offset suggests that the mapped caldera is a collapsed feature later filled in with lava and not the long-term center of Kaua'i shield volcanism. A second residual gravity high, in the submarine channel between Kaua'i and Ni'ihau, marks the volcanic center of the Ni'ihau shield volcano. This second residual gravity anomaly implies that Ni'ihau's eastern boundary extended ˜20 km east of its present location. Through inversion, the residual gravity anomalies were modeled as being produced by two solidified magma reservoirs with average densities of 3100 kg/m3 and volumes between 2470 and 2540 km3. Considering the locations and sizes of the residual gravity anomalies/magma reservoirs, the extent of the two islands' paleoshorelines and potassium-argon dating of shield-stage lavas, we conclude that the two islands were not connected subaerially during their respective shield stages and that Ni'ihau's topographic summit was removed by an eastern flank collapse between 4.3 and 5.6 Ma. Continued constructional volcanism on western Kaua'i likely covered much of the submerged remains of eastern Ni'ihau.

  19. Gravity and geoid anomalies of the Philippine Sea: Evidence on the depth of compensation for the negative residual water depth anomaly

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1982-01-01

    A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.

  20. The estimation of 550 km x 550 km mean gravity anomalies. [from free atmosphere gravimetry data

    NASA Technical Reports Server (NTRS)

    Williamson, M. R.; Gaposchkin, E. M.

    1975-01-01

    The calculation of 550 km X 550 km mean gravity anomalies from 1 degree X 1 degree mean free-air gravimetry data is discussed. The block estimate procedure developed by Kaula was used, and estimates for 1452 of the 1654 blocks were obtained.

  1. Northern Red Sea Crustal Thickness and Oceanic Lithosphere Distribution from Satellite Gravity Anomaly Inversion

    NASA Astrophysics Data System (ADS)

    Alyousuf, T. Y.; Kusznir, N. J.

    2010-12-01

    The existence and possible distribution of oceanic lithosphere in the northern Red Sea is controversial. Gravity inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to map Moho depth, crustal thickness and continental lithosphere thinning factor for the northern Red Sea in order to determine the distribution of oceanic and continental lithosphere and the ocean-continent transition location. Data used in the gravity inversion are bathymetry, free-air gravity and sediment thickness data from Smith and Sandwell (1997), Sandwell and Smith (2009) and Laske and Masters (1997) respectively. Because of the young age of continental lithosphere thinning and sea-floor spreading in the northern Red Sea, the lithosphere thermal gravity anomaly correction is large (in excess of -150mgal) and must be incorporated into the gravity inversion to determine Moho depth. Gravity inversion results show thin crust (5km thickness or less) for the northern Red Sea consistent with it being underlain by oceanic or highly thinned continental crust. Predicted Moho depths from the gravity inversion are in agreement with published ESP results from Gaulier et al (1988). Sensitivities to rift and break-up ages in the range 0 to 15 Ma have been examined. Superposition of illuminated free-air gravity onto crustal thickness or lithosphere thinning maps shows a series of segmented rift or ridge axes extending northwards orthogonal to and intersecting the Aqaba transform fault. The gravity inversion includes volcanic addition prediction from lithosphere thinning factor using a parameterisation of adiabatic decompression melting (White & McKenzie 1989). If the decompression melting is “normal” then the northern Red Sea is underlain by oceanic crust, however if it is magma poor then the northern Red Sea is underlain by highly thinned continental crust or serpentinised mantle.

  2. Direct recovery of mean gravity anomalies from satellite to satellite tracking

    NASA Technical Reports Server (NTRS)

    Hajela, D. P.

    1974-01-01

    The direct recovery was investigated of mean gravity anomalies from summed range rate observations, the signal path being ground station to a geosynchronous relay satellite to a close satellite significantly perturbed by the short wave features of the earth's gravitational field. To ensure realistic observations, these were simulated with the nominal orbital elements for the relay satellite corresponding to ATS-6, and for two different close satellites (one at about 250 km height, and the other at about 900 km height) corresponding to the nominal values for GEOS-C. The earth's gravitational field was represented by a reference set of potential coefficients up to degree and order 12, considered as known values, and by residual gravity anomalies obtained by subtracting the anomalies, implied by the potential coefficients, from their terrestrial estimates. It was found that gravity anomalies could be recovered from strong signal without using any a-priori terrestrial information, i.e. considering their initial values as zero and also assigning them a zero weight matrix. While recovering them from weak signal, it was necessary to use the a-priori estimate of the standard deviation of the anomalies to form their a-priori diagonal weight matrix.

  3. Using Grail Data to Assess the Effect of Porosity and Dilatancy on the Gravity Signature of Impact Craters on the Moon

    NASA Astrophysics Data System (ADS)

    Milbury, C.; Johnson, B. C.; Melosh, J., IV; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Zuber, M. T.

    2014-12-01

    NASA's dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have globally mapped the lunar gravity field at unprecedented resolution; this has enabled the study of craters of all sizes and ages. Soderblom et al. [2014, LPSC abstract #1777] calculated the residual Bouguer anomalies for ~2700 craters 27-184 km in diameter (D). They found that the residual Bouguer anomaly over craters smaller than D~100 km is essentially 0±50 mGal, there is a transition for D~100-150 km, and craters larger than 184 km have a positive residual Bouguer anomaly that increases with increasing crater size. We use the iSALE shock physics hydrocode to model crater formation, including the effect of porosity and dilatancy (shear bulking). We use strength parameters of gabbroic anorthosite for the crust and dunite for the mantle. Our impactor sizes range from 6-30 km, which produce craters between 86-450 km in diameter for pre-impact target porosities of 0, 6.8, and 13.6%. We calculate the free-air and Bouguer gravity anomalies from our models and compare them to gravity data from GRAIL. We find that target porosity has the greatest effect on the gravity signature of lunar craters and can explain the observed ±50 mGal scatter in the residual Bouguer anomaly. We investigate variations of impact velocity, crustal thickness, and dilatancy angle; we find that these parameters do not affect the gravity as significantly as target porosity does. We find that the crater diameter at which mantle uplift dominates the crater gravity is dependent on target porosity, and that it occurs at a crater diameter that is close to the complex crater to peak-ring basin transition.

  4. Crustal Thickness and Oceanic Lithosphere Distribution in the Eastern Mediterranean from Satellite Gravity Anomaly Inversion

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.

    2010-12-01

    The distribution of oceanic and continental lithosphere in the eastern Mediterranean is not well understood. Gravity inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to map Moho depth, crustal thickness and continental lithosphere thinning factor for the eastern Mediterranean in order to determine the distribution of oceanic and continental lithosphere and the ocean-continent transition location. Data used in the gravity inversion are bathymetry, free-air gravity and sediment thickness data from Smith and Sandwell (1997), Sandwell and Smith (2009) and Laske and Masters (1997) respectively. Moho depths from the gravity inversion are dependent on the age of oceanic lithosphere and continental breakup because of the lithosphere thermal gravity correction; however, these ages are uncertain for the eastern Mediterranean. Gravity inversion sensitivities to break-up ages of 225Ma (late Triassic) and 100Ma (early Cretaceous) have been examined. Gravity inversion results show thin crust (5 - 10km thickness) for the Ionian Sea and the Herodotus Basin of the eastern Mediterranean consistent with these basins being underlain by oceanic or highly thinned continental crust. Predicted Moho depths from the gravity inversion are in agreement with published Ionian Sea ESP results (Voogd et al, 1992) and suggest a gravity inversion reference Moho depth increasing to the north, which we attribute to subduction dynamic subsidence. Calibration of gravity inversion Moho against ESP results show a trade-off between break-up age and reference Moho depth; a Cretaceous age ocean requires a larger Moho reference depth than a Triassic age ocean. Lithosphere thinning factor maps from gravity inversion for Africa do not show continuity between the Cretaceous African rift system (Benue Trough, Chad, CASZ and Sudan basins) and eastern Mediterranean basins. If the Ionian Sea is of Cretaceous age then it more probably links to Cretaceous rifting and sea

  5. Principal facts of gravity stations with gravity and magnetic profiles from the Southwest Nevada Test Site, Nye County, Nevada, as of January, 1982

    USGS Publications Warehouse

    Jansma, P.E.; Snyder, D.B.; Ponce, David A.

    1983-01-01

    Three gravity profiles and principal facts of 2,604 gravity stations in the southwest quadrant of the Nevada Test Site are documented in this data report. The residual gravity profiles show the gravity measurements and the smoothed curves derived from these points that were used in geophysical interpretations. The principal facts include station label, latitude, longitude, elevation, observed gravity value, and terrain correction for each station as well as the derived complete Bouguer and isostatic anomalies, reduced at 2.67 g/cm 3. Accuracy codes, where available, further document the data.

  6. 3D Inversion of Gravity Anomalies for the Interpretation of Sedimentary Basins using Variable Density Contrast

    NASA Astrophysics Data System (ADS)

    Ekinci, Yunus Levent; Ertekin, Can

    2015-04-01

    Concern about sedimentary basins is generally related to their genetic and economic significance. Analysis of sedimentary basins requires the acquisition of data through outcrop studies and subsurface investigations that encompass drilling and geophysics. These data are commonly analysed by computer-assisted techniques. One of these methods is based on analysing gravity anomalies to compute the depth of sedimentary basin-basement rock interface. Sedimentary basins produce negative gravity anomalies, because they have mostly lower densities than that of the surrounding basement rocks. Density variations in a sedimentary fill increase rapidly at shallower depths then gradually reach the density of surrounding basement rocks due to the geostatic pressure i.e. compaction. The decrease of the density contrast can be easily estimated by a quadratic function. Hence, if the densities are chosen properly and the regional background is removed correctly, the topographical relief of the sedimentary basin-basement rock interface might be estimated by the inversion of the gravity data using an exponential density-depth relation. Three dimensional forward modelling procedure can be carried out by introducing a Cartesian coordinate system, and placing vertical prisms just below observation points on the grid plane. Depth to the basement, namely depths to the bottom of the vertical prisms are adjusted in an iterative manner by minimizing the differences between measured and calculated residual gravity anomalies. In this study, we present a MATLAB-based inversion code for the interpretation of sedimentary basins by approximating the topographical relief of sedimentary basin-basement rock interfaces. For a given gridded residual gravity anomaly map, the procedure estimates the bottom depths of vertical prisms by considering some published formulas and assumptions. The utility of the developed inversion code was successfully tested on theoretically produced gridded gravity data set

  7. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Chen, Chaojian; Pan, Kejia; Kalscheuer, Thomas; Maurer, Hansruedi; Tang, Jingtian

    2016-11-01

    During the last 15 years, more attention has been paid to derive analytic formulae for the gravitational potential and field of polyhedral mass bodies with complicated polynomial density contrasts, because such formulae can be more suitable to approximate the true mass density variations of the earth (e.g., sedimentary basins and bedrock topography) than methods that use finer volume discretization and constant density contrasts. In this study, we derive analytic formulae for gravity anomalies of arbitrary polyhedral bodies with complicated polynomial density contrasts in 3D space. The anomalous mass density is allowed to vary in both horizontal and vertical directions in a polynomial form of λ =ax^m+by^n+cz^t , where m, n, t are nonnegative integers and a, b, c are coefficients of mass density. First, the singular volume integrals of the gravity anomalies are transformed to regular or weakly singular surface integrals over each polygon of the polyhedral body. Then, in terms of the derived singularity-free analytic formulae of these surface integrals, singularity-free analytic formulae for gravity anomalies of arbitrary polyhedral bodies with horizontal and vertical polynomial density contrasts are obtained. For an arbitrary polyhedron, we successfully derived analytic formulae of the gravity potential and the gravity field in the case of m≤ 1 , n≤ 1 , t≤ 1 , and an analytic formula of the gravity potential in the case of m=n=t=2 . For a rectangular prism, we derive an analytic formula of the gravity potential for m≤ 3 , n≤ 3 and t≤ 3 and closed forms of the gravity field are presented for m≤ 1 , n≤ 1 and t≤ 4 . Besides generalizing previously published closed-form solutions for cases of constant and linear mass density contrasts to higher polynomial order, to our best knowledge, this is the first time that closed-form solutions are presented for the gravitational potential of a general polyhedral body with quadratic density contrast in all

  8. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Chen, Chaojian; Pan, Kejia; Kalscheuer, Thomas; Maurer, Hansruedi; Tang, Jingtian

    2017-03-01

    During the last 15 years, more attention has been paid to derive analytic formulae for the gravitational potential and field of polyhedral mass bodies with complicated polynomial density contrasts, because such formulae can be more suitable to approximate the true mass density variations of the earth (e.g., sedimentary basins and bedrock topography) than methods that use finer volume discretization and constant density contrasts. In this study, we derive analytic formulae for gravity anomalies of arbitrary polyhedral bodies with complicated polynomial density contrasts in 3D space. The anomalous mass density is allowed to vary in both horizontal and vertical directions in a polynomial form of λ =ax^m+by^n+cz^t, where m, n, t are nonnegative integers and a, b, c are coefficients of mass density. First, the singular volume integrals of the gravity anomalies are transformed to regular or weakly singular surface integrals over each polygon of the polyhedral body. Then, in terms of the derived singularity-free analytic formulae of these surface integrals, singularity-free analytic formulae for gravity anomalies of arbitrary polyhedral bodies with horizontal and vertical polynomial density contrasts are obtained. For an arbitrary polyhedron, we successfully derived analytic formulae of the gravity potential and the gravity field in the case of m≤ 1, n≤ 1, t≤ 1, and an analytic formula of the gravity potential in the case of m=n=t=2. For a rectangular prism, we derive an analytic formula of the gravity potential for m≤ 3, n≤ 3 and t≤ 3 and closed forms of the gravity field are presented for m≤ 1, n≤ 1 and t≤ 4. Besides generalizing previously published closed-form solutions for cases of constant and linear mass density contrasts to higher polynomial order, to our best knowledge, this is the first time that closed-form solutions are presented for the gravitational potential of a general polyhedral body with quadratic density contrast in all spatial

  9. Oceanwide gravity anomalies from Geos-3, Seasat and Geosat altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Basic, Tomislav

    1992-01-01

    Three kinds of satellite altimeter data have been combined, along with 5 x 5 arcmin bathymetric data, to calculate a 0.125 deg ocean wide gridded set of 2.3 x 10 exp 6 free-air gravity anomalies. The procedure used was least squares collocation that yields the predicted anomaly and standard deviation. The value of including the bathymetric data was shown in a test around the Dowd Seamount where the root mean square (rms) difference between ship gravity measurements decreased from +/- 40 mgal to +/- 20 mgal when the bathymetry was included. Comparisons between the predicted anomalies and ship gravity data is described in three cases. In the Banda Sea the rms differences were +/- 20 mgal for two lines. In the South Atlantic rms differences over lines of 2000 km in length were +/- 7 mgal. For cruise data in the Antarctica region the discrepancies were +/- 12 mgal. Comparisons of anomalies derived from the Geosat geodetic mission data by Marks and McAdoo (1992) with ship dta gave differences of +/- 6 mgal showing the value of the much denser Geosat geodetic mission altimeter data.

  10. Structure of La Primavera caldera, Jalisco, Mexico, deduced from gravity anomalies and drilling results

    NASA Astrophysics Data System (ADS)

    Yokoyama, I.; Mena, M.

    1991-07-01

    Previous studies of La Primavera caldera have mostly been based on surface geology and topography. Since 1980, many wells, exploring for geothermal energy, have reached depths of about 2 to 3 km at the center of the caldera. The results of the drillings, together with those of the gravity surveys, provide information about the subsurface structure of the caldera, and shed light on its formation. The drilling results and gravity anomalies at La Primavera caldera and San Marcos, located at about 40 km distance from the caldera, suggest that regional gravity anomalies can be interpreted in terms of depths of the granitic basements: the basement beneath La Primavera caldera is about 3 km deep and consists of roughly the same horizon as that beneath San Marcos. The drilling results within the caldera reveal that the depth of the caldera fills ranges from 0.3 to 1 km at the drilling sites. The andesite basement, about 1 km deep, remains approximately horizontal, and the granitic basement has a depth of about 3 km. The surface topographies, such as the postcaldera domes, scarcely disturb the subsurface strata. The local gravity anomalies show two lows within the caldera reflecting the configuration of caldera bottom, two funnel-shaped depressions, one of which corresponds to a vent of the Tala tuff deduced from geological observations. The mass deficiency within the caldera estimated from the gravity anomaly, satisfies the general relationship that the mass deficiency is proportional to the caldera diameter cubed. This means that caldera structure is three-dimensional: the larger the diameter, the deeper the funnel-shape. At present this argument may be limited to funnel-shaped calderas.

  11. Application of Magsat lithospheric modeling in South America. Part 1: Processing and interpretation of magnetic and gravity anomaly data

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B. (Principal Investigator); Keller, G. R.; Lidiak, E. G.

    1984-01-01

    Scalar magnetic anomaly data from MAGSAT, reduced to vertical polarization and long wavelength pass filtered free air gravity anomaly data of South America and the Caribbean are compared to major crustal features. The continental shields generally are more magnetic than adjacent basins, oceans and orogenic belts. In contrast, the major aulacogens are characterized by negative anomalies. Spherical earth magnetic modeling of the Amazon River and Takatu aulacogens in northeastern South America indicates a less magnetic crust associated with the aulacogens. Spherical earth modeling of both positive gravity and negative magnetic anomalies observed over the Mississippi Embayment indicate the presence of a nonmagnetic zone of high density material within the lower crust associated with the aulacogen. The MAGSAT scalar magnetic anomaly data and available free air gravity anomalies over Euro-Africa indicate several similar relationships.

  12. Density structures beneath the lunar mascon basins from constrained inversion of gravity anomalies

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Du, J.; Chen, C.

    2013-12-01

    The lunar mascon basins formed resulting from the impact excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool according to the recent study. We are now interesting in the present density structures beneath the basins in order to reveal the heterogeneities. A 3-D inversion method of gravity data formulated with specially designed model objective function and radial weighting function in the spherical coordinates has been developed. We further introduce the constraints in the inverse method such as the prior parameters of density, the crustal thickness, seismic wave velocities and mineral information. The gravity anomalies of major mascon basins were calculated from the newly gravity field model, GL0660B, and the topography model, LRO_LTM02, and the gravity effects of lava fills. Constrained inversions of gravity anomalies were then performed for several basins. We show that the density structures of mascon basins are lateral heterogeneities and different from each other although the dense materials of mantle concentrates at depth of 10-50 km. These heterogeneities are suggested resulting from the impactors and the lunar thermal stage at times. This research is supported by the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan) (Grant No. CUG100701 and No. CUG130106) and the National Natural Science Foundation of China (Grant No. 41104048).

  13. Lithospheric structure across the central Tien Shan constrained by gravity anomalies and joint inversions of receiver function and Rayleigh group velocity data

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Shi, Lei; Gao, Jiayi

    2016-04-01

    Shear wave velocity structure across the central Tien Shan orogeny was generated by jointly inverting Rayleigh wave phase and group velocity with teleseismic P-wave receiver functions at 40 broad band seismic stations of the MANAS project. The inferred seismic structure was validated by forward modeling of the complete Bouguer anomaly data. The joint inversion result reveals larger crust thicknesses beneath the Kokshaal (~68-72 km) and Kyrgyz ranges (~62-64 km), while other units have crustal thicknesses between 48 and 58 km. A fast velocity layer (Vs = 3.6-3.9 km/s) in the upper crust is found in some seismic stations within the Kazakh Shield. Our models show the presence of high velocity and density layers in the lowermost crust throughout the region, consistent with the presence of mafic/ultramafic lithologies. The large crustal thickness is associated with a thickened mafic layer in the lower crust, indicating that the thickened crust may be partly caused by magmatic underplating. The low velocity and density anomaly in the middle crust, and low upper mantle velocity observed in our model beneath the middle Tien Shan reflects the presence of partial melt in the crust due to the intrusion of hot mantle material. The lack of correlation between Moho depth and topography, together with the gravity results, suggests that the topographic compensation in the central Tien Shan is not confined to the crust. This requires significant support from the mantle to account for the relative high elevation of the middle Tien Shan.

  14. Derivation of gravity anomalies from airborne gravimeter and IMU recordings—Validation with regional analytic models using ground and satellite gravity data

    NASA Astrophysics Data System (ADS)

    Neumeyer, Jürgen; Schäfer, Uwe; Kremer, Jens; Pflug, Hartmut; Xu, Guochang

    2009-04-01

    For testing the performance of the upgraded LaCoste and Romberg airborne gravimeter S124 and evaluating the newly updated software, an airborne gravity test campaign has been carried out in the northern part of Germany by GFZ Potsdam in autumn 2006 using the aircraft Cessna 404 of "Hansa Luftbild" Company, Münster. We present the results of a profile flown SW-NE in both directions at a nearly constant mean altitude of ˜1100 m with a ground speed of ˜230 km/h, crossing one of the most pronounced gravity anomalies in Central Europe with peak-to-peak amplitude of about 70 mgal. The scalar gravity anomalies along the flight trajectories have been derived from the airborne gravimeter taking into account platform recordings and data from the GPS-controlled Inertial Measurement Unit (IMU) Aerocontrol IIb. All common corrections have been performed on the raw gravity data. Due to problems in GPS recording, we used the IMU data only. To verify the airborne gravity results, ground-based and satellite-derived gravity data have been used to compute local analytical gravity field models in a new methodological approach that allows the calculation of gravity anomalies at flight altitudes. For the most part there is a good agreement between the INS-airborne-derived and the independently modelled gravity anomalies, yielding best results of about 3.5 mgal RMS.

  15. Preparation of Residual Gravity Maps for the Southern Cascade Mountains, Washington Using Fourier Analysis

    SciTech Connect

    Dishberger, Debra McLean

    1983-04-01

    This report represents a continuation of gravity work in the Cascade Mountains of Washington supported by the Division of Geology and Earth Resources since 1974. The purpose of this research has been collection of baseline gravity data for use in geothermal resource evaluation. Results of the Division's gravity studies to date are given in Danes and Phillips (1983a, 1983b). One of the problems encountered when analyzing gravity data is distinguishing between those parts of the data that represent geologic structures of interest, and those that do not. In many cases, the features of interest are relatively small, near-surface features, such as those sought in mineral, petroleum, or geothermal exploration. Gravity anomalies caused by such structures may be distorted or masked by anomalies caused by larger, deeper geologic structures. Gravity anomalies caused by relatively shallow, small geologic structures are termed residual anomalies. Those due to broad, deep-seated features can be described as regional anomalies. The purpose of this report is to describe a Fourier analysis method for separating residual and regional gravity anomalies from a complete Bouguer gravity anomaly field. The technique has been applied to gravity data from the Southern Cascade Mountains, Washington. Residual gravity anomaly maps at a scale of 1:250,000 are presented for various regional wavelength filters, and a power spectrum of the frequency components in the South Cascade gravity data is displayed. No attempt is made to interpret the results of this study in terms of geologic structures.

  16. Disturbance vector in space from surface gravity anomalies using complementary models

    NASA Astrophysics Data System (ADS)

    Cruz, J. Y.

    1985-12-01

    This modeling of the external disturbance vector of the Earth from surface gravity anomaly data is discussed. The low frequency features of the signal are represented in spherical harmonic series. The recovery of the coefficients of the series from the given gravity anomalies is discussed focusing on the use of analytical continuation and ellipsoidal corrections to account for the Earth's topography and ellipticity. The spectrum and data response of the spatial disturbance vector are studied to aid the design of models and experiments. The local models studied to complement the globally valid spherical harmonic model are: (1) the residual topographic model (RTM), (2) the classical integral model, (3) three versions of the Dirac approach to collocation, and finally (4) two versions of the least squares collocation approach.

  17. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas P.

    2009-05-01

    The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U (1) gauge field of the reduced (1 + 1)-dimensional theory. It is found that the terms in this U (1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  18. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  19. Observation of Wood's anomalies on surface gravity waves propagating on a channel

    NASA Astrophysics Data System (ADS)

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  20. Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.

    NASA Astrophysics Data System (ADS)

    Jilinski, Pavel; Fontes, Sergio Luiz

    2010-05-01

    0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1

  1. Improved gravity anomaly fields from retracked multimission satellite radar altimetry observations over the Persian Gulf and the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Forootan, E.; Sharifi, M. A.; Awange, J.; Kuhn, M.

    2015-09-01

    Satellite radar altimetry observations are used to derive short wavelength gravity anomaly fields over the Persian Gulf and the Caspian Sea, where in situ and ship-borne gravity measurements have limited spatial coverage. In this study the retracking algorithm `Extrema Retracking' (ExtR) was employed to improve sea surface height (SSH) measurements that are highly biased in the study regions due to land contaminations in the footprints of the satellite altimetry observations. ExtR was applied to the waveforms sampled by the five satellite radar altimetry missions: TOPEX/POSEIDON, JASON-1, JASON-2, GFO and ERS-1. Along-track slopes have been estimated from the improved SSH measurements and used in an iterative process to estimate deflections of the vertical, and subsequently, the desired gravity anomalies. The main steps of the gravity anomaly computations involve estimating improved SSH using the ExtR technique, computing deflections of the vertical from interpolated SSHs on a regular grid using a biharmonic spline interpolation and finally estimating gridded gravity anomalies. A remove-compute-restore algorithm, based on the fast Fourier transform, has been applied to convert deflections of the vertical into gravity anomalies. Finally, spline interpolation has been used to estimate regular gravity anomaly grids over the two study regions. Results were evaluated by comparing the estimated altimetry-derived gravity anomalies (with and without implementing the ExtR algorithm) with ship-borne free air gravity anomaly observations, and free air gravity anomalies from the Earth Gravitational Model 2008 (EGM2008). The comparison indicates a range of 3-5 mGal in the residuals, which were computed by taking the differences between the retracked altimetry-derived gravity anomaly and the ship-borne data. The comparison of retracked data with ship-borne data indicates a range in the root-mean-square-error (RMSE) between approximately 1.8 and 4.4 mGal and a bias between 0

  2. Joint Inversion and Forward Modeling of Gravity and Magnetic Data in the Ismenius Region of Mars

    NASA Technical Reports Server (NTRS)

    Milbury, C. A.; Raymond, C. A.; Jewell, J. B.; Smrekar, S. E.; Schubert, G.

    2005-01-01

    The unexpected discovery of remanent crustal magnetism on Mars was one of the most intriguing results from the Mars Global Surveyor mission. The origin of the pattern of magnetization remains elusive. Correlations with gravity and geology have been examined to better understand the nature of the magnetic anomalies. In the area of the Martian dichotomy between 50 and 90 degrees E (here referred to as the Ismenius Area), we find that both the Bouguer and the isostatic gravity anomalies appear to correlate with the magnetic anomalies and a buried fault, and allow for a better constraint on the magnetized crust].

  3. Application of 3D variation-density interface inversion of gravity anomalies in South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Shuling; Meng, Xiaohong

    2017-04-01

    The South China Sea (SCS) is a marginal basin with extremely complicated crustal structure and whose evolutional history is associated with continental rifting and seafloor spreading. The gravity data are among the most important data sets for studying deep crustal structures and the tectonic evolution. Density interface inversion by gravity anomalies can effectively estimate the depth of Moho interface. However, the Moho interface inversion in SCS are facing challenges due to the density contract of crust-mantle vary in three dimensions, which are associated with the complicated crustal structure (co-existing oceanic crust, continental crust and transitional crust). The regular inversion methods always assume the density contract on both sides of the interface would be constant, which is quite unrealistic since actual strata densities vary both vertically and laterally. To meet the challenges of 3D variation of density in SCS, we present an improved 3D variation-density interface inversion of gravity anomalies based on Parker-Oldenburg method. We first construct two variation density models with exponential density-depth relationships, which expressed the variation of stratum density depending on the depth in oceanic and continental crust respectively. Meanwhile, to minimize multiple solutions for potential field inversion, we collect deep seismic sounding data and employ the gravity inversion by joint using seismic data to be constraint for depth of Moho. Finally, we have estimated the depth of Moho interface which infers the tectonic significance in SCS. The inversion results agree well with seismic data in SCS show this approach is more effective and precise to quantitative estimate the depth of interface. Keywords: South China Sea; Gravity anomalies; Density interface inversion;

  4. Results from the direct combination of satellite and gravimetric data. [orbit analysis and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1974-01-01

    Results have been obtained for the solution of 184 15-deg equal-area blocks directly from the analysis of satellite orbits, and from a combination of the satellite results with terrestrial gravity material. This test computation, made to verify the method, used 17,632 optical observations from ten satellites in 29 arcs averaging in length seven days. Analysis of the satellite results were made by comparing the solved for anomalies with the terrestrial anomaly set, and by developing the solved for anomalies into potential coefficients which were compared to the GEM 3 set of potential coefficients to degree 12. These comparisons indicated improvement in each solution as more arcs were added. The programs used in this solution can easily be used to solve for smaller size blocks and handle additional data types. The only limitation will be computer core availability and computer time.

  5. Results from the direct combination of satellite and gravimetric data. [orbit analysis and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1974-01-01

    Results have been obtained for the solution of 184 15-deg equal-area blocks directly from the analysis of satellite orbits, and from a combination of the satellite results with terrestrial gravity material. This test computation, made to verify the method, used 17,632 optical observations from ten satellites in 29 arcs averaging in length seven days. Analysis of the satellite results were made by comparing the solved for anomalies with the terrestrial anomaly set, and by developing the solved for anomalies into potential coefficients which were compared to the GEM 3 set of potential coefficients to degree 12. These comparisons indicated improvement in each solution as more arcs were added. The programs used in this solution can easily be used to solve for smaller size blocks and handle additional data types. The only limitation will be computer core availability and computer time.

  6. Mean gravity anomalies and sea surface heights derived from GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1978-01-01

    Approximately 2000 GEOS-3 altimeter arcs were analyzed to improve knowledge of the geoid and gravity field. An adjustment procedure was used to fit the sea surface heights (geoid undulations) in an adjustment process that incorporated cross-over constraints. The error model used for the fit was a one or two parameter model which was designed to remove altimeter bias and orbit error. The undulations on the adjusted arcs were used to produce geoid maps in 20 regions. The adjusted data was used to derive 301 5 degree equal area anomalies and 9995 1 x 1 degree anomalies in areas where the altimeter data was most dense, using least squares collocation techniques. Also emphasized was the ability of the altimeter data to imply rapid anomaly changes of up to 240 mgals in adjacent 1 x 1 degree blocks.

  7. Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.

    1980-01-01

    The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.

  8. Gravity evidence for a shallow intrusion under Medicine Lake volcano, California.

    USGS Publications Warehouse

    Finn, C.; Williams, D.L.

    1982-01-01

    A positive gravity anomaly is associated with Medicine Lake volcano, California. Trials with different Bouguer reduction densities indicate that this positive anomaly cannot be explained by an inappropriate choice of Bouguer reduction density but must be caused by a subvolcanic body. After separating the Medicine Lake gravity high from the regional field, we were able to fit the 27mgal positive residual anomaly with a large, shallow body of high density contrast (+0.41g/cm3) and a thickness of 2.5km. We interpret this body to be an intrusion of dense material emplaced within the several-kilometres-thick older volcanic layer that probably underlies Medicine Lake volcano.-Authors

  9. Spherical Earth analysis and modeling of lithospheric gravity and magnetic anomalies. Ph.D. Thesis - Purdue Univ.

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.

    1980-01-01

    A comprehensive approach to the lithospheric analysis of potential field anomalies in the spherical domain is provided. It has widespread application in the analysis and design of satellite gravity and magnetic surveys for geological investigation.

  10. Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic

    USGS Publications Warehouse

    Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, K.; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.

    2011-01-01

    New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.

  11. Principal facts for gravity data collected in the southern Albuquerque Basin area and a regional compilation, central New Mexico

    USGS Publications Warehouse

    Gillespie, Cindy L.; Grauch, V.J.S.; Oshetski, Kim; Keller, Gordon R.

    2000-01-01

    Principal facts for 156 new gravity stations in the southern Albuquerque basin are presented. These data fill a gap in existing data coverage. The compilation of the new data and two existing data sets into a regional data set of 5562 stations that cover the Albuquerque basin and vicinity is also described. Bouguer anomaly and isostatic residual gravity data for this regional compilation are available in digital form from ftp://greenwood.cr.usgs.gov/pub/openfile- reports/ofr-00-490.

  12. Anomalies of temperature and iron in the uppermost mantle inferred from gravity data and tomographic models

    NASA Astrophysics Data System (ADS)

    Deschamps, Frédéric; Trampert, Jeannot; Snieder, Roel

    2002-02-01

    We propose a method to interpret seismic tomography in terms of thermal and compositional anomalies. In addition to the tomographic model, we use gravity data, which provide information on the density expressed as a relative density-to-shear wave velocity scaling factor ( ζ=∂ ln ρ/ ∂ ln Vs). The inferred values of ζ are not consistent with the presence of thermal anomalies alone. However, simultaneous anomalies of temperature and composition explain the observations. Compositional anomalies can have several origins, but we find the most relevant parameter to be the global volumic fraction of iron ( xFe=Fe/(Fe+Mg)). We invert the tomographic model S16RLBM ( Woodhouse and Trampert, 1995) and the density anomalies correlated to Vs-anomalies ( δρ/ ρ0= ζδ Vs/ V0) for anomalies of temperature ( δT) and iron ( δFe). The partial derivatives are provided by a numerical method that reconstructs density and seismic velocity for given temperatures and petrologic models ( Vacher et al., 1998). Down to z=300 km depth, the distribution of temperature and iron anomalies strongly depends on the surface tectonics. The continental mantle below old cratons and stable platforms is colder than average and depleted in iron, whereas the oceanic mantle is mostly homogeneous. Due to uncertainties on the reference state of the mantle, error bars on δT and δFe reach 10% of the inverted values. Finally, we apply these results to the stability of continental roots and test the hypothesis that the negative buoyancy induced by lower than average temperatures is balanced by the positive buoyancy induced by the depletion in iron. We find that continental roots are stable only if the viscosity of the mantle is strongly temperature-dependent. However, some uncertainties remain on the real effects and importance of rheology.

  13. Gravity Anomalies of Complex Craters on Earth and the Moon: Insight from Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Collins, G. S.

    2012-12-01

    The impact cratering process alters the density of target rocks and deforms subsurface strata to produce characteristic geophysical anomalies. Principal among these is a broad, circular gravity anomaly concentric to the crater. By accounting for dilatancy--the creation of pore space in a shearing granular material--in numerical models of impact crater formation, the origin of gravity anomalies in complex craters is investigated. A semi-empirical approach is used to account for dilatancy. Shear failure leads to a prescribed increase in distension (porosity), depending on a user-defined function for the dilatancy angle, describing the tendency for the target rock to dilate. Here, the dilatancy angle is defined as a function of porosity, pressure and temperature, based on measurements from soil and rock mechanics experiments. The maximum dilatancy angle occurs at zero porosity, pressure, and temperature and decreases as any of these three variables increase. This approach ensures that, after impact, the increase in distension caused by shear failure is preserved. The final sub-crater porosity distribution can be compared with observations at terrestrial craters and used to make predictions about the gravity anomalies over terrestrial and lunar complex craters. Simulations of terrestrial impacts using the dilatancy model result in porosity and gravity anomalies consistent with observation, provided that the maximum dilatancy angle is only a few degrees. The decrease in dilatancy angle with increasing pressure has three important effects. While a small amount of dilation (bulking) occurs during tensile failure behind the shock wave, in general the high pressures in the shock wave suppress the generation of porosity as it propagates through the target rocks. Moreover, at depths exceeding about 10 km on Earth (60 km on the Moon) the confining pressure is sufficient to suppress porosity generation at any stage during crater formation. As a result, the majority of the

  14. Principal Facts for Gravity Data Collected in Wisconsin: A Web Site and CD-ROM for Distribution of Data

    USGS Publications Warehouse

    Snyder, Stephen L.; Geister, Daniel W.; Daniels, David L.; Ervin, C. Patrick

    2004-01-01

    Principal facts for 40,488 gravity stations covering the entire state of Wisconsin are presented here in digital form. This is a compilation of previously published data collected between 1948 and 1992 from numerous sources, along with over 10,000 new gravity stations collected by the USGS since 1999. Also included are 550 gravity stations from previously unpublished sources. Observed gravity and complete-Bouguer gravity anomaly data for this statewide compilation are included here. Altogether, 14 individual surveys are presented here.

  15. Basement depth estimation from gravity anomalies: two 2.5D approaches coupled with the exponential density contrast model

    NASA Astrophysics Data System (ADS)

    Chakravarthi, V.; Mallesh, K.; Ramamma, B.

    2017-03-01

    We develop two automatic techniques in the spatial domain using the exponential density contrast model (EDCM) to trace the bottom surface of a 2.5D sedimentary basin from the observed gravity anomalies. The interface between the sediments and basement is described with a finite strike polygonal source, whose depth ordinates become the unknown parameters to be estimated. The proposed automatic modeling technique makes use of the forward difference approximation and the inversion solves a system of normal equations using the ridge regression to estimate the unknown parameters. Furthermore, the proposed inversion technique simultaneously estimates the regional gravity background that is associated with the residual gravity anomaly. In either case, forward modeling is realized in the spatial domain through a method that combines both analytical and numerical approaches. The utility of each algorithm was successfully tested on a theoretically produced noisy residual gravity dataset. The validity of the inversion technique is also exemplified with the noisy gravity anomalies attributable to a synthetic structure in the presence of regional gravity background. We demonstrate that the magnitude of gravity anomaly is offset dependent and that it would influence the modeling result. Additionally, some applications with real gravity datasets from the Gediz and Büyük Menderes grabens in western Turkey using the derived EDCMs have produced geologically reasonable results which are in close agreement with those reported previously.

  16. Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization

    USGS Publications Warehouse

    Cady, John W.

    1977-01-01

    A computer program is presented which performs, for one or more bodies, along a profile perpendicular to strike, both forward calculations for the magnetic and gravity anomaly fields and independent gravity and magnetic inverse calculations for density and susceptibility or remanent magnetization.

  17. Probing the Lunar Polar Crust with GRAIL Gravity

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Zuber, M. T.; Goossens, S. J.; Rowlands, D. D.; Neumann, G. A.; Mazarico, E.; Genova, A.; Lemoine, F. G.

    2015-12-01

    The lunar polar crust, from latitude ±80° to the pole, exhibits Bouguer gravity anomalies that result from crustal density variations of order ±45 mGal in the south and ±25 mGal in the north, bandpass filtered to wavelengths representing the top 50 km. Evident in the Bouguer gravity at both poles are the signatures of a few large craters and basins. But at both poles, the Bouguer map also displays a large number of small, rather sinuous features, some outlining crater rims and some structures on crater floors, that are distributed more or less uniformly across the region. The root mean square (rms) variation over the 10° radius cap is less than 11 mGals at the south pole and less than 7 mGals in the north. This difference reflects the greater crustal complexity in the south compared to the north, but these magnitudes are approximately 10% of the total field in the polar regions, indicating that substantial density anomalies exist below 50 km depth. Modeling the crustal anomalies in the top 50 km by density contrasts at various depths suggest the rms magnitudes can be explained by small local variations in porosity, or possibly the presence of H2O at concentrations of a few percent. The required concentration increases with depth for a given volume but the possibility that the source of the polar anomalies includes small concentrations of H2O in the crust, however, cannot be ruled out.

  18. Longwavelength gravity anomalies and the deep thermal structure of the Baikal rift

    SciTech Connect

    Diament, M. ); Kogan, M.G. )

    1990-10-01

    The analysis of the gravity field over the Baikal rift area has been carried out in order: (1) to detect the amount of the deep hot material, and (2) to constrain the flexural rigidity of the lithosphere. The authors removed a few first harmonics of the global field and the gravity effects due to the crust from the observed field and found a residual anomaly which is aligned with the rift. This residual, which they attribute to the mantle, shows a minimum of about 15 mgal in amplitude and 900 km width, which is superimposed over a wider minimum with smaller amplitude. A model involving a simple stretching of the lithosphere with diffusion of heat predicts the right order of magnitude for both the amplitude and the wavelength of the 900-km anomaly. Results confirm that the stretching factor is of the order of 1.2 to 1.5. Interpretation of the coherence function computed between gravity and topography shows that the lithosphere in the area has a significant equivalent elastic thickness of about 30 km (i.e. flexural rigidity about 2.3 10{sup 23} N.m.).

  19. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies

    NASA Astrophysics Data System (ADS)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2015-03-01

    , the intrusion concentrates bending primarily at the periphery, resulting in a flat, tabular intrusion. We predict that this process will result in concentric fractures over the region of greatest bending. This location is close to the crater wall in large, flat-floored craters, as observed in the crater Humboldt, and interior to the crater over the domed floor in smaller craters, as observed in the crater Vitello. A variety of volcanic features are predicted to be associated with the solidification and degassing of the intrusion; these include: (1) surface lava flows associated with concentric fractures (e.g., in the crater Humboldt); (2) vents with no associated pyroclastic material, from the deflation of under-pressurized magmatic foam (e.g., the crater Damoiseau); and (3) vents with associated pyroclastic deposits from vulcanian eruptions of highly pressurized magmatic foam (e.g., the crater Alphonsus). The intrusion of basaltic magma beneath the crater is predicted to contribute a positive component to the Bouguer gravity anomaly; we assess the predicted Bouguer anomalies associated with FFCs and outline a process for their future interpretation. We conclude that our proposed mechanism serves as a viable formation process for FFCs and accurately predicts numerous morphologic, morphometric, and geophysical features associated with FFCs. These predictions can be further tested using GRAIL (Gravity Recovery and Interior Laboratory) data.

  20. Gravity survey in the San Luis Valley area, Colorado

    USGS Publications Warehouse

    Gaca, J. Robert; Karig, Daniel E.

    1965-01-01

    During the summers of 1963 and 1964, a regional gravity survey covering 6,000 square miles of the San Luis Valley and surrounding areas was made to determine subsurface basement configurations and to guide future crustal studies. The San Luis Valley, a large intermontane basin, is a segment of the Rio Grande trough, a reef system characterized by volcanism, normal faulting, and tilted fault blocks. The gravity data, accurate to about 0.5 mgal, were reduced to complete-Bouguer anomaly values. The Bouguer-anomaly gravity map delineates a series of en-echelon gravity highs in the central and western San Luis Valley. These gravity highs are interpreted as horsts of Precambrian rock buried by basin fill. A series of en-echelon gravity lows along the eastern edge of the Valley is interpreted as a graben filled with sedimentary and igneous rock estimated to be up to 30,000 ft thick. The relatively high regional gravity over the Sangre de Cristo Mountains suggests that these mountains are locally uncompensated. A subcircular gravity low in the Bonanza area is interpreted as an indication of low-density volcanic rocks within a caldera structure.

  1. f(R) gravity: From the Pioneer anomaly to cosmic acceleration

    SciTech Connect

    Saffari, Reza; Rahvar, Sohrab

    2008-05-15

    We use metric formalism in f(R) modified gravity to study the dynamics of various systems from the solar system to the cosmological scale. We assume an ansatz for the derivative of action as a function of distance and describe the Pioneer anomaly and the flat rotation curve of the spiral galaxies. Having the asymptotic behavior of action, we propose the action of f(R)=(R+{lambda})(1+ln(R/R{sub c})/(R/R{sub 0}+2/{alpha})) where in galactic and solar system scales it can recover our desired form. The vacuum solution of this action also results in a positive late time acceleration for the Universe. We fix the parameters of this model, comparing with the Pioneer anomaly, rotation curve of spiral galaxies, and supernova type Ia gold sample data.

  2. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high‐temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG‐5 gravimeter and a LaCoste and Romberg (L&R) Model‐G gravimeter. The CG‐5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill‐hole intercept values. Preliminary Interpretation of Results: The Carson Sink

  3. The gravity signature of mantle uplift from impact modeling craters on the Moon

    NASA Astrophysics Data System (ADS)

    Milbury, Colleen; Johnson, Brandon C.; Melosh, H. Jay; Collins, Gareth S.; Blair, David M.; Soderblom, Jason M.; Zuber, Maria T.

    2014-11-01

    NASA’s dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have globally mapped the lunar gravity field at unprecedented resolution; this has enabled the study of lunar impact craters of all sizes and ages. Soderblom et al. [2014, LPSC abstract #1777] calculated the residual Bouguer anomalies for ~2700 craters 27-184 km in diameter (D). They found that the residual central Bouguer anomaly of craters smaller than 100 km is essentially zero, that there is a transition for 100-150 km, and that craters larger than 184 km have a positive residual Bouguer anomaly that increases with increasing crater size. We use the iSALE shock physics hydrocode to model crater formation, including the effects of porosity and dilatancy (shear bulking). We use strength parameters of gabbroic anorthosite for a 35-km-thick crust, and dunite for the mantle. Our dunite impactors range in size from 6-30 km, which produce craters 86-450 km in diameter. We calculate the Bouguer gravity anomaly due solely to mantle uplift. We eliminate the effects of pressure and temperature on density by setting the output densities from the simulations to 2550 kg/m^3 if they are below the cutoff value of 3000 kg/m^3, and 3220 kg/m^3 if they are above. We compare our modeling results to gravity data from GRAIL. We find that the crater size at which mantle uplift dominates the crater gravity occurs at a crater diameter that is close to the complex crater to peak-ring basin transition. This is in agreement with the observed trend reported by Soderblom et al. [2014, LPSC abstract #1777].

  4. Application of 3D variation-density interface inversion of gravity anomalies in South China Sea

    NASA Astrophysics Data System (ADS)

    LI, S.; Meng, X.; HU, Y.; Zhang, S.

    2016-12-01

    The South China Sea (SCS) is a marginal basin with extremely complicated crustal structure and whose evolutional history is associated with continental rifting and seafloor spreading. The gravity data are among the most important data sets for studying deep crustal structures and the tectonic evolution. Density interface inversion by gravity anomalies can effectively estimate the depth of Moho interface. However, the Moho interface inversion in SCS are facing challenges due to the density contract of crust-mantle vary in three dimensions, which are associated with the complicated crustal structure (co-existing oceanic crust, continental crust and transitional crust). The regular inversion methods always assume the density contract on both sides of the interface would be constant, which is quite unrealistic since actual strata densities vary both vertically and laterally. To meet the challenges of 3D variation of density in SCS, we present an improved 3D variation-density interface inversion of gravity anomalies based on Parker-Oldenburg method. We first construct two variation density models with exponential density-depth relationships, which expressed the variation of stratum density depending on the depth in oceanic and continental crust respectively. Meanwhile, to minimize multiple solutions for potential field inversion, we collect deep seismic sounding data and employ the gravity inversion by joint using seismic data to be constraint for depth of Moho. Finally, we have estimated the depth of Moho interface which infers the tectonic significance in SCS. The inversion results agree well with seismic data in SCS show this approach is more effective and precise to quantitative estimate the depth of interface.

  5. Modeling of shallow structures in the Cappadocia region using gravity and aeromagnetic anomalies

    NASA Astrophysics Data System (ADS)

    Kosaroglu, Sinan; Buyuksarac, Aydin; Aydemir, Attila

    2016-07-01

    In this study, shallow structures and bodies creating gravity and magnetic anomalies in the Cappadocia Volcanic Complex region in central Anatolia were investigated in order to determine the tectonic origin and structural setting of young volcanic units. The shallow geological structures in the region are depressions filled with mainly low-density, loose volcano-clastics and ignimbrite sheets associated with the continental Neogene deposits. These units together with other volcanic products are originated from the large Neogene and Quaternary volcanoes of the central Anatolia, particularly in the Cappadocia region. At first, spectral analysis to obtain the cut-off frequencies for the high-pass filter was performed in this investigation. Then, gravity and magnetic data were high-pass filtered to remove the deep and regional effects on anomalies and to unveil only shallow structures' effects. Subsequently, upward and downward continuations were carried out to determine how these shallow structures influence the total anomalies and their contribution in the confining total potential field. In addition, three and two dimensional gravity models (3D and 2D) of the study area were also constructed to obtain the bottom depth of shallow bodies. According to spectral analysis results, shallow structures could be separated into two groups from the power spectrums and bottom depth of deeper structure was commonly determined about 2 km in gravity and magnetic spectrum, both. More shallow structure is at the depth around 0.317 km according to the gravity power spectrum. Obviously, 3D and 2D models are consistent with the spectral analysis results for the deeper unit depth. A circular, large depression (70 × 50 km2) surrounds Mount Melendiz with a 1-2.7 km depth range (2 km in average). Because the depressions around the central volcanoes of Mount Melendiz and Mount Hasan cover very large areas in the basin scale, the shallow and low-density volcanic units can hardly be claimed

  6. Genesis of the largest Amazonian wetland in northern Brazil inferred by morphology and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Rossetti, Dilce de Fátima; Cassola Molina, Eder; Cremon, Édipo Henrique

    2016-08-01

    The Pantanal Setentrional (PS) is the second largest wetland in Brazil, occurring in a region of northern Amazonia previously regarded as part of the intracratonic Solimões Basin. However, while Paleozoic to Neogene strata are recorded in this basin, the PS constitutes a broad region with an expressive record of only Late Pleistocene and Holocene deposits. The hypothesis investigated in the present work is if these younger deposits were formed within a sedimentary basin having a geological history separated from the Solimões Basin. Due to the location in a remote region of low accessibility, the sedimentary fill of the PS wetland remains largely unknown in subsurface. In the present work, we combine geomorphological and gravity data acquired on a global basis by several satellite gravity missions to approach the geological context of this region. The results revealed a wetland characterized in surface by a low-lying terrain with wedge shape and concave-up geometry that is in sharp contact with highland areas of Precambrian rocks of the Guiana Shield. Such contact is defined by a series of mainly NE- or NW-trending straight lineaments that eventually extend into both the Guiana Shield and the PS wetland. Also of relevance is that a great part of the PS wetland sedimentary cover consists of dominantly sandy deposits preserved as residual paleo-landforms with triangular shapes previously related to megafan depositional systems. These are distributed radially at the northern margin of the PS, with axis toward basement rocks and fringes toward the wetland's center, the latter containing the largest megafan landform. The analysis of gravity anomaly data revealed a main NNE-trending chain ∼500 km in length defined by high gravity values (i.e., up to 60 mGal); these are bounded by negative anomalies as low as -90 mGal. The chain with positive gravity anomaly marks the center of a subsiding area having a geological evolution that differs from the adjacent intracratonic

  7. Sedimentary basin analysis using airborne gravity data: a case study from the Bohai Bay Basin, China

    NASA Astrophysics Data System (ADS)

    Li, Wenyong; Liu, Yanxu; Zhou, Jianxin; Zhou, Xihua; Li, Bing

    2016-11-01

    In this paper, we discuss the application of an airborne gravity survey to sedimentary basin analysis. Using high-precision airborne gravity data constrained by drilling and seismic data from the Bohai Bay Basin in eastern China, we interpreted faults, structural elements, sedimentary thickness, structural styles and local structures (belts) in the central area of the Basin by the wavelet transform method. Subsequently, these data were subtracted from the Bouguer gravity to calculate the residual gravity anomalies. On this basis, the faults were interpreted mainly by linear zones of high gravity gradients and contour distortion, while the sedimentary thicknesses were computed by the Euler deconvolution. The structural styles were identified by the combination of gravity anomalies and the local structures interpreted by the first vertical derivative of the residual gravity. The results showed evidence for seven faults, one sag and ten new local structure belts.

  8. Pre-impact crustal porosity and its effect on the gravity signature of lunar craters

    NASA Astrophysics Data System (ADS)

    Milbury, Colleen; Johnson, Brandon C.; Melosh, H. Jay; Collins, Gareth C.; Blair, David M.; Soderblom, Jason M.; Zuber, Maria T.

    2015-04-01

    NASA's dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft have globally mapped the lunar gravity field at unprecedented resolution. Soderblom et al. [2015] made a comprehensive analysis of the residual and central uplift Bouguer gravity anomalies associated with more than 5200 lunar craters. There were two main observations that are related to the work presented here: 1) craters less than ~150 km in diameter (D) have a residual Bouguer anomaly (BA) that is near zero on average (although a negative trend is observed), but have both positive and negative anomalies that vary by approximately ±25 mGal about the mean, and, 2) there is a transition at which the central uplift BA becomes positive and increases with D. Craters that are located in the maria and South Pole-Aitken (SPA) basin were excluded from the analysis because they tend to have more negative signatures than highlands craters. These gravitational signatures contrast with the invariably negative gravity anomalies associated with terrestrial craters. In this study, we investigate pre-impact porosity by modeling crater formation using the iSALE hydrocode, including a new approach to include dilatancy, to determine their effects on the gravity signature of craters. We calculated the BA for the simulations, but due to mantle uplift alone. We find that the magnitude of the BA increases with increasing porosity, and that variable initial porosity of the lunar crust can explain why craters on the Moon exhibit both positive and negative Bouguer anomalies. This can also explain the observed negative residual BA associated with craters formed in the lunar maria and SPA (and associated melt sheet) because they are typically less porous than the highlands crust. Gravity anomalies due to mantle uplift reproduce the observed transition from zero to a positive central uplift BA, which coincides with the morphological transition from complex craters to peak-ring basins.

  9. Anomalies

    SciTech Connect

    Bardeen, W.A.

    1985-08-01

    Anomalies have a diverse impact on many aspects of physical phenomena. The role of anomalies in determining physical structure from the amplitude for decay to the foundations of superstring theory will be reviewed. 36 refs.

  10. Anomalies.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  11. Anomalies.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  12. Disturbance vector in space from surface gravity anomalies using complementary models

    NASA Astrophysics Data System (ADS)

    Cruz, J. Y.

    1985-08-01

    The modeling of the external disturbance vector of the Earth from surface gravity anomaly data is discussed. The low frequency features of the signal are represented in spherical harmonic series. The recovery of the coefficients of the series from the given gravity anomalies is discussed focusing on the use of analytical continuation and ellipsoidal corrections to account for the Earth's topography and ellipticity. The spectrum and data response of the spatial disturbance vector are studied to aid the design of models and experiments. The local models studied to complement the globally valid spherical harmonic model are the residual topographic model (RTM); the classical integral model; three versions of the Dirac approach to collocation; and two versions of the least squares collocation (l.s.c.) approach. Results indicate that the RTM itself should be used to model the high frequency signal variations whenever detailed (e.g., 1km x 1km) height data is available. The residual signal not already modeled by the RTM and spherical harmonic model can in most cases be accurately modeled by the integral model with meantopography accounted for. For high accuracies in mountainous areas, however, a collocation model should be used to account for the full variations of the topography, not just mean topography. Matrix conditioning problems with the l.s.c. approach support preference to the Dirac systems for rigorous treatment of the topography at detailed (5' x 5') resolutions.

  13. The Gravity Anomaly of a 2D Polygonal Body Having Density Contrast Given by Polynomial Functions

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.

    2015-05-01

    An analytical solution is presented for the gravity anomaly produced by a 2D body whose geometrical shape is arbitrary and where the density contrast is a polynomial function in both the horizontal and vertical directions. Approximating the real shape of the body by a polygon, the solution is expressed as sum of algebraic quantities that depend only upon the coordinates of the vertices of the polygon and upon the polynomial density function. The solution presented in the paper, which refers to a third-order polynomial function as a maximum, exhibits an intrinsic symmetry that naturally suggests its extension to the case of higher-order polynomials describing the density contrast. Furthermore, the gravity anomaly is evaluated at an arbitrary point that does not necessarily coincide with the origin of the reference frame in which the density function is assigned. Invoking recent results of potential theory, the solution derived in the paper is shown to be singularity-free and numerically robust. The accuracy and effectiveness of the proposed approach is witnessed by the numerical comparisons with examples derived from the existing literature.

  14. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun; Sandwell, David T.; Jin, Taoyong; Li, Dawei

    2017-02-01

    The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1‧ × 1‧) over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1‧ × 1‧ marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8- 3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth.

  15. Long wavelength gravity anomalies over India: Crustal and lithospheric structures and its flexure

    NASA Astrophysics Data System (ADS)

    Tiwari, V. M.; Ravi Kumar, M.; Mishra, D. C.

    2013-07-01

    Long wavelength gravity anomalies over India were obtained from terrestrial gravity data through two independent methods: (i) wavelength filtering and (ii) removing crustal effects. The gravity fields due to the lithospheric mantle obtained from two methods were quite comparable. The long wavelength gravity anomalies were interpreted in terms of variations in the depth of the lithosphere-asthenosphere boundary (LAB) and the Moho with appropriate densities, that are constrained from seismic results at certain points. Modeling of the long wavelength gravity anomaly along a N-S profile (77°E) suggest that the thickness of the lithosphere for a density contrast of 0.05 g/cm3 with the asthenosphere is maximum of ˜190 km along the Himalayan front that reduces to ˜155 km under the southern part of the Ganga and the Vindhyan basins increasing to ˜175 km south of the Satpura Mobile belt, reducing to ˜155-140 km under the Eastern Dharwar craton (EDC) and from there consistently decreasing south wards to ˜120 km under the southernmost part of India, known as Southern Granulite Terrain (SGT). The crustal model clearly shows three distinct terrains of different bulk densities, and thicknesses, north of the SMB under the Ganga and the Vindhyan basins, and south of it the Eastern Dharwar Craton (EDC) and the Southern Granulite Terrain (SGT) of bulk densities 2.87, 2.90 and 2.96 g/cm3, respectively. It is confirmed from the exposed rock types as the SGT is composed of high bulk density lower crustal rocks and mafic/ultramafic intrusives while the EDC represent typical granite/gneisses rocks and the basement under the Vindhyan and Ganga basins towards the north are composed of Bundelkhand granite massif of the lower density. The crustal thickness along this profile varies from ˜37-38 km under the EDC, increasing to ˜40-45 km under the SGT and ˜40-42 km under the northern part of the Ganga basin with a bulge up to ˜36 km under its southern part. Reduced lithospheric and

  16. Interpretation of gravity and magnetic anomalies at Lake Rotomahana: Geological and hydrothermal implications

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Scott, B. J.; Soengkono, S.; Stagpoole, V.; Timm, C.; Tivey, M.

    2016-03-01

    We investigate the geological and hydrothermal setting at Lake Rotomahana, using recently collected potential-field data, integrated with pre-existing regional gravity and aeromagnetic compilations. The lake is located on the southwest margin of the Okataina Volcanic Center (Haroharo caldera) and had well-known, pre-1886 Tarawera eruption hydrothermal manifestations (the famous Pink and White Terraces). Its present physiography was set by the caldera collapse during the 1886 eruption, together with the appearance of surface activities at the Waimangu Valley. Gravity models suggest that subsidence associated with the Haroharo caldera is wider than the previously mapped extent of the caldera margins. Magnetic anomalies closely correlate with heat-flux data and surface hydrothermal manifestations and indicate that the west and northwestern shore of Lake Rotomahana are characterized by a large, well-developed hydrothermal field. The field extends beyond the lake area with deep connections to the Waimangu area to the south. On the south, the contact between hydrothermally demagnetized and magnetized rocks strikes along a structural lineament with high heat-flux and bubble plumes which suggest hydrothermal activity occurring west of Patiti Island. The absence of a well-defined demagnetization anomaly at this location suggests a very young age for the underlying geothermal system which was likely generated by the 1886 Tarawera eruption. Locally confined intense magnetic anomalies on the north shore of Lake Rotomahana are interpreted as basalt dikes with high magnetization. Some appear to have been emplaced before the 1886 Tarawera eruption. A dike located in proximity of the southwest lake shore may be related to the structural lineament controlling the development of the Patiti geothermal system, and could have been originated from the 1886 Tarawera eruption.

  17. Principal facts for gravity stations in the Elko, Steptoe Valley, Coyote Spring Valley, and Sheep Range areas, eastern and southern Nevada

    USGS Publications Warehouse

    Berger, D.L.; Schaefer, D.H.; Frick, E.A.

    1990-01-01

    Principal facts for 537 gravity stations in the carbonate-rock province of eastern and southern Nevada are tabulated and presented. The gravity data were collected in support of groundwater studies in several valleys. The study areas include the Elko area, northern Steptoe Valley, Coyote Spring Valley, and the western Sheep Range area. The data for each site include values for latitude, longitude, altitude, observed gravity, free- air anomaly, terrain correction, and Bouguer anomaly (calculated at a bedrock density of 2.67 g/cu cm. (USGS)

  18. Seismic and gravity anomaly evidence of large-scale compressional deformation off SW Portugal

    NASA Astrophysics Data System (ADS)

    Cunha, T. A.; Watts, A. B.; Pinheiro, L. M.; Myklebust, R.

    2010-04-01

    Multi-channel seismic and gravity anomaly data have been used to determine the extent of compressional deformation along the SW Portugal rifted continental margin and place constraints on the long-term (> 1 M.a.) strength of the lithosphere. The seismic sections suggest that the region of compressional deformation is broad (˜ 100 km) and has been active since the Miocene. Integration with recently compiled high-resolution bathymetric data shows that the main thrust front is located along the base of the continental slope, between north of the Gorringe Bank and the Setúbal Canyon. Gravity data show that the thrust front is associated with a narrow isostatic anomaly 'high' of up to 70 mGal that is flanked on its NW edge by a broad 'low' of up to 20 mGal. This high-low 'couple' can be explained by compressional loading of extended continental lithosphere that increased its flexural strength (or equivalent elastic thickness, Te) since rifting. Based on combined 2-D backstripping and gravity modelling techniques we estimate a Te of ˜ 10 km during the main stretching episode, in the Late Jurassic (maybe earliest Cretaceous?), and of 35-50 km during the Miocene to Recent compression. The existence of a broad region of deformation off SW Portugal together with a strong lithosphere have implications for the rupture models of large earthquakes in the region, such as the 1755 Great Lisbon earthquake, particularly when accounting for a complex, multiple rupture in faults which cut through lithosphere of distinct nature and origin, as appears to be required by modellers to explain the historical observational data.

  19. 3D free-air gravity anomaly modeling for the Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Girolami, Chiara; Heyde, Ingo; Rinaldo Barchi, Massimiliano; Pauselli, Cristina

    2016-04-01

    In this study we analyzed the free-air gravity anomalies measured on the northwestern part of the Southeast Indian Ridge (hereafter SEIR) during the BGR cruise INDEX2012 with RV FUGRO GAUSS. The survey area covered the ridge from the Rodriguez Triple Junction along about 500 km towards the SSE direction. Gravity and magnetic data were measured along 65 profiles with a mean length of 60 km running approximately perpendicular to the ridge axis. The final gravity data were evaluated every 20 seconds along each profile. This results in a sampling interval of about 100 m. The mean spacing of the profiles is about 7 km. Together with the geophysical data also the bathymetry was measured along all profiles with a Kongsberg Simrad EM122 multibeam echosounder system. Previous studies reveal that the part of the ridge covered by the high resolution profiles is characterized by young geologic events (the oldest one dates back to 1 Ma) and that the SEIR is an intermediate spreading ridge. We extended the length of each profile to the area outside the ridge, integrating INDEX2012 high resolution gravity and bathymetric data with low resolution data derived from satellite radar altimeter measurements. The 3D forward gravity modeling made it possible to reconstruct a rough crustal density model for an extended area (about 250000 km2) of the SEIR. We analyzed the gravity signal along those 2D sections which cross particular geological features (uplifted areas, accommodation zones, hydrothermal fields and areas with hints for extensional processes e.g. OCCs) in order to establish a correlation between the gravity anomaly signal and the surface geology. We started with a simple "layer-cake" geologic model consisting of four density bodies which represent the sea, upper oceanic crust, lower oceanic crust and the upper mantle. Considering that in the study area the oceanic crust is young, we did not include the sediment layer. We assumed the density values of these bodies considering

  20. Bayesian signal processing techniques for the detection of highly localised gravity anomalies using quantum interferometry technology

    NASA Astrophysics Data System (ADS)

    Brown, Gareth; Ridley, Kevin; Rodgers, Anthony; de Villiers, Geoffrey

    2016-10-01

    Recent advances in the field of quantum technology offer the exciting possibility of gravimeters and gravity gradiometers capable of performing rapid surveys with unprecedented precision and accuracy. Measurements with sub nano-g (a billionth of the acceleration due to gravity) precision should enable the resolution of underground structures on metre length scales. However, deducing the exact dimensions of the structure producing the measured gravity anomaly is known to be an ill-posed inversion problem. Furthermore, the measurement process will be affected by multiple sources of uncertainty that increase the range of plausible solutions that fit the measured data. Bayesian inference is the natural framework for accommodating these uncertainties and providing a fully probabilistic assessment of possible structures producing inhomogeneities in the gravitational field. Previous work introduced the probability of excavation map as a means to convert the high-dimensional space belonging to the posterior distribution to an easily interpretable map. We now report on the development of the inference model to account for spatial correlations in the gravitational field induced by variations in soil density.

  1. Principal facts for gravity stations for the Central Arizona Project

    USGS Publications Warehouse

    Peterson, Donald L.

    1972-01-01

    Observed gravity values, station locations, terrain corrections, and Bouguer gravity data are provided in tabular form for approximately 2460 gravity observations in south-central Arizona. "These data were used in preparation of -- Peterson, Donald L., 1968, Bouguer gravity map of parts of Maricopa, Pima, Pinal, and Yuma Counties, Arizona: U.S. Geol. Survey Geonhvs. Inv. Map GP-615.

  2. Venus - Global gravity and topography

    NASA Astrophysics Data System (ADS)

    McNamee, J. B.; Borderies, N. J.; Sjogren, W. L.

    1993-05-01

    A new gravity field determination that has been produced combines both the Pioneer Venus Orbiter (PVO) and the Magellan Doppler radio data. Comparisons between this estimate, a spherical harmonic model of degree and order 21, and previous models show that significant improvements have been made. Results are displayed as gravity contours overlaying a topographic map. We also calculate a new spherical harmonic model of topography based on Magellan altimetry, with PVO altimetry included where gaps exist in the Magellan data. This model is also of degree and order 21, so in conjunction with the gravity model, Bouguer and isostatic anomaly maps can be produced. These results are very consistent with previous results, but reveal more spatial resolution in the higher latitudes.

  3. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches

    NASA Astrophysics Data System (ADS)

    Hunter, J.; Watts, A. B.

    2016-10-01

    We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, Te, of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that Te can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modelling based on a uniform Te elastic plate suggests that Te increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10 °C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that Te landward of the outer rise is generally 40-65 per cent less than the Te seaward of the outer rise. Both landward and seaward Te increases with age of the lithosphere and are given by the depth to the 342-349 °C and 671-714 °C oceanic isotherm, respectively. A dependence of Te on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed Te to the predicted Te based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze, Evans & Goetze, Raterron et al. and Mei et al. all provide quite a good fit to the observed Te at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally too strong to

  4. Implications of new gravity data for Baikal Rift zone structure

    NASA Technical Reports Server (NTRS)

    Ruppel, C.; Kogan, M. G.; Mcnutt, M. K.

    1993-01-01

    Newly available, 2D Bouguer gravity anomaly data from the Baikal Rift zone, Siberia, indicate that this discrete, intracontinental rift system is regionally compensated by an elastic plate about 50 km thick. However, spectral and spatial domain analyses and isostatic anomaly calculations show that simple elastic plate theory does not offer an adequate explanation for compensation in the rift zone, probably because of significant lateral variations in plate strength and the presence of subsurface loads. Our results and other geophysical observations support the interpretation that the Baikal Rift zone is colder than either the East African or Rio Grande rift.

  5. Implications of new gravity data for Baikal Rift zone structure

    NASA Technical Reports Server (NTRS)

    Ruppel, C.; Kogan, M. G.; Mcnutt, M. K.

    1993-01-01

    Newly available, 2D Bouguer gravity anomaly data from the Baikal Rift zone, Siberia, indicate that this discrete, intracontinental rift system is regionally compensated by an elastic plate about 50 km thick. However, spectral and spatial domain analyses and isostatic anomaly calculations show that simple elastic plate theory does not offer an adequate explanation for compensation in the rift zone, probably because of significant lateral variations in plate strength and the presence of subsurface loads. Our results and other geophysical observations support the interpretation that the Baikal Rift zone is colder than either the East African or Rio Grande rift.

  6. Preimpact porosity controls the gravity signature of lunar craters

    NASA Astrophysics Data System (ADS)

    Milbury, C.; Johnson, B. C.; Melosh, H. J.; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Nimmo, F.; Bierson, C. J.; Phillips, R. J.; Zuber, M. T.

    2015-11-01

    We model the formation of lunar complex craters and investigate the effect of preimpact porosity on their gravity signatures. We find that while preimpact target porosities less than ~7% produce negative residual Bouguer anomalies (BAs), porosities greater than ~7% produce positive anomalies whose magnitude is greater for impacted surfaces with higher initial porosity. Negative anomalies result from pore space creation due to fracturing and dilatant bulking, and positive anomalies result from destruction of pore space due to shock wave compression. The central BA of craters larger than ~215 km in diameter, however, are invariably positive because of an underlying central mantle uplift. We conclude that the striking differences between the gravity signatures of craters on the Earth and Moon are the result of the higher average porosity and variable porosity of the lunar crust.

  7. Spectral analysis of GEOS-3 altimeter data and frequency domain collocation. [to estimate gravity anomalies

    NASA Technical Reports Server (NTRS)

    Eren, K.

    1980-01-01

    The mathematical background in spectral analysis as applied to geodetic applications is summarized. The resolution (cut-off frequency) of the GEOS 3 altimeter data is examined by determining the shortest wavelength (corresponding to the cut-off frequency) recoverable. The data from some 18 profiles are used. The total power (variance) in the sea surface topography with respect to the reference ellipsoid as well as with respect to the GEM-9 surface is computed. A fast inversion algorithm for matrices of simple and block Toeplitz matrices and its application to least squares collocation is explained. This algorithm yields a considerable gain in computer time and storage in comparison with conventional least squares collocation. Frequency domain least squares collocation techniques are also introduced and applied to estimating gravity anomalies from GEOS 3 altimeter data. These techniques substantially reduce the computer time and requirements in storage associated with the conventional least squares collocation. Numerical examples given demonstrate the efficiency and speed of these techniques.

  8. Flexure and gravity anomalies of the oceanic lithosphere beneath the Louisville seamount

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-08-01

    We have calculated the elastic thickness (Te), flexural deflection, and gravity anomaly of the oceanic crust beneath the Louisville seamount (LSC-03), near the Kermadec trench. A regional-residual separation of the bathymetry was performed to remove the effect of other geologic features (e.g., the trench). We used the uniform density and dense core models to approximate the total mass of the seamount, which was defined as the surface load required for flexural deformation. From the flexure modeling results, we found that more flexural depression was predicted by the uniform density model than by the dense core model. However, the uniform density model predicted a significantly smaller gravity anomaly than observed, whereas the dense core model minimized the prediction misfits reasonably. The best flexure model was found with a Te of 16 km for the uniform density model and 6 km for the dense core model. The flexure computed with the dense core model was consistent with the seismically detected Moho. The flexure modeling for LSC-03, thus, indicates that the dense core model better approximates the inner structure of the LSC-03. Based on the crustal age and geochronology of the given seamount, the age of the oceanic crust at the time of seamount formation (Δt) is 20 Ma. If this is the case, however, the Te estimates from both flexure models require some degree of lithospheric reheating by Louisville hotspot activity. Alternatively, considering the tectonic plate motion of the Osbourn Trough, Δt becomes approximately 4 Ma. This younger lithosphere model is more consistent with the observed flexural deformation and the Te estimate from the dense core model. Therefore, the time that the seamount-induced lithospheric deformation occurred may be far earlier than the age-dated volcanism.

  9. Implications of the Utopia Gravity Anomaly for the Resurfacing of the Northern Plains of Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.

    2004-01-01

    Whereas the surface units of the northern plain of Mars generally exhibit ages ranging from late Hesperian to Amazonian, interpretation of precise topographic measurements indicate that the age of the underlying "basement" is early Noachian, or almost as old as the southern highlands. This suggests that widespread but relatively superficial resurfacing has occurred throughout the northern plains since the end of early heavy bombardment. In this abstract I examine some of the possible implications of the subsurface structure inferred for the Utopia basin from gravity data on the nature of this resurfacing. The large, shallow, circular depression in Utopia Planitia has been identified as a huge impact basin, based on both geological evidence and detailed analysis of MOLA topography. Its diameter (approx. 3000 km) is equivalent to that of the Hellas basin, as is its inferred age (early Noachian). However, whereas Hellas is extremely deep with rough terrain and large slopes, the Utopia basin is a smooth, shallow, almost imperceptible bowl. Conversely, Utopia displays one of the largest (non-Tharsis-related) positive geoid anomalies on Mars, in contrast to a much more subdued negative anomaly over Hellas.

  10. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***

    NASA Astrophysics Data System (ADS)

    Megías, Eugenio; Pena-Benitez, Francisco

    2014-03-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.

  11. The mineralogy of global magnetic anomalies. [rock magnetic signatures and MAGSAT geological, and gravity correlations in West Africa

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E. (Principal Investigator)

    1982-01-01

    Problems with the Curie balance, which severely hindered the acquisition of data, were rectified. Chemical analytical activities are proceeding satisfactorily. The magnetization characteristics of metamorphic suites were analyzed and susceptibility data for a wide range of metamorphic and igneous rocks. These rock magnetic signatures are discussed as well as the relationships between geology, gravity and MAGSAT anomalies of West Africa.

  12. Spatial variability of tidal gravity anomalies and its correlation with the effective elastic thickness of the lithosphere

    NASA Astrophysics Data System (ADS)

    Shukowsky, Wladimir; Mantovani, Marta S. M.

    1999-07-01

    Associations of the Earth tidal gravity response to physical properties of the lithosphere have been attempted at least for the last four decades. Although experimental data suggest this association, rigorous models have not yet been proposed. In this work, statistical tests are performed on the available World Gravity Earth Tides data set. Autocorrelation analysis shows that the M2 tidal gravity anomalies (TGAs) are significantly correlated up to a distance of about 500 km, with an approximately exponential correlation decay. The analysis of the latitudinal dependence of the anomalies shows that the anomaly variance, estimated inside of different latitude bands, follows a cos 4ϕ curve within the ±45° latitude interval and defines the noise level for the M2 gravity anomaly data set. The regression analysis between M2 TGA and the lithosphere effective elastic thickness (EET) estimates shows that these quantities are significantly correlated, with a correlation coefficient of -0.82. The wide range of TGA and EET values, combined with a good global distribution of the data used in the regression analysis, makes the regression equation suitable to be used as a predictor for EET values in areas where M2 TGA data exist and meet the required quality criteria.

  13. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-09-01

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes.

  14. Modelling the gravity and magnetic field anomalies of the Chicxulub crater

    NASA Technical Reports Server (NTRS)

    Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.

    1993-01-01

    The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.

  15. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies.

    PubMed

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-09-21

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen's segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal &India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes.

  16. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies

    PubMed Central

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-01-01

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes. PMID:27649782

  17. Modelling the gravity and magnetic field anomalies of the Chicxulub crater

    NASA Technical Reports Server (NTRS)

    Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.

    1993-01-01

    The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.

  18. Detailed Gravity and Magnetic Survey of the Taylorsville Triassic Basin

    SciTech Connect

    Ali A. Nowroozi; John Leftwich

    1997-12-31

    Our research to date has involved the Interpretation of the Bouguer Gravity Anomaly Associated with the Richmond and Taylorsville Triassic Basins and its Vicinity. Continental rift basins around the world contain about 5% of the earth's sedimentary layers and produce about 20% of the total hydrocarbon production of the world (Ziegler (1983). Nearly 30 large basins of this type are reported by Manspeizer and Cousminer (1988) in eastern North America and northwestern Africa. There are eleven exposed basins of this type in the state of Virginia, from which nine are totally and two partially within the state's border. The number of unexposed basin's is not known. Exploration and drilling have been hampered largely because surface data are insufficient for even evaluation of those basins which are partly or completely exposed in the Piedmont Province. Generation of data through random exploratory drilling and seismic exploration is much too expensive and, therefore, these methods have not been widely used. In order to remedy this situation, we have used a geophysical method and completed a detailed and dense ground gravity surveys of the Richmond (Nowroozi and Wong, 1989, Daniels and Nowroozi, 1987). In this work we report our progress on collecting existing gravity data in a rectangular area covering the Richmond and Taylorsville Basins and its vicinity. The area covers one degree latitude and one degree longitude, starting at 37 North, 77 West and ending at 38 North, 78 West. Dr. David Daniels of the United State Geological Survey supplied us with more than 4900 Bouguer gravity anomalies in this area. The purpose of this progress report is to present the data in form of several maps and discuss its relation to the geology of the Triassic Basins and its vicinity. Johnson and others (1985) also presented a map of the Bouguer gravity anomaly of this area. However, their map covers a smaller area, and it is based on smaller number of observations.

  19. Induced gravity anomalies and seismic energy as a basis for prediction of mining tremors

    NASA Astrophysics Data System (ADS)

    Fajklewicz, Zbigniew; Jakiel, Krzysztof

    1989-09-01

    The results of prediction of occurrence of mining tremors and bursts in the course of the exploitation of the remaining part of the hard coal in seam 510 of the mine “Pstrowski”, Upper Silesia, have been presented in the paper. The exploitation has taken place under extremely difficult conditions hazardous for the mining crew. To predict the occurrence of mining tremors, bursts and direction of migration of increased elastic strain in the rock mass, the microgravity method has been applied. The microgravity observations were carried out in the measurement points located at mutual distances equal 20 m in three profiles of the lengths 700 m, 760 m and 260 m respectively. The profiles were located in mining workings in the vicinity of the exploited part of the bed. In the course of exploitation, lasting 25 months, 29 series of measurements including 3600 individual microgravity observations were carried out. Microgravity observations were made with a Worden-Master gravimeter. The observed time changes of gravity microanomalies were essential for prediction. Local negative changes of gravity microanomalies signalled the approaching mining tremor. The tremor would cover an area of the radius 60 m to 100 m. The regional time changes of the gravity microanomalies appearing as linear trends of these anomalies signalled the development of the fields of elastic strain in the whole investigated area and the approaching violent release of elastic strain energy from the rock mass. The values of the amplitudes AMP of the above-mentioned trend were the measure of this hazard. In the course of the investigations each shock was preceded by considerably increased values of AMP.

  20. A FORTRAN program to implement the method of finite elements to compute regional and residual anomalies from gravity data

    NASA Astrophysics Data System (ADS)

    Agarwal, B. N. P.; Srivastava, Shalivahan

    2010-07-01

    In view of the several publications on the application of the Finite Element Method (FEM) to compute regional gravity anomaly involving only 8 nodes on the periphery of a rectangular map, we present an interactive FORTRAN program, FEAODD.FOR, for wider applicability of the technique. A brief description of the theory of FEM is presented for the sake of completeness. The efficacy of the program has been demonstrated by analyzing the gravity anomaly over Salt dome, South Houston, USA using two differently oriented rectangular blocks and over chromite deposits, Camaguey, Cuba. The analyses over two sets of data reveal that the outline of the ore body/structure matches well with the maxima of the residuals. Further, the data analyses over South Houston, USA, have revealed that though the broad regional trend remains the same for both the blocks, the magnitudes of the residual anomalies differ approximately by 25% of the magnitude as obtained from previous studies.

  1. Isostatic gravity map of the Monterey 30 x 60 minute quadrangle and adjacent areas, California

    USGS Publications Warehouse

    Langenheim, V.E.; Stiles, S.R.; Jachens, R.C.

    2002-01-01

    The digital dataset consists of one file (monterey_100k.iso) containing 2,385 gravity stations. The file, monterey_100k.iso, contains the principal facts of the gravity stations, with one point coded per line. The format of the data is described below. Each gravity station has a station name, location (latitude and longitude, NAD27 projection), elevation, and an observed gravity reading. The data are on the IGSN71 datum and the reference ellipsoid is the Geodetic Reference System 1967 (GRS67). The free-air gravity anomalies were calculated using standard formulas (Telford and others, 1976). The Bouguer, curvature, and terrain corrections were applied to the free-air anomaly at each station to determine the complete Bouguer gravity anomalies at a reduction density of 2.67 g/cc. An isostatic correction was then applied to remove the long-wavelength effect of deep crustal and/or upper mantle masses that isostatically support regional topography.

  2. Estimation of regional mass anomalies from Gravity Recovery and Climate Experiment (GRACE) over Himalayan region

    NASA Astrophysics Data System (ADS)

    Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai

    2014-11-01

    Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and

  3. Marine Gravity Measurements at the Subduction Zone offshore Central Chile

    NASA Astrophysics Data System (ADS)

    Heyde, I.; Kopp, H.; Reichert, C.

    2003-12-01

    Gravity measurements were carried out during RV SONNE cruise SO-161 (SPOC) in late 2001 between 28° S and 44° S offshore Central Chile along a total length of about 17500 km. The mean accuracy of the data measured with the seagravimeter system KSS31M of BGR is better than 1 mGal. Further foreign marine gravity data were not included due to their considerable lower accuracy. Additional marine gravity data derived from satellite altimetry are needed to augment our data from the survey area. The SPOC data set was compared with 3 different satellite gravity data compilations. The data set with the best statistical results for the gravity differences was used for further gravity map compilations. The map of the freeair gravity is dominated by the anomalies of the main topographic features in the survey area. In the W the oceanic crust of the subducting Nazca Plate is characterized by weak positve gravity anomalies. Landward the anomalies decrease rapidly to less than minus 150 mGal in the Chilean trench. Further towards the coast extends a broad zone of alternating positve and negative freeair gravity anomalies. These could be interpreted either in terms of morphology of the continental slope or heterogeneous density distribution in the upper crust. Additionally Bouguer gravity anomalies were calculated. The anomalies on the Nazca Plate are strongly positive with a clear south - north trending increase of values, which reflect the increasing age of the oceanic crust. The effect of isostatic compensation was calculated assuming Vening-Meinesz models with different parameters. The gravity effect of the isostatic compensation root was eliminated from the Bouguer gravity anomalies and serves as a residual field. The interpretation of isostatic residual fields in this complicated tectonic environment leads to the detection of a series of offshore basins. In the N and the centre of the survey area the distribution of the profiles is rather uniform. For these areas 3D

  4. A gravity model for the Coso geothermal area, California

    SciTech Connect

    Feighner, M.A.; Goldstein, N.E.

    1990-08-01

    Two- and three-dimensional gravity modeling was done using gridded Bouguer gravity data covering a 45 {times} 45 km region over the Coso geothermal area in an effort to identify features related to the heat source and to seek possible evidence for an underlying magma chamber. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest centered on the Coso volcanic field. Most of the gravity variations can be explained by two lithologic units: (1) low density wedges of Quarternary alluvium with interbedded thin basalts (2.4 g/cm{sup 3}) filling the Rose Valley and Coso Basin/Indian Wells Valley, and (2) low density cover of Tertiary volcanic rocks and intercalated Coso Formation (2.49 g/cm{sup 3}). A 3-D iterative approach was used to find the thicknesses of both units. The gravity anomaly remaining after effects from Units 1 and 2 are removed is a broad north-south-trending low whose major peak lies 5 km north of Sugarloaf Mountain, the largest of the less than 0.3 m.y. old rhyolite domes in the Coso Range. Most of this residual anomaly can be accounted for by a deep, low-density (2.47 g/cm{sup 3}) prismatic body extending from 8 to about 30 km below the surface. While some of this anomaly might be associated with fractured Sierran granitic rocks, its close correlation to a low-velocity zone with comparable geometry suggests that the residual anomaly is probably caused a large zone of partial melt underlying the rhyolite domes of the Coso Range. 12 refs., 9 figs.

  5. Bathymetry Prediction in Shallow Water by the Satellite Altimetry-Derived Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Bae; Yun, Hong Sik

    2017-04-01

    The satellite altimetry-derived free-air gravity anomalies (SAFAGAs) are correlated with undulations of crustal density variations under the seafloor. In this study, shipborne bathymetry from the Korea Rural Community Corporation (KRC) and the SAFAGAs from Scripps Institution of Oceanography were combined to predict bathymetry in shallow water. Density contrast of 5.0 g/cm3 estimated by the check points method of the gravity-geologic method (GGM) between seawater and the seafloor topographic mass was applied to predict bathymetry in shallow water areas outside of the Saemangeum Seawall located on the southwest coast of the Korean peninsula. Bathymetry predicted by the GGM was compared with depth measurements on the shipborne locations to analyze the bathymetry accuracy. The root mean square error (RMSE) of the differences of bathymetry between GGM and KRC on the KRC shipborne tracks in shallow water around the Saemangeum Seawall is 0.55 m. The topographic effects in off-tracks extracted from SAFAGAs in the GGM can be effectively utilized to predict bathymetry by combining with shipborne depth data in shallow water where shipborne depth data are limited. In addition, bathymetry and the SAFAGAs have a linear correlation in the 20 160 km wavelength. The coherency analysis was performed by computing the cross-spectral coherence between satellite altimetry derived bathymetry and the SAFAGAs. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A3A11931032).

  6. Middle proterozoic tectonic activity in west Texas and eastern New Mexico and analysis of gravity and magnetic anomalies

    SciTech Connect

    Adams, D.C.; Keller, G.R. )

    1994-03-01

    The Precambrian history of west Texas and eastern New Mexico is complex, consisting of four events: Early Proterozoic orogenic activity (16309-1800 Ma), formation of the western granite-rhyolite province (WGRP) (1340-1410 Ma), Grenville age tectonics (1116-1232 Ma), and middle Proterozoic extension possibly related to mid-continent rifting (1086-1109 Ma). Pre-Grenville tectonics, Grenville tectonics, and mid-continent rifting are represented in this area by the Abilene gravity minimum (AGM) and bimodal igneous rocks, which are probably younger. We have used gravity modeling and the comparison of gravity and magnetic anomalies with rock types reported from wells penetrating Precambrian basement to study the AGM and middle Proterozoic extension in this area. The AGM is an east-northeast-trending, 600 km long, gravity low, which extends from the Texas-Oklahoma border through the central basin platform (CBP) to the Delaware basin. This feature appears to predate formation of the mafic body in the CBP (1163 Ma) and is most likely related to Pre-Grenville tectonics, possibly representing a continental margin arc batholith. Evidence of middle Proterozoic extension is found in the form of igneous bodies in the CBP, the Van Horn uplift, the Franklin Mountains, and the Sacramento Mountains. Analysis of gravity and magnetic anomalies shows that paired gravity and magnetic highs are related to mafic intrusions in the upper crust. Mapping of middle Proterozoic igneous rocks and the paired anomalies outlines a 530 km diameter area of distributed east-west-oriented extension. The Debaca-Swisher terrain of shallow marine and clastic sedimentary rocks is age correlative with middle Proterozoic extension. These rocks may represent the lithology of possible Proterozoic exploration targets. Proterozoic structures were reactivated during the Paleozoic, affecting both the structure and deposition in the Permian basin.

  7. Principal facts for gravity stations in the Yuma, Arizona and Blythe, California areas

    USGS Publications Warehouse

    Peterson, Donald L.; Conradi, Arthur; Zohdy, Adel A.R.

    1972-01-01

    Observed gravity values, station locations, terrain corrections, and Bouguer gravity data are provided in tabular form for approximately 840 gravity observations in the Yuma, Arizona area and for approximately 225 gravity observations in the Blythe, California area.

  8. Gravity-based Identification of Buried Craters with No Topographic Expression

    NASA Astrophysics Data System (ADS)

    Evans, A. J.; Zuber, M. T.

    2013-12-01

    With gravity data acquired by the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft, in conjunction with altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) investigation on the Lunar Reconnaissance Orbiter, we investigate buried craters within the lunar nearside maria. The contrast of low reflectance material of the lunar nearside maria against the high reflectance, anorthositic highlands' crust can be observed from Earth with the naked eye and is arguably one of the most recognizable features of the Moon. Geologic evidence supports the hypothesis that the maria flooded the lunar nearside between 3.8-2.5 Gya, obscuring much of the original physiographic expression of the nearside lowlands, nearly 20% of the entire surface. We use several approaches to visually identify quasi-circular mass anomalies (QCMAs) with minimal or no topographic expression in the free-air gravity and Bouguer anomaly. We identify these anomalies through a systematic search of the lunar nearside in the free-air gravity and Bouguer anomaly maps with shifted and stretched color-scale ranges. Additionally, to reduce identification bias of QCMAs with the largest gravity anomaly contrast and areal extent, we employ gravity gradiometry and antieigenvalues to enhance short-wavelength features in the gravity field. This approach provides a tool to simultaneously examine long- and short-wavelength structures without amplitude bias. Using these methods, we identify over 100 quasi-circular mass anomalies, likely to be ancient impact events, buried by the lunar maria. We use this crater population in conjunction with partially buried craters to investigate the average thickness, volume, and density of maria that have been emplaced on the lunar nearside.

  9. Multifractal singular value decomposition (MSVD) for extraction of marine gravity anomaly

    NASA Astrophysics Data System (ADS)

    LYU, Wenchao; Zhu, Benduo; Qiu, Yan

    2015-04-01

    The concept of singularity is used for characterizing different types of nonlinear natural processes, including volcanic eruptions, faults, cloud formation, landslides, rainfall, hurricanes, flooding, earthquakes, wildfires, oil fields and mineralization. The singularity often results in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval.The marine gravitation field has multi-fractal features, which show different scale invariant properties in region and local field. The SVD can be used in geophysical data processing for signal and noise separation, radar processing for enhancing weak signals in vertical seismic profiles (VSP). It has also been used in multi component seismic polarization filters and evaluating the amount of wavy reflections in ground-penetrating radar (GPR) images of base surge deposits. With the SVD, a matrix X can be decomposed to a series of eigenvalues. The eigenvalues conformed fractal or multi-fractal distribution described with the power-law function. The multi-fractal SVD can be used for feature extraction and anomaly identification for marine gravity investigation.This paper aims to analyze the marine gravitation data using the SVD and multifractal methods. This paper will also aim to more clearly define the spatial relationship between marine mineralization and the deep geological structures in the field by extracting the marine gravitation information at a particular frequency to provide valuable in depth evidence for predicting new deposits and deep tectonic.

  10. Multiple episodes of rifting in Central and East Africa: A re-evaluation of gravity data

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Ibrahim, A.

    1994-12-01

    A compilation of new and existing gravity data, as well as geophysical and geological data, is used to assess the cumulative effects of multiple rifting episodes on crustal and upper mantle density structures beneath the Uganda-Kenya-Ethiopia-Sudan border region. This compilation includes new gravity and geological data collected in 1990 in south-western Ethiopia. Variations in the trends and amplitudes of Bouguer gravity anomalies reveal three overlapping rift systems: Mesozoic, Paleogene and Miocene-Recent. Each of these rift systems is a number of 40 100 km long sedimentary basins, and each system is approximately 1000 km long. The Bouguer anomaly patterns indicate that the Ethiopian and East African plateaux and corresponding gravity anomalies are discrete tectonic features. Models of structural and gravity profiles of two basins (Omo and Chew Bahir basins) suggest that pre-Oligocene (Cretaceous?) strata underlie 3 km or more of Neogene-Recent strata within the northern Kenya rift, and that more than 2 km of Neogene-Recent strata underlie parts of the southern Main Ethiopian rift. The superposition of perhaps three rifting episodes in the Lake Turkana (Omo) region has led to 90% crustal thinning (β ≈ 2).

  11. Determining the COB location along the Iberian margin and Galicia Bank from gravity anomaly inversion, residual depth anomaly and subsidence analysis

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Manatschal, Gianreto

    2015-11-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and crustal type are of critical importance in evaluating rifted continental margin formation and evolution. OCT structure, COB location and magmatic type also have important implications for the understanding of the geodynamics of continental breakup and in the evaluation of petroleum systems in deep-water frontier oil and gas exploration at rifted continental margins. Mapping the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust and hence determining the OCT structure and COB location at rifted continental margins is therefore a generic global problem. In order to assist in the determination of the OCT structure and COB location, we present methodologies using gravity anomaly inversion, residual depth anomaly (RDA) analysis and subsidence analysis, which we apply to the west Iberian rifted continental margin. The west Iberian margin has one of the most complete data sets available for deep magma-poor rifted margins, so there is abundant data to which the results can be calibrated. Gravity anomaly inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted continental margins. These quantitative analytical techniques have been applied to the west Iberian rifted continental margin along profiles IAM9, Lusigal 12 (with the TGS-extension) and ISE-01. Our predictions of OCT structure, COB location and magmatic type (i.e. the volume of magmatic addition, whether the margin is `normal' magmatic, magma-starved or magma-rich) have been tested and validated using ODP wells (Legs 103, 149 and 173), which provide

  12. Interpretation of African gravity and its implication for the breakup of the continents

    NASA Astrophysics Data System (ADS)

    Brown, C.; Girdler, R. W.

    1980-11-01

    To obtain a more quantitative interpretation of the `great negative Bouguer anomaly' over Africa, a study is made of all the gravity data for the whole of the African continent. Histograms from 1°×1° means are presented for heights, free air, and Bouguer anomalies. The modal values are found to be 400 m, +70±5.1 gu (gravity unit; equal to 0.1 mGal or 10-6 m/s2) and -480 gu, respectively. These are considered to be the best estimates for Africa away from the regions of rifting and are used to construct a `standard African lithosphere' with an assumed thickness of 100 km. The large-scale Bouguer anomalies are then interpreted as being due to variations in the thickness of this assumed standard lithosphere rather than to the traditional compensation at the base of the crust. On this assumption, the relative density contrast at the lithosphere-asthenosphere boundary is found to be -0.05. After corrections for the effects of light volcanics and sediments, a massive replacement of the lithosphere is required beneath much of the east African rift system. The interpretation requires: (1) a wide variation in lithospheric structure beneath different parts of the rift system, (2) that the lithosphere be thinnest beneath the eastern rift, and (3) that the thinning increases from south to north. The `lesser negative Bouguer anomaly' associated with the Adrar-Hoggar-Tibesti-Jebel Marra chain of volcanoes is treated in a similar way, and the replacement of the lithosphere is shown to be correspondingly less. Possible implications for the mechanism of rifting and break up of the continents are given.

  13. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Rajesh, S.; Majumdar, T. J.; Srinivasa Rao, G.; Radhakrishna, M.; Krishna, K. S.; Rajawat, A. S.

    2013-01-01

    Geoid data are more sensitive to density distributions deep within the Earth, thus the data are useful for studying the internal processes of the Earth leading to formation of geological structures. In this paper, we present much improved version of high resolution (1' × 1') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites. The geoid map of the Indian Ocean is dominated by a significant low of -106 m south of Sri Lanka, named as the Indian Ocean Geoid Low (IOGL), whose origin is not clearly known yet. The residual geoid data are retrieved from the geoid data by removing the long-wavelength core-mantle density effects using recent spherical harmonic coefficients of Earth Gravity Model 2008 (EGM2008) up to degree and order 50 from the observed geoid data. The coefficients are smoothly rolled off between degrees 30-70 in order to avoid artifacts related to the sharp truncation at degree 50. With this process we observed significant improvement in the residual geoid data when compared to the previous low-spatial resolution maps. The previous version was superposed by systematic broad regional highs and lows (like checker board) with amplitude up to ±12 m, though the trends of geoid in general match in both versions. These methodical artifacts in the previous version may have arisen due to the use of old Rapp's geo-potential model coefficients, as well as sharp truncation of reference model at degree and order 50. Geoid anomalies are converted to free-air gravity anomalies and validated with cross-over corrected ship-borne gravity data of the Arabian Sea and Bay of Bengal. The present satellite derived gravity data matches well with the ship-borne data with Root Mean Square Error (RMSE) of 5.1-7.8 mGal, and this is found to be within the error limits when compared with other globally available satellite data. Spectral analysis of

  14. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean - A process oriented modelling approach

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Radhakrishna, M.; Krishna, K. S.; Majumdar, T. J.

    2011-08-01

    The 85°E Ridge extends from the Mahanadi Basin, off northeastern margin of India to the Afanasy Nikitin Seamount in the Central Indian Basin. The ridge is associated with two contrasting gravity anomalies: negative anomaly over the north part (up to 5°N latitude), where the ridge structure is buried under thick Bengal Fan sediments and positive anomaly over the south part, where the structure is intermittently exposed above the seafloor. Ship-borne gravity and seismic reflection data are modelled using process oriented method and this suggest that the 85°E Ridge was emplaced on approximately 10-15 km thick elastic plate ( Te) and in an off-ridge tectonic setting. We simulated gravity anomalies for different crust-sediment structural configurations of the ridge that were existing at three geological ages, such as Late Cretaceous, Early Miocene and Present. The study shows that the gravity anomaly of the ridge in the north has changed through time from its inception to present. During the Late Cretaceous the ridge was associated with a significant positive anomaly with a compensation generated by a broad flexure of the Moho boundary. By Early Miocene the ridge was approximately covered by the post-collision sediments and led to alteration of the initial gravity anomaly to a small positive anomaly. At present, the ridge is buried by approximately 3 km thick Bengal Fan sediments on its crestal region and about 8 km thick pre- and post-collision sediments on the flanks. This geological setting had changed physical properties of the sediments and led to alter the minor positive gravity anomaly of Early Miocene to the distinct negative gravity anomaly.

  15. Mean Gravity Anomaly Prediction Techniques with a Comparative Analysis of the Accuracy and Economy of Selected Methods.

    DTIC Science & Technology

    1982-03-01

    mean gravity anomaly. To do this, it is necessary to apply a data averaging integral of the form ( Heiskanen and Moritz, 1967): -- I a b Ag f b Ag(x,y...Rapp for practical applica- tion on digital computers. Details can be found in Heiskanen and Moritz (1967), and Rapp (1964). Although least squares...methods: Institute for Physicalische Geodasie, Technische Hochschule, Darmstadt, Federal Republic of Germany. Heiskanen , W., and Moritz, H., 1967, Physical

  16. Gravity and fault structures, Long Valley caldera, California

    SciTech Connect

    Carle, S.F.; Goldstein, N.E.

    1987-07-01

    The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

  17. Evaluation of GOCE-based global gravity field models over Japan after the full mission using free-air gravity anomalies and geoid undulations

    NASA Astrophysics Data System (ADS)

    Odera, Patroba Achola; Fukuda, Yoichi

    2017-09-01

    The performance of Gravity field and steady-state Ocean Circulation Explorer (GOCE) global gravity field models (GGMs), at the end of GOCE mission covering 42 months, is evaluated using geoid undulations and free-air gravity anomalies over Japan, including six sub-regions (Hokkaido, north Honshu, central Honshu, west Honshu, Shikoku and Kyushu). Seventeen GOCE-based GGMs are evaluated and compared with EGM2008. The evaluations are carried out at 150, 180, 210, 240 and 270 spherical harmonics degrees. Results show that EGM2008 performs better than GOCE and related GGMs in Japan and three sub-regions (Hokkaido, central Honshu and Kyushu). However, GOCE and related GGMs perform better than EGM2008 in north Honshu, west Honshu and Shikoku up to degree 240. This means that GOCE data can improve geoid model over half of Japan. The improvement is only evident between degrees 150 and 240 beyond which EGM2008 performs better than GOCE GGMs in all the six regions. In general, the latest GOCE GGMs (releases 4 and 5) perform better than the earlier GOCE GGMs (releases 1, 2 and 3), indicating the contribution of data collected by GOCE in the last months before the mission ended on 11 November 2013. The results indicate that a more accurate geoid model over Japan is achievable, based on a combination of GOCE, EGM2008 and terrestrial gravity data sets. [Figure not available: see fulltext. Caption: Standard deviations of the differences between observed and GGMs implied ( a) free-air gravity anomalies over Japan, ( b) geoid undulations over Japan. n represents the spherical harmonic degrees

  18. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    USGS Publications Warehouse

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  19. The structure of the shallow crust beneath Olkaria geothermal field, Kenya, deduced from gravity studies

    NASA Astrophysics Data System (ADS)

    Ndombi, J. M.

    1981-02-01

    The Olkaria region of the Kenya rift valley is a potentially important geothermal area due to the occurrence of young volcanic activity and surface geothermal manifestations which include hot springs, fumaroles and thermally altered ground. In order to determine subsurface structure nearly 255 new gravity measurements, together with existing regional gravity data, were used to propose a subsurface model. A few surface density measurements have been made within Olkaria and in adjoining areas, and these combined with density values inferred from the measured P-wave seismic velocities within Olkaria are used to define the density distribution within the shallow crust. A two-dimensional model to explain the local gravity anomalies indicates that an approximately horizontal three-layer volcanic sequence overlying the basement system is downfaulted on the western part of Olkaria, and is intruded by denser dyke-like bodies of rhyolitic composition along the north-south-trending fractures that occur mainly in the central part of the Olkaria. An increase in the thickness of volcanics in the western part of Olkaria is responsible for the observed negative Bouguer anomaly in that area, while vertical density contrasts between the dyke-like intrusions and the host rock generate model anomalies in good agreement with the observed positive Bouguer anomalies in the central part of Olkaria. The largest and most recent intrusion, which is probably still in a magmatic state, occurs along the Ololbutot fracture zone and is apparently the main heat source for the geothermal phenomena in Olkaria.

  20. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements

    PubMed Central

    Neumann, Gregory A.; Zuber, Maria T.; Wieczorek, Mark A.; Head, James W.; Baker, David M. H.; Solomon, Sean C.; Smith, David E.; Lemoine, Frank G.; Mazarico, Erwan; Sabaka, Terence J.; Goossens, Sander J.; Melosh, H. Jay; Phillips, Roger J.; Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.; Sori, Michael M.; Soderblom, Jason M.; Miljković, Katarina; Andrews-Hanna, Jeffrey C.; Nimmo, Francis; Kiefer, Walter S.

    2015-01-01

    Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population. PMID:26601317

  1. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements.

    PubMed

    Neumann, Gregory A; Zuber, Maria T; Wieczorek, Mark A; Head, James W; Baker, David M H; Solomon, Sean C; Smith, David E; Lemoine, Frank G; Mazarico, Erwan; Sabaka, Terence J; Goossens, Sander J; Melosh, H Jay; Phillips, Roger J; Asmar, Sami W; Konopliv, Alexander S; Williams, James G; Sori, Michael M; Soderblom, Jason M; Miljković, Katarina; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Kiefer, Walter S

    2015-10-01

    Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population.

  2. Complete Bouguer gravity map of the Medicine Lake Quadrangle, California

    USGS Publications Warehouse

    Finn, C.

    1981-01-01

    A mathematical technique, called kriging, was programmed for a computer to interpolate hydrologic data based on a network of measured values in west-central Kansas. The computer program generated estimated values at the center of each 1-mile section in the Western Kansas Groundwater Management District No. 1 and facilitated contouring of selected values that are needed in the effective management of ground water for irrigation. The kriging technique produced objective and reproducible maps that illustrated hydrologic conditions in the Ogallala aquifer, the principal source of water in west-central Kansas. Maps of the aquifer, which use a 3-year average, included the 1978-80 water-table altitudes, which ranged from about 2,580 to 3,720 feet; the 1978-80 saturated thicknesses, which ranged from about 0 to 250 feet; and the percentage changes in saturated thickness from 1950 to 1978-80, which ranged from about a 50-percent increase to a 100-percent decrease. A map showing errors of estimate also was provided as a measure of reliability for the 1978-80 water-table altitudes. Errors of estimate ranged from 2 to 24 feet. (USGS)

  3. Three-dimensional lithospheric deformation and gravity anomalies associated with oblique continental collision in South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Scherwath, Martin; Stern, Tim; Davey, Fred; Davies, Rob

    2006-11-01

    Isostatic considerations exhibit differences between the northern, central and southern parts of the Pacific-Australian plate collision in South Island, New Zealand. In the northern part mean elevations are moderate and the gravity low is small; the central part contains the highest elevations, and gravity and elevations correspond to each other relatively well; and in the southern part the gravity low is strongest whereas the mean elevations are moderate again. These differences indicate changes in the character of the isostatic compensation and are explained by increased thickening and widening of the crustal root from north to south, and also by the long wavelength gravity response to a mantle density anomaly that increases towards the south. A simple 3-D gravity model is derived that includes the detailed crustal structures from the South Island GeopHysical Transect (SIGHT) experiment as well as a high-density anomaly in the mantle inferred from teleseismic data. The model indicates that cold and, therefore, dense upper mantle material penetrates the asthenosphere to a greater extent in the south, similar to the behaviour of an apparently highly ductile lower crust. As plate reconstruction suggests more lithospheric shortening in the north, our model corresponds to lithospheric material escaping laterally to the south, almost perpendicular to the compression caused by lithospheric shortening of the mantle. Therefore, in addition to the prevailing mantle shear in New Zealand, there may also be a component of extrusional mantle creep beneath the Southern Alps orogen, which could have caused some of the observed large seismic anisotropy in this region. We may have also found evidence for submerged Eocene-Miocene oceanic lithosphere beneath the southeastern part of South Island that has been unaccounted for after plate reconstruction.

  4. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil

    2016-06-01

    An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of

  5. Regional gravity and magnetic anomalies related to a Proterozoic carbonatite terrane in the eastern Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Denton, K. M.; Ponce, D. A.; Miller, D. M.; Jernigan, C. T.

    2014-12-01

    One of the world's largest rare earth element carbonatite deposits is located at Mountain Pass in the eastern Mojave Desert, California. The 1.4 Ga carbonatite deposit is hosted by and intruded into 1.7 Ga gneiss and schist that occurs in a narrow north-northwest trending belt along the eastern parts of Clark Mountain Range, Mescal Range, and Ivanpah Mountains. The carbonatite is associated with an ultrapotassic intrusive suite that ranges from shonkinite through syenite and granite. Regional geophysical data reveal that the eastern Mojave carbonatite terrane occurs along the northeast edge of a prominent magnetic high and the western margin of a gravity high along the eastern Clark Mountain Range. To improve our understanding of the geophysical and structural framework of the eastern Mojave carbonatite terrane, we collected over 1900 gravity stations and over 600 physical rock property samples to augment existing geophysical data. Carbonatite intrusions typically have distinct gravity, magnetic, and radiometric signatures because these deposits are relatively dense, contain magnetite, and are enriched in thorium or uranium. However, our results show that the carbonatite is essentially nonmagnetic with an average susceptibility of 0.18 x 10-3 SI (n=31) and the associated ultrapotassic intrusive suite is very weakly magnetic with an average susceptibility of 2.0 x 10-3 SI (n=36). Although the carbonatite body is nonmagnetic, it occurs along a steep gradient of a prominent aeromagnetic anomaly. This anomaly may reflect moderately magnetic mafic intrusive rocks at depth. East of the ultrapotassic intrusive rocks, a prominent north trending magnetic anomaly occurs in the central part of Ivanpah Valley. Based on geologic mapping in the Ivanpah Mountains, this magnetic anomaly may reflect Paleoproterozoic mafic intrusive rocks related to the 1.7 Ga Ivanpah Orogeny. Physical property measurements indicate that exposed amphibolite along the eastern Ivanpah Mountains are

  6. Possibilities of inversion of satellite third-order gravitational tensor onto gravity anomalies: a case study for central Europe

    NASA Astrophysics Data System (ADS)

    Pitoňák, Martin; Šprlák, Michal; Tenzer, Robert

    2017-05-01

    We investigate a numerical performance of four different schemes applied to a regional recovery of the gravity anomalies from the third-order gravitational tensor components (assumed to be observable in the future) synthetized at the satellite altitude of 200 km above the mean sphere. The first approach is based on applying a regional inversion without modelling the far-zone contribution or long-wavelength support. In the second approach we separate integral formulas into two parts, that is, the effects of the third-order disturbing tensor data within near and far zones. Whereas the far-zone contribution is evaluated by using existing global geopotential model (GGM) with spectral weights given by truncation error coefficients, the near-zone contribution is solved by applying a regional inversion. We then extend this approach for a smoothing procedure, in which we remove the gravitational contributions of the topographic-isostatic and atmospheric masses. Finally, we apply the remove-compute-restore (r-c-r) scheme in order to reduce the far-zone contribution by subtracting the reference (long-wavelength) gravity field, which is computed for maximum degree 80. We apply these four numerical schemes to a regional recovery of the gravity anomalies from individual components of the third-order gravitational tensor as well as from their combinations, while applying two different levels of a white noise. We validated our results with respect to gravity anomalies evaluated at the mean sphere from EGM2008 up to the degree 250. Not surprisingly, better fit in terms of standard deviation (STD) was attained using lower level of noise. The worst results were gained applying classical approach, STD values of our solution from Tzzz are 1.705 mGal (noise value with a standard deviation 0.01 × 10 - 15m - 1s - 2) and 2.005 mGal (noise value with a standard deviation 0.05 × 10 - 15m - 1s - 2), while the superior from r-c-r up to the degree 80, STD fit of gravity anomalies from Tzzz

  7. Gravity and seismicity over the Guerrero Seismic Gap, Mexico

    NASA Astrophysics Data System (ADS)

    Kostoglodov, V.; Bandy, W.; Domínguez, J.; Mena, M.

    Four detailed (average station interval = 5 km) gravity transects were recently conducted in the Pacific coastal region of Mexico. A differential GPS technique was used to determine the elevation and coordinates of the gravity stations. The profiles are oriented northeast-southwest and extend from the coast up to ˜60 km inland. The Bouguer gravity anomaly is decreasing consistently along every profile from 60-80 mGal at the coast with an approximately constant regional gradient of -2.2 mGal/km normal to the trench. A plot of the gravity anomaly against the distance from the trench axis demonstrates that the regional slope in the gravity anomaly is shifting gradually (20-25 mGal) inland along the coast of Guerrero from the southeast (Atoyac) to the northwest (Petatlán - Zihuatanejo). A model cross section of the Mexican subduction zone (MSZ) based on the tomography inversion for the Guerrero region shows that the gravity anomaly values and the regional anomaly trend can be explained mostly by the effect of the density contrast between the slab and the continental crust. The upper surface of the subducted slab (USS) and the seismogenic contact zone between the upper plate and the slab is traced clearly in several seismicity cross sections based on the data of the regional seismic network in Guerrero. The depth and shape of the USS revealed from the seismicity and gravity anomaly data for the same profiles are in good agreement. This correlation may be fairly useful when applied to gravity profiles in order to estimate the depth of the USS and the seismogenic contact in other parts of the MSZ which lack reliable seismicity data.

  8. Gravity anomaly and geoid undulation results in local areas from GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1979-01-01

    The adjusted GEOS-3 altimeter data, taken as averages within a data frame, have been used to construct free air anomaly and geoid undulation profiles and maps in areas of geophysical interest. Profiles were constructed across the Philippine Trench (at a latitude of 6 deg) and across the Bonin Trench (at a latitude of 28 deg). In the latter case an anomaly variation of 443 mgals in 143 km was derived from the altimeter data. These variations agreed reasonably with terrestrial estimates, considering the predicted point accuracy was about + or - 27 mgals. An area over the Patton Sea mounts was also investigated with the altimeter anomaly field agreeing well with the terrestrial data except for the point directly over the top of the sea mount. It is concluded that the GEOS-3 altimeter data is valuable not only for determining 5 deg and 1 deg x 1 deg mean anomalies, but also can be used to describe more local anomaly variations.

  9. The determination of gravity anomalies from geoid heights using the inverse Stokes' formula, Fourier transforms, and least squares collocation

    NASA Technical Reports Server (NTRS)

    Rummel, R.; Sjoeberg, L.; Rapp, R. H.

    1978-01-01

    A numerical method for the determination of gravity anomalies from geoid heights is described using the inverse Stokes formula. This discrete form of the inverse Stokes formula applies a numerical integration over the azimuth and an integration over a cubic interpolatory spline function which approximates the step function obtained from the numerical integration. The main disadvantage of the procedure is the lack of a reliable error measure. The method was applied on geoid heights derived from GEOS-3 altimeter measurements in the calibration area of the GEOS-3 satellite.

  10. Mass Concentration Technique for GRACE and GRAIL Gravity Recovery (Invited)

    NASA Astrophysics Data System (ADS)

    Yuan, D.; Konopliv, A. S.; Wiese, D. N.; Watkins, M. M.

    2013-12-01

    The spherical harmonic basis functions have been widely used to analyze the inter-spacecraft measurement collected from the Gravity Recovery and Climate Experiment (GRACE) mission for time varying gravity field of the Earth and the Gravity Recovery and Interior Laboratory (GRAIL) mission for static gravity field of the Moon. For GRACE, advanced solutions making of the mass concentration (mascon) element as a basis function to model the gravity variation due to surface mass redistribution allows for convenient application of geophysically derived a priori information in the local spatial domain to eliminate, among other artifacts, the longitudinal striping which plague the unconstrained spherical harmonic solutions. Comparisons of hydrology and ocean results demonstrate that the mascon solutions have greater correlation with in-situ data than do post-processed unconstrained spherical harmonic solutions. The GRAIL-derived static lunar gravity field to spherical harmonic degree and order 900, corresponding to one fifth degree of surface resolution, shows over 98% of the lunar gravitational signature is correlated with topography derived gravity field from harmonics degrees 80 through 640. Its exact surface resolution depends on the spacecraft altitude and ground track coverage. In this talk we present results for selected lunar areas, including Mare Orientale, in which the gravity field resolution is extended beyond that of equivalent harmonic degree 900 by augmenting the harmonic field with mascons to efficiently extract additional gravitational information in these regions. The Bouguer anomaly map and topography correlation are compared for both the harmonic field and regional mass anomaly solution.

  11. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Wells, Ray E.; Rohay, Alan C.

    2014-06-01

    The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic-Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE-SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.

  12. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    USGS Publications Warehouse

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig S.; Wells, Ray; Rohay, Alan C.

    2014-01-01

    The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic–Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE–SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.

  13. Analyzing the Broken Ridge area of the Indian Ocean using magnetic and gravity anomaly maps and geoid undulation and bathymetry data

    NASA Technical Reports Server (NTRS)

    Lazarewicz, A. R.; Sailor, R. V. (Principal Investigator)

    1982-01-01

    A higher resolution anomaly map of the Broken Ridge area (2 degree dipole spacing) was produced and reduced to the pole using quiet time data for this area. The map was compared with equally scaled maps of gravity anomaly, geoid undulation, and bathymetry. The ESMAP results were compared with a NASA MAGSAT map derived by averaging data in two-degree bins. A survey simulation was developed to model the accuracy of MAGSAT anomaly maps as a function of satellite altitude, instrument noise level, external noise model, and crustal anomaly field model. A preliminary analysis of the geophysical structure of Broken Ridge is presented and unresolved questions are listed.

  14. New Gravity and Magnetic Maps of the San Juan Volcanic Field, Southwestern Colorado

    NASA Astrophysics Data System (ADS)

    Drenth, B. J.; Keller, G. R.

    2004-12-01

    A very large simple Bouguer anomaly gravity low, about 100 km by 150 km in map view and reaching values less than -350 mGals, lies over the Oligocene San Juan volcanic field in southwestern Colorado. Roughly 15-18 different calderas represent the eruptive sources of the andesitic-rhyolitic rocks of this large volcanic field, and most are located within two swarms: the Silverton-Lake City (western) caldera complex, and the central complex that includes the Creede, Bachelor, and La Garita calderas. The prominent gravity low over the region has been previously interpreted to be due to the presence a low-density granitic batholith that underlies the volcanic field in the upper crust. However, there are complicating issues in this interpretation. First, many of the volcanic rocks are notably less dense than the Bouguer reduction density of 2.67 g/cc used for processing of the gravity data, meaning that those rocks exposed at the surface could account for a significant portion of the gravity low. Second, the extreme topographic relief in the region requires that terrain corrections (always positive algebraically) be applied. To meet these needs, a new complete Bouguer gravity map of the volcanic field has been prepared using the new traditionally terrain corrected U. S. gravity database. Modeling these data show that the caldera fill is a major contributor to the gravity low but that an upper crustal batholith is also required to satisfy the observed data. In addition, a second map is being prepared. It is derived by applying a new complex Bouguer correction that takes geologically reasonable surface densities and digital elevation data into account, and as a result will provide a much clearer picture of the nature of the subsurface batholith. A new aeromagnetic map of the region has also been completed. This represents a significant improvement over previous merging efforts in southwestern Colorado, as numerous and previously under-utilized high-resolution aeromagnetic

  15. Geoid undulations and gravity anomalies over the Aral Sea, the Black Sea and the Caspian Sea from a combined GEOS-3/SEASAT/GEOSAT altimeter data set

    NASA Technical Reports Server (NTRS)

    Au, Andrew Y.; Brown, Richard D.; Welker, Jean E.

    1991-01-01

    Satellite-based altimetric data taken by GOES-3, SEASAT, and GEOSAT over the Aral Sea, the Black Sea, and the Caspian Sea are analyzed and a least squares collocation technique is used to predict the geoid undulations on a 0.25x0.25 deg. grid and to transform these geoid undulations to free air gravity anomalies. Rapp's 180x180 geopotential model is used as the reference surface for the collocation procedure. The result of geoid to gravity transformation is, however, sensitive to the information content of the reference geopotential model used. For example, considerable detailed surface gravity data were incorporated into the reference model over the Black Sea, resulting in a reference model with significant information content at short wavelengths. Thus, estimation of short wavelength gravity anomalies from gridded geoid heights is generally reliable over regions such as the Black Sea, using the conventional collocation technique with local empirical covariance functions. Over regions such as the Caspian Sea, where detailed surface data are generally not incorporated into the reference model, unconventional techniques are needed to obtain reliable gravity anomalies. Based on the predicted gravity anomalies over these inland seas, speculative tectonic structures are identified and geophysical processes are inferred.

  16. Principal facts for gravity stations in Dixie; Fairview, and Stingaree valleys, Churchill and Pershing counties, Nevada

    USGS Publications Warehouse

    Schaefer, D.H.; Thomas, J.M.; Duffrin, B.G.

    1984-01-01

    During March through July 1979, gravity measurements were made at 300 stations in Dixie Valley, Nevada. In December 1981, 45 additional stations were added--7 in Dixie Valley, 23 in Fairview Valley, and 15 in Stingaree Valley. Most altitudes were determined by using altimeters or topographic maps. The gravity observations were made with a Worden temperature-controlled gravimeter with an initial scale factor of 0.0965 milliGal/scale division. Principal facts for each of the 345 stations are tabulated; they consist of latitude, longitude, altitude, observed gravity, free-air anomaly, terrain correction, and Bouguer anomaly values at a bedrock density of 2.67 grams/cu cm. (Lantz-PTT)

  17. Accuracy of the determination of mean anomalies and mean geoid undulations from a satellite gravity field mapping mission

    NASA Technical Reports Server (NTRS)

    Jekeli, C.; Rapp, R. H.

    1980-01-01

    Improved knowledge of the Earth's gravity field was obtained from new and improved satellite measurements such as satellite to satellite tracking and gradiometry. This improvement was examined by estimating the accuracy of the determination of mean anomalies and mean undulations in various size blocks based on an assumed mission. In this report the accuracy is considered through a commission error due to measurement noise propagation and a truncation error due to unobservable higher degree terms in the geopotential. To do this the spectrum of the measurement was related to the spectrum of the disturbing potential of the Earth's gravity field. Equations were derived for a low-low (radial or horizontal separation) mission and a gradiometer mission. For a low-low mission of six month's duration, at an altitude of 160 km, with a data noise of plus or minus 1 micrometers sec for a four second integration time, we would expect to determine 1 deg x 1 deg mean anomalies to an accuracy of plus or minus 2.3 mgals and 1 deg x 1 deg mean geoid undulations to plus or minus 4.3 cm. A very fast Fortran program is available to study various mission configurations and block sizes.

  18. Correlation of gravity with the Maquereau Group, southern Gaspe Peninsula, Quebec

    NASA Astrophysics Data System (ADS)

    Seguin, Maurice K.

    1986-06-01

    Gravity observations at 150 locations in the Port-Daniel and Chandler area, southeastern Gaspé, Quebec, delineate an E-W to ENE-WSW trending elliptical positive Bouguer gravity anomaly with an amplitude of 19 mGal and a residual gravity anomaly of circa 22 mGal. This anomaly correlates closely with the Lower Cambrian and/or Hadrynian Maquereau Group, the steep gradients defining it coinciding with the contact between the group and the surrounding Ordovician and Siluro-Devonian sedimentary rocks. On the basis of its similar geological setting, this gravity anomaly may be compared with the positive Bouguer anomalies observed over the Fleur de, Lys zone to the east of the Baie Verte lineament in Newfoundland. Tridimensional modelling of the gravity data is inconsistent with a serpentinite dome as originally proposed and it suggests that the Maquereau Group represents an upthrusted slice of deep-seated volcanosedimentary sequences. These were originally located on the lower segment of the continental slope; they constituted a topographic high during the final process of the mountain building at the Taconic phase (Middle to Upper Ordovician time). The most probable way of emplacement of the Maquereau block is through a tear-fault running E-W to ESE-WNW in the southern Gulf of St. Lawrence west of Cape Breton and resulting from Early Paleozoic continental collision between a Eurafrican continent and a North American continent which had a salient located beneath the site of the modern Gulf. The Maquereau may then have been reactivated with a left-lateral motion accompanied of a rotation about a sub-horizontal axis. The presumed Baie Verte-Brompton line ought to be displaced to the north and the Humber zone is narrowed.

  19. Gravity and magnetic anomalies used to delineate geologic features associated with earthquakes and aftershocks in the central Virginia seismic zone

    NASA Astrophysics Data System (ADS)

    Shah, A. K.; Horton, J.; McNamara, D. E.; Spears, D.; Burton, W. C.

    2013-12-01

    Estimating seismic hazard in intraplate environments can be challenging partly because events are relatively rare and associated data thus limited. Additionally, in areas such as the central Virginia seismic zone, numerous pre-existing faults may or may not be candidates for modern tectonic activity, and other faults may not have been mapped. It is thus important to determine whether or not specific geologic features are associated with seismic events. Geophysical and geologic data collected in response to the Mw5.8 August 23, 2011 central Virginia earthquake provide excellent tools for this purpose. Portable seismographs deployed within days of the main shock showed a series of aftershocks mostly occurring at depths of 3-8 km along a southeast-dipping tabular zone ~10 km long, interpreted as the causative fault or fault zone. These instruments also recorded shallow (< 4 km) aftershocks clustered in several areas at distances of ~2-15 km from the main fault zone. We use new airborne geophysical surveys (gravity, magnetics, radiometrics, and LiDAR) to delineate the distribution of various surface and subsurface geologic features of interest in areas where the earthquake and aftershocks took place. The main (causative fault) aftershock cluster coincides with a linear, NE-trending gravity gradient (~ 2 mgal/km) that extends over 20 km in either direction from the Mw5.8 epicenter. Gravity modeling incorporating seismic estimates of Moho variations suggests the presence of a shallow low-density body overlying the main aftershock cluster, placing it within the upper 2-4 km of the main-fault hanging wall. The gravity, magnetic, and radiometric data also show a bend in generally NE-SW orientation of anomalies close to the Mw5.8 epicenter. Most shallow aftershock clusters occur near weaker short-wavelength gravity gradients of one to several km length. In several cases these gradients correspond to geologic contacts mapped at the surface. Along the gravity gradients, the

  20. Comparative study of compensation mechanism of lunar impact basins from new gravity field model of SELENE (Kaguya)

    NASA Astrophysics Data System (ADS)

    Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Ishihara, Y.; Noda, H.; Ssasaki, S.; Iwata, T.; Hanada, H.; Araki, H.

    2009-04-01

    The gravity field is a fundamental physical quantity for the study of the internal structure and the evolution of planetary bodies. The most significant problem of the previous lunar gravity models, however, is the lack of direct observations of the far side gravity signals [1]. We then developed a satellite-to-satellite Doppler tracking sub-system for SELENE [2]. In this study, we adopt our new gravity field model with nearly full coverage of the lunar far side to discuss dichotomy of the lunar basins. Because all the nearside impact basins are filled with extensive mare basalt deposits, it is difficult to estimate the subsurface structures, such as uplift of the Moho surface, from gravity measurements. In contrast, far-side impact basins have much less or no mare basalt coverage. This may allow us to investigate the internal structure underneath impact basins. Such knowledge will be important in understanding the response of a solid planetary body to large meteoritic impacts and also the thermal state of the Moon during the late heavy bombardment period. There are distinctive differences between the anomalies of the near side principal mascons and the far side basins. As shown previously [1, 3], the near side principal mascons have sharp shoulders with a gravity plateau and a weakly negative gravity anomaly in the surroundings. In contrast, the far side basins are characterized by concentric rings of positive and negative anomalies. The circular gravity highs agree well with the topographic rims of the basins revealed by SELENE topography model STM-359_grid-02 [4]. In our gravity model, Orientale, Mendel-Rydberg, Lorentz, and Humboldtianum show more affinity with the far side basins than the near side principal mascons [5]. Korolev, Mendeleev, Planck, and Lorentz basins have sharp central peaks of which magnitude in free-air anomalies is almost equivalent to the one in Bouguer anomalies. On the other hand, Orientale, Mendel-Rydberg, Humboldtianum, Moscoviense

  1. Dip distribution of Oita-Kumamoto Tectonic Line located in central Kyushu, Japan, estimated by eigenvectors of gravity gradient tensor

    NASA Astrophysics Data System (ADS)

    Kusumoto, Shigekazu

    2016-09-01

    We estimated the dip distribution of Oita-Kumamoto Tectonic Line located in central Kyushu, Japan, by using the dip of the maximum eigenvector of the gravity gradient tensor. A series of earthquakes in Kumamoto and Oita beginning on 14 April 2016 occurred along this tectonic line, the largest of which was M = 7.3. Because a gravity gradiometry survey has not been conducted in the study area, we calculated the gravity gradient tensor from the Bouguer gravity anomaly and employed it to the analysis. The general dip distribution of the Oita-Kumamoto Tectonic Line was found to be about 65° and tends to be higher towards its eastern end. In addition, we estimated the dip around the largest earthquake to be about 60° from the gravity gradient tensor. This result agrees with the dip of the earthquake source fault obtained by Global Navigation Satellite System data analysis.[Figure not available: see fulltext.

  2. Gravity measurements and terrain corrections using a digital terrain model in the NW Himalaya

    NASA Astrophysics Data System (ADS)

    Banerjee, Paramesh

    1998-12-01

    Areas recently gravity surveyed in the NW Himalaya are characterized by high-elevation and high-amplitude topographic undulations. A new method of applying combined Bouguer and terrain corrections using a digital terrain model is highly accurate and offers advantages over conventional techniques by saving efforts and being more flexible. Partitioning parameters for station-dependent inner-zone compartments and station-independent outer zones can be optimally selected for the desired accuracy requirements. A digital terrain database is used to obtain the outer-zone corrections. In the situation of the NW Himalaya surveys, a 1.2 km inner zone is divided into 112 compartments for each station and a digital terrain database containing nearly 16 000 data points for 30″×30″ compartments was applied using the computer program EFFECT.FOR, to compute combined Bouguer and terrain corrections for a 20 km range. The terrain corrections between 20 and 170 km were computed using National Geophysical Data Centre (NGDC) 5'×5' gridded global elevation database. The magnitude of the terrain correction varies between 3 and 50 mGal. The effects of the 20 km range terrain correction are more pronounced on short-medium wavelength anomalies. The Swarghat gravity high is further enhanced while several high-frequency pseudo-anomalies disappear after applying the terrain corrections. The refined Bouguer anomaly varies from -160 mGal at the southern end of the section, to -310 mGal at the northern end, suggesting a Moho depth variation from 45 to nearly 60 km. The steepness of the northward negative gravity gradient, typical for the Himalaya, is considerably reduced after applying a terrain correction for the 170 km range.

  3. Use of gravity potential field methods for defining a shallow magmatic intrusion: the Mt. Amiata case history (Tuscany, Central Italy)

    NASA Astrophysics Data System (ADS)

    Girolami, Chiara; Rinaldo Barchi, Massimiliano; Pauselli, Cristina; Heyde, Ingo

    2016-04-01

    We analyzed the Bouguer gravity anomaly signal beneath the Mt. Amiata area in order to reconstruct the subsurface setting. The study area is characterized by a pronounced gravity minimum, possibly correlated with the observed anomalous heat flow and hydrothermal activity. Using different approaches, previous authors defined a low density body (generally interpreted as a magmatic intrusion) beneath this area, which could explain the observed gravity anomaly minimum. However the proposed geologic models show different geometries and densities for the batholith. The gravity data used in this study (kindly provided by eni) were acquired from different institutions (eni, OGS, USDMA and Servizio Geologico d'Italia) and collected in a unique dataset, consisting of about 50000 stations, randomly distributed, which cover Central Italy, with a spacing of less than 1 km. For each station the elevation and the Bouguer gravity anomaly data are given. From this dataset, we created two maps of the Bouguer gravity anomaly and the topography, using the Minimum Curvature gridding method considering a grid cell size of 500m x 500m. The Bouguer gravity anomaly has been computed using a density of 2.67 g/cm3. From these maps we extracted a window of about 240 km2 (12x20 km) for the study area, which includes the Mt. Amiata region and the adjacent Radicofani sedimentary basin. The first part of this study was focused on calculating the first order vertical derivative and the power spectra analysis of the Bouguer gravity anomaly to enhance the effect of shallow bodies and estimating the source depth respectively. The second part of this study was focused on constructing a 3D geological density model of the subsurface setting of the studied area, implementing a forward modelling approach. The stratigraphy of the study area's upper crust schematically consists of six litho-mechanical units, whose density was derived from velocity data collected by active seismic surveys. A preliminary

  4. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  5. Disturbance Vector in Space from Surface Gravity Anomalies Using Complementary Models.

    DTIC Science & Technology

    1985-08-01

    Lelgemann, D., "Spherical Approximation and the Combination of Gravimetric and Satellite Data," Bolletino di Geodesia e Scienze Affini, vol. 32, No. 4... Geodesia e Scienze Affini, vol. 41, No. 1, pp. 89-103, 1982. Rapp, R.H., "A FORTRAN Program for the Computation of the Normal Gravity and Gravitational

  6. Oregon Magnetic and Gravity Maps and Data: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Roberts, Carter W.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each State. The results for the State of Oregon are presented here on this site. Files of aeromagnetic and gravity grids and images are available for these States for downloading. In Oregon, 49 magnetic surveys have been knit together to form a single digital grid and map. Also, a complete Bouguer gravity anomaly grid and map was generated from 40,665 gravity station measurements in and adjacent to Oregon. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  7. First application of airborne gravity to oil exploration in the Shengli oil province, eastern China

    NASA Astrophysics Data System (ADS)

    Li, Wenyong; Zhoud, Jianxin; Liu, Yanxu; Xu, Jianchun

    2015-07-01

    An airborne gravity survey was successfully conducted over the Dongying, Gudao and Gudong oilfields of Shengli oil province, eastern China. These survey areas cover onshore and offshore regions of the south-west Bohai Sea. The data were processed using the potential field transformation approach. The derived Bouguer gravity data correlate well with features such as known faults, swells and sags identified by earlier seismic survey and drilling data. The depth to the Cenozoic basement in the study area, including the Dongying, Gudao, and Gudong oilfields, was calculated by means of gravity inversion constrained by seismic and drilling data. The differences between the depths to the Cenozoic basement calculated from gravity anomaly and those determined by the earlier seismic and drilling data are less than 5%.

  8. Michigan Magnetic and Gravity Maps and Data: A Website for the Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.; Snyder, Stephen L.

    2009-01-01

    This web site provides the best available, public-domain, aeromagnetic and gravity data in the State of Michigan and merges these data into composite grids that are available for downloading. The magnetic grid is compiled from 25 separate magnetic surveys that have been knit together to form a single composite digital grid and map. The magnetic survey grids have been continued to 305 meters (1,000 feet) above ground and merged together to form the State compilation. A separate map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. In addition, a complete Bouguer gravity anomaly grid and map were generated from more than 20,000 gravity station measurements from 33 surveys. A table provides the facts about each gravity survey where known.

  9. Illinois, Indiana, and Ohio Magnetic and Gravity Maps and Data: A Website for Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each state. The results for the three states, Illinois, Indiana, and Ohio are presented here in one site. Files of aeromagnetic and gravity grids and images are available for these states for downloading. In Illinois, Indiana, and Ohio, 19 magnetic surveys have been knit together to form a single digital grid and map. And, a complete Bouguer gravity anomaly grid and map was generated from 128,227 gravity station measurements in and adjacent to Illinois, Indiana, and Ohio. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  10. Detailed gravity and aeromagnetic surveys in the Black Rock Desert Area, Utah. Topical report

    SciTech Connect

    Serpa, L.F.; Cook, K.L.

    1980-01-01

    Aeromagnetic and gravity surveys were conducted during 1978 in the Black Rock Desert, Utah over an area of about 2400 km/sup 2/ between the north-trending Pavant and Cricket Mountains. The surveys assisted in evaluating the geothermal resources in the Meadow-Hatton Known Geothermal Resource Area (KGRA) and vicinity by delineating geophysical characteristics of the subsurface. The gravity measurements from approximately 700 new stations were reduced to complete Bouguer gravity anomaly values with the aid of a computerized terrain-correction program and contoured at an interval of 1 milligal. The aeromagnetic survey was drape flown at an altitude of 305 m (1000 ft) and a total intensity residual aeromagnetic map with a contour interval of 20 gammas was produced. Two gravity and aeromagnetic east-west profiles and one north-south profile were modeled using a simultaneous 2 1/2-dimensional modeling technique to provide a single model satisfying both types of geophysical data.

  11. Lunar Gravity Studies from the Lunar Prospector Line-of-Sight Acceleration Data: Isostatic Compensation of Medium Sized Craters

    NASA Astrophysics Data System (ADS)

    Sugano, T.; Heki, K.

    2002-12-01

    Direct estimation of mass distribution on the lunar nearside surface using the Lunar Prospector (LP) line-of-sight (LOS) acceleration data has several merits over conventional methods to estimate Stokes' coefficients of the lunar gravity field, such as (1) high resolution gravity anomaly recovery without introducing Kaula's constraint, (2) fast inversion calculation by stepwise estimation of parameter sets enabled by small correlation between parameters sets. Resolution of the lunar free-air gravity anomaly map obtained here, is as high as a gravity model complete to degree/order 225, and yet less noisy than the recent models. Next we performed terrain correction for the raw LOS acceleration data using lunar topography model from the Clementine laser altimetry data and the average crustal density of 2.9 g/cm3. By conducting the same inversion for the data after the correction, we obtained the map of Bouguer gravity anomaly that mainly reflects the MOHO topography. By comparing maps we notice that signatures of medium-sized (80-300 km in diameter) craters visible as topographic depression and negative free air anomaly, disappear in the Bouguer anomaly. The absence of mass deficits in the Bouguer anomaly suggests that the MOHO beneath them is flat. Generally speaking, longer wavelength topographic features have to be supported by MOHO topography (Airy isostatic compensation) while small scale topographic features are supported by lithospheric strength. The boundary between these two modes constrains the lithosphere thickness, and hence thermal structure near the surface. Larger craters are known to have become Mascons; mantle plugs and high-density mare basalts cause positive gravity anomalies there. The smallest Mascon has diameters a little larger than 300 km (e.g. Schiller-Zuccius), and the boundary between the two compensation status seems to lie around 300 km. Thermal evolution history of the Moon suggests temporally increasing thickness of lithosphere over its

  12. Application of high-pass filtering techniques on gravity and magnetic data of the eastern Qattara Depression area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Zahra, Hesham Shaker; Oweis, Hesham T.

    2016-06-01

    In this work, a reconnaissance study is presented to delineate the subsurface tectonics and lithological inferences of the eastern area of Qattara Depression using the Bouguer gravity and aeromagnetic data. To achieve this goal, several transformation techniques and filtering processes are accomplished on these maps. At first, the total intensity aeromagnetic map is processed through the application of reduction to the magnetic north pole technique. The fast Fourier transform is carried out on the gravity and RTP magnetic data for establishing and defining the residual (shallow) sources. The frequency high-pass filtering is used to enhance the anomaly wavelengths associated with the shallow sources. The used processing techniques are the polynomial surface fitting enhancement, Laplacian, Strike Filtering, Enhancement Utilization, Suppression Utilization, Butterworth Filtering Utilization, Butterworth high-pass filter, Euler's deconvolution and forward modeling. The equivalent depths of the isolated short wavelength anomalies are 0.759 and 0.340 km below the flight surface, and the depths of the intermediate wavelength anomalies are 1.28 and 2.00 km for the gravity and magnetic data, respectively. Finally, the quantitative interpretations of the Bouguer gravity and RTP magnetic maps of the study area, reflect the occurrence of the various types of structures and their components. The main tectonic deformations of the study area have NNW-SSE, NNE-SSW, NE-SW, NW-SE and E-W trends.

  13. Tectonic history of the north portion of the San Andreas fault system, California, inferred from gravity and magnetic anomalies

    USGS Publications Warehouse

    Griscom, A.; Jachens, R.C.

    1989-01-01

    Geologic and geophysical data for the San Andreas fault system north of San Francisco suggest that the eastern boundary of the Pacific plate migrated eastward from its presumed original position at the base of the continental slope to its present position along the San Andreas transform fault by means of a series of eastward jumps of the Mendocino triple junction. These eastward jumps total a distance of about 150 km since 29 Ma. Correlation of right-laterally displaced gravity and magnetic anomalies that now have components at San Francisco and on the shelf north of Point Arena indicates that the presently active strand of the San Andreas fault north of the San Francisco peninsula formed recently at about 5 Ma when the triple junction jumped eastward a minimum of 100 km to its present location at the north end of the San Andreas fault. -from Authors

  14. Structure of the midcontinent basement. Topography, gravity, seismic, and remote sensing

    NASA Technical Reports Server (NTRS)

    Guinness, E. A.; Strebeck, J. W.; Arvidson, R. E.; Scholz, K.; Davies, G. F.

    1981-01-01

    Some 600,000 discrete Bouguer gravity estimates of the continental United States were spatially filtered to produce a continuous tone image. The filtered data were also digitally painted in color coded form onto a shaded relief map. The resultant image is a colored shaded relief map where the hue and saturation of a given image element is controlled by the value of the Bouguer anomaly. Major structural features (e.g., midcontinent gravity high) are readily discernible in these data, as are a number of subtle and previously unrecognized features. A linear gravity low that is approximately 120 to 150 km wide extends from southeastern Nebraska, at a break in the midcontinent gravity high, through the Ozark Plateau, and across the Mississippi embayment. The low is also aligned with the Lewis and Clark lineament (Montana to Washington), forming a linear feature of approximately 2800 km in length. In southeastern Missouri the gravity low has an amplitude of 30 milligals, a value that is too high to be explained by simple valley fill by sedimentary rocks.

  15. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  16. Gorringe Ridge gravity and magnetic anomalies are compatible with thrusting at a crustal scale

    NASA Astrophysics Data System (ADS)

    Galindo-Zaldívar, J.; Maldonado, A.; Schreider, A. A.

    2003-06-01

    The main features of the deep structure of the Gorringe Ridge are analysed on the basis of gravity and magnetic measurements, as well as seismic profiles, drill holes, rock dredges, submersible observations and seismicity data. The gravity and magnetic models of the Gettysburg and Ormonde seamounts, which form the Gorringe Ridge, suggest that the Moho is approximately flat and the upper part of the ridge corresponds to a northwestwards vergent fold. This structure is the result of a northwestward vergent thrust that deformed the oceanic crust, with a minimum slip of approximately 20 km. The activity of the thrust probably started 20 Myr, and produced the recent stages of seamount uplift. The seamount is mainly composed of gabbros of the oceanic crust, serpentinized rocks and alkaline basalts. The large antiform, located in the hangingwall of the thrust, is probably deformed by minor faults. This oceanic ridge is a consequence of the oblique convergence between the African Plate and the overlapping Eurasian Plate.

  17. Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.

    1981-01-01

    Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.

  18. Accurate and Efficient Regularized Inversion Approach for the Interpretation of Isolated Gravity Anomalies

    NASA Astrophysics Data System (ADS)

    Mehanee, Salah A.

    2014-08-01

    A very fast and efficient approach for gravity data inversion based on the regularized conjugate gradient method has been developed. This approach simultaneously inverts for the depth ( z), and the amplitude coefficient ( A) of a buried anomalous body from the gravity data measured along a profile. The developed algorithm fits the observed data by a class of some geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, infinitely long horizontal cylinder, and sphere models using the logarithms of the model parameters [log( z) and log(| A|)] rather than the parameters themselves in its iterative minimization scheme. The presented numerical experiments have shown that the original (non-logarithmed) minimization scheme, which uses the parameters themselves ( z and | A|) instead of their logarithms, encountered a variety of convergence problems. The aforementioned transformation of the objective functional subjected to minimization into the space of logarithms of z and | A| overcomes these convergence problems. The reliability and the applicability of the developed algorithm have been demonstrated on several synthetic data sets with and without noise. It is then successfully and carefully applied to seven real data examples with bodies buried in different complex geologic settings and at various depths inside the earth. The method is shown to be highly applicable for mineral exploration, and for both shallow and deep earth imaging, and is of particular value in cases where the observed gravity data is due to an isolated body embedded in the subsurface.

  19. Connected magma plumbing system between Cerro Negro and El Hoyo Complex, Nicaragua revealed by gravity survey

    NASA Astrophysics Data System (ADS)

    MacQueen, Patricia; Zurek, Jeffrey; Williams-Jones, Glyn

    2016-11-01

    Cerro Negro, near León, Nicaragua is a young, relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan. Multiple explosive eruptions have deposited significant amounts of ash on León and the surrounding rural communities. While a number of studies investigate the geochemistry and stress regime of the volcano, subsurface structures have only been studied by diffuse soil gas surveys. These studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring volcanic features. To address these questions, we collected 119 gravity measurements around Cerro Negro volcano in an attempt to delineate deep structures at the volcano. The resulting complete Bouguer anomaly map revealed local positive gravity anomalies (wavelength 0.5 to 2 km, magnitude +4 mGal) and regional positive (10 km wavelength, magnitudes +10 and +8 mGal) and negative (12 and 6 km wavelength, magnitudes -18 and -13 mGal) Bouguer anomalies. Further analysis of these gravity data through inversion has revealed both local and regional density anomalies that we interpret as intrusive complexes at Cerro Negro and in the Nicaraguan Volcanic Arc. The local density anomalies at Cerro Negro have a density of 2700 kg m-3 (basalt) and are located between -250 and -2000 m above sea level. The distribution of recovered density anomalies suggests that eruptions at Cerro Negro may be tapping an interconnected magma plumbing system beneath El Hoyo, Cerro La Mula, and Cerro Negro, and more than seven other proximal volcanic features, implying that Cerro Negro should be considered the newest cone of a Cerro Negro-El Hoyo volcanic complex.

  20. On Different Techniques for the Calculation of Bougher Gravity Anomalies for Joint Inversion of Geophysical Data in the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Hussein, M. J.; Velasco, A. A.

    2012-12-01

    Density variations in the Earth result from different material properties, which reflect the tectonic processess attributed to a region. Density variations can be identified through measurable material properties, such as seismic velocities, gravity field, magnetic field, etc. Gravity anomaly inversions are particularly sensitive to density variations but suffer from significant non-uniqueness. However, using inverse models with gravity Bougher anomalies and other geophysical data, we can determine three dimensional structural and geological properties of the given area. We explore different techniques for the calculation of Bougher gravity anomalies for their use in joint inversion of multiple geophysical data sets. Various 2- and 3-Dimensional (3-D) gravity profile forward modeling programs have been developed as variations of existing algorithms; these variations have similarities, differences, and strengths and weaknesses. The purpose of this study is to determine the most effective gravity forward modeling method that can be used to combine the information provided by complementary datasets, such as gravity and seismic information, to improve the accuracy and resolution of Earth models obtained for the underlying structure of the Rio Grande Rift. In an effort to determine the most appropriate method to use in a joint inversion algorithm and a data fusion approach currently in development, we test each approach by using a model of the Rio Grande Rift obtained from seismic surface wave dispersion and receiver functions. We find that there are different uncertainties associated with each methodology that affect the accuracy achieved by including gravity profile forward modeling. Moreover, there exists a bigger margin of error associated to the 2-D methods due to the simplification of calculations that do not take into account the 3-D characteristics of the Earth's structure.

  1. Geophysical investigations on the gravity and aeromagnetic anomalies of the region between Sapanca and Duzce, along the North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Tigli, Cigdem Sendur; Ates, Abdullah; Aydemir, Attila

    2012-12-01

    In this paper, it is aimed to model subsurface structures to the east of the Gulf of Izmit through Duzce by using the gravity and aeromagnetic anomaly data. 1/500.000 scaled gravity anomaly map of the area was taken from the General Directorate of Mineral Research and Exploration (MTA) and it was digitized. The aeromagnetic anomaly data were obtained in the digital form. 3D and 2D models were constructed to reveal the subsurface structure in two different inset regions in the study area including most important negative and positive gravity anomalies. Seismic velocities obtained from the deep seismic recordings were converted to densities. In addition, density information from a previous research was also taken. These densities were used for construction of 3D and 2D gravity models where it was shown that there are narrow and long sedimentary basins and depressions with 0.5-3 km depths. These sedimentary basins with the shape of negative flower structures indicating pull-apart basins are controlled by the active fault segments of the North Anatolian Fault (NAF). Earthquake epicenter data were also correlated with the constructed models from the gravity anomalies. Positive gravity anomalies are also caused by very shallow (about 2 km) masses that are accepted as the crustal origin intrusions into the fractures of the NAF and, ophiolites and gabbro outcropping on the surface of the studied regions. These intrusives and remnants of the Tethys Ocean are located between the fault segments where the fault bifurcates and they also constitute barriers for straight extension of the NAF. Analytic signal method was applied to the aeromagnetic anomaly data to determine the locations and boundaries of the causative bodies. Those bodies are observed around Duzce, and to the E-SE of it, to the NW of Golyaka and a large mass between Adapazari and Sapanca. Shallow settlement of these magmatics was confirmed by the second vertical derivative of the aeromagnetic data. An anti

  2. Regional models of the gravity field from terrestrial gravity data of heterogeneous quality and density

    NASA Astrophysics Data System (ADS)

    Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli

    2014-05-01

    Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.

  3. Downward continuation of the free-air gravity anomalies to the ellipsoid using the gradient solution and terrain correction: An attempt of global numerical computations

    NASA Technical Reports Server (NTRS)

    Wang, Y. M.

    1989-01-01

    The formulas for the determination of the coefficients of the spherical harmonic expansion of the disturbing potential of the earth are defined for data given on a sphere. In order to determine the spherical harmonic coefficients, the gravity anomalies have to be analytically downward continued from the earth's surface to a sphere-at least to the ellipsoid. The goal is to continue the gravity anomalies from the earth's surface downward to the ellipsoid using recent elevation models. The basic method for the downward continuation is the gradient solution (the g sub 1 term). The terrain correction was also computed because of the role it can play as a correction term when calculating harmonic coefficients from surface gravity data. The fast Fourier transformation was applied to the computations.

  4. Slow-light enhancement of Beer-Lambert-Bouguer absorption

    NASA Astrophysics Data System (ADS)

    Mortensen, Niels Asger; Xiao, Sanshui

    2007-04-01

    The authors theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measurements widely employed in analytical chemistry.

  5. Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    McPhee, D.K.; Langenheim, V.E.; Watt, J.T.

    2011-01-01

    This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.

  6. Lithosphere mechanical behavior inferred from tidal gravity anomalies: a comparison of Africa and South America

    NASA Astrophysics Data System (ADS)

    Mantovani, Marta S. M.; Shukowsky, Wladimir; de Freitas, Silvio R. C.; Brito Neves, Benjamim B.

    2005-02-01

    Earlier studies have shown that the amplitude difference of the M2 gravity tidal component (TGA) between the measured and calculated response for a viscoelastic Earth is significantly correlated to the effective elastic thickness (Te) of the lithosphere. Using a regression equation obtained from a global distribution, data from TGA were integrated with those obtained by other methods (gravity-topography coherence and thermo-mechanical analysis) providing a spatial coverage sufficient to establish regional Te patterns for South America and Africa. A comparison and association between the Te distributions for both continents indicates that for the African plate, the effective elastic thickness map clearly shows a remarkable dichotomy of the Neoproterozoic rocks and reworked older rocks. But for the case of South American plate that is moving faster than the African plate, lower Te values are observed only for areas where extensive tectonics with intense volcanism has acted, suggesting that a colder mantle underlies this continental plate, while a hotter asthenosphere is observed beneath the African plate. This is in part attributed to its relatively slow motion which prevented dissipating the earlier developed high temperature.

  7. Analysis of gravity data beneath Endut geothermal prospect using horizontal gradient and Euler deconvolution

    NASA Astrophysics Data System (ADS)

    Supriyanto, Noor, T.; Suhanto, E.

    2017-07-01

    The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.

  8. Preliminary gravity investigations of the Wahmonie Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Ponce, D.A.

    1981-12-31

    A gravity survey of the southwest corner of the Nevada Test Site was completed during 1979 to 1980 as part of an effort to characterize a possible radioactive waste storage site in granitic rocks. The survey outlined a large, broad, and flat gravity high centered near Wahmonie Site. Combined geophysical data indicate that the anomalous area is underlain by a dense, magnetic, and possibly intrusive body. Gravity data show a +15 milligal Bouguer anomaly coincident with a large positive aeromagnetic anomaly. The data reveal a prominent fault at the west edge of the inferred intrusive. Both gravity and magnetic anomalous highs extend NNE over a horst composed predominantly of rhyodacite of the Tertiary Salyer Formation. Local aeromagnetic highs are closely associated with two granodiorite exposures on the eastern edge of the horst. A local gravity high of about +2 milligal is centered directly over the southern granodiorite exposure and another high is centered over the northern exposure. A steep gravity gradient outlining the gravity high coincides with the outer edge of a zone of hydrothermal alteration which surrounds the horst. The gravity gradient probably marks the approximate limit of an intrusive body.

  9. Improved global prediction of 300 nautical mile mean free air anomalies

    NASA Technical Reports Server (NTRS)

    Cruz, J. Y.

    1982-01-01

    Current procedures used for the global prediction of 300nm mean anomalies starting from known values of 1 deg by 1 deg mean anomalies yield unreasonable prediction results when applied to 300nm blocks which have a rapidly varying gravity anomaly field and which contain relatively few observed 60nm blocks. Improvement of overall 300nm anomaly prediction is first achieved by using area-weighted as opposed to unweighted averaging of the 25 generated 60nm mean anomalies inside the 300nm block. Then, improvement of prediction over rough 300nm blocks is realized through the use of fully known 1 deg by 1 deg mean elevations, taking advantage of the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations inside the 300nm block. An improved prediction model which adapts itself to the roughness of the local anomaly field is found to be the model of Least Squares Collocation with systematic parameters, the systematic parameter being the slope b which is a type of Bouguer slope expressing the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations.

  10. Structure of the southern Rio Grande rift from gravity interpretation

    NASA Technical Reports Server (NTRS)

    Daggett, P. H.; Keller, G. R.; Wen, C.-L.; Morgan, P.

    1986-01-01

    Regional Bouguer gravity anomalies in southern New Mexico have been analyzed by two-dimensional wave number filtering and poly-nomial trend surface analysis of the observed gravity field. A prominent, regional oval-shaped positive gravity anomaly was found to be associated with the southern Rio Grande rift. Computer modeling of three regional gravity profiles suggests that this anomaly is due to crustal thinning beneath the southern Rio Grande rift. These models indicate a 25 to 26-km minimum crustal thickness within the rift and suggest that the rift is underlain by a broad zone of anomalously low-density upper mantle. The southern terminus of the anomalous zone is approximately 50 km southwest of El Paso, Texas. A thinning of the rifted crust of 2-3 km relative to the adjacent Basin and Range province indicates an extension of about 9 percent during the formation of the modern southern Rio Grande rift. This extension estimate is consistent with estimates from other data sources. The crustal thinning and anomalous mantle is thought to result from magmatic activity related to surface volcanism and high heat flow in this area.

  11. Gravity and vertical magnetic gradient investigations of a localised area of the Benue Trough, Nigeria

    NASA Astrophysics Data System (ADS)

    Onwuemesi, A. G.; Egboka, B. C. E.

    Gravity and vertical magnetic gradient studies were carried out in Lokpanta-Lekwesi area in the Lower Benue Trough to investigate the local structures which might be associated with the Lead-Zinc mineralisation as evident in the adjacent area (Ishiagu Pb-Zn mineralisation). For this reason 134 gravity and vertical magnetic gradient readings were taken at intervals of 250 m along major roads and track routes that connect widely separated parts of the 25 km 2 area. The instruments used are the Canadian Scintrex CG-2 gravimeter (No. 318), the American Paulin altimeter and the Proton Precession Magnetometer. The geology of the areacomprises the Ezeaku Formation, and the Awgu Formation, their ages ranging from Middle to Upper Cretaceous. The study was used to delineate two igneous intrusions in the Ezeaku Formation. The intrusive bodies show high positive Bouguer anomalies which ranged from 0.5 mgal to 3.3 mgal in contrast to the negative Bouguer anomaly of the country rock that ranged from 0 to - 3.0 mgal. The vertical magnetic gradient method identified the two intrusive bodies as negative anomalies having vertical magnetic gradient values ranging from -5.0 to -25.0 gammas per meter in contrast to 5.0 to 10.0 gammas per meter values of the country rock. The Profiles were interpreted using computer assisted evaluation procedure of non-linear optimization and interactive techniques. Based on two dimensional model, the minimum depth computations to the upper surfaces of the anomalies A and B by gravity method are 60mm and 160 m respectively while the vertical magnetic gradient method gave a minimum depth estimates of the anomaly A as 75 m and that of B as 180 m.

  12. Isostasy, Stress and Gravitational Potential Energy in the Southern Atlantic - Insights from Satellite Gravity Observations

    NASA Astrophysics Data System (ADS)

    Goetze, H. J.; Klinge, L.; Scheck-Wenderoth, M.; Dressel, I.; Sippel, J.

    2015-12-01

    New satellite gravity fields e.g. EGM2008, GoCo3S and very recently EIGEN-6C4 (Förste et al., 2014) provide high-accuracy and globally uniform information of the Earth's gravity field and partly of its gradients. The main goal of this study is to investigate the impact of this new gravity field and its processed anomalies (Bouguer, Free-air and Vening-Meinesz residual fields) on lithospheric modelling of passive plate margins in the area of the Southern Atlantic. In an area fixed by the latitudes 20° N - 50° S and longitudes 70° W - 20° E we calculated station-complete Bouguer anomalies (bathymetry/topography corrected) both on- and offshore and compared them with the gravity effect of a velocity model which bases on S - waves tomography (Schaeffer and Lebedev, 2013). The corresponding maps provide more insight in the abnormal mass distribution of oceanic lithosphere and the ocean-continent transition zones on both sides of the Atlantic Ocean than Free-air anomalies which are masked by bathymetry. In a next step we calculated isostatic residual fields (Vening-Meinesz isostasy with regard to different lithospheric rigidities) to remove global components (long wavelengths) from the satellite gravity. The Isostatic residual field will be compared with the GPE (gravitational potential energy). GPE variations in the Southern Atlantic, relative to the reference state, were calculated as ΔGPE. Often the oceanic lithosphere is characterized by negative ∆GPE values indicating that the ocean basin is in compression. Differences from this observation will be compared with the state of stress in the area of the passive margins of South America and South Africa and the oceanic lithosphere in between. Schaeffer, A. J. and S. Lebedev, Global shear-speed structure of the upper mantle and transition zone. Geophys. J. Int., 194 (1), 417-449, 2013. doi:10.1093/gji/ggt095

  13. GOCE and Future Gravity Missions for Geothermal Energy Exploitation

    NASA Astrophysics Data System (ADS)

    Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia

    2016-08-01

    Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying

  14. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  15. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    NASA Astrophysics Data System (ADS)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low

  16. On the gravitational potential and field anomalies due to thin mass layers

    NASA Technical Reports Server (NTRS)

    Ockendon, J. R.; Turcotte, D. L.

    1977-01-01

    The gravitational potential and field anomalies for thin mass layers are derived using the technique of matched asymptotic expansions. An inner solution is obtained using an expansion in powers of the thickness and it is shown that the outer solution is given by a surface distribution of mass sources and dipoles. Coefficients are evaluated by matching the inner expansion of the outer solution with the outer expansion of the inner solution. The leading term in the inner expansion for the normal gravitational field gives the Bouguer formula. The leading term in the expansion for the gravitational potential gives an expression for the perturbation to the geoid. The predictions given by this term are compared with measurements by satellite altimetry. The second-order terms in the expansion for the gravitational field are required to predict the gravity anomaly at a continental margin. The results are compared with observations.

  17. Seismicity and tectonic relationships of the Nemaha Uplift and Midcontinent geophysical anomaly. Final project summary

    SciTech Connect

    Burchett, R.R.; Luza, K.V.; Van Eck, O.J.; Wilson, F.W.

    1983-02-01

    The geological surveys of Iowa, Nebraska, Kansas, and Oklahoma conducted a 4- to 6-year investigation of the seismicity and tectonic relationships of the Nemaha Uplift and associated geologic features in the Midcontinent. Regional geological, gravity, aeromagnetic, seismological, and topographic information were compiled on 1:1,000,000-scale base maps. The following maps were prepared: (1) relief, (2) earthquake epicenter and station location, (3) lineament, (4) geologic bedrock, (5) structure contour (base of Kansas City Group or older Pennsylvanian rock units), (6) Precambrian configuration, (7) Bouguer gravity anomaly, (8) aeromagnetic, and (9) Precambrian rock type. One correlation between earthquakes and tectonic structures was made. There appears to be recent as well as historical earthquake activity associated with the Humbolt Fault zone, southeastern Nebraska and northeastern Kansas.

  18. Crustal structure of central Norway and Sweden from integrated modelling of teleseismic receiver functions and the gravity anomaly

    NASA Astrophysics Data System (ADS)

    England, Richard W.; Ebbing, Jörg

    2012-10-01

    Receiver functions have been calculated from teleseismic events recorded by an array of seismometers deployed on an E-W transect between the coasts of central Norway and Sweden. Forward and inverse modelling and migration of the receiver functions yields models for the subsurface velocity structure along the profile which have the crust thickening from c. 32 km at the Norwegian coast to c. 43 km beneath the central Scandinavian mountain range and then remaining constant beneath Sweden. There is some evidence for a low-velocity layer in the upper 10 km of the crust beneath parts of Norway and western Sweden and good evidence for a high-velocity lower crust underlying much of Sweden which thins to the west beneath Norway. Inverting the seismic velocities to density results in a very good correspondence between calculated and observed gravity anomalies. The results of this study do not support the presence of a significant crustal root providing buoyant support for the mountain range. Low topography and thick crust beneath Sweden are maintained by the high-velocity, high-density lower crustal layer. The upper crustal low-velocity layer is consistent with models based on existing refraction profiling and known geology and physical properties of the crust. There is no direct correlation between properties of the crust and topography suggesting that recent epeirogenic uplift has not resulted from modification of the crust.

  19. Gravity survey of marine field: Case study for Silurian reef exploration

    SciTech Connect

    Heigold, P.C.; Whitaker, S.T. )

    1989-08-01

    A gravity survey conducted over and around Marine field in southwestern Illinois has been used as an example to show how measurement of the local gravity field can aid in the search for Silurian reefs in the Illinois basin. Acquisition parameters for gravity surveys over Silurian reefs should be calculated beforehand from simple models of the reef based on estimates of density contrasts, depths, and size. Residual and derivative mapping techniques generally enhance gravity anomalies and enable more accurate portrayals of the structural relief on buried reefs. The second vertical derivative map of the residual Bouguer gravity anomaly surface at Marine field compares very well with the structure of the reef as mapped from subsurface data. This study indicates that similar mapping techniques could be effective on other reefs throughout the Illinois basin. Although gravity mapping methods are potentially powerful exploration tools in themselves, the writers believe that their proper role is as a part of a more comprehensive exploration approach. Gravity surveys can be used effectively as an initial exploration method in reef-prone areas to define smaller, prospect-size areas in which more intensive exploration techniques can subsequently be focused.

  20. Gravity is the Key Experiment to Address the Habitability of the Ocean in Jupiter's Moon Europa

    NASA Astrophysics Data System (ADS)

    Sessa, A. M.; Dombard, A. J.

    2013-12-01

    Life requires three constituents: a liquid solvent (i.e., water), a chemical system that can form large molecules to record genetic information (e.g., carbon based) as well as chemical nutrients (e.g., nitrogen, phosphorous), and a chemical disequilibrium system that can provide metabolic energy. While it is believed that there is a saline water layer located between the rock and ice layers in Jupiter's moon Europa, which would satisfy the first requirement, it is unknown if the other conditions are currently met. The likelihood that Europa is a haven for life in our Solar System skyrockets, however, if there is currently active volcanism at the rock-water interface, much the same that volcanic processes enable the chemosynthetic life that forms the basis of deep sea-vent communities at the bottom of Earth's oceans. Exploring the volcanic activity on this interface is challenging, as direct observation via a submersible or high-resolution indirect observations via a dense global seismic network on the surface is at present technically (and fiscally!) untenable. Thus, gravity studies are the best way to explore currently the structure of this all-important interface. Though mostly a silicate body with only a relatively thin (~100 km) layer of water, Europa is different from the terrestrial planets in that this rock-water interface, and not the surface, represents the largest density contrast across the moon's near-surface layers, and thus topography on this interface could conceivably dominate the gravity. Here, we calculate the potential anomalies that arise from topography on the surface, the water-ice interface (at 20 km depth), and the rock-water interface, finding that the latter dominates the free-air gravity at the longest wavelengths (spherical harmonic degrees < 10) and the Bouguer gravity at intermediate wavelengths (degrees ~10-50), and only for the shortest wavelengths (degrees > 50) does the water-ice interface (and presumably mass-density anomalies

  1. MODTOHAFSD — A GUI based JAVA code for gravity analysis of strike limited sedimentary basins by means of growing bodies with exponential density contrast-depth variation: A space domain approach

    NASA Astrophysics Data System (ADS)

    Chakravarthi, V.; Sastry, S. Rajeswara; Ramamma, B.

    2013-07-01

    Based on the principles of modeling and inversion, two interpretation methods are developed in the space domain along with a GUI based JAVA code, MODTOHAFSD, to analyze the gravity anomalies of strike limited sedimentary basins using a prescribed exponential density contrast-depth function. A stack of vertical prisms all having equal widths, but each one possesses its own limited strike length and thickness, describes the structure of a sedimentary basin above the basement complex. The thicknesses of prisms represent the depths to the basement and are the unknown parameters to be estimated from the observed gravity anomalies. Forward modeling is realized in the space domain using a combination of analytical and numerical approaches. The algorithm estimates the initial depths of a sedimentary basin and improves them, iteratively, based on the differences between the observed and modeled gravity anomalies within the specified convergence criteria. The present code, works on Model-View-Controller (MVC) pattern, reads the Bouguer gravity anomalies, constructs/modifies regional gravity background in an interactive approach, estimates residual gravity anomalies and performs automatic modeling or inversion based on user specification for basement topography. Besides generating output in both ASCII and graphical forms, the code displays (i) the changes in the depth structure, (ii) nature of fit between the observed and modeled gravity anomalies, (iii) changes in misfit, and (iv) variation of density contrast with iteration in animated forms. The code is used to analyze both synthetic and real field gravity anomalies. The proposed technique yielded information that is consistent with the assumed parameters in case of synthetic structure and with available drilling depths in case of field example. The advantage of the code is that it can be used to analyze the gravity anomalies of sedimentary basins even when the profile along which the interpretation is intended fails to

  2. Basement-involved faults and deep structures in the West Philippine Basin: constrains from gravity field

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Jiang, Suhua; Li, Sanzhong; Zhang, Huixuan; Lei, Jianping; Gao, Song; Zhao, Feiyu

    2017-06-01

    To reveal the basement-involved faults and deep structures of the West Philippine Basin (WPB), the gravitational responses caused by these faults are observed and analyzed based on the latest spherical gravity model: WGM2012 Model. By mapping the free-air and Bouguer gravity anomalies, several main faults and some other linear structures are located and observed in the WPB. Then, by conducting a 2D discrete multi-scale wavelet decomposition, the Bouguer anomalies are decomposed into the first- to eighth-order detail and approximation fields (the first- to eighth-order Details and Approximations). The first- to third-order Details reflect detailed and localized geological information of the crust at different depths, and of which the higher-order reflects gravity field of the deeper depth. The first- to fourth-order Approximations represent the regional gravity fields at different depths of the crust, respectively. The fourth-order Approximation represents the regional gravity fluctuation caused by the density inhomogeneity of Moho interface. Therefore, taking the fourth-order Approximation as input, and adopting Parker-Oldenburg interactive inversion, We calculated the depth of Moho interface in the WPB. Results show that the Moho interface depth in the WPB ranges approximately from 8 to 12 km, indicating that there is typical oceanic crust in the basin. In the Urdaneta Plateau and the Benham Rise, the Moho interface depths are about 14 and 16 km, respectively, which provides a piece of evidence to support that the Banham Rise could be a transitional crust caused by a large igneous province. The second-order vertical derivative and the horizontal derivatives in direction 0° and 90° are computed based on the data of the third-order Detail, and most of the basement-involved faults and structures in the WPB, such as the Central Basin Fault Zone, the Gagua Ridge, the Luzon-Okinawa Fault Zone, and the Mindanao Fault Zone are interpreted by the gravity derivatives.

  3. Magnetic investigation and 2½ D gravity profile modelling across the Beattie magnetic anomaly in the southeastern Karoo Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Baiyegunhi, Christopher; Gwavava, Oswald

    2017-03-01

    The southeastern Karoo Basin is considered to be one of the most prospective areas for shale gas exploration in South Africa. An interesting magnetic anomaly, the Beattie magnetic anomaly (BMA), and geologic intrusions are seen on the magnetic map. To date, the source of the BMA and interconnectivity of the igneous intrusions are not well understood. In this study, we investigate the interconnectivity of the igneous intrusions and possible location of the source of the BMA using gravity and magnetic methods. The gravity model results showed that igneous intrusions are interconnected at depth, which probably pose threat by increasing the risk of fracking the Karoo for shale gas exploration. The magnetic results revealed that the BMA becomes stronger with depth. The average depths to the top of the shallow and deep magnetic sources were estimated to be approximately 0.6 and 15 km, respectively.

  4. Gravity anomaly at a Pleistocene lake bed in NW Alaska interpreted by analogy with Greenland's Lake Taserssauq and its floating ice tongue

    USGS Publications Warehouse

    Barnes, D.F.

    1987-01-01

    A possible example of a very deep glacial excavation is provided by a distinctive gravity low located at the front of a valley glacier that once flowed into glacial Lake Aniuk (formerly Lake Noatak) in the western Brooks Range. Geologic and geophysical data suggest that sediments or ice filling a glacially excavated valley are the most probable cause of the 30-50 mGal anomaly. Reasonable choices of geometric models and density contrasts indicate that the former excavation is now filled with a buried-ice thickness of 700 m or sediment thicknesses greater than 1 km. No direct evidence of efficient excavation was observed in Greenland, but efficient glacial erosion behind a floating polar ice tongue could explain the excavation that caused the Alaskan gravity anomaly. -from Author

  5. Magnetic investigation and 2½ D gravity profile modelling across the Beattie magnetic anomaly in the southeastern Karoo Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Baiyegunhi, Christopher; Gwavava, Oswald

    2017-02-01

    The southeastern Karoo Basin is considered to be one of the most prospective areas for shale gas exploration in South Africa. An interesting magnetic anomaly, the Beattie magnetic anomaly (BMA), and geologic intrusions are seen on the magnetic map. To date, the source of the BMA and interconnectivity of the igneous intrusions are not well understood. In this study, we investigate the interconnectivity of the igneous intrusions and possible location of the source of the BMA using gravity and magnetic methods. The gravity model results showed that igneous intrusions are interconnected at depth, which probably pose threat by increasing the risk of fracking the Karoo for shale gas exploration. The magnetic results revealed that the BMA becomes stronger with depth. The average depths to the top of the shallow and deep magnetic sources were estimated to be approximately 0.6 and 15 km, respectively.

  6. Compositional Density Structure of the Upper Mantle from Constrained 3-D Inversion of Gravity Anomaly: A Case Study of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Chen, C.; Kaban, M. K.; Thomas, M.

    2014-12-01

    Mantle density structure is a key for tectonics. The density variations in the upper mantle are affected by temperature and composition. Seismic tomography method has been widely applied to obtain the P- and S-wave velocity structure in the mantle, which is then used to calculate the density perturbation. However, the velocity model is mainly due to the thermal effects but not the compositional effects. A method of 3-D inversion of gravity anomaly developed in spherical coordinates is used to image the large-scale density structure of upper mantle in Southeast Asia. The mantle gravity anomalies used in inversion are calculated by removing the crustal effects from the observed gravity. With constraints of thermal density model from seismic tomography, the integrative density structure is estimated from gravity inversion. Consequently, we obtain the compositional density by subtracting the thermal density from the integrative structure. The result of inversion shows the anisotropic composition of subduction zones, Cratons and plates boundary in Southeast Asia. In the shallow depth, the compositional density anomalies of large scales present uniform features in oceanic and continental mantle. In depth of 75-175 km, there are differences between the thermal and the compositional variations. The density anomalies at these depths are both affected by temperature and composition of the upper mantle. Below 175-km depth, the density anomalies are dominated by the compositional variations. Furthermore, comparing with high seismicity occurred at moderate-depth (50-300 km), we found that the compositional density variations is one of the factor that inducing earthquakes. The constrained inversion of mantle gravity anomaly has possibility to reveal the subduction which is not clearly seen from low-resolution tomography data, and may reveal the relation of seismicity and composition in the upper mantle. This study is supported by the Program of International Science and

  7. Description of a magnetic tape containing the principal facts of approximately 64000 gravity stations in the State of California

    NASA Astrophysics Data System (ADS)

    Snyder, D. B.; Roberts, C. W.; Saltus, R. W.; Sikora, R. F.

    1981-02-01

    The principal facts of 64,026 gravity stations within the State of California are contained on the 9-track magnetic tape. Tape blocksize is 8000 with logical record lengths of eighty ASCII characters written at 1600 bpi density. The tape contains a leading explanatory file followed by 28 data files arranged by 1 degree by 2 degree sheets. The International Gravity Formula of 1930 is used. Airy-Heiskanen isostatic anomalies are included, computed for an average crustal thickness of 25 km, density of topography 2.67 g/cc and a lower crust-upper mantle density of 0.4 g/cc, in addition to complete Bouguer anomalies reduced at a density of 2.67 g/cc. Terrain corrections extend to 166.7 km from each station.

  8. Vesta's Crustal Properties from the Dawn Gravity Measurements

    NASA Astrophysics Data System (ADS)

    Asmar, Sami; Bills, B. G.; Konopliv, A.; Park, R. S.; Raymond, C. A.

    2013-10-01

    Vesta’s internal structure has been investigated via gravity and shape models derived from the Dawn mission data. A 20th degree and order spherical harmonic gravity field solution by Konopliv et al (2013) has been available for geophysical analysis and interpretation and various internal structure models have been considered (Russell et al. 2012, Asmar et al. 2011). Spectral and statistical analyses of the gravity and topography by Bills et al. (2013) have revealed that the observed gravity is highly correlated with the observed topography suggesting little lateral variation in density and that lateral mass variations associated with surface topography is the dominant cause of the observed gravity. The Bouguer anomaly is generally much smaller than the free-air anomaly. Vesta’s variance spectra of gravity and topography are similar to those seen on other silicate bodies, including Moon, Mars, Venus, and Earth. The gravity/topography admittance spectrum follows the trend for homogeneous density except for a notable dip at harmonic degrees 5-8. Also, the gravity and topography are both significantly non-isotropic, with larger variations in the north-south direction than in the east-west direction. These two features may both be explained by large scale fracturing of the body, and displacements along those fractures, associated with the impacts, which formed Veneneia and Rheasilvia. More recent modeling of multi-layered Vesta demonstrated that there are many different internal density models that satisfy all the observational constraints, the well-known non-uniqueness issue with gravity solutions. This paper will present details of these topics as well as selected possible models constraining Vesta’s crustal thickness and densities.

  9. Deep structure study of the salt body of Jbel Rheouis (central tunisia) from geological and gravity data

    NASA Astrophysics Data System (ADS)

    Bouzid, Wajih; Abbes, Chedly; Gabtni, Hakim; Hassine, Mouna

    2016-04-01

    Jbel Rheouis situated in south west of Sidi Bouzid, central Tunisia, is a complex structure located at a tectonic node between N-S, NE-SW and NW-SE corridors. It was considered as a diapir containing the most complete series of The Upper Triassic formation in Central Tunisia. The good quality of preserved fossils markers especially at the limestone levels made it possible for Burollet (1952) to propose a lithostratigraphic description of the Rheouis Formation. This stratigraphy was clarified by Soussi and Abbes (2004) basing on new paleontological, palynological and outcrops detailed mapping data. Thus, they assigned the base of this outcrops series to Carnian and its top to Rhaetian. Using these geological and lithostratigraphic data we suspects that the base of the Rheouis formation formed by black limestone can be correlated to the Rehach limestone in the South of Tunisia where this level is laying on a clayey sandstones level identified as the Lower Triassic outcrops. In this concept, this study intend to investigate the Rheouis structure and to identify it's nature basing on the intra salt structures identification and the nature of the Lower Triassic sediments buried beneath the Black limestones, using a combination of geological, lithostratigraphic and geophysical (gravity) data. The gravity data used in this work were obtained from the ONM with a mesh of 1Km /1Km. All the data were merged and reduced using the 1967 International gravity formula. Free air and Bouguer gravity correction were made using sea level as a datum and 2.4 g/cm³ as a reduction density. The Bouguer anomaly map shows a variation in anomaly values range from -12.5 mGal to -4.5 mGal with a contrasted anomaly distribution. This map present 5 gravity maxima and 4 gravity minima where the major direction of those maxima and minima are N-S, NE-SW and NW-SE. The presence of a relative positive anomaly concentrated J.Rheouis can be explained by a mass excess probably due to the uplift of the

  10. On the Superficial Geological Processes in South Offshore Taiwan in Lights of the High-Resolution Shipborne Gravity and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Lien, T.; Chang, E. T. Y.; Tan, E.; Liu, C. S.; Lin, L. F.; Hsieh, H. H.; Han, W. C.

    2016-12-01

    Offshore southwest Taiwan is a convergent zone where the Eurasian Plate subducts southeastward beneath the Philippine Sea Plate, where thrustings, foldings, mud volcanoes and diapiric structures are detected in the accretionary prism. These convergent structures can generate the lateral density contrast which causes the gravity anomalies. A marine gravity survey using R/V Ocean Researcher I was carried out with 131 cruises during 2009 to the present. The dense gravity investigations are available to study seafloor geological structures in a high precision especially for the southern offshore Taiwan, where we found both positive and negative Bouguer gravity anomalies. Hence, we aim to interpret the causes of gravity anomalies. Joint to the gravity observation, a software, DynEarthSol, is used to simulate a 2D deformation in shallow lithosphere and to discuss surface geological origin offshore southwest Taiwan. DynEarthSol is capable of modelling long-term tectonic deformation with high efficiency. According to geological settings offshore southeast Taiwan, mudstone is covered underneath sandstone. Hence we set the first scenario with two layers which physical properties, density, viscosity, bulk modulus, and shear modulus, are chose as sandstone and mudstone, respectively. For second and third scenarios the importing materials in respectively high and low density are placed at the bottom of the second layer, to simulate the gravitational instability as the development of mud diapirs. We further discuss the scenario of dehydration of the light materials during the tectonic convergence. Results show that the faultings are developed in the first and second scenarios, which cause the positive gravity anomalies because the lower compacted strata are raised. The diapir-wise structures are seen in the third scenario associating negative gravity anomalies. Dehydrated dense material sinks but still produce negative gravity anomaly due to low density within un-dehydrated mud

  11. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault

    USGS Publications Warehouse

    Ben-Avraham, Z.; ten Brink, U.; Bell, R.; Reznikov, M.

    1996-01-01

    The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.

  12. Using gravity data to estimate the density of surface rocks of Taiwan region

    NASA Astrophysics Data System (ADS)

    Lo, Y. T.; Horng-Yen, Y.

    2016-12-01

    Surface rock density within terrain correction step is one of the important parameters for obtaining Bouguer anomaly map. In the past study, we obtain the Bouguer anomaly map considering the average density correction of a wide range of the study area. In this study, we will be the better estimate for the correction of the density of each observation point. A correction density that coincides with surface geology is in order to improve the accuracy of the cloth cover anomaly map. The main idea of estimating correction of the density using gravity data statistics are two method, g-H relationship and Nettleton density profile method, respectively. The common advantages of these methods are in the following: First, density estimating is calculated using existing gravity observations data, it may be avoided the trouble of directly measure the rock density. Second, after the establishment the measuring point s of absolute gravity value, latitude, longitude and elevation into the database, you can always apply its database of information and terrain data with the value to calculate the average rock density on any range. In addition, each measuring point and numerical data of each terrain mesh are independent, if found to be more accurate gravity or terrain data, simply update a document data alone, without having to rebuild the entire database. According the results of estimating density distribution map, the trends are broadly distributed close to Taiwan Geology Division. The average density of the backbone mountain region is about 2.5 to 2.6 g/cm^3, the average density of east Central Mountain Range and Hsuehshan Range are about 2.3 to 2.5 g/cm^3, compared with the western foothills of 2.1-2.3 g/cm^3, the western plains is from 1.8 to 2.0 g/cm^3.

  13. Complex investigations of Mt. Elbrus magmatic center from combination of relative gravity and strain data

    NASA Astrophysics Data System (ADS)

    Kopaev, A.; Gurbanov, A.; Milyukov, V.; Yushkin, V.

    2003-04-01

    We have carried out 2 relative gravity surveys on Mt. Elbrus using quartz Sodin gravimeters and portable GPS receivers in extremely hard conditions with precision of 0.1-0.5 mGal. Its processing included common reduction to Bouguer anomalies as well as topographic correction using DTM with 50 m resolution. Resulting Bouguer anomalies reach 150 mGal near the Elbrus summit at the height of 4600 m and could be interpreted together with previous surveys results as a sign of large and shallow magmatic chamber. We plan to do more observations in 2003 and employ modern so-called ”gravity probability tomography” methods to discriminate between magmatic chamber and supposed caldera. Preliminary results of interpretation of regional gravity field from old gravity data imply the presence of the long (some 50 km) magmatic structure associated with the main magma-generating fault system connecting three magmatic centers in region young and sleeping (Mt. Elbrus, last eruption 1700 years ago), old Syltran (10 000 years) and Tchegem (25 000 years). The same magmatic structure is clearly visible from careful analysis of the tidal strain data from large Baksan laser strain meter recorded during 1998-2002 and processed using the combination of PRETERNA, TSOFT and ETERNA programs with careful taking into account for atmospheric and temperature perturbations. After applying the correction for tidal deformations of topography, resulting anomaly reaches 20 % - 25 % and could be explained by reducing the DVp/Vp ratio by 25 %. Future plans include adding of magnetic and resistivity data that are already available for Mt. Elbrus area. Our investigations have been supported by the RFBR grants ## 02-05-65012 and 00-05-64882.

  14. Lunar crustal analysis of Mare Orientale from topographic and gravity correlations

    NASA Astrophysics Data System (ADS)

    von Frese, Ralph R. B.; Tan, Li; Potts, Laramie V.; Kim, Jeong Woo; Merry, Carolyn J.; Bossler, John D.

    1997-11-01

    We investigated the use of spectral correlation analysis for modeling the crustal features of Mare Orientale from lunar 70th degree spherical harmonic topographic and gravity field models derived from Clementine satellite and earlier investigations. The analysis considered a 64°-by-64° region of the Moon centered roughly on Mare Orientale at an altitude of 100 km. The topography of the study region, which includes over 11 km of relief, was modeled for its gravity effects in lunar spherical coordinates by Gauss-Legendre quadrature integration assuming a terrain density of 2.8g/cm3. We observed substantial positive and negative correlations between terrain gravity effects and free-air gravity anomalies that seriously limit the utility of simple Bouguer gravity anomalies for subsurface studies. Using the wavenumber correlation spectrum between the two data sets, we designed correlation filters to extract the common features. Possible interpretations for the terrain-correlated free-air gravity anomalies include isostatic crustal mass imbalances that may be equilibrated by radial adjustments of the Moho of up to 44 km, assuming Airy-Heiskanen compensation and a mantle density contrast of 0.5g/cm3 with the crust. These Moho adjustments define mass variations that account for most of the mascon and flanking negative free-air gravity anomalies. Furthermore, their remarkable correlation with the topographic rings of Mare Orientale points to the possible influence of a strong local stress field of the crust in the development of the ring structures. Subtracting the terrain-correlated free-air anomalies from the free-air gravity anomalies and terrain gravity effects yielded terrain-decorrelated free-air and isostatically compensated terrain gravity anomalies, respectively, that show zero correlation. This lack of correlation may be interpreted for a Moho that involves over 100 km of relief assuming Airy-Heiskanen compensation of the crust. Beneath Mare Orientale, we

  15. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with

  16. Residual topography and gravity anomalies reveal structural controls on co-seismic slip in the 2011 Mw 9.0 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Watts, A. B.; Sandwell, D. T.; Fialko, Y. A.

    2016-12-01

    The March 2011 Tohoku-oki earthquake was only the second giant (Mw ≥ 9.0) earthquake in the last 50 years and is the most recent to be recorded using modern geophysical techniques. In contrast to previous studies that have proposed global correlations between regions of large seismic moment release with low free-air or residual gravity anomalies, large co-seismic slip in the Tohoku-oki earthquake was strongly focused in regions characterised by positive residual gravity. We integrate residual topography and gravity anomalies with onshore geology to constrain the geological structure of the overthrusting plate in NE Japan. These data reveal an abrupt SW-NE striking forearc segment boundary, across which gravity modelling indicates a south-to-north increase in the density of rocks overlying the megathrust of 150-200 kg m-3. We suggest this boundary represents the offshore continuation of the Median Tectonic Line (MTL), which onshore juxtaposes geological terranes composed of granite-batholiths (north) and accretionary complexes (south). The megathrust north of the MTL is strongly coupled, has a history of large earthquakes (18 with Mw ≥7 since 1896) and produced peak slip exceeding 40 m in the Tohoku-oki earthquake. In contrast, the megathrust south of this boundary is weakly coupled, has not generated an earthquake with Mj ≥7 since 1923, and experienced relatively minor (if any) co-seismic slip in 2011. We show that forearcs are not passive components of subduction zones and propose that the structure and frictional properties of the overthrusting plate control megathrust coupling and seismogenic behavior in NE Japan. This study also highlights the importance of making physical, structural or geological interpretations when relating gravity anomalies to the slip-behavior of subduction thrust faults. The real utility from looking at residual gravity (or topography) anomalies in subduction zones comes from the complete spatial coverage and uniform resolution

  17. An analysis of methods for gravity determination and their utilization for the calculation of geopotential numbers in the Slovak national levelling network

    NASA Astrophysics Data System (ADS)

    Majkráková, Miroslava; Papčo, Juraj; Zahorec, Pavol; Droščák, Branislav; Mikuška, Ján; Marušiak, Ivan

    2016-09-01

    The vertical reference system in the Slovak Republic is realized by the National Levelling Network (NLN). The normal heights according to Molodensky have been introduced as reference heights in the NLN in 1957. Since then, the gravity correction, which is necessary to determine the reference heights in the NLN, has been obtained by an interpolation either from the simple or complete Bouguer anomalies. We refer to this method as the "original". Currently, the method based on geopotential numbers is the preferred way to unify the European levelling networks. The core of this article is an analysis of different ways to the gravity determination and their application for the calculation of geopotential numbers at the points of the NLN. The first method is based on the calculation of gravity at levelling points from the interpolated values of the complete Bouguer anomaly using the CBA2G_SK software. The second method is based on the global geopotential model EGM2008 improved by the Residual Terrain Model (RTM) approach. The calculated gravity is used to determine the normal heights according to Molodensky along parts of the levelling lines around the EVRF2007 datum point EH-V. Pitelová (UELN-1905325) and the levelling line of the 2nd order NLN to Kráľova hoľa Mountain (the highest point measured by levelling). The results from our analysis illustrate that the method based on the interpolated value of gravity is a better method for gravity determination when we do not know the measured gravity. It was shown that this method is suitable for the determination of geopotential numbers and reference heights in the Slovak national levelling network at the points in which the gravity is not observed directly. We also demonstrated the necessity of using the precise RTM for the refinement of the results derived solely from the EGM2008.

  18. Gravity fields in eastern Halmahera and the Bonin Arc: Implications for ophiolite origin and emplacement

    NASA Astrophysics Data System (ADS)

    Milsom, John; Hall, Robert; Padmawidjaja, Tatang

    1996-02-01

    Classic ophiolites, as exemplified by the Troodos Massif in Cyprus and the Papuan Ultramafic Belt in eastern New Guinea, are large overthrust masses which are generally associated with large positive gravity anomalies. However, similar rocks occurring in extensive fragmented terranes which have also been described as ophiolitic do not produce large gravity effects. The eastern part of the island of Halmahera, in northeastern Indonesia, is an ophiolite of this latter type. On the two eastern arms of the island, a Mesozoic ophiolitic basement is overlain by, and imbricated with, Upper Cretaceous and Paleogene arc volcanic and sedimentary rocks. Bouguer gravity values are generally in the range +50 to +150 mGal and are characterised by steep local gradients indicative of shallow sources. The Bouguer gravity average suggests that the crust is at least 20 km thick, and it must be even thicker if a significant part of the anomalous gravity field is due to the presence of a cold and therefore dense, lithospheric slab within the asthenosphere, associated with the present-day subduction beneath Halmahera. The absence of any exposures of continental basement rocks or of quartzose sediments in eastern Halmahera suggests that these ophiolites have not been overthrust onto continental crust and that the thickening occurred in an intraoceanic island arc. The Paleogene arc was evidently characterised by volcanism occurring over an unusually wide area. In this it resembles the Izu-Bonin volcanic arc, which, like Halmahera, has been situated at the margin of the Philippine Sea Plate throughout its history. The gravity field of the Halmahera ophiolite is comparable with that of the Bonin volcanic arc, but there is no Halmahera parallel to the very high gravity fields recorded over the Bonin Islands forearc ridge. The equivalents of this part of the Paleogene arc may be represented by the ophiolitic complexes now distributed along the northern margin of the orogenic belt in New

  19. Gravity survey in part of the Snake River Plain, Idaho - a preliminary report

    USGS Publications Warehouse

    Baldwin, Harry L.; Hill, David P.

    1960-01-01

    During the early summer of 1959, a total of 1,187 gravity stations were occupied on the western part of the Snake River plain in Idaho. An area of 2,000 square miles extending from Glenns Ferry, Idaho, to Caldwell, Idaho, was covered with a station density of one station per two square miles. An additional 1,200 square miles of surrounding area, mainly from Caldwell, Idaho, to the Oregon-Idaho state line, was covered with a density of one station per seven square miles. The mean reproducibility of the observed gravities of these stations was 0.05 milligal, with a maximum discrepancy of 0.2 milligal. Gravity data were reduced to simple Bouguer values using a combined free-air and Bouguer correction of 0.06 milligal per foot. The only anomalies found with closure in excess of 10 milligals are two elongated highs, orientated northwest-southeast, with the northwestern high offset to the northeast by 10 miles. The smaller of these highs extends from Meridian, Idaho, to Nyssa, Oregon, and the larger extends from Swan Falls, Idaho, to Glenns Ferry, Idaho. The maximum value recorded is a simple Bouguer value of -66.5 milligals with respect to the International Ellipsoid. Gradients on the sides of these highs are largest on the northeast sides, reaching six milligals per mile in places. Graticule interpretations of a profile across the southeastern high using a density contrast of 0.3 gm per cubic centimeter indicate an accumulation of lava reaching a thickness of at least 28,000 feet. The Snake River investigation was made for the purpose of searching out, defining, and interpreting gravity anomalies present on the western part of the Snake River lava plain in Idaho. In particular, it was desired to further define gradients associated with the gravity high shown by the regional work of Bonini and Lavin (1957). It was not planned to cover any specific area, but rather to let the observed anomalies determine the course of the field work. The study was undertaken as part of a

  20. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies

    PubMed Central

    Essa, Khalid S.

    2013-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472

  1. Evaluation of Gravity and Aeromagnetic Anomalies for the Deep Structure and Possibility of Hydrocarbon Potential of the Region Surrounding Lake Van, Eastern Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Aydemir, Attila; Ates, Abdullah; Bilim, Funda; Buyuksarac, Aydin; Bektas, Ozcan

    2013-11-01

    The North Anatolian Fault (NAF) is not observed on the surface beyond 40 km southeast of Karliova town toward the western shoreline of Lake Van. Various amplitudes of gravity and aeromagnetic anomalies are observed around the lake and surrounding region. In the gravity anomaly map, contour intensity is observed from the north of Mus city center toward Lake Van. There is a possibility that the NAF extends from here to the lake. Because there is no gravity data within the lake, the extension of the NAF is unknown and uncertain in the lake and to the east. Meanwhile, it is observed from the aeromagnetic anomalies that there are several positive and negative amplitude anomalies aligned around a slightly curved line in the east-west direction. The same curvature becomes much clearer in the analytic signal transformation map. The volcanic mountains of Nemrut and Suphan, and magnetic anomalies to the east of the Lake Van are all lined up and extended with this slightly curved line, provoking thoughts that a fault zone that was not previously mapped may exist. The epicenter of the major earthquake event that occurred on October 23, 2011 is located on this fault zone. The fault plane solution of this earthquake indicates a thrust fault in the east-west direction, consistent with the results of this study. Volcanic mountains in this zone are accepted as still being active because of gas seepages from their calderas, and magnetic anomalies are caused by buried causative bodies, probably magmatic intrusions. Because of its magmatic nature, this zone could be a good prospect for geothermal energy exploration. In this study, the basement of the Van Basin was also modelled three-dimensionally (3D) in order to investigate its hydrocarbon potential, because the first oil production in Anatolia was recorded around the Kurzot village in this basin. According to the 3D modelling results, the basin is composed of three different depressions aligned in the N-S direction and many

  2. Indications of correlation between gravity measurements and isoseismal maps. A case study of Athens basin (Greece)

    NASA Astrophysics Data System (ADS)

    Dilalos, S.; Alexopoulos, J. D.

    2017-05-01

    In this paper, we discuss the correlation between isoseismal contour maps and gravity residual anomaly maps and how it might contribute to the characterization of vulnerable areas to earthquake damage, especially in urban areas, where the geophysical data collection is difficult. More specifically, we compare a couple of isoseismal maps that have been produced and published after the catastrophic earthquake of 7th September 1999 (5.9R) in Athens, the metropolis of Greece, with the residual map produced from the processing and data reduction of a gravity survey that has been carried out in the Athens basin recently. The geologic and tectonic regime of the Athens basin is quite complicated and it is still being updated with new elements. Basically it is comprised of four different geotectonic units, one of them considered as the autochthon. During the gravity investigation, 807 gravity stations were collected, based on a grid plan with spacing almost 1 km, covering the entire basin and supported by a newly established gravity base network comprised by thirteen bases. Differential DGPS technique was used for the accurate measurement of all the gravity stations and bases coordinates. After the appropriate data reduction and the construction of the Complete Bouguer Anomaly map, we applied FFT filtering in order to remove the regional component and produce the Residual Anomaly Map. The comparison of the Residual Anomaly Map with the isoseismal contours revealed that the areas with the most damage because of the earthquake were located in the areas with the minimum values of the Residual Anomaly Map.

  3. GRAIL Gravity Observations of Peak-Ring Basins on the Moon: Implications for Basin Formation

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Head, J. W.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-12-01

    Reassessment of the formation of peak-ring basins on the Moon using image and altimetry data from the Lunar Reconnaissance Orbiter has yielded a number of morphometric properties of these basin types that are helping to constrain the processes leading to their formation and the formation of larger multi-ring basins [1,2]. These analyses demonstrate the importance of the volume and depth of impact melting in modifying the interior morphology of large impact craters. At the onset diameter of peak-ring basins, the depth of the basin's melted zone approaches the depth of the transient crater, creating a strengthless interior melt cavity that facilitates gravitational collapse of the transient crater. The melt cavity suppresses central peak formation, and peak rings are formed outward from the melt zone boundary by the interaction of deep-seated rotational faults in the collapsing wall of the transient crater and huge vertical uplifts in the central portions of the basin. The final configuration of the peak-ring basin has a kilometers-thick slab of cooled residual impact melt resting on an uplifted mantle plug with little or no unmelted crustal material. Highly faulted and fractured, dilatant and possibly thickened crust should occur below and outward from the peak ring due to inward and upward translation of collapsed transient crater rim material. As a result of this configuration, the gravity structure should reflect an anomalously high density, uplifted impact melt plus mantle zone spatially confined to within the peak ring. Surrounding this should be a highly fractured, low density zone of possibly thickened crust. Bouguer gravity anomalies derived from Gravity Recovery and Interior Laboratoy (GRAIL) gravity data and Lunar Orbiter Laser Altimeter (LOLA) altimetry data show spatial patterns that are consistent with those predicted by the formation model briefly outlined above. Nearly all 17 peak-ring basins that have been cataloged on the Moon show positive Bouguer

  4. The Emerson Lake Body: A link between the Landers and Hector Mine earthquakes, southern California, as inferred from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.

    2002-01-01

    Gravity and magnetic data indicate a mafic crustal heterogeneity that lies between the Hector Mine 16 October 1999 (Mw 7.1) and Landers 28 June 1992 (Mw 7.3) epicenters. The aftershocks and ruptures of these two events avoided the interior of the body. Two- and three-dimensional modeling of the potential-field anomalies shows that the source, here named the Emerson Lake body (ELB), extends to a depth of approximately 15 km. The source of the gravity and magnetic anomaly is most likely Jurassic diorite because exposures of these rocks coincide with both gravity and magnetic highs west of Emerson Lake. Seismic tomography also shows higher velocities within the region of the ELB. We propose that the ELB was an important influence on the rupture geometry of the Landers and Hector Mine ruptures and that the ELB may have played a role in transferring of stress from the Landers earthquake to the Hector Mine hypocenter. Seismicity before the Landers earthquake also tended to avoid the ELB, suggesting that the ELB affects how strain is distributed in this part of the Mojave Desert. Thus, faults within the body should have limited rupture sizes and lower seismic hazard than faults bounding or outside this mafic crustal heterogeneity.

  5. 3-D inversion of gravity data in spherical coordinates with application to the GRAIL data

    NASA Astrophysics Data System (ADS)

    Liang, Qing; Chen, Chao; Li, Yaoguo

    2014-06-01

    Three-dimensional (3-D) inversion of gravity data has been widely used to reconstruct the density distributions of ore bodies, basins, crust, lithosphere, and upper mantle. For global model of 3-D density structures of planetary interior, such as the Earth, the Moon, or Mars, it is necessary to use an inversion algorithm that operates in the spherical coordinates. We develop a 3-D inversion algorithm formulated with specially designed model objective function and radial weighting function in the spherical coordinates. We present regional and global synthetic examples to illustrate the capability of the algorithm. The inverted results show density distribution features consistent with the true models. We also apply the algorithm to a set of lunar Bouguer gravity anomaly derived from the Gravity Recovery and Interior Laboratory (GRAIL) gravity field and obtain a lunar 3-D density distribution. High-density anomalies are clearly identified underlying lunar basins, a wide region of the lateral density heterogeneities that exist beneath the South Pole-Aitken basin are found, and low-density anomalies are distributed beneath the Feldspathic Highlands Terrane on the lunar far-side. The consistency of these results with those obtained independently from other existing methods verifies the newly developed algorithm.

  6. Analysis of gravity data in Central Valleys, Oaxaca, southern, Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Ferrusquia, I.

    2015-12-01

    The region known as Central Valleys is located in the state of Oaxaca, southern, Mexico (16.3o- 17.7 o N Lat. and 96 o - 97 o W Long.) In its central portion is settled the capital of the state. There are very few published detailed geological studies.. Geomorphological and geological features, indicates that Central Valleys and surrounding mountains conform a graben structure. Its shape is an inverted Y, centred on Oaxaca City. The study area was covered by a detailed gravity survey with a homogenous distribution of stations. The Bouguer gravity map is dominated by a large gravity low, oriented NW-SE. In order to know the characteristics of anomalies observed gravity, data transformations were used. The use of spectral methods has increased in recent years, especially for the estimation of the depth of the source. Analysis of the gravity data sheds light on the regional depth of the Graben basement and the spatial distribution of the volcanic rocks

  7. OCT structure, COB location and magmatic type of the SE Brazilian & S Angolan margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.; Horn, B.

    2013-12-01

    Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are

  8. Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California: Implications for arc and backarc evolution

    USGS Publications Warehouse

    Blakely, R.J.; Christiansen, R.L.; Guffanti, M.; Wells, R.E.; Donnelly-Nolan, J. M.; Muffler, L.J. Patrick; Clynne, M.A.; Smith, James G.

    1997-01-01

    Isostatic residual gravity anomalies in the southern Cascade Range of northern California and southern Oregon are spatially correlated with broad zones of Quaternary magmatism as reflected by the total volume of Quaternary volcanic products, the distribution of Quaternary vents, and the anomalously low teleseismic P wave velocities in the upper 30 km of crust. The orientation of Quaternary faults also appears to be related to gravity anomalies and volcanism in this area, trending generally north-south within the magmatic regions and northwest-southeast as they enter the neighboring amagmatic zones to the north and south. The relationship between gravity anomalies, vent density, and fault orientations may indicate in a broad sense the strength of the middle and upper crust. The southern Cascade Range occupies a transition zone where horizontal stress is transferred from the northwest-southeast dextral shear of the Walker Lane belt to the east-west extension characteristic of the Cascade arc in central Oregon. Faulting along north-south strikes in the volcanically active areas indicates the east-west extensional stresses in thermally weakened crust, whereas northwest faulting between the volcanically active areas reflects the northwest trending, right lateral shear strain of the Walker Lane belt. The segmentation of the arc reflected in Quaternary magmatism may be caused by differential extension behind crustal blocks of the forearc rotating clockwise with respect to North America. In this view the volcanic centers at Mount Shasta, Medicine Lake volcano, and Lassen Peak in northern California are situated along the southern parts of the trailing edges of two distinct segments of the forearc where additional extension is implied by their differential clockwise rotation. U.S. copyright. Published in 1997 by the American Geophysical Union.

  9. Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California: Implications for arc and backarc evolution

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.; Christiansen, Robert L.; Guffanti, Marianne; Wells, Ray E.; Donnelly-Nolan, Julie M.; Muffler, L. J. Patrick; Clynne, Michael A.; Smith, James G.

    1997-10-01

    Isostatic residual gravity anomalies in the southern Cascade Range of northern California and southern Oregon are spatially correlated with broad zones of Quaternary magmatism as reflected by the total volume of Quaternary volcanic products, the distribution of Quaternary vents, and the anomalously low teleseismic P wave velocities in the upper 30 km of crust. The orientation of Quaternary faults also appears to be related to gravity anomalies and volcanism in this area, trending generally north-south within the magmatic regions and northwest-southeast as they enter the neighboring amagmatic zones to the north and south. The relationship between gravity anomalies, vent density, and fault orientations may indicate in a broad sense the strength of the middle and upper crust. The southern Cascade Range occupies a transition zone where horizontal stress is transferred from the northwest-southeast dextral shear of the Walker Lane belt to the east-west extension characteristic of the Cascade arc in central Oregon. Faulting along north-south strikes in the volcanically active areas indicates the east-west extensional stresses in thermally weakened crust, whereas northwest faulting between the volcanically active areas reflects the northwest trending, right lateral shear strain of the Walker Lane belt. The segmentation of the arc reflected in Quaternary magmatism may be caused by differential extension behind crustal blocks of the forearc rotating clockwise with respect to North America. In this view the volcanic centers at Mount Shasta, Medicine Lake volcano, and Lassen Peak in northern California are situated along the southern parts of the trailing edges of two distinct segments of the forearc where additional extension is implied by their differential clockwise rotation.

  10. Gravity and magnetic anomalies of the western Arctic ocean and its margins provide an imperfect window to a complex, multi-stage tectonic history (Invited)

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Miller, E. L.; Gaina, C.

    2010-12-01

    Numerous scenarios are still in play for the tectonic development of the western Arctic. A wide range of kinematic models have been proposed for the opening of the Canadian basin. These models feature different combinations and geometries of extensional and transform motion and have informal descriptive names including the so-called ‘windshield wiper’, ‘railroad tracks’, ‘squeegee’, and ‘saloon door’ options. Another controversial issue is the timing and role of the gigantic Alpha-Mendeleev large igneous province relative to the tectonic stages. In our opinion, many current Arctic models have not adequately dealt with the mass and thermal fluxes implied by this huge province. Available data are extremely sparse for the circum-Arctic, although current political and economic interests are fueling accelerated data collection. Recent compilations of gravity and magnetic data are currently the best bets for synoptic imaging, however imprecise, of crustal composition and structure. Modeling and interpretation of regional geophysical anomalies provide some of the only available tests for scenario evaluation in the absence of more direct determinations of crustal structure and composition. Our goal in this talk is to review the key geophysical features of the western Arctic and relate these elements to the expectations of competing tectonic models. These key geophysical features include (1) contrasting Arctic domains of overall magnetic “thickness” and anomaly “fabric” (the domains correlate generally with broad tectonic categories); (2) cryptic sub-linear magnetic anomalies in the Canada basin (interpreted by some authors to be oceanic stripes); (3) a subtle but persistent gravity trough in the central Canada basin (inferred by some authors to represent an extensional trough); (4) spectacular “shelf edge” free-air gravity anomalies along the Canadian and Alaskan passive margins that show significant along-strike variation (which can be

  11. Gravity survey in the eastern Snake River Plain, Idaho - a progress report

    USGS Publications Warehouse

    LaFehr, Thomas R.

    1961-01-01

    A regional gravity survey in the eastern Snake River Plain was conducted in the early summer of 1961. Seven hundred and seven gravity stations were established between latitudes 42?15N and 4415N and 44?30N between longitudes 111?30W and 114?30W. Three hundred and twenty-five of these stations were located in 2,700 square miles of the eastern part with an average density of one station per 8.3 square miles. The remaining 9,300 square miles were covered by several lines, with an average lineal density of one station per 2.0 miles. A simple-Bouguer gravity contour map has been made of the area by standard methods. The low gravity relief and broad high of the eastern Snake River Plain strongly contrasts with the high amplitude anomalies of the western plain. The major anomalies of the eastern plain consist of 1) a broad high, which is an extension of the large gravity highs of the western plain, 2) a set of elongated alternating lows and highs that trend normal to the axis of the eastern plain, 3) a series of small, local highs on the boundary of the plain, and 4) a prominent low centered over Mud Lake in the northern part of the surveyed area. The basalts of the eastern plain have probably filled troughs or valleys in an undulating subsurface floor rather than a large regional graben.

  12. Geomodel constructs of the Earth's crust for water continuation of the Korotaikha depression from gravity and magnetic data for revealing promising areas of oil and gas accumulation

    NASA Astrophysics Data System (ADS)

    Litvinova, Tamara; Kudryavtsev, Ivan

    2016-04-01

    The paper considers the results of re-interpretation of geophysical data within the water continuation of the Korotaikha depression. To solve the issue of identifying promising areas of oil and gas accumulation in the region, magnetic and gravity materials were reprocessed: digital maps of potential fields at 1: 500 000 scale were compiled on a frame network of seismic lines (3 lines on land and 3 lines in water area) made by reflection-CDP, density models to a depth of 20 km by solving the direct problem of gravity prospecting in GM-SYS module (Geosoft) in 2D formulation were constructed. Deep reflection-CDP seismic sections specified according to the deep wells were used as starting models. Correctness of the selected density models was controlled by comparing the theoretical curve with the values interpolated on the profile line from the digital model of gravity anomaly (Bouguer, density of the intermediate layer of 2.67 g/cm3). Magnetic modeling was performed using geometry of blocks from the obtained density models to a depth of 20 km and is based on selection of local anomaly sources in the upper section (in the Triassic strata). Blocks of the Precambrian basement were used as sources of regional magnetic anomalies in the considered models. Modeling constructs show the defining role of the topography of terrigenous and carbonate complex boundary within the Paleozoic section as a source of gravity anomalies for the region under study. These findings are confirmed by comparison of gravity and seismic data (maps of local gravity anomalies and structural maps of reflecting horizons) and additionally substantiated by analysis of the nature of local magnetic anomalies distribution. The latter are associated with the Triassic basalt horizons at the top of the terrigenous complex and thus also reflect structures of the sedimentary cover, which are registered independently by gravity data.

  13. Gravity survey in the western Snake River Plain, Idaho-a progress report

    USGS Publications Warehouse

    Hill, David P.; Jacobson, Jimmy J.

    1961-01-01

    From June 24 through August 16, 1960, a regional gravity survey was made in 3,600 square miles of the Snake River Plain in southwestern Idaho. Six hundred and seventy-two gravity stations were established between latitudes 42?30N and 43?30N and between longitudes 115?15W and 116?15W at an average density of one station per 5.4 square miles. The data were reduced to simple-Bouguer gravity by standard methods and plotted as a gravity contour map. Three major anomalies were defined by the survey; two 30-mile long, en echelon gravity highs with amplitudes of 15 and 50 milligals, and one elongated gravity low with an amplitude of -10 milligals. A two-dimensional graticule analysis suggests that the highs are caused by vertical slabs of dense rock (probably basalt), the larges about 4 miles wide, about 30 miles long, and extending from about 1,000 feet (0.3 kilometer) below sea level to about 66,000 feet (20 kilometers) below sea level. A possible geological interpretation is that the vertical slabs are large, en echelon, basalt-filled fissures or zones of fissures in the earths crust. The gravity low is attributed to an alluvium-filled trough about 5,000 feet (1.5 kilometers) deep.

  14. Airborne Gravity Measurements using a Helicopter with Special Emphases on Delineating Local Gravity Anomalies Mainly for Detecting Active Seismic Faults (Invited)

    NASA Astrophysics Data System (ADS)

    Segawa, J.

    2010-12-01

    The first aerial gravity measurement in Japan started in 1998 using a Japanese airborne gravimeter ‘ Segawa-TKeiki airborne gravimeter Model FGA-1’. We lay emphasis on the measurement of detailed gravity structures at the land-to-sea border areas and mountainous areas. This is the reason why we use a helicopter and make surveys at low altitude and low speed. We have so far made measurement at twelve sites and the total flight amounts to 20,000km. The accuracy of measurement is 1.5 mgal and half-wavelength resolution is 1.5 km. The Japanese type gravimeter consists of a servo-accelerometer type gravity sensor, a horizontal platform controlled by an optical fiber gyro, GPS positioning system, and a data processing system. Helicopter movement has to be precisely monitored three-dimensionally to calculate the vehicle’s acceleration noises. The necessary accuracy of positioning of the vehicle must be better than 10 cm in positioning error. Our helicopter gravity measurement has a special target in Japan to investigate active seismic faults located across land-to-sea borderlines. In Japan, it is generally thought that gravity over most of the country has already been measured by the governmental surveys, leaving the land-sea border lines and mountainous zones unsurveyed as difficult-to-access areas. In addition the use of airplane or helicopter in Japan appeared disadvantageous because of the narrowness of the Japanese Islands. Under such situations the author thought there still remained a particular as well as unique need for aerial gravity measurement in Japan, i.e. the need for detailed and seamless knowledge of gravity structures across land-to-sea border lines to elucidate complicated crustal structures of the Japanese Islands as well as distribution of active seismic faults for disaster prevention. The results of gravity measurements we have conducted so far include those of 12 sites. In the following the brief logs of our measurements are listed. 1)April

  15. Submarine structure of Reunion Island (Indian Ocean) inferred from gravity

    NASA Astrophysics Data System (ADS)

    Gailler, L.; Lénat, J.

    2008-12-01

    La Reunion is a large (diameter: 220 km; height: 7 km), mostly immerged (97%) oceanic volcanic system. New land and marine gravity data are used to study the structure of its submarine part. The gravity models are interpreted jointly with the published geology interpretations and compared with magnetic models. This allows us to derive a new model of the shallow and internal structure of the submarine flanks. Recent cruises have collected high quality gravity, magnetic and multi-beam swath bathymetry data over the submarine flanks of La Réunion and the surrounding oceanic plate. A new Bouguer anomaly map has been computed for a reduction density of 2.67.103 kg m-3. A magnetic anomalies map covering the same area has been also built. Studies based on bathymetric and acoustic data have previously shown the presence of different types of submarine features: a coastal shelf, huge bulges built by debris avalanches and sediment deposits, erosion canyons, volcanic constructions near the coast, isolated seamounts offshore, and elongate volcanic ridges on the Mascarene plate. On the new Bouguer anomaly map, all these features are associated with negative anomalies. They have been modeled using 2 3/4 D modeling techniques. The short wavelength anomalies over the coastal shelf area can be explained by piles of low density layers. This suggests that they are mostly built by hyaloclastites which are generally characterized by lower densities than lava flows. The voluminous debris avalanche deposits which formed the huge Submarine Bulges to the east, north, west, and south of the island have also been modeled as low density formations. Each bulge is modeled with an overall density less than 2.67.103 kg m-3, in order to account for its long wavelength anomaly. Some shorter wavelength features are superimposed on these long wavelength negative anomalies. They probably represent heterogeneities within the bulges. Some shallow ones can be associated with observed surface geological

  16. Importance of the Decompensative Correction of the Gravity Field for Study of the Upper Crust: Application to the Arabian Plate and Surroundings

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2017-01-01

    The isostatic correction represents one of the most useful "geological" reduction methods of the gravity field. With this correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. However, even this reduction does not show the full gravity effect of unknown anomalies in the upper crust since their impact is substantially reduced by the isostatic compensation. We analyze a so-called decompensative correction of the isostatic anomalies, which provides a possibility to separate these effects. It was demonstrated that this correction is very significant at the mid-range wavelengths and may exceed 100 m/s2 (mGal), therefore ignoring this effect would lead to wrong conclusions about the upper crust structure. At the same time, the decompensative correction is very sensitive to the compensation depth and effective elastic thickness of the lithosphere. Therefore, these parameters should be properly determined based on other studies. Based on this technique, we estimate the decompensative correction for the Arabian plate and surrounding regions. The amplitude of the decompensative anomalies reaches ±250 m/s2 10-5 (mGal), evidencing for both, large density anomalies of the upper crust (including sediments) and strong isostatic disturbances of the lithosphere. These results improve the knowledge about the crustal structure in the Middle East.

  17. Spherically symmetric sector of self-dual Ashtekar gravity coupled to matter: Anomaly-free algebra of constraints with holonomy corrections

    NASA Astrophysics Data System (ADS)

    Ben Achour, Jibril; Brahma, Suddhasattwa; Marcianò, Antonino

    2017-07-01

    Using self-dual Ashtekar variables, we investigate (at the effective level) the spherically symmetry reduced model of loop quantum gravity, both in vacuum and when coupled to a scalar field. Within the real Ashtekar-Barbero formulation, the system scalar field coupled to spherically symmetric gravity is known to possess a non closed (quantum) algebra of constraints once local (pointwise) holonomy corrections are introduced, which leads to several obstructions in the loop quantization of the model. Moreover, the vacuum case, while not anomalous, introduces modifications which have been suggested to be an effective signature change of the metric in the deep quantum region. We show in this paper that both those complications disappear when working with self-dual Ashtekar variables, both in the vacuum case and in the case of gravity minimally coupled to a scalar field. In this framework, the algebra of the holonomy corrected constraints is anomaly free and reproduces the classical hypersurface deformation algebra without any deformations. A possible path towards quantization of this model is briefly discussed.

  18. Gravity anomaly across the Yap Trench, Sorol Trough, and southernmost Parece Vela Basin and its implications for the flexural deformation of the lithosphere and regional isostasy

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, S.; Okino, K.; Koizumi, K.

    2005-12-01

    In June 2005, R/V Hakuho-maru (KH05-01-Leg 3) conducted a geological and geophysical survey of the southern tip of the Parece Vela Basin (PVB). The survey also profiled the Yap trench, the Yap arc and back-arc region, and Sorol Trough and collected multibeam bathymetry, gravity and magnetic data. In addition, one multichannel seismic reflection profiling across the Yap trench and two dredge rock samplings in the southwestern PVB were carried out. The shipboard free-air gravity field was measured by ZLS Dynamic Gravity Meter D-004 with calibration ties performed at Ocean Research Institute, University of Tokyo and at Apra Harbor in Guam. The shipboard gravity anomaly data show clear match with those derived from satellite altimetry. Also included in our analysis is the shipboard gravity data previously collected by R/V Onnuri. The Yap trench is unique in that it has a short trench-arc distance (approx. 50 km). This proximity has long been interpreted as feature resulting from a collision of over-thickened Caroline Ridge with the trench. In recent years, however, a new hypothesis has been put forward that such feature can be explained by initiation or rejuvenation of subduction, and that the style of subduction changes between north and south of the Sorol Trough. Our survey also revealed peculiar hook-shaped structures in the southernmost PVB and other evidences for large-scale, complex rotational deformation on the seafloor, whose origin remains unclear at this stage. To better understand the nature of these structures and features across Yap trench, Sorol Trough and in southernmost PVB, we examine the regional isostasy using the recently collected bathymetric and gravity data. The density information is deduced from studies conducted at other subduction systems, including Izu-Bonin Mariana trench, and from our own seismic experiment. Preliminary analysis shows that much of the features may be maintained by the flexural rigidity of the lithosphere, especially near

  19. Structure of the Tucson Basin, Arizona from gravity and aeromagnetic data

    USGS Publications Warehouse

    Rystrom, Victoria Louise

    2003-01-01

    Interpretation of gravity and high-resolution aeromagnetic data reveal the three-dimensional geometry of the Tuscson Basin, Arizona and the lithology of its basement. Limited drill hole and seismic data indicate that the maximum depth to the crystalline basement is approximately 3600 meters and that the sedimentary sequences in the upper ~2000 m of the basin were deposited during the most recent extensional episode that commenced about 13 Ma. The negative density contrasts between these upper Neogene and Quaternary sedimentary sequences and the adjacent country rock produce a Bouguer residual gravity low, whose steep gradients clearly define the lateral extent of the upper ~2000m of the basin. The aeromagnetic maps show large positive anomalies associated with deeply buried, late Cretaceous-early Tertiary and mid-Tertiary igneous rocks at and below the surface of the basin. These magnetic anomalies provide insight into the older (>13 Ma) and deeper structures of the basin. Simultaneous 2.5-dimensional modeling of both gravity and magnetic anomalies constrained by geologic and seismic data delineates the thickness of the basin and the dips of the buried faults that bound the basin. This geologic-based forward modeling approach to using geophysical data is shown to result in more information about the geologic and tectonic history of the basin as well as more accurate depth to basement determinations than using generalized geophysical inversion techniques.

  20. Imaging of subsurface lineaments in the southwestern part of the Thrace Basin from gravity data

    NASA Astrophysics Data System (ADS)

    Aydogan, D.; Pinar, A.; Elmas, A.; Bal, O. Tarhan; Yuksel, S.

    2013-04-01

    Linear anomalies, as an indicator of the structural features of some geological bodies, are very important for the interpretation of gravity and magnetic data. In this study, an image processing technique known as the Hough transform (HT) algorithm is described for determining invisible boundaries and extensions in gravity anomaly maps. The Hough function implements the Hough transform used to extract straight lines or circles within two-dimensional potential field images. It is defined as image and Hough space. In the Hough domain, this function transforms each nonzero point in the parameter domain to a sinusoid. In the image space, each point in the Hough space is transformed to a straight line or circle. Lineaments are depicted from these straight lines which are transformed in the image domain. An application of the Hough transform to the Bouguer anomaly map of the southwestern part of the Thrace Basin, NW Turkey, shows the effectiveness of the proposed approach. Based on geological data and gravity data, the structural features in the southwestern part of the Thrace Basin are investigated by applying the proposed approach and the Blakely and Simpson method. Lineaments identified by these approaches are generally in good accordance with previously-mapped surface faults.

  1. 3D gravity interpretation of the pre-Tertiary basement in the intramontane depressions of the Western Carpathians: a case study from the Turiec Basin

    NASA Astrophysics Data System (ADS)

    Bielik, Miroslav; Krajňák, Martin; Makarenko, Irina; Legostaeva, Olga; Starostenko, Vitaly I.; Bošanský, Marián; Grinč, Michal; Hók, Jozef

    2013-10-01

    New results related to the thickness and density of the sedimentary fill of the Turiec Basin allowed us to construct the first original stripped gravity map for this typical intramontane Neogene depression of the Western Carpathians. The stripped gravity map of the Turiec Basin represents the Bouguer gravity anomalies corrected for the gravity effect of the density contrast of its Quaternary-Tertiary sedimentary basin fill. It means that the map reflects the gravity effects of the density inhomogeneities which are located beneath the sedimentary basin fill. This map is therefore suitable for the interpretation of the structure and composition of the pre-Tertiary basement. Based on the new data analysis, two different density models of the sedimentary fill were constructed. The 3D density modelling was used to calculate the gravity effect of the density models. The stripped gravity maps were produced by subtracting the density model gravity effects from Bouguer anomalies. The regional trend was also removed from the stripped gravity maps. The residual stripped gravity maps were consequently used for geological interpretation of the pre-Tertiary basement of the Turiec Basin. The pre-Tertiary basement of the Turiec Basin can be divided into northern and southern parts due to its gravity characteristics. Furthermore the northern part can be split into two domains: western and eastern. The crystalline basement of the western domain is probably formed by the Hercynian crystalline basement of the Tatric Unit. In the eastern domain the basement could consist mostly of the Mesozoic complexes of the Fatric Unit. The southern part of the pre-Tertiary basement of the Turiec Basin is built predominantly by Mesozoic complexes of the Hronic Unit. It is suggested that the Hronic Unit also forms the bedrock of the volcano-sedimentary complex of the Kremnické vrchy Mts. The resultant stripped gravity maps and the map of total horizontal gravity gradients have also proven to be very

  2. Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei

    2017-02-01

    The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.

  3. Crustal modeling of the central part of the Northern Western Desert, Egypt using gravity data

    NASA Astrophysics Data System (ADS)

    Alrefaee, H. A.

    2017-05-01

    The Bouguer anomaly map of the central part of the Northern Western Desert, Egypt was used to construct six 2D gravity models to investigate the nature, physical properties and structures of the crust and upper mantle. The crustal models were constrained and constructed by integrating results from different geophysical techniques and available geological information. The depth to the basement surface, from eight wells existed across the study area, and the depth to the Conrad and Moho interfaces as well as physical properties of sediments, basement, crust and upper mantle from previous petrophysical and crustal studies were used to establish the gravity models. Euler deconvolution technique was carried on the Bouguer anomaly map to detect the subsurface fault trends. Edge detection techniques were calculated to outlines the boundaries of subsurface structural features. Basement structural map was interpreted to reveal the subsurface structural setting of the area. The crustal models reveals increasing of gravity field from the south to the north due to northward thinning of the crust. The models reveals also deformed and rugged basement surface with northward depth increasing from 1.6 km to 6 km. In contrast to the basement, the Conrad and Moho interfaces are nearly flat and get shallower northward where the depth to the Conrad or the thickness of the upper crust ranges from 18 km to 21 km while the depth to the Moho (crustal thickness) ranges from 31.5 km to 34 km. The crust beneath the study area is normal continental crust with obvious thinning toward the continental margin at the Mediterranean coast.

  4. Integration of magnetic, gravity, and well data in imaging subsurface geology in the Ksar Hirane region (Laghouat, Algeria)

    NASA Astrophysics Data System (ADS)

    Farhi, Walid; Boudella, Ammar; Saibi, Hakim; Bounif, Mohand Ou Abdallah

    2016-12-01

    Gravity and magnetic surveys, comprised of data from 985 gravity stations and 1373 magnetic stations, were recorded in the Ksar Hirane region in Laghouat, Algeria from May-August 2011 to study the poorly understood thickness of the sedimentary rocks and the structure of the basement rocks. The Bouguer anomalies vary from -48 mGal (northwest) to -58 mGal (southeast) and the magnetic intensities from 42,094 nT (northwest) to 42,344 nT (southeast). The constrained two-dimensional (2-D) forward modeling, three-dimensional (3-D) inversion of measured gravity and magnetic datasets helped us highlight the structure of the basement rocks at Ksar Hirane and determine the thickness of the sedimentary cover. Prominent NE-SW-trending geophysical anomalies that affect the study area were revealed by potential field gradient methods and were in agreement with the geological structure trends. The 3-D constrained inversion of magnetic data showed magnetized Precambrian metamorphic basement rock at shallow depths (approximately 3 km) in the southeast region and deeper (>10 km) in the northwestern part of the region, presenting similar results to that of the 2-D forward modeling of gravity and magnetic data. The inverted gravity data explain the structural architecture of the Ksar Hirane area, dissected by NE-SW sub-vertical faults.

  5. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    SciTech Connect

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig; Wells, Ray E.; Rohay, Alan C.

    2013-11-13

    Magnetic and gravity data, collected in south-central Washington near the Yakima Fold and Thrust Belt (YFTB) are used to model upper crustal structure, the extent of the late Columbia River Basalt flow named the Ice Harbor member, the vertical conduits (dikes) that the Ice Harbor erupted from, and whether the dikes are offset or affected by faulting on the Wallula Fault zone.

  6. Gravity anomalies near the east Pacific rise with wavelengths shorter than 3300 km recovered from GEOS-3/ATS-6 satellite-to-satellite Doppler tracking data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Marsh, B. D.; Conrad, T. D.; Wells, W. T.; Williamson, R. G.

    1977-01-01

    The velocity of the GEOS-3 satellite measured by Doppler as a function of time from the ATS-6 satellite was used to recover gravity anomalies in the region of the East Pacific. The orbit GEOS-3 at an altitude of 840 km was perturbed by spatial changes in Earth's gravitational field. These perturbations were measured via ATS-6 which is in a synchronous orbit at an altitude of about 40,000 km. The range-rate data were reduced using a gravitational field model complete to the 12 degree and order. A simulation of the possible effects causing the remaining range-rate residuals relative to the 12, 12 field shows that in general the dominant effect is the neglect of the higher degree and order coefficients of the gravitational field model.

  7. Correlations between gravity anomaly, preseismic locking and coseismic slip during the 2014 Mw8.2 Pisagua/Iquique earthquake and implications for the frictional structure of the Central Andean megathrust

    NASA Astrophysics Data System (ADS)

    Tassara, A.; Moreno, M.; Bedford, J. R.

    2014-12-01

    Gravity anomalies at subduction zones and the degree of megathrust locking inverted from geodetic data have been individually correlated with coseismic asperities ruptured by great earthquakes. The time-scale of both observables varies from millions of years in the case of gravity to years for geodetic locking. Since the relationship between these different proxies of plate coupling has not been established, it is unclear whether megathrust asperities are permanent or transient features, and therefore the combined use of these proxies for seismic hazard assessment remains problematic. Here we show that the area ruptured by the April 1st 2014 Mw8.2 Pisagua/Iquique earthquake at the Central Andean subduction zone coincides with an anomalous region of the northern Chile seismic gap where the degree of preseismic fault locking was much larger than what could be expected from the value of its gravity anomaly. Preseismic locking and coseismic slip were inverted from GPS observations using a finite element approach with a realistic slab geometry derived from a 3D density model. The same model was used to compute the slab gravity effect that was subtracted from a global geopotential model (EGM2008) in order to obtain a residual gravity anomaly due to lateral variations of forearc density structure. We suppose that locking and gravity must be positively correlated as could be inferred if regions of low/high forearc density would induce small/large vertical stresses on the megathrust. We found that the location of the main coseismic slip patch almost perfectly matches a region of anomalously high locking compared with its gravity anomaly. This result favors a conceptual model where regions of low gravity anomaly are caused by a low-density forearc that imposes a low normal stress loading the megathrust, which promotes a conditionally-stable frictional regime. Under this regime the megathrust creeps aseismically during certain time after a great earthquake but can eventually

  8. Spatial dispersion effects in spectral line broadening by pressure. I. The Bouguer Law and absorption coefficient

    SciTech Connect

    Cherkasov, M.R.

    1995-04-01

    Based on the general principles of semiclassical electrodynamics, the Bouguer law is derived, and the expression for the absorption coefficient is obtained, formally including all effects related to the phenomenon of spatial dispersion.

  9. Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizia; Braitenberg, Carla; Ussami, Naomi

    2013-08-01

    Seismologic observations in the last decades have shown that the crustal thickness in Paraná basin locally is over 40 km thick, which is a greater value than expected by the simple isostatic model considering the topographic load. The goal of this work is to explain this apparent discrepancy by modeling the internal crustal density anomalies through the gravity field. We use the latest Earth Gravity Model derived from the observations of the GOCE satellite mission, to retrieve the gravity anomaly and correct it for topographic effects, thus obtaining the Bouguer field. We then model the gravity effect of known stratigraphic units and of the seismological crustal thickness. The large Paraná basin comprises over 3500 m of Paleozoic sedimentary sequence with density between 2400 and 2600 kg/m3. During the Early Cretaceous the same basin was affected by a large amount of igneous activity with a volume of over 0.1 Mkm3. The flood basalt volcanism is known as the Serra Geral Formation, and has a maximum thickness of 1500 m. The stratigraphic units of the basin are topped by post-volcanic deposits of the Bauru Group, of about 300 m thickness, located in the northern part of the basin. The density and thickness of the sedimentary sequence are constrained by sonic logs of drill-holes and exploration seismic. We use the crustal thickness estimated from the newest seismological results for South America to calculate its gravity effect. Further we model the isostatic crustal thickness variation, allowing the comparison between a seismological Moho, an isostatic Moho, and a gravity-based Moho. We find that there is a clear positive Bouguer residual anomaly located in the northern and southern part of the Paraná basin, indicating the presence of a hidden mass, not considered up to now. We propose a model that explains this mass as magmatic rock, probably gabbro in lower crust, with density contrast of 200 kg/m3 and thickness of more than 10 km, thus demonstrating that the

  10. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    NASA Astrophysics Data System (ADS)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  11. Main crustal discontinuities of Morocco derived from gravity data

    NASA Astrophysics Data System (ADS)

    Khattach, D.; Houari, M. R.; Corchete, V.; Chourak, M.; El Gout, R.; Ghazala, H.

    2013-08-01

    Sharp linear gradients in maps of potential field data are generally assumed to result from sharp discontinuities or boundaries between rocks having different densities or magnetic susceptibilities and are usually associated with faults or other geological contacts. The computation of the horizontal gradients of the gravity field permits us to localize the limits of such blocks and then the fault locations. The horizontal derivative maxima of the Bouguer anomaly and its upward continuation at several heights show lineaments that could reflect the layout of faults and/or contacts and their dip directions. The application of this method to the Bouguer anomaly map of Morocco (with 19,571 points, using an average crustal density ρ = 2.67 g/cm3) allowed us to perform a multiscale analysis of the gravimetric lineaments of the country. The obtained structural map is consistent with several faults already identified in previous studies, and highlights five new major subsurface faults systems with location and dip: the Saghro fault system; Bou-Arfa Midelt fault system; Sidi Slimane Mezquitem fault; Ksar El Kebir-Chefchaouen fault and the Rifan West Mediterranean fault. In addition, this study suggests a new shape and localization for the Agadir-Oujda trans-Moroccan major fault with a NE-SW direction and 900 km length, subdividing Morocco into two main domains. The results of this study contribute to the improvement of the regional structural map of the north western part of Africa, which is situated within the convergence zone between Africa and Eurasia.

  12. Crustal structure, accretionary processes and rift propagation: a gravity study of the intermediate-spreading Valu Fa Ridge, Lau Basin

    NASA Astrophysics Data System (ADS)

    Peirce, Christine; Turner, Ian M.; Sinha, Martin C.

    2001-07-01

    The Valu Fa Ridge is an intermediate-spreading (full rate of 60mmyr-1) ridge located in the Lau Basin. In 1995 this ridge was surveyed using a multidisciplinary, geophysical approach to image crust and upper mantle structure, with the aim of investigating the processes of oceanic crustal accretion in a back-arc tectonic environment. As part of this experiment a network of gravity profiles was acquired, together with seismic, magnetic, swath bathymetry and controlled-source electromagnetic data. Presented in this paper are the results of forward modelling of a subset of the acquired gravity profiles, two oriented ridge-perpendicular and one ridge-parallel, using the preferred seismic models of Turner et al. (1999) as a basis of initial model construction. In addition, the gravity data set in its entirety has been used to calculate the mantle and residual mantle Bouguer anomalies with the aim of investigating variability in crustal structure, both density and layer thickness, and the nature of the underlying upper mantle. Of particular interest are the overlapping spreading centre between the Central and Northern Valu Fa Ridges, where seismic modelling implies a generally thickened crust and a magma chamber located beneath the overlap basin rather than separate chambers supplying each ridge, and the propagating rift tip and associated basin-bounding pseudo-fault. Modelling results suggest that the pre- and post-rift crusts have different compositional origins, with lower densities required >12km off-axis to fit the observed free-air gravity anomaly. The locations of the transitions into regions of lower density correspond with those of Turner et al. (1999) derived from seismic modelling, which in turn correspond in location to the rift-related pseudo-fault identified by Wiedicke & Collier (1993). Calculation and interpretation of the mantle and residual mantle Bouguer anomalies also confirms the lower off-axis densities and indicates a general increase in crustal

  13. Gravity survey of the Nevada Test Site and vicinity, Nye, Lincoln, and Clark Counties, Nevada--interim report

    USGS Publications Warehouse

    Healy, D.L.; Miller, C.H.

    1962-01-01

    of this interim report is to present the major part of the gravity data obtained as of December 31, 1961. The data are presented as a complete Bouguer gravity anomaly map. Although the gravity contours are somewhat generalized because the map has a scale of 1:250,000 and a contour interval of 5 milligals, the largest anomalies are adequately delineated. Preliminary results of this gravity survey have been reported by Wilmarth and others, 1960, and by Diment and others, 1959 and 1960.

  14. The contribution of gravity method in geothermal exploration of southern part of the Gulf of Suez-Sinai region, Egypt

    NASA Astrophysics Data System (ADS)

    Atef, H.; Abd El-Gawad, A. M. S.; Abdel Zaher, M.; Farag, K. S. I.

    2016-06-01

    The Gulf of Suez region represents the most promising area in Egypt for geothermal exploration which is characterized by superficial thermal manifestations represented by a cluster of hot springs with varying temperatures from 35 to 72 °C. The main purpose of the present study was to shed the light on the integration between gravity work and geothermal data in detecting the main subsurface structures in addition to expecting the geothermal sources in the area under consideration. Correction was applied on the bottom hole temperature data to obtain the true formation equilibrium temperatures that can provide useful information about the subsurface thermal regime. Based on these logging data, temperature gradient and heat flow values were computed at each well, and it is found that the mean geothermal gradient of the study area is 32 °C/km; nevertheless, some local geothermal potential fields were located with more than 40 °C/km. Also, heat flow values are ranging from 45 to 115 mW/m2. The Bouguer anomaly map of the study area was used for delineating the subsurface structures and tectonic trends that have resulted in a potential heat source. The gravity inversion revealed a good correlation between areas of high temperature gradients, high heat flow and positive gravity anomalies. The high temperature gradient and heat flow values suggested being associated with a noticeable hydrothermal source of heat anomaly located at relatively shallow depths which is expected to be due to the uplift of the basement in the area.

  15. Software Analysis of New Space Gravity Data for Geophysics and Climate Research

    NASA Technical Reports Server (NTRS)

    Deese, Rupert; Ivins, Erik R.; Fielding, Eric J.

    2012-01-01

    Both the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites are returning rich data for the study of the solid earth, the oceans, and the climate. Current software analysis tools do not provide researchers with the ease and flexibility required to make full use of this data. We evaluate the capabilities and shortcomings of existing software tools including Mathematica, the GOCE User Toolbox, the ICGEM's (International Center for Global Earth Models) web server, and Tesseroids. Using existing tools as necessary, we design and implement software with the capability to produce gridded data and publication quality renderings from raw gravity data. The straight forward software interface marks an improvement over previously existing tools and makes new space gravity data more useful to researchers. Using the software we calculate Bouguer anomalies of the gravity tensor's vertical component in the Gulf of Mexico, Antarctica, and the 2010 Maule earthquake region. These maps identify promising areas of future research.

  16. Software Analysis of New Space Gravity Data for Geophysics and Climate Research

    NASA Technical Reports Server (NTRS)

    Deese, Rupert; Ivins, Erik R.; Fielding, Eric J.

    2012-01-01

    Both the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites are returning rich data for the study of the solid earth, the oceans, and the climate. Current software analysis tools do not provide researchers with the ease and flexibility required to make full use of this data. We evaluate the capabilities and shortcomings of existing software tools including Mathematica, the GOCE User Toolbox, the ICGEM's (International Center for Global Earth Models) web server, and Tesseroids. Using existing tools as necessary, we design and implement software with the capability to produce gridded data and publication quality renderings from raw gravity data. The straight forward software interface marks an improvement over previously existing tools and makes new space gravity data more useful to researchers. Using the software we calculate Bouguer anomalies of the gravity tensor's vertical component in the Gulf of Mexico, Antarctica, and the 2010 Maule earthquake region. These maps identify promising areas of future research.

  17. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    SciTech Connect

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.

    1991-05-01

    About 4000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of {minus}10 mGal along the east edge of Yucca Mountain decrease to about {minus}38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1220 {plus_minus} 150 m, an estimate that was subsequently confirmed by drilling to be 1244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3000 m. Considerable aeromagnetic coverage of southwestern Nevada was obtained in 1978--1979 to help characterize Yucca Mountain and vicinity. One significant result is the discovery of a series of circular magnetic anomalies in Crater Flat and the northern Amargosa Desert that suggest the presence of buried volcanic centers there. Elongate magnetic highs and associated lows over Yucca Mountain correlate with mapped faults, some of which are only partially exposed. Thus, the data provide inforamtion on the extent and continuity of these faults. 31 refs., 3 figs.

  18. The Lunar Crustal Thickness from Analysis of the Lunar Prospector Gravity and Clementine Topography Datasets

    NASA Technical Reports Server (NTRS)

    Asmar, S.; Schubert, G.; Konopliv, A.; Moore, W.

    1999-01-01

    The Lunar Prospector spacecraft has mapped the gravity field of the Moon to a level of resolution never achieved before, and a spherical harmonic representation to degree and order 100 is available. When combined with the topography dataset produced by the Clementine mission, the resulting Bouguer anomaly map is interpreted to model the thickness of the lunar crust. Such models are crucial to understanding the lunar thermal history and the formation of geological features such as mascon basins, several more of which have been newly discovered from this dataset. A two-layer planetary model was used to compute the variations of the depth to the lunar Moho. The thickness values ranged from near 0 to 120 km. There is significant agreement with previous work using the Clementine gravitational field data with differences in specific locations such as South Pole-Aitken Basin, for example.

  19. The Lunar Crustal Thickness from Analysis of the Lunar Prospector Gravity and Clementine Topography Datasets

    NASA Technical Reports Server (NTRS)

    Asmar, S.; Schubert, G.; Konopliv, A.; Moore, W.

    1999-01-01

    The Lunar Prospector spacecraft has mapped the gravity field of the Moon to a level of resolution never achieved before, and a spherical harmonic representation to degree and order 100 is available. When combined with the topography dataset produced by the Clementine mission, the resulting Bouguer anomaly map is interpreted to model the thickness of the lunar crust. Such models are crucial to understanding the lunar thermal history and the formation of geological features such as mascon basins, several more of which have been newly discovered from this dataset. A two-layer planetary model was used to compute the variations of the depth to the lunar Moho. The thickness values ranged from near 0 to 120 km. There is significant agreement with previous work using the Clementine gravitational field data with differences in specific locations such as South Pole-Aitken Basin, for example.

  20. Internal architecture of the Tuxtla volcanic field, Veracruz, Mexico, inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Espindola, Juan Manuel; Lopez-Loera, Hector; Mena, Manuel; Zamora-Camacho, Araceli

    2016-09-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic field emerging from the plains of the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Separated by hundreds of kilometers from the Trans-Mexican Volcanic Belt to the NW and the Chiapanecan Volcanic Arc to the SE, it stands detached not only in location but also in the composition of its rocks, which are predominantly alkaline. These characteristics make its origin somewhat puzzling. Furthermore, one of the large volcanoes of the field, San Martin Tuxtla, underwent an eruptive period in historical times (CE 1793). Such volcanic activity conveys particular importance to the study of the TVF from the perspective of volcanology and hazard assessment. Despite the above circumstances, few investigations about its internal structure have been reported. In this work, we present analyses of gravity and aeromagnetic data obtained from different sources. We present the complete Bouguer anomaly of the area and its separation into regional and residual components. The aeromagnetic data were processed to yield the reduction to the pole, the analytic signal, and the upward continuation to complete the interpretation of the gravity analyses. Three-dimensional density models of the regional and residual anomalies were obtained by inversion of the gravity signal adding the response of rectangular prisms at the nodes of a regular grid. We obtained a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between the Sontecomapan and Catemaco faults, which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. These fault systems along with magma intrusion at the lower crust are necessary features to

  1. Wisconsin gravity minimum: Solution of a geologic and geophysical puzzle and implications for cratonic evolution

    NASA Astrophysics Data System (ADS)

    Allen, David J.; Hinze, William J.

    1992-06-01

    An intense Bouguer gravity anomaly minimum extending across much of Wisconsin cannot be explained by the surface Phanerozoic sedimentary strata, the basement Precambrian geology, or the topography of the region. The most intense (-100 mgal) part of the minimum coincides with the 1.47 Ga anorogenic granitic Wolf River batholith of northeastern Wisconsin. In southern Wisconsin, however, the densities of the Precambrian basement rocks, which are older than the batholith, provide no clue to the origin of the anomaly. The gradients of the minimum indicate that the source of the anomaly is in the upper crust. Furthermore, nearby deep seismic reflection data indicate that lower crustal structures do not significantly contribute to the gravity minimum. Thus, the minimum is appropriately interpreted as originating from the low-density Wolf River batholith that crops out only in northeastern Wisconsin but is buried beneath a veneer of older rocks in the southern and central parts of the state. Gravity modeling suggests that the batholith is at least 10 km thick and encompasses an area of ˜50000 km2. This interpretation provides an important clue to the origin of similar negative gravity anomalies of the Phanerozoic strata-covered craton. Also, the presence of this massive granitic body appears to have influenced the evolution of the craton—e.g., by controlling the location of the 1.1 Ga Midcontinent rift system and the Paleozoic Wisconsin arch. The fact that the Wolf River batholith is mostly buried suggests that central Wisconsin has been tectonically stable for the past 1.47 b.y. and that the Precambrian basement has been minimally eroded.

  2. Wisconsin gravity minimum: Solution of a geologic and geophysical puzzle and implications for cratonic evolution

    SciTech Connect

    Allen, D.J.; Hinze, W.J. )

    1992-06-01

    An intense Bouguer gravity anomaly minimum extending across much of Wisconsin cannot be explained by the surface Phanerozoic sedimentary strata, the basement Precambrian geology, or the topography of the region. The most intense ({minus}100 mgal) part of the minimum coincides with the 1.47 Ga anorogenic granitic Wolf River batholith of northeastern Wisconsin. In southern Wisconsin, however, the densities of the Precambrian basement rocks, which are older than the batholith, provide no clue to the origin of the anomaly. The gradients of the minimum indicate that the source of the anomaly is in the upper crust. Furthermore, nearby deep seismic reflection data indicate that lower crustal structures do not significantly contribute to the gravity minimum. Thus, the minimum is appropriately interpreted as originating from the low-density Wolf River batholith that crops out only in northeastern Wisconsin but is buried beneath a veneer of older rocks in the southern and central parts of the state. Gravity modeling suggests that the batholith is at least 10 km thick and encompasses an area of {approximately}50,000 km{sup 2}. This interpretation provides an important clue to the origin of similar negative gravity anomalies of the Phanerozoic strata-covered craton. Also, the presence of this massive granitic body appears to have influenced the evolution of the craton - e.g., by controlling the location of the 1.1 Ga Midcontinent rift system and the Paleozoic Wisconsin arch. The fact that the Wolf River batholith is mostly buried suggests that central Wisconsin has been tectonically stable for the past 1.47 b.y. and that the Precambrian basement has been minimally eroded.

  3. Structure and Evolution of the Lunar Procellarum Region as Revealed by GRAIL Gravity Data

    NASA Technical Reports Server (NTRS)

    Andrews-Hanna, Jeffrey C.; Besserer, Jonathan; Head, James W., III; Howett, Carly J. A.; Kiefer, Walter S.; Lucey, Paul J.; McGovern, Patrick J.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; hide

    2014-01-01

    The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The Procellarum region has been interpreted as an ancient impact basin approximately 3200 km in diameter, though supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border the Procellarum region and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dikes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of quasi-rectangular border structures with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the elevated heat flux in the region.

  4. Tectonics and crustal structure of the Saurashtra peninsula: based on Gravity and Magnetic data

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Singh, A.; Singh, U. K.

    2016-12-01

    The Saurashtra peninsula is located at the North Western margin of the Indian shield which occurs as a horst block between the rifts namely as Kachchh, Cambay and Narmada. It is important because of occurrence of moderate earthquake and presence of mesozoic sediments below the Deccan trap. The maps of bouguer gravity anomaly and the total intensity magnetic anomalies of Saurashtra have delineated six circular gravity highs of magnitudes 40-60 mGal and 800-1000 nT respectively. In order to understand the location, structure and depth of the source body, methods like continuous wavelet transform (CWT), Euler deconvolution and power spectrum analysis have been implemented in the potential field data. The CWT and Euler deconvolution give 16-18 km average depth of volcanic plug in Junagadh and Rajula region. From the power spectrum analysis, it is found that average Moho depth in the Saurashtra is about 36-38 km. Keeping the constraints obtained from geophysical studies like borehole, deep seismic survey, receiver function analysis and geological information, combined gravity and magnetic modeling have been performed. Detailed crustal structure of the Saurashtra region has been delineated along two profiles which pass from prominent geological features Junagadh and Rajula volcanic plugs respectively.

  5. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data.

    PubMed

    Andrews-Hanna, Jeffrey C; Besserer, Jonathan; Head, James W; Howett, Carly J A; Kiefer, Walter S; Lucey, Paul J; McGovern, Patrick J; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Schenk, Paul M; Smith, David E; Solomon, Sean C; Zuber, Maria T

    2014-10-02

    The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The region has been interpreted as an ancient impact basin approximately 3,200 kilometres in diameter, although supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border Procellarum and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dykes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of border structures in a quasi-rectangular pattern with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the greater-than-average heat flux in the region.

  6. Gravity and thermal models for the twin peaks silicic volcanic center, Southwestern Utah

    SciTech Connect

    Carrier, D.L.; Chapman, D.S.

    1981-11-10

    Gravity, heat flow, and surface geology observations have been used as constraints for a thermal model of a late Tertiary silicic volcanic center at Twin Peaks, Utah. Silicic Volcanism began in the area with the extrusion of the Coyote Hills rhyolite 2.74 +- 0.1 m.y. ago, followed by the Cudahy Mine obsidian, felsite, and volcanoclastics, and finally by a complex sequence of domes and flows that lasted until 2.3 +- 0.1 m.y. ago. Basalt sequence span the time 2.5 to 0.9 m.y. Terrain-corrected Bouguer gravity anomalies at Twin Peaks are shaped by three features of varying characteristic dimensions: (1) a major north-northeast trending --30 mGal gravity trough roughly 40 km wide caused by a thick sequence of Cenozoic sediments in the Black Rock Desert Valley, (2) a local roughly circular -7 mGal gravity low, 26 km across, probably related to an intrusive body in the basement, and (3) a series of narrow positive anomalies up to + 10 mGal produced by the major Twin Peaks volcanic domes. The intrusive bodies have been modeled as three-dimensional vertical cylinders; the total volume of intrusive material is estimated to be about 500 km/sup 3/. Simple models, assuming conductive heat transfer and using geometrical constraints from the gravity results, predict that a negligible thermal anomaly should exist 1 m.y. after emplacement of the intrusion. This prediction is consistent with an average heat flow of 96 mW m/sup -2/ for the area, not significantly different from eastern Basin and Range values elsewhere. Magmatic longevity of this system 2.7 to 2.3 m.y. for silicic volcanism of 2.5 to 0.9 m.y. for basaltic volcanism, does not seem to prolong the cooling of the system substantially beyond that predicted by conductive cooling.

  7. Gravity and thermal models for the Twin Peaks Silicic Volcanic Center, southwestern Utah

    NASA Astrophysics Data System (ADS)

    Carrier, Daniel L.; Chapman, David S.

    1981-11-01

    Gravity, heat flow, and surface geology observations have been used as constraints for a thermal model of a late Tertiary silicic volcanic center at Twin Peaks, Utah. Silicic volcanism began in the area with the extrusion of the Coyote Hills rhyolite 2.74 ± 0.1 m.y. ago, followed by the Cudahy Mine obsidian, felsite, and volcanoclastics, and finally by a complex sequence of domes and flows that lasted until 2.3 ± 0.1 m.y. ago. Basalt sequences span the time 2.5 to 0.9 m.y. Terrain-corrected Bouguer gravity anomalies at Twin Peaks are shaped by three features of varying characteristic dimensions: (1) a major north-northeast trending -30 mGal gravity trough roughly 40 km wide caused by a thick sequence of Cenozoic sediments in the Black Rock Desert Valley, (2) a local roughly circular -7 mGal gravity low, 26 km across, probably related to an intrusive body in the basement, and (3) a series of narrow positive anomalies up to +10 mGal produced by the major Twin Peaks volcanic domes. The intrusive bodies have been modeled as three-dimensional vertical cylinders; the total volume of intrusive material is estimated to be about 500 km3. Simple thermal models, assuming conductive heat transfer and using geometrical constraints from the gravity results, predict that a negligible thermal anomaly should exist 1 m.y. after emplacement of the intrusion. This prediction is consistent with an average heat flow of 96 mW m-2 for the area, not significantly different from eastern Basin and Range values elsewhere. Magmatic longevity of this system, 2.7 to 2.3 m.y. for silicic volcanism or 2.5 to 0.9 m.y. for basaltic volcanism, does not seem to prolong the cooling of this system substantially beyond that predicted by conductive cooling.

  8. Subsurface structure of the eastern edge of the Zagros basin as inferred from gravity and satellite data

    SciTech Connect

    Bushara, M.N.

    1995-09-01

    A data set of 10,505 points of land gravity measurements from southeast Iran obtained from the Bureau Gravimetrique International, combined with Landsat imagery, was used to investigate crustal and Cenozoic lithospheric structure. Interpretation of the Bouguer anomalies reveals three primary structural features. The Zagros Mountain belt is characterized by a progressive decrease in gravity values from -70 mGal near the Persian Gulf to -160 mGal over the structure zone between the Arabian margin and central Iran crustal blocks. The second feature is marked by a backward-L-shaped pair of anomalies that extends from the eastern peripheries of the Zagros basin and wraps around southern Iranian shores. These 15- to 20-km-deep source anomalies, with amplitudes of as much as 10 mGal, are interpreted as intrabasement intrusions demarcating an ancient rift axis. The shallow (6-8)km east-west-trending anomalies are perhaps interbasement uplifts bordered by reverse faults. The third structure, observed on both gravity and Landsat displays, a north-striking eastward-facing topographic escarpment, has a gravity gradient of 0.85 mGal/km, and is right laterally offset approximately 100 km, and is right laterally offset approximately 100 km by the Zagros main recent fault. A comparison of gravity features with surface structures on Thematic Mapper and Landsat Multi-spectral Scanner imagery indicates that a northeast-trending fault system is the result of post-Miocene pervasive transpressive stress coupled with clockwise rotation of underlying basement blocks following the collision of Arabia and Iran. Accommodation structures such as forced folds and {open_quotes}rabbit-ear{close_quotes} anticlines may develop over and on the flanks of the basement blocks, providing remigration and trapping mechanisms for new oil and gas plays.

  9. Magsat equivalent source anomalies over the southeastern United States - Implications for crustal magnetization

    NASA Technical Reports Server (NTRS)

    Ruder, M. E.; Alexander, S. S.

    1986-01-01

    The Magsat crustal anomaly field depicts a previously-unidentified long-wavelength negative anomaly centered over southeastern Georgia. Examination of Magsat ascending and descending passes clearly identifies the anomalous region, despite the high-frequency noise present in the data. Using ancillary seismic, electrical conductivity, Bouguer gravity, and aeromagnetic data, a preliminary model of crustal magnetization for the southern Appalachian region is presented. A lower crust characterized by a pervasive negative magnetization contrast extends from the New York-Alabama lineament southeast to the Fall Line. In southern Georgia and eastern Alabama (coincident with the Brunswick Terrane), the model calls for lower crustal magnetization contrast of -2.4 A/m; northern Georgia and the Carolinas are modeled with contrasts of -1.5 A/m. Large-scale blocks in the upper crust which correspond to the Blue Ridge, Charlotte belt, and Carolina Slate belt, are modeled with magnetization contrasts of -1.2 A/m, 1.2 A/m, and 1.2 A/m respectively. The model accurately reproduces the amplitude of the observed low in the equivalent source Magsat anomaly field calculated at 325 km altitude and is spatially consistent with the 400 km lowpass-filtered aeromagnetic map of the region.

  10. Timing, mantle source and origin of mafic dykes within the gravity anomaly belt of the Taihang-Da Hinggan gravity lineament, central North China Craton

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Feng, Caixia; Feng, Guangying; Xu, Mengjing; Coulson, Ian M.; Guo, Xiaolei; Guo, Zhuang; Peng, Hao; Feng, Qiang

    2017-09-01

    Six mafic dyke swarms crop out in Hebei Province within the Taihang-Da Hinggan gravity lineament magmatic belt, China, and were sampled. Here, we present new zircon laser ablation-inductively coupled plasma-mass spectrometry U-Pb age, whole rock geochemical, and Sr-Nd-Pb-Hf isotopic data for the six areas where these mafic dykes occur. The mafic (dolerite) dykes formed between 131.6 ± 1.6 and 121.6 ± 1.1 Ma, and are enriched in the light rare earth elements (LREE), some of the large ion lithophile elements (LILE; e.g., Rb, Ba, and Sr) and Pb, and are depleted in Th, U, Nb and Ta; some samples are also depleted in Eu. The dykes have high initial 87Sr/86Sr ratios (0.7055-0.7057), negative εNd (t) values (-12.5 to -11.9), relatively constant Pb isotopic ratios ((206Pb/204Pb)i = 16.45-16.51, (207Pb/204Pb)i = 15.44-15.51, (208Pb/204Pb)i = 36.49-36.53), negative εHf (t) values (-18.2 to -15.1), and old Nd (TNdDM2; 2.17-2.47 Ga) and Hf (THfDM2; 2.28-2.33 Ga) model ages. These geochronological, geochemical, and isotopic data indicate that the dykes were derived from magmas generated by low to moderate degree partial melting (1.0%-10%) of an EM1-like garnet lherzolite mantle source; these magmas fractionated olivine, clinopyroxene, and hornblende prior to emplacement, and assimilated minimal amounts of crustal material. Several possible models have previously been proposed to explain the origin of Mesozoic magmatism in this region. However, here we propose a foundering model for these studied mafic dykes, involving the foundering of eclogite from thickened lower crust due to the collision between the Siberian Craton and the North China Craon.

  11. Analysis of gravity anomalies in the Ulleung Basin (East Sea/Sea of Japan) and its implications for the architecture of rift-dominated back-arc basin

    NASA Astrophysics Data System (ADS)

    Kim, Y. M.; Lee, S. M.

    2016-12-01

    Marginal basins located between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center to those with less obvious zones of extension and a broad magmatic emplacement in the lower crust. The difference in the mode of back-arc opening may lead to a marked difference in crustal structure including its overall thickness and mechanical strength. The Ulleung Basin (UB) in the East Sea/Sea of Japan is considered to represent a continental rifting end-member of back-arc opening. However, compared to nearby Yamato Basin (YB) and Japan Basin (JB) in the NE corner of the sea, its structure and crustal characteristics are less well understood. This study examines the marine gravity anomalies of the UB in order to delineate the variations in crustal structure. Our analysis shows that the Moho depth from the sea surface varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust not including sediment is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. The revelation that the UB has a thick but uniform thickness crust is consistent with previous observations using ocean bottom seismometers and is similar recent findings from the nearby YB. Another important feature is that small residual mantle gravity anomaly highs (40 mGal) exist in the northern part of the basin. These small highs trend in the NNE-SSW direction and thus corresponding to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that they are the result of localized extension and extra crustal thinning at the time of basin formation. Alternatively, the presence of small magmatic underplating at the base of the crust, perhaps similar to high velocity region in the lower crust of YB, was also considered. According to our study

  12. Interpretation of Source Parameters from Total Gradient of Gravity and Magnetic Anomalies Caused by Thin Dyke using Nonlinear Global Optimization Technique

    NASA Astrophysics Data System (ADS)

    Biswas, A.

    2016-12-01

    A proficient way to deal with appraisal model parameters from total gradient of gravity and magnetic data in light of Very Fast Simulated Annealing (VFSA) has been exhibited. This is the first run through of applying VFSA in deciphering total gradient of potential field information with another detailing estimation brought on because of detached causative sources installed in the subsurface. The model parameters translated here are the amplitude coefficient (k), accurate origin of causative source (x0) depth (z0) and the shape factor (q). The outcome of VFSA improvement demonstrates that it can exceptionally decide all the model parameters when shape variable is fixed. The model parameters assessed by the present strategy, for the most part the shape and depth of the covered structures was observed to be in astounding concurrence with the genuine parameters. The technique has likewise the capability of dodging very uproarious information focuses and enhances the understanding results. Investigation of Histogram and cross-plot examination likewise proposes the translation inside the assessed ambiguity. Inversion of noise-free and noisy synthetic data information for single structures and field information shows the viability of the methodology. The procedure has been carefully and adequately connected to genuine field cases (Leona Anomaly, Senegal for gravity and Pima copper deposit, USA for magnetic) with the nearness of mineral bodies. The present technique can be to a great degree material for mineral investigation or ore bodies of dyke-like structure rooted in the shallow and more deep subsurface. The calculation time for the entire procedure is short.

  13. Detailed gravity mapping of the Panther Mountain circular structure, Catskill Mountains, New York

    SciTech Connect

    Isachsen, Y.W. ); Revetta, F.A. )

    1993-03-01

    The Panther Mountain circular structure is located in the Catskill Mountains near the eastern edge of the Allegheny Plateau where depth through the sedimentary section to basement is about 3200 m. The structure is distinguished from the rest of the Plateau only by its physiography. It is a circular mountain mass, 10 km in diameter, defined by an anomalous annular drainage pattern formed by Esopus Creek and its tributary Woodland Creek. Because of pervasive fluvial cross bedding in the sedimentary pile, the authors were unable to determine whether the structure is slightly domical, sightly basinal, or unwarped. North-south and east-west gravity profiles were next made and modeled to look for a subsurface explanation for the structure. The only computed profiles that matched the measured values were those for a shallowly-buried meteorite crater with its underlying breccia lens, lying beneath the Panther Mountain. Renewed interest in the structure led them to make 125 new gravity measurements, in a study that is continuing. Gravity values are corrected using the International Gravity Formula of 1967 and densities of 2.67 and 2.50 gms/cm[sup 3]. Terrain corrections were computed using an inner radius of .895 km and an outer radius of 166.70 km. The complete Bouguer gravity anomaly was separated into its regional and residual components to obtain a third order residual gravity map for computer modeling. The residual gravity map confirms the earlier detected gravity low and leaves the buried meteorite crater model as a viable model.

  14. Analysis of Marine Gravity Anomalies in the Ulleung Basin (East Sea/Sea of Japan) and Its Implications for the Architecture of Rift-Dominated Backarc Basin

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Mook; Kim, Yoon-Mi

    2016-04-01

    Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a

  15. Gravity Data from the Teboursouk Area ("Diapirs Zone", Northern Tunisia): Characterization of Deep Structures and Updated Tectonic Pattern

    NASA Astrophysics Data System (ADS)

    Hachani, Fatma; Balti, Hadhemi; Kadri, Ali; Gasmi, Mohamed

    2016-04-01

    Located between eastern segments of the Atlas and Tell-Rif oro-genic belts, the "Dome zone" of northern Tunisia is characterized by the juxtaposition of various structures that mainly controlled the long geody-namic history of this part of the south-Tethyan Margin. To better understand the organization and deep extension of these structures, gravity data from the Teboursouk key area are proposed. These data include the plotting of Bouguer anomaly map and related parameters such as vertical and horizontal gradients, upward continuation and Euler solution. Compared to geological and structural maps available, they allow the identification of new deep structures and greater precision regarding the characteristics and organization of known ones; consequently, an updated structural pattern is proposed.

  16. Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements

    NASA Astrophysics Data System (ADS)

    Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.

    2014-01-01

    We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship

  17. Complete Bouguer gravity and aeromagnetic maps of the Rattlesnake Roadless Area, Missoula County, Montana

    USGS Publications Warehouse

    Kulik, Dolores M.

    1986-01-01

    The rocks in the study area consist mainly of the Helena Formation and the Missoula Group of the Belt Supergroup (Proterozoic Y).  Rock units of less importance are diabase sills and dikes of probable Proterozoic Z age, Middle Cambrian rocks, and glacial deposits.  Structurally, the study area consists of the Rattlesnake thrust system in the south part and a parautochthonous area broken by vertical faults in the north part.

  18. Ice Flow, Isostasy and Gravity Anomaly of the Permanent North Polar H2O Ice Cap of Mars

    NASA Astrophysics Data System (ADS)

    Greve, R.; klemann, V.; Wolf, D.

    2000-08-01

    = rhom = 3380 kg per cubic m, shear modulus of the lithosphere mu1 = 64 GPa, shear modulus of the mantle mum = 145 GPa, viscosity of the mantle 71. = 1021 Pas [3]. The thickness of the lithosphere, HI, which is the most crucial parameter of the lithosphere/mantle system, is varied between 50 and 400 km. The field equations of displacement, stress and gravity are solved in the Hankel-wavenumber, k, and Laplace-frequency, s, domain, where they are simply a system of ordinary differential equations in the remaining vertical coordinate, z, and the results are transformed back to the space-time domain by computing the inverse Laplace and Hankel transformations. Additional information is obtained in the original extended abstract.

  19. Local Lunar Gravity Field Analysis over the South Pole-aitken Basin from SELENE Farside Tracking Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Ishihara, Yoshiaki; Matsumoto, Koji; Sasaki, Sho

    2012-01-01

    We present a method with which we determined the local lunar gravity field model over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating adjustments to a global lunar gravity field model using SELENE tracking data. Our adjustments are expressed in localized functions concentrated over the SPA region in a spherical cap with a radius of 45deg centered at (191.1 deg E, 53.2 deg S), and the resolution is equivalent to a 150th degree and order spherical harmonics expansion. The new solution over SPA was used in several applications of geophysical analysis. It shows an increased correlation with high-resolution lunar topography in the frequency band l = 40-70, and admittance values are slightly different and more leveled when compared to other, global gravity field models using the same data. The adjustments expressed in free-air anomalies and differences in Bouguer anomalies between the local solution and the a priori global solution correlate with topographic surface features. The Moho structure beneath the SPA basin is slightly modified in our solution, most notably at the southern rim of the Apollo basin and around the Zeeman crater

  20. Geologic implications of topographic, gravity, and aeromagnetic data in the northern Yukon-Koyukuk province and its borderlands, Alaska

    USGS Publications Warehouse

    Cady, J.W.

    1989-01-01

    The northern Yukon-Koyukuk province is characterized by low elevation and high Bouguer gravity and aeromagnetic anomalies in contrast to the adjacent Brooks Range and Ruby geanticline. Using newly compiled digital topographic, gravity, and aeromagnetic maps, the province is divided into three geophysical domains. The Koyukuk domain, which is nearly equivalent to the Koyukuk lithotectonic terrane, is a horseshoe-shaped area, open to the south, of low topography, high gravity, and high-amplitude magnetic anomalies caused by an intraoceanic magmatic arc. The Angayucham and Kanuti domains are geophysical subdivisions of the Angayucham lithotectonic terrane that occur along the northern and southeastern margins of the Yukon-Koyukuk province, where oceanic rocks have been thrust over continental rocks of the Brooks Range and Ruby geanticline. The modeling supports, but does not prove, the hypothesis that the crust of the Kobuk-Koyukuk basin is 32-35 km thick, consisting of a tectonically thickened section of Cretaceous volcanic and sedimentary rocks and older oceanic crust. -from Author

  1. Improving the terrestial gravity dataset in South-Estonia

    NASA Astrophysics Data System (ADS)

    Oja, T.; Gruno, A.; Bloom, A.; Mäekivi, E.; Ellmann, A.; All, T.; Jürgenson, H.; Michelson, M.

    2009-04-01

    The only available gravity dataset covering the whole of Estonia has been observed from 1949 to 1958. This historic dataset has been used as a main input source for many applications including the geoid determination, the realization of the height system, the geological mapping. However, some recent studies have been indicated remarkable systematic biases in the dataset. For instance, a comparison of modern gravity control points with the historic data revealed unreasonable discrepancies in a large region in South-Estonia. However, the distribution of the gravity control was scarce, which did not allow to fully assess the quality of the historic data in the study area. In 2008 a pilot project was called out as a cooperation between Estonian Land Board, Geological Survey of Estonia, Tallinn University of Technology and Estonian University of Life Sciences to densify the detected problematic area (about 2000 km2) with new and reliable gravity data. Field work was carried out in October and November 2008, whereas GPS RTK and relative Scintrex gravimeter CG5 were used for precise positioning and gravity determinations, respectively. Altogether more than 140 new points were determined along the roads. Despite bad weather conditions and unstable observation base of the gravimeter (mostly on the bank of the road), uncertainty better than ±0.1 mGal (1 mGal = 10-5 m/s2) was estimated from the adjustment of gravimeter's readings. The separate gravity dataset of the Estonian Geological Survey were also incorporated into the gravity database of the project for further analysis. Those data were collected within several geological mapping projects in 1981-2007 and contain the data with uncertainty better than ±0.25 mGal. After the collection of new gravity data, a Kriging with proper variogram modeling was applied to form the Bouguer anomaly grids of the historic and the new datasets. The comparison of the resulting grids revealed biases up to -4 mGal at certain regions

  2. Gravity Data Analysis and Modelling for Basin Sedimen of Eastern Java Blocks

    NASA Astrophysics Data System (ADS)

    Khoirunnia, Luthfia

    2016-11-01

    The study of Eastern Java Basin was conducted by 3D modelling subsurface structure using gravity anomaly. The aims of this research are to describe and 3D modelling basin sedimentary system of Eastern Java Blocks based on gravity anomaly. The modelling construction was performed by inversion technique applying Singular Value Decomposition (SVD) method and Occam optimization. This projection method used equivalent central mass of Dampney with height 5.5 km and error data 1,84 × 10-17. Separation of residual anomaly from the complete Bouguer anomaly on a flat plane was done using the upward continuation. This process uses the principle of low pass filter which passes low frequency. Sedimentary basin appears at a depth of 0.2 km to 1.4 km, is shown by their low anomaly in the area, as well as the visible appearance of basin in 3D modeling shown in figure. The result of inversion with Occam h has an error of 1,2% and the SVD has an error of 11%. Sedimentary basin was dominant in Probolinggo, partially in Besuki and Lumajang. The formation occurs due to tectonic processes where the tectonic evolution of the material without significant lateral shift is called as the otokton models, and accompanied by the formation of the basin that follows the development of the subduction system, which is semi-concentric pattern. Sediments are dominated by volcanic sediment, the result of sedimentation because of volcanism events and types of volcanic sediments pyroclasts generally occur in a process or event explosive volcanic magma degassing

  3. Modelling airborne gravity data by means of adapted Space-Wise approach

    NASA Astrophysics Data System (ADS)

    Sampietro, Daniele; Capponi, Martina; Hamdi Mansi, Ahmed; Gatti, Andrea

    2017-04-01

    Regional gravity field modelling by means of remove - restore procedure is nowadays widely applied to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.) in gravimetric geoid determination as well as in exploration geophysics. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are generally adopted. However due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc. airborne data are contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations both in the low and high frequency should be applied to recover valuable information. In this work, a procedure to predict a grid or a set of filtered along track gravity anomalies, by merging GGM and airborne dataset, is presented. The proposed algorithm, like the Space-Wise approach developed by Politecnico di Milano in the framework of GOCE data analysis, is based on a combination of along track Wiener filter and Least Squares Collocation adjustment and properly considers the different altitudes of the gravity observations. Among the main differences with respect to the satellite application of the Space-Wise approach there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too. In the end, the goodness of the procedure is evaluated by means of a test on real data recovering the gravitational signal with a predicted accuracy of about 0.25 mGal.

  4. Gravity map of Kalabsha area, northwest of Aswan Lake, and its structural significance

    NASA Astrophysics Data System (ADS)

    Abdelrahman, E. M.; Tealeb, A.; Ahmed, H. A.

    A detailed gravity survey was carried out in one of the seismo-active areas at the northwestern region of the High Dam Lake (Kalabsha area) to study its subsurface structure. In order to understand the seismicity of the area, the establishment of a geodynamic model from geological and geodetic data is of great importance. After a series of adjustments and corrections of the measured gravity data, free-air and Bouguer anomaly maps were constructed for the Kalabsha area, and several interpretation techniques were applied to analyse these anomalies. The results of the analysis indicate that the Kalabsha area is affected by several faults trending mainly E-W and N-S. The active area located west of Gebel Marawa is bounded by a set of faults striking NE-SW, N-S and E-W. The throws of these faults range from 160 to 370 m. The minimum depth to the basement complex is about 200 m and its maximum depth is around 600 m. The thickness of the sedimentary column (Nubia sandstone) in the Kalabsha area decreases due west and increases toward the southern and eastern parts of the area. The results explain the tectonic framework of the area well.

  5. Melt anomalies of the northern Atlantic Ocean basin

    NASA Astrophysics Data System (ADS)

    Wang, T.; Lin, J.; Tucholke, B. E.

    2009-12-01

    We investigated the melt anomalies and lithosphere dynamics of the northern Atlantic Ocean between 76°N and 8°S through combined analysis of seafloor bathymetry, shipboard and satellite-derived gravity, and sediment thickness. Residual mantle Bouguer anomaly (RMBA) was calculated by removing from free-air gravity anomaly the predicted attractions of water-sediment, sediment-crust, and crust-mantle interfaces as well as the effect of lithospheric plate cooling. Residual bathymetry anomaly (RBA) was obtained by subtracting from observed seafloor topography the predicted effects of plate cooling and the observed sediment load. Our analysis indicates that more than 50% of the seafloor has been affected by melt anomalies. The most prominent features that we observe include: (1) A pronounced negative RMBA associated with the Iceland hotspot, the Reykjanes Ridge, and the Mid-Atlantic Ridge (MAR) north of Iceland. The region of enhanced magma supply extends southward to the Charlie Gibbs F.Z., northward to the Jan Mayen F.Z., and to both the eastern and western basin margins. The strong negative RMBA associated with the submarine part of the Iceland hotspot reaches -450 mGal, corresponding to modeled crustal thickness of more than 22 km. (2) A widespread effect of the Azores hotspot on crustal accretion at the MAR since 40-50 Ma, as reflected in negative RMBA and positive RBA that extend southward to at least 26.5°N and northward to 44°N. The strongest RMBA anomaly associated with the Azores melt anomaly reaches about -230 mGal, corresponding to crustal thickening about half of that in Iceland. (3) A ~ 500 km wide corridor of negative RMBA is found along the west African margin between 40°N and 6°S, indicating that this region was influenced extensively by melt anomalies associated with the Horseshoe Seamounts, Madeira Islands, Canary Islands, and Cape Verde Islands. Negative RMBA of -100 to -180 mGal is also associated with the Bermuda Rise in the western Atlantic

  6. Geophysical Studies of Irish Granites Using Magnetotelluric and Gravity Data

    NASA Astrophysics Data System (ADS)

    Farrell, T. F.; Muller, M. R.; Rath, V.; Feely, M.; Hogg, C.

    2014-12-01

    We present results of on-going geophysical studies of Caledonian radiothermal granite bodies in Ireland, which are being undertaken to investigate the volumetric depth extent and structural features of these granites. During three field seasons, magnetotelluric (MT) and audio-magnetotelluric (AMT) data were acquired at 156 sites targeting three separate granite bodies. These studies will contribute to a crustal-scale investigation of the geothermal energy potential of the granites and their contribution to the thermal field of the Irish crust. Across the calc-alkaline Galway granite, located on the Irish west coast, MT and AMT data were acquired at 75 sites distributed in a grid. Preliminary 3D inversion reveals the presence of a resistor, thickest beneath the central block of the granite where it extends to depths of 11 - 12 km. The greater depth of the resistor beneath the central block is in contrast to previous thinking that proposed the central block granites to have shallower depth extent than those of the western block, based on Bouguer anomaly maps of the area in which the western block exhibited a more pronounced negative Bouguer anomaly than the central block. At the S-type Leinster granite, in eastern Ireland and to the south of Dublin, MT and AMT data were acquired along two profiles (LGN - 27 sites and LGS - 32 sites). Preliminary 1D inversions of AMT data along profile LGN show the Northern Units of the Leinster granite to extend to a depth of 4.5 km and the Lugnaquilla pluton extending to 2.5 km depth. MT and AMT data were acquired at 22 sites along a profile across the buried Kentstown granite, 35 km to the NW of Dublin. The Kentstown granite was intersected by two mineral exploration boreholes at depths of 492 m and 663 m. Preliminary 2D inversions do not yet satisfactorily resolve the top of the buried granite. Inversion of MT and AMT data is continuing, with the electrical conductivity structures revealed by these inversions being used to

  7. Relation of Topography to Airborne Gravity in Afghanistan and the Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J. M.; Peters, M. F.

    2012-12-01

    As part of a multi-sensor, multi-disciplinary aerogeophysical survey, the US Naval Research Laboratory collected airborne gravity over most of Afghanistan in 2006 (http://pubs.usgs.gov/of/2008/1089/Afghan_grv.html). The data were measured using a pair of ZLS Corporation air-sea gravimeters 7 km altitude above mean sea level aboard an NP-3D Orion aircraft operated by the US Navy's Scientific Development Squadron One (VXS-1). Aircraft positions were determined from kinematic GPS measurements in the aircraft relative to five base stations using differential interferometric techniques. Track spacing was set to 4 km over much of Afghanistan, but was increased to 8 km in the northern block of the survey area. Aircraft ground speed averaged between 300 and 380 knots, faster than ideal for high resolution gravity, but enabled approximately 113,000-km of data tracks to be flown in 220 flight hours, covering more than 330000 km2. In this presentation, we investigate the implications of the airborne gravity data for the tectonic development history of Afghanistan. Afghanistan is described as comprising three different platforms (Wheeler et al., 2005): 1) the north Afghanistan platform north of the Hari-Rud fault (HRF), a part of the Eurasian plate for 250-350 my; 2) the accreted terranes south of the HRF including low flats, formed as island arcs and fragments of continental and oceanic crust collided with the Eurasian plate during the closure of the Tethys Ocean in the past 250 my; and 3) the transpressional plate in the east, formed as the Indian plate moves northward since Cretaceous. The Bouguer anomaly map reveals elongated negative values along the east-west striking HRF, which seems to manifest different tectonic developmental histories across the boundary. Over the southern flats in the accreted terranes platform, the Bouguer anomaly map appears to show a continuation of alternating southwest-northeast trending highs and lows like those over the northern high

  8. A gravity study along a profile across the Sichuan Basin, the Qinling Mountains and the Ordos Basin (central China): Density, isostasy and dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqian; Teng, Jiwen; Wang, Qianshen; Lü, Qingtian; Si, Xiang; Xu, Tao; Badal, José; Yan, Jiayong; Hao, Zhaobing

    2017-10-01

    In order to investigate the structure of the crust beneath the Middle Qinling Mountains (MQL) and neighboring areas in the North China Block and South China Block, a north-south gravity profile from Yuquan in the Sichuan Basin to Yulin in the Ordos Basin was conducted in 2011. The Bouguer gravity anomaly is determined from a high-quality gravity dataset collected between 31°N and 36°N of latitude, and varies between -200 and -110 mGal in the study region. Using accredited velocity density relationships, an initial crust-mantle density model is constructed for MQL and adjacent areas, which is later refined interactively to simulate the observed gravity anomaly. The present study reveals the features of the density and Bouguer gravity with respect to the tectonic units sampled by the profile. The lithosphere density model shows typical density values that depict a layered structure and allow differentiate the blocks that extend along the reference profile. The gravity field calculated by forward modeling from the final density distribution model correlates well with the measured gravity field within a standard deviation of 1.26 mGal. The density in the crystalline crust increases with depth from 2.65 g/cm3 up to the highest value of 2.95 g/cm3 near the bottom of the crust. The Conrad interface is identified as a density jump of about 0.05 g/cm3. The average density of the crust in MQL is clearly lower than the density in the formations on both sides. Starting from a combined Airy-Pratt isostatic compensation model, a partly compensated crust is found below MQL, suggesting future growth of the crust, unlike the Ordos and Sichuan basins that will remain stable. On the basis of the density and isostatic state of the crust and additional seismological research, such as the P-wave velocity model and Poisson's ratio, it is concluded that the lower crust delamination is a reasonable interpretation for the geophysical characteristics below the Qinling Orogen.

  9. Geologic Interpretation of Gravity Anomalies

    DTIC Science & Technology

    1990-04-19

    encountered together with the diamonds in the kimberlitic volcanic pipes. Diamond itself (o-3.5 g/cm’) presents the polymorphic modification of carbon, which...and wide distribution to the depth, some types of intrusive bodies, for example diamond-bearing kimberlitic tubes, the ore bodies of column-like form...steep contacts, which slope within the basement, diamond-bearing kimberlitic volcanic pipes in the sedimentary rocks, ore shoots of tube-shaped form, etc

  10. Gravity Gradients Frame Oceanus Procellarum

    NASA Image and Video Library

    2014-10-01

    Topography of Earth moon generated from data NASA LRO, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA GRAIL mission.

  11. Vertical density contrast and mapping of basement, Conrad and Moho morphologies through 2D spectral analysis of gravity data in and around Odisha, India

    NASA Astrophysics Data System (ADS)

    Kumar, Arbind; S. Roy, P. N.; Das, L. K.

    2016-07-01

    Power spectrum analysis of Complete Bouguer Anomaly (CBA) map of Eastern Ghat Mobile Belt (EGMB) and its surroundings in India through Two Dimensional (2D) spectral analysis has provided estimates of the ensemble average depths for the density discontinuities which represent crustal inhomogeneities. The spectral analysis method has helped to estimate the depths of a perturbing body sources which are obtained from the negative slopes of the linear relationship between the logarithmic power spectrum and the wave-numbers of the gravity field. The detailed analysis reveals three horizontal discontinuities (i) Phanerozoic sediment thickness (ii) Basement depth and (iii) Conrad discontinuity. The average thickness of Phanerozoic sediments is estimated to be 3 km whereas depth of basement and Conrad discontinuity are at 7 km and 14.5 km respectively. Additionally Mohorovicic discontinuity also estimated at a depth of 32.8 km in the study region.

  12. Gravity analyses for the crustal structure and subglacial geology of West Antarctica, particularly beneath Thwaites Glacier

    NASA Astrophysics Data System (ADS)

    Diehl, Theresa Marie

    The West Antarctic Ice Sheet (WAIS) is mostly grounded in broad, deep basins (down to 2.5 km below sea level) that are stretched between five crustal blocks. The geometry of the bedrock, being mostly below sea level, induces a fundamental instability in the WAIS through the possibility of runaway grounding line retreat. The crustal environment of the WAIS further influences the ice sheet's fast flow through conditions at the ice-bedrock boundary. This study focuses on understanding the WAIS by examining the subglacial geology (such as volcanoes and sedimentary basins) at the ice-bedrock boundary and the continent's deeper crustal structure- primarily using airborne gravity anomalies. The keystone of this study is a 2004-2005 aerogeophysical survey over one of the most negative mass balance glaciers on the continent: Thwaites Glacier (TG). The gravity anomalies derived from this dataset- as well as gravity-based modeling and spectral crustal boundary depth estimates- reveal a heterogeneous crustal environment beneath the glacier. The widespread Mesozoic rifting observed in the Ross Sea Embayment (RSE) of West Antarctica extends beneath TG, where the crust is ˜27 km thick and cool. Adjacent to TG, spectrally-derived shallow Moho depths for the Marie Byrd Land (MBL) crustal block can be explained by thermal support from warm mantle. I assemble here new compilations of free-air and Bouguer gravity anomalies across West Antarctica (from both airborne and satellite datasets) and re-interpret the extents of West Antarctic crustal block and their boundaries with the rift system. Airy isostatic gravity anomalies reveal that TG is relatively sediment starved, in contrast to the sediment-rich RSE. TG's fast flow velocities could be sustained in this sediment poor environment if higher heat flux in MBL was providing an ample source of subglacial melt water to the glacier. The isostatic anomalies also indicate that TG's outlet rests on a bedrock sill that will impede future

  13. Lunar Crustal Properties: Insights from the GRAIL Gravity Signatures of Lunar Impact Craters

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Andrews-Hanna, J. C.; Evans, A. J.; Johnson, B. C.; Melosh, J., IV; Milbury, C.; Miljkovic, K.; Nimmo, F.; Phillips, R. J.; Smith, D. E.; Solomon, S. C.; Wieczorek, M. A.; Zuber, M. T.

    2014-12-01

    Impact cratering is a violent process, shattering and melting rock and excavating deep-seated material. The resulting scars are apparent on every planetary surface across our Solar System. Subsurface density variations associated with the resulting impact structures contain clues to aid in unlocking the details of this process. High-resolution gravity fields, such as those derived from the Gravity Recovery and Interior Laboratory (GRAIL) mission, are ideal for investigating these density variations. With gravity measurements from GRAIL and topography from the Lunar Orbiter Laser Altimeter (LOLA), we derived high-resolution Bouguer gravity fields (i.e., the gravity field after the contribution from topography is removed) that we correlated with craters mapped from LOLA data. We found that the mass deficit beneath lunar impact craters relates directly to crater size, up to diameter ~130 km, whereas craters larger than this diameter display no further systematic change. This observation, coupled with the greater depth of impact damage expected beneath larger craters, indicates that some process is affecting the production and/or preservation of porosity at depth or otherwise altering the mean density beneath the larger craters (note, measurable mantle uplift is observed for craters larger than ~184-km diameter). The observed crater gravity anomalies, however, exhibit considerable variation about these mean trends, suggesting that other factors are also important in determining the bulk density of impact crater structures. Milbury et al. (this conference) have demonstrated that pre-impact crustal porosity strongly influences the resulting density contrast between the impact damage zone beneath a crater and its surroundings. Herein, we extend these studies using the same GRAIL- and LOLA-derived maps to further investigate the effects that crustal properties have on the bulk density of the rock beneath lunar impact features. We focus, in particular, on the processes that

  14. The Effect of Different Terrain Reductions On Gravity Interpolation and On Helmert Geoid Determination

    NASA Astrophysics Data System (ADS)

    Bajracharya, S.; Sideris, M. G.

    The use of (i) a proper gravimetric terrain reduction scheme for the interpolation of free-air (FA) gravity anomalies, (ii) actual Earth crust density information, and (iii) a high-resolution digital terrain model (DTM) for gravimetric terrain reduction are three important aspects in precise geoid computation using Helmert's second method of condensation, especially in areas of rugged topography. First, this paper illus- trates via a numerical test in the Canadian Rockies the effect different gravity reduc- tion schemes have on gravity interpolation and on Helmert geoid determination. The Bouguer and residual terrain modelling (RTM) topographic reductions, the Rudzki inversion scheme, and the topographic-isostatic reductions of Pratt-Hayford (PH) and Airy-Heiskanen (AH) are used to remove terrain effects before gridding FA anomalies, and then their corresponding topographic or topographic-isostatic effects are restored to produce FA anomalies. Our results show that the difference between FA anomalies interpolated directly and after applying topographic reductions can reach maximum values of 200 mGal, altering the geoid undulations by nearly 7 m maximum. The Helmert geoid undulations using Pratt-Hayford and RTM reductions in gravity inter- polation exhibit the best fit with GPS-levelling derived undulations in the test area, with the standard deviations of 28 cm for both of these techniques. Second, this paper shows the importance of using actual crust density information on Helmert geoid de- termination. This information, which is available as a two-dimensional digital density model (DDM) in the test area, is incorporated in all steps of the geoid computational process. The Faye anomalies, the absolute geoid undulation, and the indirect effect on geoid using constant crust density of 2.67 g/cm3 are compared with those using lateral density variation. Finally, the effect of using different DTM grid resolutions of 6", 15", 30", 45", 1' and 2' for Faye anomalies

  15. A 3D synoptic model of Central America inferred from gravity data interpretation

    NASA Astrophysics Data System (ADS)

    Alvarado, G.; Fairhead, D.; Goetze, H.-J.; Lahrmann, B.; Leandro, G.; Luecke, O.; Schmidt, S.

    2007-12-01

    Large portions of the Central American Isthmus have served as key areas for the collaborative research program (SFB 574) and its goal to understand orogenic processes at convergent margins, such as the volatile and fluid cycle and the relationships between tectonics and magmatism. Gravity data from both on- and offshore has been gathered from various institutions and has been combined in a homogeneous data set. Due to difficult access to the high mountains the coverage by gravity observations remains rather incomplete mainly in the area of southern Costa Rica and eastern Nicaragua. Station complete Bouguer anomalies, Free Air anomalies and isostatic residual anomalies maps were compiled as a result of the homogenization of gravity field data. First analyses of the gravity field using curvature methods helps to separate density provinces in the crust. A comparison with the geological map shows a good correlation with tectonical units in most of the region and provides possibilities for crustal segmentation. Sources of gravity anomalies were investigated by Euler deconvolution and source point clusters in depths of 10 km and 30 km were obtained. For the first time a 3D density model up to the Central American lithosphere has been compiled by combining the results of curvature and Euler analysis with constraining data e.g. geological maps, seismic profiles, earthquake hypocenters and new results from tomographic modeling and receiver function analysis of the seismological task group of the SFB 574. The in-house software package IGMAS was used for modeling visualization of the model structures and gravity effects (e.g. serpentinization of the oceanic lithosphere at the Pacific side); it helps to identify borders between tectonic blocks e.g. the Chortis block in the north or the Chorotega block in the south of the research area. At a more local scale our 3D modeling works hand in hand with a small scale 3D modeling by Lücke and Alvarado and provides insight into the

  16. Detailed gravity survey over a known carbonate reef (Devonian) in Williston basin

    SciTech Connect

    Braun, S.M.

    1988-07-01

    A detailed gravity study, conducted over the Shell Golden carbonate reef located in the Winnipegosis Formation (Devonian) of the Williston basin in north-central North Dakota, indicates a massive carbonate platform with several interconnected vertical accumulations, perhaps pinnacle in nature, from this platform. This reef is found at a depth of about 2400 m (8000 ft). Because elevations and north-south positions were surveyed to /+-/3 cm (0.1 ft) and /+-/ 1 (3.3 ft), respectively, an accuracy of 0.01 mgal was obtained. Five profiles were made: three lines running east-west and two lines running north-south, forming a grid pattern over the reef. The distance between each line was 1.6 km (1.0 mi) with gravity-station spacing along each line being 0.4 km (0.25 mi). The Golden reef and most reefs of this nature throughout the North Dakota portion of the Williston basin have been interpreted to be isolated pinnacles with physical dimensions about 60-75 m (200-250 ft) thick and 0.8 km (0.5 mi) in basal diameter. However, analysis of the residual Bouguer gravity anomalies (0.2-0.5 mgal) obtained from this study indicates this reef is more complex than previously thought. The maximum thicknesses of the complex are on the order of 120-185 m (400-600 ft) with compaction anticlines also contributing to the total gravity anomaly. The modeled reef complex extends in a northeast-southwest direction and probably extends beyond the study area along that line.

  17. Gravity surveys and geoid models in South America - Present status

    NASA Astrophysics Data System (ADS)

    Blitzkow, D.; Oliveira Cancoro de Matos, A. O.; Guimaraes, G.; Pacino, M. C.; Barzaghi, R.

    2013-05-01

    The last effort for a geoid model in South America (GEOID2013) was carried out in the area limited by 15 N and 57 S in latitude and 30 W and 95 W in longitude by the Laboratório de Topografia e Geodesia (LTG), University of São Paulo. The model was based on GOCO03S up to degree and order 200 as a reference field. The oceanic region was completed with the mean free-air gravity anomalies derived from a satellite altimetry model from the Danish National Space Center, called DTU10. The complete Bouguer, Helmert gravity anomalies and primary indirect topographical effect have been derived through the Canadian package SHGEO. The short wavelength component was estimated via FFT with the modified Stokes kernel proposed by Featherstone. The GGMs EIGEN-6C2, DGM-1S, GOCO03S, GO_CONS_GCF_2_DIR_R3 and GO_CONS_GCF_2_TIM_R3 and the geoid models have been evaluated against GPS observations on Bench Marks of the spirit leveling network (GPS/BM). In the last four years a special project in the state of São Paulo and surrounding areas was undertaken with surveys on a basic distance of 5km. New versions of the geoid in the state were derived by Stokes' Integral applying FFT and Least Squares Collocation for comparison. EGM2008, GO_CONS_GCF_2_DIR_R3 and GO_CONS_GCF_2_TIM_R3 have been used as reference field in this case. This is the result of the so called FAPESP Thematic Project that involves several organizations in the state of São Paulo.

  18. Generation of a High Resolution Grid of Gravity Anomalies by Inversion of Altimetric Data from GEOSAT, TOPEX/POSEIDON, ERS1/2 and JASON-1 Satellites in the Azores Region

    NASA Astrophysics Data System (ADS)

    Calvão, J.

    2006-07-01

    Stacked data from Geosat, Topex/Poseidon, ERS-1/2 and Jason-1 satellites is used to define a precise reference frame of satellite tracks where data with dense coverage from geodetic missions of Geosat (18 months) and ERS-1 (10 months) is adjusted, allowing a detailed recovery of the marine gravity field. A remove-restore procedure is used to obtain residual sea surface heights by removing the low and high frequencies (the global geopotential model EGM96 is used as reference field and the effects of the topography/bathymetry are computed using the RTM correction with the local accurate bathymetric model AZDTM98 and the global model JGP95E. A validation procedure is applied using least squares collocation, followed by a grid generation of residual geoid undulations, that is inverted using an efficient method based on Fast Fourier Transform to obtain residual gravity anomalies. After adding the contributions to the gravity field from the global model and from the topography/bathymetry, the results are compared with adjusted gravity data obtained from gravimetric surveys.

  19. 3D gravity modeling of the Corrientes province (NE Argentina) and its importance to the Guarani Aquifer System

    NASA Astrophysics Data System (ADS)

    Mira, Andrés; Gómez Dacal, María Laura; Tocho, Claudia; Vives, Luis

    2013-11-01

    This paper presents a geological model of Corrientes province (Argentina) based on Bouguer gravity anomaly data, obtained in 2073 measurement points. To build the model, the IGMAS + interactive program was used. Two areas of approximately 135,000 km2 were modeled in this study. The selection of these areas was based on the sectors where the largest number of gravity anomaly measurements was made and other type of data was available to perform the parameterization (i.e, lithology profiles in boreholes, seismic profiles and audio-magnetotelluric AMT soundings). The initial geological configuration proposed was composed by four layers: basement, sediments (Paleozoic-Lower Cretaceous), basalts (Serra Geral Group, Lower Cretaceous) and post-basaltic sediments. The result shows a basement compartmentalized in structural blocks separated by large faults. The connection of Asunción and Río Grande Arches is confirmed along a structural high that crosses Corrientes province from SE to NW. The basaltic layer shows lateral changes in its thickness, due to faulting, almost disappearing on the NW of Corrientes. This structural configuration has a special hydrogeological importance because it produces the rise of the Guaraní Aquifer System sedimentary series near the surface and the intense fracture network makes this area prone to local recharge and regional discharge.

  20. Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: Insights from gravity data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik

    2016-11-01

    The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.

  1. Gravity constraints on the geometry of the Big Bend of the San Andreas Fault in the southern Carrizo Plains and Pine Mountain egion

    NASA Astrophysics Data System (ADS)

    Altintas, Ali Can

    The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on

  2. Gravity and Magnetic Survey of the Oaxaca-Juarez Terrane Boundary (Oaxaca Fault), Southern Mexico: Evidence for three Half Grabens

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Belmonte-Jimenez, S. I.; Ortega-Gutierrez, F.; Keppie-Moorhouse, J. D.; Martinez-Silva, J.; Martinez-Serrano, R.

    2007-05-01

    A geophysical survey of the Oaxaca Fault boundary between the Oaxaca (Oaxaquia) (Zapoteco) and Juarez (Cuicateco) terranes along the Etla and Zaachila valleys area, southern Mexico shows a series of NW-SE Bouguer and magnetic anomalies with stronger gradients towards the east. The basement from the Oaxaca terrane has a high density (2.8 gr/cm3 ) and magnetic susceptibility of up to 0.0051 cgs units, which contrast with the Juarez basement that has a lower density (2.67 gr/cm3) and a higher magnetic susceptibility (values ranging between 0.0025 to 0.0045 cgs units). The magnetic susceptibility is similar south of the Donaji fault. Interpretation of six combined gravity and magnetic NE-SW profiles perpendicular to the valleys indicates the presence of a composite depression comprising three N-S sub-basins with the Etla and Zachila sub-basins located at the northern and southern portions, respectively, separated by a third sub-basin relatively displaced westwards. They are bounded on the east by the steeply W-dipping Oaxaca master fault, and on the west by the gently E-dipping Huitzo-Zimatlan fault. Two interpretations are suggested for the southward continuation of the Oaxaca Fault: 1) it continues southwards at depth with the same strike. Together the Bouguer and total field magnetic anomalies suggest that the Oaxaca fault is continuous from Etla via Oaxaca City and Ocotlán de Morelos probably to Miahuatlán de Porfirio Díaz, and 2) it continues with the same strike but is displaced eastwards ~20 km along a sinistral transfer fault, which forms the northern boundary of the Zaachila sub-basin.

  3. Gravity Survey of the Rye Patch KGRA, Rye Patch, Nevada

    NASA Astrophysics Data System (ADS)

    Mcdonald, M. R.; Gosnold, W. D.

    2011-12-01

    The Rye Patch Known Geothermal Resource Area (KGRA) is located in Pershing County Nevada on the west side of the Humboldt Range and east of the Rye Patch Reservoir approximately 200 km northeast of Reno, Nevada. Previous studies include an earlier gravity survey, 3-D seismic reflection, vertical seismic profiling (VSP) on a single well, 3-D seismic imaging, and a report of the integrated seismic studies. Recently, Presco Energy conducted an aeromagnetic survey and is currently in the process of applying 2-D VSP methods to target exploration and production wells at the site. These studies have indicated that geothermal fluid flow primarily occurs along faults and fractures and that two potential aquifers include a sandstone/siltstone member of the Triassic Natchez Pass Formation and a karst zone that occurs at the interface between Mesozoic limestone and Tertiary volcanics. We hypothesized that addition of a high-resolution gravity survey would better define the locations, trends, lengths, and dip angles of faults and possible solution cavity features. The gravity survey encompassed an area of approximately 78 km2 (30 mi2) within the boundary of the KGRA along with portions of 8 sections directly to the west and 8 sections directly to the east. The survey included 203 stations that were spaced at 400 m intervals. The simple Bouguer anomaly patterns were coincident with elevation, and those patterns remained after terrain corrections were performed. To remove this signal, the data were further processed using wave-length (bandpass) filtering techniques. The results of the filtering and comparison with the recent aeromagnetic survey indicate that the location and trend of major fault systems can be identified using this technique. Dip angles can be inferred by the anomaly contour gradients. By further reductions in the bandpass window, other features such as possible karst solution channels may also be recognizable. Drilling or other geophysical methods such as a

  4. Analysis of gravity and topography in the GLIMPSE study region: Isostatic compensation and uplift of the Sojourn and Hotu Matua Ridge systems

    USGS Publications Warehouse

    Harmon, N.; Forsyth, D.W.; Scheirer, D.S.

    2006-01-01

    The Gravity Lieations Intraplate Melting Petrologic and Seismic Expedition (GLIMPSE) Experiment investigated the formation of a series of non-hot spot, intraplate volcanic ridges in the South Pacific and their relationship to cross-grain gravity lineaments detected by satellite altimetry. Using shipboard gravity measurements and a simple model of surface loading of a thin elastic plate, we estimate effective elastic thicknesses ranging from ???2 km beneath the Sojourn Ridge to a maximum of 10 km beneath the Southern Cross Seamount. These elastic thicknesses are lower than predicted for the 3-9 Ma seafloor on which the volcanoes lie, perhaps due to reheating and thinning of the plate during emplacement. Anomalously low apparent densities estimated for the Matua and Southern Cross seamounts 2050 and 2250 kg m-3, respectively, probably are artifacts caused by the assumption of only surface loading, ignoring the presence of subsurface loading in the form of underplated crust and/or low-density mantle. Using satellite free-air gravity and shipboard bathymetry, we calculate the age-detrended, residual mantle Bouguer anomaly (rMBA). The rMBA corrects the free-air anomaly for the direct effects of topography, including the thickening of the crust beneath the seamounts and volcanic ridges due to surface loading of the volcanic edifices. There are broad, negative rMBA anomalies along the Sojourn and Brown ridges and the Hotu Matua seamount chain that extend nearly to the East Pacific Rise. These negative rMBA anomalies connect to negative free-air anomalies in the western part of the study area that have been recognized previously as the beginnings of the cross-grain gravity lineaments. Subtracting the topographic effects of surface loading by the ridges and seamounts from the observed topography reveals that the ridges are built on broad bands of anomalously elevated seafloor. This swell topography and the negative rMBA anomalies contradict the predictions of lithospheric

  5. Imaging the density distributions at the regional scale using full waveform and gravity data inversion - Application to the Pyrenees

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Chevrot, Sébastien; Wang, Yi; Spangenberg, Hannah; Goubet, Marie; Monteiller, Vadim; Komatitsch, Dimitri; Seoane, Lucia; Dufréchou, Grégory

    2017-04-01

    We present a hybrid inversion method that allows us to image density distributions at the regional scale using both seismic and gravity data. One main goal is to obtain densities and seismic wave velocities (P and S) in the lithosphere with a fine resolution to get important constraints on the mineralogic composition and thermal state of the lithosphere. In the context of the Pyrenees (located between Spain and France), accurate Vp and Vs seismic velocity models are computed first on a 3D spectral element grid at the scale of the Pyrenees by inverting teleseismic full waveforms. In a second step, Vp velocities are mapped to densities using empirical relations to build an a priori density model. BGI and BRGM Bouguer gravity anomaly data sets are then inverted on the same 3D spectral element grid as the Vp model at a resolution of 1-2 km by using high-order numerical integration formulae. Solutions are compared to those obtained using classical semi-analytical techniques. This procedure opens the possibility to invert both teleseismic and gravity data on the same finite-element grid. It can handle topography of the free surface in the same spectral-element distorted mesh that is used to solve the wave equation, without performing extra interpolations between different grids and models. WGS84 curvature, SRTM or ETOPO1 topographies are used.

  6. 3D Gravity Field Modelling of the Lithosphere along the Dead Sea Transform (DESERT 2002)

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.; Ebbing, J.; Schmidt, S.; Rykakov, M.; Hassouneh, M.; Hrahsha, M.; El-Kelani, R.; Desert Group

    2003-04-01

    From March to May 2002 a gravity field campaign has to be conducted in the area of Dead Sea Rift/Dead Sea Transform with regard to the isostatic state, the crustal density structure of the transform and the lithospheric rigidity in the Central Arava Valley (Jordan). Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), takes part in the interdisciplinary and international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local scale in the Arava valley and at regional scale along the DESERT seismic line. Station spacing in the area of the Arava valley was 100 - 300 m and in the nearest neighbourhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic studies, and geological mapping which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing density domains. In particular the "dip-curvature" reveal a clear course

  7. Gravity Field Analysis and 3D Density Modeling of the Lithosphere Along the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Goetze, H.; Ebbing, J.; Hese, F.; Kollersberger, T.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Hrahsha, M.; El Kelani, R.

    2002-12-01

    The gravity field of Dead Sea Rift / Dead Sea Transform was investigated with regard to the isostatic state, the crustal density structure of the orogeny and the rigidity of the lithosphere in the Central Arava Valley. Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), is aiming to study the crustal density structure, the isostatic state of the lithosphere and mechanical properties of the Dead Sea Rift system under the framework of the international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local (Arava valley) and regional scale (along the DESERT seismic line). Station spacing in the Arava valley was 100 - 300 m and in the nearest neighborhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models at regional and local came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic, and geologic studies which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing

  8. Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.

    2016-12-01

    The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.

  9. A computer system for the storage and retrieval of gravity data, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Godson, Richard H.; Andreasen, Gordon H.

    1974-01-01

    A computer system has been developed for the systematic storage and retrieval of gravity data. All pertinent facts relating to gravity station measurements and computed Bouguer values may be retrieved either by project name or by geographical coordinates. Features of the system include visual display in the form of printer listings of gravity data and printer plots of station locations. The retrieved data format interfaces with the format of GEOPAC, a system of computer programs designed for the analysis of geophysical data.

  10. Investigating subglacial landscapes and crustal structure of the Gamburtsev Province in East Antarctica with the aid of new airborne gravity data

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Studinger, M.; Bell, R. E.; Damaske, D.; Elieff, S.; Finn, C.; Braaten, D. A.; Corr, H.

    2009-12-01

    The AGAP project was undertaken as part of the 2008\\09 field season and explored the Gamburtsev Subglacial Mountains (GSM) province in East Antarctica. AGAP collected >120, 000 line km of new airborne radar, aerogravity and aeromagnetic data. Here we focus on the airborne gravity part of the survey. The airborne gravity data were collected from two Twin Otters operating from remote field camps either side of Dome A. A high-resolution Sander Geophysics AIRGrav system was used for the first time in Antarctica and was mounted in the US plane. A more traditional L&R airborne gravity meter modified by ZLS was installed on the British Antarctic Survey aircraft. The AIRGrav system was flown in draped mode, which proved ideal for the simultaneous acquisition of radar and magnetic data, while the L&R system required flying along constant elevation survey blocks. The processed free-air gravity anomalies exhibit low cross-over errors of 1 mGal over the southern sector of the GSM, where the AIRGrav system was primarily used, and a spatial resolution of 3.5 km. Larger cross-over errors of 3.5 mGal and a coarser spatial resolution of 8 km characterise the northern part of the GSM and the adjacent Lambert Glacier, where the L&R meter was mainly flown. The merged free-air gravity anomaly grid primarily reflects the subglacial topography of the GSM province. The contrast between the Pensacola-Pole and Lambert Glacier basins and the rugged alpine-type relief of the GSM is clearly imaged. A dentritic system of subglacial valleys is mapped in the GSM, in good agreement with independent radar data. Inversion of the free-air gravity data assists in tracing the bedrock under several km-thick and fast-flowing crevassed ice of the Lambert Glacier. Using the ice thickness and bedrock topography data derived from airborne radar we compiled a new Bouguer anomaly map for the GSM province. The new gravity anomaly data can be used to estimate crustal thickness variations under the GSM and

  11. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  12. High-Precise Gravity Observations at Archaeological Sites: How We Can Improve the Interpretation Effectiveness and Reliability?

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2015-04-01

    the Lesser Caucasus (western Azerbaijan) under conditions of rugged relief and complex geology. This deposit is well investigated by mining and drilling operations and therefore was used as a reference field polygon for testing this approach. A special scheme for obtaining the Bouguer anomalies has been employed to suppress the terrain relief effects dampening the anomaly effects from the objects of prospecting. The scheme is based on calculating the difference between the free-air anomaly and the gravity field determined from a 3D model of a uniform medium with a real topography. 3-D terrain relief model with an interval of its description of 80 km (the investigated 6 profiles of 800 m length are in the center of this interval) was employed to compute (by the use of GSFC software (Khesin et al., 1996)) the gravitational effect of the medium (σ = 2670 kg/m3). With applying such a scheme the Bouguer anomalies were obtained with accuracy in two times higher than that of TC received by the conventional methods. As a result, on the basis of the improved Bouguer gravity with the precise TC data, the geological structure of the deposit was defined (Khesin et al., 1996). Second approach Second approach was employed at the complex Katekh pyrite-polymetallic deposit, which is located at the southern slope of the Greater Caucasus (northern Azerbaijan). The main peculiarities of this area are very rugged topography of SW-NE trend, complex geology and severe tectonics. Despite the availability of conventional ΔgB (TC far zones were computed up to 200 km), for the enhanced calculation of surrounding terrain topography a digital terrain relief model was created (Eppelbaum and Khesin, 2004). The SW-NE regional topography trend in the area of the Katekh deposit occurrence was computed as a rectangular digital terrain relief model (DTRM) of 20 km long and 600 m wide (our interpretation profile with a length of 800 m was located in the geometrical center of the DTRM). As a whole

  13. Strength anisotropy in Southern Africa from gravity-topography coherence studies: Implications for continental deformation

    NASA Astrophysics Data System (ADS)

    Watson, J.; Simons, F. J.

    2006-12-01

    The relationship between gravity anomalies and topography, diagnostic of the elastic strength of the lithosphere and expressed in the wavelength domain by means of the coherence function, has been found to be directionally dependent in various portions of the North American, Australian, and Indian (sub)continents. While various mechanisms have been proposed as to the origin of azimuthal variations in the degree and mechanism of isostatic compensation per se, a fruitful way of interpreting this information has been to construe the orientations of mechanical weakness as indicators of fossil strain and compare them to the fast axes of seismic anisotropy, which are themselves an independent measure of strain, and to which they should be orthogonal under certain simplifying assumptions. Seen in this light, the study of mechanical anisotropy via gravity-topography coherence functions is a useful way to define the very essence of the mechanical lithosphere, as that portion which relates consistently to its seismic anisotropy, delineating a stable regime that has been coherently deformed by the action of orogenic processes over time (in the sense of Silver) and separating it from the actively deforming asthenosphere (in the sense of Vinnik) below it. In this study we present evidence for the mechanically anisotropic nature of the Southern African continent from a multitaper spectral analysis of two-dimensional coherence functions relating high-resolution Bouguer gravity anomalies and topography. Of the thirteen 750×750 km2 areas surveyed within the continental confines, five fall within an area for which seismic anisotropy has been measured by means of shear-wave splitting analysis, and 80%, or four of those, corroborate Silver's hypothesis of vertically coherent deformation in that the directions of mechanical weakness are perpendicular to the fast axis of seismic wave propagation. We discuss the limitations of our evidence and present it with a view to further work.

  14. Effective photons in weakly absorptive dielectric media and the Beer-Lambert-Bouguer law

    NASA Astrophysics Data System (ADS)

    Judge, A. C.; Brownless, J. S.; Bhat, N. A. R.; Sipe, J. E.; Steel, M. J.; de Sterke, C. Martijn

    2014-04-01

    We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers-Kronig dielectric in the limit of weak absorption. Each mode is associated with a mode field distribution that includes the effects of both material and structural dispersion, and an effective line-width that determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer-Lambert-Bouguer law absorption coefficient for unidirectional propagation in structured media consisting of dispersive, weakly absorptive dielectric materials.

  15. Bouguer images of the North American craton and its structural evolution

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Bowring, S.; Eddy, M.; Guinness, E.; Leff, C.; Bindschadler, D.

    1984-01-01

    Digital image processing techniques have been used to generate Bouguer images of the North American craton that diplay more of the granularity inherent in the data as compared with existing contour maps. A dominant NW-SE linear trend of highs and lows can be seen extending from South Dakota, through Nebraska, and into Missouri. The structural trend cuts across the major Precambrian boundary in Missouri, separating younger granites and rhyolites from older sheared granites and gneisses. This trend is probably related to features created during an early and perhaps initial episode of crustal assembly by collisional processes. The younger granitic materials are probably a thin cover over an older crust.

  16. Optimal Estimation of a High Degree Gravity Field from a Global Set of 1 deg x 1 deg Anomalies to Degree and Order 250.

    DTIC Science & Technology

    1984-08-01

    Variances: Sets A and B2 53- 6.8 Comparison of Anomaly Degree Variances: Sets A and B1 54 -vi - . . . .. . . . . . . . . .. . .. List of Tables 3.1 CPU Time ...sin ’)] (1.1) r n=2 m=O r nm nm nm where GM is the gravitational constant times the earth’s mass, a is the equatorial radius of the best-fitting...problems. His tests were carried out with global set of 5°x 50 anomalies. He estimated CPU time of about two hours, on an Amdahl 470 V/6-I computer

  17. Basin-fill Aquifer Modeling with Terrestrial Gravity: Assessing Static Offsets in Bulk Datasets using MATLAB; Case Study of Bridgeport, CA

    NASA Astrophysics Data System (ADS)

    Mlawsky, E. T.; Louie, J. N.; Pohll, G.; Carlson, C. W.; Blakely, R. J.

    2015-12-01

    Understanding the potential availability of water resources in Eastern California aquifers is of critical importance to making water management policy decisions and determining best-use practices for California, as well as for downstream use in Nevada. Hydrologic well log data can provide valuable information on aquifer capacity, but is often proprietarily inaccessible or economically unfeasible to obtain in sufficient quantity. In the case of basin-fill aquifers, it is possible to make estimates of aquifer geometry and volume using geophysical surveys of gravity, constrained by additional geophysical and geological observations. We use terrestrial gravity data to model depth-to-basement about the Bridgeport, CA basin for application in preserving the Walker Lake biome. In constructing the model, we assess several hundred gravity observations, existing and newly collected. We regard these datasets as "bulk," as the data are compiled from multiple sources. Inconsistencies among datasets can result in "static offsets," or artificial bull's-eye contours, within the gradient. Amending suspect offsets requires the attention of the modeler; picking these offsets by hand can be a time-consuming process when modeling large-scale basin features. We develop a MATLAB script for interpolating the residual Bouguer anomaly about the basin using sparse observation points, and leveling offset points with a user-defined sensitivity. The script is also capable of plotting gravity profiles between any two endpoints within the map extent. The resulting anomaly map provides an efficient means of locating and removing static offsets in the data, while also providing a fast visual representation of a bulk dataset. Additionally, we obtain gridded basin gravity models with an open-source alternative to proprietary modeling tools.

  18. Crustal and uppermost mantle S-wave velocity structure of Southern Yellow Sea and adjacent regions from gravity-seismic joint inversion and its implication for seismotectonics

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Chen, F.; Li, C. F.; Zhang, H.; Yu, H.

    2016-12-01

    The Southern Yellow Sea is underlain by Yangtze Craton continental lithosphere. We collected thousands of surface waveforms from China earthquake networks and analyzed phase velocity dispersion curves with periods between 10-70s. Then we applied joint gravity-seismic wave inversion to study 3D lithospheric S-wave velocity structure of the Southern Yellow Sea and adjacent area (119-127°E, 30-38°N) from surface to 110 km depth with 0.5°horizontal gridding. Compared to results from using only surface wave inversion, the joint in