Sample records for bound constrained evolutionary

  1. Observational Role of Dark Matter in f(R) Models for Structure Formation

    NASA Astrophysics Data System (ADS)

    Verma, Murli Manohar; Yadav, Bal Krishna

    The fixed points for the dynamical system in the phase space have been calculated with dark matter in the f(R) gravity models. The stability conditions of these fixed points are obtained in the ongoing accelerated phase of the universe, and the values of the Hubble parameter and Ricci scalar are obtained for various evolutionary stages of the universe. We present a range of some modifications of general relativistic action consistent with the ΛCDM model. We elaborate upon the fact that the upcoming cosmological observations would further constrain the bounds on the possible forms of f(R) with greater precision that could in turn constrain the search for dark matter in colliders.

  2. Wavelet evolutionary network for complex-constrained portfolio rebalancing

    NASA Astrophysics Data System (ADS)

    Suganya, N. C.; Vijayalakshmi Pai, G. A.

    2012-07-01

    Portfolio rebalancing problem deals with resetting the proportion of different assets in a portfolio with respect to changing market conditions. The constraints included in the portfolio rebalancing problem are basic, cardinality, bounding, class and proportional transaction cost. In this study, a new heuristic algorithm named wavelet evolutionary network (WEN) is proposed for the solution of complex-constrained portfolio rebalancing problem. Initially, the empirical covariance matrix, one of the key inputs to the problem, is estimated using the wavelet shrinkage denoising technique to obtain better optimal portfolios. Secondly, the complex cardinality constraint is eliminated using k-means cluster analysis. Finally, WEN strategy with logical procedures is employed to find the initial proportion of investment in portfolio of assets and also rebalance them after certain period. Experimental studies of WEN are undertaken on Bombay Stock Exchange, India (BSE200 index, period: July 2001-July 2006) and Tokyo Stock Exchange, Japan (Nikkei225 index, period: March 2002-March 2007) data sets. The result obtained using WEN is compared with the only existing counterpart named Hopfield evolutionary network (HEN) strategy and also verifies that WEN performs better than HEN. In addition, different performance metrics and data envelopment analysis are carried out to prove the robustness and efficiency of WEN over HEN strategy.

  3. Natural Constraints to Species Diversification.

    PubMed

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of biodiversity.

  4. Natural Constraints to Species Diversification

    PubMed Central

    Lewitus, Eric; Morlon, Hélène

    2016-01-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of biodiversity. PMID:27505866

  5. Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards.

    PubMed

    Hagey, Travis J; Uyeda, Josef C; Crandell, Kristen E; Cheney, Jorn A; Autumn, Kellar; Harmon, Luke J

    2017-10-01

    Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad-bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein-Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. A Note on Evolutionary Algorithms and Its Applications

    ERIC Educational Resources Information Center

    Bhargava, Shifali

    2013-01-01

    This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.

  7. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.

    PubMed

    Hopkins, Melanie J; Smith, Andrew B

    2015-03-24

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis.

  8. Upper bounds on superpartner masses from upper bounds on the Higgs boson mass.

    PubMed

    Cabrera, M E; Casas, J A; Delgado, A

    2012-01-13

    The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11)  GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.

  9. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution

    PubMed Central

    Hopkins, Melanie J.; Smith, Andrew B.

    2015-01-01

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with “early bursts” of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today’s oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis. PMID:25713369

  10. A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Torczon, Virginia

    1998-01-01

    We give a pattern search adaptation of an augmented Lagrangian method due to Conn, Gould, and Toint. The algorithm proceeds by successive bound constrained minimization of an augmented Lagrangian. In the pattern search adaptation we solve this subproblem approximately using a bound constrained pattern search method. The stopping criterion proposed by Conn, Gould, and Toint for the solution of this subproblem requires explicit knowledge of derivatives. Such information is presumed absent in pattern search methods; however, we show how we can replace this with a stopping criterion based on the pattern size in a way that preserves the convergence properties of the original algorithm. In this way we proceed by successive, inexact, bound constrained minimization without knowing exactly how inexact the minimization is. So far as we know, this is the first provably convergent direct search method for general nonlinear programming.

  11. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants.

    PubMed

    Blanchard, Benjamin D; Moreau, Corrie S

    2017-02-01

    Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Bounds on OPE coefficients from interference effects in the conformal collider

    NASA Astrophysics Data System (ADS)

    Córdova, Clay; Maldacena, Juan; Turiaci, Gustavo J.

    2017-11-01

    We apply the average null energy condition to obtain upper bounds on the three-point function coefficients of stress tensors and a scalar operator, < TTOi>, in general CFTs. We also constrain the gravitational anomaly of U(1) currents in four-dimensional CFTs, which are encoded in three-point functions of the form 〈 T T J 〉. In theories with a large N AdS dual we translate these bounds into constraints on the coefficient of a higher derivative bulk term of the form ∫ϕ W 2. We speculate that these bounds also apply in de-Sitter. In this case our results constrain inflationary observables, such as the amplitude for chiral gravity waves that originate from higher derivative terms in the Lagrangian of the form ϕ W W ∗.

  13. Cooperative combinatorial optimization: evolutionary computation case study.

    PubMed

    Burgin, Mark; Eberbach, Eugene

    2008-01-01

    This paper presents a formalization of the notion of cooperation and competition of multiple systems that work toward a common optimization goal of the population using evolutionary computation techniques. It is proved that evolutionary algorithms are more expressive than conventional recursive algorithms, such as Turing machines. Three classes of evolutionary computations are introduced and studied: bounded finite, unbounded finite, and infinite computations. Universal evolutionary algorithms are constructed. Such properties of evolutionary algorithms as completeness, optimality, and search decidability are examined. A natural extension of evolutionary Turing machine (ETM) model is proposed to properly reflect phenomena of cooperation and competition in the whole population.

  14. Environment determines evolutionary trajectory in a constrained phenotypic space

    PubMed Central

    Fraebel, David T; Mickalide, Harry; Schnitkey, Diane; Merritt, Jason; Kuhlman, Thomas E; Kuehn, Seppe

    2017-01-01

    Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and growth rate constrains the evolution of faster migration. Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution in minimal medium results in fast growth and slow swimming. In each condition parallel genomic evolution drives adaptation through different mutations. We show that the trade-off is mediated by antagonistic pleiotropy through mutations that affect negative regulation. A model of the evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively depend on its environment, which in turn alters its evolutionary trajectory. DOI: http://dx.doi.org/10.7554/eLife.24669.001 PMID:28346136

  15. Constraining the noncommutative spectral action via astrophysical observations.

    PubMed

    Nelson, William; Ochoa, Joseph; Sakellariadou, Mairi

    2010-09-03

    The noncommutative spectral action extends our familiar notion of commutative spaces, using the data encoded in a spectral triple on an almost commutative space. Varying a rather simple action, one can derive all of the standard model of particle physics in this setting, in addition to a modified version of Einstein-Hilbert gravity. In this Letter we use observations of pulsar timings, assuming that no deviation from general relativity has been observed, to constrain the gravitational sector of this theory. While the bounds on the coupling constants remain rather weak, they are comparable to existing bounds on deviations from general relativity in other settings and are likely to be further constrained by future observations.

  16. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    PubMed

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  17. The amazing evolutionary dynamics of non-linear optical systems with feedback

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Leonid

    2013-09-01

    Optical systems with feedback are, generally, non-linear dynamic systems. As such, they exhibit evolutionary behavior. In the paper we present results of experimental investigation of evolutionary dynamics of several models of such systems. The models are modifications of the famous mathematical "Game of Life". The modifications are two-fold: "Game of Life" rules are made stochastic and mutual influence of cells is made spatially non-uniform. A number of new phenomena in the evolutionary dynamics of the models are revealed: - "Ordering of chaos". Formation, from seed patterns, of stable maze-like patterns with chaotic "dislocations" that resemble natural patterns, such as skin patterns of some animals and fishes, see shell, fingerprints, magnetic domain patterns and alike, which one can frequently find in the nature. These patterns and their fragments exhibit a remarkable capability of unlimited growth. - "Self-controlled growth" of chaotic "live" formations into "communities" bounded, depending on the model, by a square, hexagon or octagon, until they reach a certain critical size, after which the growth stops. - "Eternal life in a bounded space" of "communities" after reaching a certain size and shape. - "Coherent shrinkage" of "mature", after reaching a certain size, "communities" into one of stable or oscillating patterns preserving in this process isomorphism of their bounding shapes until the very end.

  18. Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.

    PubMed

    De Baets, Kenneth; Dentzien-Dias, Paula; Upeniece, Ieva; Verneau, Olivier; Donoghue, Philip C J

    2015-01-01

    Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Resource Constrained Planning of Multiple Projects with Separable Activities

    NASA Astrophysics Data System (ADS)

    Fujii, Susumu; Morita, Hiroshi; Kanawa, Takuya

    In this study we consider a resource constrained planning problem of multiple projects with separable activities. This problem provides a plan to process the activities considering a resource availability with time window. We propose a solution algorithm based on the branch and bound method to obtain the optimal solution minimizing the completion time of all projects. We develop three methods for improvement of computational efficiency, that is, to obtain initial solution with minimum slack time rule, to estimate lower bound considering both time and resource constraints and to introduce an equivalence relation for bounding operation. The effectiveness of the proposed methods is demonstrated by numerical examples. Especially as the number of planning projects increases, the average computational time and the number of searched nodes are reduced.

  20. Sample-Based Motion Planning in High-Dimensional and Differentially-Constrained Systems

    DTIC Science & Technology

    2010-02-01

    Reachable Set . . . 88 6-1 LittleDog Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6-2 Dog bounding up stairs ...planning algorithm implemented on LittleDog, a quadruped robot . The motion planning algorithm successfully planned bounding trajectories over extremely...a motion planning algorithm implemented on LittleDog, a quadruped robot . The motion planning algorithm successfully planned bounding trajectories

  1. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift.

    PubMed

    Laarits, T; Bordalo, P; Lemos, B

    2016-08-01

    Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  2. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  3. Synergism and Antagonism of Proximate Mechanisms Enable and Constrain the Response to Simultaneous Selection on Body Size and Development Time: An Empirical Test Using Experimental Evolution.

    PubMed

    Davidowitz, Goggy; Roff, Derek; Nijhout, H Frederik

    2016-11-01

    Natural selection acts on multiple traits simultaneously. How mechanisms underlying such traits enable or constrain their response to simultaneous selection is poorly understood. We show how antagonism and synergism among three traits at the developmental level enable or constrain evolutionary change in response to simultaneous selection on two focal traits at the phenotypic level. After 10 generations of 25% simultaneous directional selection on all four combinations of body size and development time in Manduca sexta (Sphingidae), the changes in the three developmental traits predict 93% of the response of development time and 100% of the response of body size. When the two focal traits were under synergistic selection, the response to simultaneous selection was enabled by juvenile hormone and ecdysteroids and constrained by growth rate. When the two focal traits were under antagonistic selection, the response to selection was due primarily to change in growth rate and constrained by the two hormonal traits. The approach used here reduces the complexity of the developmental and endocrine mechanisms to three proxy traits. This generates explicit predictions for the evolutionary response to selection that are based on biologically informed mechanisms. This approach has broad applicability to a diverse range of taxa, including algae, plants, amphibians, mammals, and insects.

  4. An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms.

    PubMed

    Zhang, Yushan; Hu, Guiwu

    2015-01-01

    Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP). This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.

  5. Evolution of avian flight: muscles and constraints on performance

    PubMed Central

    2016-01-01

    Competing hypotheses about evolutionary origins of flight are the ‘fundamental wing-stroke’ and ‘directed aerial descent’ hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528773

  6. BCDP: Budget Constrained and Delay-Bounded Placement for Hybrid Roadside Units in Vehicular Ad Hoc Networks

    PubMed Central

    Li, Peng; Huang, Chuanhe; Liu, Qin

    2014-01-01

    In vehicular ad hoc networks, roadside units (RSUs) placement has been proposed to improve the the overall network performance in many ITS applications. This paper addresses the budget constrained and delay-bounded placement problem (BCDP) for roadside units in vehicular ad hoc networks. There are two types of RSUs: cable connected RSU (c-RSU) and wireless RSU (w-RSU). c-RSUs are interconnected through wired lines, and they form the backbone of VANETs, while w-RSUs connect to other RSUs through wireless communication and serve as an economical extension of the coverage of c-RSUs. The delay-bounded coverage range and deployment cost of these two cases are totally different. We are given a budget constraint and a delay bound, the problem is how to find the optimal candidate sites with the maximal delay-bounded coverage to place RSUs such that a message from any c-RSU in the region can be disseminated to the more vehicles within the given budget constraint and delay bound. We first prove that the BCDP problem is NP-hard. Then we propose several algorithms to solve the BCDP problem. Simulation results show the heuristic algorithms can significantly improve the coverage range and reduce the total deployment cost, compared with other heuristic methods. PMID:25436656

  7. Protein 3D Structure Computed from Evolutionary Sequence Variation

    PubMed Central

    Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic variants in normal and disease genomes. PMID:22163331

  8. What Information Theory Says about Bounded Rational Best Response

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    Probability Collectives (PC) provides the information-theoretic extension of conventional full-rationality game theory to bounded rational games. Here an explicit solution to the equations giving the bounded rationality equilibrium of a game is presented. Then PC is used to investigate games in which the players use bounded rational best-response strategies. Next it is shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. It is then shown that for team (shared-payoff) games, this variant of replicator dynamics is identical to Newton-Raphson iterative optimization of the shared utility function.

  9. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    PubMed

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Tests of chameleon gravity

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Sakstein, Jeremy

    2018-03-01

    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.

  11. Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design

    NASA Technical Reports Server (NTRS)

    Dalton, James Bradley 3rd

    2003-01-01

    Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.

  12. Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design.

    PubMed

    Dalton, James Bradley

    2003-01-01

    Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.

  13. Call Admission Control on Single Node Networks under Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) Scheduler

    NASA Astrophysics Data System (ADS)

    Hanada, Masaki; Nakazato, Hidenori; Watanabe, Hitoshi

    Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

  14. Constraints on Born-Infeld gravity from the speed of gravitational waves after GW170817 and GRB 170817A

    NASA Astrophysics Data System (ADS)

    Jana, Soumya; Chakravarty, Girish Kumar; Mohanty, Subhendra

    2018-04-01

    The observations of gravitational waves from the binary neutron star merger event GW170817 and the subsequent observation of its electromagnetic counterparts from the gamma-ray burst GRB 170817A provide us a significant opportunity to study theories of gravity beyond general relativity. An important outcome of these observations is that they constrain the difference between the speed of gravity and the speed of light to less than 10-15c . Also, the time delay between the arrivals of gravitational waves at different detectors constrains the speed of gravity at the Earth to be in the range 0.55 c

  15. Constrained reduced-order models based on proper orthogonal decomposition

    DOE PAGES

    Reddy, Sohail R.; Freno, Brian Andrew; Cizmas, Paul G. A.; ...

    2017-04-09

    A novel approach is presented to constrain reduced-order models (ROM) based on proper orthogonal decomposition (POD). The Karush–Kuhn–Tucker (KKT) conditions were applied to the traditional reduced-order model to constrain the solution to user-defined bounds. The constrained reduced-order model (C-ROM) was applied and validated against the analytical solution to the first-order wave equation. C-ROM was also applied to the analysis of fluidized beds. Lastly, it was shown that the ROM and C-ROM produced accurate results and that C-ROM was less sensitive to error propagation through time than the ROM.

  16. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages

    PubMed Central

    Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro

    2017-01-01

    Abstract Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases’ evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. PMID:28369657

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  18. Chance-Constrained Guidance With Non-Convex Constraints

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro

    2011-01-01

    Missions to small bodies, such as comets or asteroids, require autonomous guidance for descent to these small bodies. Such guidance is made challenging by uncertainty in the position and velocity of the spacecraft, as well as the uncertainty in the gravitational field around the small body. In addition, the requirement to avoid collision with the asteroid represents a non-convex constraint that means finding the optimal guidance trajectory, in general, is intractable. In this innovation, a new approach is proposed for chance-constrained optimal guidance with non-convex constraints. Chance-constrained guidance takes into account uncertainty so that the probability of collision is below a specified threshold. In this approach, a new bounding method has been developed to obtain a set of decomposed chance constraints that is a sufficient condition of the original chance constraint. The decomposition of the chance constraint enables its efficient evaluation, as well as the application of the branch and bound method. Branch and bound enables non-convex problems to be solved efficiently to global optimality. Considering the problem of finite-horizon robust optimal control of dynamic systems under Gaussian-distributed stochastic uncertainty, with state and control constraints, a discrete-time, continuous-state linear dynamics model is assumed. Gaussian-distributed stochastic uncertainty is a more natural model for exogenous disturbances such as wind gusts and turbulence than the previously studied set-bounded models. However, with stochastic uncertainty, it is often impossible to guarantee that state constraints are satisfied, because there is typically a non-zero probability of having a disturbance that is large enough to push the state out of the feasible region. An effective framework to address robustness with stochastic uncertainty is optimization with chance constraints. These require that the probability of violating the state constraints (i.e., the probability of failure) is below a user-specified bound known as the risk bound. An example problem is to drive a car to a destination as fast as possible while limiting the probability of an accident to 10(exp -7). This framework allows users to trade conservatism against performance by choosing the risk bound. The more risk the user accepts, the better performance they can expect.

  19. Evolutionary biochemistry: revealing the historical and physical causes of protein properties

    PubMed Central

    Harms, Michael J.; Thornton, Joseph W.

    2014-01-01

    The repertoire of proteins and nucleic acids in the living world is determined by evolution; their properties are determined by the laws of physics and chemistry. Explanations of these two kinds of causality — the purviews of evolutionary biology and biochemistry, respectively — are typically pursued in isolation, but many fundamental questions fall squarely at the interface of fields. Here we articulate the paradigm of evolutionary biochemistry, which aims to dissect the physical mechanisms and evolutionary processes by which biological molecules diversified and to reveal how their physical architecture facilitates and constrains their evolution. We show how an integration of evolution with biochemistry moves us towards a more complete understanding of why biological molecules have the properties that they do. PMID:23864121

  20. Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales

    PubMed Central

    Margres, Mark J.; Wray, Kenneth P.; Seavy, Margaret; McGivern, James J.; Herrera, Nathanael D.; Rokyta, Darin R.

    2016-01-01

    Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation. PMID:26546003

  1. Constraining f(T) teleparallel gravity by big bang nucleosynthesis: f(T) cosmology and BBN.

    PubMed

    Capozziello, S; Lambiase, G; Saridakis, E N

    2017-01-01

    We use Big Bang Nucleosynthesis (BBN) observational data on the primordial abundance of light elements to constrain f ( T ) gravity. The three most studied viable f ( T ) models, namely the power law, the exponential and the square-root exponential are considered, and the BBN bounds are adopted in order to extract constraints on their free parameters. For the power-law model, we find that the constraints are in agreement with those obtained using late-time cosmological data. For the exponential and the square-root exponential models, we show that for reliable regions of parameters space they always satisfy the BBN bounds. We conclude that viable f ( T ) models can successfully satisfy the BBN constraints.

  2. Type 2 diabetes, cardiovascular disease, and the evolutionary paradox of the polycystic ovary syndrome: a fertility first hypothesis.

    PubMed

    Corbett, Stephen J; McMichael, Anthony J; Prentice, Andrew M

    2009-01-01

    Worldwide, the high prevalence of the Polycystic Ovary Syndrome (PCOS), a heritable cause of ovarian infertility, is an evolutionary paradox, which provides insight into the susceptibility of well-fed human populations to cardiovascular disease and diabetes. We propose that PCOS, Type 2 diabetes (T2D) and the Metabolic Syndrome are modern phenotypic expressions of a metabolic genotype attuned to the dietary and energetic conditions of the Pleistocene. This metabolic "Fertility First" rather than "Thrifty" genotype persisted at high prevalence throughout the entire agrarian period-from around 12,000 years ago until 1800 AD-primarily, we contend, because it conferred a fertility advantage in an environment defined by chronic and often severe seasonal food shortage. Conversely, we argue that genetic adaptations to a high carbohydrate, low protein agrarian diet, with increased sensitivity to insulin action, were constrained because these adaptations compromised fertility by raising the lower bound of body weight and energy intake optimal for ovulation and reproduction. After 1800, the progressive attainment of dietary energy sufficiency released human populations from this constraint. This release, through the powerful mechanism of fertility selection, increased, in decades rather than centuries, the prevalence of a genotype better suited to carbohydrate metabolism. This putative mechanism for rapid and recent human evolution can explain the lower susceptibility to T2D of today's Europid populations. This hypothesis predicts that the increasing rates of diabetes and cardiovascular disease, which typically accompany economic development, will be tempered by natural, but particularly fertility, selection against the conserved ancestral genotypes that currently underpin them.

  3. Selection on bristle length has the ability to drive the evolution of male abdominal appendages in the sepsid fly Themira biloba.

    PubMed

    Herath, B; Dochtermann, N A; Johnson, J I; Leonard, Z; Bowsher, J H

    2015-12-01

    Many exaggerated and novel traits are strongly influenced by sexual selection. Although sexual selection is a powerful evolutionary force, underlying genetic interactions can constrain evolutionary outcomes. The relative strength of selection vs. constraint has been a matter of debate for the evolution of male abdominal appendages in sepsid flies. These abdominal appendages are involved in courtship and mating, but their function has not been directly tested. We performed mate choice experiments to determine whether sexual selection acts on abdominal appendages in the sepsid Themira biloba. We tested whether appendage bristle length influenced successful insemination by surgically trimming the bristles. Females paired with males that had shortened bristles laid only unfertilized eggs, indicating that long bristles are necessary for successful insemination. We also tested whether the evolution of bristle length was constrained by phenotypic correlations with other traits. Analyses of phenotypic covariation indicated that bristle length was highly correlated with other abdominal appendage traits, but was not correlated with abdominal sternite size. Thus, abdominal appendages are not exaggerated traits like many sexual ornaments, but vary independently from body size. At the same time, strong correlations between bristle length and appendage length suggest that selection on bristle length is likely to result in a correlated increase in appendage length. Bristle length is under sexual selection in T. biloba and has the potential to evolve independently from abdomen size. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  4. Modeling the stylized facts in finance through simple nonlinear adaptive systems

    PubMed Central

    Hommes, Cars H.

    2002-01-01

    Recent work on adaptive systems for modeling financial markets is discussed. Financial markets are viewed as evolutionary systems between different, competing trading strategies. Agents are boundedly rational in the sense that they tend to follow strategies that have performed well, according to realized profits or accumulated wealth, in the recent past. Simple technical trading rules may survive evolutionary competition in a heterogeneous world where prices and beliefs co-evolve over time. Evolutionary models can explain important stylized facts, such as fat tails, clustered volatility, and long memory, of real financial series. PMID:12011401

  5. Critical transition in the constrained traveling salesman problem.

    PubMed

    Andrecut, M; Ali, M K

    2001-04-01

    We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in a constrained variant of the traveling salesman problem (TSP). The computational experience pointed out a critical transition (at rho(c) approximately 85%) in the dependence between the excess of the mean optimal tour length over the Held-Karp lower bound and the density of obstacles.

  6. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages.

    PubMed

    Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro; Imai, Kenichiro

    2017-07-01

    Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases' evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Constraining the generalized uncertainty principle with the atomic weak-equivalence-principle test

    NASA Astrophysics Data System (ADS)

    Gao, Dongfeng; Wang, Jin; Zhan, Mingsheng

    2017-04-01

    Various models of quantum gravity imply the Planck-scale modifications of Heisenberg's uncertainty principle into a so-called generalized uncertainty principle (GUP). The GUP effects on high-energy physics, cosmology, and astrophysics have been extensively studied. Here, we focus on the weak-equivalence-principle (WEP) violation induced by the GUP. Results from the WEP test with the 85Rb-87Rb dual-species atom interferometer are used to set upper bounds on parameters in two GUP proposals. A 1045-level bound on the Kempf-Mangano-Mann proposal and a 1027-level bound on Maggiore's proposal, which are consistent with bounds from other experiments, are obtained. All these bounds have huge room for improvement in the future.

  8. The Mystery of Io's Warm Polar Regions: Implications for Heat Flow

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Veeder, G. J.; Johnson, T. V.; Blaney, D. L.; Davies, A. G.

    2002-01-01

    Unexpectedly warm polar temperatures further support the idea that Io is covered virtually everywhere by cooling lava flows. This implies a new heat flow component. Io's heat flow remains constrained between a lower bound of (approximately) 2.5 W m(exp -2) and an upper bound of (approximately) 13 W m(exp -2). Additional information is contained in the original extended abstract.

  9. Quantum mechanics of a constrained particle

    NASA Astrophysics Data System (ADS)

    da Costa, R. C. T.

    1981-04-01

    The motion of a particle rigidly bounded to a surface is discussed, considering the Schrödinger equation of a free particle constrained to move, by the action of an external potential, in an infinitely thin sheet of the ordinary three-dimensional space. Contrary to what seems to be the general belief expressed in the literature, this limiting process gives a perfectly well-defined result, provided that we take some simple precautions in the definition of the potentials and wave functions. It can then be shown that the wave function splits into two parts: the normal part, which contains the infinite energies required by the uncertainty principle, and a tangent part which contains "surface potentials" depending both on the Gaussian and mean curvatures. An immediate consequence of these results is the existence of different quantum mechanical properties for two isometric surfaces, as can be seen from the bound state which appears along the edge of a folded (but not stretched) plane. The fact that this surface potential is not a bending invariant (cannot be expressed as a function of the components of the metric tensor and their derivatives) is also interesting from the more general point of view of the quantum mechanics in curved spaces, since it can never be obtained from the classical Lagrangian of an a priori constrained particle without substantial modifications in the usual quantization procedures. Similar calculations are also presented for the case of a particle bounded to a curve. The properties of the constraining spatial potential, necessary to a meaningful limiting process, are discussed in some detail, and, as expected, the resulting Schrödinger equation contains a "linear potential" which is a function of the curvature.

  10. Fast alternating projection methods for constrained tomographic reconstruction

    PubMed Central

    Liu, Li; Han, Yongxin

    2017-01-01

    The alternating projection algorithms are easy to implement and effective for large-scale complex optimization problems, such as constrained reconstruction of X-ray computed tomography (CT). A typical method is to use projection onto convex sets (POCS) for data fidelity, nonnegative constraints combined with total variation (TV) minimization (so called TV-POCS) for sparse-view CT reconstruction. However, this type of method relies on empirically selected parameters for satisfactory reconstruction and is generally slow and lack of convergence analysis. In this work, we use a convex feasibility set approach to address the problems associated with TV-POCS and propose a framework using full sequential alternating projections or POCS (FS-POCS) to find the solution in the intersection of convex constraints of bounded TV function, bounded data fidelity error and non-negativity. The rationale behind FS-POCS is that the mathematically optimal solution of the constrained objective function may not be the physically optimal solution. The breakdown of constrained reconstruction into an intersection of several feasible sets can lead to faster convergence and better quantification of reconstruction parameters in a physical meaningful way than that in an empirical way of trial-and-error. In addition, for large-scale optimization problems, first order methods are usually used. Not only is the condition for convergence of gradient-based methods derived, but also a primal-dual hybrid gradient (PDHG) method is used for fast convergence of bounded TV. The newly proposed FS-POCS is evaluated and compared with TV-POCS and another convex feasibility projection method (CPTV) using both digital phantom and pseudo-real CT data to show its superior performance on reconstruction speed, image quality and quantification. PMID:28253298

  11. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  12. Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by HhaI methyltransferase | Center for Cancer Research

    Cancer.gov

    HHAI methyltransferase (blue ribbon) bound to oligonucleotide (strands with bonds colored yellow and green) containing a pseudorotationally constrained sugar analogue at the target position (orange bonds with cyan atoms). The south-constrained pseudosugar is rotated about its flanking phosphodiester bonds, 90° from its initial position in B-form DNA, but short of a completely

  13. A speed limit for evolution.

    PubMed

    Worden, R P

    1995-09-07

    An upper bound on the speed of evolution is derived. The bound concerns the amount of genetic information which is expressed in observable ways in various aspects of the phenotype. The genetic information expressed in some part of the phenotype of a species cannot increase faster than a given rate, determined by the selection pressure on that part. This rate is typically a small fraction of a bit per generation. Total expressed genetic information cannot increase faster than a species-specific rate--typically a few bits per generation. These bounds apply to all aspects of the phenotype, but are particularly relevant to cognition. As brains are highly complex, we expect large amounts of expressed genetic information in the brain--of the order of 100 kilobytes--yet evolutionary changes in brain genetic information are only a fraction of a bit per generation. This has important consequences for cognitive evolution. The limit implies that the human brain differs from the chimpanzee brain by at most 5 kilobytes of genetic design information. This is not enough to define a Language Acquisition Device, unless it depends heavily on pre-existing primate symbolic cognition. Subject to the evolutionary speed limit, in changing environments a simple, modular brain architecture is fitter than more complex ones. This encourages us to look for simplicity in brain design, rather than expecting the brain to be a patchwork of ad hoc adaptations. The limit implies that pure species selection is not an important mechanism of evolutionary change.

  14. Probing Models of Dark Matter and the Early Universe

    NASA Astrophysics Data System (ADS)

    Orlofsky, Nicholas David

    This thesis discusses models for dark matter (DM) and their behavior in the early universe. An important question is how phenomenological probes can directly search for signals of DM today. Another topic of investigation is how the DM and other processes in the early universe must evolve. Then, astrophysical bounds on early universe dynamics can constrain DM. We will consider these questions in the context of three classes of DM models--weakly interacting massive particles (WIMPs), axions, and primordial black holes (PBHs). Starting with WIMPs, we consider models where the DM is charged under the electroweak gauge group of the Standard Model. Such WIMPs, if generated by a thermal cosmological history, are constrained by direct detection experiments. To avoid present or near-future bounds, the WIMP model or cosmological history must be altered in some way. This may be accomplished by the inclusion of new states that coannihilate with the WIMP or a period of non-thermal evolution in the early universe. Future experiments are likely to probe some of these altered scenarios, and a non-observation would require a high degree of tuning in some of the model parameters in these scenarios. Next, axions, as light pseudo-Nambu-Goldstone bosons, are susceptible to quantum fluctuations in the early universe that lead to isocurvature perturbations, which are constrained by observations of the cosmic microwave background (CMB). We ask what it would take to allow axion models in the face of these strong CMB bounds. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed, elucidating the difficulties in these constructions. Avoiding disruption of inflationary dynamics provides important limits on the parameter space. Finally, PBHs have received interest in part due to observations by LIGO of merging black hole binaries. We ask how these PBHs could arise through inflationary models and investigate the opportunity for corroboration through experimental probes of gravitational waves at pulsar timing arrays. We provide examples of theories that are already ruled out, theories that will soon be probed, and theories that will not be tested in the foreseeable future. The models that are most strongly constrained are those with relatively broad primordial power spectra.

  15. Beyond Positivity Bounds and the Fate of Massive Gravity

    NASA Astrophysics Data System (ADS)

    Bellazzini, Brando; Riva, Francesco; Serra, Javi; Sgarlata, Francesco

    2018-04-01

    We constrain effective field theories by going beyond the familiar positivity bounds that follow from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The combination of our theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein mechanism, down to the relevant scales of fifth-force experiments, where general relativity has been successfully tested. We also show that the Galileon theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to the symmetry-preserving ones. We comment as well on other interesting applications of our bounds.

  16. Beyond Positivity Bounds and the Fate of Massive Gravity.

    PubMed

    Bellazzini, Brando; Riva, Francesco; Serra, Javi; Sgarlata, Francesco

    2018-04-20

    We constrain effective field theories by going beyond the familiar positivity bounds that follow from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The combination of our theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein mechanism, down to the relevant scales of fifth-force experiments, where general relativity has been successfully tested. We also show that the Galileon theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to the symmetry-preserving ones. We comment as well on other interesting applications of our bounds.

  17. The Implications of the Cognitive Sciences for the Relation Between Religion and Science Education: The Case of Evolutionary Theory

    NASA Astrophysics Data System (ADS)

    Blancke, Stefaan; De Smedt, Johan; De Cruz, Helen; Boudry, Maarten; Braeckman, Johan

    2012-08-01

    This paper discusses the relationship between religion and science education in the light of the cognitive sciences. We challenge the popular view that science and religion are compatible, a view that suggests that learning and understanding evolutionary theory has no effect on students' religious beliefs and vice versa. We develop a cognitive perspective on how students manage to reconcile evolutionary theory with their religious beliefs. We underwrite the claim developed by cognitive scientists and anthropologists that religion is natural because it taps into people's intuitive understanding of the natural world which is constrained by essentialist, teleological and intentional biases. After contrasting the naturalness of religion with the unnaturalness of science, we discuss the difficulties cognitive and developmental scientists have identified in learning and accepting evolutionary theory. We indicate how religious beliefs impede students' understanding and acceptance of evolutionary theory. We explore a number of options available to students for reconciling an informed understanding of evolutionary theory with their religious beliefs. To conclude, we discuss the implications of our account for science and biology teachers.

  18. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.

    PubMed

    Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric

    2017-05-05

    Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.

  19. Incorporating Objective Function Information Into the Feasibility Rule for Constrained Evolutionary Optimization.

    PubMed

    Wang, Yong; Wang, Bing-Chuan; Li, Han-Xiong; Yen, Gary G

    2016-12-01

    When solving constrained optimization problems by evolutionary algorithms, an important issue is how to balance constraints and objective function. This paper presents a new method to address the above issue. In our method, after generating an offspring for each parent in the population by making use of differential evolution (DE), the well-known feasibility rule is used to compare the offspring and its parent. Since the feasibility rule prefers constraints to objective function, the objective function information has been exploited as follows: if the offspring cannot survive into the next generation and if the objective function value of the offspring is better than that of the parent, then the offspring is stored into a predefined archive. Subsequently, the individuals in the archive are used to replace some individuals in the population according to a replacement mechanism. Moreover, a mutation strategy is proposed to help the population jump out of a local optimum in the infeasible region. Note that, in the replacement mechanism and the mutation strategy, the comparison of individuals is based on objective function. In addition, the information of objective function has also been utilized to generate offspring in DE. By the above processes, this paper achieves an effective balance between constraints and objective function in constrained evolutionary optimization. The performance of our method has been tested on two sets of benchmark test functions, namely, 24 test functions at IEEE CEC2006 and 18 test functions with 10-D and 30-D at IEEE CEC2010. The experimental results have demonstrated that our method shows better or at least competitive performance against other state-of-the-art methods. Furthermore, the advantage of our method increases with the increase of the number of decision variables.

  20. Spherical cows in the sky with fab four

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaloper, Nemanja; Sandora, McCullen, E-mail: kaloper@physics.ucdavis.edu, E-mail: mesandora@ucdavis.edu

    2014-05-01

    We explore spherically symmetric static solutions in a subclass of unitary scalar-tensor theories of gravity, called the 'Fab Four' models. The weak field large distance solutions may be phenomenologically viable, but only if the Gauss-Bonnet term is negligible. Only in this limit will the Vainshtein mechanism work consistently. Further, classical constraints and unitarity bounds constrain the models quite tightly. Nevertheless, in the limits where the range of individual terms at large scales is respectively Kinetic Braiding, Horndeski, and Gauss-Bonnet, the horizon scale effects may occur while the theory satisfies Solar system constraints and, marginally, unitarity bounds. On the other hand,more » to bring the cutoff down to below a millimeter constrains all the couplings scales such that 'Fab Fours' can't be heard outside of the Solar system.« less

  1. Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides.

    PubMed

    Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F

    2016-06-01

    Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.

  2. Modelling the influence of parental effects on gene-network evolution.

    PubMed

    Odorico, Andreas; Rünneburger, Estelle; Le Rouzic, Arnaud

    2018-05-01

    Understanding the importance of nongenetic heredity in the evolutionary process is a major topic in modern evolutionary biology. We modified a classical gene-network model by allowing parental transmission of gene expression and studied its evolutionary properties through individual-based simulations. We identified ontogenetic time (i.e. the time gene networks have to stabilize before being submitted to natural selection) as a crucial factor in determining the evolutionary impact of this phenotypic inheritance. Indeed, fast-developing organisms display enhanced adaptation and greater robustness to mutations when evolving in presence of nongenetic inheritance (NGI). In contrast, in our model, long development reduces the influence of the inherited state of the gene network. NGI thus had a negligible effect on the evolution of gene networks when the speed at which transcription levels reach equilibrium is not constrained. Nevertheless, simulations show that intergenerational transmission of the gene-network state negatively affects the evolution of robustness to environmental disturbances for either fast- or slow-developing organisms. Therefore, these results suggest that the evolutionary consequences of NGI might not be sought only in the way species respond to selection, but also on the evolution of emergent properties (such as environmental and genetic canalization) in complex genetic architectures. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  3. First axion bounds from a pulsating helium-rich white dwarf star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battich, T.; Córsico, A.H.; Althaus, L.G.

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on theirmore » pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain g {sub ae} < 3.3 × 10{sup -13} for the axion-electron coupling constant, or m {sub a} cos{sup 2}β ∼< 11.5 meV for the axion mass. This constraint is relaxed to g {sub ae} < 5.5 × 10{sup -13} ( m {sub a} cos{sup 2}β ∼< 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.« less

  4. Precise Ages for the Benchmark Brown Dwarfs HD 19467 B and HD 4747 B

    NASA Astrophysics Data System (ADS)

    Wood, Charlotte; Boyajian, Tabetha; Crepp, Justin; von Braun, Kaspar; Brewer, John; Schaefer, Gail; Adams, Arthur; White, Tim

    2018-01-01

    Large uncertainty in the age of brown dwarfs, stemming from a mass-age degeneracy, makes it difficult to constrain substellar evolutionary models. To break the degeneracy, we need ''benchmark" brown dwarfs (found in binary systems) whose ages can be determined independent of their masses. HD~19467~B and HD~4747~B are two benchmark brown dwarfs detected through the TRENDS (TaRgeting bENchmark objects with Doppler Spectroscopy) high-contrast imaging program for which we have dynamical mass measurements. To constrain their ages independently through isochronal analysis, we measured the radii of the host stars with interferometry using the Center for High Angular Resolution Astronomy (CHARA) Array. Assuming the brown dwarfs have the same ages as their host stars, we use these results to distinguish between several substellar evolutionary models. In this poster, we present new age estimates for HD~19467 and HD~4747 that are more accurate and precise and show our preliminary comparisons to cooling models.

  5. Lineage diversification and morphological evolution in a large-scale continental radiation: The neotropical ovenbirds and woodcreepers (Aves: Furnariidae)

    USGS Publications Warehouse

    Derryberry, Elizabeth P.; Claramunt, Santiago; Derryberry, Graham; Chesser, R. Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J.V.; Brumfield, Robb T.

    2011-01-01

    Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents.

  6. Spacecraft inertia estimation via constrained least squares

    NASA Technical Reports Server (NTRS)

    Keim, Jason A.; Acikmese, Behcet A.; Shields, Joel F.

    2006-01-01

    This paper presents a new formulation for spacecraft inertia estimation from test data. Specifically, the inertia estimation problem is formulated as a constrained least squares minimization problem with explicit bounds on the inertia matrix incorporated as LMIs [linear matrix inequalities). The resulting minimization problem is a semidefinite optimization that can be solved efficiently with guaranteed convergence to the global optimum by readily available algorithms. This method is applied to data collected from a robotic testbed consisting of a freely rotating body. The results show that the constrained least squares approach produces more accurate estimates of the inertia matrix than standard unconstrained least squares estimation methods.

  7. Water, bound and mobile

    EPA Science Inventory

    Resolving the global transpiration flux is critical to constraining global carbon cycle models because carbon uptake by photosynthesis in terrestrial plants (Gross Primary Productivity, GPP) is directly related to water lost through transpiration. Quantifying GPP globally is cha...

  8. Adaptive Fuzzy Output Constrained Control Design for Multi-Input Multioutput Stochastic Nonstrict-Feedback Nonlinear Systems.

    PubMed

    Li, Yongming; Tong, Shaocheng

    2017-12-01

    In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  9. BOUNDS ON LEPTON FLAVOR CHANGING CURRENTS AND THE SOLAR NEUTRINO PUZZLE:. Bounds on Lepton Flavor Changing Currents

    NASA Astrophysics Data System (ADS)

    degl'Innocenti, Scilla; Ricci, Barbara

    We present a phenomenological analysis of a lepton flavor changing current, considering the case of interactions among leptons which change the neutrino flavor and are diagonal in the charged lepton sector. In the case of νe↔νµ transition, we derive a bound on the vector coupling constant GV≤0.16 GF from experimental data on νµ-e scattering. For a transition νe↔νx, from (anti) νe-e scattering experiments and from the analysis of advanced stellar evolutionary phases, we find GV≤0.55 GF. We discuss the compatibility of these data with a possible explanation of the solar neutrino puzzle. We also analyze how the present bounds can be improved in future long baseline neutrino experiments and atmospheric neutrino detectors.

  10. Bounding the moment deficit rate on crustal faults using geodetic data: Methods

    DOE PAGES

    Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael

    2017-08-19

    Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less

  11. Bounding the moment deficit rate on crustal faults using geodetic data: Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael

    Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less

  12. Neutrino Mass Bounds from 0{nu}{beta}{beta} Decays and Large Scale Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keum, Y.-Y.; Department of Physics, National Taiwan University, Taipei, Taiwan 10672; Ichiki, K.

    2008-05-21

    We investigate the way how the total mass sum of neutrinos can be constrained from the neutrinoless double beta decay and cosmological probes with cosmic microwave background (WMAP 3-year results), large scale structures including 2dFGRS and SDSS data sets. First we discuss, in brief, on the current status of neutrino mass bounds from neutrino beta decays and cosmic constrain within the flat {lambda}CMD model. In addition, we explore the interacting neutrino dark-energy model, where the evolution of neutrino masses is determined by quintessence scalar filed, which is responsable for cosmic acceleration today. Assuming the flatness of the universe, the constraintmore » we can derive from the current observation is {sigma}m{sub {nu}}<0.87 eV at the 95% confidence level, which is consistent with {sigma}m{sub {nu}}<0.68 eV in the flat {lambda}CDM model.« less

  13. Potential-field sounding using Euler's homogeneity equation and Zidarov bubbling

    USGS Publications Warehouse

    Cordell, Lindrith

    1994-01-01

    Potential-field (gravity) data are transformed into a physical-property (density) distribution in a lower half-space, constrained solely by assumed upper bounds on physical-property contrast and data error. A two-step process is involved. The data are first transformed to an equivalent set of line (2-D case) or point (3-D case) sources, using Euler's homogeneity equation evaluated iteratively on the largest residual data value. Then, mass is converted to a volume-density product, constrained to an upper density bound, by 'bubbling,' which exploits circular or radial expansion to redistribute density without changing the associated gravity field. The method can be developed for gravity or magnetic data in two or three dimensions. The results can provide a beginning for interpretation of potential-field data where few independent constraints exist, or more likely, can be used to develop models and confirm or extend interpretation of other geophysical data sets.

  14. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE PAGES

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia; ...

    2017-09-05

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  15. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia

    Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less

  16. Convex optimisation approach to constrained fuel optimal control of spacecraft in close relative motion

    NASA Astrophysics Data System (ADS)

    Massioni, Paolo; Massari, Mauro

    2018-05-01

    This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.

  17. A Study of Driver's Route Choice Behavior Based on Evolutionary Game Theory

    PubMed Central

    Jiang, Xiaowei; Ji, Yanjie; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent. PMID:25610455

  18. A study of driver's route choice behavior based on evolutionary game theory.

    PubMed

    Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.

  19. Evolutionary Game Analysis of Government Regulation and Enterprise Emission from the Perspective of Environmental Tax

    NASA Astrophysics Data System (ADS)

    Mai, Yazong

    2017-12-01

    In the context of the upcoming implementation of the environmental tax policy, there is a need for a focus on the relationship between government regulation and corporate emissions. To achieve the real effect of environmental tax policy, government need to regulate the illegal emissions of enterprises. Based on the hypothesis of bounded rationality, this paper analyses the strategic set of government regulators and polluting enterprises in the implementation of environmental tax policy. By using the evolutionary game model, the utility function and payoff matrix of the both sides are constructed, and the evolutionary analysis and strategy adjustment of the environmental governance target and the actual profit of the stakeholders are carried out. Thus, the wrong behaviours could be corrected so that the equilibrium of the evolutionary system can be achieved gradually, which could also get the evolutionary stable strategies of the government and the polluting enterprises in the implementation of environmental tax policy.

  20. A Numerical Comparison of Barrier and Modified Barrier Methods for Large-Scale Bound-Constrained Optimization

    NASA Technical Reports Server (NTRS)

    Nash, Stephen G.; Polyak, R.; Sofer, Ariela

    1994-01-01

    When a classical barrier method is applied to the solution of a nonlinear programming problem with inequality constraints, the Hessian matrix of the barrier function becomes increasingly ill-conditioned as the solution is approached. As a result, it may be desirable to consider alternative numerical algorithms. We compare the performance of two methods motivated by barrier functions. The first is a stabilized form of the classical barrier method, where a numerically stable approximation to the Newton direction is used when the barrier parameter is small. The second is a modified barrier method where a barrier function is applied to a shifted form of the problem, and the resulting barrier terms are scaled by estimates of the optimal Lagrange multipliers. The condition number of the Hessian matrix of the resulting modified barrier function remains bounded as the solution to the constrained optimization problem is approached. Both of these techniques can be used in the context of a truncated-Newton method, and hence can be applied to large problems, as well as on parallel computers. In this paper, both techniques are applied to problems with bound constraints and we compare their practical behavior.

  1. An Evolutionary Analysis of Learned Attention

    ERIC Educational Resources Information Center

    Hullinger, Richard A.; Kruschke, John K.; Todd, Peter M.

    2015-01-01

    Humans and many other species selectively attend to stimuli or stimulus dimensions--but why should an animal constrain information input in this way? To investigate the adaptive functions of attention, we used a genetic algorithm to evolve simple connectionist networks that had to make categorization decisions in a variety of environmental…

  2. Spiders in Motion: Demonstrating Adaptation, Structure-Function Relationships, and Trade-Offs in Invertebrates

    ERIC Educational Resources Information Center

    Bowlin, Melissa S.; McLeer, Dorothy F.; Danielson-Francois, Anne M.

    2014-01-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students…

  3. "I'm Like You Not": Intergenerational Mobility of Working Class Students from a Cultural-Evolutionary Perspective

    ERIC Educational Resources Information Center

    Lovett, Trevor

    2016-01-01

    This retrospective narrative investigation challenges aspects of structural determinism. The biographical data generated in the study revealed that the baby-boomer, male participants were not academically constrained by their working class identities. Interpersonal relationships experienced within an individual's unique communities of practice…

  4. Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan; Hu, Michael Y.; Toellner, Thomas S.; Murphy, Caitlin A.; Prakapenka, Vitali B.

    2016-08-01

    The melting points of fcc- and hcp-structured Fe0.9Ni0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mössbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time-integrated synchrotron Mössbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe0.9Ni0.1 fall within the wide region bounded by previous studies. We are able to derive the γ-ɛ-l triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5GPa, 3345 ± 120K and 116 ± 5GPa, 3260 ± 120K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe0.9Ni0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe0.9Ni0.1 using our (quasi) triple points as anchors. The extrapolated Fe0.9Ni0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core-mantle boundary to be 4000 ± 200K. We discuss a potential melting point depression caused by light elements and the implications of the presented core-mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.

  5. Temperature of Earth's core constrained from melting of Fe and Fe 0.9Ni 0.1 at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong

    The melting points of fcc- and hcp-structured Fe 0.9Ni 0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mossbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time integrated synchrotron Mfissbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe 0.9Ni 0.1 fall within the wide region bounded by previous studies. We are ablemore » to derive the gamma-is an element of-1 triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5 GPa, 3345 ± 120 K and 116 ± 5 GPa, 3260 ± 120 K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe 0.9Ni 0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe 0.9Ni 0.1 using our (quasi) triple points as anchors. The extrapolated Fe 0.9Ni 0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200 K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core -mantle boundary to be 4000 ± 200 K. We discuss a potential melting point depression caused by light elements and the implications of the presented core -mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.« less

  6. Ecological and evolutionary consequences of niche construction for its agent.

    PubMed

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  7. Constraining new physics models with isotope shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias

    2017-07-01

    Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.

  8. The Growth of Developmental Thought: Implications for a New Evolutionary Psychology

    PubMed Central

    Lickliter, Robert

    2009-01-01

    Evolution has come to be increasingly discussed in terms of changes in developmental processes rather than simply in terms of changes in gene frequencies. This shift is based in large part on the recognition that since all phenotypic traits arise during ontogeny as products of individual development, a primary basis for evolutionary change must be variations in the patterns and processes of development. Further, the products of development are epigenetic, not just genetic, and this is the case even when considering the evolutionary process. These insights have led investigators to reconsider the established notion of genes as the primary cause of development, opening the door to research programs focused on identifying how genetic and non-genetic factors coact to guide and constrain the process of development and its outcomes. I explore this growth of developmental thought and its implications for the achievement of a unified theory of heredity, development, and evolution and consider its implications for the realization of a new, developmentally-based evolutionary psychology. PMID:19956346

  9. 3D RNA and functional interactions from evolutionary couplings

    PubMed Central

    Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.

    2016-01-01

    Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444

  10. Computer program for single input-output, single-loop feedback systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Additional work is reported on a completely automatic computer program for the design of single input/output, single loop feedback systems with parameter uncertainly, to satisfy time domain bounds on the system response to step commands and disturbances. The inputs to the program are basically the specified time-domain response bounds, the form of the constrained plant transfer function and the ranges of the uncertain parameters of the plant. The program output consists of the transfer functions of the two free compensation networks, in the form of the coefficients of the numerator and denominator polynomials, and the data on the prescribed bounds and the extremes actually obtained for the system response to commands and disturbances.

  11. Lineage diversification and morphological evolution in a large-scale continental radiation: the neotropical ovenbirds and woodcreepers (aves: Furnariidae).

    PubMed

    Derryberry, Elizabeth P; Claramunt, Santiago; Derryberry, Graham; Chesser, R Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J V; Brumfield, Robb T

    2011-10-01

    Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  12. Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy

    NASA Astrophysics Data System (ADS)

    Vagnozzi, Sunny; Giusarma, Elena; Mena, Olga; Freese, Katherine; Gerbino, Martina; Ho, Shirley; Lattanzi, Massimiliano

    2017-12-01

    Using some of the latest cosmological data sets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, Mν, within the assumption of a background flat Λ CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization (τ ), the tightest 95% confidence level upper bound we find is Mν<0.151 eV . The addition of Planck high-ℓ polarization data, which, however, might still be contaminated by systematics, further tightens the bound to Mν<0.118 eV . A proper model comparison treatment shows that the two aforementioned combinations disfavor the inverted hierarchy at ˜64 % C .L . and ˜71 % C .L . , respectively. In addition, we compare the constraining power of measurements of the full-shape galaxy power spectrum versus the BAO signature, from the BOSS survey. Even though the latest BOSS full-shape measurements cover a larger volume and benefit from smaller error bars compared to previous similar measurements, the analysis method commonly adopted results in their constraining power still being less powerful than that of the extracted BAO signal. Our work uses only cosmological data; imposing the constraint Mν>0.06 eV from oscillations data would raise the quoted upper bounds by O (0.1 σ ) and would not affect our conclusions.

  13. Bounds on light gluinos from the BEBC beam dump experiment

    NASA Astrophysics Data System (ADS)

    Cooper-Sarkar, A. M.; Parker, M. A.; Sarkar, S.; Aderholz, M.; Bostock, P.; Clayton, E. F.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Schmid, P.; Schmitz, N.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Walck, Ch.; Wachsmuth, H.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    Observational upper limits on anomalous neutral-current events in a proton beam dump experiment are used to constrain the possible hadroproduction and decay of light gluinos. These results require ifm g˜$̆4 GeV for ifm q˜ - minw.

  14. Constraining properties of disintegrating exoplanets

    NASA Astrophysics Data System (ADS)

    Veras, D.; Carter, P. J.; Leinhardt, Z. M.; Gänsicke, B. T.

    2017-09-01

    Evaporating and disintegrating planets provide unique insights into chemical makeup and physical constraints. The striking variability, depth (˜10 - 60%) and shape of the photometric transit curves due to the disintegrating minor planet orbiting white dwarf WD 1145+017 has galvanised the post-main- sequence exoplanetary science community. We have performed the first tidal disruption simulations of this planetary object, and have succeeded in constraining its mass, density, eccentricity and physical nature. We illustrate how our simulations can bound these properties, and be used in the future for other exoplanetary systems.

  15. Constraining axion dark matter with Big Bang Nucleosynthesis

    DOE PAGES

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; ...

    2014-08-04

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN

  16. Constraining axion dark matter with Big Bang Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN

  17. Degree-constrained multicast routing for multimedia communications

    NASA Astrophysics Data System (ADS)

    Wang, Yanlin; Sun, Yugeng; Li, Guidan

    2005-02-01

    Multicast services have been increasingly used by many multimedia applications. As one of the key techniques to support multimedia applications, the rational and effective multicast routing algorithms are very important to networks performance. When switch nodes in networks have different multicast capability, multicast routing problem is modeled as the degree-constrained Steiner problem. We presented two heuristic algorithms, named BMSTA and BSPTA, for the degree-constrained case in multimedia communications. Both algorithms are used to generate degree-constrained multicast trees with bandwidth and end to end delay bound. Simulations over random networks were carried out to compare the performance of the two proposed algorithms. Experimental results show that the proposed algorithms have advantages in traffic load balancing, which can avoid link blocking and enhance networks performance efficiently. BMSTA has better ability in finding unsaturated links and (or) unsaturated nodes to generate multicast trees than BSPTA. The performance of BMSTA is affected by the variation of degree constraints.

  18. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    PubMed

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  19. Stretched hydrogen molecule from a constrained-search density-functional perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, Steven M; Levy, Mel

    2009-01-01

    Constrained-search density functional theory gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here they engage constrained search theory to explore issues associated with the functional behavior of 'stretched bonds' in molecular hydrogen. A constrained search is performed with familiar valence bond wavefunctions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is computed and compared to the corresponding uncorrelated, Hartree-Fock effective hamiltonian. Analysis of the functional suggests themore » need to construct different functionals for the same density and to allow a competition among these functions. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals.« less

  20. On the uniqueness of motion of viscous gaseous stars

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    1990-11-01

    The existence of solutions of the evolutionary equations of motion of a star regarded as a compressible viscous fluid with self-gravitation, bounded by a free surface, has recently been considered by Secchi (1990). In this paper, the uniqueness of the solutions cited is studied.

  1. Spectroscopic factors near the r-process path using (d , p) measurements at two energies

    NASA Astrophysics Data System (ADS)

    Walter, D.; Cizewski, J. A.; Baugher, T.; Ratkiewicz, A.; Manning, B.; Pain, S. D.; Nunes, F. M.; Ahn, S.; Cerizza, G.; Thornsberry, C.; Jones, K. L.

    2016-09-01

    To determine spectroscopic factors, it is necessary to use a nuclear reaction model that is dependent on the bound-state potential. A poorly constrained potential can drastically increase uncertainties in extracted spectroscopic factors. Mukhamedzhanov and Nunes have proposed a technique to mitigate this uncertainty by combining transfer reaction measurements at two energies. At peripheral reaction energies ( 5 MeV/u), the external contribution of the wave function can be reliably extracted, and then combined with the higher energy reaction ( 40 MeV/u) with a larger contribution from the interior. The two measurements will constrain the single-particle asymptotic normalization coefficient, ANC, and enable spectroscopic factors to be determined with uncertainties dominated by the cross section measurements rather than in the bound-state potential. Published measurements of 86Kr(d , p) at 5.5 MeV/u have been combined with recent results at 35 MeV/u at the NSCL using the ORRUBA and SIDAR arrays of silicon-strip detectors. Preliminary analysis shows that the single-particle ANC can be constrained. The details of the analysis and prospects for measurements with rare isotope beams will be presented. This research by the ORRUBA Collaboration is supported in part by the NSF and the U.S. DOE.

  2. Finding viable models in SUSY parameter spaces with signal specific discovery potential

    NASA Astrophysics Data System (ADS)

    Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi

    2013-08-01

    Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.

  3. The cost-constrained traveling salesman problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokkappa, P.R.

    1990-10-01

    The Cost-Constrained Traveling Salesman Problem (CCTSP) is a variant of the well-known Traveling Salesman Problem (TSP). In the TSP, the goal is to find a tour of a given set of cities such that the total cost of the tour is minimized. In the CCTSP, each city is given a value, and a fixed cost-constraint is specified. The objective is to find a subtour of the cities that achieves maximum value without exceeding the cost-constraint. Thus, unlike the TSP, the CCTSP requires both selection and sequencing. As a consequence, most results for the TSP cannot be extended to the CCTSP.more » We show that the CCTSP is NP-hard and that no K-approximation algorithm or fully polynomial approximation scheme exists, unless P = NP. We also show that several special cases are polynomially solvable. Algorithms for the CCTSP, which outperform previous methods, are developed in three areas: upper bounding methods, exact algorithms, and heuristics. We found that a bounding strategy based on the knapsack problem performs better, both in speed and in the quality of the bounds, than methods based on the assignment problem. Likewise, we found that a branch-and-bound approach using the knapsack bound was superior to a method based on a common branch-and-bound method for the TSP. In our study of heuristic algorithms, we found that, when selecting modes for inclusion in the subtour, it is important to consider the neighborhood'' of the nodes. A node with low value that brings the subtour near many other nodes may be more desirable than an isolated node of high value. We found two types of repetition to be desirable: repetitions based on randomization in the subtour buildings process, and repetitions encouraging the inclusion of different subsets of the nodes. By varying the number and type of repetitions, we can adjust the computation time required by our method to obtain algorithms that outperform previous methods.« less

  4. Coherence-limited solar power conversion: the fundamental thermodynamic bounds and the consequences for solar rectennas

    NASA Astrophysics Data System (ADS)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-10-01

    Solar rectifying antennas constitute a distinct solar power conversion paradigm where sunlight's spatial coherence is a basic constraining factor. In this presentation, we derive the fundamental thermodynamic limit for coherence-limited blackbody (principally solar) power conversion. Our results represent a natural extension of the eponymous Landsberg limit, originally derived for converters that are not constrained by the radiation's coherence, and are irradiated at maximum concentration (i.e., with a view factor of unity to the solar disk). We proceed by first expanding Landsberg's results to arbitrary solar view factor (i.e., arbitrary concentration and/or angular confinement), and then demonstrate how the results are modified when the converter can only process coherent radiation. The results are independent of the specific power conversion mechanism, and hence are valid for diffraction-limited as well as quantum converters (and not just classical heat engines or in the geometric optics regime). The derived upper bounds bode favorably for the potential of rectifying antennas as potentially high-efficiency solar converters.

  5. On the Miller-Tucker-Zemlin Based Formulations for the Distance Constrained Vehicle Routing Problems

    NASA Astrophysics Data System (ADS)

    Kara, Imdat

    2010-11-01

    Vehicle Routing Problem (VRP), is an extension of the well known Traveling Salesman Problem (TSP) and has many practical applications in the fields of distribution and logistics. When the VRP consists of distance based constraints it is called Distance Constrained Vehicle Routing Problem (DVRP). However, the literature addressing on the DVRP is scarce. In this paper, existing two-indexed integer programming formulations, having Miller-Tucker-Zemlin based subtour elimination constraints, are reviewed. Existing formulations are simplified and obtained formulation is presented as formulation F1. It is shown that, the distance bounding constraints of the formulation F1, may not generate the distance traveled up to the related node. To do this, we redefine the auxiliary variables of the formulation and propose second formulation F2 with new and easy to use distance bounding constraints. Adaptation of the second formulation to the cases where new restrictions such as minimal distance traveled by each vehicle or other objectives such as minimizing the longest distance traveled is discussed.

  6. Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.

    Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints.more » We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.« less

  7. Constraining the top-Higgs sector of the standard model effective field theory

    NASA Astrophysics Data System (ADS)

    Cirigliano, V.; Dekens, W.; de Vries, J.; Mereghetti, E.

    2016-08-01

    Working in the framework of the Standard Model effective field theory, we study chirality-flipping couplings of the top quark to Higgs and gauge bosons. We discuss in detail the renormalization-group evolution to lower energies and investigate direct and indirect contributions to high- and low-energy C P -conserving and C P -violating observables. Our analysis includes constraints from collider observables, precision electroweak tests, flavor physics, and electric dipole moments. We find that indirect probes are competitive or dominant for both C P -even and C P -odd observables, even after accounting for uncertainties associated with hadronic and nuclear matrix elements, illustrating the importance of including operator mixing in constraining the Standard Model effective field theory. We also study scenarios where multiple anomalous top couplings are generated at the high scale, showing that while the bounds on individual couplings relax, strong correlations among couplings survive. Finally, we find that enforcing minimal flavor violation does not significantly affect the bounds on the top couplings.

  8. Focus: Bounded Rationality and the History of Science. Introduction.

    PubMed

    Cowles, Henry M; Deringer, William; Dick, Stephanie; Webster, Colin

    2015-09-01

    Historians of science see knowledge and its claimants as constrained by myriad factors. These limitations range from the assumptions and commitments of scientific practitioners to the material and ideational contexts of their practice. The precise nature of such limits and the relations among them remains an open question in the history of science. The essays in this Focus section address this question by examining one influential portrayal of constraints--Herbert Simon's theory of "bounded rationality"--as well as the responses to which it has given rise over the last half century.

  9. Astrophysics and cosmology confront the 17 keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  10. Astrophysics and cosmology confront the 17-keV neutrino

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1991-01-01

    A host of astrophysical and cosmological arguments severely constrain the properties of a 17 keV Dirac neutrino. Such a neutrino must have interactions beyond those of the standard electroweak theory to reduce its cosmic abundance (through decay or annihilation) by a factor of two hundred. A predicament arises because the additional helicity states of the neutrino necessary to construct a Dirac mass must have interactions strong enough to evade the astrophysical bound from SN 1987A, but weak enough to avoid violating the bound from primordial nucleosynthesis.

  11. Control of linear uncertain systems utilizing mismatched state observers

    NASA Technical Reports Server (NTRS)

    Goldstein, B.

    1972-01-01

    The control of linear continuous dynamical systems is investigated as a problem of limited state feedback control. The equations which describe the structure of an observer are developed constrained to time-invarient systems. The optimal control problem is formulated, accounting for the uncertainty in the design parameters. Expressions for bounds on closed loop stability are also developed. The results indicate that very little uncertainty may be tolerated before divergence occurs in the recursive computation algorithms, and the derived stability bound yields extremely conservative estimates of regions of allowable parameter variations.

  12. Viscosity bound versus the universal relaxation bound

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-10-01

    For gauge theories with an Einstein gravity dual, the AdS/CFT correspondence predicts a universal value for the ratio of the shear viscosity to the entropy density, η / s = 1 / 4 π. The holographic calculations have motivated the formulation of the celebrated KSS conjecture, according to which all fluids conform to the lower bound η / s ≥ 1 / 4 π. The bound on η / s may be regarded as a lower bound on the relaxation properties of perturbed fluids and it has been the focus of much recent attention. In particular, it was argued that for a class of field theories with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, η / s, could violate the conjectured KSS bound. In the present paper we argue that the proposed violations of the KSS bound are strongly constrained by Bekenstein's generalized second law (GSL) of thermodynamics. In particular, it is shown that physical consistency of the Gauss-Bonnet theory with the GSL requires its coupling constant to be bounded by λGB ≲ 0 . 063. We further argue that the genuine physical bound on the relaxation properties of physically consistent fluids is ℑω(k > 2 πT) > πT, where ω and k are respectively the proper frequency and the wavenumber of a perturbation mode in the fluid.

  13. Some Conceptual Deficiencies in "Developmental" Behavior Genetics.

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert

    1995-01-01

    Criticizes the application of the statistical procedures of the population-genetic approach within evolutionary biology to the study of psychological development. Argues that the application of the statistical methods of population genetics--primarily the analysis of variance--to the causes of psychological development is bound to result in a…

  14. Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification.

    PubMed

    Badyaev, Alexander V; Morrison, Erin S; Belloni, Virginia; Sanderson, Michael J

    2015-08-20

    Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification.

  15. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Treesearch

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  16. Interferometric tests of Planckian quantum geometry models

    DOE PAGES

    Kwon, Ohkyung; Hogan, Craig J.

    2016-04-19

    The effect of Planck scale quantum geometrical effects on measurements with interferometers is estimated with standard physics, and with a variety of proposed extensions. It is shown that effects are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are estimated in a variety of proposals for nonstandard metric fluctuations, and these alternatives are constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of several interferometer system architectures are used to predict signal noise spectra in a quantum geometry that cannot be described by a fluctuating metric, in which position noise arises from holographicmore » bounds on directional information. Lastly, predictions in this case are shown to be close to current and projected experimental bounds.« less

  17. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  18. Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids

    PubMed Central

    Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2015-01-01

    Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. PMID:25948565

  19. Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids.

    PubMed

    Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2015-05-01

    Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution.

  20. A shifted hyperbolic augmented Lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-12-01

    This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.

  1. Diameter-Constrained Steiner Tree

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Lin, Guohui; Xue, Guoliang

    Given an edge-weighted undirected graph G = (V,E,c,w), where each edge e ∈ E has a cost c(e) and a weight w(e), a set S ⊆ V of terminals and a positive constant D 0, we seek a minimum cost Steiner tree where all terminals appear as leaves and its diameter is bounded by D 0. Note that the diameter of a tree represents the maximum weight of path connecting two different leaves in the tree. Such problem is called the minimum cost diameter-constrained Steiner tree problem. This problem is NP-hard even when the topology of Steiner tree is fixed. In present paper we focus on this restricted version and present a fully polynomial time approximation scheme (FPTAS) for computing a minimum cost diameter-constrained Steiner tree under a fixed topology.

  2. A Decomposition Approach for Shipboard Manpower Scheduling

    DTIC Science & Technology

    2009-01-01

    generalizes the bin-packing problem with no conflicts ( BPP ) which is known to be NP-hard (Garey and Johnson 1979). Hence our focus is to obtain a lower...to the BPP ; while the so called constrained packing lower bound also takes conflict constraints into account. Their computational study indicates

  3. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia

    PubMed Central

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M.

    2016-01-01

    Abstract Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints. PMID:28175287

  4. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia.

    PubMed

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M; Ruiz-Herrera, Aurora

    2016-12-01

    Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints.

  5. How much can history constrain adaptive evolution? A real-time evolutionary approach of inversion polymorphisms in Drosophila subobscura.

    PubMed

    Fragata, I; Lopes-Cunha, M; Bárbaro, M; Kellen, B; Lima, M; Santos, M A; Faria, G S; Santos, M; Matos, M; Simões, P

    2014-12-01

    Chromosomal inversions are present in a wide range of animals and plants, having an important role in adaptation and speciation. Although empirical evidence of their adaptive value is abundant, the role of different processes underlying evolution of chromosomal polymorphisms is not fully understood. History and selection are likely to shape inversion polymorphism variation to an extent yet largely unknown. Here, we perform a real-time evolution study addressing the role of historical constraints and selection in the evolution of these polymorphisms. We founded laboratory populations of Drosophila subobscura derived from three locations along the European cline and followed the evolutionary dynamics of inversion polymorphisms throughout the first 40 generations. At the beginning, populations were highly differentiated and remained so throughout generations. We report evidence of positive selection for some inversions, variable between foundations. Signs of negative selection were more frequent, in particular for most cold-climate standard inversions across the three foundations. We found that previously observed convergence at the phenotypic level in these populations was not associated with convergence in inversion frequencies. In conclusion, our study shows that selection has shaped the evolutionary dynamics of inversion frequencies, but doing so within the constraints imposed by previous history. Both history and selection are therefore fundamental to predict the evolutionary potential of different populations to respond to global environmental changes. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  6. Evolution in response to climate change: in pursuit of the missing evidence.

    PubMed

    Merilä, Juha

    2012-09-01

    Climate change is imposing intensified and novel selection pressures on organisms by altering abiotic and biotic environmental conditions on Earth, but studies demonstrating genetic adaptation to climate change mediated selection are still scarce. Evidence is accumulating to indicate that both genetic and ecological constrains may often limit populations' abilities to adapt to large scale effects of climate warming. These constraints may predispose many organisms to respond to climate change with range shifts and phenotypic plasticity, rather than through evolutionary adaptation. In general, broad conclusions about the role of evolutionary adaptation in mitigating climate change induced fitness loss in the wild are as yet difficult to make. Copyright © 2012 WILEY Periodicals, Inc.

  7. Evolutionary game analysis and regulatory strategies for online group-buying based on system dynamics

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Zhong; He, Na; Qin, Xuwei; Ip, W. H.; Wu, C. H.; Yung, K. L.

    2018-07-01

    The emergence of online group-buying provides a new consumption pattern for consumers in e-commerce era. However, many consumers realize that their own interests sometimes can't be guaranteed in the group-buying market due to the lack of being regulated. This paper aims to develop effective regulation strategies for online group-buying market. To the best of our knowledge, most existing studies assume that three parties in online group-buying market, i.e. the retailer, the group-buying platform and the consumer, are perfectly rational. To better understand the decision process, in this paper, we incorporate the concept of bounded rationality into consideration. Firstly, a three-parties evolutionary game model is established to study each player's game strategy based on bounded rationality. Secondly, the game model is simulated as a whole by adopting system dynamics to analyze its stability. Finally, theoretical analysis and extensive computational experiments are conducted to obtain the managerial insights and regulation strategies for online group-buying market. Our results clearly demonstrate that a suitable bonus-penalty measure can promote the healthy development of online group-buying market.

  8. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  9. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-07-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  10. Evolution and extinction in the marine realm: some constraints imposed by phytoplankton

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.

    1989-01-01

    The organic and mineralized remains of planktonic algae provide a rich record of microplankton evolution extending over nearly half of the preserved geological record. In general, Phanerozoic patterns of phytoplankton radiation and extinction parallel those documented for skeletonized marine invertebrates, both augmenting and constraining thought about evolution in the oceans. Rapidly increasing knowledge of Proterozoic plankton is making possible the recognition of additional episodes of diversification and extinction that antedate the Ediacaran radiation of macroscopic animals. In contrast to earlier phytoplankton history, the late Mesozoic and Cainozoic record is documented in sufficient detail to constrain theories of mass extinction in more than a general way. Broad patterns of diversity change in planktonic algae show similarities across the Cretaceous-Tertiary and Eocene-Oligocene boundaries, but detailed comparisons of origination and extinction rates in calcareous nannoplankton, as well as other algae and skeletonized protozoans, suggest that the two episodes were quite distinct. Common causation appears unlikely, casting doubt on monolithic theories of mass extinction, whether periodic or not. Studies of mass extinction highlight a broader class of insights that paleontologists can contribute to evolutionary biology: the evaluation of evolutionary change in the context of evolving Earth-surface environments.

  11. Constrained Versions of DEDICOM for Use in Unsupervised Part-Of-Speech Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunlavy, Daniel; Chew, Peter A.

    This reports describes extensions of DEDICOM (DEcomposition into DIrectional COMponents) data models [3] that incorporate bound and linear constraints. The main purpose of these extensions is to investigate the use of improved data models for unsupervised part-of-speech tagging, as described by Chew et al. [2]. In that work, a single domain, two-way DEDICOM model was computed on a matrix of bigram fre- quencies of tokens in a corpus and used to identify parts-of-speech as an unsupervised approach to that problem. An open problem identi ed in that work was the com- putation of a DEDICOM model that more closely resembledmore » the matrices used in a Hidden Markov Model (HMM), speci cally through post-processing of the DEDICOM factor matrices. The work reported here consists of the description of several models that aim to provide a direct solution to that problem and a way to t those models. The approach taken here is to incorporate the model requirements as bound and lin- ear constrains into the DEDICOM model directly and solve the data tting problem as a constrained optimization problem. This is in contrast to the typical approaches in the literature, where the DEDICOM model is t using unconstrained optimization approaches, and model requirements are satis ed as a post-processing step.« less

  12. Formation of double neutron star systems as implied by observations

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Piran, Tsvi

    2016-03-01

    Double Neutron Stars (DNS) have to survive two supernovae (SNe) and still remain bound. This sets strong limits on the nature of the second collapse in these systems. We consider the masses and orbital parameters of the DNS population and constrain the two distributions of mass ejection and kick velocities directly from observations with no a priori assumptions regarding evolutionary models and/or the types of the SNe involved. We show that there is strong evidence for two distinct types of SNe in these systems, where the second collapse in the majority of the observed systems involved small mass ejection (ΔM ≲ 0.5 M⊙) and a corresponding low-kick velocity (vk ≲ 30 km s-1). This formation scenario is compatible, for example, with an electron-capture SN. Only a minority of the systems have formed via the standard SN scenario involving larger mass ejection of ˜2.2 M⊙ and kick velocities of up to 400 km s-1. Due to the typically small kicks in most DNS (which are reflected by rather low proper motion), we predict that most of these systems reside close to the Galactic disc. In particular, this implies that more NS-NS mergers occur close to the Galactic plane. This may have non-trivial implications to the estimated merger rates of DNS and to the rate of LIGO/VIRGO detections.

  13. Sampling Based Influence Maximization on Linear Threshold Model

    NASA Astrophysics Data System (ADS)

    Jia, Su; Chen, Ling

    2018-04-01

    A sampling based influence maximization on linear threshold (LT) model method is presented. The method samples the routes in the possible worlds in the social networks, and uses Chernoff bound to estimate the number of samples so that the error can be constrained within a given bound. Then the active possibilities of the routes in the possible worlds are calculated, and are used to compute the influence spread of each node in the network. Our experimental results show that our method can effectively select appropriate seed nodes set that spreads larger influence than other similar methods.

  14. Test of the combined method for extracting spectroscopic factors in N =50 nuclei

    NASA Astrophysics Data System (ADS)

    Walter, David; Cizewski, J. A.; Baugher, T.; Ratkiewicz, A.; Pain, S. D.; Nunes, F. M.; Ahn, S.; Cerizza, G.; Jones, K. L.; Manning, B.; Thornsberry, C.

    2017-09-01

    The single-particle properties of nuclei near shell closures and r-process waiting points can be observed using single-nucleon transfer reactions with beams of rare isotopes. However, approximations have to be made about the final bound state to extract spectroscopic information. An approach to constrain the bound state potential has been proposed by Mukhamedzhanov and Nunes. At peripheral reaction energies ( 5 MeV/u), the ANC for the nucleus can be extracted, and is combined with the same reaction at higher energies ( 40 MeV/u). These combined measurements can constrain the shape of the bound state potential, and the spectroscopic factor can be reliably extracted. To test this method, the 86Kr(d , p) reaction was performed in inverse kinematics with a 35 MeV/u beam at the National Superconducting Cyclotron Laboratory (NSCL) with the ORRUBA and SIDAR arrays of silicon strip detectors coupled to the S800 spectrometer. Successful results supported the measurement of a radioactive ion beam of 84Se at 45 MeV/u at the NSCL to be measured at the end of 2017. Results from the 86Kr(d , p) measurement will be presented as well as preparations for the upcoming 84Se(d , p) measurement. This work is supported in part by the National Science Foundation and U.S. D.O.E.

  15. Construction of multiple trade-offs to obtain arbitrary singularities of adaptive dynamics.

    PubMed

    Kisdi, Éva

    2015-04-01

    Evolutionary singularities are central to the adaptive dynamics of evolving traits. The evolutionary singularities are strongly affected by the shape of any trade-off functions a model assumes, yet the trade-off functions are often chosen in an ad hoc manner, which may unjustifiably constrain the evolutionary dynamics exhibited by the model. To avoid this problem, critical function analysis has been used to find a trade-off function that yields a certain evolutionary singularity such as an evolutionary branching point. Here I extend this method to multiple trade-offs parameterized with a scalar strategy. I show that the trade-off functions can be chosen such that an arbitrary point in the viability domain of the trait space is a singularity of an arbitrary type, provided (next to certain non-degeneracy conditions) that the model has at least two environmental feedback variables and at least as many trade-offs as feedback variables. The proof is constructive, i.e., it provides an algorithm to find trade-off functions that yield the desired singularity. I illustrate the construction of trade-offs with an example where the virulence of a pathogen evolves in a small ecosystem of a host, its pathogen, a predator that attacks the host and an alternative prey of the predator.

  16. Relative importance of evolutionary dynamics depends on the composition of microbial predator-prey community.

    PubMed

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-06-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.

  17. Relative importance of evolutionary dynamics depends on the composition of microbial predator–prey community

    PubMed Central

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-01-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities. PMID:26684728

  18. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    PubMed

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Stability-activity tradeoffs constrain the adaptive evolution of RubisCO.

    PubMed

    Studer, Romain A; Christin, Pascal-Antoine; Williams, Mark A; Orengo, Christine A

    2014-02-11

    A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.

  20. Towards improving searches for optimal phylogenies.

    PubMed

    Ford, Eric; St John, Katherine; Wheeler, Ward C

    2015-01-01

    Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. LISA pathfinder appreciably constrains collapse models

    NASA Astrophysics Data System (ADS)

    Helou, Bassam; Slagmolen, B. J. J.; McClelland, David E.; Chen, Yanbei

    2017-04-01

    Spontaneous collapse models are phenomological theories formulated to address major difficulties in macroscopic quantum mechanics. We place significant bounds on the parameters of the leading collapse models, the continuous spontaneous localization (CSL) model, and the Diosi-Penrose (DP) model, by using LISA Pathfinder's measurement, at a record accuracy, of the relative acceleration noise between two free-falling macroscopic test masses. In particular, we bound the CSL collapse rate to be at most (2.96 ±0.12 ) ×10-8 s-1 . This competitive bound explores a new frequency regime, 0.7 to 20 mHz, and overlaps with the lower bound 10-8 ±2 s-1 proposed by Adler in order for the CSL collapse noise to be substantial enough to explain the phenomenology of quantum measurement. Moreover, we bound the regularization cutoff scale used in the DP model to prevent divergences to be at least 40.1 ±0.5 fm , which is larger than the size of any nucleus. Thus, we rule out the DP model if the cutoff is the size of a fundamental particle.

  2. Planck limits on non-canonical generalizations of large-field inflation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Nina K.; Kinney, William H., E-mail: ninastei@buffalo.edu, E-mail: whkinney@buffalo.edu

    2017-04-01

    In this paper, we consider two case examples of Dirac-Born-Infeld (DBI) generalizations of canonical large-field inflation models, characterized by a reduced sound speed, c {sub S} < 1. The reduced speed of sound lowers the tensor-scalar ratio, improving the fit of the models to the data, but increases the equilateral-mode non-Gaussianity, f {sup equil.}{sub NL}, which the latest results from the Planck satellite constrain by a new upper bound. We examine constraints on these models in light of the most recent Planck and BICEP/Keck results, and find that they have a greatly decreased window of viability. The upper bound onmore » f {sup equil.}{sub NL} corresponds to a lower bound on the sound speed and a corresponding lower bound on the tensor-scalar ratio of r ∼ 0.01, so that near-future Cosmic Microwave Background observations may be capable of ruling out entire classes of DBI inflation models. The result is, however, not universal: infrared-type DBI inflation models, where the speed of sound increases with time, are not subject to the bound.« less

  3. Conjecture Mapping to Optimize the Educational Design Research Process

    ERIC Educational Resources Information Center

    Wozniak, Helen

    2015-01-01

    While educational design research promotes closer links between practice and theory, reporting its outcomes from iterations across multiple contexts is often constrained by the volumes of data generated, and the context bound nature of the research outcomes. Reports tend to focus on a single iteration of implementation without further research to…

  4. Limiting the effective mass and new physics parameters from 0 ν β β

    NASA Astrophysics Data System (ADS)

    Awasthi, Ram Lal; Dasgupta, Arnab; Mitra, Manimala

    2016-10-01

    In the light of the recent result from KamLAND-Zen (KLZ) and GERDA Phase-II, we update the bounds on the effective mass and the new physics parameters, relevant for neutrinoless double beta decay (0 ν β β ). In addition to the light Majorana neutrino exchange, we analyze beyond standard model contributions that arise in left-right symmetry and R-parity violating supersymmetry. The improved limit from KLZ constrains the effective mass of light neutrino exchange down to sub-eV mass regime 0.06 eV. Using the correlation between the 136Xe and 76 half-lives, we show that the KLZ limit individually rules out the positive claim of observation of 0 ν β β for all nuclear matrix element compilation. For the left-right symmetry and R-parity violating supersymmetry, the KLZ bound implies a factor of 2 improvement of the effective mass and the new physics parameters. The future ton scale experiments such as, nEXO will further constrain these models, in particular, will rule out standard as well as Type-II dominating LRSM inverted hierarchy scenario.

  5. Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Watkins, Edward Francis

    1995-01-01

    A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.

  6. Joint Chance-Constrained Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob

    2012-01-01

    This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.

  7. Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jae Hyeok; Essig, Rouven; McDermott, Samuel D.

    We consider the constraints from Supernova 1987A on particles with small couplings to the Standard Model. We discuss a model with a fermion coupled to a dark photon, with various mass relations in the dark sector; millicharged particles; dark-sector fermions with inelastic transitions; the hadronic QCD axion; and an axion-like particle that couples to Standard Model fermions with couplings proportional to their mass. In the fermion cases, we develop a new diagnostic for assessing when such a particle is trapped at large mixing angles. Our bounds for a fermion coupled to a dark photon constrain small couplings and masses <200more » MeV, and do not decouple for low fermion masses. They exclude parameter space that is otherwise unconstrained by existing accelerator-based and direct-detection searches. In addition, our bounds are complementary to proposed laboratory searches for sub-GeV dark matter, and do not constrain several "thermal" benchmark-model targets. For a millicharged particle, we exclude charges between 10^(-9) to a few times 10^(-6) in units of the electron charge; this excludes parameter space to higher millicharges and masses than previous bounds. For the QCD axion and an axion-like particle, we apply several updated nuclear physics calculations and include the energy dependence of the optical depth to accurately account for energy loss at large couplings. We rule out a hadronic axion of mass between 0.1 and a few hundred eV, or equivalently bound the PQ scale between a few times 10^4 and 10^8 GeV, closing the hadronic axion window. For an axion-like particle, our bounds disfavor decay constants between a few times 10^5 GeV up to a few times 10^8 GeV. In all cases, our bounds differ from previous work by more than an order of magnitude across the entire parameter space. We also provide estimated systematic errors due to the uncertainties of the progenitor.« less

  8. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  9. Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution

    PubMed Central

    2008-01-01

    Background The remarkable potential of recent forms of life for reliably passing on genetic information through many generations now depends on the coordinated action of thousands of specialized biochemical "machines" (enzymes) that were obviously absent in prebiotic times. Thus the question how a complicated system like the living cell could have assembled on Earth seems puzzling. In seeking for a scientific explanation one has to search for step-by-step evolutionary changes from prebiotic chemistry to the emergence of the first proto-cell. Results We try to sketch a plausible scenario for the first steps of prebiotic evolution by exploring the ecological feasibility of a mineral surface-bound replicator system that facilitates a primitive metabolism. Metabolism is a hypothetical network of simple chemical reactions producing monomers for the template-copying of RNA-like replicators, which in turn catalyse metabolic reactions. Using stochastic cellular automata (SCA) simulations we show that the surface-bound metabolic replicator system is viable despite internal competition among the genes and that it also maintains a set of mild "parasitic" sequences which occasionally evolve functions such as that of a replicase. Conclusion Replicase activity is shown to increase even at the expense of slowing down the replication of the evolving ribozyme itself, due to indirect mutualistic benefits in a diffuse form of group selection among neighbouring replicators. We suggest possible paths for further evolutionary changes in the metabolic replicator system leading to increased metabolic efficiency, improved replicase functionality, and membrane production. PMID:18826645

  10. Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Nplqcd Collaboration

    2017-12-01

    Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the S U (3 ) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of ≈806 MeV ). Specifically, the S -wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of Lüscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The leading-order low-energy scattering parameters in the two-nucleon systems that were previously obtained at these quark masses are determined with a refined analysis, and the scattering parameters in two other channels containing the Σ and Ξ baryons are constrained for the first time. It is found that the values of these parameters are consistent with an approximate S U (6 ) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-Nc limit of QCD. The two distinct S U (6 )-invariant interactions between two baryons are constrained for the first time at this value of the quark masses, and their values indicate an approximate accidental S U (16 ) symmetry. The S U (3 ) irreps containing the N N (1S0), N N (3S1) and 1/√{2 } (Ξ0n +Ξ-p )(3S1) channels unambiguously exhibit a single bound state, while the irrep containing the Σ+p (3S1) channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.

  11. Simple modification of Oja rule limits L1-norm of weight vector and leads to sparse connectivity.

    PubMed

    Aparin, Vladimir

    2012-03-01

    This letter describes a simple modification of the Oja learning rule, which asymptotically constrains the L1-norm of an input weight vector instead of the L2-norm as in the original rule. This constraining is local as opposed to commonly used instant normalizations, which require the knowledge of all input weights of a neuron to update each one of them individually. The proposed rule converges to a weight vector that is sparser (has more zero weights) than the vector learned by the original Oja rule with or without the zero bound, which could explain the developmental synaptic pruning.

  12. Comparative genomics reveals insights into avian genome evolution and adaptation

    PubMed Central

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  13. Applications of Evolutionary Technology to Manufacturing and Logistics Systems : State-of-the Art Survey

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Lin, Lin

    Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.

  14. Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk

    1992-01-01

    The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.

  15. The evolutionary psychology of women's aggression.

    PubMed

    Campbell, Anne

    2013-01-01

    Evolutionary researchers have identified age, operational sex ratio and high variance in male resources as factors that intensify female competition. These are discussed in relation to escalated intrasexual competition for men and their resources between young women in deprived neighbourhoods. For these women, fighting is not seen as antithetical to cultural conceptions of femininity, and female weakness is disparaged. Nonetheless, even where competitive pressures are high, young women's aggression is less injurious and frequent than young men's. From an evolutionary perspective, I argue that the intensity of female aggression is constrained by the greater centrality of mothers, rather than fathers, to offspring survival. This selection pressure is realized psychologically through a lower threshold for fear among women. Neuropsychological evidence is not yet conclusive but suggests that women show heightened amygdala reactivity to threatening stimuli, may be better able to exert prefrontal cortical control over emotional behaviour and may consciously register fear more strongly via anterior cingulate activity. The impact of testosterone and oxytocin on the neural circuitry of emotion is also considered.

  16. Star formation history: Modeling of visual binaries

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  17. The evolutionary psychology of women's aggression

    PubMed Central

    Campbell, Anne

    2013-01-01

    Evolutionary researchers have identified age, operational sex ratio and high variance in male resources as factors that intensify female competition. These are discussed in relation to escalated intrasexual competition for men and their resources between young women in deprived neighbourhoods. For these women, fighting is not seen as antithetical to cultural conceptions of femininity, and female weakness is disparaged. Nonetheless, even where competitive pressures are high, young women's aggression is less injurious and frequent than young men's. From an evolutionary perspective, I argue that the intensity of female aggression is constrained by the greater centrality of mothers, rather than fathers, to offspring survival. This selection pressure is realized psychologically through a lower threshold for fear among women. Neuropsychological evidence is not yet conclusive but suggests that women show heightened amygdala reactivity to threatening stimuli, may be better able to exert prefrontal cortical control over emotional behaviour and may consciously register fear more strongly via anterior cingulate activity. The impact of testosterone and oxytocin on the neural circuitry of emotion is also considered. PMID:24167308

  18. Stickleback fishes: Bridging the gap between population biology and paleobiology.

    PubMed

    Bell, M A

    1988-12-01

    Integration of evolutionary mechanisms and phylogeny requires study of phenotypes that change in the fossil record and continue to evolve in extant populations. Pelvic reduction in the three-spined stickle-back has evolved rapidly in a Miocene fossil assemblage and in numerous extant isolated lake populations throughout its distribution. Although pelvic reduction is caused by selection, expression of reduced pelvic phenotypes is constrained by development and other factors. However, lineages with pelvis reduction rapidly go extinct while lineages that retain the fully formed pelvic girdle tend to persist. Existence of pelvic reduction since the Miocene has depended on an equilibrium between divergence and extinction. The phylogenetic topology resulting from this process differs greatly from the conventional view of evolutionary history, and could only be recognized by analysis of both extant populations and fossil material. If this phylogenetic topology is common, it may help to account for the different perceptions that population biologists and paleobiologists have of evolutionary tempo. Copyright © 1988. Published by Elsevier Ltd.

  19. INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS.

    PubMed

    Bozick, Brooke A; Real, Leslie A

    2015-12-01

    The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.

  20. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2002-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we plan to: (1) Develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; (2) Study the dusty emission and accretion rates in these systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr; and (3) Develop detailed model disk structures consistent with observations to infer physical conditions in protoplanetary disks and to constrain possible grain growth as the first stage of planetesimal formation.

  1. Bounds on isocurvature perturbations from cosmic microwave background and large scale structure data.

    PubMed

    Crotty, Patrick; García-Bellido, Juan; Lesgourgues, Julien; Riazuelo, Alain

    2003-10-24

    We obtain very stringent bounds on the possible cold dark matter, baryon, and neutrino isocurvature contributions to the primordial fluctuations in the Universe, using recent cosmic microwave background and large scale structure data. Neglecting the possible effects of spatial curvature, tensor perturbations, and reionization, we perform a Bayesian likelihood analysis with nine free parameters, and find that the amplitude of the isocurvature component cannot be larger than about 31% for the cold dark matter mode, 91% for the baryon mode, 76% for the neutrino density mode, and 60% for the neutrino velocity mode, at 2sigma, for uncorrelated models. For correlated adiabatic and isocurvature components, the fraction could be slightly larger. However, the cross-correlation coefficient is strongly constrained, and maximally correlated/anticorrelated models are disfavored. This puts strong bounds on the curvaton model.

  2. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  3. Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems.

    PubMed

    Devaux, C; Lepers, C; Porcher, E

    2014-07-01

    Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, although mutualistic, involve an inherent conflict of interest between both partners and may constrain plant mating systems at multiple levels: the immediate ecological plant selfing rates, their distribution in and contribution to pollination networks, and their evolution. Here, we review experimental evidence that pollinator behaviour influences plant selfing rates in pairs of interacting species, and that plants can modify pollinator behaviour through plastic and evolutionary changes in floral traits. We also examine how theoretical studies include pollinators, implicitly or explicitly, to investigate the role of their foraging behaviour in plant mating system evolution. In doing so, we call for more evolutionary models combining ecological and genetic factors, and additional experimental data, particularly to describe pollinator foraging behaviour. Finally, we show that recent developments in ecological network theory help clarify the impact of community-level interactions on plant selfing rates and their evolution and suggest new research avenues to expand the study of mating systems of animal-pollinated plant species to the level of the plant-pollinator networks. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  4. Formation of dominant mode by evolution in biological systems

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2018-04-01

    A reduction in high-dimensional phenotypic states to a few degrees of freedom is essential to understand biological systems. Here, we show evolutionary robustness causes such reduction which restricts possible phenotypic changes in response to a variety of environmental conditions. First, global protein expression changes in Escherichia coli after various environmental perturbations were shown to be proportional across components, across different types of environmental conditions. To examine if such dimension reduction is a result of evolution, we analyzed a cell model—with a huge number of components, that reproduces itself via a catalytic reaction network—and confirmed that common proportionality in the concentrations of all components is shaped through evolutionary processes. We found that the changes in concentration across all components in response to environmental and evolutionary changes are constrained to the changes along a one-dimensional major axis, within a huge-dimensional state space. On the basis of these observations, we propose a theory in which such constraints in phenotypic changes are achieved both by evolutionary robustness and plasticity and formulate this proposition in terms of dynamical systems. Accordingly, broad experimental and numerical results on phenotypic changes caused by evolution and adaptation are coherently explained.

  5. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    NASA Astrophysics Data System (ADS)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of these COMs also spreads out. We calculated the temporal variation of the radial profiles of these COMs for different hot core models. These profiles resemble the so-called jump profiles with relative abundances higher than 10-9 within the evaporation font will furthermore be useful to model the observed spectra of hot cores. We present the simulated spectra of these COMs for different hot core models at various evolutionary timescales. A qualitative comparison of the simulated and observed spectra suggests that these self-consistent hot core models can reproduce the notable trends in hot core spectral variation within the typical hot core timescales of 105 year. These models predict that the spatial distribution of various emission line maps will also expand with evolutionary time; this feature can be used to constrain the relative desorption energies of the molecules that mainly form on the grain surface and return to the gas phase via thermal desorption. The detailed modeling of the thermal structure of hot cores with similar masses along with the characterization of the desorption energies of different molecules can be used to constrain the luminosity evolution of the central protostars. The model predictions can be compared with high resolution observation that can probe scales of a few thousand AU in high-mass star forming regions such as from Atacama Large Millimeter/submillimeter Array (ALMA). We used a spectral fitting method to analyze the simulated spectra and find that it significantly underestimates some of the physical parameters such as temperature. The coupling of chemical evolution with radiative transfer models will be particularly useful to decipher the physical structure of hot cores and also to constrain the initial evolutionary stages of high-mass star formation. Appendices are available in electronic form at http://www.aanda.org

  6. On constraining the speed of gravitational waves following GW150914

    NASA Astrophysics Data System (ADS)

    Blas, D.; Ivanov, M. M.; Sawicki, I.; Sibiryakov, S.

    2016-05-01

    We point out that the observed time delay between the detection of the signal at the Hanford and Livingston LIGO sites from the gravitational wave event GW150914 places an upper bound on the speed of propagation of gravitational waves, c gw ≲ 1.7 in the units of speed of light. Combined with the lower bound from the absence of gravitational Cherenkov losses by cosmic rays that rules out most of subluminal velocities, this gives a model-independent double-sided constraint 1 ≲ c gw ≲ 1.7. We compare this result to model-specific constraints from pulsar timing and cosmology.

  7. Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems

    PubMed Central

    Wang, Hailong; Sun, Yuqiu; Su, Qinghua; Xia, Xuewen

    2018-01-01

    The backtracking search optimization algorithm (BSA) is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA) to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F) is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed. PMID:29666635

  8. Constraining the braneworld with gravitational wave observations.

    PubMed

    McWilliams, Sean T

    2010-04-09

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm.

  9. Constraining the Braneworld with Gravitational Wave Observations

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.

    2011-01-01

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, L, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining L via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain L at the approximately 1 micron level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of L less than or equal to 5 microns.

  10. Turning Around along the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Lee, Jounghun; Yepes, Gustavo

    2016-12-01

    A bound violation designates a case in which the turnaround radius of a bound object exceeds the upper limit imposed by the spherical collapse model based on the standard ΛCDM paradigm. Given that the turnaround radius of a bound object is a stochastic quantity and that the spherical model overly simplifies the true gravitational collapse, which actually proceeds anisotropically along the cosmic web, the rarity of the occurrence of a bound violation may depend on the web environment. Assuming a Planck cosmology, we numerically construct the bound-zone peculiar velocity profiles along the cosmic web (filaments and sheets) around the isolated groups with virial mass {M}{{v}}≥slant 3× {10}13 {h}-1 {M}⊙ identified in the Small MultiDark Planck simulations and determine the radial distances at which their peculiar velocities equal the Hubble expansion speed as the turnaround radii of the groups. It is found that although the average turnaround radii of the isolated groups are well below the spherical bound limit on all mass scales, the bound violations are not forbidden for individual groups, and the cosmic web has an effect of reducing the rarity of the occurrence of a bound violation. Explaining that the spherical bound limit on the turnaround radius in fact represents the threshold distance up to which the intervention of the external gravitational field in the bound-zone peculiar velocity profiles around the nonisolated groups stays negligible, we discuss the possibility of using the threshold distance scale to constrain locally the equation of state of dark energy.

  11. A note on bound constraints handling for the IEEE CEC'05 benchmark function suite.

    PubMed

    Liao, Tianjun; Molina, Daniel; de Oca, Marco A Montes; Stützle, Thomas

    2014-01-01

    The benchmark functions and some of the algorithms proposed for the special session on real parameter optimization of the 2005 IEEE Congress on Evolutionary Computation (CEC'05) have played and still play an important role in the assessment of the state of the art in continuous optimization. In this article, we show that if bound constraints are not enforced for the final reported solutions, state-of-the-art algorithms produce infeasible best candidate solutions for the majority of functions of the IEEE CEC'05 benchmark function suite. This occurs even though the optima of the CEC'05 functions are within the specified bounds. This phenomenon has important implications on algorithm comparisons, and therefore on algorithm designs. This article's goal is to draw the attention of the community to the fact that some authors might have drawn wrong conclusions from experiments using the CEC'05 problems.

  12. Evolution and population genetics of exotic and reemerging pathogens: traditional and novel tools and approaches

    Treesearch

    N.J. Grünwald; E.M. Goss

    2011-01-01

    Given human population growth and accelerated global trade, the rate of emergence of exotic plant pathogens is bound to increase. Understanding the processes that lead to the emergence of new pathogens can help manage emerging epidemics. Novel tools for analyzing population genetic variation can be used to infer the evolutionary history of populations or species,...

  13. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  14. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    PubMed

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-27

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  15. Tolerance to deer herbivory and resistance to insect herbivores in the common evening primrose (Oenothera biennis).

    PubMed

    Puentes, A; Johnson, M T J

    2016-01-01

    The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  16. Early constraints in sexual dimorphism: survival benefits of feminized phenotypes.

    PubMed

    López-Rull, I; Vergara, P; Martínez-Padilla, J; Fargallo, J A

    2016-02-01

    Sexual dimorphism (SD) has evolved in response to selection pressures that differ between sexes. Since such pressures change across an individual's life, SD may vary within age classes. Yet, little is known about how selection on early phenotypes may drive the final SD observed in adults. In many dimorphic species, juveniles resemble adult females rather than adult males, meaning that out of the selective pressures established by sexual selection feminized phenotypes may be adaptive. If true, fitness benefits of early female-like phenotypes may constrain the expression of male phenotypes in adulthood. Using the common kestrel Falco tinnunculus as a study model, we evaluated the fitness advantages of expressing more feminized phenotypes at youth. Although more similar to adult females than to adult males, common kestrel fledglings are still sexually dimorphic in size and coloration. Integrating morphological and chromatic variables, we analysed the phenotypic divergence between sexes as a measure of how much each individual looks like the sex to which it belongs (phenotypic sexual resemblance, PSR). We then tested the fitness benefits associated with PSR by means of the probability of recruitment in the population. We found a significant interaction between PSR and sex, showing that in both sexes more feminized phenotypes recruited more into the population than less feminized phenotypes. Moreover, males showed lower PSR than females and a higher proportion of incorrect sex classifications. These findings suggest that the mechanisms in males devoted to resembling female phenotypes in youth, due to a trend to increase fitness through more feminized phenotypes, may provide a mechanism to constrain the SD in adulthood. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  17. Evolution Is an Experiment: Assessing Parallelism in Crop Domestication and Experimental Evolution: (Nei Lecture, SMBE 2014, Puerto Rico).

    PubMed

    Gaut, Brandon S

    2015-07-01

    In this commentary, I make inferences about the level of repeatability and constraint in the evolutionary process, based on two sets of replicated experiments. The first experiment is crop domestication, which has been replicated across many different species. I focus on results of whole-genome scans for genes selected during domestication and ask whether genes are, in fact, selected in parallel across different domestication events. If genes are selected in parallel, it implies that the number of genetic solutions to the challenge of domestication is constrained. However, I find no evidence for parallel selection events either between species (maize vs. rice) or within species (two domestication events within beans). These results suggest that there are few constraints on genetic adaptation, but conclusions must be tempered by several complicating factors, particularly the lack of explicit design standards for selection screens. The second experiment involves the evolution of Escherichia coli to thermal stress. Unlike domestication, this highly replicated experiment detected a limited set of genes that appear prone to modification during adaptation to thermal stress. However, the number of potentially beneficial mutations within these genes is large, such that adaptation is constrained at the genic level but much less so at the nucleotide level. Based on these two experiments, I make the general conclusion that evolution is remarkably flexible, despite the presence of epistatic interactions that constrain evolutionary trajectories. I also posit that evolution is so rapid that we should establish a Speciation Prize, to be awarded to the first researcher who demonstrates speciation with a sexual organism in the laboratory. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Vacuum stability in the U(1)χ extended model with vanishing scalar potential at the Planck scale

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Yamaguchi, Yuya

    2015-09-01

    We investigate the vacuum stability in a scale invariant local {U}(1)_χ model with vanishing scalar potential at the Planck scale. We find that it is impossible to realize the Higgs mass of 125 GeV while keeping the Higgs quartic coupling λ _H positive in all energy scales, that is, the same as the standard model. Once one allows λ _H<0, the lower bounds of the Z' boson mass ares obtained through the positive definiteness of the scalar mass squared eigenvalues, while the bounds are smaller than the LHC bounds. On the other hand, the upper bounds strongly depend on the number of relevant Majorana Yukawa couplings of the right-handed neutrinos N_ν . Considering decoupling effects of the Z' boson and the right-handed neutrinos, the condition of the singlet scalar quartic coupling λ _φ >0 gives the upper bound in the N_ν =1 case, while it does not constrain the N_ν =2 and 3 cases. In particular, we find that the Z' boson mass is tightly restricted for the N_ν =1 case as M_{Z'} &lsim 3.7 TeV.

  19. What Information Theory Says About Best Response and About Binding Contracts

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is the information-theoretic extension of conventional full- rationality game theory to bounded rational games. Here PD theory is used to investigate games in which the players use bounded rational best-response strategies. This investigation illuminates how to determine the optimal organization chart for a corporation, or more generally how to order the sequence of moves of the players / employees so as to optimize an overall objective function. It is then shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. This variant is then investigated for team games, in which the players share the same utility function, by showing that such continuum- limit bounded rational best response is identical to Newton-Raphson iterative optimization of the shared utility function. Next PD theory is used to investigate changing the coordinate system of the game, i.e., changing the mapping from the joint move of the players to the arguments in the utility functions. Such a change couples those arguments, essentially by making each players move be an offered binding contract.

  20. Constraining Light-Quark Yukawa Couplings from Higgs Distributions.

    PubMed

    Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele

    2017-03-24

    We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.

  1. Constrained multiple indicator kriging using sequential quadratic programming

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Erhan Tercan, A.

    2012-11-01

    Multiple indicator kriging (MIK) is a nonparametric method used to estimate conditional cumulative distribution functions (CCDF). Indicator estimates produced by MIK may not satisfy the order relations of a valid CCDF which is ordered and bounded between 0 and 1. In this paper a new method has been presented that guarantees the order relations of the cumulative distribution functions estimated by multiple indicator kriging. The method is based on minimizing the sum of kriging variances for each cutoff under unbiasedness and order relations constraints and solving constrained indicator kriging system by sequential quadratic programming. A computer code is written in the Matlab environment to implement the developed algorithm and the method is applied to the thickness data.

  2. Constraining Light-Quark Yukawa Couplings from Higgs Distributions

    NASA Astrophysics Data System (ADS)

    Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele

    2017-03-01

    We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.

  3. Constraining free riding in public goods games: designated solitary punishers can sustain human cooperation

    PubMed Central

    O'Gorman, Rick; Henrich, Joseph; Van Vugt, Mark

    2008-01-01

    Much of human cooperation remains an evolutionary riddle. Unlike other animals, people frequently cooperate with non-relatives in large groups. Evolutionary models of large-scale cooperation require not just incentives for cooperation, but also a credible disincentive for free riding. Various theoretical solutions have been proposed and experimentally explored, including reputation monitoring and diffuse punishment. Here, we empirically examine an alternative theoretical proposal: responsibility for punishment can be borne by one specific individual. This experiment shows that allowing a single individual to punish increases cooperation to the same level as allowing each group member to punish and results in greater group profits. These results suggest a potential key function of leadership in human groups and provides further evidence supporting that humans will readily and knowingly behave altruistically. PMID:18812292

  4. Comparative genomics reveals insights into avian genome evolution and adaptation.

    PubMed

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun

    2014-12-12

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. Copyright © 2014, American Association for the Advancement of Science.

  5. The Use of Bioinformatics for Studying HIV Evolutionary and Epidemiological History in South America

    PubMed Central

    Bello, Gonzalo; Soares, Marcelo A.; Schrago, Carlos G.

    2011-01-01

    The South American human immunodeficiency virus type 1 (HIV-1) epidemic is driven by several subtypes (B, C, and F1) and circulating and unique recombinant forms derived from those subtypes. Those variants are heterogeneously distributed around the continent in a country-specific manner. Despite some inconsistencies mainly derived from sampling biases and analytical constrains, most of studies carried out in the area agreed in pointing out specificities in the evolutionary dynamics of the circulating HIV-1 lineages. In this paper, we covered the theoretical basis, and the application of bioinformatics methods to reconstruct the HIV spatial-temporal dynamics, unveiling relevant information to understand the origin, geographical dissemination and the current molecular scenario of the HIV epidemic in the continent, particularly in the countries of Southern Cone. PMID:22162803

  6. The evolutionary roots of human decision making.

    PubMed

    Santos, Laurie R; Rosati, Alexandra G

    2015-01-03

    Humans exhibit a suite of biases when making economic decisions. We review recent research on the origins of human decision making by examining whether similar choice biases are seen in nonhuman primates, our closest phylogenetic relatives. We propose that comparative studies can provide insight into four major questions about the nature of human choice biases that cannot be addressed by studies of our species alone. First, research with other primates can address the evolution of human choice biases and identify shared versus human-unique tendencies in decision making. Second, primate studies can constrain hypotheses about the psychological mechanisms underlying such biases. Third, comparisons of closely related species can identify when distinct mechanisms underlie related biases by examining evolutionary dissociations in choice strategies. Finally, comparative work can provide insight into the biological rationality of economically irrational preferences.

  7. Hybrid Motion Planning with Multiple Destinations

    NASA Technical Reports Server (NTRS)

    Clouse, Jeffery

    1998-01-01

    In our initial proposal, we laid plans for developing a hybrid motion planning system that combines the concepts of visibility-based motion planning, artificial potential field based motion planning, evolutionary constrained optimization, and reinforcement learning. Our goal was, and still is, to produce a hybrid motion planning system that outperforms the best traditional motion planning systems on problems with dynamic environments. The proposed hybrid system will be in two parts the first is a global motion planning system and the second is a local motion planning system. The global system will take global information about the environment, such as the placement of the obstacles and goals, and produce feasible paths through those obstacles. We envision a system that combines the evolutionary-based optimization and visibility-based motion planning to achieve this end.

  8. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to constrain the evolutionary design to a monopole wire antenna. The results of the runs produced requirements-compliant antennas that were subsequently fabricated and tested. The evolved antenna has a number of advantages with regard to power consumption, fabrication time and complexity, and performance. Lower power requirements result from achieving high gain across a wider range of elevation angles, thus allowing a broader range of angles over which maximum data throughput can be achieved. Since the evolved antenna does not require a phasing circuit, less design and fabrication work is required. In terms of overall work, the evolved antenna required approximately three person-months to design and fabricate whereas the conventional antenna required about five. Furthermore, when the mission was modified and new orbital parameters selected, a redesign of the antenna to new requirements was required. The evolutionary system was rapidly modified and a new antenna evolved in a few weeks. The evolved antenna was shown to be compliant to the ST5 mission requirements. It has an unusual organic looking structure, one that expert antenna designers would not likely produce. This antenna has been tested, baselined and is scheduled to fly this year. In addition to the ST5 antenna, our laboratory has evolved an S-band phased array antenna element design that meets the requirements for NASA's TDRS-C communications satellite scheduled for launch early next decade. A combination of fairly broad bandwidth, high efficiency and circular polarization at high gain made for another challenging design problem. We chose to constrain the evolutionary design to a crossed-element Yagi antenna. The specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a getic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results correspond well with simulation. Aerospace component design is an expensive and important step in space development. Evolutionary design can make a significant contribution wherever sufficiently fast, accurate and capable software simulators are available. We have demonstrated successful real-world design in the spacecraft antenna domain; and there is good reason to believe that these results could be replicated in other design spaces.

  9. Time-response shaping using output to input saturation transformation

    NASA Astrophysics Data System (ADS)

    Chambon, E.; Burlion, L.; Apkarian, P.

    2018-03-01

    For linear systems, the control law design is often performed so that the resulting closed loop meets specific frequency-domain requirements. However, in many cases, it may be observed that the obtained controller does not enforce time-domain requirements amongst which the objective of keeping a scalar output variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an output variable into time-varying saturations on the synthesised linear scalar control law. This transformation uses some well-chosen time-varying coefficients so that the resulting time-varying saturation bounds do not overlap in the presence of disturbances. Using an anti-windup approach, it is obtained that the origin of the resulting closed loop is globally asymptotically stable and that the constrained output variable satisfies the time-domain constraints in the presence of an unknown finite-energy-bounded disturbance. An application to a linear ball and beam model is presented.

  10. Constraining astrophysical neutrino flavor composition from leptonic unitarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xun-Jie; He, Hong-Jian; Rodejohann, Werner, E-mail: xunjie.xu@gmail.com, E-mail: hjhe@tsinghua.edu.cn, E-mail: werner.rodejohann@mpi-hd.mpg.de

    2014-12-01

    The recent IceCube observation of ultra-high-energy astrophysical neutrinos has begun the era of neutrino astronomy. In this work, using the unitarity of leptonic mixing matrix, we derive nontrivial unitarity constraints on the flavor composition of astrophysical neutrinos detected by IceCube. Applying leptonic unitarity triangles, we deduce these unitarity bounds from geometrical conditions, such as triangular inequalities. These new bounds generally hold for three flavor neutrinos, and are independent of any experimental input or the pattern of lepton mixing. We apply our unitarity bounds to derive general constraints on the flavor compositions for three types of astrophysical neutrino sources (and theirmore » general mixture), and compare them with the IceCube measurements. Furthermore, we prove that for any sources without ν{sub τ} neutrinos, a detected ν{sub μ} flux ratio < 1/4 will require the initial flavor composition with more ν{sub e} neutrinos than ν{sub μ} neutrinos.« less

  11. WHAMII - An enumeration and insertion procedure with binomial bounds for the stochastic time-constrained traveling salesman problem

    NASA Technical Reports Server (NTRS)

    Dahl, Roy W.; Keating, Karen; Salamone, Daryl J.; Levy, Laurence; Nag, Barindra; Sanborn, Joan A.

    1987-01-01

    This paper presents an algorithm (WHAMII) designed to solve the Artificial Intelligence Design Challenge at the 1987 AIAA Guidance, Navigation and Control Conference. The problem under consideration is a stochastic generalization of the traveling salesman problem in which travel costs can incur a penalty with a given probability. The variability in travel costs leads to a probability constraint with respect to violating the budget allocation. Given the small size of the problem (eleven cities), an approach is considered that combines partial tour enumeration with a heuristic city insertion procedure. For computational efficiency during both the enumeration and insertion procedures, precalculated binomial probabilities are used to determine an upper bound on the actual probability of violating the budget constraint for each tour. The actual probability is calculated for the final best tour, and additional insertions are attempted until the actual probability exceeds the bound.

  12. Terrestrial Sagnac delay constraining modified gravity models

    NASA Astrophysics Data System (ADS)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  13. A millisecond pulsar in a stellar triple system.

    PubMed

    Ransom, S M; Stairs, I H; Archibald, A M; Hessels, J W T; Kaplan, D L; van Kerkwijk, M H; Boyles, J; Deller, A T; Chatterjee, S; Schechtman-Rook, A; Berndsen, A; Lynch, R S; Lorimer, D R; Karako-Argaman, C; Kaspi, V M; Kondratiev, V I; McLaughlin, M A; van Leeuwen, J; Rosen, R; Roberts, M S E; Stovall, K

    2014-01-23

    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.

  14. Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Sen, S. K.

    2007-01-01

    Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *

  15. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  16. Testing evolutionary hypotheses for phenotypic divergence using landscape genetics.

    PubMed

    Funk, W Chris; Murphy, Melanie A

    2010-02-01

    Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence (Garant et al. 2007) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation (Coyne & Orr 2004). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica (Fig. 1). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation-by-distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.

  17. Very Massive Stars and the Eddington Limit

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.; Hirschi, R.; Walborn, N. R.; Yusof, N.

    2012-12-01

    We use contemporary evolutionary models for very massive stars (VMS) to assess whether the Eddington limit constrains the upper stellar mass limit. We also consider the interplay between mass and age for the wind properties and spectral morphology of VMS, with reference to the recently modified classification scheme for O2-3.5 If*/WN stars. Finally, the death of VMS in the local universe is considered in the context of pair instability supernovae.

  18. The solar nebula and the planetesimal disk

    NASA Technical Reports Server (NTRS)

    Ward, W. R.

    1984-01-01

    Two popular theories of solar system formation are briefly reviewed, then used as background in an examination of several new developments related to planetary ring dynamics that promise to have great impact on future research. Most important are the incorporation of accretion disk and density wave theories into cosmogonic theory. A successful integration of these mechanisms may significantly constrain evolutionary models of the early solar system and also provide new insight into the mechanisms themselves.

  19. The solar nebula and the planetesimal disk

    NASA Astrophysics Data System (ADS)

    Ward, W. R.

    Two popular theories of solar system formation are briefly reviewed, then used as background in an examination of several new developments related to planetary ring dynamics that promise to have great impact on future research. Most important are the incorporation of accretion disk and density wave theories into cosmogonic theory. A successful integration of these mechanisms may significantly constrain evolutionary models of the early solar system and also provide new insight into the mechanisms themselves.

  20. Fixation probabilities on superstars, revisited and revised.

    PubMed

    Jamieson-Lane, Alastair; Hauert, Christoph

    2015-10-07

    Population structures can be crucial determinants of evolutionary processes. For the Moran process on graphs certain structures suppress selective pressure, while others amplify it (Lieberman et al., 2005). Evolutionary amplifiers suppress random drift and enhance selection. Recently, some results for the most powerful known evolutionary amplifier, the superstar, have been invalidated by a counter example (Díaz et al., 2013). Here we correct the original proof and derive improved upper and lower bounds, which indicate that the fixation probability remains close to 1-1/(r(4)H) for population size N→∞ and structural parameter H⪢1. This correction resolves the differences between the two aforementioned papers. We also confirm that in the limit N,H→∞ superstars remain capable of eliminating random drift and hence of providing arbitrarily strong selective advantages to any beneficial mutation. In addition, we investigate the robustness of amplification in superstars and find that it appears to be a fragile phenomenon with respect to changes in the selection or mutation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Glimpsing over the event horizon: evolution of nuclear pores and envelope.

    PubMed

    Jékely, Gáspár

    2005-02-01

    The origin of eukaryotes from prokaryotic ancestors is one of the major evolutionary transitions in the history of life. The nucleus, a membrane bound compartment for confining the genome, is a central feature of eukaryotic cells and its origin also has to be a central feature of any workable theory that ventures to explain eukaryotic origins. Recent bioinformatic analyses of components of the nuclear pore complex (NPC), the nuclear envelope (NE), and the nuclear transport systems revealed exciting evolutionary connections (e.g., between NPC and coated vesicles) and provided a useful record of the phyletic distribution and history of NPC and NE components. These analyses allow us to refine theories on the origin and evolution of the nucleus, and consequently, of the eukaryotic cell.

  2. Darwinian demons, evolutionary complexity, and information maximization.

    PubMed

    Krakauer, David C

    2011-09-01

    Natural selection is shown to be an extended instance of a Maxwell's demon device. A demonic selection principle is introduced that states that organisms cannot exceed the complexity of their selective environment. Thermodynamic constraints on error repair impose a fundamental limit to the rate that information can be transferred from the environment (via the selective demon) to the genome. Evolved mechanisms of learning and inference can overcome this limitation, but remain subject to the same fundamental constraint, such that plastic behaviors cannot exceed the complexity of reward signals. A natural measure of evolutionary complexity is provided by mutual information, and niche construction activity--the organismal contribution to the construction of selection pressures--might in principle lead to its increase, bounded by thermodynamic free energy required for error correction.

  3. Wiener-Hammerstein system identification - an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Naitali, Abdessamad; Giri, Fouad

    2016-01-01

    The problem of identifying parametric Wiener-Hammerstein (WH) systems is addressed within the evolutionary optimisation context. Specifically, a hybrid culture identification method is developed that involves model structure adaptation using genetic recombination and model parameter learning using particle swarm optimisation. The method enjoys three interesting features: (1) the risk of premature convergence of model parameter estimates to local optima is significantly reduced, due to the constantly maintained diversity of model candidates; (2) no prior knowledge is needed except for upper bounds on the system structure indices; (3) the method is fully autonomous as no interaction is needed with the user during the optimum search process. The performances of the proposed method will be illustrated and compared to alternative methods using a well-established WH benchmark.

  4. An evolutionary model of cooperation, fairness and altruistic punishment in public good games.

    PubMed

    Hetzer, Moritz; Sornette, Didier

    2013-01-01

    We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment.

  5. An Evolutionary Model of Cooperation, Fairness and Altruistic Punishment in Public Good Games

    PubMed Central

    Hetzer, Moritz; Sornette, Didier

    2013-01-01

    We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment. PMID:24260101

  6. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change.

    PubMed

    Diamond, Sarah E

    2017-02-01

    How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness-related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta-analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate. © 2016 New York Academy of Sciences.

  7. Astrophysical Model Selection in Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  8. Bounds on the minimum number of recombination events in a sample history.

    PubMed Central

    Myers, Simon R; Griffiths, Robert C

    2003-01-01

    Recombination is an important evolutionary factor in many organisms, including humans, and understanding its effects is an important task facing geneticists. Detecting past recombination events is thus important; this article introduces statistics that give a lower bound on the number of recombination events in the history of a sample, on the basis of the patterns of variation in the sample DNA. Such lower bounds are appropriate, since many recombination events in the history are typically undetectable, so the true number of historical recombinations is unobtainable. The statistics can be calculated quickly by computer and improve upon the earlier bound of Hudson and Kaplan 1985. A method is developed to combine bounds on local regions in the data to produce more powerful improved bounds. The method is flexible to different models of recombination occurrence. The approach gives recombination event bounds between all pairs of sites, to help identify regions with more detectable recombinations, and these bounds can be viewed graphically. Under coalescent simulations, there is a substantial improvement over the earlier method (of up to a factor of 2) in the expected number of recombination events detected by one of the new minima, across a wide range of parameter values. The method is applied to data from a region within the lipoprotein lipase gene and the amount of detected recombination is substantially increased. Further, there is strong clustering of detected recombination events in an area near the center of the region. A program implementing these statistics, which was used for this article, is available from http://www.stats.ox.ac.uk/mathgen/programs.html. PMID:12586723

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas, E-mail: emb@kth.se, E-mail: juhg@kth.se, E-mail: schwetz@fysik.su.se

    We show that a positive signal in a dark matter (DM) direct detection experiment can be used to place a lower bound on the DM capture rate in the Sun, independent of the DM halo. For a given particle physics model and DM mass we obtain a lower bound on the capture rate independent of the local DM density, velocity distribution, galactic escape velocity, as well as the scattering cross section. We illustrate this lower bound on the capture rate by assuming that upcoming direct detection experiments will soon obtain a significant signal. When comparing the lower bound on themore » capture rate with limits on the high-energy neutrino flux from the Sun from neutrino telescopes, we can place upper limits on the branching fraction of DM annihilation channels leading to neutrinos. With current data from IceCube and Super-Kamiokande non-trivial limits can be obtained for spin-dependent interactions and direct annihilations into neutrinos. In some cases also annihilations into ττ or b b start getting constrained. For spin-independent interactions current constraints are weak, but they may become interesting for data from future neutrino telescopes.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas

    We show that a positive signal in a dark matter (DM) direct detection experiment can be used to place a lower bound on the DM capture rate in the Sun, independent of the DM halo. For a given particle physics model and DM mass we obtain a lower bound on the capture rate independent of the local DM density, velocity distribution, galactic escape velocity, as well as the scattering cross section. We illustrate this lower bound on the capture rate by assuming that upcoming direct detection experiments will soon obtain a significant signal. When comparing the lower bound on themore » capture rate with limits on the high-energy neutrino flux from the Sun from neutrino telescopes, we can place upper limits on the branching fraction of DM annihilation channels leading to neutrinos. With current data from IceCube and Super-Kamiokande non-trivial limits can be obtained for spin-dependent interactions and direct annihilations into neutrinos. In some cases also annihilations into ττ or bb start getting constrained. For spin-independent interactions current constraints are weak, but they may become interesting for data from future neutrino telescopes.« less

  11. Evolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Hutsemékers, D.; Nazé, Y.; Royer, P.; Lebouteiller, V.; Waelkens, C.

    2017-03-01

    Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Strömgren sphere. The exact formation process of this nebula and its precise relation to the star's evolution remain unknown. Methods: We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code. Results: The Hα image displays a bipolar or "8"-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured 1.2-1.3 and 0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, in Chile.

  12. Protein structure and evolution: are they constrained globally by a principle derived from information theory?

    PubMed

    Hatton, Leslie; Warr, Gregory

    2015-01-01

    That the physicochemical properties of amino acids constrain the structure, function and evolution of proteins is not in doubt. However, principles derived from information theory may also set bounds on the structure (and thus also the evolution) of proteins. Here we analyze the global properties of the full set of proteins in release 13-11 of the SwissProt database, showing by experimental test of predictions from information theory that their collective structure exhibits properties that are consistent with their being guided by a conservation principle. This principle (Conservation of Information) defines the global properties of systems composed of discrete components each of which is in turn assembled from discrete smaller pieces. In the system of proteins, each protein is a component, and each protein is assembled from amino acids. Central to this principle is the inter-relationship of the unique amino acid count and total length of a protein and its implications for both average protein length and occurrence of proteins with specific unique amino acid counts. The unique amino acid count is simply the number of distinct amino acids (including those that are post-translationally modified) that occur in a protein, and is independent of the number of times that the particular amino acid occurs in the sequence. Conservation of Information does not operate at the local level (it is independent of the physicochemical properties of the amino acids) where the influences of natural selection are manifest in the variety of protein structure and function that is well understood. Rather, this analysis implies that Conservation of Information would define the global bounds within which the whole system of proteins is constrained; thus it appears to be acting to constrain evolution at a level different from natural selection, a conclusion that appears counter-intuitive but is supported by the studies described herein.

  13. Engineering the evolution of self-organizing behaviors in swarm robotics: a case study.

    PubMed

    Trianni, Vito; Nolfi, Stefano

    2011-01-01

    Evolutionary robotics (ER) is a powerful approach for the automatic synthesis of robot controllers, as it requires little a priori knowledge about the problem to be solved in order to obtain good solutions. This is particularly true for collective and swarm robotics, in which the desired behavior of the group is an indirect result of the control and communication rules followed by each individual. However, the experimenter must make several arbitrary choices in setting up the evolutionary process, in order to define the correct selective pressures that can lead to the desired results. In some cases, only a deep understanding of the obtained results can point to the critical aspects that constrain the system, which can be later modified in order to re-engineer the evolutionary process towards better solutions. In this article, we discuss the problem of engineering the evolutionary machinery that can lead to the desired result in the swarm robotics context. We also present a case study about self-organizing synchronization in a swarm of robots, in which some arbitrarily chosen properties of the communication system hinder the scalability of the behavior to large groups. We show that by modifying the communication system, artificial evolution can synthesize behaviors that scale properly with the group size.

  14. Does sex speed up evolutionary rate and increase biodiversity?

    PubMed

    Melián, Carlos J; Alonso, David; Allesina, Stefano; Condit, Richard S; Etienne, Rampal S

    2012-01-01

    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  15. Evolution of sparsity and modularity in a model of protein allostery

    NASA Astrophysics Data System (ADS)

    Hemery, Mathieu; Rivoire, Olivier

    2015-04-01

    The sequence of a protein is not only constrained by its physical and biochemical properties under current selection, but also by features of its past evolutionary history. Understanding the extent and the form that these evolutionary constraints may take is important to interpret the information in protein sequences. To study this problem, we introduce a simple but physical model of protein evolution where selection targets allostery, the functional coupling of distal sites on protein surfaces. This model shows how the geometrical organization of couplings between amino acids within a protein structure can depend crucially on its evolutionary history. In particular, two scenarios are found to generate a spatial concentration of functional constraints: high mutation rates and fluctuating selective pressures. This second scenario offers a plausible explanation for the high tolerance of natural proteins to mutations and for the spatial organization of their least tolerant amino acids, as revealed by sequence analysis and mutagenesis experiments. It also implies a faculty to adapt to new selective pressures that is consistent with observations. The model illustrates how several independent functional modules may emerge within the same protein structure, depending on the nature of past environmental fluctuations. Our model thus relates the evolutionary history of proteins to the geometry of their functional constraints, with implications for decoding and engineering protein sequences.

  16. Structural analysis of the Gachsar sub-zone in central Alborz range; constrain for inversion tectonics followed by the range transverse faulting

    NASA Astrophysics Data System (ADS)

    Yassaghi, A.; Naeimi, A.

    2011-08-01

    Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.

  17. Path analysis of the genetic integration of traits in the sand cricket: a novel use of BLUPs.

    PubMed

    Roff, D A; Fairbairn, D J

    2011-09-01

    This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  18. Colonization and demographic expansion of freshwater fauna across the Hawaiian archipelago.

    PubMed

    Alda, F; Gagne, R B; Walter, R P; Hogan, J D; Moody, K N; Zink, F; McIntyre, P B; Gilliam, J F; Blum, M J

    2016-10-01

    It is widely accepted that insular terrestrial biodiversity progresses with island age because colonization and diversification proceed over time. Here, we assessed whether this principle extends to oceanic island streams. We examined rangewide mtDNA sequence variation in four stream-dwelling species across the Hawaiian archipelago to characterize the relationship between colonization and demographic expansion, and to determine whether either factor reflects island age. We found that colonization and demographic expansion are not related and that neither corresponds to island age. The snail Neritina granosa exhibited the oldest colonization time (~2.713 mya) and time since demographic expansion (~282 kya), likely reflecting a preference for lotic habitats most prevalent on young islands. Conversely, gobioid fishes (Awaous stamineus, Eleotris sandwicensis and Sicyopterus stimpsoni) colonized the archipelago only ~0.411-0.935 mya, suggesting ecological opportunities for colonization in this group were temporally constrained. These findings indicate that stream communities form across colonization windows, underscoring the importance of ecological opportunities in shaping island freshwater diversity. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  19. Consciousness, crosstalk, and the mereological fallacy: An evolutionary perspective

    NASA Astrophysics Data System (ADS)

    Wallace, Rodrick

    2012-12-01

    The cross-sectional decontextualization afflicting contemporary neuroscience - attributing to ‘the brain’ what is the province of the whole organism - is mirrored by an evolutionary decontextualization exceptionalizing consciousness. The living state is characterized by cognitive processes at all scales and levels of organization. Many can be associated with dual information sources that ‘speak’ a ‘language’ of behavior-in-context. Shifting global broadcasts analogous to consciousness, albeit far slower - wound healing, tumor control, immune function, gene expression, etc. - have emerged through repeated evolutionary exaptation of the crosstalk and noise inherent to all information transmission. These recruit ‘unconscious’ cognitive modules into tunable arrays as needed to meet threats and opportunities across multiple frames of reference. The development is straightforward, based on the powerful necessary conditions imposed by the asymptotic limit theorems of communication theory, in the same sense that the Central Limit Theorem constrains sums of stochastic variates. Recognition of information as a form of free energy instantiated by physical processes that consume free energy permits analogs to phase transition and nonequilibrium thermodynamic arguments, leading to ‘dynamic regression models’ useful for data analysis.

  20. Head shape evolution in Gymnophthalmidae: does habitat use constrain the evolution of cranial design in fossorial lizards?

    PubMed

    Barros, F C; Herrel, A; Kohlsdorf, T

    2011-11-01

    Habitat usage comprises interactions between ecological parameters and organismal capacities, and the selective pressures that ultimately determine the outcome of such processes in an evolutionary scale may be conflicting when the same morphological structure is recruited for different activities. Here, we investigate the roles of diet and locomotion in the evolution of cranial design in gymnophthalmid lizards and test the hypothesis that microhabitat use drives head shape evolution, particularly in head-first burrowers. Morphological factors were analysed in relation to continuous ecological indexes (prey hardness and substrate compactness) using conventional and phylogenetic approaches. Results suggest that the evolution of head morphology in Gymnophthalmidae was shaped under the influence of microhabitat use rather than diet: burrowers have shorter heads with lower rostral angulation, independently of the prey consumed. Food preferences appear to be relatively conserved throughout the phylogeny of the group, which may have permitted the extensive radiation of gymnophthalmids into fossorial microhabitats. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  1. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004

  2. Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagman, Michael L.; Winter, Frank; Chang, Emmanuel

    Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less

  3. Baryon-baryon interactions and spin-flavor symmetry from lattice quantum chromodynamics

    DOE PAGES

    Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; ...

    2017-12-28

    Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass ofmore » $$\\approx 806~\\tt{MeV}$$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of L\\"uscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$$N_c$$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $$NN~({^1}S_0)$$, $$NN~({^3}S_1)$$ and $$\\frac{1}{\\sqrt{2}}(\\Xi^0n+\\Xi^-p)~({^3}S_1)$$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $$\\Sigma^+ p~({^3}S_1)$$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.« less

  4. Stabilizing multicellularity through ratcheting

    PubMed Central

    Libby, Eric; Conlin, Peter L.; Kerr, Ben; Ratcliff, William C.

    2016-01-01

    The evolutionary transition to multicellularity probably began with the formation of simple undifferentiated cellular groups. Such groups evolve readily in diverse lineages of extant unicellular taxa, suggesting that there are few genetic barriers to this first key step. This may act as a double-edged sword: labile transitions between unicellular and multicellular states may facilitate the evolution of simple multicellularity, but reversion to a unicellular state may inhibit the evolution of increased complexity. In this paper, we examine how multicellular adaptations can act as evolutionary ‘ratchets’, limiting the potential for reversion to unicellularity. We consider a nascent multicellular lineage growing in an environment that varies between favouring multicellularity and favouring unicellularity. The first type of ratcheting mutations increase cell-level fitness in a multicellular context but are costly in a single-celled context, reducing the fitness of revertants. The second type of ratcheting mutations directly decrease the probability that a mutation will result in reversion (either as a pleiotropic consequence or via direct modification of switch rates). We show that both types of ratcheting mutations act to stabilize the multicellular state. We also identify synergistic effects between the two types of ratcheting mutations in which the presence of one creates the selective conditions favouring the other. Ratcheting mutations may play a key role in diverse evolutionary transitions in individuality, sustaining selection on the new higher-level organism by constraining evolutionary reversion. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431522

  5. Bounding the space of holographic CFTs with chaos

    DOE PAGES

    Perlmutter, Eric

    2016-10-13

    In this study, thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ L ≤ 2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ L = 2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge andmore » a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS 3 higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W ∞[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ L = 0. Independently, we show that such theories violate unitarity for |λ| > 2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.« less

  6. Information technologies for taking into account risks in business development programme

    NASA Astrophysics Data System (ADS)

    Kalach, A. V.; Khasianov, R. R.; Rossikhina, L. V.; Zybin, D. G.; Melnik, A. A.

    2018-05-01

    The paper describes the information technologies for taking into account risks in business development programme, which rely on the algorithm for assessment of programme project risks and the algorithm of programme forming with constrained financing of high-risk projects taken into account. A method of lower-bound estimate is suggested for subsets of solutions. The corresponding theorem and lemma and their proofs are given.

  7. One- and two-objective approaches to an area-constrained habitat reserve site selection problem

    Treesearch

    Stephanie Snyder; Charles ReVelle; Robert Haight

    2004-01-01

    We compare several ways to model a habitat reserve site selection problem in which an upper bound on the total area of the selected sites is included. The models are cast as optimization coverage models drawn from the location science literature. Classic covering problems typically include a constraint on the number of sites that can be selected. If potential reserve...

  8. Top ten models constrained by b {yields} s{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.

    1994-12-01

    The radiative decay b {yields} s{gamma} is examined in the Standard Model and in nine classes of models which contain physics beyond the Standard Model. The constraints which may be placed on these models from the recent results of the CLEO Collaboration on both inclusive and exclusive radiative B decays is summarized. Reasonable bounds are found for the parameters in some cases.

  9. 1991 Urey Prize Lecture: Physical evolution in the solar system - Present observations as a key to the past

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    1992-01-01

    The present evaluation of the use of new observational methods for exploring solar system evolutionary processes gives attention to illustrative cases from the constraining of near-earth asteroid sources and the discovery of main-belt asteroid fragments which indicate Vesta to be a source of basaltic achondrite meteorites. The coupling of observational constraints with numerical models clarifies cratering and collisional evolution for both main-belt and Trojan asteroids.

  10. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    DTIC Science & Technology

    2016-09-01

    to both genetic algorithms and evolution strategies to achieve these goals. The results of this research offer a promising new set of modified ...abs_all.jsp?arnumber=203904 [163] Z. Michalewicz, C. Z. Janikow, and J. B. Krawczyk, “A modified genetic algo- rithm for optimal control problems...Available: http://arc.aiaa.org/doi/abs/10.2514/ 2.7053 375 [166] N. Yokoyama and S. Suzuki, “ Modified genetic algorithm for constrained trajectory

  11. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  12. Fundamental Parameters of Nearby Young Stars

    NASA Astrophysics Data System (ADS)

    McCarthy, Kyle; Wilhelm, R. J.

    2013-06-01

    We present high resolution (R ~ 60,000) spectroscopic data of F and G members of the nearby, young associations AB Doradus and β Pictoris obtained with the Cross-Dispersed Echelle Spectrograph on the 2.7 meter telescope at the McDonald Observatory. Effective temperatures, log(g), [Fe/H], and microturbulent velocities are first estimated using the TGVIT code, then finely tuned using MOOG. Equivalent width (EW) measurements were made using TAME alongside a self-produced IDL routine to constrain EW accuracy and improve computed fundamental parameters. MOOG is also used to derive the chemical abundance of several elements including Mn which is known to be over abundant in planet hosting stars. Vsin(i) are also computed using a χ2 analysis of our observed data to Atlas9 model atmospheres passed through the SPECTRUM spectral synthesis code on lines which do not depend strongly on surface gravity. Due to the limited number of Fe II lines which govern the surface gravity fit in both TGVIT and MOOG, we implement another χ2 analysis of strongly log(g) dependent lines to ensure the values are correct. Coupling the surface gravities and temperatures derived in this study with the luminosities found in the Tycho-2 catalog, we estimate masses for each star and compare these masses to several evolutionary models to begin the process of constraining pre-main sequence evolutionary models.

  13. Little evidence for intralocus sexual conflict over the optimal intake of nutrients for life span and reproduction in the black field cricket Teleogryllus commodus

    PubMed Central

    Rapkin, James; Archer, C. Ruth; Grant, Charles E.; Jensen, Kim; House, Clarissa M.; Wilson, Alastair J.; Hunt, John

    2017-01-01

    Abstract There is often large divergence in the effects of key nutrients on life span (LS) and reproduction in the sexes, yet nutrient intake is regulated in the same way in males and females given dietary choice. This suggests that the sexes are constrained from feeding to their sex‐specific nutritional optima for these traits. Here, we examine the potential for intralocus sexual conflict (IASC) over optimal protein and carbohydrate intake for LS and reproduction to constrain the evolution of sex‐specific nutrient regulation in the field cricket, Teleogryllus commodus. We show clear sex differences in the effects of protein and carbohydrate intake on LS and reproduction and strong positive genetic correlations between the sexes for the regulated intake of these nutrients. However, the between‐sex additive genetic covariance matrix had very little effect on the predicted evolutionary response of nutrient regulation in the sexes. Thus, IASC appears unlikely to act as an evolutionary constraint on sex‐specific nutrient regulation in T. commodus. This finding is supported by clear sexual dimorphism in the regulated intake of these nutrients under dietary choice. However, nutrient regulation did not coincide with the nutritional optima for LS or reproduction in either sex, suggesting that IASC is not completely resolved in T. commodus. PMID:28640400

  14. Properties of LEGUS Clusters Obtained with Different Massive-Star Evolutionary Tracks

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Charlot, S.; Eldridge, J. J.

    We compute spectral libraries for populations of coeval stars using state-of-the-art massive-star evolutionary tracks that account for different astrophysics including rotation and close-binarity. Our synthetic spectra account for stellar and nebular contributions. We use our models to obtain E(B - V ), age, and mass for six clusters in spiral galaxy NGC 1566, which have ages of < 50 Myr and masses of > 5 x 104M⊙ according to standard models. NGC 1566 was observed from the NUV to the I-band as part of the imaging Treasury HST program LEGUS: Legacy Extragalactic UV Survey. We aim to establish i) if the models provide reasonable fits to the data, ii) how well the models and photometry are able to constrain the cluster properties, and iii) how different the properties obtained with different models are.

  15. The Evolutionary Roots of Human Decision Making

    PubMed Central

    Santos, Laurie R.; Rosati, Alexandra G.

    2015-01-01

    Humans exhibit a suite of biases when making economic decisions. We review recent research on the origins of human decision making by examining whether similar choice biases are seen in nonhuman primates, our closest phylogenetic relatives. We propose that comparative studies can provide insight into four major questions about the nature of human choice biases that cannot be addressed by studies of our species alone. First, research with other primates can address the evolution of human choice biases and identify shared versus human-unique tendencies in decision making. Second, primate studies can constrain hypotheses about the psychological mechanisms underlying such biases. Third, comparisons of closely related species can identify when distinct mechanisms underlie related biases by examining evolutionary dissociations in choice strategies. Finally, comparative work can provide insight into the biological rationality of economically irrational preferences. PMID:25559115

  16. Diversification of Genes Encoding Granule-Bound Starch Synthase in Monocots and Dicots Is Marked by Multiple Genome-Wide Duplication Events

    PubMed Central

    Qiu, Wen-Ming; Li, Jing; Zhou, Hui; Zhang, Qiong; Guo, Wenwu; Zhu, Tingting; Peng, Junhua; Sun, Fengjie; Li, Shaohua; Korban, Schuyler S.; Han, Yuepeng

    2012-01-01

    Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS), which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA) to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots. PMID:22291904

  17. Thermodynamic constraint on the depth of the global tropospheric circulation.

    PubMed

    Thompson, David W J; Bony, Sandrine; Li, Ying

    2017-08-01

    The troposphere is the region of the atmosphere characterized by low static stability, vigorous diabatic mixing, and widespread condensational heating in clouds. Previous research has argued that in the tropics, the upper bound on tropospheric mixing and clouds is constrained by the rapid decrease with height of the saturation water vapor pressure and hence radiative cooling by water vapor in clear-sky regions. Here the authors contend that the same basic physics play a key role in constraining the vertical structure of tropospheric mixing, tropopause temperature, and cloud-top temperature throughout the globe. It is argued that radiative cooling by water vapor plays an important role in governing the depth and amplitude of large-scale dynamics at extratropical latitudes.

  18. Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Chen, Linhan; Conlon, Joseph P.

    2018-06-01

    If axion-like particles (ALPs) exist, photons can convert to ALPs on passage through regions containing magnetic fields. The magnetised intracluster medium of large galaxy clusters provides a region that is highly efficient at ALP-photon conversion. X-ray observations of Active Galactic Nuclei (AGNs) located within galaxy clusters can be used to search for and constrain ALPs, as photon-ALP conversion would lead to energy-dependent quasi-sinusoidal modulations in the X-ray spectrum of an AGN. We use Chandra observations of the central AGN of the Perseus Cluster, NGC1275, to place bounds on massive ALPs up to ma ˜ 10-11eV, extending previous work that used this dataset to constrain massless ALPs.

  19. Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.

    PubMed

    Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei

    2015-08-01

    In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.

  20. Fermion masses in SO(10)

    NASA Astrophysics Data System (ADS)

    Jungman, Gerard

    1992-11-01

    Yukawa-coupling-constant unification together with the known fermion masses is used to constrain SO(10) models. We consider the case of one (heavy) generation, with the tree-level relation mb=mτ, calculating the limits on the intermediate scales due to the known limits on fermion masses. This analysis extends previous analyses which addressed only the simplest symmetry-breaking schemes. In the case where the low-energy model is the standard model with one Higgs doublet, there are very strong constraints due to the known limits on the top-quark mass and the τ-neutrino mass. The two-Higgs-doublet case is less constrained, though we can make progress in constraining this model also. We identify those parameters to which the viability of the model is most sensitive. We also discuss the ``triviality'' bounds on mt obtained from the analysis of the Yukawa renormalization-group equations. Finally we address the role of a speculative constraint on the τ-neutrino mass, arising from the cosmological implications of anomalous B+L violation in the early Universe.

  1. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    PubMed

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  2. Tests of gravity with future space-based experiments

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy

    2018-03-01

    Future space-based tests of relativistic gravitation—laser ranging to Phobos, accelerometers in orbit, and optical networks surrounding Earth—will constrain the theory of gravity with unprecedented precision by testing the inverse-square law, the strong and weak equivalence principles, and the deflection and time delay of light by massive bodies. In this paper, we estimate the bounds that could be obtained on alternative gravity theories that use screening mechanisms to suppress deviations from general relativity in the Solar System: chameleon, symmetron, and Galileon models. We find that space-based tests of the parametrized post-Newtonian parameter γ will constrain chameleon and symmetron theories to new levels, and that tests of the inverse-square law using laser ranging to Phobos will provide the most stringent constraints on Galileon theories to date. We end by discussing the potential for constraining these theories using upcoming tests of the weak equivalence principle, and conclude that further theoretical modeling is required in order to fully utilize the data.

  3. On size-constrained minimum s–t cut problems and size-constrained dense subgraph problems

    DOE PAGES

    Chen, Wenbin; Samatova, Nagiza F.; Stallmann, Matthias F.; ...

    2015-10-30

    In some application cases, the solutions of combinatorial optimization problems on graphs should satisfy an additional vertex size constraint. In this paper, we consider size-constrained minimum s–t cut problems and size-constrained dense subgraph problems. We introduce the minimum s–t cut with at-least-k vertices problem, the minimum s–t cut with at-most-k vertices problem, and the minimum s–t cut with exactly k vertices problem. We prove that they are NP-complete. Thus, they are not polynomially solvable unless P = NP. On the other hand, we also study the densest at-least-k-subgraph problem (DalkS) and the densest at-most-k-subgraph problem (DamkS) introduced by Andersen andmore » Chellapilla [1]. We present a polynomial time algorithm for DalkS when k is bounded by some constant c. We also present two approximation algorithms for DamkS. In conclusion, the first approximation algorithm for DamkS has an approximation ratio of n-1/k-1, where n is the number of vertices in the input graph. The second approximation algorithm for DamkS has an approximation ratio of O (n δ), for some δ < 1/3.« less

  4. White dwarfs and revelations

    NASA Astrophysics Data System (ADS)

    Saltas, Ippocratis D.; Sawicki, Ignacy; Lopes, Ilidio

    2018-05-01

    We use the most recent, complete and independent measurements of masses and radii of white dwarfs in binaries to bound the class of non-trivial modified gravity theories, viable after GW170817/GRB170817, using its effect on the mass-radius relation of the stars. We show that the uncertainty in the latest data is sufficiently small that residual evolutionary effects, most notably the effect of core composition, finite temperature and envelope structure, must now accounted for if correct conclusions about the nature of gravity are to be made. We model corrections resulting from finite temperature and envelopes to a base Hamada-Salpeter cold equation of state and derive consistent bounds on the possible modifications of gravity in the stars' interiors, finding that the parameter quantifying the strength of the modification Y< 0.14 at 95% confidence, an improvement of a factor of three with respect to previous bounds. Finally, our analysis reveals some fundamental degeneracies between the theory of gravity and the precise chemical makeup of white dwarfs.

  5. Shaping communicative colour signals over evolutionary time

    PubMed Central

    Oyola Morales, José R.; Vital-García, Cuauhcihuatl; Hews, Diana K.; Martins, Emília P.

    2016-01-01

    Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus) represents an ancient loss of the belly patch by S. siniferus, and the second evolutionary shift, bounded by S. undulatus and S. virgatus, represents a more recent loss of blue belly patch by S. virgatus. Conspicuousness measurements suggest that the species with the recent loss (S. virgatus) is the least conspicuous. Results for two other species (S. siniferus and S. merriami) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch (S. siniferus) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours. PMID:28018661

  6. Shaping communicative colour signals over evolutionary time.

    PubMed

    Ossip-Drahos, Alison G; Oyola Morales, José R; Vital-García, Cuauhcihuatl; Zúñiga-Vega, J Jaime; Hews, Diana K; Martins, Emília P

    2016-11-01

    Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus ) represents an ancient loss of the belly patch by S. siniferus , and the second evolutionary shift, bounded by S. undulatus and S. virgatus , represents a more recent loss of blue belly patch by S. virgatus . Conspicuousness measurements suggest that the species with the recent loss ( S. virgatus ) is the least conspicuous. Results for two other species ( S. siniferus and S. merriami ) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch ( S. siniferus ) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours.

  7. Adaptationism Fails to Resolve Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Cirkovic, M. M.; Dragicevic, I.; Beric-Bjedov, T.

    2005-06-01

    One of the most interesting problems in the nascent discipline of astrobiology is more than half-century old Fermi's paradox: why, considering extraordinary young age of Earth and the Solar System in the Galactic context, don't we perceive much older intelligent communities or signposts of their activity? In spite of a vigorous research activity in recent years, especially bolstered by successes of astrobiology in finding extrasolar planets and extremophiles, this problem (also known as the "Great Silence" or "astrosociological" paradox) remains as open as ever. In a previous paper, we have discussed a particular evolutionary solution suggested by Karl Schroeder based on the currently dominant evolutionary doctrine of adaptationism. Here, we extend that discussion with emphasis on the problems such a solution is bound to face, and conclude that it is ultimately quite unlikely.

  8. Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles.

    PubMed

    Massol, François; Débarre, Florence

    2015-07-01

    Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  9. Theoretical Analysis of Local Search and Simple Evolutionary Algorithms for the Generalized Travelling Salesperson Problem.

    PubMed

    Pourhassan, Mojgan; Neumann, Frank

    2018-06-22

    The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which meta-heuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a Cluster-Based approach and a Node-Based approach, have been proposed by Hu and Raidl (2008) for solving this problem. In this paper, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the Node-Based approach solves the hard instance of the Cluster-Based approach presented in Corus et al. (2016) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the Node-Based approach for a class of Euclidean instances.

  10. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians.

    PubMed

    He, Yong-Han; Lu, Xiang; Tian, Jiao-Yang; Yan, Dong-Jing; Li, Yu-Chun; Lin, Rong; Perry, Benjamin; Chen, Xiao-Qiong; Yu, Qin; Cai, Wang-Wei; Kong, Qing-Peng

    2016-10-01

    The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Analysis of Extreme Star Formation Environments in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Nayak, Omnarayani

    2018-01-01

    My thesis is on three extreme star forming environments in the Large Magellanic Cloud: 30 Doradus, N159, and N79. These three regions are at different evolutionary stage of forming stars. N79 is at a very young stage, just starting its star formation activity. N159 is currently actively forming several massive YSOs. And 30 Doradus has already passed it peak star formation, and several protostars are no longer shrouded by gas and dust, and are starting to be more visible in the optical wavelengths. I analyze the CO molecular gas clouds with ALMA in 30 Doradus, N159, and N79. I identify all massive YSOs within the ALMA footprint of all three regions. My thesis is on relating the star formation activity in 30 Doradus, N159, and N79 to the high density gas in which these protostars form. I find that not all massive young stellar objects are associated with CO gas, higher mass clumps tend to form higher mass stars, and lower mass clumps tend to not be gravitationally bound however the larger clouds are bound. I use ancillary SOFIA data and Magellan FIRE data to place constraints on the outflow rate from the massive protostars, constrain the temperature of the gas, determine the spectral type of the young stellar objects, and estimate the extinction. Looking at the interplay between dense molecular gas and the newly forming stars in a stellar nursery will shed light on how these stars formed: filamentary collision, monolithic collapse, or competitive accretion. The Large Magellanic Cloud has been the subject of star formation studies for decades due to its proximity to the Milky Way (50 kpc), a nearly face-on orientation, and a low metallicity (0.5 solar) similar to that of galaxies at the peak of star formation in the universe (z~2). Thus, my thesis probes the chemical and physical conditions necessary for massive star formation in an environment more typical of the peak of star formation in the universe.

  12. Constraining unparticle physics with cosmology and astrophysics.

    PubMed

    Davoudiasl, Hooman

    2007-10-05

    It has recently been suggested that a scale-invariant "unparticle" sector with a nontrivial infrared fixed point may couple to the standard model (SM) via higher-dimensional operators. The weakness of such interactions hides the unparticle phenomena at low energies. We demonstrate how cosmology and astrophysics can place significant bounds on the strength of unparticle-SM interactions. We also discuss the possibility of a having a non-negligible unparticle relic density today.

  13. Understanding International Environmental Security: A Strategic Military Perspective

    DTIC Science & Technology

    2000-11-01

    remain one of the more fragile organisms on the planet, bound to a relatively constrained set of environmental conditions of landscape, temperature...series of interwoven phenomena including, but not limited to, deforestation, 30 burning of fossil fuels, and industrial pollution. Assessing each of...burning of fossil fuels is the cause. Figure 3-7 shows the trend in carbon dioxide con- centration over the past 300 years with an expanded view since

  14. First ultraviolet observations of the transition regions of X-ray bright solar-type stars in the Pleiades

    NASA Technical Reports Server (NTRS)

    Caillault, J.-P.; Vilhu, O.; Linsky, J. L.

    1990-01-01

    Results are reported from A UV study of the transition regions of two X-ray-bright solar-type stars from the Pleiades, in an attempt to extend the main sequence age baseline for the transition-region activity-age relation over more than two orders of magnitude. However, no emission lines were detected from either star; the upper limits to the fluxes are consistent with previously determined saturation levels, but do not help to further constrain evolutionary models.

  15. Satellite power system (SPS) concept definition study. Volume 3: Experimental verification definition

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    An evolutionary Satellite Power Systems development plan was prepared. Planning analysis was directed toward the evolution of a scenario that met the stated objectives, was technically possible and economically attractive, and took into account constraining considerations, such as requirements for very large scale end-to-end demonstration in a compressed time frame, the relative cost/technical merits of ground testing versus space testing, and the need for large mass flow capability to low Earth orbit and geosynchronous orbit at reasonable cost per pound.

  16. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Forastieri, Francesco; Lattanzi, Massimiliano; Mangano, Gianpiero; Mirizzi, Alessandro; Natoli, Paolo; Saviano, Ninetta

    2017-07-01

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with MX ll MW), and characterized by a gauge coupling gX, have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) ms < 0.82 eV or ms < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength GX to be < 2.8 (2.0) × 1010 GF from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with MX ~ 0.1 MeV and relatively large coupling gX~ 10-1, previously indicated as a possible solution to the small scale dark matter problem.

  17. ON THE RARITY OF X-RAY BINARIES WITH NAKED HELIUM DONORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    The paucity of known high-mass X-ray binaries (HMXBs) with naked He donor stars (hereafter He star) in the Galaxy has been noted over the years as a surprising fact, given the significant number of Galactic HMXBs containing H-rich donors, which are expected to be their progenitors. This contrast has further sharpened in light of recent observations uncovering a preponderance of HMXBs hosting loosely bound Be donors orbiting neutron stars (NSs), which would be expected to naturally evolve into He-HMXBs through dynamical mass transfer onto the NS and a common-envelope (CE) phase. Hence, reconciling the large population of Be-HMXBs with themore » observation of only one He-HMXB can help constrain the dynamics of CE physics. Here, we use detailed stellar structure and evolution models and show that binary mergers of HMXBs during CE events must be common in order to resolve the tension between these observed populations. We find that, quantitatively, this scenario remains consistent with the typically adopted energy parameterization of CE evolution, yielding expected populations which are not at odds with current observations. However, future observations which better constrain the underlying population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE ejection.« less

  18. Sneutrinos as mixed inflaton and curvaton

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Takahashi, Tomo; Yamada, Toshifumi

    2018-06-01

    We investigate a scenario where the supersymmetric partners of two right-handed neutrinos (sneutrinos) work as mixed inflaton and curvaton, motivated by the fact that the curvaton contribution to scalar perturbations can reduce the tensor-to-scalar ratio r so that chaotic inflation models with a quadratic potential are made consistent with the experimental bound on r. After confirming that the scenario evades the current bounds on r and the scalar perturbation spectral index ns, we make a prediction on the local non-Gaussianity in bispectrum, fNL, and one in trispectrum, τNL. Remarkably, since the sneutrino decay widths are determined by the neutrino Dirac Yukawa coupling, which can be estimated from the measured active neutrino mass differences in the seesaw model, our scenario has a strong predictive power about local non-Gaussianities, as they heavily depend on the inflaton and curvaton decay rates. Using this fact, we can constrain the sneutrino mass from the experimental bounds on ns, r and fNL.

  19. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks.

    PubMed

    Yan, Zheng; Wang, Jun

    2014-03-01

    This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.

  20. Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases.

    PubMed

    Kellosalo, Juho; Kajander, Tommi; Honkanen, Riina; Goldman, Adrian

    2013-02-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that enhance the survival of plants, protozoans and prokaryotes in energy constraining stress conditions. These proteins use pyrophosphate, a waste product of cellular metabolism, as an energy source for sodium or proton pumping. To study the structure and function of these enzymes we have crystallized two membrane-bound pyrophosphatases recombinantly produced in Saccharomyces cerevisae: the sodium pumping enzyme of Thermotoga maritima (TmPPase) and the proton pumping enzyme of Pyrobaculum aerophilum (PaPPase). Extensive crystal optimization has allowed us to grow crystals of TmPPase that diffract to a resolution of 2.6 Å. The decisive step in this optimization was in-column detergent exchange during the two-step purification procedure. Dodecyl maltoside was used for high temperature solubilization of TmPPase and then exchanged to a series of different detergents. After extensive screening, the new detergent, octyl glucose neopentyl glycol, was found to be the optimal for TmPPase but not PaPPase.

  1. A robust adaptive observer for a class of singular nonlinear uncertain systems

    NASA Astrophysics Data System (ADS)

    Arefinia, Elaheh; Talebi, Heidar Ali; Doustmohammadi, Ali

    2017-05-01

    This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.

  2. Augury of darkness: the low-mass dark Z' portal

    DOE PAGES

    Alves, Alexandre; Arcadi, Giorgio; Mambrini, Yann; ...

    2017-04-28

    Dirac fermion dark matter models with heavy Z' mediators are subject to stringent constraints from spin-independent direct searches and from LHC bounds, cornering them to live near the Z' resonance. Such constraints can be relaxed, however, by turning off the vector coupling to Standard Model fermions, thus weakening direct detection bounds, or by resorting to light Z' masses, below the Z pole, to escape heavy resonance searches at the LHC. In this work we investigate both cases, as well as the applicability of our findings to Majorana dark matter. We derive collider bounds for light Z' gauge bosons using themore » CL S method, spin-dependent scattering limits, as well as the spin-independent scattering rate arising from the evolution of couplings between the energy scale of the mediator mass and the nuclear energy scale, and indirect detection limits. In conclusion, we show that such scenarios are still rather constrained by data, and that near resonance they could accommodate the gamma-ray GeV excess in the Galactic center.« less

  3. Boundedness and almost Periodicity in Time of Solutions of Evolutionary Variational Inequalities

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.

    1983-04-01

    In this paper existence theorems are obtained for the solutions of abstract parabolic variational inequalities, which are bounded with respect to time (in the Stepanov and L^\\infty norms). The regularity and almost periodicity properties of such solutions are studied. Theorems are also established concerning their solvability in spaces of Besicovitch almost periodic functions. The majority of the results are obtained without any compactness assumptions. Bibliography: 30 titles.

  4. Formal language constrained path problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, C.; Jacob, R.; Marathe, M.

    1997-07-08

    In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvablemore » efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.« less

  5. The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates

    PubMed Central

    Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A.; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe

    2014-01-01

    Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells preferentially transmit or establish new infections upon reactivation. PMID:24699231

  6. The dynamics of superclusters - Initial determination of the mass density of the universe at large scales

    NASA Technical Reports Server (NTRS)

    Ford, H. C.; Ciardullo, R.; Harms, R. J.; Bartko, F.

    1981-01-01

    The radial velocities of cluster members of two rich, large superclusters have been measured in order to probe the supercluster mass densities, and simple evolutionary models have been computed to place limits upon the mass density within each supercluster. These superclusters represent true physical associations of size of about 100 Mpc seen presently at an early stage of evolution. One supercluster is weakly bound, the other probably barely bound, but possibly marginally unbound. Gravity has noticeably slowed the Hubble expansion of both superclusters. Galaxy surface-density counts and the density enhancement of Abell clusters within each supercluster were used to derive the ratio of mass densities of the superclusters to the mean field mass density. The results strongly exclude a closed universe.

  7. Fewer invited talks by women in evolutionary biology symposia.

    PubMed

    Schroeder, J; Dugdale, H L; Radersma, R; Hinsch, M; Buehler, D M; Saul, J; Porter, L; Liker, A; De Cauwer, I; Johnson, P J; Santure, A W; Griffin, A S; Bolund, E; Ross, L; Webb, T J; Feulner, P G D; Winney, I; Szulkin, M; Komdeur, J; Versteegh, M A; Hemelrijk, C K; Svensson, E I; Edwards, H; Karlsson, M; West, S A; Barrett, E L B; Richardson, D S; van den Brink, V; Wimpenny, J H; Ellwood, S A; Rees, M; Matson, K D; Charmantier, A; Dos Remedios, N; Schneider, N A; Teplitsky, C; Laurance, W F; Butlin, R K; Horrocks, N P C

    2013-09-01

    Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  8. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  9. Climate constrains the evolutionary history and biodiversity of crocodylians.

    PubMed

    Mannion, Philip D; Benson, Roger B J; Carrano, Matthew T; Tennant, Jonathan P; Judd, Jack; Butler, Richard J

    2015-09-24

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A 'modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions.

  10. Genomic signatures of evolutionary transitions from solitary to group living

    PubMed Central

    Kapheim, Karen M.; Pan, Hailin; Li, Cai; Salzberg, Steven L.; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M.; Hudson, Matthew E.; Venkat, Aarti; Fischman, Brielle J.; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D.; Kemp, William P.; Bosch, Jordi; Waterhouse, Robert M.; Zdobnov, Evgeny M.; Stolle, Eckart; Kraus, F. Bernhard; Helbing, Sophie; Moritz, Robin F. A.; Glastad, Karl M.; Hunt, Brendan G.; Goodisman, Michael A. D.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D.; Barribeau, Seth M.; Johnson, Reed M.; Massey, Jonathan H.; Southey, Bruce R.; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F.; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J. Spencer; Hanrahan, Shawn J.; Kocher, Sarah D.; Wang, Jun; Robinson, Gene E.; Zhang, Guojie

    2017-01-01

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. PMID:25977371

  11. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living.

    PubMed

    Kapheim, Karen M; Pan, Hailin; Li, Cai; Salzberg, Steven L; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M; Hudson, Matthew E; Venkat, Aarti; Fischman, Brielle J; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D; Kemp, William P; Bosch, Jordi; Waterhouse, Robert M; Zdobnov, Evgeny M; Stolle, Eckart; Kraus, F Bernhard; Helbing, Sophie; Moritz, Robin F A; Glastad, Karl M; Hunt, Brendan G; Goodisman, Michael A D; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D; Barribeau, Seth M; Johnson, Reed M; Massey, Jonathan H; Southey, Bruce R; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J Spencer; Hanrahan, Shawn J; Kocher, Sarah D; Wang, Jun; Robinson, Gene E; Zhang, Guojie

    2015-06-05

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. Copyright © 2015, American Association for the Advancement of Science.

  12. Discovery of a Transiting Adolescent Sub-Neptune Exoplanet in the Cas-Tau Association With K2

    NASA Astrophysics Data System (ADS)

    Mamajek, Eric; David, Trevor; Bieryla, Allyson; Bristow, Makennah; Ciardi, David; Cody, Ann Marie; Crossfield, Ian; Fulton, Benjamin; Jasmine Gonzales, Erica; Hillenbrand, Lynne; Hirsch, Lea; Howard, Andrew; Isaacson, Howard; Latham, David W.; Petigura, Erik; Rebull, Luisa; Schlieder, Joshua; Stauffer, John; Vanderburg, Andrew; Vasisht, Gautam

    2018-01-01

    The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets belonging to coeval stellar populations, young or old, are particularly useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or photo-evaporation, among other mechanisms. Here we report the serendipitous discovery of a transiting sub-Neptune from K2 photometry of a K-type star that is a new candidate member of the nearby young Cas-Tau association. The size of the planet (3.0 +/- 0.5 Earth radii) and its age (~50-90 Myr) make it an intriguing test case for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.

  13. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.

    PubMed

    Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J

    2014-04-02

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.

  14. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches.

    PubMed

    Martinez-Morales, Juan R

    2016-07-01

    Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae.

    PubMed

    Ellis, Tom J; Field, David L

    2016-06-01

    Angiosperms display remarkable diversity in flower colour, implying that transitions between pigmentation phenotypes must have been common. Despite progress in understanding transitions between anthocyanin (blue, purple, pink or red) and unpigmented (white) flowers, little is known about the evolutionary patterns of flower-colour transitions in lineages with both yellow and anthocyanin-pigmented flowers. This study investigates the relative rates of evolutionary transitions between different combinations of yellow- and anthocyanin-pigmentation phenotypes in the tribe Antirrhineae. We surveyed taxonomic literature for data on anthocyanin and yellow floral pigmentation for 369 species across the tribe. We then reconstructed the phylogeny of 169 taxa and used phylogenetic comparative methods to estimate transition rates among pigmentation phenotypes across the phylogeny. In contrast to previous studies we found a bias towards transitions involving a gain in pigmentation, although transitions to phenotypes with both anthocyanin and yellow taxa are nevertheless extremely rare. Despite the dominance of yellow and anthocyanin-pigmented taxa, transitions between these phenotypes are constrained to move through a white intermediate stage, whereas transitions to double-pigmentation are very rare. The most abundant transitions are between anthocyanin-pigmented and unpigmented flowers, and similarly the most abundant polymorphic taxa were those with anthocyanin-pigmented and unpigmented flowers. Our findings show that pigment evolution is limited by the presence of other floral pigments. This interaction between anthocyanin and yellow pigments constrains the breadth of potential floral diversity observed in nature. In particular, they suggest that selection has repeatedly acted to promote the spread of single-pigmented phenotypes across the Antirrhineae phylogeny. Furthermore, the correlation between transition rates and polymorphism suggests that the forces causing and maintaining variance in the short term reflect evolutionary processes on longer time scales. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Graviton propagation within the context of the D-material universe.

    PubMed

    Elghozi, Thomas; Mavromatos, Nick E; Sakellariadou, Mairi

    2017-01-01

    Motivated by the recent breakthrough of the detection of Gravitational Waves (GW) from coalescent black holes by the aLIGO interferometers, we study the propagation of GW in the D-material universe , which we have recently shown to be compatible with large-scale structure and inflationary phenomenology. The medium of D-particles induces an effective mass for the graviton, as a consequence of the formation of recoil-velocity field condensates due to the underlying Born-Infeld dynamics. There is a competing effect, due to a super-luminal refractive index, as a result of the gravitational energy of D-particles acting as a dark-matter component, with which propagating gravitons interact. We examine conditions for the condensate under which the latter effect is sub-leading. We argue that if quantum fluctuations of the recoil velocity are relatively strong, which can happen in the current era of the universe, then the condensate, and hence the induced mass of the graviton, can be several orders of magnitude larger than the magnitude of the cosmological constant today. Hence, we constrain the graviton mass using aLIGO and pulsar-timing observations (which give the most stringent bounds at present). In such a sub-luminal graviton case, there is also a gravitational Cherenkov effect for ordinary high-energy cosmic matter, which is further constrained by means of ultra-high-energy cosmic ray observations. Assuming cosmic rays of extragalactic origin, the bounds on the quantum condensate strength, based on the gravitational Cherenkov effect, are of the same order as those from aLIGO measurements, in contrast to the case where a galactic origin of the cosmic rays is assumed, in which case the corresponding bounds are much weaker.

  17. Discovery of wide low and very low-mass binary systems using Virtual Observatory tools

    NASA Astrophysics Data System (ADS)

    Gálvez-Ortiz, M. C.; Solano, E.; Lodieu, N.; Aberasturi, M.

    2017-04-01

    The frequency of multiple systems and their properties are key constraints of stellar formation and evolution. Formation mechanisms of very low-mass (VLM) objects are still under considerable debate, and an accurate assessment of their multiplicity and orbital properties is essential for constraining current theoretical models. Taking advantage of the virtual observatory capabilities, we looked for comoving low and VLM binary (or multiple) systems using the Large Area Survey of the UKIDSS LAS DR10, SDSS DR9 and the 2MASS Catalogues. Other catalogues (WISE, GLIMPSE, SuperCosmos, etc.) were used to derive the physical parameters of the systems. We report the identification of 36 low and VLM (˜M0-L0 spectral types) candidates to binary/multiple system (separations between 200 and 92 000 au), whose physical association is confirmed through common proper motion, distance and low probability of chance alignment. This new system list notably increases the previous sampling in their mass-separation parameter space (˜100). We have also found 50 low-mass objects that we can classify as ˜L0-T2 according to their photometric information. Only one of these objects presents a common proper motion high-mass companion. Although we could not constrain the age of the majority of the candidates, probably most of them are still bound except four that may be under disruption processes. We suggest that our sample could be divided in two populations: one tightly bound wide VLM systems that are expected to last more than 10 Gyr, and other formed by weak bound wide VLM systems that will dissipate within a few Gyr.

  18. Solution NMR Refinement of a Metal Ion Bound Protein Using Metal Ion Inclusive Restrained Molecular Dynamics Methods

    PubMed Central

    Chakravorty, Dhruva K.; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J.; Giedroc, David P.; Merz, Kenneth M.

    2013-01-01

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational dynamics in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies. PMID:23609042

  19. Aperiodic Robust Model Predictive Control for Constrained Continuous-Time Nonlinear Systems: An Event-Triggered Approach.

    PubMed

    Liu, Changxin; Gao, Jian; Li, Huiping; Xu, Demin

    2018-05-01

    The event-triggered control is a promising solution to cyber-physical systems, such as networked control systems, multiagent systems, and large-scale intelligent systems. In this paper, we propose an event-triggered model predictive control (MPC) scheme for constrained continuous-time nonlinear systems with bounded disturbances. First, a time-varying tightened state constraint is computed to achieve robust constraint satisfaction, and an event-triggered scheduling strategy is designed in the framework of dual-mode MPC. Second, the sufficient conditions for ensuring feasibility and closed-loop robust stability are developed, respectively. We show that robust stability can be ensured and communication load can be reduced with the proposed MPC algorithm. Finally, numerical simulations and comparison studies are performed to verify the theoretical results.

  20. An efficient interior-point algorithm with new non-monotone line search filter method for nonlinear constrained programming

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Liu, Xinggao; Zhang, Zeyin

    2017-02-01

    An efficient primal-dual interior-point algorithm using a new non-monotone line search filter method is presented for nonlinear constrained programming, which is widely applied in engineering optimization. The new non-monotone line search technique is introduced to lead to relaxed step acceptance conditions and improved convergence performance. It can also avoid the choice of the upper bound on the memory, which brings obvious disadvantages to traditional techniques. Under mild assumptions, the global convergence of the new non-monotone line search filter method is analysed, and fast local convergence is ensured by second order corrections. The proposed algorithm is applied to the classical alkylation process optimization problem and the results illustrate its effectiveness. Some comprehensive comparisons to existing methods are also presented.

  1. Robust model predictive control for constrained continuous-time nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  2. Unitarity and the three flavor neutrino mixing matrix

    DOE PAGES

    Parke, Stephen; Ross-Lonergan, Mark

    2016-06-14

    Unitarity is a fundamental property of any theory required to ensure we work in a theoretically consistent framework. In comparison with the quark sector, experimental tests of unitarity for the 3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority of our information on the neutrino mixing angles originates from v - e and v μ disappearance experiments, with the assumption of unitarity being invoked to constrain the remaining elements. New physics can invalidate this assumption for the 3x3 subset and thus modify our precision measurements. We also perform a reanalysis to see how globalmore » knowledge is altered when one refits oscillation results without assuming unitarity, and present 3σ ranges for allowed U PMNS elements consistent with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity triangles, with the closure of the v - e and v μ triangle being constrained to be ≤0.03, while the remaining triangles are significantly less constrained to be ≤ 0.1 - 0.2. Similarly for the row and column normalization, we find their deviation from unity is constrained to be ≤ 0.2 - 0.4, for four out of six such normalizations, while for the v μ and v e row normalization the deviations are constrained to be ≤0.07, all at the 3σCL. Additionally, we emphasize that there is significant room for new low energy physics, especially in the v τ sector which very few current experiments constrain directly.« less

  3. Tidal Disruptions of Main Sequence Stars: Inferences from the Composition of the Fallback Material

    NASA Astrophysics Data System (ADS)

    Gallegos, Monica; Law-Smith, Jamie; Ramírez-Ruiz, Enrico

    2018-01-01

    We study black holes within galactic nuclei by analyzing the motions of stars swarming around them. When the conditions are right we can observe and analyze characteristics of the black hole’s destructive power. In this paper we analyze the case when a star lurks close enough to these gravity giants to be ripped apart. After disruption, material that is bound to the supermassive black hole accretes onto it and creates a powerful flare. The standard light curve of these flares is classically described by a t-5/3 power law in time. In this paper we adopt an analytical method to calculate the fallback rate and use Modules for Experiments in Stellar Astrophysics (MESA) to study the disruption of stars with masses between 0.8-3 M⊙ at various evolutionary stages. We move beyond the analysis of the light curve and peer into the interiors of the disrupted stars by studying the compositional features of the fallback material. With this work we can begin to constrain the nature of the stars that are tidally disrupted. We find that most stars develop nitrogen (14N) enhancements with carbon (12C) and oxygen (16O) depletion relative to solar abundance and find that these features are more pronounced for higher mass stars. We also find that these features become prominent only after the time of maximum fallback rate, tpeak, and are observed to appear at earlier times for stars of increasing mass. This work provides a clear spectral method to help classify the transient events we observe at the centers of galaxies.

  4. Pareto-Optimal Estimates of California Precipitation Change

    NASA Astrophysics Data System (ADS)

    Langenbrunner, Baird; Neelin, J. David

    2017-12-01

    In seeking constraints on global climate model projections under global warming, one commonly finds that different subsets of models perform well under different objective functions, and these trade-offs are difficult to weigh. Here a multiobjective approach is applied to a large set of subensembles generated from the Climate Model Intercomparison Project phase 5 ensemble. We use observations and reanalyses to constrain tropical Pacific sea surface temperatures, upper level zonal winds in the midlatitude Pacific, and California precipitation. An evolutionary algorithm identifies the set of Pareto-optimal subensembles across these three measures, and these subensembles are used to constrain end-of-century California wet season precipitation change. This methodology narrows the range of projections throughout California, increasing confidence in estimates of positive mean precipitation change. Finally, we show how this technique complements and generalizes emergent constraint approaches for restricting uncertainty in end-of-century projections within multimodel ensembles using multiple criteria for observational constraints.

  5. Constrained vertebrate evolution by pleiotropic genes.

    PubMed

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song; Shimai, Kotaro; Lu, Tsai-Ming; Li, Fang; Fujimoto, Satoko; Ishikawa, Masato; Liu, Shiping; Sasagawa, Yohei; Zhang, Guojie; Kuratani, Shigeru; Yu, Jr-Kai; Kusakabe, Takehiro G; Khaitovich, Philipp; Irie, Naoki

    2017-11-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.

  6. Tempo and mode of climatic niche evolution in Primates.

    PubMed

    Duran, Andressa; Pie, Marcio R

    2015-09-01

    Climatic niches have increasingly become a nexus in our understanding of a variety of ecological and evolutionary phenomena, from species distributions to latitudinal diversity gradients. Despite the increasing availability of comprehensive datasets on species ranges, phylogenetic histories, and georeferenced environmental conditions, studies on the evolution of climate niches have only begun to understand how niches evolve over evolutionary timescales. Here, using primates as a model system, we integrate recently developed phylogenetic comparative methods, species distribution patterns, and climatic data to explore primate climatic niche evolution, both among clades and over time. In general, we found that simple, constant-rate models provide a poor representation of how climatic niches evolve. For instance, there have been shifts in the rate of climatic niche evolution in several independent clades, particularly in response to the increasingly cooler climates of the past 10 My. Interestingly, rate accelerations greatly outnumbered rate decelerations. These results highlight the importance of considering more realistic evolutionary models that allow for the detection of heterogeneity in the tempo and mode of climatic niche evolution, as well as to infer possible constraining factors for species distributions in geographical space. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. Causal evidence between monsoon and evolution of rhizomyine rodents

    PubMed Central

    López-Antoñanzas, Raquel; Knoll, Fabien; Wan, Shiming; Flynn, Lawrence J.

    2015-01-01

    The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence. PMID:25759260

  8. Evolution and behavioural responses to human-induced rapid environmental change

    PubMed Central

    Sih, Andrew; Ferrari, Maud C O; Harris, David J

    2011-01-01

    Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals’ responses to their environment and provide suggestion for future work. PMID:25567979

  9. Evolution and behavioural responses to human-induced rapid environmental change.

    PubMed

    Sih, Andrew; Ferrari, Maud C O; Harris, David J

    2011-03-01

    Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals' responses to their environment and provide suggestion for future work.

  10. Causal evidence between monsoon and evolution of rhizomyine rodents.

    PubMed

    López-Antoñanzas, Raquel; Knoll, Fabien; Wan, Shiming; Flynn, Lawrence J

    2015-03-11

    The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence.

  11. Cyclic Peptides Arising by Evolutionary Parallelism via Asparaginyl-Endopeptidase–Mediated Biosynthesis[C][W

    PubMed Central

    Mylne, Joshua S.; Chan, Lai Yue; Chanson, Aurelie H.; Daly, Norelle L.; Schaefer, Hanno; Bailey, Timothy L.; Nguyencong, Philip; Cascales, Laura; Craik, David J.

    2012-01-01

    The cyclic miniprotein Momordica cochinchinensis Trypsin Inhibitor II (MCoTI-II) (34 amino acids) is a potent trypsin inhibitor (TI) and a favored scaffold for drug design. We have cloned the corresponding genes and determined that each precursor protein contains a tandem series of cyclic TIs terminating with the more commonly known, and potentially ancestral, acyclic TI. Expression of the precursor protein in Arabidopsis thaliana showed that production of the cyclic TIs, but not the terminal acyclic TI, depends on asparaginyl endopeptidase (AEP) for maturation. The nature of their repetitive sequences and the almost identical structures of emerging TIs suggest these cyclic peptides evolved by internal gene amplification associated with recruitment of AEP for processing between domain repeats. This is the third example of similar AEP-mediated processing of a class of cyclic peptides from unrelated precursor proteins in phylogenetically distant plant families. This suggests that production of cyclic peptides in angiosperms has evolved in parallel using AEP as a constraining evolutionary channel. We believe this is evolutionary evidence that, in addition to its known roles in proteolysis, AEP is especially suited to performing protein cyclization. PMID:22822203

  12. Sixty-Five Million Years of Change in Temperature and Topography Explain Evolutionary History in Eastern North American Plethodontid Salamanders.

    PubMed

    Barnes, Richard; Clark, Adam Thomas

    2017-07-01

    For many taxa and systems, species richness peaks at midelevations. One potential explanation for this pattern is that large-scale changes in climate and geography have, over evolutionary time, selected for traits that are favored under conditions found in contemporary midelevation regions. To test this hypothesis, we use records of historical temperature and topographic changes over the past 65 Myr to construct a general simulation model of plethodontid salamander evolution in eastern North America. We then explore possible mechanisms constraining species to midelevation bands by using the model to predict plethodontid evolutionary history and contemporary geographic distributions. Our results show that models that incorporate both temperature and topographic changes are better able to predict these patterns, suggesting that both processes may have played an important role in driving plethodontid evolution in the region. Additionally, our model (whose annotated source code is included as a supplement) represents a proof of concept to encourage future work that takes advantage of recent advances in computing power to combine models of ecology, evolution, and earth history to better explain the abundance and distribution of species over time.

  13. Analyzing endocrine system conservation and evolution.

    PubMed

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Evidence of an evolutionary hourglass pattern in herbivory-induced transcriptomic responses.

    PubMed

    Durrant, Matthew; Boyer, Justin; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing

    2017-08-01

    Herbivory-induced defenses are specific and activated in plants when elicitors, frequently found in the herbivores' oral secretions, are introduced into wounds during attack. While complex signaling cascades are known to be involved, it remains largely unclear how natural selection has shaped the evolution of these induced defenses. We analyzed herbivory-induced transcriptomic responses in wild tobacco, Nicotiana attenuata, using a phylotranscriptomic approach that measures the origin and sequence divergence of herbivory-induced genes. Highly conserved and evolutionarily ancient genes of primary metabolism were activated at intermediate time points (2-6 h) after elicitation, while less constrained and young genes associated with defense signaling and biosynthesis of specialized metabolites were activated at early (before 2 h) and late (after 6 h) stages of the induced response, respectively - a pattern resembling the evolutionary hourglass pattern observed during embryogenesis in animals and the developmental process in plants and fungi. The hourglass patterns found in herbivory-induced defense responses and developmental process are both likely to be a result of signaling modularization and differential evolutionary constraints on the modules involved in the signaling cascade. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Does aquatic foraging impact head shape evolution in snakes?

    PubMed Central

    Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-01-01

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. PMID:27581887

  16. An evolutionary model of bounded rationality and intelligence.

    PubMed

    Brennan, Thomas J; Lo, Andrew W

    2012-01-01

    Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia-it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that arise from natural selection. The key to understanding which types of behavior are more likely to survive is how behavior affects reproductive success in a given population's environment. From this perspective, intelligence is naturally defined as behavior that increases the probability of reproductive success, and bounds on rationality are determined by physiological and environmental constraints.

  17. An Evolutionary Model of Bounded Rationality and Intelligence

    PubMed Central

    Brennan, Thomas J.; Lo, Andrew W.

    2012-01-01

    Background Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia–it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. Methods and Findings Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. Conclusions Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that arise from natural selection. The key to understanding which types of behavior are more likely to survive is how behavior affects reproductive success in a given population’s environment. From this perspective, intelligence is naturally defined as behavior that increases the probability of reproductive success, and bounds on rationality are determined by physiological and environmental constraints. PMID:23185602

  18. Little evidence for intralocus sexual conflict over the optimal intake of nutrients for life span and reproduction in the black field cricket Teleogryllus commodus.

    PubMed

    Rapkin, James; Archer, C Ruth; Grant, Charles E; Jensen, Kim; House, Clarissa M; Wilson, Alastair J; Hunt, John

    2017-09-01

    There is often large divergence in the effects of key nutrients on life span (LS) and reproduction in the sexes, yet nutrient intake is regulated in the same way in males and females given dietary choice. This suggests that the sexes are constrained from feeding to their sex-specific nutritional optima for these traits. Here, we examine the potential for intralocus sexual conflict (IASC) over optimal protein and carbohydrate intake for LS and reproduction to constrain the evolution of sex-specific nutrient regulation in the field cricket, Teleogryllus commodus. We show clear sex differences in the effects of protein and carbohydrate intake on LS and reproduction and strong positive genetic correlations between the sexes for the regulated intake of these nutrients. However, the between-sex additive genetic covariance matrix had very little effect on the predicted evolutionary response of nutrient regulation in the sexes. Thus, IASC appears unlikely to act as an evolutionary constraint on sex-specific nutrient regulation in T. commodus. This finding is supported by clear sexual dimorphism in the regulated intake of these nutrients under dietary choice. However, nutrient regulation did not coincide with the nutritional optima for LS or reproduction in either sex, suggesting that IASC is not completely resolved in T. commodus. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  19. Optimum oil production planning using infeasibility driven evolutionary algorithm.

    PubMed

    Singh, Hemant Kumar; Ray, Tapabrata; Sarker, Ruhul

    2013-01-01

    In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.

  20. Risk of herbivore attack and heritability of ontogenetic trajectories in plant defense.

    PubMed

    Ochoa-López, Sofía; Rebollo, Roberto; Barton, Kasey E; Fornoni, Juan; Boege, Karina

    2018-06-01

    Ontogeny has been identified as a main source of variation in the expression of plant phenotypes. However, there is limited information on the mechanisms behind the evolution of ontogenetic trajectories in plant defense. We explored if risk of attack, herbivore damage, heritability, and phenotypic plasticity can promote or constrain the evolutionary potential of ontogenetic trajectories in three defensive traits. We exposed 20 genotypes of Turnera velutina to contrasting environments (shadehouse and field plots), and measured the cyanogenic potential, trichome density, and sugar content in extrafloral nectar in seedlings, juveniles and reproductive plants. We also assessed risk of attack through oviposition preferences, and quantified herbivore damage in the field. We estimated genetic variance, broad sense heritability, and evolvability of the defensive traits at each ontogenetic stage, and of the ontogenetic trajectories themselves. For plants growing in the shadehouse, we found genetic variation and broad sense heritability for cyanogenic potential in seedlings, and for trichome density at all ontogenetic stages. Genetic variation and heritability of ontogenetic trajectories was detected for trichome density only. These genetic pre-requisites for evolution, however, were not detected in the field, suggesting that environmental variation and phenotypic plastic responses mask any heritable variation. Finally, ontogenetic trajectories were found to be plastic, differing between shadehouse and field conditions for the same genetic families. Overall, we provide support for the idea that changes in herbivore pressure can be a mechanism behind the evolution of ontogenetic trajectories. This evolutionary potential, however, can be constrained by phenotypic plasticity expressed in heterogeneous environments.

  1. Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome

    PubMed Central

    Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend

    2007-01-01

    A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995

  2. Spacecraft Constrained Maneuver Planning Using Positively Invariant Constraint Admissible Sets (Postprint)

    DTIC Science & Technology

    2013-08-14

    Connectivity Graph; Graph Search; Bounded Disturbances; Linear Time-Varying (LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17...the linearization of the relative motion model given by the Hill- Clohessy - Wiltshire (CWH) equations is used [14]. A. Nonlinear equations of motion...equations can be used to describe the motion of the debris. B. Linearized HCW equations in discrete-time For δr << R, the linearized Hill- Clohessy

  3. Evolutionary optimization methods for accelerator design

    NASA Astrophysics Data System (ADS)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.

  4. A 750 GeV portal: LHC phenomenology and dark matter candidates

    DOE PAGES

    D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo

    2016-05-16

    We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less

  5. A 750 GeV portal: LHC phenomenology and dark matter candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo

    We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less

  6. Truncated Gaussians as tolerance sets

    NASA Technical Reports Server (NTRS)

    Cozman, Fabio; Krotkov, Eric

    1994-01-01

    This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.

  7. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    PubMed

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism among terrestrial animals. Numerous studies have made Nephilidae, particularly Nephila, a model lineage in evolutionary research. However, a poorly understood phylogeny of this lineage, relying only on morphology, has prevented thorough evolutionary syntheses of nephilid biology. We here use three nuclear and five mitochondrial genes for 28 out of 40 nephilid species to provide a more robust nephilid phylogeny and infer clade ages in a fossil-calibrated Bayesian framework. We complement the molecular analyses with total evidence analysis including morphology. All analyses find strong support for nephilid monophyly and exclusivity and the monophyly of the genera Herennia and Clitaetra. The inferred phylogenetic structure within Nephilidae is novel and conflicts with morphological phylogeny and traditional taxonomy. Nephilengys species fall into two clades, one with Australasian species (true Nephilengys) as sister to Herennia, and another with Afrotropical species (Nephilingis Kuntner new genus) as sister to a clade containing Clitaetra plus most currently described Nephila. Surprisingly, Nephila is also diphyletic, with true Nephila containing N. pilipes+N. constricta, and the second clade with all other species sister to Clitaetra; this "Nephila" clade is further split into an Australasian clade that also contains the South American N. sexpunctata and the Eurasian N. clavata, and an African clade that also contains the Panamerican N. clavipes. An approximately unbiased test constraining the monophyly of Nephilengys, Nephila, and Nephilinae (Nephila, Nephilengys, Herennia), respectively, rejected Nephilengys monophyly, but not that of Nephila and Nephilinae. Further data are therefore necessary to robustly test these two new, but inconclusive findings, and also to further test the precise placement of Nephilidae within the Araneoidea. For divergence date estimation we set the minimum bound for the stems of Nephilidae at 40 Ma and of Nephila at 16 Ma to accommodate Palaeonephila from Baltic amber and Dominican Nephila species, respectively. We also calibrated and dated the phylogeny under three different interpretations of the enigmatic 165 Ma fossil Nephila jurassica, which we suspected based on morphology to be misplaced. We found that by treating N. jurassica as stem Nephila or nephilid the inferred clade ages were vastly older, and the mitochondrial substitution rates much slower than expected from other empirical spider data. This suggests that N. jurassica is not a Nephila nor a nephilid, but possibly a stem orbicularian. The estimated nephilid ancestral age (40-60 Ma) rejects a Gondwanan origin of the family as most of the southern continents were already split at that time. The origin of the family is equally likely to be African, Asian, or Australasian, with a global biogeographic history dominated by dispersal events. A reinterpretation of web architecture evolution suggests that a partially arboricolous, asymmetric orb web with a retreat, as exemplified by both groups of "Nephilengys", is plesiomorphic in Nephilidae, that this architecture was modified into specialized arboricolous webs in Herennia and independently in Clitaetra, and that the web became aerial, gigantic, and golden independently in both "Nephila" groups. The new topology questions previously hypothesized gradual evolution of female size from small to large, and rather suggests a more mosaic evolutionary pattern with independent female size increases from medium to giant in both "Nephila" clades, and two reversals back to medium and small; combined with male size evolution, this pattern will help detect gross evolutionary events leading to extreme sexual size dimorphism, and its morphological and behavioral correlates. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Constraining the volatile fraction of planets from transit observations

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2016-06-01

    Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of gas, the measured mass and radius imply at least 20% of volatiles in the interior. For planets at larger distances, we show that the observation of transiting planets at different evolutionary ages can be used to set statistical constraints on the volatile content of planets. Conclusions: These results can be used in the context of future missions like PLATO to better understand the internal composition of planets, and based on this, their formation process and potential habitability.

  9. Thermodynamics and evolution.

    PubMed

    Demetrius, L

    2000-09-07

    The science of thermodynamics is concerned with understanding the properties of inanimate matter in so far as they are determined by changes in temperature. The Second Law asserts that in irreversible processes there is a uni-directional increase in thermodynamic entropy, a measure of the degree of uncertainty in the thermal energy state of a randomly chosen particle in the aggregate. The science of evolution is concerned with understanding the properties of populations of living matter in so far as they are regulated by changes in generation time. Directionality theory, a mathematical model of the evolutionary process, establishes that in populations subject to bounded growth constraints, there is a uni-directional increase in evolutionary entropy, a measure of the degree of uncertainty in the age of the immediate ancestor of a randomly chosen newborn. This article reviews the mathematical basis of directionality theory and analyses the relation between directionality theory and statistical thermodynamics. We exploit an analytic relation between temperature, and generation time, to show that the directionality principle for evolutionary entropy is a non-equilibrium extension of the principle of a uni-directional increase of thermodynamic entropy. The analytic relation between these directionality principles is consistent with the hypothesis of the equivalence of fundamental laws as one moves up the hierarchy, from a molecular ensemble where the thermodynamic laws apply, to a population of replicating entities (molecules, cells, higher organisms), where evolutionary principles prevail. Copyright 2000 Academic Press.

  10. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    PubMed

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard

    2008-01-10

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched inmore » bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early-embryonic transcriptional regulation, and a significant proportion may be nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not unambiguously more constrained evolutionarily than the immediate flanking DNA, even in more highly bound and presumably functional regions, indicating that comparative DNA sequence analysis is limited in its ability to identify functional transcription factor targets.« less

  12. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  13. Sub-TeV quintuplet minimal dark matter with left-right symmetry

    NASA Astrophysics Data System (ADS)

    Agarwalla, Sanjib Kumar; Ghosh, Kirtiman; Patra, Ayon

    2018-05-01

    A detailed study of a fermionic quintuplet dark matter in a left-right symmetric scenario is performed in this article. The minimal quintuplet dark matter model is highly constrained from the WMAP dark matter relic density (RD) data. To elevate this constraint, an extra singlet scalar is introduced. It introduces a host of new annihilation and co-annihilation channels for the dark matter, allowing even sub-TeV masses. The phenomenology of this singlet scalar is studied in detail in the context of the Large Hadron Collider (LHC) experiment. The production and decay of this singlet scalar at the LHC give rise to interesting resonant di-Higgs or diphoton final states. We also constrain the RD allowed parameter space of this model in light of the ATLAS bounds on the resonant di-Higgs and diphoton cross-sections.

  14. Sensitivity to neutrino decay with atmospheric neutrinos at the INO-ICAL detector

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya; Goswami, Srubabati; Gupta, Chandan; Lakshmi, S. M.; Thakore, Tarak

    2018-02-01

    Sensitivity of the magnetized Iron Calorimeter (ICAL) detector at the proposed India-based Neutrino Observatory (INO) to invisible decay of the mass eigenstate ν3 using atmospheric neutrinos is explored. A full three-generation analysis including Earth matter effects is performed in a framework with both decay and oscillations. The wide energy range and baselines offered by atmospheric neutrinos are shown to be excellent for constraining the ν3 lifetime. We find that with an exposure of 500 kton -yr the ICAL atmospheric experiment could constrain the ν3 lifetime to τ3/m3>1.51 ×10-10 s /eV at the 90% C.L. This is 2 orders of magnitude tighter than the bound from MINOS. The effect of invisible decay on the precision measurement of θ23 and |Δ m322| is also studied.

  15. Probability-based constrained MPC for structured uncertain systems with state and random input delays

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Li, Dewei; Xi, Yugeng

    2013-07-01

    This article is concerned with probability-based constrained model predictive control (MPC) for systems with both structured uncertainties and time delays, where a random input delay and multiple fixed state delays are included. The process of input delay is governed by a discrete-time finite-state Markov chain. By invoking an appropriate augmented state, the system is transformed into a standard structured uncertain time-delay Markov jump linear system (MJLS). For the resulting system, a multi-step feedback control law is utilised to minimise an upper bound on the expected value of performance objective. The proposed design has been proved to stabilise the closed-loop system in the mean square sense and to guarantee constraints on control inputs and system states. Finally, a numerical example is given to illustrate the proposed results.

  16. Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Rui; Feng, Chang; Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn

    We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to usemore » the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.« less

  17. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  18. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2003-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  19. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, premain sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we developed much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measured disk accretion rates in these systems; and constructed detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  20. Power-Aware Intrusion Detection in Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Şen, Sevil; Clark, John A.; Tapiador, Juan E.

    Mobile ad hoc networks (MANETs) are a highly promising new form of networking. However they are more vulnerable to attacks than wired networks. In addition, conventional intrusion detection systems (IDS) are ineffective and inefficient for highly dynamic and resource-constrained environments. Achieving an effective operational MANET requires tradeoffs to be made between functional and non-functional criteria. In this paper we show how Genetic Programming (GP) together with a Multi-Objective Evolutionary Algorithm (MOEA) can be used to synthesise intrusion detection programs that make optimal tradeoffs between security criteria and the power they consume.

  1. Studies of Circumstellar Disk Evolution

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  2. Antibody Epitope Analysis to Investigate Folded Structure, Allosteric Conformation, and Evolutionary Lineage of Proteins.

    PubMed

    Wong, Sienna; Jin, J-P

    2017-01-01

    Study of folded structure of proteins provides insights into their biological functions, conformational dynamics and molecular evolution. Current methods of elucidating folded structure of proteins are laborious, low-throughput, and constrained by various limitations. Arising from these methods is the need for a sensitive, quantitative, rapid and high-throughput method not only analysing the folded structure of proteins, but also to monitor dynamic changes under physiological or experimental conditions. In this focused review, we outline the foundation and limitations of current protein structure-determination methods prior to discussing the advantages of an emerging antibody epitope analysis for applications in structural, conformational and evolutionary studies of proteins. We discuss the application of this method using representative examples in monitoring allosteric conformation of regulatory proteins and the determination of the evolutionary lineage of related proteins and protein isoforms. The versatility of the method described herein is validated by the ability to modulate a variety of assay parameters to meet the needs of the user in order to monitor protein conformation. Furthermore, the assay has been used to clarify the lineage of troponin isoforms beyond what has been depicted by sequence homology alone, demonstrating the nonlinear evolutionary relationship between primary structure and tertiary structure of proteins. The antibody epitope analysis method is a highly adaptable technique of protein conformation elucidation, which can be easily applied without the need for specialized equipment or technical expertise. When applied in a systematic and strategic manner, this method has the potential to reveal novel and biomedically meaningful information for structure-function relationship and evolutionary lineage of proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Transactions of the Eleventh Army Conference on Applied Mathematics and Computing

    DTIC Science & Technology

    1994-03-01

    Hu, S., Laksmikantham, V. and Rama Mohana Rao , M., Nonlinear Variation of Parameters formula for Integro-differential equations of Volterra type, J. M...454-457, 1986 [31 N.K. Sinha and G.P. Rao , Identification of continuous-time systems, Boston: Kluwer Academic, 1991. [41 J. Ezzine and C.D. Johnson...Theory, pages 536-548, 1989. [15] J.A. O’Sullivan, P. Moulin, and D.L. Snyder. Cramer- rao bounds for constrained spectrum estimation with application

  4. Model-independent constraints on dark matter annihilation in dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-05-01

    We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics. As an illustration, we analyze gamma-ray data from the Fermi Large Area Telescope to constrain a variety of nonstandard dark matter models, several of which have not previously been studied in the context of dwarf galaxy searches.

  5. Computation of diverging sums based on a finite number of terms

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Norris, S.; Pelphrey, R.; Su, Q.; Grobe, R.

    2017-10-01

    We propose a numerical method that permits us to compute the sum of a diverging series from only the first N terms by generalizing the traditional Borel technique. The method is rather robust and can be used to recover the ground state energy from the diverging perturbation theory for quantum field theoretical systems that are spatially constrained. Surprisingly, even the corresponding eigenvectors can be generated despite the intrinsic non-perturbative nature of bound state problems.

  6. Northwest Laboratory for Integrated Systems, University of Washington, Semiannual Technical Report Number 1, July 1-November 8, 1991

    DTIC Science & Technology

    1991-11-08

    only simple bounds on delays but also relate the delays in linear inequalities so that tradeoffs are apparent. We model circuits as communicating...set of linear inequalities constraining the variables. These relations provide synthesis tools with information about tradeoffs between circuit delays...available to express the original circuit as a graph of elementary gates and then cover the graph’s fanout-free trees with collections of three-input

  7. Uncoordinated MAC for Adaptive Multi-Beam Directional Networks: Analysis and Evaluation

    DTIC Science & Technology

    2016-04-10

    transmission times, hence traditional CSMA approaches are not appropriate. We first present our model of these multi-beamforming capa- bilities and the...resulting wireless interference. We then derive an upper bound on multi-access performance for an idealized version of this physical layer. We then present... transmissions and receptions in a mobile ad-hoc network has in practice led to very constrained topologies. As mentioned, one approach for system design is to de

  8. Fermion dipole moment and holography

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela; Rahman, Rakibur

    2015-12-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  9. Uncertainty in a Markov state model with missing states and rates: Application to a room temperature kinetic model obtained using high temperature molecular dynamics.

    PubMed

    Chatterjee, Abhijit; Bhattacharya, Swati

    2015-09-21

    Several studies in the past have generated Markov State Models (MSMs), i.e., kinetic models, of biomolecular systems by post-analyzing long standard molecular dynamics (MD) calculations at the temperature of interest and focusing on the maximally ergodic subset of states. Questions related to goodness of these models, namely, importance of the missing states and kinetic pathways, and the time for which the kinetic model is valid, are generally left unanswered. We show that similar questions arise when we generate a room-temperature MSM (denoted MSM-A) for solvated alanine dipeptide using state-constrained MD calculations at higher temperatures and Arrhenius relation — the main advantage of such a procedure being a speed-up of several thousand times over standard MD-based MSM building procedures. Bounds for rate constants calculated using probability theory from state-constrained MD at room temperature help validate MSM-A. However, bounds for pathways possibly missing in MSM-A show that alternate kinetic models exist that produce the same dynamical behaviour at short time scales as MSM-A but diverge later. Even in the worst case scenario, MSM-A is found to be valid longer than the time required to generate it. Concepts introduced here can be straightforwardly extended to other MSM building techniques.

  10. Performance of the strongly constrained and appropriately normed density functional for solid-state materials

    DOE PAGES

    Isaacs, Eric B.; Wolverton, Chris

    2018-06-22

    Constructed to satisfy 17 known exact constraints for a semilocal density functional, the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient-approximation functional has shown early promise for accurately describing the electronic structure of molecules and solids. One open question is how well SCAN predicts the formation energy, a key quantity for describing the thermodynamic stability of solid-state compounds. To answer this question, we perform an extensive benchmark of SCAN by computing the formation energies for a diverse group of nearly 1000 crystalline compounds for which experimental values are known. Due to an enhanced exchange interaction in the covalent bonding regime, SCANmore » substantially decreases the formation energy errors for strongly bound compounds, by approximately 50% to 110 meV/atom, as compared to the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE). However, for intermetallic compounds, SCAN performs moderately worse than PBE with an increase in formation energy error of approximately 20%, stemming from SCAN's distinct behavior in the weak bonding regime. The formation energy errors can be further reduced via elemental chemical potential fitting. We find that SCAN leads to significantly more accurate predicted crystal volumes, moderately enhanced magnetism, and mildly improved band gaps as compared to PBE. Altogether, SCAN represents a significant improvement in accurately describing the thermodynamics of strongly bound compounds.« less

  11. Robust synergetic control design under inputs and states constraints

    NASA Astrophysics Data System (ADS)

    Rastegar, Saeid; Araújo, Rui; Sadati, Jalil

    2018-03-01

    In this paper, a novel robust-constrained control methodology for discrete-time linear parameter-varying (DT-LPV) systems is proposed based on a synergetic control theory (SCT) approach. It is shown that in DT-LPV systems without uncertainty, and for any unmeasured bounded additive disturbance, the proposed controller accomplishes the goal of stabilising the system by asymptotically driving the error of the controlled variable to a bounded set containing the origin and then maintaining it there. Moreover, given an uncertain DT-LPV system jointly subject to unmeasured and constrained additive disturbances, and constraints in states, input commands and reference signals (set points), then invariant set theory is used to find an appropriate polyhedral robust invariant region in which the proposed control framework is guaranteed to robustly stabilise the closed-loop system. Furthermore, this is achieved even for the case of varying non-zero control set points in such uncertain DT-LPV systems. The controller is characterised to have a simple structure leading to an easy implementation, and a non-complex design process. The effectiveness of the proposed method and the implications of the controller design on feasibility and closed-loop performance are demonstrated through application examples on the temperature control on a continuous-stirred tank reactor plant, on the control of a real-coupled DC motor plant, and on an open-loop unstable system example.

  12. Performance of the strongly constrained and appropriately normed density functional for solid-state materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Eric B.; Wolverton, Chris

    Constructed to satisfy 17 known exact constraints for a semilocal density functional, the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient-approximation functional has shown early promise for accurately describing the electronic structure of molecules and solids. One open question is how well SCAN predicts the formation energy, a key quantity for describing the thermodynamic stability of solid-state compounds. To answer this question, we perform an extensive benchmark of SCAN by computing the formation energies for a diverse group of nearly 1000 crystalline compounds for which experimental values are known. Due to an enhanced exchange interaction in the covalent bonding regime, SCANmore » substantially decreases the formation energy errors for strongly bound compounds, by approximately 50% to 110 meV/atom, as compared to the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE). However, for intermetallic compounds, SCAN performs moderately worse than PBE with an increase in formation energy error of approximately 20%, stemming from SCAN's distinct behavior in the weak bonding regime. The formation energy errors can be further reduced via elemental chemical potential fitting. We find that SCAN leads to significantly more accurate predicted crystal volumes, moderately enhanced magnetism, and mildly improved band gaps as compared to PBE. Altogether, SCAN represents a significant improvement in accurately describing the thermodynamics of strongly bound compounds.« less

  13. Constraining the phantom braneworld model from cosmic structure sizes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Kousvos, Stefanos R.

    2017-11-01

    We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.

  14. The transcension hypothesis: Sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI

    NASA Astrophysics Data System (ADS)

    Smart, John M.

    2012-09-01

    The emerging science of evolutionary developmental ("evo devo") biology can aid us in thinking about our universe as both an evolutionary system, where most processes are unpredictable and creative, and a developmental system, where a special few processes are predictable and constrained to produce far-future-specific emergent order, just as we see in the common developmental processes in two stars of an identical population type, or in two genetically identical twins in biology. The transcension hypothesis proposes that a universal process of evolutionary development guides all sufficiently advanced civilizations into what may be called "inner space," a computationally optimal domain of increasingly dense, productive, miniaturized, and efficient scales of space, time, energy, and matter, and eventually, to a black-hole-like destination. Transcension as a developmental destiny might also contribute to the solution to the Fermi paradox, the question of why we have not seen evidence of or received beacons from intelligent civilizations. A few potential evolutionary, developmental, and information theoretic reasons, mechanisms, and models for constrained transcension of advanced intelligence are briefly considered. In particular, we introduce arguments that black holes may be a developmental destiny and standard attractor for all higher intelligence, as they appear to some to be ideal computing, learning, forward time travel, energy harvesting, civilization merger, natural selection, and universe replication devices. In the transcension hypothesis, simpler civilizations that succeed in resisting transcension by staying in outer (normal) space would be developmental failures, which are statistically very rare late in the life cycle of any biological developing system. If transcension is a developmental process, we may expect brief broadcasts or subtle forms of galactic engineering to occur in small portions of a few galaxies, the handiwork of young and immature civilizations, but constrained transcension should be by far the norm for all mature civilizations. The transcension hypothesis has significant and testable implications for our current and future METI and SETI agendas. If all universal intelligence eventually transcends to black-hole-like environments, after which some form of merger and selection occurs, and if two-way messaging (a send-receive cycle) is severely limited by the great distances between neighboring and rapidly transcending civilizations, then sending one-way METI or probes prior to transcension becomes the only real communication option. But one-way messaging or probes may provably reduce the evolutionary diversity in all civilizations receiving the message, as they would then arrive at their local transcensions in a much more homogenous fashion. If true, an ethical injunction against one-way messaging or probes might emerge in the morality and sustainability systems of all sufficiently advanced civilizations, an argument known as the Zoo hypothesis in Fermi paradox literature, if all higher intelligences are subject to an evolutionary attractor to maximize their local diversity, and a developmental attractor to merge and advance universal intelligence. In any such environment, the evolutionary value of sending any interstellar message or probe may simply not be worth the cost, if transcension is an inevitable, accelerative, and testable developmental process, one that eventually will be discovered and quantitatively described by future physics. Fortunately, transcension processes may be measurable today even without good physical theory, and radio and optical SETI may each provide empirical tests. If transcension is a universal developmental constraint, then without exception all early and low-power electromagnetic leakage signals (radar, radio, television), and later, optical evidence of the exoplanets and their atmospheres should reliably cease as each civilization enters its own technological singularities (emergence of postbiological intelligence and life forms) and recognizes that they are on an optimal and accelerating path to a black-hole-like environment. Furthermore, optical SETI may soon allow us to map an expanding area of the galactic habitable zone we may call the galactic transcension zone, an inner ring that contains older transcended civilizations, and a missing planets problem as we discover that planets with life signatures occur at a much lower frequencies in this inner ring than in the remainder of the habitable zone.

  15. The effect of parity on morphological evolution among phrynosomatid lizards.

    PubMed

    Oufiero, C E; Gartner, G E A

    2014-11-01

    The shift from egg laying to live-bearing is one of the most well-studied transitions in evolutionary biology. Few studies, however, have assessed the effect of this transition on morphological evolution. Here, we evaluated the effect of reproductive mode on the morphological evolution of 10 traits, among 108 species of phrynosomatid lizards. We assess whether the requirement for passing shelled eggs through the pelvic girdle has led to morphological constraints in oviparous species and whether long gestation times in viviparous species have led to constraints in locomotor morphology. We fit models to the data that vary both in their tempo (strength and rate of selection) and mode of evolution (Brownian or Ornstein-Uhlenbeck) and estimates of trait optima. We found that most traits are best fit by a generalized multipeak OU model, suggesting differing trait optima for viviparous vs. oviparous species. Additionally, rates (σ(2) ) of both pelvic girdle and forelimb trait evolution varied with parity; viviparous species had higher rates. Hindlimb traits, however, exhibited no difference in σ(2) between parity modes. In a functional context, our results suggest that the passage of shelled eggs constrains the morphology of the pelvic girdle, but we found no evidence of morphological constraint of the locomotor apparatus in viviparous species. Our results are consistent with recent lineage diversification analyses, leading to the conclusion that transitions to viviparity increase both lineage and morphological diversification. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  16. Combining fossil and molecular data to date the diversification of New World Primates.

    PubMed

    Schrago, C G; Mello, B; Soares, A E R

    2013-11-01

    Recent methodological advances in molecular dating associated with the growing availability of sequence data have prompted the study of the evolution of New World Anthropoidea in recent years. Motivated by questions regarding historical biogeography or the mode of evolution, these works aimed to obtain a clearer scenario of Platyrrhini origins and diversification. Although some consensus was found, disputed issues, especially those relating to the evolutionary affinities of fossil taxa, remain. The use of fossil taxa for divergence time analysis is traditionally restricted to the provision of calibration priors. However, new analytical approaches have been developed that incorporate fossils as terminals and, thus, directly assign ages to the fossil tips. In this study, we conducted a combined analysis of molecular and morphological data, including fossils, to derive the timescale of New World anthropoids. Differently from previous studies that conducted total-evidence analysis of molecules and morphology, our approach investigated the morphological clock alone. Our results corroborate the hypothesis that living platyrrhines diversified in the last 20 Ma and that Miocene Patagonian fossils compose an independent evolutionary radiation that diversified in the late Oligocene. When compared to the node ages inferred from the molecular timescale, the inclusion of fossils augmented the precision of the estimates for nodes constrained by the fossil tips. We show that morphological data can be analysed using the same methodological framework applied in relaxed molecular clock studies. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  17. The predictability of evolution: glimpses into a post-Darwinian world.

    PubMed

    Conway Morris, Simon

    2009-11-01

    The very success of the Darwinian explanation, in not only demonstrating evolution from multiple lines of evidence but also in providing some plausible explanations, paradoxically seems to have served to have stifled explorations into other areas of investigation. The fact of evolution is now almost universally yoked to the assumption that its outcomes are random, trends are little more than drunkard's walks, and most evolutionary products are masterpieces of improvisation and far from perfect. But is this correct? Let us consider some alternatives. Is there evidence that evolution could in anyway be predictable? Can we identify alternative forms of biological organizations and if so how viable are they? Why are some molecules so extraordinarily versatile, while others can be spoken of as "molecules of choice"? How fortuitous are the major transitions in the history of life? What implications might this have for the Tree of Life? To what extent is evolutionary diversification constrained or facilitated by prior states? Are evolutionary outcomes merely sufficient or alternatively are they highly efficient, even superb? Here I argue that in sharp contradistinction to an orthodox Darwinian view, not only is evolution much more predictable than generally assumed but also investigation of its organizational substrates, including those of sensory systems, which indicates that it is possible to identify a predictability to the process and outcomes of evolution. If correct, the implications may be of some significance, not least in separating the unexceptional Darwinian mechanisms from underlying organizational principles, which may indicate evolutionary inevitabilities.

  18. Correlated evolution of personality, morphology and performance

    PubMed Central

    Kern, Elizabeth M. A.; Robinson, Detric; Gass, Erika; Godwin, John; Langerhans, R. Brian

    2018-01-01

    Evolutionary change in one trait can elicit evolutionary changes in other traits due to genetic correlations. This constrains the independent evolution of traits and can lead to unpredicted ecological and evolutionary outcomes. Animals might frequently exhibit genetic associations among behavioural and morphological-physiological traits, because the physiological mechanisms behind animal personality can have broad multitrait effects and because many selective agents influence the evolution of multiple types of traits. However, we currently know little about genetic correlations between animal personalities and nonbehavioural traits. We tested for associations between personality, morphology and locomotor performance by comparing zebrafish (Danio rerio) collected from the wild and then selectively bred for either a proactive or reactive stress coping style (‘bold’ or ‘shy’ phenotypes). Based on adaptive hypotheses of correlational selection in the wild, we predicted that artificial selection for boldness would produce correlated evolutionary responses of larger caudal regions and higher fast-start escape performance (and the opposite for shyness). After four to seven generations, morphology and locomotor performance differed between personality lines: bold zebrafish exhibited a larger caudal region and higher fast-start performance than fish in the shy line, matching predictions. Individual-level phenotypic correlations suggested that pleiotropy or physical gene linkage likely explained the correlated response of locomotor performance, while the correlated response of body shape may have reflected linkage disequilibrium, which is breaking down each generation in the laboratory. Our results indicate that evolution of personality can result in concomitant changes in morphology and whole-organism performance, and vice versa. PMID:29398712

  19. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  20. How cancer shapes evolution, and how evolution shapes cancer

    PubMed Central

    Casás-Selves, Matias; DeGregori, James

    2013-01-01

    Evolutionary theories are critical for understanding cancer development at the level of species as well as at the level of cells and tissues, and for developing effective therapies. Animals have evolved potent tumor suppressive mechanisms to prevent cancer development. These mechanisms were initially necessary for the evolution of multi-cellular organisms, and became even more important as animals evolved large bodies and long lives. Indeed, the development and architecture of our tissues were evolutionarily constrained by the need to limit cancer. Cancer development within an individual is also an evolutionary process, which in many respects mirrors species evolution. Species evolve by mutation and selection acting on individuals in a population; tumors evolve by mutation and selection acting on cells in a tissue. The processes of mutation and selection are integral to the evolution of cancer at every step of multistage carcinogenesis, from tumor genesis to metastasis. Factors associated with cancer development, such as aging and carcinogens, have been shown to promote cancer evolution by impacting both mutation and selection processes. While there are therapies that can decimate a cancer cell population, unfortunately, cancers can also evolve resistance to these therapies, leading to the resurgence of treatment-refractory disease. Understanding cancer from an evolutionary perspective can allow us to appreciate better why cancers predominantly occur in the elderly, and why other conditions, from radiation exposure to smoking, are associated with increased cancers. Importantly, the application of evolutionary theory to cancer should engender new treatment strategies that could better control this dreaded disease. PMID:23705033

  1. Molluscan engrailed expression, serial organization, and shell evolution

    NASA Technical Reports Server (NTRS)

    Jacobs, D. K.; Wray, C. G.; Wedeen, C. J.; Kostriken, R.; DeSalle, R.; Staton, J. L.; Gates, R. D.; Lindberg, D. R.

    2000-01-01

    Whether the serial features found in some molluscs are ancestral or derived is considered controversial. Here, in situ hybridization and antibody studies show iterated engrailed-gene expression in transverse rows of ectodermal cells bounding plate field development and spicule formation in the chiton, Lepidochitona cavema, as well as in cells surrounding the valves and in the early development of the shell hinge in the clam, Transennella tantilla. Ectodermal expression of engrailed is associated with skeletogenesis across a range of bilaterian phyla, suggesting a single evolutionary origin of invertebrate skeletons. The shared ancestry of bilaterian-invertebrate skeletons may help explain the sudden appearance of shelly fossils in the Cambrian. Our interpretation departs from the consideration of canonical metameres or segments as units of evolutionary analysis. In this interpretation, the shared ancestry of engrailed-gene function in the terminal/posterior addition of serially repeated elements during development explains the iterative expression of engrailed genes in a range of metazoan body plans.

  2. Patterns of co-speciation and host switching in primate malaria parasites.

    PubMed

    Garamszegi, László Zsolt

    2009-05-22

    The evolutionary history of many parasites is dependent on the evolution of their hosts, leading to an association between host and parasite phylogenies. However, frequent host switches across broad phylogenetic distances may weaken this close evolutionary link, especially when vectors are involved in parasites transmission, as is the case for malaria pathogens. Several studies suggested that the evolution of the primate-infective malaria lineages may be constrained by the phylogenetic relationships of their hosts, and that lateral switches between distantly related hosts may have been occurred. However, no systematic analysis has been quantified the degree of phylogenetic association between primates and their malaria parasites. Here phylogenetic approaches have been used to discriminate statistically between events due to co-divergence, duplication, extinction and host switches that can potentially cause historical association between Plasmodium parasites and their primate hosts. A Bayesian reconstruction of parasite phylogeny based on genetic information for six genes served as basis for the analyses, which could account for uncertainties about the evolutionary hypotheses of malaria parasites. Related lineages of primate-infective Plasmodium tend to infect hosts within the same taxonomic family. Different analyses testing for congruence between host and parasite phylogenies unanimously revealed a significant association between the corresponding evolutionary trees. The most important factor that resulted in this association was host switching, but depending on the parasite phylogeny considered, co-speciation and duplication may have also played some additional role. Sorting seemed to be a relatively infrequent event, and can occur only under extreme co-evolutionary scenarios. The concordance between host and parasite phylogenies is heterogeneous: while the evolution of some malaria pathogens is strongly dependent on the phylogenetic history of their primate hosts, the congruent evolution is less emphasized for other parasite lineages (e.g. for human malaria parasites). Estimation of ancestral states of host use along the phylogenetic tree of parasites revealed that lateral transfers across distantly related hosts were likely to occur in several cases. Parasites cannot infect all available hosts, and they should preferentially infect hosts that provide a similar environment for reproduction. Marginally significant evidence suggested that there might be a consistent variation within host ranges in terms of physiology. The evolution of primate malarias is constrained by the phylogenetic associations of their hosts. Some parasites can preserve a great flexibility to infect hosts across a large phylogenetic distance, thus host switching can be an important factor in mediating host ranges observed in nature. Due to this inherent flexibility and the potential exposure to various vectors, the emergence of new malaria disease in primates including humans cannot be predicted from the phylogeny of parasites.

  3. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems.

    PubMed

    Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-04-06

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.

  4. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems

    PubMed Central

    Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-01-01

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results. PMID:29503722

  5. Determination of Fundamental Properties of an M31 Globular Cluster from Main-Sequence Photometry

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Zhenyu; Wang, Song; Fan, Zhou; Zhou, Xu; Wu, Jianghua; Jiang, Zhaoji; Chen, Jiansheng

    2010-10-01

    M31 globular cluster B379 is the first extragalactic cluster whose age was determined by main-sequence photometry. In the main-sequence photometric method, the age of a cluster is obtained by fitting its color-magnitude diagram (CMD) with stellar evolutionary models. However, different stellar evolutionary models use different parameters of stellar evolution, such as range of stellar masses, different opacities and equations of state, and different recipes, and so on. So, it is interesting to check whether different stellar evolutionary models can give consistent results for the same cluster. Brown et al. constrained the age of B379 by comparing its CMD with isochrones of the 2006 VandenBerg models. Using SSP models of Bruzual & Charlot and its multiphotometry, ZMa et al. independently determined the age of B379, which is in good agreement with the determination of Brown et al. The models of Bruzual & Charlot are calculated based on the Padova evolutionary tracks. It is necessary to check whether the age of B379 as determined based on the Padova evolutionary tracks is in agreement with the determination of Brown et al.. In this article, we redetermine the age of B379 using isochrones of the Padova stellar evolutionary models. In addition, the metal abundance, the distance modulus, and the reddening value for B379 are reported. The results obtained are consistent with the previous determinations, which include the age obtained by Brown et al. This article thus confirms the consistency of the age scale of B379 between the Padova isochrones and the 2006 VandenBerg isochrones; i.e., the comparison between the results of Brown et al. and Ma et al. is meaningful. The results reported in this article of values found for B379 are: metallicity [M/H] = log(Z/Z ⊙) = -0.325, age τ = 11.0 ± 1.5 Gyr, reddening E(B - V) = 0.08, and distance modulus (m - M)0 = 24.44 ± 0.10.

  6. Spatial aspects of prebiotic replicator coexistence and community stability in a surface-bound RNA world model

    PubMed Central

    2013-01-01

    Background The coexistence of macromolecular replicators and thus the stability of presumed prebiotic replicator communities have been shown to critically depend on spatially constrained catalytic cooperation among RNA-like modular replicators. The necessary spatial constraints might have been supplied by mineral surfaces initially, preceding the more effective compartmentalization in membrane vesicles which must have been a later development of chemical evolution. Results Using our surface-bound RNA world model – the Metabolic Replicator Model (MRM) platform – we show that the mobilities on the mineral substrate surface of both the macromolecular replicators and the small molecules of metabolites they produce catalytically are the key factors determining the stable persistence of an evolvable metabolic replicator community. Conclusion The effects of replicator mobility and metabolite diffusion on different aspects of replicator coexistence in MRM are determined, including the maximum attainable size of the metabolic replicator system and its resistance to the invasion of parasitic replicators. We suggest a chemically plausible hypothetical scenario for the evolution of the first protocell starting from the surface-bound MRM system. PMID:24053177

  7. The evolutionary diversification of seed size: using the past to understand the present.

    PubMed

    Sims, Hallie J

    2012-05-01

    The Devonian origin of seed plants and subsequent morphological diversification of seeds during the late Paleozoic represents an adaptive radiation into unoccupied ecological niche space. A plant's seed size is correlated with its life-history strategy, growth form, and seed dispersal syndrome. The fossil record indicates that the oldest seed plants had relatively small seeds, but the Mississippian seed size envelope increased significantly with the diversification of larger seeded lineages. Fossil seeds equivalent to the largest extant gymnosperm seeds appeared by the Pennsylvanian, concurrent with morphological diversification of growth forms and dispersal syndromes as well as the clade's radiation into new environments. Wang's Analysis of Skewness indicates that the evolutionary trend of increasing seed size resulted from primarily passive processes in Pennsylvanian seed plants. The distributions of modern angiosperms indicate a more diverse system of active and some passive processes, unbounded by Paleozoic limits; multiple angiosperm lineages independently evolved though the upper and lower bounds. Quantitative measures of preservation suggest that, although our knowledge of Paleozoic seeds is far from complete, the evolutionary trend in seed size is unlikely to be an artifact of taphonomy. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.

  8. Extinction rates in tumour public goods games.

    PubMed

    Gerlee, Philip; Altrock, Philipp M

    2017-09-01

    Cancer evolution and progression are shaped by cellular interactions and Darwinian selection. Evolutionary game theory incorporates both of these principles, and has been proposed as a framework to understand tumour cell population dynamics. A cornerstone of evolutionary dynamics is the replicator equation, which describes changes in the relative abundance of different cell types, and is able to predict evolutionary equilibria. Typically, the replicator equation focuses on differences in relative fitness. We here show that this framework might not be sufficient under all circumstances, as it neglects important aspects of population growth. Standard replicator dynamics might miss critical differences in the time it takes to reach an equilibrium, as this time also depends on cellular turnover in growing but bounded populations. As the system reaches a stable manifold, the time to reach equilibrium depends on cellular death and birth rates. These rates shape the time scales, in particular, in coevolutionary dynamics of growth factor producers and free-riders. Replicator dynamics might be an appropriate framework only when birth and death rates are of similar magnitude. Otherwise, population growth effects cannot be neglected when predicting the time to reach an equilibrium, and cell-type-specific rates have to be accounted for explicitly. © 2017 The Authors.

  9. Large-scale turnover of functional transcription factor bindingsites in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Pollard, Daniel A.; Nix, David A.

    2006-07-14

    The gain and loss of functional transcription-factor bindingsites has been proposed as a major source of evolutionary change incis-regulatory DNA and gene expression. We have developed an evolutionarymodel to study binding site turnover that uses multiple sequencealignments to assess the evolutionary constraint on individual bindingsites, and to map gain and loss events along a phylogenetic tree. Weapply this model to study the evolutionary dynamics of binding sites ofthe Drosophila melanogaster transcription factor Zeste, using genome-widein vivo (ChIP-chip) binding data to identify functional Zeste bindingsites, and the genome sequences of D. melanogaster, D. simulans, D.erecta and D. yakuba to study theirmore » evolution. We estimate that more than5 percent of functional Zeste binding sites in D. melanogaster weregained along the D. melanogaster lineage or lost along one of the otherlineages. We find that Zeste bound regions have a reduced rate of bindingsite loss and an increased rate of binding site gain relative to flankingsequences. Finally, we show that binding site gains and losses areasymmetrically distributed with respect to D. melanogaster, consistentwith lineage-specific acquisition and loss of Zeste-responsive regulatoryelements.« less

  10. Self adaptive solution strategies: Locally bound constrained Newton Raphson solution algorithms

    NASA Technical Reports Server (NTRS)

    Padovan, Joe

    1991-01-01

    A summary is given of strategies which enable the automatic adjustment of the constraint surfaces recently used to extend the range and numerical stability/efficiency of nonlinear finite element equation solvers. In addition to handling kinematic and material induced nonlinearity, both pre-and postbuckling behavior can be treated. The scheme employs localized bounds on various hierarchical partitions of the field variables. These are used to resize, shape, and orient the global constraint surface, thereby enabling essentially automatic load/deflection incrementation. Due to the generality of the approach taken, it can be implemented in conjunction with the constraints of an arbitrary functional type. To benchmark the method, several numerical experiments are presented. These include problems involving kinematic and material nonlinearity, as well as pre- and postbuckling characteristics. Also included is a list of papers published in the course of the work.

  11. Modular constraints on conformal field theories with currents

    NASA Astrophysics Data System (ADS)

    Bae, Jin-Beom; Lee, Sungjay; Song, Jaewon

    2017-12-01

    We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite programming. In particular, we find the bounds on the twist gap for the non-current primaries depend dramatically on the presence of holomorphic currents, showing numerous kinks and peaks. Various rational CFTs are realized at the numerical boundary of the twist gap, saturating the upper limits on the degeneracies. Such theories include Wess-Zumino-Witten models for the Deligne's exceptional series, the Monster CFT and the Baby Monster CFT. We also study modular constraints imposed by W -algebras of various type and observe that the bounds on the gap depend on the choice of W -algebra in the small central charge region.

  12. Natural history matters: how biological constraints shape diversified interactions in pollination networks.

    PubMed

    Jordano, Pedro

    2016-11-01

    Species-specific traits constrain the ways organisms interact in nature. Some pairwise interactions among coexisting species simply do not occur; they are impossible to observe despite the fact that partners coexist in the same place. The author discusses these 'forbidden links' of species interaction networks. Photo: a sphingid moth, Manduca sexta visiting a flower of Tocoyena formosa (Rubiaceae) in the Brazilian Cerrado; tongue and corolla tube lengths approximately 100 mm. Courtesy of Felipe Amorim. Sazatornil, F.D., Moré, M., Benitez-Vieyra, S., Cocucci, A.A., Kitching, I.J., Schlumpberger, B.O., Oliveira, P.E., Sazima, M. & Amorim, F.W. (2016) Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. Journal of Animal Ecology, 85, 1586-1594. Species-specific traits and life-history characteristics constrain the ways organisms interact in nature. For example, gape-limited predators are constrained in the sizes of prey they can handle and efficiently consume. When we consider the ubiquity of such constrains, it is evident how hard it can be to be a generalist partner in ecological interactions: a free-living animal or plant cannot simply interact with every available partner it encounters. Some pairwise interactions among coexisting species simply do not occur; they are impossible to observe despite the fact that partners coexist in the same place. Sazatornil et al. () explore the nature of such constraints in the mutualisms among hawkmoths and the plants they pollinate. In this iconic interaction, used by Darwin and Wallace to vividly illustrate the power of natural selection in shaping evolutionary change, both pollinators and plants are sharply constrained in their interaction modes and outcomes. © 2016 The Author. Journal of Animal Ecology © 2016 British Ecological Society.

  13. Assessment of the relative merits of a few methods to detect evolutionary trends.

    PubMed

    Laurin, Michel

    2010-12-01

    Some of the most basic questions about the history of life concern evolutionary trends. These include determining whether or not metazoans have become more complex over time, whether or not body size tends to increase over time (the Cope-Depéret rule), or whether or not brain size has increased over time in various taxa, such as mammals and birds. Despite the proliferation of studies on such topics, assessment of the reliability of results in this field is hampered by the variability of techniques used and the lack of statistical validation of these methods. To solve this problem, simulations are performed using a variety of evolutionary models (gradual Brownian motion, speciational Brownian motion, and Ornstein-Uhlenbeck), with or without a drift of variable amplitude, with variable variance of tips, and with bounds placed close or far from the starting values and final means of simulated characters. These are used to assess the relative merits (power, Type I error rate, bias, and mean absolute value of error on slope estimate) of several statistical methods that have recently been used to assess the presence of evolutionary trends in comparative data. Results show widely divergent performance of the methods. The simple, nonphylogenetic regression (SR) and variance partitioning using phylogenetic eigenvector regression (PVR) with a broken stick selection procedure have greatly inflated Type I error rate (0.123-0.180 at a 0.05 threshold), which invalidates their use in this context. However, they have the greatest power. Most variants of Felsenstein's independent contrasts (FIC; five of which are presented) have adequate Type I error rate, although two have a slightly inflated Type I error rate with at least one of the two reference trees (0.064-0.090 error rate at a 0.05 threshold). The power of all contrast-based methods is always much lower than that of SR and PVR, except under Brownian motion with a strong trend and distant bounds. Mean absolute value of error on slope of all FIC methods is slightly higher than that of phylogenetic generalized least squares (PGLS), SR, and PVR. PGLS performs well, with low Type I error rate, low error on regression coefficient, and power comparable with some FIC methods. Four variants of skewness analysis are examined, and a new method to assess significance of results is presented. However, all have consistently low power, except in rare combinations of trees, trend strength, and distance between final means and bounds. Globally, the results clearly show that FIC-based methods and PGLS are globally better than nonphylogenetic methods and variance partitioning with PVR. FIC methods and PGLS are sensitive to the model of evolution (and, hence, to branch length errors). Our results suggest that regressing raw character contrasts against raw geological age contrasts yields a good combination of power and Type I error rate. New software to facilitate batch analysis is presented.

  14. Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)

    NASA Astrophysics Data System (ADS)

    Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand

    2018-03-01

    Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.

  15. Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    NASA Astrophysics Data System (ADS)

    Chen, Zhixiang; Fu, Bin

    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and then devise a O *(3 n s(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n). Later, this upper bound is improved to O *(2 n ) for ΠΣΠ polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ polynomials. On the negative side, we prove that, even for ΠΣΠ polynomials with terms of degree ≤ 2, the first problem cannot be approximated at all for any approximation factor ≥ 1, nor "weakly approximated" in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ-approximation algorithm for ΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2. On the inapproximability side, we give a n (1 - ɛ)/2 lower bound, for any ɛ> 0, on the approximation factor for ΠΣΠ polynomials. When the degrees of the terms in these polynomials are constrained as ≤ 2, we prove a 1.0476 lower bound, assuming Pnot=NP; and a higher 1.0604 lower bound, assuming the Unique Games Conjecture.

  16. Quantification of Human Cortical Bone Bound and Free Water in Vivo with Ultrashort Echo Time MR Imaging: A Model-based Approach.

    PubMed

    Abbasi-Rad, Shahrokh; Saligheh Rad, Hamidreza

    2017-06-01

    Purpose To quantify free and bound water components of cortical bone with a model-based numeric approach with use of ultrashort echo time (UTE) magnetic resonance (MR) imaging in vivo in order to introduce a new predictor for age-related deterioration of cortical bone structure. Materials and Methods Human studies were compliant with HIPAA and approved by the institutional review board. Dual-repetition time three-dimensional hybrid-radial UTE imaging was performed, followed by the application of postprocessing algorithms, to quantify free and bound water parameters (concentration [ρ] and longitudinal relaxation time [T1]) of human cortical bone in vivo. The postprocessing algorithms included the decomposition of bulk equations into free- and bound-associated equations and solving resulted inverse problem by using evolutionary strategy methods. To test the validity of the introduced biomarker, it was measured in 40 healthy women by using the proposed method, and associations among parameters were evaluated with the Pearson correlation coefficient. Results The mean free water concentration, bound water concentration, free water T1, and bound water T1 in the recruited population were 5.9%, 19.6%, 306.79 msec, and 162.47 msec, respectively. All reported values were in good agreement with those in the literature. Cortical bone free water T1 (R 2 = 0.72) and cortical bone free water concentration (R 2 = 0.62) showed strong positive correlations with age. Conclusion The cortical bone free water concentration and free water T1 derived with UTE imaging are good predictors of age-related deterioration of cortical bone structure and are potentially superior to previously introduced measures such as bone water concentration and suppression ratio. © RSNA, 2017.

  17. Evolutionary response when selection and genetic variation covary across environments.

    PubMed

    Wood, Corlett W; Brodie, Edmund D

    2016-10-01

    Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.

  18. Does aquatic foraging impact head shape evolution in snakes?

    PubMed

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).

  19. Evolutionary Influenced Interaction Pattern as Indicator for the Investigation of Natural Variants Causing Nephrogenic Diabetes Insipidus

    PubMed Central

    Labudde, Dirk

    2015-01-01

    The importance of short membrane sequence motifs has been shown in many works and emphasizes the related sequence motif analysis. Together with specific transmembrane helix-helix interactions, the analysis of interacting sequence parts is helpful for understanding the process during membrane protein folding and in retaining the three-dimensional fold. Here we present a simple high-throughput analysis method for deriving mutational information of interacting sequence parts. Applied on aquaporin water channel proteins, our approach supports the analysis of mutational variants within different interacting subsequences and finally the investigation of natural variants which cause diseases like, for example, nephrogenic diabetes insipidus. In this work we demonstrate a simple method for massive membrane protein data analysis. As shown, the presented in silico analyses provide information about interacting sequence parts which are constrained by protein evolution. We present a simple graphical visualization medium for the representation of evolutionary influenced interaction pattern pairs (EIPPs) adapted to mutagen investigations of aquaporin-2, a protein whose mutants are involved in the rare endocrine disorder known as nephrogenic diabetes insipidus, and membrane proteins in general. Furthermore, we present a new method to derive new evolutionary variations within EIPPs which can be used for further mutagen laboratory investigations. PMID:26180540

  20. Evolutionary Influenced Interaction Pattern as Indicator for the Investigation of Natural Variants Causing Nephrogenic Diabetes Insipidus.

    PubMed

    Grunert, Steffen; Labudde, Dirk

    2015-01-01

    The importance of short membrane sequence motifs has been shown in many works and emphasizes the related sequence motif analysis. Together with specific transmembrane helix-helix interactions, the analysis of interacting sequence parts is helpful for understanding the process during membrane protein folding and in retaining the three-dimensional fold. Here we present a simple high-throughput analysis method for deriving mutational information of interacting sequence parts. Applied on aquaporin water channel proteins, our approach supports the analysis of mutational variants within different interacting subsequences and finally the investigation of natural variants which cause diseases like, for example, nephrogenic diabetes insipidus. In this work we demonstrate a simple method for massive membrane protein data analysis. As shown, the presented in silico analyses provide information about interacting sequence parts which are constrained by protein evolution. We present a simple graphical visualization medium for the representation of evolutionary influenced interaction pattern pairs (EIPPs) adapted to mutagen investigations of aquaporin-2, a protein whose mutants are involved in the rare endocrine disorder known as nephrogenic diabetes insipidus, and membrane proteins in general. Furthermore, we present a new method to derive new evolutionary variations within EIPPs which can be used for further mutagen laboratory investigations.

  1. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    PubMed

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Tsing-Wai; Valsecchi, Francesca; Ansari, Asna

    The extragalactic X-ray binary IC 10 X-1 has attracted attention as it is possibly the host of the most massive stellar-mass black-hole (BH) known to date. Here we consider all available observational constraints and construct its evolutionary history up to the instant just before the formation of the BH. Our analysis accounts for the simplest possible history, which includes three evolutionary phases: binary orbital dynamics at core collapse, common envelope (CE) evolution, and evolution of the BH-helium star binary progenitor of the observed system. We derive the complete set of constraints on the progenitor system at various evolutionary stages. Specifically,more » right before the core collapse event, we find the mass of the BH immediate progenitor to be ≳ 31 M{sub ☉} (at 95% of confidence, same hereafter). The magnitude of the natal kick imparted to the BH is constrained to be ≲ 130 km s{sup –1}. Furthermore, we find that the 'enthalpy' formalism recently suggested by Ivanova and Chaichenets is able to explain the existence of IC 10 X-1 without the need to invoke unreasonably high CE efficiencies. With this physically motivated formalism, we find that the CE efficiency required to explain the system is in the range of ≅ 0.6-1.« less

  3. Searching for evidence of selection in avian DNA barcodes.

    PubMed

    Kerr, Kevin C R

    2011-11-01

    The barcode of life project has assembled a tremendous number of mitochondrial cytochrome c oxidase I (COI) sequences. Although these sequences were gathered to develop a DNA-based system for species identification, it has been suggested that further biological inferences may also be derived from this wealth of data. Recurrent selective sweeps have been invoked as an evolutionary mechanism to explain limited intraspecific COI diversity, particularly in birds, but this hypothesis has not been formally tested. In this study, I collated COI sequences from previous barcoding studies on birds and tested them for evidence of selection. Using this expanded data set, I re-examined the relationships between intraspecific diversity and interspecific divergence and sampling effort, respectively. I employed the McDonald-Kreitman test to test for neutrality in sequence evolution between closely related pairs of species. Because amino acid sequences were generally constrained between closely related pairs, I also included broader intra-order comparisons to quantify patterns of protein variation in avian COI sequences. Lastly, using 22 published whole mitochondrial genomes, I compared the evolutionary rate of COI against the other 12 protein-coding mitochondrial genes to assess intragenomic variability. I found no conclusive evidence of selective sweeps. Most evidence pointed to an overall trend of strong purifying selection and functional constraint. The COI protein did vary across the class Aves, but to a very limited extent. COI was the least variable gene in the mitochondrial genome, suggesting that other genes might be more informative for probing factors constraining mitochondrial variation within species. © 2011 Blackwell Publishing Ltd.

  4. A Theory of Cramer-Rao Bounds for Constrained Parametric Models

    DTIC Science & Technology

    2010-01-01

    reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...overly optimistic. This occurs frequently in communications when the signal- to-noise ratio (SNR) or data transmission size decreases. 43 3.1, then U ?(φ...space of UTHT , the LSE is BLUE and is given by dT θ̂CLS(x) = d Tθ1 + d TU ( UTQU )† UTHTC−1 ( x−Hθ1 ) (3.28) similar to (3.27) with variance dTU

  5. Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects.

    PubMed

    Huang, Tingwen; Li, Chuandong; Duan, Shukai; Starzyk, Janusz A

    2012-06-01

    This paper focuses on the hybrid effects of parameter uncertainty, stochastic perturbation, and impulses on global stability of delayed neural networks. By using the Ito formula, Lyapunov function, and Halanay inequality, we established several mean-square stability criteria from which we can estimate the feasible bounds of impulses, provided that parameter uncertainty and stochastic perturbations are well-constrained. Moreover, the present method can also be applied to general differential systems with stochastic perturbation and impulses.

  6. The origin of bounded rationality and intelligence.

    PubMed

    Lo, Andrew W

    2013-09-01

    Rational economic behavior in which individuals maximize their own self-interest is only one of many possible types of behavior that arise from natural selection. Given an initial population of individuals, each assigned a purely arbitrary behavior with respect to a binary choice problem, and assuming that offspring behave identically to their parents, only those behaviors linked to reproductive success will survive, and less successful behaviors will disappear exponentially fast. This framework yields a single evolutionary explanation for the origin of several behaviors that have been observed in organisms ranging from bacteria to humans, including risk-sensitive foraging, risk aversion, loss aversion, probability matching, randomization, and diversification. The key to understanding which types of behavior are more likely to survive is how behavior affects reproductive success in a given population's environment. From this perspective, intelligence is naturally defined as behavior that increases the likelihood of reproductive success, and bounds on rationality are determined by physiological and environmental constraints.

  7. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies.

    PubMed

    Organ, Chris L; Cooper, Lisa Noelle; Hieronymus, Tobin L

    2015-10-01

    The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization. © 2015 Wiley Periodicals, Inc.

  8. Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems

    NASA Astrophysics Data System (ADS)

    Guo, Weian; Li, Wuzhao; Zhang, Qun; Wang, Lei; Wu, Qidi; Ren, Hongliang

    2014-11-01

    In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.

  9. Signatures of Sex-Antagonistic Selection on Recombining Sex Chromosomes

    PubMed Central

    Kirkpatrick, Mark; Guerrero, Rafael F.

    2014-01-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. PMID:24578352

  10. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    PubMed

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  11. Climate constrains the evolutionary history and biodiversity of crocodylians

    PubMed Central

    Mannion, Philip D.; Benson, Roger B. J.; Carrano, Matthew T.; Tennant, Jonathan P.; Judd, Jack; Butler, Richard J.

    2015-01-01

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A ‘modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions. PMID:26399170

  12. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles

    PubMed Central

    Benson, Roger B. J.; Frigot, Rachel A.; Goswami, Anjali; Andres, Brian; Butler, Richard J.

    2014-01-01

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. PMID:24694584

  13. Probing the evolutionary origins of music perception.

    PubMed

    McDermott, Josh; Hauser, Marc D

    2005-12-01

    Empirical data have recently begun to inform debates on the evolutionary origins of music. In this paper we discuss some of our recent findings and related theoretical issues. We claim that theories of the origins of music will be usefully constrained if we can determine which aspects of music perception are innate, and, of those, which are uniquely human and specific to music. Comparative research in nonhuman animals, particularly nonhuman primates, is thus critical to the debate. In this paper we focus on the preferences that characterize most humans' experience of music, testing whether similar preferences exist in nonhuman primates. Our research suggests that many rudimentary acoustic preferences, such as those for consonant over dissonant intervals, may be unique to humans. If these preferences prove to be innate in humans, they may be candidates for music-specific adaptations. To establish whether such preferences are innate in humans, one important avenue for future research will be the collection of data from different cultures. This may be facilitated by studies conducted over the internet.

  14. Geomorphology of Titan's polar terrains: Using the landscape's topographic form to constrain surface processes

    NASA Astrophysics Data System (ADS)

    Birch, S. P.; Hayes, A. G., Jr.; Dietrich, W. E.; Howard, A. D.; Malaska, M. J.; Moore, J. M.; Mastrogiuseppe, M.; White, O. L.; Hofgartner, J. D.; Soderblom, J. M.; Barnes, J. W.; Bristow, C.; Kirk, R. L.; Turtle, E. P.; Wood, C. A.; Stofan, E. R.

    2015-12-01

    Driven by an expansive atmosphere, Titan's lakes, seas and accompanied hydrological cycle hold vast amounts of information regarding the history and evolution of Titan. To understand these features, we constructed a geomorphologic map of Titan's polar terrains using a combination of the Cassini SAR, ISS, VIMS, and topographic datasets. In combining SAR, ISS, and VIMS imagery with topographic data, our geomorphic map reveals a stratigraphic sequence from which we infer formation processes. In mapping both the South and North poles with the same morphologic units, we conclude that processes that dominated the North Pole also operated in the South. Large seas, which are currently methane/ethane filled in the North and dry in the South, characterize both poles. The current day dichotomy may result only from differing initial conditions. Regions removed from the mare are dominated by smooth, undulating plains, bounded by moderately dissected uplands that are discretized into observable drainage basins. These plains contain the highest density of filled and empty lake depressions, which appear morphologically distinct from the larger mare. The thicknesses of these undulating plains are retrieved from the depths of the embedded empty depressions that are up to 800 m deep. The development of such large deposits and the surrounding hillslopes can be explained by the presence of previously vast polar oceans. Larger liquid bodies would have allowed for a sustained accumulation of soluble and insoluble sediments from Titan's lower latitudes. Two plausible evolutionary scenarios include seas that were slightly larger, followed by tectonic uplift, or oceans that were much larger, that have since lost most of their volume over time to methane photolysis. In either scenario, thick sedimentary deposits of soluble materials are required to have been emplaced prior to the formation of the small lake depressions.

  15. Three candidate double clusters in the LMC: truth or dare?

    NASA Astrophysics Data System (ADS)

    Dalessandro, Emanuele; Zocchi, Alice; Varri, Anna Lisa; Mucciarelli, Alessio; Bellazzini, Michele; Ferraro, Francesco R.; Lanzoni, Barbara; Lapenna, Emilio; Origlia, Livia

    2018-02-01

    The Large Magellanic Cloud (LMC) hosts a large number of candidate stellar cluster pairs. Binary stellar clusters provide important clues about cluster formation processes and the evolutionary history of the host galaxy. However, to properly extract and interpret this information, it is crucial to fully constrain the fraction of real binary systems and their physical properties. Here we present a detailed photometric analysis based on ESO-FORS2 images of three candidate cluster multiplets in the LMC, namely SL349-SL353, SL385-SL387-NGC 1922 and NGC 1836-BRHT4b-NGC 1839. For each cluster, we derived ages, structural parameters and morphological properties. We have also estimated the degree of filling of their Roche lobe, as an approximate tool to measure the strength of the tidal perturbations induced by the LMC. We find that the members of the possible pairs SL349-SL353 and BRHT4b-NGC 1839 have a similar age (t = 1.00 ± 0.12 Gyr and t = 140 ± 15 Myr, respectively), thus possibly hinting at a common origin of their member systems. We also find that all candidate pairs in our sample show evidence of intracluster overdensities that can be a possible indication of real binarity. Particularly interesting is the case of SL349-SL353. In fact, SL353 is relatively close to the condition of critical filling, thus suggesting that these systems might actually constitute an energetically bound pair. It is therefore key to pursue a detailed kinematic screening of such clusters, without which, at present, we do not dare making a conclusive statement about the true nature of this putative pair.

  16. A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality

    NASA Astrophysics Data System (ADS)

    Cheung, KW; So, HC; Ma, W.-K.; Chan, YT

    2006-12-01

    The problem of locating a mobile terminal has received significant attention in the field of wireless communications. Time-of-arrival (TOA), received signal strength (RSS), time-difference-of-arrival (TDOA), and angle-of-arrival (AOA) are commonly used measurements for estimating the position of the mobile station. In this paper, we present a constrained weighted least squares (CWLS) mobile positioning approach that encompasses all the above described measurement cases. The advantages of CWLS include performance optimality and capability of extension to hybrid measurement cases (e.g., mobile positioning using TDOA and AOA measurements jointly). Assuming zero-mean uncorrelated measurement errors, we show by mean and variance analysis that all the developed CWLS location estimators achieve zero bias and the Cramér-Rao lower bound approximately when measurement error variances are small. The asymptotic optimum performance is also confirmed by simulation results.

  17. Constraining chameleon field theories using the GammeV afterglow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhye, A.; Steffen, J. H.; Weltman, A.

    2010-01-01

    The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here, we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss the GammeV-CHameleon Afterglow SEarch, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHameleon Afterglow SEarch. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experimentmore » will be able to probe a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.« less

  18. Constraining chameleon field theories using the GammeV afterglow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhye, A.; /Chicago U., EFI /KICP, Chicago; Steffen, J.H.

    2009-11-01

    The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss GammeV-CHASE, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHASE. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experiment will be able to probemore » a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.« less

  19. An approach to constrained aerodynamic design with application to airfoils

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.

    1992-01-01

    An approach was developed for incorporating flow and geometric constraints into the Direct Iterative Surface Curvature (DISC) design method. In this approach, an initial target pressure distribution is developed using a set of control points. The chordwise locations and pressure levels of these points are initially estimated either from empirical relationships and observed characteristics of pressure distributions for a given class of airfoils or by fitting the points to an existing pressure distribution. These values are then automatically adjusted during the design process to satisfy the flow and geometric constraints. The flow constraints currently available are lift, wave drag, pitching moment, pressure gradient, and local pressure levels. The geometric constraint options include maximum thickness, local thickness, leading-edge radius, and a 'glove' constraint involving inner and outer bounding surfaces. This design method was also extended to include the successive constraint release (SCR) approach to constrained minimization.

  20. Finite-density effects in the Fredrickson-Andersen and Kob-Andersen kinetically-constrained models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teomy, Eial, E-mail: eialteom@post.tau.ac.il; Shokef, Yair, E-mail: shokef@tau.ac.il

    2014-08-14

    We calculate the corrections to the thermodynamic limit of the critical density for jamming in the Kob-Andersen and Fredrickson-Andersen kinetically-constrained models, and find them to be finite-density corrections, and not finite-size corrections. We do this by introducing a new numerical algorithm, which requires negligible computer memory since contrary to alternative approaches, it generates at each point only the necessary data. The algorithm starts from a single unfrozen site and at each step randomly generates the neighbors of the unfrozen region and checks whether they are frozen or not. Our results correspond to systems of size greater than 10{sup 7} ×more » 10{sup 7}, much larger than any simulated before, and are consistent with the rigorous bounds on the asymptotic corrections. We also find that the average number of sites that seed a critical droplet is greater than 1.« less

  1. Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DallAnese, Emiliano; Baker, Kyri; Summers, Tyler

    This paper focuses on distribution systems featuring renewable energy sources (RESs) and energy storage systems, and presents an AC optimal power flow (OPF) approach to optimize system-level performance objectives while coping with uncertainty in both RES generation and loads. The proposed method hinges on a chance-constrained AC OPF formulation where probabilistic constraints are utilized to enforce voltage regulation with prescribed probability. A computationally more affordable convex reformulation is developed by resorting to suitable linear approximations of the AC power-flow equations as well as convex approximations of the chance constraints. The approximate chance constraints provide conservative bounds that hold for arbitrarymore » distributions of the forecasting errors. An adaptive strategy is then obtained by embedding the proposed AC OPF task into a model predictive control framework. Finally, a distributed solver is developed to strategically distribute the solution of the optimization problems across utility and customers.« less

  2. Beyond topology: coevolution of structure and flux in metabolic networks.

    PubMed

    Morrison, E S; Badyaev, A V

    2017-10-01

    Interactions between the structure of a metabolic network and its functional properties underlie its evolutionary diversification, but the mechanism by which such interactions arise remains elusive. Particularly unclear is whether metabolic fluxes that determine the concentrations of compounds produced by a metabolic network, are causally linked to a network's structure or emerge independently of it. A direct empirical study of populations where both structural and functional properties vary among individuals' metabolic networks is required to establish whether changes in structure affect the distribution of metabolic flux. In a population of house finches (Haemorhous mexicanus), we reconstructed full carotenoid metabolic networks for 442 individuals and uncovered 11 structural variants of this network with different compounds and reactions. We examined the consequences of this structural diversity for the concentrations of plumage-bound carotenoids produced by flux in these networks. We found that concentrations of metabolically derived, but not dietary carotenoids, depended on network structure. Flux was partitioned similarly among compounds in individuals of the same network structure: within each network, compound concentrations were closely correlated. The highest among-individual variation in flux occurred in networks with the strongest among-compound correlations, suggesting that changes in the magnitude, but not the distribution of flux, underlie individual differences in compound concentrations on a static network structure. These findings indicate that the distribution of flux in carotenoid metabolism closely follows network structure. Thus, evolutionary diversification and local adaptations in carotenoid metabolism may depend more on the gain or loss of enzymatic reactions than on changes in flux within a network structure. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  3. An interleukin 13 receptor α 2–specific peptide homes to human Glioblastoma multiforme xenografts

    PubMed Central

    Pandya, Hetal; Gibo, Denise M.; Garg, Shivank; Kridel, Steven; Debinski, Waldemar

    2012-01-01

    Interleukin 13 receptor α 2 (IL-13Rα2) is a glioblastoma multiforme (GBM)–associated plasma membrane receptor, a brain tumor of dismal prognosis. Here, we isolated peptide ligands for IL-13Rα2 with use of a cyclic disulphide-constrained heptapeptide phages display library and 2 in vitro biopanning schemes with GBM cells that do (G26-H2 and SnB19-pcDNA cells) or do not (G26-V2 and SnB19-asIL-13Rα2 cells) over-express IL-13Rα2. We identified 3 peptide phages that bind to IL-13Rα2 in cellular and protein assays. One of the 3 peptide phages, termed Pep-1, bound to IL-13Rα2 with the highest specificity, surprisingly, also in a reducing environment. Pep-1 was thus synthesized and further analyzed in both linear and disulphide-constrained forms. The linear peptide bound to IL-13Rα2 more avidly than did the disulphide-constrained form and was efficiently internalized by IL-13Rα2–expressing GBM cells. The native ligand, IL-13, did not compete for the Pep-1 binding to the receptor and vice versa in any of the assays, indicating that the peptide might be binding to a site on the receptor different from the native ligand. Furthermore, we demonstrated by noninvasive near infrared fluorescence imaging in nude mice that Pep-1 binds and homes to both subcutaneous and orthotopic human GBM xenografts expressing IL-13Rα2 when injected by an intravenous route. Thus, we identified a linear heptapeptide specific for the IL-13Rα2 that is capable of crossing the blood-brain tumor barrier and homing to tumors. Pep-1 can be further developed for various applications in cancer and/or inflammatory diseases. PMID:21946118

  4. Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis.

    PubMed

    Züst, Tobias; Agrawal, Anurag A

    2017-04-28

    Costs of defense are central to our understanding of interactions between organisms and their environment, and defensive phenotypes of plants have long been considered to be constrained by trade-offs that reflect the allocation of limiting resources. Recent advances in uncovering signal transduction networks have revealed that defense trade-offs are often the result of regulatory "decisions" by the plant, enabling it to fine-tune its phenotype in response to diverse environmental challenges. We place these results in the context of classic studies in ecology and evolutionary biology, and propose a unifying framework for growth-defense trade-offs as a means to study the plant's allocation of limiting resources. Pervasive physiological costs constrain the upper limit to growth and defense traits, but the diversity of selective pressures on plants often favors negative correlations at intermediate trait levels. Despite the ubiquity of underlying costs of defense, the current challenge is using physiological and molecular approaches to predict the conditions where they manifest as detectable trade-offs.

  5. Saturating effects of species diversity on life-history evolution in bacteria.

    PubMed

    Fiegna, Francesca; Scheuerl, Thomas; Moreno-Letelier, Alejandra; Bell, Thomas; Barraclough, Timothy G

    2015-09-22

    Species interactions can play a major role in shaping evolution in new environments. In theory, species interactions can either stimulate evolution by promoting coevolution or inhibit evolution by constraining ecological opportunity. The relative strength of these effects should vary as species richness increases, and yet there has been little evidence for evolution of component species in communities. We evolved bacterial microcosms containing between 1 and 12 species in three different environments. Growth rates and yields of isolates that evolved in communities were lower than those that evolved in monocultures, consistent with recent theory that competition constrains species to specialize on narrower sets of resources. This effect saturated or reversed at higher levels of richness, consistent with theory that directional effects of species interactions should weaken in more diverse communities. Species varied considerably, however, in their responses to both environment and richness levels. Mechanistic models and experiments are now needed to understand and predict joint evolutionary dynamics of species in diverse communities. © 2015 The Authors.

  6. Climate change in fish: effects of respiratory constraints on optimal life history and behaviour.

    PubMed

    Holt, Rebecca E; Jørgensen, Christian

    2015-02-01

    The difference between maximum metabolic rate and standard metabolic rate is referred to as aerobic scope, and because it constrains performance it is suggested to constitute a key limiting process prescribing how fish may cope with or adapt to climate warming. We use an evolutionary bioenergetics model for Atlantic cod (Gadus morhua) to predict optimal life histories and behaviours at different temperatures. The model assumes common trade-offs and predicts that optimal temperatures for growth and fitness lie below that for aerobic scope; aerobic scope is thus a poor predictor of fitness at high temperatures. Initially, warming expands aerobic scope, allowing for faster growth and increased reproduction. Beyond the optimal temperature for fitness, increased metabolic requirements intensify foraging and reduce survival; oxygen budgeting conflicts thus constrain successful completion of the life cycle. The model illustrates how physiological adaptations are part of a suite of traits that have coevolved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Evolving phenotypic networks in silico.

    PubMed

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  8. Current Global Absolute Plate Velocities Inferred from the Trends of Hotspot Tracks: Implications for Motion between Groups of Hotspots and Comparison and Combination with Absolute Velocities Inferred from the Orientation of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2016-12-01

    Hotspot tracks are widely used to estimate the absolute velocities of plates, i.e., relative to the lower mantle. Knowledge of current motion between hotspots is important for both plate kinematics and mantle dynamics and informs the discussion on the origin of the Hawaiian-Emperor Bend. Following Morgan & Morgan (2007), we focus only on the trends of young hotspot tracks and omit volcanic propagation rates. The dispersion of the trends can be partitioned into between-plate and within-plate dispersion. Applying the method of Gripp & Gordon (2002) to the hotspot trend data set of Morgan & Morgan (2007) constrained to the MORVEL relative plate angular velocities (DeMets et al., 2010) results in a standard deviation of the 56 hotspot trends of 22°. The largest angular misfits tend to occur on the slowest moving plates. Alternatively, estimation of best-fitting poles to hotspot tracks on the nine individual plates, results in a standard deviation of trends of only 13°, a statistically significant reduction from the introduction of 15 additional adjustable parameters. If all of the between-plate misfit is due to motion of groups of hotspots (beneath different plates), nominal velocities relative to the mean hotspot reference frame range from 1 to 4 mm/yr with the lower bounds ranging from 1 to 3 mm/yr and the greatest upper bound being 8 mm/yr. These are consistent with bounds on motion between Pacific and Indo-Atlantic hotspots over the past ≈50 Ma, which range from zero (lower bound) to 8 to 13 mm/yr (upper bounds) (Koivisto et al., 2014). We also determine HS4-MORVEL, a new global set of plate angular velocities relative to the hotspots constrained to consistency with the MORVEL relative plate angular velocities, using a two-tier analysis similar to that used by Zheng et al. (2014) to estimate the SKS-MORVEL global set of absolute plate velocities fit to the orientation of seismic anisotropy. We find that the 95% confidence limits of HS4-MORVEL and SKS-MORVEL overlap substantially and that the two sets of angular velocities differ insignificantly. Thus we combine the two sets of angular velocities to estimate ABS-MORVEL, an optimal set of global angular velocities consistent with both hotspot tracks and seismic anisotropy. ABS-MORVEL has more compact confidence limits than either SKS-MORVEL or HS4-MORVEL.

  9. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.

  10. Directions for Optimization of Photosynthetic Carbon Fixation: RuBisCO's Efficiency May Not Be So Constrained After All.

    PubMed

    Cummins, Peter L; Kannappan, Babu; Gready, Jill E

    2018-01-01

    The ubiquitous enzyme Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) fixes atmospheric carbon dioxide within the Calvin-Benson cycle that is utilized by most photosynthetic organisms. Despite this central role, RuBisCO's efficiency surprisingly struggles, with both a very slow turnover rate to products and also impaired substrate specificity, features that have long been an enigma as it would be assumed that its efficiency was under strong evolutionary pressure. RuBisCO's substrate specificity is compromised as it catalyzes a side-fixation reaction with atmospheric oxygen; empirical kinetic results show a trend to tradeoff between relative specificity and low catalytic turnover rate. Although the dominant hypothesis has been that the active-site chemistry constrains the enzyme's evolution, a more recent study on RuBisCO stability and adaptability has implicated competing selection pressures. Elucidating these constraints is crucial for directing future research on improving photosynthesis, as the current literature casts doubt on the potential effectiveness of site-directed mutagenesis to improve RuBisCO's efficiency. Here we use regression analysis to quantify the relationships between kinetic parameters obtained from empirical data sets spanning a wide evolutionary range of RuBisCOs. Most significantly we found that the rate constant for dissociation of CO 2 from the enzyme complex was much higher than previous estimates and comparable with the corresponding catalytic rate constant. Observed trends between relative specificity and turnover rate can be expressed as the product of negative and positive correlation factors. This provides an explanation in simple kinetic terms of both the natural variation of relative specificity as well as that obtained by reported site-directed mutagenesis results. We demonstrate that the kinetic behaviour shows a lesser rather than more constrained RuBisCO, consistent with growing empirical evidence of higher variability in relative specificity. In summary our analysis supports an explanation for the origin of the tradeoff between specificity and turnover as due to competition between protein stability and activity, rather than constraints between rate constants imposed by the underlying chemistry. Our analysis suggests that simultaneous improvement in both specificity and turnover rate of RuBisCO is possible.

  11. Morphological constraints on changing avian migration phenology.

    PubMed

    Møller, A P; Rubolini, D; Saino, N

    2017-06-01

    Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. The impact of digging on craniodental morphology and integration.

    PubMed

    McIntosh, A F; Cox, P G

    2016-12-01

    The relationship between the form and function of the skull has been the subject of a great deal of research, much of which has concentrated on the impact of feeding on skull shape. However, there are a number of other behaviours that can influence craniodental morphology. Previous work has shown that subterranean rodents that use their incisors to dig (chisel-tooth digging) have a constrained cranial shape, which is probably driven by a necessity to create high bite forces at wide gapes. Chisel-tooth-digging rodents also have an upper incisor root that is displaced further back into the cranium compared with other rodents. This study quantified cranial shape and upper incisors of a phylogenetically diverse sample of rodents to determine if chisel-tooth-digging rodents differ in craniodental morphology. The study showed that the crania of chisel-tooth-digging rodents shared a similar place in morphospace, but a strong phylogenetic signal within the sample meant that this grouping was nonsignificant. It was also found that the curvature of the upper incisor in chisel-tooth diggers was significantly larger than in other rodents. Interestingly, most subterranean rodents in the sample (both chisel-tooth and scratch diggers) had upper incisors that were better able to resist bending than those of terrestrial rodents, presumably due to their similar diets of tough plant materials. Finally, the incisor variables and cranial shape were not found to covary consistently in this sample, highlighting the complex relationship between a species' evolutionary history and functional morphology. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  13. The Betelgeuse Project: Constraints from Rotation

    NASA Astrophysics Data System (ADS)

    Diaz, Manuel; Nance, Sarafina; Sullivan, James; Wheeler, J. Craig

    2017-01-01

    In order to constrain the evolutionary state of the red supergiant Betelgeuse, we have produced a suite of models with ZAMS masses from 15 to 25 Msun in intervals of 1 Msun including the effects of rotation computed with the stellar evolutionary code MESA. For non--rotating models we find results that are similar to other work. It is somewhat difficult to find models that agree within 1 σ of the observed values of R, Teff and L, but modestly easy within 3 σ uncertainty. Incorporating the nominal observed rotational velocity, ~15 km/s, yields significantly different, and challenging, constraints. This velocity constraint is only matched when the models first approach the base of the red supergiant branch (RSB), having crossed the Hertzsprung gap, but not yet having ascended the RSB and most violate even generous error bars on R, Teff and L. Models at the tip of the RSB typically rotate at only ~0.1 km/s, independent of any reasonable choice of initial rotation. We discuss the possible uncertainties in our modeling and the observations, including the distance to Betelgeuse, the rotation velocity, and model parameters. We summarize various options to account for the rotational velocity and suggest that one possibility is that Betelgeuse merged with a companion star of about 1 Msun as it ascended the RSB, in the process producing the ring structure observed at about 7' away. A past coalescence would complicate attempts to understand the evolutionary history and future of Betelgeuse. To that end, we also present asteroseismology models with acoustic waves driven by inner convective regions that could elucidate the inner structure and evolutionary state.

  14. Mountain glaciation drives rapid oxidation of rock-bound organic carbon

    PubMed Central

    Horan, Kate; Hilton, Robert G.; Selby, David; Ottley, Chris J.; Gröcke, Darren R.; Hicks, Murray; Burton, Kevin W.

    2017-01-01

    Over millions of years, the oxidation of organic carbon contained within sedimentary rocks is one of the main sources of carbon dioxide to the atmosphere, yet the controls on this emission remain poorly constrained. We use rhenium to track the oxidation of rock-bound organic carbon in the mountain watersheds of New Zealand, where high rates of physical erosion expose rocks to chemical weathering. Oxidative weathering fluxes are two to three times higher in watersheds dominated by valley glaciers and exposed to frost shattering processes, compared to those with less glacial cover; a feature that we also observe in mountain watersheds globally. Consequently, we show that mountain glaciation can result in an atmospheric carbon dioxide source during weathering and erosion, as fresh minerals are exposed for weathering in an environment with high oxygen availability. This provides a counter mechanism against global cooling over geological time scales. PMID:28983510

  15. Constrained signal reconstruction from wavelet transform coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1991-12-31

    A new method is introduced for reconstructing a signal from an incomplete sampling of its Discrete Wavelet Transform (DWT). The algorithm yields a minimum-norm estimate satisfying a priori upper and lower bounds on the signal. The method is based on a finite-dimensional representation theory for minimum-norm estimates of bounded signals developed by R.E. Cole. Cole`s work has its origins in earlier techniques of maximum-entropy spectral estimation due to Lang and McClellan, which were adapted by Steinhardt, Goodrich and Roberts for minimum-norm spectral estimation. Cole`s extension of their work provides a representation for minimum-norm estimates of a class of generalized transformsmore » in terms of general correlation data (not just DFT`s of autocorrelation lags, as in spectral estimation). One virtue of this great generality is that it includes the inverse DWT. 20 refs.« less

  16. Biophysical constraints on the computational capacity of biochemical signaling networks

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj

    Biophysics fundamentally constrains the computations that cells can carry out. Here, we derive fundamental bounds on the computational capacity of biochemical signaling networks that utilize post-translational modifications (e.g. phosphorylation). To do so, we combine ideas from the statistical physics of disordered systems and the observation by Tony Pawson and others that the biochemistry underlying protein-protein interaction networks is combinatorial and modular. Our results indicate that the computational capacity of signaling networks is severely limited by the energetics of binding and the need to achieve specificity. We relate our results to one of the theoretical pillars of statistical learning theory, Cover's theorem, which places bounds on the computational capacity of perceptrons. PM and CHW were supported by a Simons Investigator in the Mathematical Modeling of Living Systems Grant, and NIH Grant No. 1R35GM119461 (both to PM).

  17. Observational constraints on monomial warm inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visinelli, Luca, E-mail: Luca.Visinelli@studio.unibo.it

    Warm inflation is, as of today, one of the best motivated mechanisms for explaining an early inflationary period. In this paper, we derive and analyze the current bounds on warm inflation with a monomial potential U ∝ φ {sup p} , using the constraints from the PLANCK mission. In particular, we discuss the parameter space of the tensor-to-scalar ratio r and the potential coupling λ of the monomial warm inflation in terms of the number of e-folds. We obtain that the theoretical tensor-to-scalar ratio r ∼ 10{sup −8} is much smaller than the current observational constrain r ∼< 0.12, despitemore » a relatively large value of the field excursion Δ φ ∼ 0.1 M {sub Pl}. Warm inflation thus eludes the Lyth bound set on the tensor-to-scalar ratio by the field excursion.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdi, Rouzbeh; Gao, Yu; Knockel, Bradley

    In this paper, we study indirect detection signals from solar annihilation of dark matter (DM) particles into light right-handed (RH) neutrinos with a mass in a 1–5 GeV range. These RH neutrinos can have a sufficiently long lifetime to allow them to decay outside the Sun, and their delayed decays can result in a signal in gamma rays from the otherwise “dark” solar direction, and also a neutrino signal that is not suppressed by the interactions with solar medium. We find that the latest Fermi-LAT and IceCube results place limits on the gamma ray and neutrino signals, respectively. Combined photonmore » and neutrino bounds can constrain the spin-independent DM-nucleon elastic scattering cross section better than direct detection experiments for DM masses from 200 GeV up to several TeV. Finally, the bounds on spin-dependent scattering are also much tighter than the strongest limits from direct detection experiments.« less

  19. A three-dimensional He-CO potential energy surface with improved long-range behavior

    NASA Astrophysics Data System (ADS)

    McBane, George C.

    2016-12-01

    A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.

  20. Beryllium and boron constraints on an early Galactic bright phase

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Schramm, David N.; Truran, James W.

    1993-01-01

    The recent observations of Be and B in metal-deficient halo dwarfs are used to constrain a 'bright phase' of enhanced cosmic-ray flux in the early Galaxy. Assuming that this Be and B arises from cosmic-ray spallation in the early Galaxy, limits are placed on the intensity of the early (Population II) cosmic-ray flux relative to the present (Population I) flux. A simple estimate of bounds on the flux ratio is 1 - 40. This upper bound would restrict galaxies like our own from producing neutrino fluxes that would be detectable in any currently proposed detectors. It is found that the relative enhancement of the early flux varies inversely with the relative time of enhancement. It is noted that associated gamma-ray production via pp - pi sup 0 pp may be a significant contribution to the gamma-ray background above 100 MeV.

  1. Optimal design for robust control of uncertain flexible joint manipulators: a fuzzy dynamical system approach

    NASA Astrophysics Data System (ADS)

    Han, Jiang; Chen, Ye-Hwa; Zhao, Xiaomin; Dong, Fangfang

    2018-04-01

    A novel fuzzy dynamical system approach to the control design of flexible joint manipulators with mismatched uncertainty is proposed. Uncertainties of the system are assumed to lie within prescribed fuzzy sets. The desired system performance includes a deterministic phase and a fuzzy phase. First, by creatively implanting a fictitious control, a robust control scheme is constructed to render the system uniformly bounded and uniformly ultimately bounded. Both the manipulator modelling and control scheme are deterministic and not IF-THEN heuristic rules-based. Next, a fuzzy-based performance index is proposed. An optimal design problem for a control design parameter is formulated as a constrained optimisation problem. The global solution to this problem can be obtained from solving two quartic equations. The fuzzy dynamical system approach is systematic and is able to assure the deterministic performance as well as to minimise the fuzzy performance index.

  2. Quantifying entanglement with witness operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandao, Fernando G.S.L.

    2005-08-15

    We present a unifying approach to the quantification of entanglement based on entanglement witnesses, which includes several already established entanglement measures such as the negativity, the concurrence, and the robustness of entanglement. We then introduce an infinite family of new entanglement quantifiers, having as its limits the best separable approximation measure and the generalized robustness. Gaussian states, states with symmetry, states constrained to super-selection rules, and states composed of indistinguishable particles are studied under the view of the witnessed entanglement. We derive new bounds to the fidelity of teleportation d{sub min}, for the distillable entanglement E{sub D} and for themore » entanglement of formation. A particular measure, the PPT-generalized robustness, stands out due to its easy calculability and provides sharper bounds to d{sub min} and E{sub D} than the negativity in most of the states. We illustrate our approach studying thermodynamical properties of entanglement in the Heisenberg XXX and dimerized models.« less

  3. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien

    We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k -modes of 0.070 s km{supmore » −1}. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k -modes of 0.057 s km{sup −1}. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ m {sub ν} < 0.8 eV (95% C.L.) including all identified sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ m {sub ν} < 0.14 eV (95% C.L.). With their sensitivity to small scales, Lyα data are ideal to constrain ΛWDM models. Using XQ-100 alone, we issue lower bounds on pure dark matter particles: m {sub X} ∼> 2.08 : keV (95% C.L.) for early decoupled thermal relics, and m {sub s} ∼> 10.2 : keV (95% C.L.) for non-resonantly produced right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to m {sub X} ∼> 4.17 : keV and m {sub s} ∼> 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from m {sub X} ∼> 2.74 : keV for BOSS alone to m {sub X} ∼> 3.10 : keV for the combined BOSS+XQ-100 data set. Finally, we include in our analysis the first two redshift bins ( z = 4.2 and z = 4.6) of the power spectrum measured by Viel et al. 2013 [4] with the high-resolution HIRES/MIKE spectrographs. The addition of HIRES/MIKE power spectrum allows us to further improve the two limits to m {sub X} ∼> 4.65 : keV and m {sub s} ∼> 28.8 : keV (95% C.L.).« less

  4. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  5. Influence of stochastic geometric imperfections on the load-carrying behaviour of thin-walled structures using constrained random fields

    NASA Astrophysics Data System (ADS)

    Lauterbach, S.; Fina, M.; Wagner, W.

    2018-04-01

    Since structural engineering requires highly developed and optimized structures, the thickness dependency is one of the most controversially debated topics. This paper deals with stability analysis of lightweight thin structures combined with arbitrary geometrical imperfections. Generally known design guidelines only consider imperfections for simple shapes and loading, whereas for complex structures the lower-bound design philosophy still holds. Herein, uncertainties are considered with an empirical knockdown factor representing a lower bound of existing measurements. To fully understand and predict expected bearable loads, numerical investigations are essential, including geometrical imperfections. These are implemented into a stand-alone program code with a stochastic approach to compute random fields as geometric imperfections that are applied to nodes of the finite element mesh of selected structural examples. The stochastic approach uses the Karhunen-Loève expansion for the random field discretization. For this approach, the so-called correlation length l_c controls the random field in a powerful way. This parameter has a major influence on the buckling shape, and also on the stability load. First, the impact of the correlation length is studied for simple structures. Second, since most structures for engineering devices are more complex and combined structures, these are intensively discussed with the focus on constrained random fields for e.g. flange-web-intersections. Specific constraints for those random fields are pointed out with regard to the finite element model. Further, geometrical imperfections vanish where the structure is supported.

  6. Cosmic microwave background constraints on secret interactions among sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forastieri, Francesco; Natoli, Paolo; Lattanzi, Massimiliano

    Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson X (with M {sub X} || M {sub W} ), and characterized by a gauge coupling g {sub X} , have been proposed as a mean to reconcile cosmological observations and short-baseline laboratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interactionmore » framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95 % CL) m {sub s} < 0.82 eV or m {sub s} < 0.29 eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength G {sub X} to be < 2.8 (2.0) × 10{sup 10} G {sub F} from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with M {sub X} ∼ 0.1 MeV and relatively large coupling g {sub X} {sub ∼} 10{sup −1}, previously indicated as a possible solution to the small scale dark matter problem.« less

  7. Model-independent indirect detection constraints on hidden sector dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2016-06-10

    If dark matter inhabits an expanded “hidden sector”, annihilations may proceed through sequential decays or multi-body final states. We map out the potential signals and current constraints on such a framework in indirect searches, using a model-independent setup based on multi-step hierarchical cascade decays. While remaining agnostic to the details of the hidden sector model, our framework captures the generic broadening of the spectrum of secondary particles (photons, neutrinos, e{sup +}e{sup −} and p-barp) relative to the case of direct annihilation to Standard Model particles. We explore how indirect constraints on dark matter annihilation limit the parameter space for suchmore » cascade/multi-particle decays. We investigate limits from the cosmic microwave background by Planck, the Fermi measurement of photons from the dwarf galaxies, and positron data from AMS-02. The presence of a hidden sector can change the constraints on the dark matter by up to an order of magnitude in either direction (although the effect can be much smaller). We find that generally the bound from the Fermi dwarfs is most constraining for annihilations to photon-rich final states, while AMS-02 is most constraining for electron and muon final states; however in certain instances the CMB bounds overtake both, due to their approximate independence on the details of the hidden sector cascade. We provide the full set of cascade spectra considered here as publicly available code with examples at http://web.mit.edu/lns/research/CascadeSpectra.html.« less

  8. Model-independent indirect detection constraints on hidden sector dark matter

    DOE PAGES

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.; ...

    2016-06-10

    If dark matter inhabits an expanded ``hidden sector'', annihilations may proceed through sequential decays or multi-body final states. We map out the potential signals and current constraints on such a framework in indirect searches, using a model-independent setup based on multi-step hierarchical cascade decays. While remaining agnostic to the details of the hidden sector model, our framework captures the generic broadening of the spectrum of secondary particles (photons, neutrinos, e +e - andmore » $$\\overline{p}$$ p) relative to the case of direct annihilation to Standard Model particles. We explore how indirect constraints on dark matter annihilation limit the parameter space for such cascade/multi-particle decays. We investigate limits from the cosmic microwave background by Planck, the Fermi measurement of photons from the dwarf galaxies, and positron data from AMS-02. The presence of a hidden sector can change the constraints on the dark matter by up to an order of magnitude in either direction (although the effect can be much smaller). We find that generally the bound from the Fermi dwarfs is most constraining for annihilations to photon-rich final states, while AMS-02 is most constraining for electron and muon final states; however in certain instances the CMB bounds overtake both, due to their approximate independence on the details of the hidden sector cascade. We provide the full set of cascade spectra considered here as publicly available code with examples at http://web.mit.edu/lns/research/CascadeSpectra.html.« less

  9. Advancing precision cosmology with 21 cm intensity mapping

    NASA Astrophysics Data System (ADS)

    Masui, Kiyoshi Wesley

    In this thesis we make progress toward establishing the observational method of 21 cm intensity mapping as a sensitive and efficient method for mapping the large-scale structure of the Universe. In Part I we undertake theoretical studies to better understand the potential of intensity mapping. This includes forecasting the ability of intensity mapping experiments to constrain alternative explanations to dark energy for the Universe's accelerated expansion. We also considered how 21 cm observations of the neutral gas in the early Universe (after recombination but before reionization) could be used to detect primordial gravity waves, thus providing a window into cosmological inflation. Finally we showed that scientifically interesting measurements could in principle be performed using intensity mapping in the near term, using existing telescopes in pilot surveys or prototypes for larger dedicated surveys. Part II describes observational efforts to perform some of the first measurements using 21 cm intensity mapping. We develop a general data analysis pipeline for analyzing intensity mapping data from single dish radio telescopes. We then apply the pipeline to observations using the Green Bank Telescope. By cross-correlating the intensity mapping survey with a traditional galaxy redshift survey we put a lower bound on the amplitude of the 21 cm signal. The auto-correlation provides an upper bound on the signal amplitude and we thus constrain the signal from both above and below. This pilot survey represents a pioneering effort in establishing 21 cm intensity mapping as a probe of the Universe.

  10. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  11. Assessing the Effect of Stellar Companions from High-resolution Imaging of Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Hirsch, Lea A.; Ciardi, David R.; Howard, Andrew W.; Everett, Mark E.; Furlan, Elise; Saylors, Mindy; Horch, Elliott P.; Howell, Steve B.; Teske, Johanna; Marcy, Geoffrey W.

    2017-03-01

    We report on 176 close (<2″) stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). These Kepler targets were prioritized for imaging follow-up based on the presence of small planets, so most of the KOIs in these systems (176 out of 204) have nominal radii <6 {R}\\oplus . Each KOI in our sample was observed in at least two filters with adaptive optics, speckle imaging, lucky imaging, or the Hubble Space Telescope. Multi-filter photometry provides color information on the companions, allowing us to constrain their stellar properties and assess the probability that the companions are physically bound. We find that 60%-80% of companions within 1″ are bound, and the bound fraction is >90% for companions within 0.″5 the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X R = R p (true)/R p (single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X R = 1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.

  12. Naturally light Dirac neutrino in Left-Right Symmetric Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borah, Debasish; Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in

    We study the possibility of generating tiny Dirac masses of neutrinos in Left-Right Symmetric Model (LRSM) without requiring the existence of any additional symmetries. The charged fermions acquire masses through a universal seesaw mechanism due to the presence of additional vector like fermions. The neutrinos acquire a one-loop Dirac mass from the same additional vector like charged leptons without requiring any additional discrete symmetries. The model can also be extended by an additional Z {sub 2} symmetry in order to have a scotogenic version of this scenario predicting a stable dark matter candidate. We show that the latest Planck uppermore » bound on the effective number of relativistic degrees of freedom N {sub eff}=3.15 ± 0.23 tightly constrains the right sector gauge boson masses to be heavier than 3.548 TeV . This bound on gauge boson mass also affects the allowed values of right scalar doublet dark matter mass from the requirement of satisfying the Planck bound on dark matter relic abundance. We also discuss the possible implications of such a scenario in charged lepton flavour violation and generating observable electric dipole moment of leptons.« less

  13. Constraints on primordial magnetic fields from inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less

  14. Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set

    PubMed Central

    Wen, Quan

    2014-01-01

    Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633

  15. Estimating the Inertia Matrix of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Keim, Jason; Shields, Joel

    2007-01-01

    A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known. Starting from the classical equations for conservation of angular momentum of a rigid body, the inertia-matrix-estimation problem is formulated as a constrained least-squares minimization problem with explicit bounds on the inertia matrix incorporated as linear matrix inequalities. The explicit bounds reflect physical bounds on the inertia matrix and reduce the volume of data that must be processed to obtain a solution. The resulting minimization problem is a semidefinite optimization problem that can be solved efficiently, with guaranteed convergence to the global optimum, by use of readily available algorithms. In a test case involving a model attitude platform rotating on an air bearing, it is shown that, relative to a prior method, the present method produces better estimates from few data.

  16. An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.

    2018-05-01

    The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.

  17. Mars: Lithospheric Flexure of the Tharsis Montes Volcanoes and the Evolutionary Relationship to Their Tectonic History

    NASA Astrophysics Data System (ADS)

    Chute, H.; Dombard, A. J.; Byrne, P. K.

    2017-12-01

    Lithospheric flexure associated with Arsia, Pavonis, and Ascraeus Montes has been previously studied to constrain the timeline and breadth of endogenic surface features surrounding these volcanoes. Here, we simulate the radial extent of two specific load-related features: annular graben and flank terraces. Detailed mapping of Ascraeus Mons (the youngest of the three volcanoes) showed a phase of compression of the edifice, forming the terraces and an annulus of graben immediately off the flanks, followed by a period of extension that formed additional graben superposed on the terraces on the lower flanks of the edifice. This transition from compression to extension on the lower flanks has been difficult to reconcile in mechanical models. We explore, with finite-element simulations, the effects of a thermal anomaly associated with an intrusive crustal underplate, which results in locally thinning the lithosphere (in contrast to past efforts that assumed a constant-thickness lithosphere). We find that it is primarily the horizontal extent of this thermal anomaly that governs how the lithosphere flexes under a volcano, as well as the transition from flank compression to a tight annulus of extensional stresses. Specifically, we propose that the structures on Ascraeus may be consistent with an early stage of volcanic growth accompanied by an underplate about the same width as the edifice that narrowed as volcanism waned, resulting in an inward migration of the extensional horizontal stresses from the surrounding plains onto the lower flanks. By linking the surface strains on the volcano with the volcano-tectonic evolution predicted by our flexure model, we can further constrain a more accurate timeline for the tectonic history of Ascraeus Mons. More broadly, because these tectonic structures are commonly observed, our results provide a general evolutionary model for large shield volcanoes on Mars.

  18. Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae).

    PubMed

    Chiachio, Márcio Cesar; Oliveira, Claudio; Montoya-Burgos, Juan I

    2008-11-01

    The Neotropics possess the greatest freshwater fish diversity of the world, rendering the study of their evolutionary history extremely challenging. Loricariidae catfishes are one of the most diverse components of the Neotropical ichthyofauna and despite a long history of classification, major issues still need elucidation. Based on a nuclear gene, we present a robust phylogeny of two former loricariid subfamilies: Hypoptopomatinae and Neoplecostominae. Our results show that Neoplecostominae is nested within Hypoptopomatinae, and is the sister group to the former Otothyrini tribe. According to our results, supplemented by morphological observations, we erect two new subfamilies, the Otothyrinae and a new Hypoptopomatinae, and modify the Neoplecostominae by including the genus Pseudotocinclus. The uncovered evolutionary relationships allow a detailed analysis of their historical biogeography. We tested two Dispersal-Extinction-Cladogenesis models for inferring the distribution range evolution of the new subfamilies, and show that the model having no constrains performs better than a model constraining long-range dispersal. The Maximum Likelihood reconstructions of ancestral ranges showed a marked division between the Amazonian origin of the Hypoptopomatinae and the eastern coastal Brazil+Upper Paraná origin of the Neoplecostominae and Otothyrinae. Markedly few instances of dispersal across the border separating the Amazon basin and the Paraná-Paraguay+eastern coastal Brazil+Uruguay were reconstructed. This result is in clear contrast with the historical biogeography of many Neotropical fishes, including other Loricariidae. Part of the dispersal limitation may be explained by divergent ecological specialization: lowland rivers versus mountain streams habitats. Moreover, because most species of the new subfamilies are small, we hypothesize that body size-related effects might limit their dispersal, like predation and energetic cost to migration. Finally, morphological and anatomical features are presented that limit or, to the contrary, enhance dispersal capability in these small and fascinating catfishes.

  19. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation.

    PubMed

    Butler, Richard J; Sullivan, Corwin; Ezcurra, Martín D; Liu, Jun; Lecuona, Agustina; Sookias, Roland B

    2014-06-10

    The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable 'wildcards' in morphological phylogenetic analyses, reducing phylogenetic resolution. We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and Argentina demonstrates that early archosaurs were distributed over much or all of Pangaea although they may have initially been relatively rare members of faunal assemblages.

  20. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature.

    PubMed

    Ghalambor, Cameron K; Hoke, Kim L; Ruell, Emily W; Fischer, Eva K; Reznick, David N; Hughes, Kimberly A

    2015-09-17

    Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively little attention; however, our results suggest that it may be an important mechanism that predicts evolutionary responses to new environments.

  1. The effect of selection environment on the probability of parallel evolution.

    PubMed

    Bailey, Susan F; Rodrigue, Nicolas; Kassen, Rees

    2015-06-01

    Across the great diversity of life, there are many compelling examples of parallel and convergent evolution-similar evolutionary changes arising in independently evolving populations. Parallel evolution is often taken to be strong evidence of adaptation occurring in populations that are highly constrained in their genetic variation. Theoretical models suggest a few potential factors driving the probability of parallel evolution, but experimental tests are needed. In this study, we quantify the degree of parallel evolution in 15 replicate populations of Pseudomonas fluorescens evolved in five different environments that varied in resource type and arrangement. We identified repeat changes across multiple levels of biological organization from phenotype, to gene, to nucleotide, and tested the impact of 1) selection environment, 2) the degree of adaptation, and 3) the degree of heterogeneity in the environment on the degree of parallel evolution at the gene-level. We saw, as expected, that parallel evolution occurred more often between populations evolved in the same environment; however, the extent of parallel evolution varied widely. The degree of adaptation did not significantly explain variation in the extent of parallelism in our system but number of available beneficial mutations correlated negatively with parallel evolution. In addition, degree of parallel evolution was significantly higher in populations evolved in a spatially structured, multiresource environment, suggesting that environmental heterogeneity may be an important factor constraining adaptation. Overall, our results stress the importance of environment in driving parallel evolutionary changes and point to a number of avenues for future work for understanding when evolution is predictable. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer.

    PubMed

    Brocks, David; Assenov, Yassen; Minner, Sarah; Bogatyrova, Olga; Simon, Ronald; Koop, Christina; Oakes, Christopher; Zucknick, Manuela; Lipka, Daniel Bernhard; Weischenfeldt, Joachim; Feuerbach, Lars; Cowper-Sal Lari, Richard; Lupien, Mathieu; Brors, Benedikt; Korbel, Jan; Schlomm, Thorsten; Tanay, Amos; Sauter, Guido; Gerhäuser, Clarissa; Plass, Christoph

    2014-08-07

    Despite much evidence on epigenetic abnormalities in cancer, it is currently unclear to what extent epigenetic alterations can be associated with tumors' clonal genetic origins. Here, we show that the prostate intratumor heterogeneity in DNA methylation and copy-number patterns can be explained by a unified evolutionary process. By assaying multiple topographically distinct tumor sites, premalignant lesions, and lymph node metastases within five cases of prostate cancer, we demonstrate that both DNA methylation and copy-number heterogeneity consistently reflect the life history of the tumors. Furthermore, we show cases of genetic or epigenetic convergent evolution and highlight the diversity in the evolutionary origins and aberration spectrum between tumor and metastatic subclones. Importantly, DNA methylation can complement genetic data by serving as a proxy for activity at regulatory domains, as we show through identification of high epigenetic heterogeneity at androgen-receptor-bound enhancers. Epigenome variation thereby expands on the current genome-centric view on tumor heterogeneity. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. New X-ray bound on density of primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kusenko, Alexander, E-mail: yinoue@astro.isas.jaxa.jp, E-mail: kusenko@ucla.edu

    We set a new upper limit on the abundance of primordial black holes (PBH) based on existing X-ray data. PBH interactions with interstellar medium should result in significant fluxes of X-ray photons, which would contribute to the observed number density of compact X-ray objects in galaxies. The data constrain PBH number density in the mass range from a few M {sub ⊙} to 2× 10{sup 7} M {sub ⊙}. PBH density needed to account for the origin of black holes detected by LIGO is marginally allowed.

  4. Tunnelling in Dante's Inferno

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuuchi, Kazuyuki; Sperling, Marcus, E-mail: kazuyuki.furuuchi@manipal.edu, E-mail: marcus.sperling@univie.ac.at

    2017-05-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  5. Simple and tight monogamy relations for a class of Bell inequalities

    NASA Astrophysics Data System (ADS)

    Augusiak, Remigiusz

    2017-01-01

    Physical principles constrain the way nonlocal correlations can be distributed among distant parties in a Bell-type experiment. These constraints are usually expressed by monogamy relations that bound the amount of Bell inequality violation observed by a set of parties by the violation observed by a different set of parties. Here we show that the no-signaling principle yields simple and tight monogamy relations for an important class of bipartite and multipartite Bell inequalities. We also link these trade-offs to the guessing probability—a key quantity in device-independent information processing.

  6. The impact of calibration and clock-model choice on molecular estimates of divergence times.

    PubMed

    Duchêne, Sebastián; Lanfear, Robert; Ho, Simon Y W

    2014-09-01

    Phylogenetic estimates of evolutionary timescales can be obtained from nucleotide sequence data using the molecular clock. These estimates are important for our understanding of evolutionary processes across all taxonomic levels. The molecular clock needs to be calibrated with an independent source of information, such as fossil evidence, to allow absolute ages to be inferred. Calibration typically involves fixing or constraining the age of at least one node in the phylogeny, enabling the ages of the remaining nodes to be estimated. We conducted an extensive simulation study to investigate the effects of the position and number of calibrations on the resulting estimate of the timescale. Our analyses focused on Bayesian estimates obtained using relaxed molecular clocks. Our findings suggest that an effective strategy is to include multiple calibrations and to prefer those that are close to the root of the phylogeny. Under these conditions, we found that evolutionary timescales could be estimated accurately even when the relaxed-clock model was misspecified and when the sequence data were relatively uninformative. We tested these findings in a case study of simian foamy virus, where we found that shallow calibrations caused the overall timescale to be underestimated by up to three orders of magnitude. Finally, we provide some recommendations for improving the practice of molecular-clock calibration. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Culture shapes the evolution of cognition.

    PubMed

    Thompson, Bill; Kirby, Simon; Smith, Kenny

    2016-04-19

    A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual-if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption.

  8. Macronutrient intake regulates sexual conflict in decorated crickets.

    PubMed

    Rapkin, J; Jensen, K; Lane, S M; House, C M; Sakaluk, S K; Hunt, J

    2016-02-01

    Sexual conflict results in a diversity of sex-specific adaptations, including chemical additions to ejaculates. Male decorated crickets (Gryllodes sigillatus) produce a gelatinous nuptial gift (the spermatophylax) that varies in size and free amino acid composition, which influences a female's willingness to fully consume this gift. Complete consumption of this gift maximizes sperm transfer through increased retention of the sperm-containing ampulla, but hinders post-copulatory mate choice. Here, we examine the effects of protein (P) and carbohydrate (C) intake on the weight and amino acid composition of the spermatophylax that describes its gustatory appeal to the female, as well as the ability of this gift to regulate sexual conflict via ampulla attachment time. Nutrient intake had similar effects on the expression of these traits with each maximized at a high intake of nutrients with a P : C ratio of 1 : 1.3. Under dietary choice, males actively regulated their nutrient intake but this regulation did not coincide with the peak of the nutritional landscape for any trait. Our results therefore demonstrate that a balanced intake of nutrients is central to regulating sexual conflict in G. sigillatus, but males are constrained from reaching the optima needed to bias the outcome of this conflict in their favour. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  9. Lack of adaptation from standing genetic variation despite the presence of putatively adaptive alleles in introduced sweet vernal grass (Anthoxanthum odoratum).

    PubMed

    Gould, B; Geber, M

    2016-01-01

    Population genetic theory predicts that the availability of appropriate standing genetic variation should facilitate rapid evolution when species are introduced to new environments. However, few tests of rapid evolution have been paired with empirical surveys for the presence of previously identified adaptive genetic variants in natural populations. In this study, we examined local adaptation to soil Al toxicity in the introduced range of sweet vernal grass (Anthoxanthum odoratum), and we genotyped populations for the presence of Al tolerance alleles previously identified at the long-term ecological Park Grass Experiment (PGE, Harpenden, UK) in the species native range. We found that markers associated with Al tolerance at the PGE were present at appreciable frequency in introduced populations. Despite this, there was no strong evidence of local adaptation to soil Al toxicity among populations. Populations demonstrated significantly different intrinsic root growth rates in the absence of Al. This suggests that selection on correlated root growth traits may constrain the ability of populations to evolve significantly different root growth responses to Al. Our results demonstrate that genotype-phenotype associations may differ substantially between the native and introduced parts of a species range and that adaptive alleles from a native species range may not necessarily promote phenotypic differentiation in the introduced range. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  10. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    PubMed

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to re-evolve historical adaptations.

  11. DEEPLY EMBEDDED PROTOSTELLAR POPULATION IN THE 20 km s{sup −1} CLOUD OF THE CENTRAL MOLECULAR ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xing; Gu, Qiusheng; Zhang, Qizhou

    2015-12-01

    We report the discovery of a population of deeply embedded protostellar candidates in the 20 km s{sup −1} cloud, one of the massive molecular clouds in the Central Molecular Zone (CMZ) of the Milky Way, using interferometric submillimeter continuum and H{sub 2}O maser observations. The submillimeter continuum emission shows five 1 pc scale clumps, each of which further fragments into several 0.1 pc scale cores. We identify 17 dense cores, among which 12 are gravitationally bound. Among the 18 H{sub 2}O masers detected, 13 coincide with the cores and probably trace outflows emanating from the protostars. There are also 5more » gravitationally bound dense cores without H{sub 2}O maser detection. In total, the 13 masers and 5 cores may represent 18 protostars with spectral types later than B1 or potentially growing more massive stars at earlier evolutionary stages, given the non-detection in the centimeter radio continuum. In combination with previous studies of CH{sub 3}OH masers, we conclude that the star formation in this cloud is at an early evolutionary phase, before the presence of any significant ionizing or heating sources. Our findings indicate that star formation in this cloud may be triggered by a tidal compression as it approaches pericenter, similar to the case of G0.253+0.016 but with a higher star formation rate, and demonstrate that high angular resolution, high-sensitivity maser, and submillimeter observations are promising techniques to unveil deeply embedded star formation in the CMZ.« less

  12. Studying the evolutionary significance of thermal adaptation in ectotherms: The diversification of amphibians' energetics.

    PubMed

    Nespolo, Roberto F; Figueroa, Julio; Solano-Iguaran, Jaiber J

    2017-08-01

    A fundamental problem in evolutionary biology is the understanding of the factors that promote or constrain adaptive evolution, and assessing the role of natural selection in this process. Here, comparative phylogenetics, that is, using phylogenetic information and traits to infer evolutionary processes has been a major paradigm . In this study, we discuss Ornstein-Uhlenbeck models (OU) in the context of thermal adaptation in ectotherms. We specifically applied this approach to study amphibians's evolution and energy metabolism. It has been hypothesized that amphibians exploit adaptive zones characterized by low energy expenditure, which generate specific predictions in terms of the patterns of diversification in standard metabolic rate (SMR). We complied whole-animal metabolic rates for 122 species of amphibians, and adjusted several models of diversification. According to the adaptive zone hypothesis, we expected: (1) to find "accelerated evolution" in SMR (i.e., diversification above Brownian Motion expectations, BM), (2) that a model assuming evolutionary optima (i.e., an OU model) fits better than a white-noise model and (3) that a model assuming multiple optima (according to the three amphibians's orders) fits better than a model assuming a single optimum. As predicted, we found that the diversification of SMR occurred most of the time, above BM expectations. Also, we found that a model assuming an optimum explained the data in a better way than a white-noise model. However, we did not find evidence that an OU model with multiple optima fits the data better, suggesting a single optimum in SMR for Anura, Caudata and Gymnophiona. These results show how comparative phylogenetics could be applied for testing adaptive hypotheses regarding history and physiological performance in ectotherms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.

    PubMed

    Devine, Erin L; Theobald, Douglas L; Oprian, Daniel D

    2016-08-30

    The visual pigment rhodopsin is a G protein-coupled receptor that covalently binds its retinal chromophore via a Schiff base linkage to an active-site Lys residue in the seventh transmembrane helix. Although this residue is strictly conserved among all type II retinylidene proteins, we found previously that the active-site Lys in bovine rhodopsin (Lys296) can be moved to three other locations (G90K, T94K, S186K) while retaining the ability to form a pigment with retinal and to activate transducin in a light-dependent manner [ Devine et al. ( 2013 ) Proc. Natl. Acad. Sci. USA 110 , 13351 - 13355 ]. Because the active-site Lys is not functionally constrained to be in helix seven, it is possible that it could relocate within the protein, most likely via an evolutionary intermediate with two active-site Lys. Therefore, in this study we characterized potential evolutionary intermediates with two Lys in the active site. Four mutant rhodopsins were prepared in which the original Lys296 was left untouched and a second Lys residue was substituted for G90K, T94K, S186K, or F293K. All four constructs covalently bind 11-cis-retinal, form a pigment, and activate transducin in a light-dependent manner. These results demonstrate that rhodopsin can tolerate a second Lys in the retinal binding pocket and suggest that an evolutionary intermediate with two Lys could allow migration of the Schiff base Lys to a position other than the observed, highly conserved location in the seventh TM helix. From sequence-based searches, we identified two groups of natural opsins, insect UV cones and neuropsins, that contain Lys residues at two positions in their active sites and also have intriguing spectral similarities to the mutant rhodopsins studied here.

  14. Protistan predation interferes with bacterial long-term adaptation to substrate restriction by selecting for defence morphotypes.

    PubMed

    Baumgartner, M; Neu, T R; Blom, J F; Pernthaler, J

    2016-11-01

    Bacteria that are introduced into aquatic habitats face a low substrate environment interspersed with rare productive 'hotspots', as well as high protistan grazing. Whereas the former condition should select for growth performance, the latter should favour traits that reduce predation mortality, such as the formation of large cell aggregates. However, protected morphotypes often convey a growth disadvantage, and bacteria thus face a trade-off between investing in growth or defence traits. We set up an evolutionary experiment with the freshwater isolate Sphingobium sp. strain Z007 that conditionally increases aggregate formation in supernatants from a predator-prey coculture. We hypothesized that low substrate levels would favour growth performance and reduce the aggregated subpopulation, but that the concomitant presence of a flagellate predator might conserve the defence trait. After 26 (1-week) growth cycles either with (P+) or without (P-) predators, bacteria had evolved into strikingly different phenotypes. Strains from P- had low numbers of aggregates and increased growth yield, both at the original rich growth conditions and on various single carbon sources. By contrast, isolates from the P+ treatment formed elevated proportions of defence morphotypes, but exhibited lower growth yield and metabolic versatility. Moreover, the evolved strains from both treatments had lost phenotypic plasticity of aggregate formation. In summary, the (transient) residence of bacteria at oligotrophic conditions may promote a facultative oligotrophic life style, which is advantageous for survival in aquatic habitats. However, the investment in defence against predation mortality may constrain microbial adaptation to the abiotic environment. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  15. Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies

    PubMed Central

    Teplitsky, Celine; Tarka, Maja; Møller, Anders P.; Nakagawa, Shinichi; Balbontín, Javier; Burke, Terry A.; Doutrelant, Claire; Gregoire, Arnaud; Hansson, Bengt; Hasselquist, Dennis; Gustafsson, Lars; de Lope, Florentino; Marzal, Alfonso; Mills, James A.; Wheelwright, Nathaniel T.; Yarrall, John W.; Charmantier, Anne

    2014-01-01

    Background In a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available. Methodology/Principal Findings We investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found. Conclusions These results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary dynamics and hence population persistence in the face of rapid environmental change. PMID:24608111

  16. Subtle but ubiquitous selection on body size in a natural population of collared flycatchers over 33 years.

    PubMed

    Björklund, M; Gustafsson, L

    2017-07-01

    Understanding the magnitude and long-term patterns of selection in natural populations is of importance, for example, when analysing the evolutionary impact of climate change. We estimated univariate and multivariate directional, quadratic and correlational selection on four morphological traits (adult wing, tarsus and tail length, body mass) over a time period of 33 years (≈ 19 000 observations) in a nest-box breeding population of collared flycatchers (Ficedula albicollis). In general, selection was weak in both males and females over the years regardless of fitness measure (fledged young, recruits and survival) with only few cases with statistically significant selection. When data were analysed in a multivariate context and as time series, a number of patterns emerged; there was a consistent, but weak, selection for longer wings in both sexes, selection was stronger on females when the number of fledged young was used as a fitness measure, there were no indications of sexually antagonistic selection, and we found a negative correlation between selection on tarsus and wing length in both sexes but using different fitness measures. Uni- and multivariate selection gradients were correlated only for wing length and mass. Multivariate selection gradient vectors were longer than corresponding vector of univariate gradients and had more constrained direction. Correlational selection had little importance. Overall, the fitness surface was more or less flat with few cases of significant curvature, indicating that the adaptive peak with regard to body size in this species is broader than the phenotypic distribution, which has resulted in weak estimates of selection. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups—isochronal age determination using magnetic evolutionary models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malo, Lison; Doyon, René; Albert, Loïc

    2014-09-01

    Based on high-resolution optical spectra obtained with ESPaDOnS at Canada-France-Hawaii Telescope, we determine fundamental parameters (T {sub eff}, R, L {sub bol}, log g, and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of Malo et al., which takes into account the position, proper motion, magnitude, color, radial velocity, and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth magnetic evolutionary models and field stars with the goal of constraining the age of our candidates. We find that, in general, low-mass starsmore » in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main-sequence stars. The Dartmouth magnetic evolutionary models show a good fit to observations of field K and M stars, assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of the β Pictoris moving group, we have re-examined the age inconsistency problem between lithium depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increases the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear lithium depletion boundary from which an age of 26 ± 3 Myr is derived, consistent with previous age estimates based on this method.« less

  18. Quantification provides a conceptual basis for convergent evolution.

    PubMed

    Speed, Michael P; Arbuckle, Kevin

    2017-05-01

    While much of evolutionary biology attempts to explain the processes of diversification, there is an important place for the study of phenotypic similarity across life forms. When similar phenotypes evolve independently in different lineages this is referred to as convergent evolution. Although long recognised, evolutionary convergence is receiving a resurgence of interest. This is in part because new genomic data sets allow detailed and tractable analysis of the genetic underpinnings of convergent phenotypes, and in part because of renewed recognition that convergence may reflect limitations in the diversification of life. In this review we propose that although convergent evolution itself does not require a new evolutionary framework, none the less there is room to generate a more systematic approach which will enable evaluation of the importance of convergent phenotypes in limiting the diversity of life's forms. We therefore propose that quantification of the frequency and strength of convergence, rather than simply identifying cases of convergence, should be considered central to its systematic comprehension. We provide a non-technical review of existing methods that could be used to measure evolutionary convergence, bringing together a wide range of methods. We then argue that quantification also requires clear specification of the level at which the phenotype is being considered, and argue that the most constrained examples of convergence show similarity both in function and in several layers of underlying form. Finally, we argue that the most important and impressive examples of convergence are those that pertain, in form and function, across a wide diversity of selective contexts as these persist in the likely presence of different selection pressures within the environment. © 2016 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  19. Time-limited environments affect the evolution of egg-body size allometry.

    PubMed

    Eckerström-Liedholm, Simon; Sowersby, Will; Gonzalez-Voyer, Alejandro; Rogell, Björn

    2017-07-01

    Initial offspring size is a fundamental component of absolute growth rate, where large offspring will reach a given adult body size faster than smaller offspring. Yet, our knowledge regarding the coevolution between offspring and adult size is limited. In time-constrained environments, organisms need to reproduce at a high rate and reach a reproductive size quickly. To rapidly attain a large adult body size, we hypothesize that, in seasonal habitats, large species are bound to having a large initial size, and consequently, the evolution of egg size will be tightly matched to that of body size, compared to less time-limited systems. We tested this hypothesis in killifishes, and found a significantly steeper allometric relationship between egg and body sizes in annual, compared to nonannual species. We also found higher rates of evolution of egg and body size in annual compared to nonannual species. Our results suggest that time-constrained environments impose strong selection on rapidly reaching a species-specific body size, and reproduce at a high rate, which in turn imposes constraints on the evolution of egg sizes. In combination, these distinct selection pressures result in different relationships between egg and body size among species in time-constrained versus permanent habitats. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  20. Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás

    2018-05-01

    The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.

  1. Electric dipole moments in natural supersymmetry

    NASA Astrophysics Data System (ADS)

    Nakai, Yuichiro; Reece, Matthew

    2017-08-01

    We discuss electric dipole moments (EDMs) in the framework of CP-violating natural supersymmetry (SUSY). Recent experimental results have significantly tightened constraints on the EDMs of electrons and of mercury, and substantial further progress is expected in the near future. We assess how these results constrain the parameter space of natural SUSY. In addition to our discussion of SUSY, we provide a set of general formulas for two-loop fermion EDMs, which can be applied to a wide range of models of new physics. In the SUSY context, the two-loop effects of stops and charginos respectively constrain the phases of A t μ and M 2 μ to be small in the natural part of parameter space. If the Higgs mass is lifted to 125 GeV by a new tree-level superpotential interaction and soft term with CP-violating phases, significant EDMs can arise from the two-loop effects of W bosons and tops. We compare the bounds arising from EDMs to those from other probes of new physics including colliders, b → sγ, and dark matter searches. Importantly, improvements in reach not only constrain higher masses, but require the phases to be significantly smaller in the natural parameter space at low mass. The required smallness of phases sharpens the CP problem of natural SUSY model building.

  2. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratiomore » (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.« less

  3. Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays

    PubMed Central

    Trucco, Andrea; Traverso, Federico; Crocco, Marco

    2015-01-01

    For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed). In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches. PMID:26066987

  4. Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays.

    PubMed

    Cornish, Neil J; O'Beirne, Logan; Taylor, Stephen R; Yunes, Nicolás

    2018-05-04

    The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, A_{VL}<4×10^{-16} and A_{SL}<4×10^{-17}, while the bounds on the energy density for a scale invariant cosmological background are Ω_{VL}h^{2}<4×10^{-11} and Ω_{SL}h^{2}<3×10^{-13}.

  5. An adaptive evolutionary multi-objective approach based on simulated annealing.

    PubMed

    Li, H; Landa-Silva, D

    2011-01-01

    A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search toward the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well established multi-objective metaheuristic algorithms on both the (constrained) multi-objective knapsack problem and the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated.

  6. Signatures of sex-antagonistic selection on recombining sex chromosomes.

    PubMed

    Kirkpatrick, Mark; Guerrero, Rafael F

    2014-06-01

    Sex-antagonistic (SA) selection has major evolutionary consequences: it can drive genomic change, constrain adaptation, and maintain genetic variation for fitness. The recombining (or pseudoautosomal) regions of sex chromosomes are a promising setting in which to study SA selection because they tend to accumulate SA polymorphisms and because recombination allows us to deploy the tools of molecular evolution to locate targets of SA selection and quantify evolutionary forces. Here we use coalescent models to characterize the patterns of polymorphism expected within and divergence between recombining X and Y (or Z and W) sex chromosomes. SA selection generates peaks of divergence between X and Y that can extend substantial distances away from the targets of selection. Linkage disequilibrium between neutral sites is also inflated. We show how the pattern of divergence is altered when the SA polymorphism or the sex-determining region was recently established. We use data from the flowering plant Silene latifolia to illustrate how the strength of SA selection might be quantified using molecular data from recombining sex chromosomes. Copyright © 2014 by the Genetics Society of America.

  7. Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained Rana temporaria populations.

    PubMed

    Lind, M I; Johansson, F

    2011-12-01

    Phenotypic plasticity can be important for local adaptation, because it enables individuals to survive in a novel environment until genetic changes have been accumulated by genetic accommodation. By analysing the relationship between development rate and growth rate, it can be determined whether plasticity in life-history traits is caused by changed physiology or behaviour. We extended this to examine whether plasticity had been aiding local adaptation, by investigating whether the plastic response had been fixed in locally adapted populations. Tadpoles from island populations of Rana temporaria, locally adapted to different pool-drying regimes, were monitored in a common garden. Individual differences in development rate were caused by different foraging efficiency. However, developmental plasticity was physiologically mediated by trading off growth against development rate. Surprisingly, plasticity has not aided local adaptation to time-stressed environments, because local adaptation was not caused by genetic assimilation but on selection on the standing genetic variation in development time. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  8. Evolutionary responses of tree phenology to the combined effects of assortative mating, gene flow and divergent selection

    PubMed Central

    Soularue, J-P; Kremer, A

    2014-01-01

    The timing of bud burst (TBB) in temperate trees is a key adaptive trait, the expression of which is triggered by temperature gradients across the landscape. TBB is strongly correlated with flowering time and is therefore probably mediated by assortative mating. We derived theoretical predictions and realized numerical simulations of evolutionary changes in TBB in response to divergent selection and gene flow in a metapopulation. We showed that the combination of the environmental gradient of TBB and assortative mating creates contrasting genetic clines, depending on the direction of divergent selection. If divergent selection acts in the same direction as the environmental gradient (cogradient settings), genetic clines are established and inflated by assortative mating. Conversely, under divergent selection of the same strength but acting in the opposite direction (countergradient selection), genetic clines are slightly constrained. We explored the consequences of these dynamics for population maladaptation, by monitoring pollen swamping. Depending on the direction of divergent selection with respect to the environmental gradient, pollen filtering owing to assortative mating either facilitates or impedes adaptation in peripheral populations. PMID:24924591

  9. In two minds: dual-process accounts of reasoning.

    PubMed

    Evans, Jonathan St B T

    2003-10-01

    Researchers in thinking and reasoning have proposed recently that there are two distinct cognitive systems underlying reasoning. System 1 is old in evolutionary terms and shared with other animals: it comprises a set of autonomous subsystems that include both innate input modules and domain-specific knowledge acquired by a domain-general learning mechanism. System 2 is evolutionarily recent and distinctively human: it permits abstract reasoning and hypothetical thinking, but is constrained by working memory capacity and correlated with measures of general intelligence. These theories essentially posit two minds in one brain with a range of experimental psychological evidence showing that the two systems compete for control of our inferences and actions.

  10. On black widow evolutionary scenarios for binary neutron stars

    NASA Technical Reports Server (NTRS)

    Eichler, David; Levinson, Amir

    1988-01-01

    The scenario whereby the pulsar 1957 + 20 ablates its companion by soft gamma-ray synchrotron emission (Ruderman et al., 1988) is critically examined, with particular regard to how the outflowing material, beginning at photospheric temperatures, is heated through the cooling barrier to coronal temperatures. Assuming the conductivity to be at most the Spitzer value, this consideration is found to constrain the mass flux more than two orders of magnitude more severely than merely considering cooling near the sonic point. This would imply that the ablation scenario fails by a large margin, even if the emission from the pulsar is beamed along the orbital plane.

  11. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality

    PubMed Central

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-01-01

    Socio–ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback–-Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio–ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems. PMID:26065713

  12. Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.

    PubMed

    Kasthurirathna, Dharshana; Piraveenan, Mahendra

    2015-06-11

    Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.

  13. A platform for evolving intelligently interactive adversaries.

    PubMed

    Fogel, David B; Hays, Timothy J; Johnson, Douglas R

    2006-07-01

    Entertainment software developers face significant challenges in designing games with broad appeal. One of the challenges concerns creating nonplayer (computer-controlled) characters that can adapt their behavior in light of the current and prospective situation, possibly emulating human behaviors. This adaptation should be inherently novel, unrepeatable, yet within the bounds of realism. Evolutionary algorithms provide a suitable method for generating such behaviors. This paper provides background on the entertainment software industry, and details a prior and current effort to create a platform for evolving nonplayer characters with genetic and behavioral traits within a World War I combat flight simulator.

  14. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    PubMed Central

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  15. Optimal Recall from Bounded Metaplastic Synapses: Predicting Functional Adaptations in Hippocampal Area CA3

    PubMed Central

    Savin, Cristina; Dayan, Peter; Lengyel, Máté

    2014-01-01

    A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments. PMID:24586137

  16. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.

    2009-10-01

    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  17. Bulk diffusion in a kinetically constrained lattice gas

    NASA Astrophysics Data System (ADS)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2018-03-01

    In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.

  18. Polynomial Size Formulations for the Distance and Capacity Constrained Vehicle Routing Problem

    NASA Astrophysics Data System (ADS)

    Kara, Imdat; Derya, Tusan

    2011-09-01

    The Distance and Capacity Constrained Vehicle Routing Problem (DCVRP) is an extension of the well known Traveling Salesman Problem (TSP). DCVRP arises in distribution and logistics problems. It would be beneficial to construct new formulations, which is the main motivation and contribution of this paper. We focused on two indexed integer programming formulations for DCVRP. One node based and one arc (flow) based formulation for DCVRP are presented. Both formulations have O(n2) binary variables and O(n2) constraints, i.e., the number of the decision variables and constraints grows with a polynomial function of the nodes of the underlying graph. It is shown that proposed arc based formulation produces better lower bound than the existing one (this refers to the Water's formulation in the paper). Finally, various problems from literature are solved with the node based and arc based formulations by using CPLEX 8.0. Preliminary computational analysis shows that, arc based formulation outperforms the node based formulation in terms of linear programming relaxation.

  19. Geometric convex cone volume analysis

    NASA Astrophysics Data System (ADS)

    Li, Hsiao-Chi; Chang, Chein-I.

    2016-05-01

    Convexity is a major concept used to design and develop endmember finding algorithms (EFAs). For abundance unconstrained techniques, Pixel Purity Index (PPI) and Automatic Target Generation Process (ATGP) which use Orthogonal Projection (OP) as a criterion, are commonly used method. For abundance partially constrained techniques, Convex Cone Analysis is generally preferred which makes use of convex cones to impose Abundance Non-negativity Constraint (ANC). For abundance fully constrained N-FINDR and Simplex Growing Algorithm (SGA) are most popular methods which use simplex volume as a criterion to impose ANC and Abundance Sum-to-one Constraint (ASC). This paper analyze an issue encountered in volume calculation with a hyperplane introduced to illustrate an idea of bounded convex cone. Geometric Convex Cone Volume Analysis (GCCVA) projects the boundary vectors of a convex cone orthogonally on a hyperplane to reduce the effect of background signatures and a geometric volume approach is applied to address the issue arose from calculating volume and further improve the performance of convex cone-based EFAs.

  20. Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms

    DOE PAGES

    Roald, Line Alnaes; Andersson, Goran

    2017-08-29

    Higher levels of renewable electricity generation increase uncertainty in power system operation. To ensure secure system operation, new tools that account for this uncertainty are required. Here, in this paper, we adopt a chance-constrained AC optimal power flow formulation, which guarantees that generation, power flows and voltages remain within their bounds with a pre-defined probability. We then discuss different chance-constraint reformulations and solution approaches for the problem. Additionally, we first discuss an analytical reformulation based on partial linearization, which enables us to obtain a tractable representation of the optimization problem. We then provide an efficient algorithm based on an iterativemore » solution scheme which alternates between solving a deterministic AC OPF problem and assessing the impact of uncertainty. This more flexible computational framework enables not only scalable implementations, but also alternative chance-constraint reformulations. In particular, we suggest two sample based reformulations that do not require any approximation or relaxation of the AC power flow equations.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fattoyev, F. J.; Piekarewicz, J.

    The sensitivity of the stellar moment of inertia to the neutron-star matter equation of state is examined using accurately calibrated relativistic mean-field models. We probe this sensitivity by tuning both the density dependence of the symmetry energy and the high-density component of the equation of state, properties that are at present poorly constrained by existing laboratory data. Particularly attractive is the study of the fraction of the moment of inertia contained in the solid crust. Analytic treatments of the crustal moment of inertia reveal a high sensitivity to the transition pressure at the core-crust interface. This may suggest the existencemore » of a strong correlation between the density dependence of the symmetry energy and the crustal moment of inertia. However, no correlation was found. We conclude that constraining the density dependence of the symmetry energy - through, for example, the measurement of the neutron skin thickness in {sup 208}Pb - will place no significant bound on either the transition pressure or the crustal moment of inertia.« less

  2. Broadband Spectral Investigations of Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  3. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciricosta, O.; Scott, H.; Durey, P.

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present in this paper an improved 2D model for mix spectroscopy which can be used tomore » retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. Finally, we show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.« less

  4. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    DOE PAGES

    Ciricosta, O.; Scott, H.; Durey, P.; ...

    2017-11-06

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present in this paper an improved 2D model for mix spectroscopy which can be used tomore » retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. Finally, we show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.« less

  5. Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships.

    PubMed

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-09

    The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) < 3.10(-3)). In contrast, bounding equations used to limit ρw(667) retrievals according to the water signal at 555 nm, appeared to be valid for all turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for moderately to very turbid waters (ρw(λNIR) < 10(-2)) while the polynomial function, initially developed by Wang et al. (2012) (Opt. Express 20, 741-753) with remote sensing reflectances over the Western Pacific, was also valid for extremely turbid waters (ρw(λNIR) > 10(-2)). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

  6. A FAST FLARE AND DIRECT REDSHIFT CONSTRAINT IN FAR-ULTRAVIOLET SPECTRA OF THE BLAZAR S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danforth, Charles W.; Nalewajko, Krzysztof; France, Kevin

    The BL Lacertae object S5 0716+714 is one of the most studied blazars on the sky due to its active variability and brightness in many bands, including very-high-energy gamma rays. We present here two serendipitous results from recent far-ultraviolet spectroscopic observations by the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (HST). First, during the course of our 7.3 hr HST observations, the blazar increased in flux rapidly by {approx}40% (-0.45 mag hr{sup -1}) followed by a slower decline (+0.36 mag hr{sup -1}) to previous FUV flux levels. We model this flare using asymmetric flare templates and constrain the physicalmore » size and energetics of the emitting region. Furthermore, the spectral index of the object softens considerably during the course of the flare from {alpha}{sub {nu}} Almost-Equal-To -1.0 to {alpha}{sub {nu}} Almost-Equal-To -1.4. Second, we constrain the source redshift directly using the {approx}30 intervening absorption systems. A system at z = 0.2315 is detected in Ly{alpha}, Ly{beta}, O VI, and N V and defines the lower bound on the source redshift. No absorbers are seen in the remaining spectral coverage (0.2315 < z {sub Ly{alpha}} {approx}< 0.47) and we set a statistical upper bound of z < 0.322 (95% confidence) on the blazar. This is the first direct redshift limit for this object and is consistent with literature estimates of z = 0.31 {+-} 0.08 based on the detection of a host galaxy.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6%more » of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.« less

  8. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ciricosta, O.; Scott, H.; Durey, P.; Hammel, B. A.; Epstein, R.; Preston, T. R.; Regan, S. P.; Vinko, S. M.; Woolsey, N. C.; Wark, J. S.

    2017-11-01

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present here an improved 2D model for mix spectroscopy which can be used to retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. We show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.

  9. Caste load and the evolution of reproductive skew.

    PubMed

    Holman, Luke

    2014-01-01

    Reproductive skew theory seeks to explain how reproduction is divided among group members in animal societies. Existing theory is framed almost entirely in terms of selection, though nonadaptive processes must also play some role in the evolution of reproductive skew. Here I propose that a genetic correlation between helper fecundity and breeder fecundity may frequently constrain the evolution of reproductive skew. This constraint is part of a wider phenomenon that I term "caste load," which is defined as the decline in mean fitness caused by caste-specific selection pressures, that is, differential selection on breeding and nonbreeding individuals. I elaborate the caste load hypothesis using quantitative and population genetic arguments and individual-based simulations. Although selection can sometimes erode genetic correlations and resolve caste load, this may be constrained when mutations have similar pleiotropic effects on breeder and helper traits. I document evidence for caste load, identify putative genomic adaptations to it, and suggest future research directions. The models highlight the value of considering adaptation within the boundaries imposed by genetic architecture and incidentally reaffirm that monogamy promotes the evolutionary transition to eusociality.

  10. Testing theoretical models of subdwarf B stars using multicolor photometry

    NASA Astrophysics Data System (ADS)

    Reed, Mike; Baran, Andrzej; Ostensen, Roy; O'Toole, Simon

    2012-08-01

    Pulsating stars allow a direct investigation of their structure and evolutionary history from the evaluation of pulsation modes. However, the observed pulsation frequencies must first be identified with spherical harmonics (modes). For subdwarfs B (sdB) stars, such identifications using white light photometry currently have significant limitations. We intend to use multicolor photometry to identify pulsation modes and constrain structure models. We propose to observe the pulsating sdB star PG0154+182 (BI Ari) with our multicolor instrument GT Cam. Our observations will be compared with perturbative atmospheric models (BRUCE/KYLIE) to identify the pulsation modes. This is part of our NSF grant to obtain seismic tools to test structure and evolution models; constraining stellar parameters including total mass, envelope mass, internal composition discontinuities and internal rotation. During winter/spring 2012, we were allocated three runs on the 2.1 m to collect multicolor data on other promising pulsating subdwarf B stars as part of this work. Those runs were very successful, prompting our continued proposals. In addition, we will obtain 3-color data using MAIA on the Mercator Telescope (using guaranteed institutional time).

  11. On the biological basis of musicality.

    PubMed

    Honing, Henkjan

    2018-03-15

    In recent years, music and musicality have been the focus of an increasing amount of research effort. This has led to a growing role and visibility of the contribution of (bio)musicology to the field of neuroscience and cognitive sciences at large. While it has been widely acknowledged that there are commonalities between speech, language, and musicality, several researchers explain this by considering musicality as an epiphenomenon of language. However, an alternative hypothesis is that musicality is an innate and widely shared capacity for music that can be seen as a natural, spontaneously developing set of traits based on and constrained by our cognitive abilities and their underlying biology. A comparative study of musicality in humans and well-known animal models (monkeys, birds, pinnipeds) will further our insights on which features of musicality are exclusive to humans and which are shared between humans and nonhuman animals, contribute to an understanding of the musical phenotype, and further constrain existing evolutionary theories of music and musicality. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  12. Source model for the Copahue volcano magmaplumbing system constrained by InSARsurface deformation observations

    NASA Astrophysics Data System (ADS)

    Lundgren, P.; Nikkhoo, M.; Samsonov, S. V.; Milillo, P.; Gil-Cruz, F., Sr.; Lazo, J.

    2017-12-01

    Copahue volcano straddling the edge of the Agrio-Caviahue caldera along the Chile-Argentinaborder in the southern Andes has been in unrest since inflation began in late 2011. We constrain Copahue'ssource models with satellite and airborne interferometric synthetic aperture radar (InSAR) deformationobservations. InSAR time series from descending track RADARSAT-2 and COSMO-SkyMed data span theentire inflation period from 2011 to 2016, with their initially high rates of 12 and 15 cm/yr, respectively,slowing only slightly despite ongoing small eruptions through 2016. InSAR ascending and descending tracktime series for the 2013-2016 time period constrain a two-source compound dislocation model, with a rate ofvolume increase of 13 × 106 m3/yr. They consist of a shallow, near-vertical, elongated source centered at2.5 km beneath the summit and a deeper, shallowly plunging source centered at 7 km depth connecting theshallow source to the deeper caldera. The deeper source is located directly beneath the volcano tectonicseismicity with the lower bounds of the seismicity parallel to the plunge of the deep source. InSAR time seriesalso show normal fault offsets on the NE flank Copahue faults. Coulomb stress change calculations forright-lateral strike slip (RLSS), thrust, and normal receiver faults show positive values in the north caldera forboth RLSS and normal faults, suggesting that northward trending seismicity and Copahue fault motion withinthe caldera are caused by the modeled sources. Together, the InSAR-constrained source model and theseismicity suggest a deep conduit or transfer zone where magma moves from the central caldera toCopahue's upper edifice.

  13. Evolutionary continuity and personhood: Legal and therapeutic implications of animal consciousness and human unconsciousness.

    PubMed

    Benvenuti, Anne

    Convergent lines of research in the biological sciences have made obsolete the commonly held assumption that humans are distinct from and superior to all other animals, a development predicted by evolutionary science. Cumulative evidence has both elevated other animals from the status of "dumb brutes" to that of fully sentient and intentional beings and has simultaneously discredited elevated claims of human rationality, intentionality, and freedom from the constraints experienced by other animals. It follows then that any theoretical model in which humans occupy the top of an imagined evolutionary hierarchy is untenable. This simple fact calls for a rethinking of foundational concepts in law and health sciences. A further cultural fallacy that is exposed by these converging lines of scientific evidence is the notion that the subjective inner and abstract dimension of human beings is the most true and valuable level of analysis for organizing human lives. In fact, our individual and collective minds are particularly vulnerable to elaborated false narratives that may be definitive of the particular forms of suffering that humans experience and seek to heal with modalities like psychoanalytic psychotherapies. I conclude with the suggestion that other animals may have the capacity to help us with this healing project, even as we are ethically bound to heal the suffering that we have collectively imposed upon them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bootstrapping the (A1, A2) Argyres-Douglas theory

    NASA Astrophysics Data System (ADS)

    Cornagliotto, Martina; Lemos, Madalena; Liendo, Pedro

    2018-03-01

    We apply bootstrap techniques in order to constrain the CFT data of the ( A 1 , A 2) Argyres-Douglas theory, which is arguably the simplest of the Argyres-Douglas models. We study the four-point function of its single Coulomb branch chiral ring generator and put numerical bounds on the low-lying spectrum of the theory. Of particular interest is an infinite family of semi-short multiplets labeled by the spin ℓ. Although the conformal dimensions of these multiplets are protected, their three-point functions are not. Using the numerical bootstrap we impose rigorous upper and lower bounds on their values for spins up to ℓ = 20. Through a recently obtained inversion formula, we also estimate them for sufficiently large ℓ, and the comparison of both approaches shows consistent results. We also give a rigorous numerical range for the OPE coefficient of the next operator in the chiral ring, and estimates for the dimension of the first R-symmetry neutral non-protected multiplet for small spin.

  15. Dark energy and fate of the Universe

    NASA Astrophysics Data System (ADS)

    Li, XiaoDong; Wang, Shuang; Huang, QingGuo; Zhang, Xin; Li, Miao

    2012-07-01

    We explore the ultimate fate of the Universe by using a divergence-free parametrization for dark energy w( z)= w 0+ w a [ln(2 + z) / (1 + z) - ln 2]. Unlike the Chevallier-Polarski-Linder parametrization, this parametrization has well behaved, bounded behavior for both high redshifts and negative redshifts, and thus can genuinely cover many theoretical dark energy models. After constraining the parameter space of this parametrization by using the current cosmological observations, we find that, at the 95.4% confidence level, our Universe can still exist at least 16.7 Gyr before it ends in a big rip. Moreover, for the phantom energy dominated Universe, we find that a gravitationally bound system will be destroyed at a time {{t ˜eq Psqrt {2| {1 + 3w( - 1)} |} } {/ {{t ˜eq Psqrt {2| {1 + 3w( - 1)} |} } {[ {6π | {1 + w( - 1)} |} ]}}} . } {[ {6π | {1 + w( - 1)} |} ]}}, where P is the period of a circular orbit around this system, before the big rip.

  16. Universal upper limit on inflation energy scale from cosmic magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Tomohiro; Mukohyama, Shinji, E-mail: tomohiro.fujita@ipmu.jp, E-mail: shinji.mukohyama@ipmu.jp

    2012-10-01

    Recently observational lower bounds on the strength of cosmic magnetic fields were reported, based on γ-ray flux from distant blazars. If inflation is responsible for the generation of such magnetic fields then the inflation energy scale is bounded from above as ρ{sub inf}{sup 1/4} < 2.5 × 10{sup −7}M{sub Pl} × (B{sub obs}/10{sup −15}G){sup −2} in a wide class of inflationary magnetogenesis models, where B{sub obs} is the observed strength of cosmic magnetic fields. The tensor-to-scalar ratio is correspondingly constrained as r < 10{sup −19} × (B{sub obs}/10{sup −15}G){sup −8}. Therefore, if the reported strength B{sub obs} ≥ 10{sup −15}Gmore » is confirmed and if any signatures of gravitational waves from inflation are detected in the near future, then our result indicates some tensions between inflationary magnetogenesis and observations.« less

  17. Indirect signals from solar dark matter annihilation to long-lived right-handed neutrinos

    DOE PAGES

    Allahverdi, Rouzbeh; Gao, Yu; Knockel, Bradley; ...

    2017-04-04

    In this paper, we study indirect detection signals from solar annihilation of dark matter (DM) particles into light right-handed (RH) neutrinos with a mass in a 1–5 GeV range. These RH neutrinos can have a sufficiently long lifetime to allow them to decay outside the Sun, and their delayed decays can result in a signal in gamma rays from the otherwise “dark” solar direction, and also a neutrino signal that is not suppressed by the interactions with solar medium. We find that the latest Fermi-LAT and IceCube results place limits on the gamma ray and neutrino signals, respectively. Combined photonmore » and neutrino bounds can constrain the spin-independent DM-nucleon elastic scattering cross section better than direct detection experiments for DM masses from 200 GeV up to several TeV. Finally, the bounds on spin-dependent scattering are also much tighter than the strongest limits from direct detection experiments.« less

  18. Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations

    NASA Astrophysics Data System (ADS)

    Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Rieben, R.; Tomov, V.

    2018-03-01

    We present a new predictor-corrector approach to enforcing local maximum principles in piecewise-linear finite element schemes for the compressible Euler equations. The new element-based limiting strategy is suitable for continuous and discontinuous Galerkin methods alike. In contrast to synchronized limiting techniques for systems of conservation laws, we constrain the density, momentum, and total energy in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum gradients are adjusted to incorporate the irreversible effect of density changes. Antidiffusive corrections to bounds-compatible low-order approximations are limited to satisfy inequality constraints for the specific total and kinetic energy. An accuracy-preserving smoothness indicator is introduced to gradually adjust lower bounds for the element-based correction factors. The employed smoothness criterion is based on a Hessian determinant test for the density. A numerical study is performed for test problems with smooth and discontinuous solutions.

  19. Atomic Resolution Cryo-EM Structure of β-Galactosidase.

    PubMed

    Bartesaghi, Alberto; Aguerrebere, Cecilia; Falconieri, Veronica; Banerjee, Soojay; Earl, Lesley A; Zhu, Xing; Grigorieff, Nikolaus; Milne, Jacqueline L S; Sapiro, Guillermo; Wu, Xiongwu; Subramaniam, Sriram

    2018-05-10

    The advent of direct electron detectors has enabled the routine use of single-particle cryo-electron microscopy (EM) approaches to determine structures of a variety of protein complexes at near-atomic resolution. Here, we report the development of methods to account for local variations in defocus and beam-induced drift, and the implementation of a data-driven dose compensation scheme that significantly improves the extraction of high-resolution information recorded during exposure of the specimen to the electron beam. These advances enable determination of a cryo-EM density map for β-galactosidase bound to the inhibitor phenylethyl β-D-thiogalactopyranoside where the ordered regions are resolved at a level of detail seen in X-ray maps at ∼ 1.5 Å resolution. Using this density map in conjunction with constrained molecular dynamics simulations provides a measure of the local flexibility of the non-covalently bound inhibitor and offers further opportunities for structure-guided inhibitor design. Published by Elsevier Ltd.

  20. Boosting invisible searches via Z H : From the Higgs boson to dark matter simplified models

    NASA Astrophysics Data System (ADS)

    Gonçalves, Dorival; Krauss, Frank; Kuttimalai, Silvan; Maierhöfer, Philipp

    2016-09-01

    Higgs boson production in association with a Z boson at the LHC is analyzed, both in the Standard Model and in simplified model extensions for dark matter. We focus on H →invisibles searches and show that loop-induced components for both the signal and background present phenomenologically relevant contributions to the B R (H →inv) limits. We also show how multijet merging improves the description of key distributions to this analysis. In addition, the constraining power of this channel to simplified models for dark matter with scalar and pseudoscalar mediators ϕ and A is discussed and compared with noncollider constraints. We find that with 100 fb-1 of LHC data, this channel provides competitive constraints to the noncollider bounds, for most of the parameter space we consider, bounding the universal Standard Model fermion-mediator strength at gv<1 for moderate masses in the range of 100 GeV

  1. On the rarity of X-ray binaries with Wolf-Rayet donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binarymore » evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.« less

  2. Limits on the fluctuating part of y-type distortion monopole from Planck and SPT results

    NASA Astrophysics Data System (ADS)

    Khatri, Rishi; Sunyaev, Rashid

    2015-08-01

    We use the published Planck and SPT cluster catalogs [1,2] and recently published y-distortion maps [3] to put strong observational limits on the contribution of the fluctuating part of the y-type distortions to the y-distortion monopole. Our bounds are 5.4× 10-8 < langle yrangle < 2.2× 10-6. Our upper bound is a factor of 6.8 stronger than the currently best upper 95% confidence limit from COBE-FIRAS of langle yrangle <15× 10-6. In the standard cosmology, large scale structure is the only source of such distortions and our limits therefore constrain the baryonic physics involved in the formation of the large scale structure. Our lower limit, from the detected clusters in the Planck and SPT catalogs, also implies that a Pixie-like experiment should detect the y-distortion monopole at >27-σ. The biggest sources of uncertainty in our upper limit are the monopole offsets between different HFI channel maps that we estimate to be <10-6.

  3. Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys

    NASA Astrophysics Data System (ADS)

    Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia

    2018-07-01

    We forecast constraints on primordial non-Gaussianity (PNG) and bias parameters from measurements of galaxy power spectrum and bispectrum in future radio continuum and optical surveys. In the galaxy bispectrum, we consider a comprehensive list of effects, including the bias expansion for non-Gaussian initial conditions up to second order, redshift space distortions, redshift uncertainties and theoretical errors. These effects are all combined in a single PNG forecast for the first time. Moreover, we improve the bispectrum modelling over previous forecasts, by accounting for trispectrum contributions. All effects have an impact on final predicted bounds, which varies with the type of survey. We find that the bispectrum can lead to improvements up to a factor ˜5 over bounds based on the power spectrum alone, leading to significantly better constraints for local-type PNG, with respect to current limits from Planck. Future radio and photometric surveys could obtain a measurement error of σ (f_{NL}^{loc}) ≈ 0.2. In the case of equilateral PNG, galaxy bispectrum can improve upon present bounds only if significant improvements in the redshift determinations of future, large volume, photometric or radio surveys could be achieved. For orthogonal non-Gaussianity, expected constraints are generally comparable to current ones.

  4. A fresh look into the interacting dark matter scenario

    NASA Astrophysics Data System (ADS)

    Escudero, Miguel; Lopez-Honorez, Laura; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo

    2018-06-01

    The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of σγ DM < 8 × 10‑10 σT (mDM/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.

  5. Constraining Primordial non-Gaussianity with Bispectrum and Power Spectum from Upcoming Optical and Radio Surveys

    NASA Astrophysics Data System (ADS)

    Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia

    2018-04-01

    We forecast constraints on primordial non-Gaussianity (PNG) and bias parameters from measurements of galaxy power spectrum and bispectrum in future radio continuum and optical surveys. In the galaxy bispectrum, we consider a comprehensive list of effects, including the bias expansion for non-Gaussian initial conditions up to second order, redshift space distortions, redshift uncertainties and theoretical errors. These effects are all combined in a single PNG forecast for the first time. Moreover, we improve the bispectrum modelling over previous forecasts, by accounting for trispectrum contributions. All effects have an impact on final predicted bounds, which varies with the type of survey. We find that the bispectrum can lead to improvements up to a factor ˜5 over bounds based on the power spectrum alone, leading to significantly better constraints for local-type PNG, with respect to current limits from Planck. Future radio and photometric surveys could obtain a measurement error of σ (f_{NL}^{loc}) ≈ 0.2. In the case of equilateral PNG, galaxy bispectrum can improve upon present bounds only if significant improvements in the redshift determinations of future, large volume, photometric or radio surveys could be achieved. For orthogonal non-Gaussianity, expected constraints are generally comparable to current ones.

  6. Scalable L-infinite coding of meshes.

    PubMed

    Munteanu, Adrian; Cernea, Dan C; Alecu, Alin; Cornelis, Jan; Schelkens, Peter

    2010-01-01

    The paper investigates the novel concept of local-error control in mesh geometry encoding. In contrast to traditional mesh-coding systems that use the mean-square error as target distortion metric, this paper proposes a new L-infinite mesh-coding approach, for which the target distortion metric is the L-infinite distortion. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum error between the vertex positions in the original and decoded meshes is lower than a given upper bound. Furthermore, the proposed system achieves scalability in L-infinite sense, that is, any decoding of the input stream will correspond to a perfectly predictable L-infinite distortion upper bound. An instantiation of the proposed L-infinite-coding approach is demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this context, the advantages of scalable L-infinite coding over L-2-oriented coding are experimentally demonstrated. One concludes that the proposed L-infinite mesh-coding approach guarantees an upper bound on the local error in the decoded mesh, it enables a fast real-time implementation of the rate allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.

  7. Finding Mass Constraints Through Third Neutrino Mass Eigenstate Decay

    NASA Astrophysics Data System (ADS)

    Gangolli, Nakul; de Gouvêa, André; Kelly, Kevin

    2018-01-01

    In this paper we aim to constrain the decay parameter for the third neutrino mass utilizing already accepted constraints on the other mixing parameters from the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS). The main purpose of this project is to determine the parameters that will allow the Jiangmen Underground Neutrino Observatory (JUNO) to observe a decay parameter with some statistical significance. Another goal is to determine the parameters that JUNO could detect in the case that the third neutrino mass is lighter than the first two neutrino species. We also replicate the results that were found in the JUNO Conceptual Design Report (CDR). By utilizing Χ2-squared analysis constraints have been put on the mixing angles, mass squared differences, and the third neutrino decay parameter. These statistical tests take into account background noise and normalization corrections and thus the finalized bounds are a good approximation for the true bounds that JUNO can detect. If the decay parameter is not included in our models, the 99% confidence interval lies within The bounds 0s to 2.80x10-12s. However, if we account for a decay parameter of 3x10-5 ev2, then 99% confidence interval lies within 8.73x10-12s to 8.73x10-11s.

  8. Bounds on neutrino mass in viscous cosmology

    NASA Astrophysics Data System (ADS)

    Anand, Sampurn; Chaubal, Prakrut; Mazumdar, Arindam; Mohanty, Subhendra; Parashari, Priyank

    2018-05-01

    Effective field theoretic description of dark matter fluid on large scales predicts viscosity of the order 10‑6 H0 MP2. Recently, it has been shown that the same magnitude of viscosity can resolve the discordance between large scale structure observations and Planck CMB data in the σ8-Ωm0 and H0-Ωm0 parameters space. On the other hand, massive neutrinos suppresses the matter power spectrum on the small length scales similar to the viscosities. Therefore, it is expected that the viscous dark matter setup along with massive neutrinos can provide stringent constraint on neutrino mass. In this article, we show that the inclusion of effective viscosity, which arises from summing over non linear perturbations at small length scales, indeed severely constrains the cosmological bound on neutrino masses. Under a joint analysis of Planck CMB and different large scale observation data, we find that upper bound on the sum of the neutrino masses, at 2-σ level, decreases respectively from ∑ mν <= 0.396 eV (for normal hierarchy) and ∑ mν <= 0.378 eV (for inverted hierarchy) to ∑ mν <= 0.267 eV (for normal hierarchy) and ∑ mν <= 0.146 eV (for inverted hierarchy).

  9. Diffusion-limited mixing by incompressible flows

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.

    2018-05-01

    Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).

  10. Solar System constraints on renormalization group extended general relativity: The PPN and Laplace-Runge-Lenz analyses with the external potential effect

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi C.; Mauro, Sebastião; de Almeida, Álefe O. F.

    2016-10-01

    General relativity extensions based on renormalization group effects are motivated by a known physical principle and constitute a class of extended gravity theories that have some unexplored unique aspects. In this work we develop in detail the Newtonian and post-Newtonian limits of a realization called renormalization group extended general relativity (RGGR). Special attention is given to the external potential effect, which constitutes a type of screening mechanism typical of RGGR. In the Solar System, RGGR depends on a single dimensionless parameter ν¯⊙, and this parameter is such that for ν¯⊙=0 one fully recovers GR in the Solar System. Previously this parameter was constrained to be |ν¯ ⊙|≲10-21 , without considering the external potential effect. Here we show that under a certain approximation RGGR can be cast in a form compatible with the parametrized post-Newtonian (PPN) formalism, and we use both the PPN formalism and the Laplace-Runge-Lenz technique to put new bounds on ν¯⊙, either considering or not the external potential effect. With the external potential effect the new bound reads |ν¯ ⊙|≲10-16 . We discuss the possible consequences of this bound on the dark matter abundance in galaxies.

  11. Constraining the right-handed gauge boson mass from lepton number violating meson decays in a low scale left-right model

    NASA Astrophysics Data System (ADS)

    Mandal, Sanjoy; Mitra, Manimala; Sinha, Nita

    2017-08-01

    We analyze the lepton number violating (LNV) meson decays that arise in a TeV scale left-right symmetry model. The right-handed Majorana neutrino N along with the right-handed or Standard Model gauge bosons mediate the meson decays and provide a resonant enhancement of the rates if the mass of N (MN) lies in the range ˜(100 MeV - 5 GeV ) . Using the expected upper limits on the number of events for the LNV decay modes M1+→ℓ+ℓ+ π- (M1=B,D,Ds, K ), we derive constraints plausible on the mass of the right handed charged gauge boson by future searches at the ongoing NA62 and LHCb experiments at CERN, the upcoming Belle II at SuperKEK, as well as at the proposed future experiments, SHiP and FCC-ee. These bounds are complimentary to the limits from the same-sign dilepton search at the Large Hadron Collider (LHC). The very high intensity of charmed mesons expected to be produced at SHiP will result in a far more stringent bound, MW R>18.4 TeV (corresponding to MN=1.46 GeV ), than the other existing bounds from collider and neutrinoless double beta decay searches.

  12. Why there is something rather than nothing: cosmological constant from summing over everything in lorentzian quantum gravity.

    PubMed

    Barvinsky, A O

    2007-08-17

    The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes an equipartition in the physical phase space of the theory (sum over everything), but in terms of the observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of constraining the landscape of string vacua and a possible solution to the dark energy problem in the form of the quasiequilibrium decay of the microcanonical state of the Universe.

  13. (2, 2) superconformal bootstrap in two dimensions

    DOE PAGES

    Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; ...

    2017-05-19

    We find a simple relation between two-dimensional BPS N = 2 superconformal blocks and bosonic Virasoro conformal blocks, which allows us to analyze the crossing equations for BPS 4-point functions in unitary (2, 2) superconformal theories numerically with semidefinite programming. Here, we constrain gaps in the non-BPS spectrum through the operator product expansion of BPS operators, in ways that depend on the moduli of exactly marginal deformations through chiral ring coefficients. In some cases, our bounds on the spectral gaps are observed to be saturated by free theories, by N = 2 Liouville theory, and by certain Landau-Ginzburg models.

  14. Inflationary Axion Cosmology

    DOE R&D Accomplishments Database

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  15. Search for Muonic Dark Forces at BABAR

    NASA Astrophysics Data System (ADS)

    Godang, Romulus

    2017-04-01

    Many models of physics beyond Standard Model predict the existence of light Higgs states, dark photons, and new gauge bosons mediating interactions between dark sectors and the Standard Model. Using a full data sample collected with the BABAR detector at the PEP-II e+e- collider, we report searches for a light non-Standard Model Higgs boson, dark photon, and a new muonic dark force mediated by a gauge boson (Z') coupling only to the second and third lepton families. Our results significantly improve upon the current bounds and further constrain the remaining region of the allowed parameter space.

  16. Relating B_S Mixing and B_S to mu+mu- with New Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golowich, Eugene; /Massachusetts U., Amherst; Hewett, JoAnne

    2012-06-11

    We perform a study of the standard model fit to the mixing quantities {Delta}M{sub B{sub s}}, and {Delta}{Lambda}{sub B{sub s}}/{Delta}M{sub B{sub s}} in order to bound contributions of new physics (NP) to B{sub s} mixing. We then use this to explore the branching fraction of B{sub s} {yields} {mu}{sup +}{mu}{sup -} in certain models of NP. In most cases, this constrains NP amplitudes for B{sub s} {yields} {mu}{sup +}{mu}{sup -} to lie below the standard model component.

  17. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  18. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions?

    PubMed Central

    Hall, F. Scott; Perona, Maria T. G.

    2012-01-01

    This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that are determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms. PMID:22643448

  19. The genetic variance but not the genetic covariance of life-history traits changes towards the north in a time-constrained insect.

    PubMed

    Sniegula, Szymon; Golab, Maria J; Drobniak, Szymon M; Johansson, Frank

    2018-06-01

    Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life-history traits and the correlations among these traits. To predict the response of life-history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance-covariance matrix, G. Here, we estimated G for key life-history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set-up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude-specific covariance of the life-history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance-covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance-covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  20. Phylogenetics of Australasian gall flies (Diptera: Fergusoninidae): Evolutionary patterns of host-shifting and gall morphology.

    PubMed

    Scheffer, S J; Davies, K A; Taylor, G S; Thornhill, A H; Lewis, M L; Winkler, I S; Yeates, D K; Purcell, M F; Makinson, J; Giblin-Davis, R M

    2017-10-01

    This study investigated host-specificity and phylogenetic relationships in Australian galling flies, Fergusonina Malloch (Diptera: Fergusoninidae), in order to assess diversity and explore the evolutionary history of host plant affiliation and gall morphology. A DNA barcoding approach using COI data from 203 Fergusonina specimens from 5gall types on 56 host plant species indicated 85 presumptive fly species. These exhibited a high degree of host specificity; of the 40 species with multiple representatives, each fed only on a single host genus, 29 (72.5%) were strictly monophagous, and 11 (27.5%) were reared from multiple closely related hosts. COI variation within species was not correlated with either sample size or geographic distance. However variation was greater within oligophagous species, consistent with expectations of the initial stages of host-associated divergence during speciation. Phylogenetic analysis using both nuclear and mitochondrial genes revealed host genus-restricted clades but also clear evidence of multiple colonizations of both host plant genus and host species. With the exception of unilocular peagalls, evolution of gall type was somewhat constrained, but to a lesser degree than host plant association. Unilocular peagalls arose more often than any other gall type, were primarily located at the tips of the phylogeny, and did not form clades comprising more than a few species. For ecological reasons, species of this gall type are predicted to harbor substantially less genetic variation than others, possibly reducing evolutionary flexibility resulting in reduced diversification in unilocular gallers. Published by Elsevier Inc.

Top