Science.gov

Sample records for bound defect pairs

  1. Double phase slips and bound defect pairs in parametrically driven waves

    SciTech Connect

    Riecke, H.; Granzow, G.D.

    1997-12-31

    Spatio-temporal chaos in parametrically driven waves is investigated in one and two dimensions using numerical simulations of Ginzburg-Landau equations. A regime is identified in which in one dimension the dynamics are due to double phase slips. In very small systems they are found to arise through a Hopf bifurcation off a mixed mode. In large systems they can lead to a state of localized spatio-temporal chaos, which can be understood within the framework of phase dynamics. In two dimensions the double phase slips are replaced by bound defect pairs. Our simulations indicate the possibility of an unbinding transition of these pairs, which is associated with a transition from ordered to disordered defect chaos.

  2. Bound Polaron Pair Formation in Poly (phenylenevinylenes)

    NASA Astrophysics Data System (ADS)

    Rothberg, Lewis

    The following sections are included: * INTRODUCTION * PHOTOGENERATED YIELD OF SINGLET EXCITONS * AGGREGRATION EFFECTS ON EXCITED STATE PHOTO-GENERATION * ASSIGNMENT TO BOUND POLARON PAIRS AND DISCUSSION * PROBLEMS WITH THE BOUND POLARON PAIR PICTURE AND CONCLUSION * REFERENCES

  3. Search for bound-state electron+positron pair decay

    NASA Astrophysics Data System (ADS)

    Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.

    2016-09-01

    The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.

  4. Approaching Tsirelson's Bound in a Photon Pair Experiment.

    PubMed

    Poh, Hou Shun; Joshi, Siddarth K; Cerè, Alessandro; Cabello, Adán; Kurtsiefer, Christian

    2015-10-30

    We present an experimental test of the Clauser-Horne-Shimony-Holt Bell inequality on photon pairs in a maximally entangled state of polarization in which a value S=2.82759±0.00051 is observed. This value comes close to the Tsirelson bound of |S|≤2sqrt[2], with S-2sqrt[2]=0.00084±0.00051. It also violates the bound |S|≤2.82537 introduced by Grinbaum by 4.3 standard deviations. This violation allows us to exclude that quantum mechanics is only an effective description of a more fundamental theory.

  5. Synthesizing skyrmion bound pairs in Fe-Gd thin films

    DOE PAGES

    Lee, J. C. T.; Chess, J. J.; Montoya, S. A.; Shi, X.; Tamura, N.; Mishra, S. K.; Fischer, P.; McMorran, B. J.; Sinha, S. K.; Fullerton, E. E.; et al

    2016-07-11

    Here, we show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit bound pairs of like-polarity, opposite helicity skyrmions at room temperature. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.

  6. Floquet bound states around defects and adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Lovey, D. A.; Usaj, Gonzalo; Foa Torres, L. E. F.; Balseiro, C. A.

    2016-06-01

    Recent studies have focused on laser-induced gaps in graphene which have been shown to have a topological origin, thereby hosting robust states at the sample edges. While the focus has remained mainly on these topological chiral edge states, the Floquet bound states around defects lack a detailed study. In this paper we present such a study covering large defects of different shape and also vacancy-like defects and adatoms at the dynamical gap at ℏ Ω /2 (ℏ Ω being the photon energy). Our results, based on analytical calculations as well as numerics for full tight-binding models, show that the bound states are chiral and appear in a number which grows with the defect size. Furthermore, while the bound states exist regardless of the type of the defect's edge termination (zigzag, armchair, mixed), the spectrum is strongly dependent on it. In the case of top adatoms, the bound state quasienergies depend on the adatoms energy. The appearance of such bound states might open the door to the presence of topological effects on the bulk transport properties of dirty graphene.

  7. Pair condensation and bound states in fermionic systems

    SciTech Connect

    Sedrakian, Armen; Clark, John W.

    2006-03-15

    We study the finite temperature-density phase diagram of an attractive fermionic system that supports two-body (dimer) and three-body (trimer) bound states in free space. Using interactions characteristic for nuclear systems, we obtain the critical temperature T{sub c2} for the superfluid phase transition and the limiting temperature T{sub c3} for the extinction of trimers. The phase diagram features a Cooper-pair condensate in the high-density, low-temperature domain which, with decreasing density, crosses over to a Bose condensate of strongly bound dimers. The high-temperature, low-density domain is populated by trimers whose binding energy decreases toward the density-temperature domain occupied by the superfluid and vanishes at a critical temperature T{sub c3}>T{sub c2}.

  8. Metastable Frenkel Pair Defect in Graphite: Source of Wigner Energy?

    NASA Astrophysics Data System (ADS)

    Ewels, C. P.; Telling, R. H.; El-Barbary, A. A.; Heggie, M. I.; Briddon, P. R.

    2003-07-01

    The atomic processes associated with energy storage and release in irradiated graphite have long been subject to untested speculation. We examine structures and recombination routes for interstitial-vacancy (I-V) pairs in graphite. Interaction results in the formation of a new metastable defect (an intimate I-V pair) or a Stone-Wales defect. The intimate I-V pair, although 2.9eV more stable than its isolated constituents, still has a formation energy of 10.8eV. The barrier to recombination to perfect graphite is calculated to be 1.3eV, consistent with the experimental first Wigner energy release peak at 1.38eV. We expect similar defects to form in carbon nanostructures such as nanotubes, nested fullerenes, and onions under irradiation.

  9. Defect pair in the elastic lattice of pancake vortices

    SciTech Connect

    Slutzky, M.; Mints, R.G.; Brandt, E.H.

    1997-07-01

    An additional pancake-antipancake vortex pair is considered in the vortex lattice of layered superconductors. Within linear elastic continuum theory, the relaxation of the background lattice screens the long-range logarithmic interaction of the defect pair, reducing the factor ln(r{sub 0}/{xi}) to ln(a/{xi}) where r{sub 0} is the pair spacing, {xi} the in-plane coherence length, and a the vortex spacing. The finite tilt modulus does not destroy this ideal two-dimensional screening, yielding a small correction {approximately}(a{sup 2}/8{pi}{lambda}{sup 2})ln(r{sub 0}/a), which in principle is of long range, but has a very small prefactor when the vortex spacing a is smaller than the in-plane penetration depth {lambda}. {copyright} {ital 1997} {ital The American Physical Society}

  10. Experimental observation of defect pair separation triggering phase transitions

    NASA Astrophysics Data System (ADS)

    Cordin, M.; Lechner, B. A. J.; Duerrbeck, S.; Menzel, A.; Bertel, E.; Redinger, J.; Franchini, C.

    2014-03-01

    First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality.

  11. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    NASA Astrophysics Data System (ADS)

    Camacho-Guardian, A.; Domínguez-Castro, G. A.; Paredes, R.

    2016-08-01

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultra- cold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover superfluidity in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama.

  12. Migration of point defects and a defect pair in zinc oxide using the dimer method

    SciTech Connect

    Chen, Dong; Gao, Fei; Dong, Mingdong; Liu, Bo

    2012-09-24

    The migration mechanism and the minimum energy path of vacancies, interstitials and an interstitial-vacancy pair in zinc oxide have been studied by the dimer method. The in-plane and out-of-plane migrations of zinc and oxygen vacancies are found to be anisotropic. The kick-out mechanism is energetically preferred to zinc and oxygen interstitials that can easily migrate through the ZnO crystal lattice. In addition, the migration process of an interstitial-vacancy pair as a complex of an octahedral oxygen interstitial and a zinc vacancy is dominated by an oxygen interstitial/zinc vacancy successive migration. The energy barriers indicate that the existence of oxygen interstitial in the defect pair can promote the mobility of zinc vacancy, whereas the migration of oxygen interstitial is slowed down due to the presence of zinc vacancy. In the end, we show a possible migration path of the interstitial-vacancy pair that can be dissociated through a set of displacement movements.

  13. Bound-free electron-positron pair production in relativistic heavy-ion collisions

    SciTech Connect

    Senguel, M. Y.; Gueclue, M. C.; Fritzsche, S.

    2009-10-15

    The bound-free electron-positron pair production is considered for relativistic heavy ion collisions. In particular, cross sections are calculated for the pair production with the simultaneous capture of the electron into the 1s ground state of one of the ions and for energies that are relevant for the relativistic heavy ion collider and the large hadron colliders. In the framework of perturbation theory, we applied Monte Carlo integration techniques to compute the lowest-order Feynman diagrams amplitudes by using Darwin wave functions for the bound states of the electrons and Sommerfeld-Maue wave functions for the continuum states of the positrons. Calculations were performed especially for the collision of Au+Au at 100 GeV/nucleon and Pb+Pb at 3400 GeV/nucleon.

  14. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  15. In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap.

    PubMed

    Urita, Koki; Suenaga, Kazu; Sugai, Toshiki; Shinohara, Hisanori; Iijima, Sumio

    2005-04-22

    Direct observation of individual defects during formation and annihilation in the interlayer gap of double-wall carbon nanotubes (DWNT) is demonstrated by high-resolution transmission electron microscopy. The interlayer defects that bridge two adjacent graphen layers in DWNT are stable for a macroscopic time at the temperature below 450 K. These defects are assigned to a cluster of one or two interstitial-vacancy pairs (I-V pairs) and often disappear just after their formation at higher temperatures due to an instantaneous recombination of the interstitial atom with vacancy. Systematic observations performed at the elevated temperatures find a threshold for the defect annihilation at 450-500 K, which, indeed, corresponds to the known temperature for the Wigner energy release. PMID:15904158

  16. Long range coupling between defect centres in inorganic nanostructures: Valence alternation pairs in nanoscale silica

    NASA Astrophysics Data System (ADS)

    Zwijnenburg, M. A.; Illas, F.; Bromley, S. T.

    2012-10-01

    Valence alternation pair (VAP) states are formed by a closed-shell combination of two space- and charge-separated topological defect centres. These pairs of defects, although historically invoked to explain the electronic properties of bulk inorganic glassy materials (e.g., amorphous silicon dioxide) via the concept of negative-U defects, have more recently been found in a number of theoretical studies of silica surfaces and nanoscale silica clusters. Using density functional theory we systematically probe the structure and internal stability of VAPs in a number of silica nanoclusters with respect to the separation of the two constituent defect centres. We find that VAP states in nanosilica are strongly stabilised by the attractive electrostatic interaction between their separated oppositely charged component defects such that VAPs can persist up to an internal separation of a least 1.5 nanometres. Beyond this distance VAPs become unstable with respect to an open-shell combination of topological defects, virtually indistinguishable from two isolated open-shell defect centres. Finally, we theoretically analyse the possibility of experimental observation of VAP states through their infra-red vibrational spectra.

  17. Rare-earth defect pairs in GaN: LDA+U calculations

    NASA Astrophysics Data System (ADS)

    Sanna, Simone; Schmidt, W. G.; Frauenheim, Th.; Gerstmann, U.

    2009-09-01

    The structural and electronic properties of rare-earth (RE) (Eu, Er, and Tm) related defect pairs in GaN have been investigated theoretically. Based on LDA+U total-energy calculations, their possible role in the luminescence process is discussed. In all charge states, the lanthanides show a strong preference for the Ga-lattice site, either as isolated substitutional or complexed with intrinsic defects. With respect to the electronic valence, a proper description of correlation effects of the strongly localized 4f electrons is shown to be crucial, especially if the REGa is paired with donors like the Ga interstitial or the N vacancy. The pairs formed by REGa substitutionals and vacancies or interstitials lower the symmetry and are found to locally distort the environment. By this, they are quite effective in relaxing the selection rules for the luminescent intra- 4f -shell transitions. While for n -type GaN, the next-nearest-neighbor pair REGaVGa pair is energetically favored, for p -type GaN, the REGaVN pair provides the most stable configuration and introduces shallow levels close to the conduction band, which can act as assistant levels in the luminescence process.

  18. The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Do; Wang, C. Z.; Yoon, Euijoon; Hwang, Nong-Moon; Ho, K. M.

    2008-01-01

    The reconstruction process of vacancy hole in carbon nanotube is investigated by tight-binding molecular dynamics simulations and by ab initio total energy calculations. In the molecular dynamics simulation, a vacancy hole is found to reconstruct into two separated pentagon-heptagon pair defects. As the result of reconstruction, the radius of the carbon nanotube is reduced and the chirality of the tube is partly changed. During the vacancy hole healing process, the formation of pentagonal and heptagonal rings is proceeded by the subsequent Stone-Wales [Chem. Phys. Lett. 128, 501 (1986)] transformation.

  19. The formation of pentagon-heptagon pair defect by the reconstruction og vacancy defects in carbon nanotube

    SciTech Connect

    Lee, G.D.; Wang, C.Z.; Yoon, E.; Hwang, N.M.; Ho, K.M.

    2008-01-29

    The reconstruction process of vacancy hole in carbon nanotube is investigated by tight-binding molecular dynamics simulations and by ab initio total energy calculations. In the molecular dynamics simulation, a vacancy hole is found to reconstruct into two separated pentagon-heptagon pair defects. As the result of reconstruction, the radius of the carbon nanotube is reduced and the chirality of the tube is partly changed. During the vacancy hole healing process, the formation of pentagonal and heptagonal rings is proceeded by the subsequent Stone-Wales.

  20. Robust zero-energy bound states around a pair-density-wave vortex core in locally noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Higashi, Yoichi; Nagai, Yuki; Yoshida, Tomohiro; Masaki, Yusuke; Yanase, Youichi

    2016-03-01

    We numerically investigate the electronic structures around a vortex core in a bilayer superconducting system, with s -wave pairing, Rashba spin-orbit coupling, and Zeeman magnetic field, with the use of the quasiclassical Green's function method. The BCS phase and the so-called pair-density-wave (PDW) phase appear in the temperature-magnetic-field phase diagram in a bulk uniform system [T. Yoshida et al., Phys. Rev. B 86, 134514 (2012), 10.1103/PhysRevB.86.134514]. In the low magnetic field perpendicular to the layers, the zero-energy vortex bound states in the BCS phase are split by the Zeeman magnetic field. On the other hand, the PDW state appears in the high magnetic field, and the sign of the order parameter is opposite between the layers. We find that the vortex core suddenly shrinks and the zero-energy bound states appear by increasing the magnetic field through the BCS-PDW transition. We discuss the origin of the change in the vortex-core structure between the BCS and PDW states by clarifying the relation between the vortex bound states and the bulk energy spectra. In the high-magnetic-field region, the PDW state and vortex bound states are protected by the spin-orbit coupling. These characteristic behaviors in the PDW state can be observed by scanning tunneling microscopy/spectroscopy.

  1. Vibrational quantum defect for the analysis of weakly bound molecules. Application to Rubidium and cesium data.

    NASA Astrophysics Data System (ADS)

    Pruvost, L.; Jelassi, H.; Viaris de Lesegno, B.

    2009-05-01

    In the context of cold molecules physics, the spectroscopic data and their analysis play a very important role. The photoassociation spectroscopy of alkali dimmers, performed by laser excitation of cold atoms, is one of the methods providing high-resolution data about the vibrational levels lying close to the dissociation limit. Such weakly bound molecules are described by the dipole-dipole interaction, i.e. -1/R^3 where R is the inter-nuclear distance and their eigen energies are close to the Le Roy-Bernstein formula [1]. The discrepancies to the formula law are due to the short-range interactions of the potential and to couplings between potentials. We have expressed the discrepancies via a parameter, the vibrational quantum defect (VQD), defined similar to the atomic quantum defect [2]. The VQD deduced from the data and plotted versus the energy allows us to emphasize the couplings. Furthermore, a fit of the graph using a 2-channel model provides the value of the coupling and a characterization of the 2 potentials. We have applied the method 5s1/2-5p1/20u+ data of Rb2 recorded in our group [3] and 6s1/2-6p1/20u+ data of Cs2 recorded in Stwalley group [4]. The coupling due to spin-orbit interaction has been deduced, the perturbing levels identified and the wavefunction mixing deduced. [1] R. J. Le Roy , R. B. Bernstein, J. Chem. Phys. 52, 3869, 1970. [2] H. Jelassi et al., Phys. Rev. A. 73, 32501, 2006. [3] H. Jelassi et al., Phys. Rev. A. 74, 12510, 2006. [4] H. Jelassi, et al., Phys. Rev. A 78, 022503, 2008.

  2. Fano effect and bound state in continuum in electron transport through an armchair graphene nanoribbon with line defect

    PubMed Central

    2013-01-01

    Electron transport properties in an armchair graphene nanoribbon are theoretically investigated by considering the presence of line defect. It is found that the line defect causes the abundant Fano effects and bound state in continuum (BIC) in the electron transport process, which are tightly dependent on the width of the nanoribbon. By plotting the spectra of the density of electron states of the line defect, we see that the line defect induces some localized quantum states around the Dirac point and that the different localizations of these states lead to these two kinds of transport results. Next, the Fano effect and BIC phenomenon are detailedly described via the analysis about the influence of the structure parameters. According to the numerical results, we propose such a structure to be a promising candidate for graphene nanoswitch. PACS 81.05.Uw, 71.55.-i, 73.23.-b, 73.25.+i PMID:23870061

  3. Spectroscopic Signatures of Defect-Induced Pair Breaking in Bi2Sr2CaCu2O8+x

    NASA Astrophysics Data System (ADS)

    Vobornik, I.; Berger, H.; Pavuna, D.; Onellion, M.; Margaritondo, G.; Rullier-Albenque, F.; Forró, L.; Grioni, M.

    1999-04-01

    We investigated the effect of disorder on the spectral properties of the high temperature superconductor Bi2Sr2CaCu2O8+x. We find that small defect densities, in the low 10-3 range, already suppress the characteristic spectral signature of the superconducting state, while new excitations appear within the gap. We conclude that, due to defect-induced pair breaking, superconducting pairs and normal carriers coexist below Tc. At higher levels of disorder the normal state is also strongly affected, and the quasiparticle features progressively smeared out.

  4. Application of the Recoupled Pair Bonding Model to Bound Doublet and Quartet States of Hso, Soh, Osf and Sof

    NASA Astrophysics Data System (ADS)

    Takeshita, Tyler Y.; Woon, D. E.; Dunning, T. H., Jr.

    2010-06-01

    The recoupled pair bonding model and high level ab initio calculations [MRCI, RCCSD(T)] with correlation consistent basis sets were used to examine the optimized structures, bonding behavior and bond energies of bound HSO, SOH, OSF and SOF doublet and quartet states. This was done by the systematic addition of H or F to the 3Σ-, 1Δ and 3Π states of SO or by adding O(3P,1D) to the 2Π and 4Σ- states of SF. Of particular interest are those states that are either formed as a result of decoupling a pair of electrons or by further addition to a molecule that has already undergone the decoupling process. One of the goals of these studies is to explore the effect of ligand properties such as electronegativity or electron affinity in order to anticipate their impact on trends in bond energy and other properties similar to those observed in previous SFn (n=1--6) recoupled pair bonding studies. This study marks the first exploration of the behavior of a divalent ligand in hypervalent bonding under the recoupled pair bonding model.

  5. Thermodynamic and kinetic properties of hydrogen defect pairs in SrTiO3 from density functional theory.

    PubMed

    Bork, Nicolai; Bonanos, Nikolaos; Rossmeisl, Jan; Vegge, Tejs

    2011-09-01

    A density functional theory investigation of the thermodynamic and kinetic properties of hydrogen-hydrogen defect interactions in the cubic SrTiO(3) perovskite is presented. We find a net attraction between two hydrogen atoms with an optimal separation of ∼2.3 Å. The energy gain is ca. 0.33 eV compared to two non-interacting H defects. The main cause of the net attractive potential is elastic defect interactions through lattice deformation. Two possible diffusion paths for the hydrogen defect pair are investigated and are both determined to be faster than the corresponding diffusion path for single hydrogen atoms. Finally, we set up a simple model to determine the contribution from the double hydrogen defect to the total hydrogen flux, and find the double defect to be the main diffusing species at temperatures below ca. 400 °C. Post submission infrared absorption experiments show excellent agreement with the proposed properties of the double hydrogen defect. PMID:21769355

  6. Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide

    DOE PAGES

    Wright, A. F.; Modine, N. A.

    2015-01-23

    The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained usingmore » a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge. To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.« less

  7. Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide

    SciTech Connect

    Wright, A. F.; Modine, N. A.

    2015-01-23

    The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained using a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge. To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.

  8. Bound and free self-interstitial defects in graphite and bilayer graphene: A computational study

    SciTech Connect

    Gulans, Andris; Puska, Martti J.; Nieminen, Risto M.

    2011-07-01

    The role of self-interstitials in the response of layered carbon materials such as graphite, bilayer graphene and multiwalled carbon nanotubes to irradiation has long remained a puzzle. Using density-functional-theory methods with an exchange and correlation functional which takes into account the interlayer van der Waals interaction in these systems without any material-specific empirical parameters, we study the energetics and migration of single- and di-interstitials in graphite and bilayer graphene. We show that two classes of interstitials, ''bound'' and ''free,'' can coexist. The latter are mobile at room and lower temperatures, which explains the experimental data and reconciles them with the results of atomistic simulations. Our results shed light on the behavior of graphite and carbon nanotubes under irradiation and have implications for irradiation-mediated processing of bilayer graphene.

  9. Evidence for a pairing anti-halo effect in the odd-even staggering in reaction cross sections of weakly bound nuclei

    SciTech Connect

    Hagino, K.; Sagawa, H.

    2011-07-15

    We investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a three-body model, respectively. We show that the odd-even staggering in the reaction cross sections of {sup 30,31,32}Ne and {sup 14,15,16}C are successfully reproduced, and thus the staggering can be attributed to the pairing anti-halo effect. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for s and p waves using the HFB wave functions.

  10. Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states

    NASA Astrophysics Data System (ADS)

    Zhao-Tan, Jiang; Cheng-Cheng, Zhong

    2016-06-01

    We investigate the quantum transport properties through a special kind of quantum dot (QD) system composed of a serially coupled multi-QD-pair (multi-QDP) chain and side-coupled Majorana bound states (MBSs) by using the Green functions method, where the conductance can be classified into two kinds: the electron tunneling (ET) conductance and the Andreev reflection (AR) one. First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e 2/h is present (or absent) when the MBS is coupled to the far left (or the other) QDP. Moreover, the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one, and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs, indicating that the MBS will make obvious influences on the competition between the ET and AR processes. Then we find that the tunneling rate Γ L is able to affect the conductances of leads L and R in different ways, demonstrating that there exists a Γ L-related competition between the AR and ET processes. Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e 2/h into two sub-peaks. As the inter-MBS coupling becomes stronger, the two sub-peaks are pushed away from each other and simultaneously become lower, which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e 2/2h become higher. Also, the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger. This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs, which is helpful for understanding the nature of the MBSs, as well as the MBS-related QD transport properties. Project supported by the National Natural

  11. Investigating of the exclusive reaction of π⁺π⁻ pair electroproduction on a proton bound in a deuteron

    SciTech Connect

    Skorodumina, Yu. A.; Golovach, Evgeny N.; Gothe, Ralf W.; Ishkhanov, Boris S.; Isupov, Evgeny L.; Mokeev, Viktor I.; Fedotov, Gleb V.

    2015-04-01

    Preliminary results from analyzing π⁺π⁻ pair electroproduction on a proton bound in a deuteron are presented. Procedures for considering the Fermi motion of the initial proton in the deuteron and assessing the effects of interaction in the final states are developed. The yield of the reaction ep(n) → e'p'(n')π⁺π⁻ is obtained for the first time.

  12. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    PubMed

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.

  13. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    PubMed

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands. PMID:27408925

  14. Bound-free pair production in ultra-relativistic ion collisions at the LHC collider: analytic approach to the total and differential cross sections

    NASA Astrophysics Data System (ADS)

    Artemyev, A. N.; Jentschura, U. D.; Serbo, V. G.; Surzhykov, A.

    2012-03-01

    A theoretical investigation of the bound-free electron-positron pair production in relativistic heavy ion collisions is presented. Special attention is paid to the positrons emitted under large angles with respect to the beam direction. The measurement of these positrons in coincidence with the down-charged ions is in principle feasible by LHC experiments. In order to provide reliable estimates for such measurements, we employ the equivalent photon approximation together with the Sauter approach and derive simple analytic expressions for the differential pair-production cross section, which compare favorably to the results of available numerical calculations. Based on the analytic expressions, detailed calculations are performed for collisions of bare Pb82+ ions, taking typical experimental conditions of the LHC experiments into account. We find that the expected count rate strongly depends on the experimental parameters and may be significantly enhanced by increasing the positron-detector acceptance cone.

  15. Phase fluctuation in overdoped cuprates? Superconducting dome due to Mott-ness of the tightly bound preformed pairs

    NASA Astrophysics Data System (ADS)

    Ku, Wei; Yang, Fan

    2015-03-01

    In contrast to the current lore, we demonstrate that even the overdoped cuprates suffer from superconducting phase fluctuation in the strong binding limit. Specifically, the Mott-ness of the underlying doped holes dictates naturally a generic optimal doping around 15% and nearly complete loss of phase coherence around 25%, giving rise to a dome shape of superconducting transition temperature in excellent agreement with experimental observations of the cuprates. We verify this effect with a simple estimation using Gutzwiller approximation of the preformed pairs, obtained through variational Monte Carlo calculation. This realization suggests strongly the interesting possibility that the high-temperature superconductivity in the cuprates might be mostly described by Bose-Einstein condensation, without crossing over to amplitude fluctuating Cooper pairs. Supported by Department of Energy, Office of Basic Energy Science DE-AC02-98CH10886.

  16. Crystallization and Preliminary X-ray Diffraction Analysis of SeqA Bound to a Pair Hemimethylated GATC Sites

    SciTech Connect

    Chung,Y.; Guarne, A.

    2008-01-01

    Escherichia coli SeqA is a negative regulator of DNA replication. The SeqA protein forms a high-affinity complex with newly replicated DNA at the origin of replication and thus prevents premature re-initiation events. Beyond the origin, SeqA is found at the replication forks, where it organizes newly replicated DNA into higher ordered structures. These two functions depend on SeqA binding to multiple hemimethylated GATC sequences. In an effort to understand how SeqA forms a high-affinity complex with hemimethylated DNA, a dimeric variant of SeqA was overproduced, purified and crystallized bound to a DNA duplex containing two hemimethylated GATC sites. The preliminary X-ray analysis of crystals diffracting to 3 Angstroms resolution is presented here.

  17. Biosynthesis of Cd-bound phytochelatins by Phaeodactylum tricornutum and their speciation by size-exclusion chromatography and ion-pair chromatography coupled to ICP-MS.

    PubMed

    Loreti, Valeria; Toncelli, Daniel; Morelli, Elisabetta; Scarano, Gioacchino; Bettmer, Jörg

    2005-10-01

    Cd-bound phytochelatins (Cd-PCs) have been synthesised by incubation of Phaeodactylum tricornutum cell cultures with Cd and purified by size-exclusion chromatography-UV-Vis. These complexes, which were identified in previous work, have now been used as model substances to develop and optimise ion-pair chromatography (IPC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) for analysis of Cd-PCs. Subsequent analysis of samples taken from Silene vulgaris plants cultivated under heavy metal stress conditions revealed Cd signals but no Cd-PC signals. By use of isotopically enriched (116)Cd-PCs the sample preparation steps were verified to determine the stability of the analytes. We observed species transformation between Cd-PCs and other unidentified Cd complexes. Consequently, the kinetic and thermodynamic lability of Cd-PCs are decisive factors in their detection.

  18. Defects-assisted ferromagnetism due to bound magnetic polarons in Ce into Fe, Co:ZnO nanoparticles and first-principle calculations.

    PubMed

    Verma, Kuldeep Chand; Kotnala, R K

    2016-02-21

    Zn0.94TM0.03Ce0.03O [Zn0.94Fe0.03Ce0.03O (ZFCeO) and Zn0.94Co0.03Ce0.03O (ZCCeO)] nanoparticles were synthesized by a sol-gel process. Elemental analysis of these nanoparticles detects the weight percentage of Zn, Co, Fe, Ce and O in each sample. The Rietveld refinement of the X-ray diffraction pattern obtains the occupancy of dopant atoms, Wurtzite ZnO structure, crystallinity and lattice deformation with doping. The Ce doping into ZFO and ZCO form nanoparticles than nanorods was observed in pure ZnO, ZFO and ZCO samples that described due to chemical and ionic behavior of Ce, Fe, Co and Zn ions. The Raman active modes have peak broadening, intensity changes and peak shifts with metal doping that induces lattice defects. Photoluminescence spectra show blue-shifts at near-band edges and defects that influence broad visible emission with Ce doping. An enhancement in ferromagnetism in the magnetic hysteresis at 5 K is measured. The zero-field cooling and field cooling at H = 500 Oe and T = 300-5 K could confirm antiferromagnetic interactions mediated by defect carriers. The bound magnetic polaron at defect sites is responsible for the observed ferromagnetism. The ac magnetic susceptibility measurements determine the antiferromagnetic to ferromagnetic transition with some magnetic clustered growth in the samples and reveal a frequency independent peak that shows the Neel temperature. Weak room temperature ferromagnetism and optical quenching in ZFCeO are described by valance states of Fe and Ce ions, respectively. Using first-principle calculations, we studied the occupancy of Ce (replacing Zn atoms) in the Wurtzite structure. PMID:26831598

  19. Association of Myopic Optic Disc Deformation with Visual Field Defects in Paired Eyes with Open-Angle Glaucoma: A Cross-Sectional Study

    PubMed Central

    Sawada, Yu; Hangai, Masanori; Ishikawa, Makoto; Yoshitomi, Takeshi

    2016-01-01

    Purpose To examine the association of myopia with the visual field (VF) defects in open-angle glaucoma (OAG) using paired eyes to eliminate the effect of unknown confounding factors that are diverse among individuals. Methods One hundred eighteen eyes of 59 subjects with myopia (spherical equivalent [SE] ≥ -2 diopter [D] and axial length ≥ 24.0 mm) whose intra-ocular pressure between paired eyes was similar and the mean deviation (MD) of the Humphrey VF test differed by more than 6 dB were included. Refractive errors (SE, axial length) and parameters associated with the papillary and parapapillary myopic deformation (tilt ratio, torsion angle, and β-zone parapapillary atrophy [PPA] area without Bruch’s membrane) were measured in each eye. The paired eyes were divided into worse and better eyes according to the MD of the VF, and parameters were compared between them. Further, multiple linear regression analysis was performed to examine the correlation of the difference in various parameters with the MD difference between paired eyes. Results The SE of all eyes was -6.39 ± 2.15 D (mean ± standard deviation) and axial length was 26.42 ± 1.07 mm. MD of the worse and better VF eyes were -13.56 ± 6.65 dB and -4.87 ± 5.32 dB, respectively. Eyes with worse VFs had significantly greater SE, axial length, tilt ratio, and PPA area without Bruch’s membrane than those with better VFs (all P < 0.05). In multiple linear regression analysis, the difference of the MD between paired eyes was significantly correlated with the difference in the tilt ratio and PPA area without Bruch’s membrane. Conclusion The myopic papillary and parapapillary deformations, but not refractive error itself, were related to the worse VF in paired eyes with OAG. This suggests that myopia influences the severity of the glaucomatous VF defects via structural deformation. PMID:27571303

  20. Defect properties of Sb- and Bi-doped CuInSe{sub 2}: The effect of the deep lone-pair s states

    SciTech Connect

    Park, Ji-Sang; Yang, Ji-Hui; Ramanathan, Kannan; Wei, Su-Huai

    2014-12-15

    Bi or Sb doping has been used to make better material properties of polycrystalline Cu{sub 2}(In,Ga)Se{sub 2} as solar cell absorbers, including the experimentally observed improved electrical properties. However, the mechanism is still not clear. Using first-principles method, we investigate the stability and electronic structure of Bi- and Sb-related defects in CuInSe{sub 2} and study their effects on the doping efficiency. Contrary to previous thinking that Bi or Sb substituted on the anion site, we find that under anion-rich conditions, the impurities can substitute on cation sites and are isovalent to In because of the formation of the impurity lone pair s states. When the impurities substitute for Cu, the defects act as shallow double donors and help remove the deep In{sub Cu} level, thus resulting in the improved carrier life time. On the other hand, under anion-poor conditions, impurities at the Se site create amphoteric deep levels that are detrimental to the device performance.

  1. Distinguishing between s +i d and s +i s pairing symmetries in multiband superconductors through spontaneous magnetization pattern induced by a defect

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Maiti, Saurabh; Chubukov, Andrey

    2016-08-01

    The symmetry of the pairing state in iron pnictide superconductor Ba1 -xKxFe2As2 is still controversial. At optimal doping (x ≈0.4 ), it is very likely s wave, but for x =1 there are experimental and theoretical arguments for both s wave and d wave. Depending on the choice for x =1 , intermediate s +i s and s +i d states have been proposed for intermediate doping 0.4 defect in the s +i s and s +i d states by using a perturbation theory and numerical calculations for the Ginzburg-Landau free energy functional. We show that the angular dependence of the magnetization is distinct in these two states due to the difference in symmetry properties of the order parameters. Our results indicate a possible way to distinguish between the s +i s and s +i d pairing symmetries in multiband superconductors.

  2. Base-Pairing Energies of Proton-Bound Dimers and Proton Affinities of 1-Methyl-5-Halocytosines: Implications for the Effects of Halogenation on the Stability of the DNA i-Motif

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Wu, R. R.; Rodgers, M. T.

    2015-09-01

    (CCG)n•(CGG)n trinucleotide repeats have been found to be associated with fragile X syndrome, the most widespread inherited cause of mental retardation in humans. The (CCG)n•(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of noncanonical proton-bound dimers of cytosine (C+•C). Halogenated cytosine residues are one form of DNA damage that may be important in altering the structure and stability of DNA or DNA-protein interactions and, hence, regulate gene expression. Previously, we investigated the effects of 5-halogenation and 1-methylation of cytosine on the base-pairing energies (BPEs) using threshold collision-induced dissociation (TCID) techniques. In the present study, we extend our work to include proton-bound homo- and heterodimers of cytosine, 1-methyl-5-fluorocytosine, and 1-methyl-5-bromocytosine. All modifications examined here are found to produce a decrease in the BPEs. However, the BPEs of all of the proton-bound dimers examined significantly exceed those of Watson-Crick G•C, neutral C•C base pairs, and various methylated variants such that DNA i-motif conformations should still be preserved in the presence of these modifications. The proton affinities (PAs) of the halogenated cytosines are also obtained from the experimental data by competitive analysis of the primary dissociation pathways that occur in parallel for the proton-bound heterodimers. 5-Halogenation leads to a decrease in the N3 PA of cytosine, whereas 1-methylation leads to an increase in the N3 PA. Thus, the 1-methyl-5-halocytosines exhibit PAs that are intermediate.

  3. Effects of granule-bound starch synthase I-defective mutation on the morphology and structure of pyrenoidal starch in Chlamydomonas.

    PubMed

    Izumo, Asako; Fujiwara, Shoko; Sakurai, Toshihiro; Ball, Steven G; Ishii, Yoshimi; Ono, Hikaru; Yoshida, Mayumi; Fujita, Naoko; Nakamura, Yasunori; Buléon, Alain; Tsuzuki, Mikio

    2011-02-01

    Lowering of the CO₂ concentration in the environment induces development of a pyrenoidal starch sheath, as well as that of pyrenoid and CO₂-concentrating mechanisms, in many microalgae. In the green algae Chlamydomonas and Chlorella, activity of granule-bound starch synthase (GBSS) concomitantly increases under these conditions. In this study, effects of the GBSS-defective mutation (sta2) on the development of pyrenoidal starch were investigated in Chlamydomonas. Stroma starch- and pyrenoid starch-enriched samples were obtained from log-phase cells grown with air containing 5% CO₂ (high-CO₂ conditions favouring stromal starch synthesis) and from those transferred to low-CO₂ conditions (air level, 0.04% CO₂, favouring pyrenoidal starch synthesis) for 6h, respectively. In the wild type, total starch content per culture volume did not increase during the low-CO₂ conditions, in spite of the development of pyrenoidal starch, suggesting that degradation of some part of stroma starch and synthesis of pyrenoid starch simultaneously occur under these conditions. Even in the GBSS-deficient mutants, pyrenoid and pyrenoid starch enlarged after lowering of the CO₂ concentration. However, the morphology of the pyrenoid starch was thinner and more fragile than the wild type, suggesting that GBSS does affect the morphology of pyrenoidal starch. Surprisingly normal GBSS activity is shown to be required to obtain the high A-type crystallinity levels that we now report for pyrenoidal starch. A model is presented explaining how GBSS-induced starch granule fusion may facilitate the formation of the pyrenoidal starch sheath.

  4. Sequence-Dependent T:G Base Pair Opening in DNA Double Helix Bound by Cren7, a Chromatin Protein Conserved among Crenarchaea

    PubMed Central

    Tian, Lei; Zhang, Zhenfeng; Wang, Hanqian; Zhao, Mohan; Dong, Yuhui; Gong, Yong

    2016-01-01

    T:G base pair arising from spontaneous deamination of 5mC or polymerase errors is a great challenge for DNA repair of hyperthermophilic archaea, especially Crenarchaea. Most strains in this phylum lack the protein homologues responsible for the recognition of the mismatch in the DNA repair pathways. To investigate whether Cren7, a highly conserved chromatin protein in Crenarchaea, serves a role in the repair of T:G mispairs, the crystal structures of Cren7-GTAATTGC and Cren7-GTGATCGC complexes were solved at 2.0 Å and 2.1 Å. In our structures, binding of Cren7 to the AT-rich DNA duplex (GTAATTGC) induces opening of T2:G15 but not T10:G7 base pair. By contrast, both T:G mispairs in the GC-rich DNA duplex (GTGATCGC) retain the classic wobble type. Structural analysis also showed DNA helical changes of GTAATTGC, especially in the steps around the open T:G base pair, as compared to GTGATCGC or the matched DNAs. Surface plasmon resonance assays revealed a 4-fold lower binding affinity of Cren7 for GTAATTGC than that for GTGATCGC, which was dominantly contributed by the decrease of association rate. These results suggested that binding of Cren7 to DNA leads to T:G mispair opening in a sequence dependent manner, and therefore propose the potential roles of Cren7 in DNA repair. PMID:27685992

  5. Transfer of a weakly bound electron in collisions of Rydberg atoms with neutral particles. II. Ion-pair formation and resonant quenching of the Rb(nl) and Ne(nl) States by Ca, Sr, and Ba atoms

    SciTech Connect

    Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S.

    2013-10-15

    Electron-transfer processes are studied in thermal collisions of Rydberg atoms with alkaline-earth Ca(4s{sup 2}), Sr(5s{sup 2}), and Ba(6s{sup 2}) atoms capable of forming negative ions with a weakly bound outermost p-electron. We consider the ion-pair formation and resonant quenching of highly excited atomic states caused by transitions between Rydberg covalent and ionic terms of a quasi-molecule produced in collisions of particles. The contributions of these reaction channels to the total depopulation cross section of Rydberg states of Rb(nl) and Ne(nl) atoms as functions of the principal quantum number n are compared for selectively excited nl-levels with l Much-Less-Than n and for states with large orbital quantum numbers l = n - 1, n - 2. It is shown that the contribution from resonant quenching dominates at small values of n, and the ion-pair formation process begins to dominate with increasing n. The values and positions of the maxima of cross sections for both processes strongly depend on the electron affinity of an alkaline-earth atom and on the orbital angular momentum l of a highly excited atom. It is shown that in the case of Rydberg atoms in states with large l {approx} n - 1, the rate constants of ion-pair formation and collisional quenching are considerably lower than those for nl-levels with l Much-Less-Than n.

  6. A FRET-based probe for epidermal growth factor receptor bound non-covalently to a pair of synthetic amphipathic helixes

    SciTech Connect

    Itoh, Reina E.; Kurokawa, Kazuo; Fujioka, Aki; Sharma, Alok; Mayer, Bruce J.; Matsuda, Michiyuki . E-mail: matsudam@biken.osaka-u.ac.jp

    2005-07-01

    Epidermal growth factor (EGF) receptor plays a pivotal role in a variety of cellular functions, such as proliferation, differentiation, and migration. To monitor the EGF receptor (EGFR) activity in living cells, we developed a probe for EGFR activity based on the principle of fluorescence resonance energy transfer (FRET). Previously, we developed a probe designated as Picchu (Phosphorylation indicator of the CrkII chimeric unit), which detects the tyrosine phosphorylation of the CrkII adaptor protein. We used a pair of synthetic amphipathic helixes, WinZipA2 and WinZipB1, to bind Picchu non-covalently to the carboxyl-terminus of the EGFR. Using this modified probe named Picchu-Z, the activity of EGFR was followed in EGF-stimulated Cos7 cells. We found that a high level of tyrosine phosphorylation of Picchu-Z probe remained after endocytosis until the point when the EGFR was translocated to the perinuclear region. These findings are in agreement with the previously reported 'signaling endosome' model. Furthermore, by pulse stimulation with EGF and by acute ablation of EGFR activity with AG1478, it was suggested that the phosphorylation of Picchu-Z probe, and probably the phosphorylation of EGFR also, underwent a rapid equilibrium ({tau} {sub 1/2} < 2 min) between the phosphorylated and dephosphorylated states in the presence of EGF.

  7. Nucleic acid sequence design via efficient ensemble defect optimization.

    PubMed

    Zadeh, Joseph N; Wolfe, Brian R; Pierce, Niles A

    2011-02-01

    We describe an algorithm for designing the sequence of one or more interacting nucleic acid strands intended to adopt a target secondary structure at equilibrium. Sequence design is formulated as an optimization problem with the goal of reducing the ensemble defect below a user-specified stop condition. For a candidate sequence and a given target secondary structure, the ensemble defect is the average number of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of unpseudoknotted secondary structures. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, candidate mutations are evaluated on the leaf nodes of a tree-decomposition of the target structure. During leaf optimization, defect-weighted mutation sampling is used to select each candidate mutation position with probability proportional to its contribution to the ensemble defect of the leaf. As subsequences are merged moving up the tree, emergent structural defects resulting from crosstalk between sibling sequences are eliminated via reoptimization within the defective subtree starting from new random subsequences. Using a Θ(N(3) ) dynamic program to evaluate the ensemble defect of a target structure with N nucleotides, this hierarchical approach implies an asymptotic optimality bound on design time: for sufficiently large N, the cost of sequence design is bounded below by 4/3 the cost of a single evaluation of the ensemble defect for the full sequence. Hence, the design algorithm has time complexity Ω(N(3) ). For target structures containing N ∈{100,200,400,800,1600,3200} nucleotides and duplex stems ranging from 1 to 30 base pairs, RNA sequence designs at 37°C typically succeed in satisfying a stop condition with ensemble defect less than N/100. Empirically, the sequence design algorithm exhibits asymptotic optimality and the exponent in the time complexity bound is sharp.

  8. Optical properties of radiation defect centers involving single and paired Mn{sup 2+} centers in CaF{sub 2}:Mn

    SciTech Connect

    Chakrabarti, K.; Sharma, J.; Mathur, V.K.; Barkyoumb, J.H.

    1995-06-15

    Optical evidence of paired Mn{sup 2+} centers has been observed in CaF{sub 2}:Mn by time-resolved laser spectroscopy. The paired Mn{sup 2+} center is associated with a peak shift of the Mn{sup 2+} emisssion towards longer wavelength and a faster component of decay of 500 {mu}s along with a slow decay of 48 ms due to a single Mn{sup 2+} ion. It appear that this center forms a Mn{sup 2+}-{ital F}-center-Mn{sup 2+} complex when the material is {gamma} irradiated. This complex is associated with a thermoluminescence peak near 360 {degree}C and an optical-absorption band near 300 nm. A conversion from a Mn{sup 2+}-{ital F}-center-Mn{sup 2+} complex to an {ital F}-center-Mn{sup 2+} complex is observed in phototransferred thermoluminescence and in photobleached optical-absorption spectra.

  9. Cooper Pairs in Insulators?!

    SciTech Connect

    James Valles

    2008-07-23

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  10. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  11. Counting Young Tableaux of Bounded Height

    NASA Astrophysics Data System (ADS)

    Bergeron, Francois; Gascon, Francis

    2000-03-01

    We show that formulas of Gessel, for the generating functions for Young standard tableaux of height bounded by k (see [2]), satisfy linear differential equations, with polynomial coefficients, equivalent to P-recurrences conjectured by Favreau, Krob and the first author (see [1]) for the number of bounded height tableaux and pairs of bounded height tableaux.

  12. Outward Bound.

    ERIC Educational Resources Information Center

    Outward Bound, Inc., Andover, MA.

    The Outward Bound concept was developed in Germany and Great Britain with the saving of human life as the ultimate goal. Courses are designed to help students discover their true physical and mental limits through development of skills including emergency medical aid, firefighting, search and rescue, mountaineering, and sailing. Five Outward Bound…

  13. HIM-8 Binds to the X Chromosome Pairing Center and Mediates Chromosome-Specific Meiotic Synapsis

    PubMed Central

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2015-01-01

    SUMMARY The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient. PMID:16360035

  14. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  15. Defect states and exceptional point splitting in the band gaps of one-dimensional parity-time lattices.

    PubMed

    Zhu, Xue-Feng

    2015-08-24

    We investigated defect states in band gaps of one-dimensional photonic lattices with delicate modulations of gain and loss that respect parity-time-symmetry (PT-symmetry), viz. n(z) = n*(-z). For the sake of generality, we employ not only periodic structures but also quasiperiodic structures, e.g. Fibonacci sequences, to construct aperiodic PT lattices. Differed from lossless systems for which the defect state is related to only one exceptional point (EP) of the S-matrix, we observed the splitting of one EP into a pair after the introduction of judiciously designed gain and loss in those PT systems, where the defect state enters a non-threshold broken symmetry phase bounded by the EP pair. Some interesting properties associated with defect states and EP splitting are demonstrated, such as enhanced spectral localization, double optical phase abrupt change, and wavelength sensitive reversion of unidirectional transparency. PMID:26368199

  16. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  17. Bound Exciton Complexes

    NASA Astrophysics Data System (ADS)

    Meyer, B. K.

    In the preceding chapter, we concentrated on the properties of free excitons. These free excitons may move through the sample and hit a trap, a nonradiative or a radiative recombination center. At low temperatures, the latter case gives rise to either deep center luminescence, mentioned in Sect. 7.1 and discussed in detail in Chap. 9, or to the luminescence of bound exciton complexes (BE or BEC). The chapter continues with the most prominent of these BECs, namely A-excitons bound to neutral donors. The next aspects are the more weakly BEs at ionized donors. The Sect. 7.4 treats the binding or localization energies of BEC from a theoretical point of view, while Sect. 7.5 is dedicated to excited states of BECs, which contain either holes from deeper valence bands or an envelope function with higher quantum numbers. The last section is devoted to donor-acceptor pair transitions. There is no section devoted specifically to excitons bound to neutral acceptors, because this topic is still partly controversially discussed. Instead, information on these A0X complexes is scattered over the whole chapter, however, with some special emphasis seen in Sects. 7.1, 7.4, and 7.5.

  18. Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia.

    PubMed Central

    Jun, A S; Trounce, I A; Brown, M D; Shoffner, J M; Wallace, D C

    1996-01-01

    A heteroplasmic G-to-A transition at nucleotide pair (np) 14459 within the mitochondrial DNA (mtDNA)-encoded NADH dehydrogenase subunit 6 (ND6) gene has been identified as the cause of Leber hereditary optic neuropathy (LHON) and/or pediatric-onset dystonia in three unrelated families. This ND6 np 14459 mutation changes a moderately conserved alanine to a valine at amino acid position 72 of the ND6 protein. Enzymologic analysis of mitochondrial NADH dehydrogenase (complex I) with submitochondrial particles isolated from Epstein-Barr virus-transformed lymphoblasts revealed a 60% reduction (P < 0.005) of complex I-specific activity in patient cell lines compared with controls, with no differences in enzymatic activity for complexes II plus III, III and IV. This biochemical defect was assigned to the ND6 np 14459 mutation by using transmitochondrial cybrids in which patient Epstein-Barr virus-transformed lymphoblast cell lines were enucleated and the cytoplasts were fused to a mtDNA-deficient (p 0) lymphoblastoid recipient cell line. Cybrids harboring the np 14459 mutation exhibited a 39% reduction (p < 0.02) in complex I-specific activity relative to wild-type cybrid lines but normal activity for the other complexes. Kinetic analysis of the np 14459 mutant complex I revealed that the Vmax of the enzyme was reduced while the Km remained the same as that of wild type. Furthermore, specific activity was inhibited by increasing concentrations of the reduced coenzyme Q analog decylubiquinol. These observations suggest that the np 14459 mutation may alter the coenzyme Q-binding site of complex I. PMID:8622678

  19. Birth Defects

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Birth Defects: Condition Information Skip sharing on social media links Share this: Page Content What are birth defects? Birth defects are structural or functional abnormalities present ...

  20. Guanidinium Pairing Facilitates Membrane Translocation.

    PubMed

    Allolio, Christoph; Baxova, Katarina; Vazdar, Mario; Jungwirth, Pavel

    2016-01-14

    Ab initio free energy calculations of guanidinium pairing in aqueous solution confirm the counterintuitive conjecture that the like-charge ion pair is thermodynamically stable. Transferring the guanidinium pair to the inside of a POPC lipid bilayer, like-charge ion pairing is found to occur also inside the membrane defect. It is found to contribute to the nonadditivity of ion transfer, thereby facilitating the presence of ions inside the bilayer. The effect is quantified by free energy decomposition and comparison with ammonium ions, which do not form a stable pair. The presence of two charges inside the center of the bilayer leads to the formation of a pore. Potential consequences for cell penetrating peptides and ion conduction are drawn.

  1. Control of VO•• ˜ TiT i ' dipole pairs as well as M gTi ″ defects on dielectric properties of Mg doped (Pb0.35Sr0.65)TiO3 thin film

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi

    2016-01-01

    Mg doped (Pb0.35Sr0.65)TiO3 (PST) thin films were fabricated on indium tin oxide /glass substrates by the sol-gel technique. The formation of the PST phase and control of the magnesium doping on the microstructure, defect states, and dielectric properties of the thin film were investigated by means of XRD, SEM, AFM, XPS, and impedance analysis. Results showed that the oxygen vacancies and the associated Ti3+ ions formed as VO•• ˜ TiT i ' dipole pairs, and the dipole pairs were aligned opposite to the direction of the intrinsic dipole moments in the PST thin film. The amount of dipole pairs was strongly affected by the formed M gTi ″ in the thin film. The minimum amount of the dipole pairs appeared in the PST thin film with Mg doping content of 6% in molar ratio. The thin film with Mg doping content of 6% showed high permittivity due to low offset from VO•• ˜ TiT i ' dipole pairs and low dielectric loss due to low defect electrons generated in the thin film simultaneously. The formed M gTi ″ in the oxygen octahedral contributed lower response of the dipole moments to external electric field and resulted in lower tunability of the PST thin film with increasing Mg doping content. Controlled by the substitution of Mg2+ ions for Ti4+ ions and the induced VO•• ˜ TiT i ' dipole pairs, the optimal figure of merit was obtained in the PST thin film with Mg doping content of 6% with which the thin film possessed the smallest dielectric loss and still high tunability simultaneously.

  2. Sequential detection of web defects

    DOEpatents

    Eichel, Paul H.; Sleefe, Gerard E.; Stalker, K. Terry; Yee, Amy A.

    2001-01-01

    A system for detecting defects on a moving web having a sequential series of identical frames uses an imaging device to form a real-time camera image of a frame and a comparitor to comparing elements of the camera image with corresponding elements of an image of an exemplar frame. The comparitor provides an acceptable indication if the pair of elements are determined to be statistically identical; and a defective indication if the pair of elements are determined to be statistically not identical. If the pair of elements is neither acceptable nor defective, the comparitor recursively compares the element of said exemplar frame with corresponding elements of other frames on said web until one of the acceptable or defective indications occur.

  3. A fourfold coordinated point defect in silicon.

    PubMed

    Goedecker, Stefan; Deutsch, Thierry; Billard, Luc

    2002-06-10

    Vacancies, interstitials, and Frenkel pairs are considered to be the basic point defects in silicon. We challenge this point of view by presenting density functional calculations that show that there is a stable point defect in silicon that has fourfold coordination and is lower in energy than the traditional defects.

  4. Birth Defects

    MedlinePlus

    ... defects happen during the first 3 months of pregnancy. One out of every 33 babies in the ... abuse can cause fetal alcohol syndrome. Infections during pregnancy can also result in birth defects. For most ...

  5. Hamiltonian anomalies of bound states in QED

    SciTech Connect

    Shilin, V. I.; Pervushin, V. N.

    2013-10-15

    The Bound State in QED is described in systematic way by means of nonlocal irreducible representations of the nonhomogeneous Poincare group and Dirac's method of quantization. As an example of application of this method we calculate triangle diagram Para-Positronium {yields} {gamma}{gamma}. We show that the Hamiltonian approach to Bound State in QED leads to anomaly-type contribution to creation of pair of parapositronium by two photon.

  6. Immunoglobulin K light chain deficiency: A rare, but probably underestimated, humoral immune defect.

    PubMed

    Sala, Pierguido; Colatutto, Antonio; Fabbro, Dora; Mariuzzi, Laura; Marzinotto, Stefania; Toffoletto, Barbara; Perosa, Anna R; Damante, Giuseppe

    2016-04-01

    Human immunoglobulin molecules are generated by a pair of identical heavy chains, which identify the immunoglobulin class, and a pair of identical light chains, Kappa or Lambda alternatively, which characterize the immunoglobulin type. In normal conditions, Kappa light chains represent approximately 2/3 of the light chains of total immunoglobulins, both circulating and lymphocyte surface bound. Very few cases of immunoglobulin Kappa or Lambda light chain defects have been reported. Furthermore, the genetic basis of this defect has been extensively explored only in a single case. We report a case of a patient suffering of serious recurrent bacterial infections, which was caused by a very rare form of immunoglobulin disorder, consisting of a pure defect of Kappa light chain. We evaluated major serum immunoglobulin concentrations, as well as total and free Kappa and Lambda light chain concentrations. Lymphocyte phenotyping was also performed and finally we tested the Kappa chain VJ rearrangement as well as the constant Kappa region sequence. Studies performed on VJ rearrangement showed a polyclonal genetic arrangement, whereas the gene sequencing for the constant region of Kappa chain showed a homozygous T to G substitution at the position 1288 (rs200765148). This mutation causes a substitution from Cys to Gly in the protein sequence and, therefore, determines the abnormal folding of the constant region of Kappa chain. We suggest that this defect could lead to an effective reduction of the variability of total antibody repertoire and a consequent defect of an apparently normal immunoglobulin response to common antigens.

  7. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  8. HIM-8 binds to the X chromosome pairing center and mediateschromosome-specific meiotic synapsis

    SciTech Connect

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton,Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2005-06-05

    The him-8 gene is essential for proper meiotic segregationof the X chromosomes in C. elegans. Herewe show that loss of him-8function causes profound X-chromosome-specific defects in homolog pairingand synapsis.him-8 encodes a C2H2 zinc finger protein that is expressedduring meiosis andconcentrates at a site on the X chromosome known as themeiotic Pairing Center (PC). A role for HIM-8 in PC function is supportedby genetic interactions between PC lesions and him-8 mutations.HIM-8-bound chromosome sites associate with the nuclear envelope (NE)throughout meiotic prophase. Surprisingly, a point mutation in him-8 thatretains both chromosome binding and NE localization fails to stabilizepairing or promote synapsis. These observations indicate thatstabilization of homolog pairing is an active process in which thetethering of chromosome sites to the NE may be necessary but is notsufficient.

  9. Secular dynamics of gravitationally bound pair of binaries

    NASA Astrophysics Data System (ADS)

    Vokrouhlický, David

    2016-10-01

    Equations of secular dynamics for stellar quadruple systems in 2+2 hierarchy are formulated. Non-singular, angular momentum and Laplace vector variables are used to describe orbital evolution of both inner and outer orbits. Given a typical wide separation of the binaries in these systems, gravitational interactions are truncated at the octupole approximation. Secular equations are propagated numerically and the results compared to the complete numerical integration on a long time-scale. Our basic formulation uses a point-mass model, but we also extend it by including the simplest description of the quadrupole interaction among the components of close (inner) binaries. Evolution of orbital planes of the binaries is discussed analytically in a simplified model and numerically using a more complete model. Maximum angular separation of the two orbital planes reaches only 20-40 per cent of the simple geometric maximum value for low-eccentricity cases with small inclination with respect to the orbital plane of the relative motion. This may be a pre-requisite for occurrence of quadruple systems with both binaries showing eclipses. However, statistical occurrence of eclipses at any time for a synthetic population of quadruples with initially isotropic distribution of orbital planes is about equal to the model where the orbits do not evolve due to gravitational interactions. We also show that the model is potentially suitable for long-term studies of the initial evolutionary tracks of the 2 + 2 quadruple systems.

  10. Bounded link prediction in very large networks

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Pu, Cunlai; Xu, Zhongqi; Cai, Shimin; Yang, Jian; Michaelson, Andrew

    2016-09-01

    Evaluating link prediction methods is a hard task in very large complex networks due to the prohibitive computational cost. However, if we consider the lower bound of node pairs' similarity scores, this task can be greatly optimized. In this paper, we study CN index in the bounded link prediction framework, which is applicable to enormous heterogeneous networks. Specifically, we propose a fast algorithm based on the parallel computing scheme to obtain all node pairs with CN values larger than the lower bound. Furthermore, we propose a general measurement, called self-predictability, to quantify the performance of similarity indices in link prediction, which can also indicate the link predictability of networks with respect to given similarity indices.

  11. A matrix lower bound

    SciTech Connect

    Grcar, Joseph F.

    2002-02-04

    A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.

  12. Coulomb Bound States of Strongly Interacting Photons

    NASA Astrophysics Data System (ADS)

    Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.

    2015-09-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  13. Morphological Processing: A Comparison between Free and Bound Stem Facilitation

    ERIC Educational Resources Information Center

    Pastizzo, Matthew J.; Feldman, Laurie B.

    2004-01-01

    Linguists distinguish between words formed from free stems (e.g., "actor": "act") and those formed from bound stems (e.g., "spectator": "spect"). In a forward masked priming task, we observed significant morphological facilitation for prime-target pairs that shared either a free (e.g., "deform"--"CONFORM") or a bound (e.g., "revive"--"SURVIVE")…

  14. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  15. Physical Uncertainty Bounds (PUB)

    SciTech Connect

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  16. Potentials and bound states

    SciTech Connect

    Buell, W.F. ); Shadwick, B.A. )

    1995-03-01

    We discuss several quantum mechanical potential problems, focusing on those which highlight commonly held misconceptions about the existence of bound states. We present a proof, based on the variational principle, that certain one dimensional potentials always support at least one bound state, regardless of the potential's strength. We examine arguments concerning the existence of bound states based on the uncertainty principle and demonstrate, by explicit calculations, that such arguments must be viewed with skepticism.

  17. Sculpture, perspective view looking to pair of lions positioned at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sculpture, perspective view looking to pair of lions positioned at top of stairs leading down into the Glen - National Park Seminary, Bounded by Capitol Beltway (I-495), Linden Lane, Woodstove Avenue, & Smith Drive, Silver Spring, Montgomery County, MD

  18. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  19. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  20. Point Defects Quenched in Nickel Aluminide and Related Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Fan, Jiawen

    Point defects in the highly ordered B2 compounds NiAl, CoAl and FeAl were studied using the perturbed gammagamma angular correlations (PAC) technique. Quadrupole interactions detected at dilute ^{111}In probes on Al sites in NiAl and CoAl were identified with complexes containing one or two vacancies in the first atomic shell. Measurements on rapidly quenched NiAl and CoAl exhibited increases in site fractions of vacancy-probe complexes caused by formation of thermal defects. Site fractions were analyzed using the law of mass action to obtain absolute vacancy concentrations. PAC is shown to be a powerful new technique for the quantitative study of equilibrium defects in solids. For NiAl, the vacancy concentration quenched-in from a given temperature was found to be independent of composition over the range 50.4 -53.5 at.% Ni, identifying the Schottky defect (vacancy pair) as the dominant equilibrium defect, and ruling out the so-called triple defect. Formation energies and entropies of Schottky pairs were determined to be 2.66(8) and 3.48(12) eV, and 12(1) and 17(2) k_{rm B}, respectively, for NiAl and CoAl. The entropies suggest huge vacancy concentrations, 13%, at the melting temperatures of NiAl and CoAl. Migration energies of Ni and Co vacancies were found to be 1.8(2) and 2.5(2) eV, respectively. FeAl exhibited complex behavior. A low-temperature regime was detected in NiAl and CoAl within which vacancies are mobile but do not anneal out, so that the vacancy concentration remains constant. In NiAl, this "bottleneck" regime extends from 350 to 700 ^circC. Vacancies were found to be bound to the In probes with an energy very close to 0.20 eV in NiAl and CoAl. An explanation of the bottleneck is proposed in terms of saturation of all lattice sinks. This annealing bottleneck should exist in a wide range of intermetallic compounds when there is a sufficiently high vacancy concentration.

  1. Powered Tate Pairing Computation

    NASA Astrophysics Data System (ADS)

    Kang, Bo Gyeong; Park, Je Hong

    In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.

  2. Congenital Defects.

    ERIC Educational Resources Information Center

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  3. Bound infragravity waves

    NASA Astrophysics Data System (ADS)

    Okihiro, Michele; Guza, R. T.; Seymour, R. J.

    1992-07-01

    Model predictions of bound (i.e., nonlinearly forced by and coupled to wave groups) infragravity wave energy are compared with about 2 years of observations in 8- to 13-m depths at Imperial Beach, California, and Barbers Point, Hawaii. Frequency-directional spectra of free waves at sea and swell frequencies, estimated with a small array of four pressure sensors, are used to predict the bound wave spectra below 0.04 Hz. The predicted total bound wave energy is always less than the observed infragravity energy, and the underprediction increases with increasing water depth and especially with decreasing swell energy. At most half, and usually much less, of the observed infragravity energy is bound. Bound wave spectra are also predicted with data from a single wave gage in 183-m depth at Point Conception, California, and the assumption of unidirectional sea and swell. Even with energetic swell, less than 10% of the total observed infragravity energy in 183-m depth is bound. Free waves, either leaky or edge waves, are more energetic than bound waves at both the shallow and deep sites. The low level of infragravity energy observed in 183-m depth compared with 8- to 13-m depths, with similarly moderate sea and swell energy, suggests that leaky (and very high-mode edge) waves contribute less than 10% of the infragravity energy in 8-13 m. Most of the free infragravity energy in shallow water is refractively trapped and does not reach deep water.

  4. Defect-Defect Interaction in Single-Walled Carbon Nanotubes Under Torsional Loading

    NASA Astrophysics Data System (ADS)

    Huq, Abul M. A.; Bhuiyan, Abuhanif K.; Liao, Kin; Goh, Kheng Lim

    This paper presents an analysis of interactions between a pair of Stone-Wales (SW) defects in a single-walled carbon nanotube (SWCNT) that has been subjected to an external torque. Defect pairs, representing the different combinations of SW defect of A (SW-A) and B (SW-B) modes, were incorporated in SWCNT models of different chirality and diameter and solved using molecular mechanics. Defect-defect interaction was investigated by evaluating the C-C steric interactions in the defect that possesses the highest potential energy, E, as a function of inter-defect distance, D. This study reveals that the deformation of the C-C bond is attributed to bond stretching and bending. In the SW-B defects, there is an additional contributor arising from the dihedral angular deformation. The magnitude of E depends on the type of defect but the profile of the E versus D curve depends on the orientation of the defects. The largest indifference length, D0, beyond which two defects cease to interact, is approximately 30 Å. When the angular displacement of the tube increases two-fold, E increases, but the profile of the E versus D curve is not affected. The sense of rotation affects the magnitude of E but not the profile of the E versus D curve.

  5. Bosonic pair creation and the Schiff-Snyder-Weinberg effect

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Bauke, Heiko; Su, Q.; Keitel, C. H.; Grobe, R.

    2016-01-01

    Interactions between different bound states in bosonic systems can lead to pair creation. We study this process in detail by solving the Klein-Gordon equation on space-time grids in the framework of time-dependent quantum field theory. By choosing specific external field configurations, two bound states can become pseudodegenerate, which is commonly referred to as the Schiff-Snyder-Weinberg effect. These pseudodegenerate bound states, which have complex energy eigenvalues, are related to the pseudo-Hermiticity of the Klein-Gordon Hamiltonian. In this work, the influence of the Schiff-Snyder-Weinberg effect on pair production is studied. A generalized Schiff-Snyder-Weinberg effect, where several pairs of pseudodegenerate states appear, is found in combined electric and magnetic fields. The generalized Schiff-Snyder-Weinberg effect likewise triggers pair creation. The particle number in these situations obeys an exponential growth law in time enhancing the creation of bosons, which cannot be found in fermionic systems.

  6. Validation of EMP bounds

    SciTech Connect

    Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G.; Derr, W.

    1996-07-01

    Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

  7. Electron teleportation via Majorana bound states in a mesoscopic superconductor.

    PubMed

    Fu, Liang

    2010-02-01

    Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.

  8. Nonequilibrium and nonlinear defect states in microcavity-polariton condensates.

    PubMed

    Chen, Ting-Wei; Jheng, Shih-Da; Hsieh, Wen-Feng; Cheng, Szu-Cheng

    2016-05-01

    The nonequilibrium and nonlinear defect modes (NNDMs), localized by a defect in a nonequilibrium microcavity-polariton condensate (MPC), are studied. There are three analytic solutions of NNDMs in a point defect: the bright NNDM, a bound state with two dark solitons for an attractive potential, and a gray soliton bound by a defect for a repulsive potential. We find that the stable NNDMs in a nonequilibrium MPC are the bright NNDM and gray soliton bound by a defect. The bright NNDM, which has the hyperbolic cotangent form, is a bright localized state existing in a uniform MPC. The bright NNDM is a unique state occurring in a nonequilibrium MPC that has pump-dissipation and repulsive-nonlinearity characters. No such state can exist in an equilibrium system with repulsive nonlinearity. PMID:27300887

  9. Nonequilibrium and nonlinear defect states in microcavity-polariton condensates

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Wei; Jheng, Shih-Da; Hsieh, Wen-Feng; Cheng, Szu-Cheng

    2016-05-01

    The nonequilibrium and nonlinear defect modes (NNDMs), localized by a defect in a nonequilibrium microcavity-polariton condensate (MPC), are studied. There are three analytic solutions of NNDMs in a point defect: the bright NNDM, a bound state with two dark solitons for an attractive potential, and a gray soliton bound by a defect for a repulsive potential. We find that the stable NNDMs in a nonequilibrium MPC are the bright NNDM and gray soliton bound by a defect. The bright NNDM, which has the hyperbolic cotangent form, is a bright localized state existing in a uniform MPC. The bright NNDM is a unique state occurring in a nonequilibrium MPC that has pump-dissipation and repulsive-nonlinearity characters. No such state can exist in an equilibrium system with repulsive nonlinearity.

  10. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  11. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  12. Paired watershed study design

    SciTech Connect

    Clausen, J.C.; Spooner, J.

    1993-09-01

    The purpose of the fact sheet is to describe the paired watershed approach for conducting nonpoint source (NPS) water quality studies. The basic approach requires a minimum of two watersheds - control and treatment - and two periods of study - calibration and treatment. The basis of the paired watershed approach is that there is a quantifiable relationship between paired water quality data for the two watersheds, and that this relationship is valid until a major change is made in one of the watersheds.

  13. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  14. Pairing Beyond BCS

    NASA Astrophysics Data System (ADS)

    Volya, Alexander; Zelevinsky, Vladimir

    2013-01-01

    We concentrate on the specifics of the nuclear pairing problem from the standpoint of the BCS approach. We consider the properties of nuclear pairing which usually are not discussed in standard texts: how good is the BCS theory in nuclear context compared to the exact large-scale diagonalization, whether it can be improved by the particle number conservation, how to mark the phase transition regions in a mesoscopic system like a nucleus, how may effective many-body forces influence the formation and structure of the pairing condensate, what effect the decay instability has on the paired nuclear structure, etc.

  15. Defects in Ge+-preamorphized silicon

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Shiu; Hsieh, T. E.; Hwang, Yih-Chyang; Chu, Chih-Hsun

    1999-11-01

    This work studied the morphology and annealing behaviors of extended defects in Si subjected to various Ge+ preamorphization and BF2+ implantation conditions. The extended defects formed were near the specimen surface when Ge+ implantation energy and dose amount were low. During subsequent annealing, the end-of-range (EOR) loops were enlarged and then moved out of the specimen. High energy/low dose Ge+ implantation generated a damaged layer which initially transformed into a wide zone containing dislocation loops and rodlike defects in the annealed specimen. As the annealing proceeded, the width of defective zone gradually shrunk so that most of the extended defects could be annihilated by defect rejection/recombination process. In addition to the category II defects found in previous investigations, hairpin dislocations emerged in high energy/high dose Ge+-implanted specimens. In this specimen, rodlike defects and hairpin dislocations could be removed by annealing, while the EOR loops became relatively inert so that their removal would require high temperatures and/or long annealing times. Microwave plasma surface treatment was also carried out to form a nitride layer on specimen surface. Experimental results indicate that in addition to effectively reducing the size of EOR loops, surface nitridation might serve as a vacancy source injecting vacancies into Si to annihilate the interstitials bounded by dislocation loops. Reduction in the defect size was pronounced when bias voltage was added to the plasma process. However, radiation damage might occur with too high of a bias voltage.

  16. Dynamics of a vortex pair in radial flow

    SciTech Connect

    Bannikova, E. Yu. Kontorovich, V. M. Reznik, G. M.

    2007-10-15

    The problem of vortex pair motion in two-dimensional radial flow is solved. Under certain conditions for flow parameters, the vortex pair can reverse its motion within a bounded region. The vortex-pair translational velocity decreases or increases after passing through the source/sink region, depending on whether the flow is diverging or converging, respectively. The rotational motion of a corotating vortex pair in a quiescent environment transforms into motion along a logarithmic spiral in radial flow. The problem may have applications in astrophysics and geophysics.

  17. Formation of asteroid pairs by rotational fission.

    PubMed

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A

    2010-08-26

    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  18. Pair contact process with diffusion of pairs

    NASA Astrophysics Data System (ADS)

    Santos, F. L.; Dickman, Ronald; Fulco, U. L.

    2011-03-01

    The pair contact process (PCP) is a nonequilibrium stochastic model which, like the basic contact process (CP), exhibits a phase transition to an absorbing state. The two models belong to the directed percolation (DP) universality class, despite the fact that the PCP possesses infinitely many absorbing configurations whereas the CP has but one. The critical behavior of the PCP with hopping by particles (PCPD) is as yet unclear. Here we study a version of the PCP in which nearest-neighbor particle pairs can hop but individual particles cannot. Using quasistationary simulations for three values of the diffusion probability (D = 0.1, 0.5 and 0.9), we find convincing evidence of DP-like critical behavior.

  19. Critical Schwinger Pair Production.

    PubMed

    Gies, Holger; Torgrimsson, Greger

    2016-03-01

    We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality. PMID:26991162

  20. Defect annealing in neutron and ion damaged silicon: Influence of defect clusters and doping

    NASA Astrophysics Data System (ADS)

    Fleming, R. M.; Seager, C. H.; Bielejec, E.; Vizkelethy, G.; Lang, D. V.; Campbell, J. M.

    2010-03-01

    We have explored defect annealing in radiation damaged silicon in a regime characterized by defect clusters and higher doping. Several types of pnp and npn Si bipolar transistors have been irradiated with ions and neutrons, then isochronally annealed from 300 to 600 K to study the evolution of deep level transient spectroscopy (DLTS) defect signatures. Variations in these data with radiation environment, Fermi level, annealing temperature, and doping density have been used to separate the contributions of three dominant defects to the DLTS defect spectra. We find that the normal Si divacancy and a divacancylike defect with similar properties make similar contributions to a DLTS peak normally associated with transitions from the single minus charge state of the divacancy. However the latter defect is clearly associated with the presence of defect clusters. The vacancy-donor center can also contribute to this high temperature DLTS signature, and its relative importance can be quantitatively assessed by varying doping density and the bias applied to the sample p/n junctions during annealing, and also by the observation that another, donor-related defect grows in as this center anneals. The ratio of vacancy-donor and vacancy-oxygen pairs appears to accurately follow that seen in earlier studies of gamma-irradiated Si. Discussions are presented concerning the effects of defect clustering on the structure, appearance, and evolution of the defects we have identified.

  1. Ventricular septal defect (image)

    MedlinePlus

    Ventricular septal defect is a congenital defect of the heart, that occurs as an abnormal opening in ... wall that separates the right and left ventricles. Ventricular septal defect may also be associated with other ...

  2. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  3. Universal bounds on current fluctuations

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-05-01

    For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.

  4. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  5. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  6. Stressed states and persistent defects in confined nematic elastica

    NASA Astrophysics Data System (ADS)

    Köpf, M. H.; Pismen, L. M.

    2015-10-01

    We analyse the variety of solutions, both defect-free and containing defects in a confined nematic elastomer, arising as a result of competition between nematic ordering and elastic stresses. Phase field analysis predicts bifurcation of solutions with symmetric and antisymmetric distribution of nematic alignment from a perfectly aligned stressed state. The antisymmetric branch always has a lower energy, as confirmed by numerical computations away from the bifurcation point. At still higher deviations, states containing persistent defect pairs become preferable but defect-free states and states with defects coexist in a wide parametric range.

  7. Blog life: Entropy Bound

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter

    2008-06-01

    Who is the blog written by? Peter Steinberg is a nuclear physicist at the Brookhaven National Laboratory in New York, US. He is acting project manager of the PHOBOS experiment, which used Brookhaven's Relativistic Heavy Ion Collider (RHIC) to search for unusual events produced during collisions between gold nuclei. He is also involved with the PHENIX experiment, which seeks to discover a new state of matter known as the quark-gluon plasma. In addition to his own blog Entropy Bound, Steinberg is currently blogging on a website that was set up last year to publicize the involvement of US scientists with the Large Hadron Collider (LHC) at CERN.

  8. A bound on chaos

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Shenker, Stephen H.; Stanford, Douglas

    2016-08-01

    We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ L ≤ 2π k B T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.

  9. Isospin Mixing and the Continuum Coupling in Weakly Bound Nuclei

    SciTech Connect

    Michel, N.; Nazarewicz, Witold; Ploszajczak, M.

    2010-01-01

    We investigate the near-threshold behavior of one-nucleon spectroscopic factors in mirror nuclei using the Gamow Shell Model, which simultaneously takes into account many-body correlations and continuum effects. We demonstrate that for weakly bound or unbound systems, the mirror symmetry-breaking effects are appreciable, and they manifest in large differences of spectroscopic factors in a mirror pair.

  10. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  11. Adaptive Pairing Reversible Watermarking.

    PubMed

    Dragoi, Ioan-Catalin; Coltuc, Dinu

    2016-05-01

    This letter revisits the pairwise reversible watermarking scheme of Ou et al., 2013. An adaptive pixel pairing that considers only pixels with similar prediction errors is introduced. This adaptive approach provides an increased number of pixel pairs where both pixels are embedded and decreases the number of shifted pixels. The adaptive pairwise reversible watermarking outperforms the state-of-the-art low embedding bit-rate schemes proposed so far.

  12. Resonantly paired fermionic superfluids

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Radzihovsky, L.

    2007-01-01

    We present a theory of a degenerate atomic Fermi gas, interacting through a narrow Feshbach resonance, whose position and therefore strength can be tuned experimentally, as demonstrated recently in ultracold trapped atomic gases. The distinguishing feature of the theory is that its accuracy is controlled by a dimensionless parameter proportional to the ratio of the width of the resonance to Fermi energy. The theory is therefore quantitatively accurate for a narrow Feshbach resonance. In the case of a narrow s-wave resonance, our analysis leads to a quantitative description of the crossover between a weakly paired BCS superconductor of overlapping Cooper pairs and a strongly paired molecular Bose-Einstein condensate of diatomic molecules. In the case of pairing via a p-wave resonance, that we show is always narrow for a sufficiently low density, we predict a detuning-temperature phase diagram, that in the course of a BCS-BEC crossover can exhibit a host of thermodynamically distinct phases separated by quantum and classical phase transitions. For an intermediate strength of the dipolar anisotropy, the system exhibits a px + i py paired superfluidity that undergoes a topological phase transition between a weakly coupled gapless ground state at large positive detuning and a strongly paired fully gapped molecular superfluid for a negative detuning. In two dimensions the former state is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian vortex excitations familiar from fractional quantum Hall systems.

  13. Population of the giant pairing vibration

    NASA Astrophysics Data System (ADS)

    Laskin, M.; Casten, R. F.; Macchiavelli, A. O.; Clark, R. M.; Bucurescu, D.

    2016-03-01

    Background: The giant pairing vibration (GPV), a correlated two-nucleon mode in the second shell above the Fermi surface, has long been predicted and expected to be strongly populated in two-nucleon transfer cross sections similar to those of the normal pairing vibration. Recent experiments have provided evidence for this mode in ,15C14 but, despite sensitive studies, it has not been definitively identified in either Sn or Pb nuclei where pairing correlations are known to play a crucial role. Purpose: Our aim is to test whether features inherent to the mixing of bound and unbound levels might account for this and to study the effect in a simple and intuitively clear approach. Method: We study the mixing of unbound levels in a set of toy models that capture the essential physics of the GPV, along with a more realistic calculation including distorted-wave Born approximation transfer amplitudes. Results: The calculated (relative) cross section to populate a simulated GPV state is effectively low, compared to the case of bound levels with no widths Conclusions: The mixing turns out to be only a minor contributor to the weak population. Rather, the main reason is the melting of the GPV peak due to the width it acquires from the low orbital angular momentum single-particle states playing a dominant role in two-nucleon transfer amplitudes. This effect, in addition to a severe Q -value mismatch, may account for the elusive nature of this mode in (t ,p ) and (p ,t ) reactions.

  14. Formation of "bound

    NASA Astrophysics Data System (ADS)

    Nowak, K.; Kästner, M.; Miltner, A.

    2009-04-01

    During degradation of organic pollutants in soil, metabolites, microbial biomass, CO2and "bound" residues ("non-extractable" residues in soil organic matter) are formed. Enhanced transformation of these contaminants into "bound" residues has been proposed as an alternative remediation method for polluted soils. However, this kind of residues may pose a potential risk for the environment due to their chemical structure and possible remobilization under different conditions. Therefore particular attention is given actually to "bound" residues. Part of these non-extractable residues may be "biogenic," because microorganisms use the carbon from the pollutant to form their biomass components (fatty acids, amino acids, amino sugars), which subsequently may be incorporated into soil organic matter. Furthermore, the CO2 originating from mineralization of xenobiotics, can be re-assimilated by microorganisms and also incorporated into "biogenic residue". The hazard posed by "bound" residues may be overestimated because they are "biogenic" (contain microbial fatty acids and amino acids). The knowledge about the pathways of "biogenic residue" formation is necessary for a proper assessment of the fate of tested pollutants and their turnover in the soil environment. Moreover, these data are needed to establish the realistic degradation rates of the contaminants in soil. The main objectives of this study are: to quantify the extent of "biogenic residue" (fatty acids, amino acids, amino sugars) formation during the degradation of a model pollutant (2,4-dichlorophenoxyacetic acid = 2,4-D) and during CO2 assimilation by microorganisms and to evaluate which components are mainly incorporated into "bound" residues. To investigate the extent of "biogenic residue" formation in soil during the degradation of 2,4-D, experiments with either 14C-U-ring and 13C6-2,4-D or carboxyl-14C 2,4-D were performed. The incubation experiments were performed according to OECD test guideline 307, in the

  15. Entropy bounds in terms of the w parameter

    NASA Astrophysics Data System (ADS)

    Abreu, Gabriel; Barceló, Carlos; Visser, Matt

    2011-12-01

    In a pair of recent articles [PRL 105 (2010) 041302; JHEP 1103 (2011) 056] two of the current authors have developed an entropy bound for equilibrium uncollapsed matter using only classical general relativity, basic thermodynamics, and the Unruh effect. An odd feature of that bound, [InlineMediaObject not available: see fulltext.], was that the proportionality constant, 1/2 , was weaker than that expected from black hole thermodynamics, 1/4 . In the current article we strengthen the previous results by obtaining a bound involving the (suitably averaged) w parameter. Simple causality arguments restrict this averaged < w> parameter to be ≤ 1. When equality holds, the entropy bound saturates at the value expected based on black hole thermodynamics. We also add some clarifying comments regarding the (net) positivity of the chemical potential. Overall, we find that even in the absence of any black hole region, we can nevertheless get arbitrarily close to the Bekenstein entropy.

  16. Defect Motifs for Constant Mean Curvature Surfaces

    NASA Astrophysics Data System (ADS)

    Kusumaatmaja, Halim; Wales, David J.

    2013-04-01

    The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.

  17. Pair correlations in neutron-rich nuclei

    SciTech Connect

    Esbensen, H.

    1995-08-01

    We started a program to study the ground-state properties of heavy, neutron-rich nuclei using the Hartree-Fock-Bogolyubov (HFB) approximation. This appears at present to be the most realistic approach for heavy nuclei that contain many loosely bound valence neutrons. The two-neutron density obtained in this approach can be decomposed into two components, one associated with the mean field and one associated with the pairing field. The latter has a structure that is quite similar to the pair-density obtained by diagonalizing the Hamiltonian for a two-neutron halo, which was studied earlier. This allows comparison of the HFB solutions against numerically exact solutions for two-neutron halos. This work is in progress. We intend to apply the HFB method to predict the ground-state properties of heavier, more neutron-rich nuclei that may be produced at future radioactive beam facilities.

  18. Schwinger pair production with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kasper, V.; Hebenstreit, F.; Oberthaler, M. K.; Berges, J.

    2016-09-01

    We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair production including the backreaction leading to plasma oscillations. Unlike previous investigations on quantum link models, we focus on the infinite-dimensional Hilbert space of QED and show that it may be well approximated by experiments employing Bose-Einstein condensates interacting with fermionic atoms. Numerical calculations based on functional integral techniques give a unique access to the physical parameters required to realize QED phenomena in a cold atom experiment. In particular, we use our approach to consider quantum link models in a yet unexplored parameter regime and give bounds for their ability to capture essential features of the physics. The results suggest a paradigmatic change towards realizations using coherent many-body states for quantum simulations of high-energy particle physics phenomena.

  19. Sculpture, view looking to pair of lions, positioned at top ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sculpture, view looking to pair of lions, positioned at top of stairs leading down into the Glen from DeWitt Circle, just north of the American Bungalow (note: Windmill in background) - National Park Seminary, Bounded by Capitol Beltway (I-495), Linden Lane, Woodstove Avenue, & Smith Drive, Silver Spring, Montgomery County, MD

  20. Aerodynamics of intermittent bounds in flying birds

    NASA Astrophysics Data System (ADS)

    Tobalske, Bret W.; Hearn, Jason W. D.; Warrick, Douglas R.

    Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch (Taeniopygia guttata, N = 5), flying at 6-10 m s- 1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens (N = 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s- 1 and body angle from -15∘ to 50∘. The wake of bounding birds and mounted specimens consisted of a pair of counterrotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag (L:D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10∘ to 30∘. Peak (L:D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15∘ or 20∘, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in CL and CD from maximum values of 1.19 and 0.95 during flight at 6 m s- 1 to minimum values of 0.70 and 0.54 during flight at 10 m s- 1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L:D ratios and extending tail length to 150% of normal increased L:D ratio. As downward induced velocity is present in the

  1. Aerodynamics of intermittent bounds in flying birds

    NASA Astrophysics Data System (ADS)

    Tobalske, Bret W.; Hearn, Jason W. D.; Warrick, Douglas R.

    2009-05-01

    Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch ( Taeniopygia guttata, N = 5), flying at 6-10 m s-1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens ( N = 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s-1 and body angle from -15° to 50°. The wake of bounding birds and mounted specimens consisted of a pair of counter-rotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag ( L: D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10° to 30°. Peak ( L: D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15° or 20°, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in C L and C D from maximum values of 1.19 and 0.95 during flight at 6 m s-1 to minimum values of 0.70 and 0.54 during flight at 10 m s-1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L: D ratios and extending tail length to 150% of normal increased L: D ratio. As downward induced velocity is present in the

  2. Multi-pair states in electron-positron pair creation

    NASA Astrophysics Data System (ADS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-09-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.

  3. TOPICAL REVIEW: O- bound small polarons in oxide materials

    NASA Astrophysics Data System (ADS)

    Schirmer, O. F.

    2006-11-01

    Holes bound to acceptor defects in oxide crystals are often localized by lattice distortion at just one of the equivalent oxygen ligands of the defect. Such holes thus form small polarons in symmetric clusters of a few oxygen ions. An overview on mainly the optical manifestations of those clusters is given. The article is essentially divided into two parts: the first one covers the basic features of the phenomena and their explanations, exemplified by several paradigmatic defects; in the second part numerous oxide materials are presented which exhibit bound small polaron optical properties. The first part starts with summaries on the production of bound hole polarons and the identification of their structure. It is demonstrated why they show strong, wide absorption bands, usually visible, based on polaron stabilization energies of typically 1 eV. The basic absorption process is detailed with a fictitious two-well system. Clusters with four, six and twelve equivalent ions are realized in various oxide compounds. In these cases several degenerate optically excited polaron states occur, leading to characteristic final state resonance splittings. The peak energies of the absorption bands as well as the sign of the transfer energy depend on the topology of the clusters. A special section is devoted to the distinction between interpolaron and intrapolaron optical transitions. The latter are usually comparatively weak. The oxide compounds exhibiting bound hole small polaron absorptions include the alkaline earth oxides (e.g. MgO), BeO and ZnO, the perovskites BaTiO3 and KTaO3, quartz, the sillenites (e.g. Bi12TiO20), Al2O3, LiNbO3, topaz and various other materials. There are indications that the magnetic crystals NiO, doped with Li, and LaMnO3, doped with Sr, also show optical features caused by bound hole polarons. Beyond being elementary paradigms for the properties of small polarons in general, the defect species treated can be used to explain radiation and light

  4. On uninorms and nullnorms on direct product of bounded lattices

    NASA Astrophysics Data System (ADS)

    Kalina, Martin

    2016-09-01

    We will study uninorms on the unit square endowed with the natural partial order defined coordinate-wise. We will show that we can choose arbitrary pairs of incomparable elements, (a, e) and construct a uninorm whose neutral element is e and annihilator is a. As a special case we construct uninorms which are at the same time also nullnorms (or, expressed another way, we construct proper nullnorms with neutral element). We will also generalize this result to the direct product of two bounded lattices. I.e., we will show that it is possible to construct nullnorms with a neutral element on the direct product of two bounded lattices.

  5. Birth Defects Diagnosis

    MedlinePlus

    ... chromosomal disorder or heart defect in the baby. Second Trimester Screening Second trimester screening tests are completed between weeks 15 ... look for certain birth defects in the baby. Second trimester screening tests include a maternal serum screen ...

  6. Fractional diffusion on bounded domains

    SciTech Connect

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; Gunzburger, Max Donald; Lehoucq, Richard B.; Meerschaert, Mark M.

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  7. Error Bounds for Interpolative Approximations.

    ERIC Educational Resources Information Center

    Gal-Ezer, J.; Zwas, G.

    1990-01-01

    Elementary error estimation in the approximation of functions by polynomials as a computational assignment, error-bounding functions and error bounds, and the choice of interpolation points are discussed. Precalculus and computer instruction are used on some of the calculations. (KR)

  8. Northwest Outward Bound Instructor's Manual.

    ERIC Educational Resources Information Center

    Northwest Outward Bound School, Portland, OR.

    Instructor responsibilities, procedures for completing activities safely, and instructional methods and techniques are outlined to assist instructors in the Northwest Outward Bound School (Portland, Oregon) as they strive for teaching excellence. Information is organized into six chapters addressing: history and philosophy of Outward Bound; course…

  9. Duralumin - Defects and Failures

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    It is proposed in this paper to identify some of the defects and failures in duralumin most frequently encountered by the aircraft industry with a view to indicate their importance. The defects and failures in duralumin may be classified into the following groups: 1) defects produced during manufacture; 2) defects produced during fabrication; 3) corrosion and erosion; and 4) fatigue failures. Only the first two will be covered in this report.

  10. Pumping Electron-Positron Pairs from a Well Potential

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Liu, Jie; Fu, Li-Bin

    2016-04-01

    In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair number after a single cycle has quantized values as a function of the upper boundary of the oscillating, and the critical upper boundaries indicate the diving points of the bound states.

  11. Pumping Electron-Positron Pairs from a Well Potential

    PubMed Central

    Wang, Qiang; Liu, Jie; Fu, Li-bin

    2016-01-01

    In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair number after a single cycle has quantized values as a function of the upper boundary of the oscillating, and the critical upper boundaries indicate the diving points of the bound states. PMID:27125998

  12. Facts about Birth Defects

    MedlinePlus

    ... Us Information For... Media Policy Makers Facts about Birth Defects Language: English Español (Spanish) Recommend on Facebook Tweet ... having a baby born without a birth defect. Birth Defects Are Common Every 4 ½ minutes, a baby ...

  13. Defects and defect healing in amorphous Si3N4-xHy: An ab initio density functional theory study

    NASA Astrophysics Data System (ADS)

    Hintzsche, L. E.; Fang, C. M.; Marsman, M.; Jordan, G.; Lamers, M. W. P. E.; Weeber, A. W.; Kresse, G.

    2013-10-01

    We present an ab initio density functional theory study of the dominant defects in hydrogenated amorphous silicon nitrides covering different stoichiometries, the influence of hydrogen, and the influence of the annealing history. Whereas nitrogen (N) lone pair states dominate the valence band edge in stoichiometric a-Si3N4, we find that K defects, threefold coordinated silicon (Si) atoms, and Si-Si bond-related states dominate electronic defect contributions in the gap for N-deficient a-Si3N4-x. Hydrogen saturates the dangling Si bonds, significantly reducing the number of electronic defects related to undercoordinated Si atoms.

  14. Nonlocal spectroscopy of Andreev bound states

    NASA Astrophysics Data System (ADS)

    Schindele, J.; Baumgartner, A.; Maurand, R.; Weiss, M.; Schönenberger, C.

    2014-01-01

    We experimentally investigate Andreev bound states (ABSs) in a carbon nanotube quantum dot (QD) connected to a superconducting Nb lead (S). A weakly coupled normal metal contact acts as a tunnel probe that measures the energy dispersion of the ABSs. Moreover, we study the response of the ABS to nonlocal transport processes, namely, Cooper pair splitting and elastic co-tunnelling, which are enabled by a second QD fabricated on the same nanotube on the opposite side of S. We find an appreciable nonlocal conductance with a rich structure, including a sign reversal at the ground-state transition from the ABS singlet to a degenerate magnetic doublet. We describe our device by a simple rate equation model that captures the key features of our observations and demonstrates that the sign of the nonlocal conductance is a measure for the charge distribution of the ABS, given by the respective Bogoliubov-de Gennes amplitudes u and v.

  15. Twist Defects in Topological Systems with Anyonic Symmetries

    NASA Astrophysics Data System (ADS)

    Teo, Jeffrey; Roy, Abhishek; Chen, Xiao

    2014-03-01

    Twist defects are point-like objects that support robust non-local storage of quantum information and non-abelian unitary operations. Unlike quantum deconfined anyonic excitations, they rely on symmetry rather than a non-abelian topological order. Zero energy Majorana bound states can arise at lattice defects, such as disclinations and dislocations, in a topological crystalline superconductor. More general parafermion bound state can appear as twist defects in a topological phase with an anyonic symmetry, such as a bilayer fractional quantum Hall state and the Kitaev toric code. They are however fundamentally different from quantum anyonic excitations in a true topological phase. This is demonstrated by their unconventional exchange and braiding behavior, which is characterized by a modified spin statistics theorem and modular invariance. Gauging anyonic symmetries by treating twist defects as quantum excitations provides a connection between some non-abelian topological states and abelian ones. Simons Foundation

  16. Defects in liquid crystal nematic shells

    NASA Astrophysics Data System (ADS)

    Fernandez-Nieves, A.; Utada, A. S.; Vitelli, V.; Link, D. R.; Nelson, D. R.; Weitz, D. A.

    2006-03-01

    We generate water/liquid crystal (LC)/water double emulsions via recent micro-capillary fluidic devices [A. S. Utada, et.al. Science 308, 537 (2005)]. The resultant objects are stabilized against coalescence by using surfactants or adequate polymers; these also fix the boundary conditions for the director field n. We use 4-pentyl-4-cyanobiphenyl (5CB) and impose tangential boundary conditions at both water/LC interfaces by having polyvinyl alcohol (PVA) dispersed in the inner and outer water phases. We confirm recent predictions [D. R. Nelson, NanoLetters 2, 1125 (2002)] and find that four strength s=+1/2 defects are present; this is in contrast to the two s=+1 defect bipolar configuration observed for bulk spheres [A. Fernandez-Nieves, et.al. Phys. Rev. Lett. 92, 105503 (2004)]. However, these defects do not lie in the vertices of a tetrahedron but are pushed towards each other until certain equilibration distance is reached. In addition to the four defect shells, we observe shells with two s=+1 defects and even with three defects, a s=+1 and two s=+1/2. We argue these configurations arise from nematic bulk distortions that become important as the shell thickness increases. Finally, by adding a different surfactant, sodium dodecyl sulphate (SDS), to the outer phase, we can change the director boundary conditions at the outermost interface from parallel to homeotropic, to induce coalescing of the two pair of defects in the four defect shell configuration to yield two defect bipolar shells.

  17. Point Defects in SiC

    NASA Astrophysics Data System (ADS)

    Zvanut, Mary Ellen

    2004-03-01

    Production of high frequency, high power electronic devices using wide bandgap semiconductors has spurred renewed interest in point defects in SiC. Recent electron paramagnetic resonance (EPR) spectroscopy studies focus on centers in as-grown high purity semi-insulating substrates because intrinsic defects are thought to compensate unavoidable shallow centers, thus creating the high resistivity required. The EPR studies address the chemical/structural composition of the defects, the defect level (energy with respect to a band edge with which the defect can accept or release an electron) and thermal stability. Thus far, the positively charged carbon vacancy, the Si vacancy, a carbon-vacancy/carbon antisite pair, and several as yet-unidentified centers have been observed in as-grown electronic-grade 4H-SiC [1-3]. The talk will review the types of defects recently identified in SiC and discuss their possible relationship to compensation. The photo-induced EPR experiments used to determine defect levels will be discussed, with a particular focus on the carbon vacancy. The use of high frequency EPR to resolve the many different types of centers in SiC will also be covered. Finally, the presentation will review the thermal stability of the intrinsic defects detected in as-grown 4H SiC. 1. M. E. Zvanut and V. V. Konovalov, Appl. Phys. Lett. 80, 410 (2002). 2. N.T. Son, Z. Zolnai, and E. Janzen, Phys. Rev. B64, 2452xx (2003). 3. W.E. Carlos, E.R. Glaser, and B.V. Shanabrook, in Proceedings of the 22nd conference on Defects in Semiconductors, Aarhus, Denmark, July 2003.

  18. Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys from first principles

    NASA Astrophysics Data System (ADS)

    Klaver, T. P. C.; Hepburn, D. J.; Ackland, G. J.

    2012-05-01

    We present results of an extensive set of first-principles density functional theory calculations of point defect formation, binding, and clustering energies in austenitic Fe with dilute concentrations of Cr and Ni solutes. A large number of possible collinear magnetic structures were investigated as appropriate reference states for austenite. We found that the antiferromagnetic single- and double-layer structures with tetragonal relaxation of the unit cell were the most suitable reference states and highlighted the inherent instabilities in the ferromagnetic states. Test calculations for the presence and influence of noncollinear magnetism were performed but proved mostly negative. We calculate the vacancy formation energy to be between 1.8 and 1.95 eV. Vacancy cluster binding was initially weak at 0.1 eV for divacancies but rapidly increased with additional vacancies. Clusters of up to six vacancies were studied and a highly stable octahedral cluster and stacking fault tetrahedron were found with total binding energies of 2.5 and 2.3 eV, respectively. The <100> dumbbell was found to be the most stable self-interstitial with a formation energy of between 3.2 and 3.6 eV and was found to form strongly bound clusters, consistent with other fcc metals. Pair interaction models were found to be capable of capturing the trends in the defect cluster binding energy data. Solute-solute interactions were found to be weak in general, with a maximal positive binding of 0.1 eV found for Ni-Ni pairs and maximum repulsion found for Cr-Cr pairs of -0.1 eV. Solute cluster binding was found to be consistent with a pair interaction model, with Ni-rich clusters being the most stable. Solute-defect interactions were consistent with Ni and Cr being modestly oversized and undersized solutes, respectively, which is exactly opposite to the experimentally derived size factors for Ni and Cr solutes in type 316 stainless steel and in the pure materials. Ni was found to bind to the vacancy and

  19. Defect production in ceramics

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  20. Swelling Mechanisms of UO2 Lattices with Defect Ingrowths.

    PubMed

    Günay, Seçkin D

    2015-01-01

    The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777

  1. Swelling Mechanisms of UO2 Lattices with Defect Ingrowths

    PubMed Central

    Günay, Seçkin D.

    2015-01-01

    The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777

  2. Postdevelopment defect evaluation

    NASA Astrophysics Data System (ADS)

    Miyahara, Osamu; Kiba, Yukio; Ono, Yuko

    2001-08-01

    Reduction of defects after development is a critical issue in photolithography. A special category of post development defects is the satellite defect which is located in large exposed areas generally in proximity to large unexposed regions of photoresist. We have investigated the formation of this defect type on ESCAP and ACETAL DUV resists with and without underlying organic BARCs, In this paper, we will present AFM and elemental analysis data to determine the origin of the satellite defect. Imaging was done on a full-field Nikon 248nm stepper and resist processing was completed on a TEL CLEAN TRACK ACT 8 track. Defect inspection and review were performed on a KLA-Tencor and Hitachi SEM respectively. Results indicate that the satellite defect is generated on both BARC and resist films and defect counts are dependent on the dark erosion. Elemental analysis indicates that the defects are composed of sulfur and nitrogen compounds. We suspect that the defect is formed as a result of a reaction between PAG, quencher and TMAH. This defect type is removed after a DIW re-rinse.

  3. Saturating the holographic entropy bound

    SciTech Connect

    Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan

    2010-10-15

    The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S < or approx. A{sup 3/4}, may hold true. In this note, we exhibit light sheets whose entropy exceeds A{sup 3/4} by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order {Lambda}{sup -1} ({Lambda}{sup -2}), and not |{Lambda}|{sup -3/4} as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S < or approx. A{sup 3/4} is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems.

  4. Complementarity reveals bound entanglement of two twisted photons

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.; Löffler, Wolfgang

    2013-08-01

    We demonstrate the detection of bipartite bound entanglement as predicted by the Horodecki's in 1998. Bound entangled states, being heavily mixed entangled quantum states, can be produced by incoherent addition of pure entangled states. Until 1998 it was thought that such mixing could always be reversed by entanglement distillation; however, this turned out to be impossible for bound entangled states. The purest form of bound entanglement is that of only two particles, which requires higher-dimensional (d > 2) quantum systems. We realize this using photon qutrit (d = 3) pairs produced by spontaneous parametric downconversion, that are entangled in the orbital angular momentum degrees of freedom, which is scalable to high dimensions. Entanglement of the photons is confirmed via a ‘maximum complementarity protocol’. This conceptually simple protocol requires only maximized complementary of measurement bases; we show that it can also detect bound entanglement. We explore the bipartite qutrit space and find that, also experimentally, a significant portion of the entangled states are actually bound entangled.

  5. Excited state dependent electron transfer of a rhenium-dipyridophenazine complex intercalated between the base pairs of DNA: a time-resolved UV-visible and IR absorption investigation into the photophysics of fac-[Re(CO)3(F2dppz)(py)]+ bound to either [poly(dA-dT)]2 or [poly(dG-dC)]2.

    PubMed

    Cao, Qian; Creely, Caitriona M; Davies, E Stephen; Dyer, Joanne; Easun, Timothy L; Grills, David C; McGovern, David A; McMaster, Jonathan; Pitchford, Jonathan; Smith, Jayden A; Sun, Xue-Zhong; Kelly, John M; George, Michael W

    2011-08-01

    The transient species formed following excitation of fac-[Re(CO)(3)(F(2)dppz)(py)](+) (F(2)dppz = 11,12-difluorodipyrido[3,2-a:2',3'-c]phenazine) bound to double-stranded polynucleotides [poly(dA-dT)](2) or [poly(dG-dC)](2) have been studied by transient visible and infra-red spectroscopy in both the picosecond and nanosecond time domains. The latter technique has been used to monitor both the metal complex and the DNA by monitoring the regions 1900-2100 and 1500-1750 cm(-1) respectively. These data provide direct evidence for electron transfer from guanine to the excited state of the metal complex, which proceeds both on a sub-picosecond time scale and with a lifetime of 35 ps, possibly due to the involvement of two excited states. No electron transfer is found for the [poly(dA-dT)](2) complex, although characteristic changes are seen in the DNA-region TRIR consistent with changes in the binding of the bases in the intercalation site upon excitation of the dppz-complex.

  6. Donor-vacancy pairs in irradiated n-Ge: A searching look at the problem

    SciTech Connect

    Emtsev, Vadim; Oganesyan, Gagik

    2014-02-21

    The present situation concerning the identification of vacancy-donor pairs in irradiated n-Ge is discussed. The challenging points are the energy states of these defects deduced from DLTS spectra. Hall effect data seem to be at variance with some important conclusions drawn from DLTS measurements. Critical points of the radiation-produced defect modeling in n-Ge are highlighted.

  7. Nonuniversal BBN bounds on electromagnetically decaying particles

    NASA Astrophysics Data System (ADS)

    Poulin, Vivian; Serpico, Pasquale Dario

    2015-05-01

    In Poulin and Serpico [Phys. Rev. Lett. 114, 091101 (2015)] we recently argued that when the energy of a photon injected in the primordial plasma falls below the pair-production threshold the universality of the nonthermal photon spectrum from the standard theory of electromagnetic cascades onto a photon background breaks down. We showed that this could reopen or widen the parameter space for an exotic solution to the "lithium problem." Here we discuss another application, namely the impact that this has on nonthermal big bang nucleosynthesis constraints from He 4 , He 3 , and H 2 , using the parametric example of monochromatic photon injection of different energies. Typically, we find tighter bounds than those existing in the literature, up to more than 1 order of magnitude. As a consequence of the nonuniversality of the spectrum, the energy dependence of the photodissociation cross sections is important. We also compare the constraints obtained with current level and future reach of cosmic microwave background spectral distortion bounds.

  8. Existence of best proximity pairs and equilibrium pairs

    NASA Astrophysics Data System (ADS)

    Kim, Won Kyu; Lee, Kyoung Hee

    2006-04-01

    In this paper, using the fixed point theorem for Kakutani factorizable multifunctions, we shall prove new existence theorems of best proximity pairs and equilibrium pairs for free abstract economies, which include the previous fixed point theorems and equilibrium existence theorems.

  9. Octagonal Defects at Carbon Nanotube Junctions

    PubMed Central

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  10. Quantum conductance of carbon nanotubes with defects

    SciTech Connect

    Chico, L.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. |

    1996-07-01

    We study the conductance of metallic carbon nanotubes with vacancies and pentagon-heptagon pair defects within the Landauer formalism. Using a tight-binding model and a Green{close_quote}s function technique to calculate the scattering matrix, we examine the one-dimensional to two-dimensional crossover in these systems and show the existence of metallic tube junctions in which the conductance is suppressed for symmetry reasons. {copyright} {ital 1996 The American Physical Society.}

  11. Using Defects in Materials to Store Energy: a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Lu, I.-Te; Bernardi, Marco

    We study the energy stored by defects in materials using density functional theory (DFT) calculations. Leveraging experimental data to estimate the energy density of defects, expressed as the defect formation energy per unit volume (units of MJ/L) or weight (units of MJ/kg), we identify candidates for high energy density storage, including tungsten, diamond, graphite, silicon, and graphene. DFT calculations are applied to these materials to study the formation energy of vacancies, interstitials, and Frenkel pairs. Our results indicate that the energy density stored by defects in these materials, with experimentally accessible non-equilibrium defect concentrations, can be higher than that of common energy storage technologies such as lithium batteries and supercapacitors. We discuss storage of solar energy and electrical energy (through ion bombardment) using defects.

  12. Finding Bounded Rational Equilibria. Part 1; Iterative Focusing

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2004-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality characterizing all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. It has recently been shown that the same information theoretic mathematical structure, known as Probability Collectives (PC) underlies both issues. This relationship between statistical physics and game theory allows techniques and insights from the one field to be applied to the other. In particular, PC provides a formal model-independent definition of the degree of rationality of a player and of bounded rationality equilibria. This pair of papers extends previous work on PC by introducing new computational approaches to effectively find bounded rationality equilibria of common-interest (team) games.

  13. Bounding the elliptic Mahler measure

    NASA Astrophysics Data System (ADS)

    Pinner, Christopher

    1998-11-01

    We give a simple inequality relating the elliptic Mahler measure of a polynomial to the traditional Mahler measure (via the length of the polynomial). These bounds are essentially sharp. We also give the corresponding result for polynomials in several variables.

  14. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    NASA Astrophysics Data System (ADS)

    Suh, Joonki

    thermoelectric materials are thoroughly investigated. Point defects can potentially beat the undesired coupling, often term "thermoelectric Bermuda triangle", among electrical conductivity, thermal conductivity and thermopower. The maximum thermoelectric performance is demonstrated with an intermediate density of defects when they beneficially and multi-functionally act as electron donors, as well as strongly energy-dependent electron and phonon scatterers. Therefore, this is a good example of how fundamental defect physics can be applied for practical devices toward renewable energy technology. Another interesting field of layered nanomaterials is on transition-metal dichalcogenides (TMDs), sensational candidates for 2D semiconductor physics and applications. At the reduced dimensionality of 2D where a far stronger correlation between point defects and charge carriers is expected, it is studied how chalcogen vacancies alter optical properties of monolayer TMDs. A new, sub-bandgap broad emission lines as well as increase in the overall photoluminescence intensity at low temperatures are reported as a result of high quantum efficiency of excitons, i.e., bound electron-hole pairs, localized at defect sites. On electrical transport, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction while typically only one type of doping is stable for a particular TMD. For example, MoS2 is natively n-type, thus the lack of p-type doping hampers the development of charge-splitting p-n junctions of MoS2. To address this issue, we demonstrate stable p-type conduction in MoS2 by substitutional Nb doping up to the degenerate level. Proof-of-concept, van der Waals p-n homo-junctions based on vertically stacked MoS2 layers are also fabricated which enable gate-tuneable current rectification. Various electronic devices fabricated are stable in ambient air even without additional treatment such as capping layer protection, thanks to the substitutionality nature

  15. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    NASA Astrophysics Data System (ADS)

    Suh, Joonki

    thermoelectric materials are thoroughly investigated. Point defects can potentially beat the undesired coupling, often term "thermoelectric Bermuda triangle", among electrical conductivity, thermal conductivity and thermopower. The maximum thermoelectric performance is demonstrated with an intermediate density of defects when they beneficially and multi-functionally act as electron donors, as well as strongly energy-dependent electron and phonon scatterers. Therefore, this is a good example of how fundamental defect physics can be applied for practical devices toward renewable energy technology. Another interesting field of layered nanomaterials is on transition-metal dichalcogenides (TMDs), sensational candidates for 2D semiconductor physics and applications. At the reduced dimensionality of 2D where a far stronger correlation between point defects and charge carriers is expected, it is studied how chalcogen vacancies alter optical properties of monolayer TMDs. A new, sub-bandgap broad emission lines as well as increase in the overall photoluminescence intensity at low temperatures are reported as a result of high quantum efficiency of excitons, i.e., bound electron-hole pairs, localized at defect sites. On electrical transport, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction while typically only one type of doping is stable for a particular TMD. For example, MoS2 is natively n-type, thus the lack of p-type doping hampers the development of charge-splitting p-n junctions of MoS2. To address this issue, we demonstrate stable p-type conduction in MoS2 by substitutional Nb doping up to the degenerate level. Proof-of-concept, van der Waals p-n homo-junctions based on vertically stacked MoS2 layers are also fabricated which enable gate-tuneable current rectification. Various electronic devices fabricated are stable in ambient air even without additional treatment such as capping layer protection, thanks to the substitutionality nature

  16. Single-point position and transition defects in continuous time quantum walks

    PubMed Central

    Li, Z. J.; Wang, J. B.

    2015-01-01

    We present a detailed analysis of continuous time quantum walks (CTQW) with both position and transition defects defined at a single point in the line. Analytical solutions of both traveling waves and bound states are obtained, which provide valuable insight into the dynamics of CTQW. The number of bound states is found to be critically dependent on the defect parameters, and the localized probability peaks can be readily obtained by projecting the state vector of CTQW on to these bound states. The interference between two bound states are also observed in the case of a transition defect. The spreading of CTQW probability over the line can be finely tuned by varying the position and transition defect parameters, offering the possibility of precision quantum control of the system. PMID:26323855

  17. Fuzzy Logic Connectivity in Semiconductor Defect Clustering

    SciTech Connect

    Gleason, S.S.; Kamowski, T.P.; Tobin, K.W.

    1999-01-24

    In joining defects on semiconductor wafer maps into clusters, it is common for defects caused by different sources to overlap. Simple morphological image processing tends to either join too many unrelated defects together or not enough together. Expert semiconductor fabrication engineers have demonstrated that they can easily group clusters of defects from a common manufacturing problem source into a single signature. Capturing this thought process is ideally suited for fuzzy logic. A system of rules was developed to join disconnected clusters based on properties such as elongation, orientation, and distance. The clusters are evaluated on a pair-wise basis using the fuzzy rules and are joined or not joined based on a defuzzification and threshold. The system continuously re-evaluates the clusters under consideration as their fuzzy memberships change with each joining action. The fuzzy membership functions for each pair-wise feature, the techniques used to measure the features, and methods for improving the speed of the system are all developed. Examples of the process are shown using real-world semiconductor wafer maps obtained from chip manufacturers. The algorithm is utilized in the Spatial Signature Analyzer (SSA) software, a joint development project between Oak Ridge National Lab (ORNL) and SEMATECH.

  18. Structure and defect studies of In2O3:Zn,Zr for higher stability TCO

    NASA Astrophysics Data System (ADS)

    Herwadkar, Aditi; Kim, Kwiseon

    2010-03-01

    The defects structures among the transparent conducting oxides (TCO) plays a major role in determining stability of the oxide over a temperature range and in tuning electrical and optical properties for the different TCO applications In2O3 crystallizes in the cubic bixbyite structure. The structure can be derived from the related fluorite structure by removing one fourth of the anions and allowing for small shifts of the ionic positions. In2O3 has two non-equivalent six-fold coordinated cation sites. For one of the sites, the cation is bounded by two structural vacancy along the body diagonal and for the other non-equivalent site the vacancies lie along the face diagonal. These vacancies are actually empty oxygen vacancy positions. Indium is in +3 charge state. ZnO on the other hand crystallizes to form wurtzite structure with four-fold coordination for Zn and is in +2 charge state where as the crystal structure of ZrO is rulite with Zr in +4 charge state and is four fold coordinated. Co-doping of Zn and Zr with each substituting the In atom satisfies the octet rule and is lower in energy then the individual substitutions with overall neutrality. The formation enthalpy as a function of pair (Zn, Zr) shows a minimum at experimental composition of In2(Zn,Zr)3O24. We in this work present the electronic structure optimization and study the defect states in this material.

  19. Metastable Defects in Tritiated Amorphous Silicon

    SciTech Connect

    Ju, T.; Whitaker, J.; Zukotynski, S.; Kherani, N.; Taylor, P. C.; Stradins, P.

    2007-01-01

    The appearance of optically or electrically induced defects in hydrogenated amorphous silicon (a-Si:H), especially those that contribute to the Staebler-Wronski effect, has been the topic of numerous studies, yet the mechanism of defect creation and annealing is far from clarified. We have been observing the growth of defects caused by tritium decay in tritiated a Si-H instead of inducing defects optically. Tritium decays to {sup 3}He, emitting a beta particle (average energy of 5.7 keV) and an antineutrino. This reaction has a half-life of 12.5 years. In these 7 at.% tritium-doped a-Si:H samples each beta decay will create a defect by converting a bonded tritium to an interstitial helium, leaving behind a silicon dangling bond. We use ESR (electron spin resonance) and PDS( photothermal deflection spectroscopy) to track the defects. First we annealed these samples, and then we used ESR to determine the initial defect density around 10{sup 16} to 10{sup 17}/cm{sup 3}, which is mostly a surface spin density. After that we have kept the samples in liquid nitrogen for almost two years. During the two years we have used ESR to track the defect densities of the samples. The defect density increases without saturation to a value of 3 x 10{sup 19}/cm{sup 3} after two years, a number smaller than one would expect if each tritium decay were to create a silicon dangling bond (2 x 10{sup 20}/cm{sup 3}). This result suggests that there might be either an annealing process that remains at liquid nitrogen temperature, or tritium decay in clustered phase not producing a dangling bond due to bond reconstruction and emission of the hydrogen previously paired to Si-bonded tritium atom. After storage in liquid nitrogen for two years, we have annealed the samples. We have stepwise annealed one sample at temperatures up to 200, where all of the defects from beta decay are annealed out, and reconstructed the annealing energy distribution. The second sample, which was grown at 150, has

  20. Binaries and triples among asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    smaller (with one exception) than the bound orbiting secondaries. I will compare the observed properties of the paired binaries to predictions from theories of formation of asteroid binaries and pairs.

  1. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    SciTech Connect

    Audenaert, Koenraad M. R.; Mosonyi, Milán

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ₁, …, σ{sub r}. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ₁, …, σ{sub r}), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov's classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min{sub jbound is actually achieved. It was known to be achieved, in particular, when the state pair that is closest together in Chernoff divergence is more than 6 times closer than the next closest pair. Our results improve on this in two ways. First, we show that the optimal asymptotic rate must lie between C/2 and C. Second, we show that the Chernoff bound is already achieved when the closest state pair is more than 2 times closer than the next closest pair. We also show that the Chernoff bound is achieved when at least r - 2 of the states are pure, improving on a previous result by Nussbaum and Szkoła. Finally, we indicate a number of potential pathways along which a proof (or disproof) may eventually be found that the multi-hypothesis quantum Chernoff bound is always achieved.

  2. Observation of 3D defect mediated dust acoustic wave turbulence with fluctuating defects and amplitude hole filaments

    SciTech Connect

    Chang, Mei-Chu; Tsai, Ya-Yi; I, Lin

    2013-08-15

    We experimentally demonstrate the direct observation of defect mediated wave turbulence with fluctuating defects and low amplitude hole filaments, from a 3D self-excited plane dust acoustic wave in a dusty plasma by reducing dissipation. The waveform undulation is found to be the origin for the amplitude and the phase modulations of the local dust density oscillation, the broadening of the sharp peaks in the frequency spectrum, and the fluctuating defects. The corrugated wave crest surface also causes the observed high and low density patches in the transverse (xy) plane. Low oscillation amplitude spots (holes) share the same positions with the defects. Their trajectories in the xyt space appear in the form of chaotic filaments without long term predictability, through uncertain pair generation, propagation, and pair annihilation.

  3. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  4. Prospective very young asteroid pairs

    NASA Astrophysics Data System (ADS)

    Galád, A.; Vokrouhlický, D.; Zizka, J.

    2014-07-01

    Several tens of asteroid pairs can be discerned from the background main-belt asteroids. The majority of them are thought to have formed within only the last few 10^6 yr. The youngest recognized pairs have formed more than ≈ 10 kyr ago. As some details of pair formation are still not understood well, the study of young pairs is of great importance. It is mainly because the conditions at the time of the pair formation could be deduced much more reliably for young pairs. For example, space weathering on the surfaces of the components, or changes in their rotational properties (in spin rates, tumbling, coordinates of rotational pole) could be negligible since the formation of young pairs. Also, possible strong perturbations by main-belt bodies on pair formation can be reliably studied only for extremely young pairs. Some pairs can quickly blend in with the background asteroids, so even the frequency of asteroid pair formation could be determined more reliably based on young pairs (though only after a statistically significant sample is at disposal). In our regular search for young pairs in the growing asteroid database, only multiopposition asteroids with very similar orbital and proper elements are investigated. Every pair component is represented by a number of clones within orbital uncertainties and drifting in semimajor axis due to the Yarkovsky effect. We found that, if the previously unrecognized pairs (87887) 2000 SS_{286} - 2002 AT_{49} and (355258) 2007 LY_{4} - 2013AF_{40} formed at the recent very close approach of their components, they could become the youngest known pairs. In both cases, the relative encounter velocities of the components were only ˜ 0.1 m s^{-1}. However, the minimum distances between some clones are too large and a few clones of the latter pair did not encounter recently (within ≈ 10 kyr). The age of some prospective young pairs cannot be determined reliably without improved orbital properties (e.g., the second component of a pair

  5. Resonantly Enhanced Pair Production in a Simple Diatomic Model

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Lorin, Emmanuel; Bandrauk, André D.

    2013-01-01

    A new mechanism for the production of electron-positron pairs from the interaction of a laser field and a fully ionized diatomic molecule in the tunneling regime is presented. When the laser field is turned off, the Dirac operator has resonances in both the positive and the negative energy continua while bound states are in the mass gap. When this system is immersed in a strong laser field, the resonances move in the complex energy plane: the negative energy resonances are pushed to higher energies while the bound states are Stark shifted [F. Fillion-Gourdeau , J. Phys. A 45, 215304 (2012)JPHAC50305-4470]. It is argued here that there is a pair production enhancement at the crossing of resonances by looking at a simple one-dimensional model: the nuclei are modeled simply by Dirac delta potential wells while the laser field is assumed to be static and of finite spatial extent. The average rate for the number of electron-positron pairs produced is evaluated and the results are compared to the one and zero nucleus cases. It is shown that positrons are produced by the resonantly enhanced pair production mechanism, which is analogous to the resonantly enhanced ionization of molecular physics. This phenomenon could be used to increase the number of pairs produced at low field strength, allowing the study of the Dirac vacuum.

  6. Resonantly enhanced pair production in a simple diatomic model.

    PubMed

    Fillion-Gourdeau, François; Lorin, Emmanuel; Bandrauk, André D

    2013-01-01

    A new mechanism for the production of electron-positron pairs from the interaction of a laser field and a fully ionized diatomic molecule in the tunneling regime is presented. When the laser field is turned off, the Dirac operator has resonances in both the positive and the negative energy continua while bound states are in the mass gap. When this system is immersed in a strong laser field, the resonances move in the complex energy plane: the negative energy resonances are pushed to higher energies while the bound states are Stark shifted [F. Fillion-Gourdeau et al., J. Phys. A 45, 215304 (2012)]. It is argued here that there is a pair production enhancement at the crossing of resonances by looking at a simple one-dimensional model: the nuclei are modeled simply by Dirac delta potential wells while the laser field is assumed to be static and of finite spatial extent. The average rate for the number of electron-positron pairs produced is evaluated and the results are compared to the one and zero nucleus cases. It is shown that positrons are produced by the resonantly enhanced pair production mechanism, which is analogous to the resonantly enhanced ionization of molecular physics. This phenomenon could be used to increase the number of pairs produced at low field strength, allowing the study of the Dirac vacuum.

  7. Multiple origins of asteroid pairs

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.

    2016-01-01

    Rotationally fissioned asteroids produce unbound asteroid pairs that have very similar heliocentric orbits. Backward integration of their current heliocentric orbits provides an age of closest proximity that can be used to date the rotational fission event. Most asteroid pairs follow a predicted theoretical relationship between the primary spin period and the mass ratio of the two pair members that is a direct consequence of the YORP-induced rotational fission hypothesis. If the progenitor asteroid has strength, asteroid pairs may have higher mass ratios or faster rotating primaries. However, the process of secondary fission leaves the originally predicted trend unaltered. We also describe the characteristics of pair members produced by four alternative routes from a rotational fission event to an asteroid pair. Unlike direct formation from the event itself, the age of closest proximity of these pairs cannot generally be used to date the rotational fission event since considerable time may have passed.

  8. Light-induced defects in hybrid lead halide perovskite

    NASA Astrophysics Data System (ADS)

    Sharia, Onise; Schneider, William

    One of the main challenges facing organohalide perovskites for solar application is stability. Solar cells must last decades to be economically viable alternatives to traditional energy sources. While some causes of instability can be avoided through engineering, light-induced defects can be fundamentally limiting factor for practical application of the material. Light creates large numbers of electron and hole pairs that can contribute to degradation processes. Using ab initio theoretical methods, we systematically explore first steps of light induced defect formation in methyl ammonium lead iodide, MAPbI3. In particular, we study charged and neutral Frenkel pair formation involving Pb and I atoms. We find that most of the defects, except negatively charged Pb Frenkel pairs, are reversible, and thus most do not lead to degradation. Negative Pb defects create a mid-gap state and localize the conduction band electron. A minimum energy path study shows that, once the first defect is created, Pb atoms migrate relatively fast. The defects have two detrimental effects on the material. First, they create charge traps below the conduction band. Second, they can lead to degradation of the material by forming Pb clusters.

  9. Experimental activation of bound entanglement.

    PubMed

    Kaneda, Fumihiro; Shimizu, Ryosuke; Ishizaka, Satoshi; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi

    2012-07-27

    Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication. We demonstrate the experimental "activation" of the bound entanglement held in the four-qubit Smolin state, unleashing its immanent entanglement in distillable form, with the help of auxiliary two-qubit entanglement and local operations and classical communication. We anticipate that it opens the way to a new class of QICT applications that utilize more general classes of entanglement than ever, including bound entanglement.

  10. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the

  11. Micrograph Defect Indentifier

    SciTech Connect

    None, None

    2012-10-11

    Micrograph image defect identifier is a computer code written in MATLAB to automatically detect defects on scanned image of thin film membrane samples employing three methods: global threshold, line detection and k-means segmentation. The results are segmented binary images of thin film with defects identified. Defect area fractions are also calculated. The users may use default functional variables calculated by program, or input preferred value from user’s experience. This will empower the user to processing the image with more flexibility. MDI was designed to identify defects of thin films fabricated. It is also used in phase identification, porosity study on SEM, OM, TEM images. Different methods were applied in this software package: global threshold, line detection and k-means segmentation.

  12. Micrograph Defect Indentifier

    2012-10-11

    Micrograph image defect identifier is a computer code written in MATLAB to automatically detect defects on scanned image of thin film membrane samples employing three methods: global threshold, line detection and k-means segmentation. The results are segmented binary images of thin film with defects identified. Defect area fractions are also calculated. The users may use default functional variables calculated by program, or input preferred value from user’s experience. This will empower the user to processingmore » the image with more flexibility. MDI was designed to identify defects of thin films fabricated. It is also used in phase identification, porosity study on SEM, OM, TEM images. Different methods were applied in this software package: global threshold, line detection and k-means segmentation.« less

  13. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  14. Bounds for nonlocality distillation protocols

    SciTech Connect

    Forster, Manuel

    2011-06-15

    Nonlocality can be quantified by the violation of a Bell inequality. Since this violation may be amplified by local operations, an alternative measure has been proposed--distillable nonlocality. The alternative measure is difficult to calculate exactly due to the double exponential growth of the parameter space. In this paper, we give a way to bound the distillable nonlocality of a resource by the solutions to a related optimization problem. Our upper bounds are exponentially easier to compute than the exact value and are shown to be meaningful in general and tight in some cases.

  15. Upper Bound for Induced Gravitation

    NASA Astrophysics Data System (ADS)

    Khuri, N. N.

    1982-08-01

    Given the assumption that Gind-1 given by the Adler-Zee formula is positive, an explicit and rigorous upper bound is derived for it. For pure SU(N) gauge theory, (16πG)-1<=(2512π2)(N2-1)ΛN2 is obtained where ΛN is the mass scale. In general the bound (16πG)-1<=25(π2144)CψΛ2 is obtained, where Cψ is the coefficient of the most singular anomaly contribution in x space, a constant easily determined by low-order perturbation theory for any gauge group.

  16. On lower bounds for polarisability

    NASA Astrophysics Data System (ADS)

    Montgomery, H. E.; Pupyshev, V. I.

    2013-09-01

    The response of molecular systems to external fields was one of the first areas studied after development of the new quantum mechanics. Early work by Kirkwood and Buckingham developed polarisability lower bounds that are still used today. This work uses an inequality proposed by Linderberg to develop a treatment of polarisability lower bounds that unifies the work of Kirkwood and Buckingham with Hylleraas' variational perturbation theory. In particular, the prehistory of the works of Kirkwood and Buckingham is described. Numerical examples are presented to demonstrate the convergence of approximate wavefunctions in the confined atom problem. The applicability of dimensional scaling and its utility in the analysis of confined systems are also discussed.

  17. Dzyaloshinskii-Moriya interaction as an agent to free the bound entangled states

    NASA Astrophysics Data System (ADS)

    Sharma, Kapil K.; Pandey, S. N.

    2016-04-01

    In the present paper, we investigate the efficacy of Dzyaloshinskii-Moriya (DM) interaction to convert the bound entangled states into free entangled states. We consider the tripartite hybrid system as a pair of non interacting two qutrits initially prepared in bound entangled states and one auxiliary qubit. Here, we consider two types of bound entangled states investigated by Horodecki. The auxiliary qubit interacts with any one of the qutrit of the pair through DM interaction. We show that by tuning the probability amplitude of auxiliary qubit and DM interaction strength, one can free the bound entangled states, which can be further distilled. We use the reduction criterion to find the range of the parameters of probability amplitude of auxiliary qubit and DM interaction strength, for which the states are distillable. The realignment criterion and negativity have been used for detection and quantification of entanglement.

  18. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence. PMID:17730606

  19. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  20. Photogeneration of polaron pairs in conducting polymers

    NASA Astrophysics Data System (ADS)

    Conwell, E. M.; Mizes, H. A.

    1995-03-01

    It is usually assumed that when photogeneration in a conducting polymer results in an electron and hole on separate chains they form negative and positive polarons that can move independently of each other. We show, on the basis of the small carrier yield per photon seen in picosecond photoconductivity, the different behavior of photoinduced absorption (PA) in dilute solution and thin films, and the spectral distribution of the PA in thin films, that photogenerated positive and negative polarons in poly(p-phenylene vinylene), polythiophene, and polyacetylene are, for the most part, bound in pairs by their Coulomb attraction. We also show that PA data give evidence for a gap of 2.8 eV, and thus an exciton binding energy of 0.4 eV, in poly(p-phenylene vinylene).

  1. Photoactive Spatial Proximity Probes for Binding Pairs with Epigenetic Marks

    PubMed Central

    Ezhov, Roman N.; Metzel, Greg A.; Mukhina, Olga A.; Musselman, Catherine A.; Kutateladze, Tatiana G.; Gustafson, Tiffany P.; Kutateladze, Andrei G.

    2014-01-01

    A new strategy for encoding polypeptide libraries with photolabile tags is developed. The photoassisted assay, based on conditional release of encoding tags only from bound pairs, can differentiate between peptides which have minor differences in a form of post-translational modifications with epigenetic marks. The encoding strategy is fully compatible with automated peptide synthesis. The encoding pendants are compact and do not perturb potential binding interactions. PMID:25197204

  2. Defect formation energy in pyrochlore: the effect of crystal size

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Ewing, Rodney C.; Becker, Udo

    2014-09-01

    Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.

  3. Wronskian Method for Bound States

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2011-01-01

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…

  4. Loosely-Bound Diatomic Molecules.

    ERIC Educational Resources Information Center

    Balfour, W. J.

    1979-01-01

    Discusses concept of covalent bonding as related to homonuclear diatomic molecules. Article draws attention to the existence of bound rare gas and alkaline earth diatomic molecules. Summarizes their molecular parameters and offers spectroscopic data. Strength and variation with distance of interatomic attractive forces is given. (Author/SA)

  5. Pieter Paul Rubens, "Prometheus Bound."

    ERIC Educational Resources Information Center

    Shoemaker, Marla K.

    1986-01-01

    Provides a full-color reproduction of Pieter Paul Rubens' painting, "Prometheus Bound," and a lesson plan for using it with students in grades 10 through 12. The goal of the lesson is to introduce students to the techniques of design and execution used by Rubens. (JDH)

  6. Defect Chemistry of Nanocarbon

    NASA Astrophysics Data System (ADS)

    Wang, Yuhuang

    2015-03-01

    Defects can rule the properties of a crystal. This effect is particularly intriguing in atom-thick materials such as single-walled carbon nanotubes and graphene, where electrons, excitons, phonons, and spin may strongly couple at the defect sites due to reduced dimensionality. In this talk, we will discuss our recent progress in fundamental understanding and molecular control of sp3 defects in sp2 carbon lattices, and their applications. An sp3 defect (tetrahedral bonding, diamond-like) is created by covalently attaching a functional group to the sp2 carbon lattice (trigonal planar, honeycomb-like) of a carbon nanotube or graphene. The beauty of this type of defect is its well-defined structure and chemical tunability at the molecular level. Our experimental results have unraveled a series of intriguing and surprising roles of defects. Specific examples will be given to illustrate how defects may be used to drive reaction propagation on sp2 carbon lattices, brighten carbon nanotube photoluminescence, and create selective chemical sensors.

  7. Detection of oocyte perivitelline membrane-bound sperm: a tool for avian collection management

    PubMed Central

    Croyle, Kaitlin E.; Durrant, Barbara S.; Jensen, Thomas

    2015-01-01

    The success and sustainability of an avian breeding programme depend on managing productive and unproductive pairs. Given that each breeding season can be of immeasurable importance, it is critical to resolve pair fertility issues quickly. Such problems are traditionally diagnosed through behavioural observations, egg lay history and hatch rates, with a decision to re-pair generally taking one or more breeding seasons. In pairs producing incubated eggs that show little or no signs of embryonic development, determining fertility is difficult. Incorporating a technique to assess sperm presence on the oocyte could, in conjunction with behaviour and other data, facilitate a more timely re-pair decision. Detection of perivitelline membrane-bound (PVM-bound) sperm verifies successful copulation, sperm production and sperm functionality. Alternatively, a lack of detectable sperm, at least in freshly laid eggs, suggests no mating, lack of sperm production/function or sperm–oviduct incompatibility. This study demonstrated PVM-bound sperm detection by Hoechst staining in fresh to 24-day-incubated exotic eggs from 39 species representing 13 orders. However, a rapid and significant time-dependent loss of detectable PVM-bound sperm was observed following incubation of chicken eggs. The PCR detection of sperm in seven species, including two bacterially infected eggs, demonstrated that this method was not as reliable as visual detection using Hoechst staining. The absence of amplicons in visually positive PVMs was presumably due to large PVM size and low sperm count, resulting in DNA concentrations too low for standard PCR detection. In summary, this study demonstrated the feasibility and limitations of using PVM-bound sperm detection as a management tool for exotic avian species. We verified that sperm presence or absence on fluorescence microscopy can aid in the differentiation of fertile from infertile eggs to assist breeding managers in making prompt decisions for pair

  8. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  9. Surface defects and symmetries

    NASA Astrophysics Data System (ADS)

    Fuchs, Jürgen; Schweigert, Christoph

    2015-04-01

    In quantum field theory, defects of various codimensions are natural ingredients and carry a lot of interesting information. In this contribution we concentrate on topological quantum field theories in three dimensions, with a particular focus on Dijkgraaf-Witten theories with abelian gauge group. Surface defects in Dijkgraaf-Witten theories have applications in solid state physics, topological quantum computing and conformal field theory. We explain that symmetries in these topological field theories are naturally defined in terms of invertible topological surface defects and are thus Brauer-Picard groups.

  10. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate. PMID:27573684

  11. Pairs of promoter pairs in a web of transcription.

    PubMed

    Kaplan, Craig D

    2016-08-30

    A new analysis has characterized a fundamental building block of complex transcribed loci. Constellations of core promoters can generally be reduced to pairs of divergent transcription units, where the distance between the pairs of transcription units correlates with constraints on genomic context, which in turn contribute to transcript fate.

  12. Defect solitons in photonic lattices.

    PubMed

    Yang, Jianke; Chen, Zhigang

    2006-02-01

    Nonlinear defect modes (defect solitons) and their stability in one-dimensional photonic lattices with focusing saturable nonlinearity are investigated. It is shown that defect solitons bifurcate out from every infinitesimal linear defect mode. Low-power defect solitons are linearly stable in lower bandgaps but unstable in higher bandgaps. At higher powers, defect solitons become unstable in attractive defects, but can remain stable in repulsive defects. Furthermore, for high-power solitons in attractive defects, we found a type of Vakhitov-Kolokolov (VK) instability which is different from the usual VK instability based on the sign of the slope in the power curve. Lastly, we demonstrate that in each bandgap, in addition to defect solitons which bifurcate from linear defect modes, there is also an infinite family of other defect solitons which can be stable in certain parameter regimes. PMID:16605473

  13. What Are Neural Tube Defects?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on ... media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects ...

  14. Atrial Septal Defect (For Teens)

    MedlinePlus

    ... I Help a Friend Who Cuts? Atrial Septal Defect KidsHealth > For Teens > Atrial Septal Defect Print A ... Care of Yourself What Is an Atrial Septal Defect? Having a doctor listen to your heart is ...

  15. Performance Bounds on Two Concatenated, Interleaved Codes

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Dolinar, Samuel

    2010-01-01

    A method has been developed of computing bounds on the performance of a code comprised of two linear binary codes generated by two encoders serially concatenated through an interleaver. Originally intended for use in evaluating the performances of some codes proposed for deep-space communication links, the method can also be used in evaluating the performances of short-block-length codes in other applications. The method applies, more specifically, to a communication system in which following processes take place: At the transmitter, the original binary information that one seeks to transmit is first processed by an encoder into an outer code (Co) characterized by, among other things, a pair of numbers (n,k), where n (n > k)is the total number of code bits associated with k information bits and n k bits are used for correcting or at least detecting errors. Next, the outer code is processed through either a block or a convolutional interleaver. In the block interleaver, the words of the outer code are processed in blocks of I words. In the convolutional interleaver, the interleaving operation is performed bit-wise in N rows with delays that are multiples of B bits. The output of the interleaver is processed through a second encoder to obtain an inner code (Ci) characterized by (ni,ki). The output of the inner code is transmitted over an additive-white-Gaussian- noise channel characterized by a symbol signal-to-noise ratio (SNR) Es/No and a bit SNR Eb/No. At the receiver, an inner decoder generates estimates of bits. Depending on whether a block or a convolutional interleaver is used at the transmitter, the sequence of estimated bits is processed through a block or a convolutional de-interleaver, respectively, to obtain estimates of code words. Then the estimates of the code words are processed through an outer decoder, which generates estimates of the original information along with flags indicating which estimates are presumed to be correct and which are found to

  16. Dissociability of free and peptidyl-tRNA bound ribosomes.

    PubMed

    Surguchov, A P; Fominykch, E S; Lyzlova, L V

    1978-06-16

    The influence of peptidyl-tRNA on the dissociation of yeast 80 S ribosomes into subunits was studied. For this purpose temperature-sensitive (ts) suppressor strain of yeast Saccharomyces cervisiae carrying a defect in peptide chain termination was used. It was found that peptidyl-tRNA did not influence the dissociation of ribosomes either at high salt concentration or in the presence of dissociation factor (DF) from yeast. After dissociation of yeast ribosomes in 0.5 M KCl, peptidyl-tRNA remains bound to the 60 S subunit. Some characteristics of the termination process and release of nascent polypeptides from yeast ribosomes are discussed. PMID:355860

  17. Anatomic uterine defects.

    PubMed

    Patton, P E

    1994-09-01

    Congenital or acquired uterine defects remain important considerations in the investigation of recurrent pregnancy loss. When repeated first or second trimester losses, preterm delivery, or abnormal fetal presentations are documented, the suspicion of a structural uterine abnormality should be high. The diagnosis of uterine defects is no longer elusive. The combination of radiologic imaging techniques, hysteroscopy, and laparoscopy enables an accurate diagnosis in nearly every case. The optimal treatment for uterine malformations is still a matter of considerable controversy. Therefore, when a uterine defect is diagnosed, tough clinical decisions must be made. When alternate causes of pregnancy loss are excluded, pregnancy potential will depend primarily on the specific type of uterine anomaly that is detected. It is important to recognize that not all uterine defects are amenable to therapy, but in carefully selected patients, reparative surgery may be rewarding.

  18. Automated Defect Classification (ADC)

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafermore » surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.« less

  19. Birth defects monitoring

    SciTech Connect

    Klingberg, M.A.; Papier, C.M.; Hart, J.

    1983-01-01

    Population monitoring of birth defects provides a means for detecting relative changes in their frequency. Many varied systems have been developed throughout the world since the thalidomide tragedy of the early 1960s. Although it is difficult to pinpoint specific teratogenic agents based on rises in rates of a particular defect or a constellation of defects, monitoring systems can provide clues for hypothesis testing in epidemiological investigations. International coordination of efforts in this area resulted in the founding of the International Clearinghouse for Birth Defects Monitoring Systems (ICBDMS) in 1974. In this paper we will describe the functions and basic requirements of monitoring systems in general, and look at the development and activities of the ICBDMS. A review of known and suspected environmental teratogenic agents (eg, chemical, habitual, biological, physical, and nutritional) is also presented.

  20. Birth Defects (For Parents)

    MedlinePlus

    ... Ones & When? Smart School Lunches Emmy-Nominated Video "Cerebral Palsy: Shannon's Story" 5 Things to Know About Zika & ... defects. Clefting can be surgically repaired after birth. Cerebral palsy usually isn't found until weeks to months ...

  1. Congenital Heart Defects

    MedlinePlus

    ... Treatment can include medicines, catheter procedures, surgery, and heart transplants. The treatment depends on the type of the defect, how severe it is, and a child's age, size, and general health. NIH: National Heart, Lung, and Blood Institute

  2. Congenital platelet function defects

    MedlinePlus

    Platelet storage pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... disorder may also cause severe bleeding. Platelet storage pool disorder (also called platelet secretion disorder) occurs when ...

  3. Automated Defect Classification (ADC)

    SciTech Connect

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafer surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.

  4. Assessment Strategies for Pair Programming

    ERIC Educational Resources Information Center

    Hahn, Jan Hendrik; Mentz, Elsa; Meyer, Lukas

    2009-01-01

    Although pair programming has proved its usefulness in teaching and learning programming skills, it is difficult to assess the individual roles and abilities of students whilst programming in pairs. (Note that within this manuscript, the term assessment refers to evaluating individual student performance.) Assessing only the outcomes of a pair…

  5. Detection of Majorana Kramers pairs using a quantum point contact

    NASA Astrophysics Data System (ADS)

    Li, Jian; Pan, Wei; Bernevig, B. Andrei; Lutchyn, Roman

    We propose a setup that integrates a quantum point contact (QPC) and a Josephson junction on a quantum spin Hall sample, experimentally realizable in InAs/GaSb quantum wells. The confinement due to both the QPC and the superconductor results in a Kramers pair of Majorana zero-energy bound states when the superconducting phases in the two arms differ by an odd multiple of π across the Josephson junction. We investigate the detection of these Majorana pairs with the integrated QPC, and find a robust switching from normal to Andreev scattering across the edges due to the presence of Majorana Kramers pairs. This transport signature is expected to be exhibited in measurements of differential conductance and/or current cross-correlation at low bias. This work was supported by ONR-N00014-14-1-0330.

  6. Dynamic Studies of Struve Double Stars: STF4 and STF 236AB Appear Gravitationally Bound

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.; Rica, F. M.

    2015-01-01

    Dynamics of two Struve double stars, WDS 00099+0827 (STF 4) and WDS 02556+2652 (STF 326 AB) are analyzed using astrometric criteria to determine their natures as gravitationally bound or unbound systems. If gravitationally bound, then observed relative velocity will be within limits according to the orbital energy conservation equation. Full implementation of this criterion was possible because the relative radial velocities as well as proper motions have been estimated. Other physical parameters were taken from literature or estimated using published protocols. Monte Carlo analysis indicates that both pairs have a high probability of being gravitationally bound and thus are long-period binaries.

  7. Magnetic pair creation transparency in gamma-ray pulsars

    SciTech Connect

    Story, Sarah A.; Baring, Matthew G. E-mail: baring@rice.edu

    2014-07-20

    Magnetic pair creation, γ → e {sup +} e {sup –}, has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy and updates earlier altitude bound determinations that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The analysis presented in this paper clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the

  8. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  9. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  10. Stereo Pair, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive

  11. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math Science... Upward Bound Math Science Annual Performance Report. OMB Control Number: 1840-NEW. Type of Review: New... under the regular Upward Bound (UB) and Upward Bound Math and Science (UBMS) Programs. The Department...

  12. Bound states in coupled guides. II. Three dimensions

    NASA Astrophysics Data System (ADS)

    Linton, C. M.; Ratcliffe, K.

    2004-04-01

    We compute bound-state energies in two three-dimensional coupled waveguides, each obtained from the two-dimensional configuration considered in paper I [J. Math. Phys. 45, 1359-1379 (2004)] by rotating the geometry about a different axis. The first geometry consists of two concentric circular cylindrical waveguides coupled by a finite length gap along the axis of the inner cylinder, and the second is a pair of planar layers coupled laterally by a circular hole. We have also extended the theory for this latter case to include the possibility of multiple circular windows. Both problems are formulated using a mode-matching technique, and in the cylindrical guide case the same residue calculus theory as used in paper I is employed to find the bound-state energies. For the coupled planar layers we proceed differently, computing the zeros of a matrix derived from the matching analysis directly.

  13. Predicting radiotherapy-induced cardiac perfusion defects

    SciTech Connect

    Das, Shiva K.; Baydush, Alan H.; Zhou Sumin; Miften, Moyed; Yu Xiaoli; Craciunescu, Oana; Oldham, Mark; Light, Kim; Wong, Terence; Blazing, Michael; Borges-Neto, Salvador; Dewhirst, Mark W.; Marks, Lawrence B.

    2005-01-01

    The purpose of this work is to compare the efficacy of mathematical models in predicting the occurrence of radiotherapy-induced left ventricular perfusion defects assessed using single-photon emission computed tomography (SPECT). The basis of this study is data from 73 left-sided breast/chestwall patients treated with tangential photon fields. The mathematical models compared were three commonly used parametric models [Lyman normal tissue complication probability (LNTCP), relative serialty (RS), generalized equivalent uniform dose (gEUD)] and a nonparametric model (Linear discriminant analysis--LDA). Data used by the models were the left ventricular dose--volume histograms, or SPECT-based dose-function histograms, and the presence/absence of SPECT perfusion defects 6 months postradiation therapy (21 patients developed defects). For the parametric models, maximum likelihood estimation and F-tests were used to fit the model parameters. The nonparametric LDA model step-wise selected features (volumes/function above dose levels) using a method based on receiver operating characteristics (ROC) analysis to best separate the groups with and without defects. Optimistic (upper bound) and pessimistic (lower bound) estimates of each model's predictive capability were generated using ROC curves. A higher area under the ROC curve indicates a more accurate model (a model that is always accurate has area=1). The areas under these curves for different models were used to statistically test for differences between them. Pessimistic estimates of areas under the ROC curve using dose-volume histogram/dose-function histogram inputs, in order of increasing prediction accuracy, were LNTCP (0.79/0.75), RS (0.80/0.77), gEUD (0.81/0.78), and LDA (0.84/0.86). Only the LDA model benefited from SPECT-based regional functional information. In general, the LDA model was statistically superior to the parametric models. The LDA model selected as features the left ventricular volumes above

  14. Shell closures, loosely bound structures, and halos in exotic nuclei

    SciTech Connect

    Saxena, G.; Singh, D.

    2013-04-15

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  15. Discrete family of dissipative soliton pairs in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Zavyalov, Aleksandr; Iliew, Rumen; Egorov, Oleg; Lederer, Falk

    2009-05-01

    We numerically investigate the formation of soliton pairs (bound states) in mode-locked fiber ring lasers. In the distributed model (complex cubic-quintic Ginzburg-Landau equation) we observe a discrete family of soliton pairs with equidistantly increasing peak separation. This family was identified by two alternative numerical schemes and the bound state instability was disclosed by a linear stability analysis. Moreover, similar families of unstable bound state solutions have been found in a more realistic lumped laser model with an idealized saturable absorber (instantaneous response). We show that a stabilization of these bound states can be achieved when the finite relaxation time of the saturable absorber is taken into account. The domain of stability can be controlled by varying this relaxation time.

  16. Discrete family of dissipative soliton pairs in mode-locked fiber lasers

    SciTech Connect

    Zavyalov, Aleksandr; Iliew, Rumen; Egorov, Oleg; Lederer, Falk

    2009-05-15

    We numerically investigate the formation of soliton pairs (bound states) in mode-locked fiber ring lasers. In the distributed model (complex cubic-quintic Ginzburg-Landau equation) we observe a discrete family of soliton pairs with equidistantly increasing peak separation. This family was identified by two alternative numerical schemes and the bound state instability was disclosed by a linear stability analysis. Moreover, similar families of unstable bound state solutions have been found in a more realistic lumped laser model with an idealized saturable absorber (instantaneous response). We show that a stabilization of these bound states can be achieved when the finite relaxation time of the saturable absorber is taken into account. The domain of stability can be controlled by varying this relaxation time.

  17. Effects of stoichiometry on the defect clustering in uranium dioxide.

    PubMed

    Ngayam-Happy, Raoul; Krack, Matthias; Pautz, Andreas

    2015-11-18

    This study addresses the on-going topic of point defects and point defect clusters in uranium dioxide. Molecular statics simulation using an extended pair potential model that accounts for disproportionation equilibrium as charge compensation has been applied to assess the effect of disproportionation on structural properties and clustering in non-stoichiometric uranium dioxide. The defective structures are scanned in minute detail using a powerful and versatile analysing tool, called ASTRAM, developed in-house for the purpose. Unlike pair potential models ignoring disproportionation effects, our model reproduces volume changes observed experimentally in non-stoichiometric UO2-x and UO2+x. The oxygen defect energetics computed is in good agreement with data in the literature. The model is used to assess the clustering that occurs in bulk samples of non-stoichiometric uranium dioxide. This study confirms the generation of split-interstitial clusters as the dominant defect type in non-stoichiometric uranium dioxide. A new key mechanism for defect clustering in hyper-stoichiometric uranium dioxide is proposed that is based on the progressive aggregation of primitive blocks identified as 1-vacancy split-interstitial clusters. PMID:26471388

  18. Effects of stoichiometry on the defect clustering in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Ngayam-Happy, Raoul; Krack, Matthias; Pautz, Andreas

    2015-11-01

    This study addresses the on-going topic of point defects and point defect clusters in uranium dioxide. Molecular statics simulation using an extended pair potential model that accounts for disproportionation equilibrium as charge compensation has been applied to assess the effect of disproportionation on structural properties and clustering in non-stoichiometric uranium dioxide. The defective structures are scanned in minute detail using a powerful and versatile analysing tool, called ASTRAM, developed in-house for the purpose. Unlike pair potential models ignoring disproportionation effects, our model reproduces volume changes observed experimentally in non-stoichiometric ~\\text{U}{{\\text{O}}\\text{2-\\text{x}}} and ~\\text{U}{{\\text{O}}\\text{2+x}} . The oxygen defect energetics computed is in good agreement with data in the literature. The model is used to assess the clustering that occurs in bulk samples of non-stoichiometric uranium dioxide. This study confirms the generation of split-interstitial clusters as the dominant defect type in non-stoichiometric uranium dioxide. A new key mechanism for defect clustering in hyper-stoichiometric uranium dioxide is proposed that is based on the progressive aggregation of primitive blocks identified as 1-vacancy split-interstitial clusters.

  19. Birth Defects. Matrix No. 2.

    ERIC Educational Resources Information Center

    Brent, Robert L.

    This report discusses the magnitude of the problem of birth defects, outlines advances in the birth defects field in the past decade, and identifies those areas where research is needed for the prevention, treatment, and management of birth defects. The problem of birth defects has consumed a greater portion of our health care resources because of…

  20. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  1. Pairing Properties of Superheavy Nuclei

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Pairing properties of even-even superheavy N=184 isotones are studied within the Skyrme-Hartree-Fock+BCS approach. In the particle-hole channel we take the Skyrme energy density functional SLy4, while in the particle-particle channel we employ the seniority pairing force and zero-range delta-interactions with different forms of density dependence. We conclude that the calculated static fission trajectories weakly depend on the specific form of the delta-pairing interaction. We also investigate the impact of triaxiality on the inner fission barrier and find a rather strong Z dependence of the effect.

  2. Defect behavior of polycrystalline solar cell silicon

    SciTech Connect

    Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P.

    1993-05-01

    The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

  3. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  4. Reconstruction of Mandibular Defects

    PubMed Central

    Chim, Harvey; Salgado, Christopher J.; Mardini, Samir; Chen, Hung-Chi

    2010-01-01

    Defects requiring reconstruction in the mandible are commonly encountered and may result from resection of benign or malignant lesions, trauma, or osteoradionecrosis. Mandibular defects can be classified according to location and extent, as well as involvement of mucosa, skin, and tongue. Vascularized bone flaps, in general, provide the best functional and aesthetic outcome, with the fibula flap remaining the gold standard for mandible reconstruction. In this review, we discuss classification and approach to reconstruction of mandibular defects. We also elaborate upon four commonly used free osteocutaneous flaps, inclusive of fibula, iliac crest, scapula, and radial forearm. Finally, we discuss indications and use of osseointegrated implants as well as recent advances in mandibular reconstruction. PMID:22550439

  5. Calvarial defect reconstruction.

    PubMed

    Jimenez, D F; Barone, C M

    1994-04-01

    The history of skull trepanation is almost as old as that of humanity. For thousands of years it has been performed for the treatment of numerous medical maladies. The Andean Incas, early Asians and South Seas Islanders, are amongst the many people to perform calvarial trepanation. Hippocrates described techniques for the use of the trepan in early Greek times. With the production of a skull opening comes the challenge of developing methods for closing the defect. It is in reality, more challenging to repair the defect than to create it. Man, with his never ending ingenuity, has tried to develop many techniques. We will discuss some of them and present our method of choice for closure of skull defects.

  6. Bound potassium in muscle II.

    PubMed

    Hummel, Z

    1980-01-01

    Experiments were performed to decide between the alternatives a) the ionized K+ is in a dissolved state in the muscle water, or b) a part of the muscle potassium is in a "bound' state. Sartorius muscles of Rana esculenta were put into glicerol for about one hour at 0-2 degrees C. Most of muscle water came out, but most of muscle potassium remained in the muscles. In contrast to this: from muscle in heat rigor more potassium was released due to glicerol treating than from the intact ones. 1. Supposition a) is experimentally refuted. 2. Supposition b) corresponds to the experimental results. PMID:6969511

  7. Voronoi Diagrams Without Bounding Boxes

    NASA Astrophysics Data System (ADS)

    Sang, E. T. K.

    2015-10-01

    We present a technique for presenting geographic data in Voronoi diagrams without having to specify a bounding box. The method restricts Voronoi cells to points within a user-defined distance of the data points. The mathematical foundation of the approach is presented as well. The cell clipping method is particularly useful for presenting geographic data that is spread in an irregular way over a map, as for example the Dutch dialect data displayed in Figure 2. The automatic generation of reasonable cell boundaries also makes redundant a frequently used solution to this problem that requires data owners to specify region boundaries, as in Goebl (2010) and Nerbonne et al (2011).

  8. Entropy bounds and dark energy

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D. H.

    2004-07-01

    Entropy bounds render quantum corrections to the cosmological constant Λ finite. Under certain assumptions, the natural value of Λ is of order the observed dark energy density ~10-10 eV4, thereby resolving the cosmological constant problem. We note that the dark energy equation of state in these scenarios is w≡p/ρ=0 over cosmological distances, and is strongly disfavored by observational data. Alternatively, Λ in these scenarios might account for the diffuse dark matter component of the cosmological energy density. Permanent address: Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403.

  9. Dynamical interactions of galaxy pairs

    NASA Technical Reports Server (NTRS)

    Athanassoula, E.

    1990-01-01

    Here the author briefly reviews the dynamics of sinking satellites and the effect of companions on elliptical galaxies. The author then discusses recent work on interacting disk systems, and finally focuses on a favorite interacting pair, NGC 5194/5195.

  10. Pair Excitations in Fermi Fluids

    NASA Astrophysics Data System (ADS)

    Böhm, Helga M.; Krotscheck, Eckhard; Schörkhuber, Karl; Springer, Josef

    2006-09-01

    We present a theory of multi-pair excitations in strongly interacting Fermi systems. Based on an equations-of-motion approach for time-dependent pair correlations it leads to a qualitatively new structure of the density-density response function. Our theory reduces to both, i) the "correlated" random-phase approximation (RPA) for fermions if the two-pair excitations are ignored, and ii) the correlated Brillouin-Wigner perturbation theory for bosons in the appropriate limit. The theory preserves the two first energy-weighted sum rules. A familiar problem of the standard RPA is that its zero-sound mode is energetically much higher than found in experiments. The popular cure of introducing an average effective mass in the Lindhard function violates sum rules and describes the physics incorrectly. We demonstrate that the inclusion of correlated pair excitations gives the correct dispersion. As in 4He, a modification of the effective mass is unnecessary also in 3He.

  11. Defect-Induced Changes in the Spectral Properties of HIGH-Tc Cuprates

    NASA Astrophysics Data System (ADS)

    Vobornik, I.; Berger, H.; Rullier-Albenque, F.; Margaritondo, G.; Pavuna, D.; Grioni, L. Forroand M.

    Superconductivity in high-Tc cuprates is particularly sensitive to disorder due to the unconventional d-wave pairing symmetry. We investigated effects of disorder on the spectral properties of Bi2Sr2CaCu2O8+x high-Tc superconductor. We found that already small defect densities suppress the characteristic spectral signature of the superconducting state. The spectral line shape clearly reflects new excitations within the gap, as expected for defect-induced pair breaking. At the lowest defect concentrations the normal state remains unaffected, while increased disorder leads to suppression of the normal quasiparticle peaks.

  12. Supersymmetric k-defects

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Trodden, Mark

    2016-04-01

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  13. Bounds on multipartite concurrence and tangle

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Ming; Li, Hongfang; Fei, Shao-Ming; Li-Jost, Xianqing

    2016-10-01

    We present an analytical lower bound of multipartite concurrence based on the generalized Bloch representations of density matrices. It is shown that the lower bound can be used as an effective entanglement witness of genuine multipartite entanglement. Tight lower and upper bounds for multipartite tangles are also derived. Since the lower bounds depend on just part of the correlation tensors, the result is experimentally feasible.

  14. Relativistic description of pair production of doubly heavy baryons in e{sup +}e{sup −} annihilation

    SciTech Connect

    Martynenko, A. P.; Trunin, A. M.

    2015-05-15

    Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated.

  15. Local charge states in hexagonal boron nitride with Stone-Wales defects.

    PubMed

    Wang, Rui; Yang, Jiali; Wu, Xiaozhi; Wang, Shaofeng

    2016-04-21

    A Stone-Wales (SW) defect is the simplest topological defect in graphene-like materials and can be potentially employed to design electronic devices . In this paper, we have systematically investigated the formation, structural, and electronic properties of the neutral and charged SW defects in hexagonal boron nitride (BN) using first-principles calculations. The transition states and energy barrier for the formation of SW defects demonstrate that the defected BN is stable. Our calculations show that there are two in-gap defect levels, which originate from the asymmetrical pentagon-heptagon pairs. The local defect configurations and electronic properties are sensitive to their charge states induced by the defect levels. The electronic band structures show that the negative and positive charged defects are mainly determined by shifting the conduction band minimum (CBM) and valence band maximum (VBM) respectively, and the SW-defected BN can realize -1 and +1 spin-polarized charge states. The effects of carbon (C) substitution on neutral and charged SW-defected BN have also been studied. Our results indicate that the C substitution of B in BN is in favour of the formation of SW defects. Structural and electronic calculations show rich charge-dependent properties of C substitutions in SW-defected BN, thus our theoretical study is important for various applications in the design of BN nanostructure-based devices. PMID:27030259

  16. Local charge states in hexagonal boron nitride with Stone-Wales defects

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Yang, Jiali; Wu, Xiaozhi; Wang, Shaofeng

    2016-04-01

    A Stone-Wales (SW) defect is the simplest topological defect in graphene-like materials and can be potentially employed to design electronic devices . In this paper, we have systematically investigated the formation, structural, and electronic properties of the neutral and charged SW defects in hexagonal boron nitride (BN) using first-principles calculations. The transition states and energy barrier for the formation of SW defects demonstrate that the defected BN is stable. Our calculations show that there are two in-gap defect levels, which originate from the asymmetrical pentagon-heptagon pairs. The local defect configurations and electronic properties are sensitive to their charge states induced by the defect levels. The electronic band structures show that the negative and positive charged defects are mainly determined by shifting the conduction band minimum (CBM) and valence band maximum (VBM) respectively, and the SW-defected BN can realize -1 and +1 spin-polarized charge states. The effects of carbon (C) substitution on neutral and charged SW-defected BN have also been studied. Our results indicate that the C substitution of B in BN is in favour of the formation of SW defects. Structural and electronic calculations show rich charge-dependent properties of C substitutions in SW-defected BN, thus our theoretical study is important for various applications in the design of BN nanostructure-based devices.

  17. Stable bound orbits around black rings

    SciTech Connect

    Igata, Takahisa; Ishihara, Hideki; Takamori, Yohsuke

    2010-11-15

    We examine bound orbits of particles around singly rotating black rings. We show that there exist stable bound orbits in toroidal spiral shape near the 'axis' of the ring, and also stable circular orbits on the axis as special cases. The stable bound orbits can have arbitrary large size if the thickness of the ring is less than a critical value.

  18. Quantum correlations beyond Tsirelson's bound

    NASA Astrophysics Data System (ADS)

    Berry, Dominic; Ringbauer, Martin; Fedrizzi, Alessandro; White, Andrew

    2014-03-01

    Violations of Bell inequalities show that there are correlations that cannot explained by any classical theory. Further violation, beyond Tsirelson's bound, shows that there are correlations that are not explained by quantum mechanics. Such super-quantum correlations would enable violation of information causality, where communication of one bit provides more than one bit of information [Nature 461, 1101 (2009)]. An unavoidable feature of all realistic Bell inequality experiments is loss. If one postselects on successful measurements, unentangled states can violate Bell inequalities. On the other hand, loss can be used to enhance the violation of Bell inequalities for entangled states. This can improve the ability to distinguish between entangled and unentangled states, despite loss. Here we report an optical experiment providing maximal violation of the CHSH-Bell inequality with entangled states. Due to loss and postselection, Tsirelson's bound is also violated. This enables us to more easily distinguish between entangled and unentangled states. In addition, it provides violation of information causality for the postselected data.

  19. Unitary photoassociation: One-step production of ground-state bound molecules

    SciTech Connect

    Kallush, S.; Kosloff, R.

    2008-02-15

    Bound-state molecules can be photoassociated directly from ultracold free-atom pairs by excitation to a purely repulsive electronic state. The process is explained on the basis of quantum unitarity: the initially free-scattering state is transformed by an impulsive light pulse to a deformed superposition which contains bound-state components. For pulse durations which are short compared to the ultracold dynamics, the maximal rate of photoassociation was found to be determined by the initial stationary distribution of scattering states of the atom pairs. The process was simulated for an ultracold gas of {sup 87}Rb with a temperature of T=44 {mu}K and a density of {approx_equal}10{sup 11} cm{sup -3}. Transform-limited pulses maximize the photoassociation, yielding {approx}1 bound molecule per pulse. Coherent control calculated by a local control scheme can increase the photoassociation yield by two orders of magnitude.

  20. Dark matter from decaying topological defects

    SciTech Connect

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M. E-mail: russell.kirk.2008@live.rhul.ac.uk

    2014-03-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits.

  1. Defects in flexoelectric solids

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Purohit, Prashant K.

    2015-11-01

    A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since strain gradients are large near defects, we expect the flexoelectric effect to be prominent there and decay away at distances much larger than a flexoelectric length scale. Here, we quantify this expectation by computing displacement, stress and polarization fields near defects in flexoelectric solids. For point defects we recover some well known results from strain gradient elasticity and non-local piezoelectric theories, but with different length scales in the final expressions. For edge dislocations we show that the electric potential is a maximum in the vicinity of the dislocation core. We also estimate the polarized line charge density of an edge dislocation in an isotropic flexoelectric solid which is in agreement with some measurements in ice. We perform an asymptotic analysis of the crack tip fields in flexoelectric solids and show that our results share some features from solutions in strain gradient elasticity and piezoelectricity. We also compute the energy release rate for cracks using simple crack face boundary conditions and use them in classical criteria for crack growth to make predictions. Our analysis can serve as a starting point for more sophisticated analytic and computational treatments of defects in flexoelectric solids which are gaining increasing prominence in the field of nanoscience and nanotechnology.

  2. Quantum computing with defects.

    PubMed

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  3. Quantum computing with defects

    PubMed Central

    Weber, J. R.; Koehl, W. F.; Varley, J. B.; Janotti, A.; Buckley, B. B.; Van de Walle, C. G.; Awschalom, D. D.

    2010-01-01

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV-1) center stands out for its robustness—its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors. PMID:20404195

  4. Polaron pair mediated triplet generation in polymer/fullerene blends

    PubMed Central

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields. PMID:25735188

  5. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  6. Bound states in the continuum

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin

    2016-09-01

    Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.

  7. Performance Bounds of Quaternion Estimators.

    PubMed

    Xia, Yili; Jahanchahi, Cyrus; Nitta, Tohru; Mandic, Danilo P

    2015-12-01

    The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed. PMID:25643416

  8. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  9. Distribution Matching with the Bhattacharyya Similarity: A Bound Optimization Framework.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Shuo Li

    2015-09-01

    We present efficient graph cut algorithms for three problems: (1) finding a region in an image, so that the histogram (or distribution) of an image feature within the region most closely matches a given model; (2) co-segmentation of image pairs and (3) interactive image segmentation with a user-provided bounding box. Each algorithm seeks the optimum of a global cost function based on the Bhattacharyya measure, a convenient alternative to other matching measures such as the Kullback-Leibler divergence. Our functionals are not directly amenable to graph cut optimization as they contain non-linear functions of fractional terms, which make the ensuing optimization problems challenging. We first derive a family of parametric bounds of the Bhattacharyya measure by introducing an auxiliary labeling. Then, we show that these bounds are auxiliary functions of the Bhattacharyya measure, a result which allows us to solve each problem efficiently via graph cuts. We show that the proposed optimization procedures converge within very few graph cut iterations. Comprehensive and various experiments, including quantitative and comparative evaluations over two databases, demonstrate the advantages of the proposed algorithms over related works in regard to optimality, computational load, accuracy and flexibility.

  10. Guidance for Preventing Birth Defects

    MedlinePlus

    ... Lip and Palate Craniosynostosis Down Syndrome Eye Defects Fetal Alcohol Syndrome Disorders Gastroschisis Heart Defects Coarctation of the Aorta ... drank alcohol during the pregnancy, are known as fetal alcohol spectrum disorders (FASDs) . The best advice for women is to ...

  11. Reducing Risks of Birth Defects

    MedlinePlus

    ... Education FAQs Reducing Risks of Birth Defects Patient Education Pamphlets - Spanish Reducing Risks of Birth Defects FAQ146, February 2016 ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  12. Adults with Congenital Heart Defects

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Web Booklet: Adults With Congenital Heart Defects Updated:Apr ... topic from the list below to learn more. Web Booklet: Adults With Congenital Heart Defects Introduction Introduction: ...

  13. Facts about Congenital Heart Defects

    MedlinePlus

    ... types of CHDs. The types marked with a star (*) are considered critical CHDs. Atrial Septal Defect Atrioventricular Septal Defect Coarctation of the Aorta * Double-outlet right ventricle* d-Transposition of the great ...

  14. Ventricular Septal Defect (For Parents)

    MedlinePlus

    ... of the heart and surrounding organs an electrocardiogram (EKG) , which records the electrical activity of the heart ... What to Expect Congenital Heart Defects Getting an EKG (Video) Heart Murmurs Atrial Septal Defect EKG (Video) ...

  15. Birth Defects Data and Statistics

    MedlinePlus

    ... Websites About Us Information For... Media Policy Makers Data & Statistics Language: English Español (Spanish) Recommend on Facebook ... of birth defects in the United States. For data on specific birth defects, please visit the specific ...

  16. Scattering and bound states of fermions in a mixed vector–scalar smooth step potential

    SciTech Connect

    Castilho, W.M. Castro, A.S. de

    2014-07-15

    The scattering of a fermion in the background of a smooth step potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling. Charge-conjugation and chiral-conjugation transformations are discussed and it is shown that a finite set of intrinsically relativistic bound-state solutions appears as poles of the transmission amplitude. It is also shown that those bound solutions disappear asymptotically as one approaches the conditions for the realization of the so-called spin and pseudospin symmetries in a four-dimensional space–time. - Highlights: • Scattering and bound states of fermions in a kink-like potential. • No pair production despite the high localization. • No bounded solution under exact spin and pseudospin symmetries.

  17. Conjugate quasilinear Dirichlet and Neumann problems and a posteriori error bounds

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1976-01-01

    Quasilinear Dirichlet and Neumann problems on a rectangle D with boundary D prime are considered. Using these concepts, conjugate problems, that is, a pair of one Dirichlet and one Neumann problem, the minima of the energies of which add to zero, are introduced. From the concept of conjugate problems, two-sided bounds for the energy of the exact solution of any given Dirichlet or Neumann problem are constructed. These two-sided bounds for the energy at the exact solution are in turn used to obtain a posteriori error bounds for the norm of the difference of the approximate and exact solutions of the problem. These bounds do not involve the unknown exact solution and are easily constructed numerically.

  18. Relativistic corrections to the pair Bc-meson production in e+e- annihilation

    NASA Astrophysics Data System (ADS)

    Karyasov, A. A.; Martynenko, A. P.; Martynenko, F. A.

    2016-10-01

    Relativistic corrections to the pair Bc-meson production in e+e--annihilation are calculated. We investigate a production of pair pseudoscalar, vector and pseudoscalar+vector Bc-mesons in the leading order perturbative quantum chromodynamics and relativistic quark model. Relativistic expressions of the pair production cross sections are obtained. Their numerical evaluation shows that relativistic effects in the production amplitudes and bound state wave functions three times reduce nonrelativistic results at the center-of-mass energy s = 22 GeV.

  19. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  20. Electroweak boson pair production at CDF

    SciTech Connect

    CDF Collaboration

    1994-06-01

    Preliminary results from CDF on W + {gamma}, Z + {gamma} and W{sup +}W{sup {minus}}, WZ, ZZ boson pair production in {radical}s = 1.8 TeV {anti p}-p collisions from the 1992--93 collider run are presented. Measurements of the production cross section {times} decay branching ratios {sigma} * B(W + {gamma}) and {sigma} * B(Z + {gamma}) have been obtained. The cross section ratios R(W{gamma}/W), R(Z{gamma}/Z), R(W{gamma}/Z{gamma}) and R(W/Z) are discussed. The authors extract direct limits on CP-conserving and CP-violating WW{gamma}, WWZ, ZZ{gamma} and Z{gamma}{gamma} anomalous couplings. In the static limit, the direct experimental limits on WW{gamma} and ZZ{gamma} anomalous couplings are related to bounds on the higher-order static (transition) EM moments of the W (Z) bosons. Expectations from the on-going and future Tevatron collider runs are discussed.

  1. Attraction by Repulsion: Pairing Electrons using Electrons

    NASA Astrophysics Data System (ADS)

    Ilani, Shahal

    One of the fundamental properties of electrons is their mutual Columbic repulsion. If electrons are placed in a solid, however, this basic property may change. A famous example is that of superconductors, where coupling to lattice vibrations makes electrons attractive and leads to the formation of bound pairs. But what if all the degrees of freedom in the solid are electronic? Is it possible to make electrons attract each other only by their repulsion to other electrons? Such an `excitonic' mechanism for attraction was proposed fifty years ago by W. A. Little, with the hope that it could lead to better and more exotic superconductivity. Yet, despite many efforts to synthesize materials that possess this unique property, to date there is still no evidence for electronic-based attraction. In this talk I will present our recent experiments that observe this unusual electronic attraction using a different, bottom-up approach. Our experiments are based on a new generation of quantum devices made from pristine carbon nanotubes, combined with precision cryogenic manipulation. Using this setup we can now assemble the fundamental building block of the excitonic attraction and demonstrate that two electrons that naturally repel each other can be made attractive using an independent electronic system as the binding glue. I will discuss the lessons learned from these experiments on what is achievable with plain electrostatics, and on the possibility to use the observed mechanism for creating exotic states of matter.

  2. Molecular defects in the chondrodysplasias

    SciTech Connect

    Rimoin, D.L.

    1996-05-03

    There has been a recent explosion of knowledge concerning the biochemical and molecular defects in the skeletal dysplasia. Through both the candidate gene approach and positional cloning, specific gene defects that produce the skeletal dysplasia have been identified and may be classified into several general categories: (1) qualitative or quantitative abnormalities in the structural proteins of cartilage; (2) inborn errors of cartilage metabolism; (3) defects in local regulators of cartilage growth; and (4) systemic defects influencing cartilage development. 35 refs., 1 tab.

  3. Mask Blank Defect Detection

    SciTech Connect

    Johnson, M A; Sommargren, G E

    2000-02-04

    Mask blanks are the substrates that hold the master patterns for integrated circuits. Integrated circuits are semiconductor devices, such as microprocessors (mPs), dynamic random access memory (DRAMs), and application specific integrated circuits (ASICs) that are central to the computer, communication, and electronics industries. These devices are fabricated using a set of master patterns that are sequentially imaged onto light-sensitive coated silicon wafers and processed to form thin layers of insulating and conductive materials on top of the wafer. These materials form electrical paths and transistors that control the flow of electricity through the device. For the past forty years the semiconductor industry has made phenomenal improvements in device functionality, compactness, speed, power, and cost. This progress is principally due to the exponential decrease in the minimum feature size of integrated circuits, which has been reduced by a factor of {radical}2 every three years. Since 1992 the Semiconductor Industry Association (SIA) has coordinated the efforts of producing a technology roadmap for semiconductors. In the latest document, ''The International Technology Roadmap for Semiconductors: 1999'', future technology nodes (minimum feature sizes) and targeted dates were specified and are summarized in Table 1. Lithography is the imaging technology for producing a de-magnified image of the mask on the wafer. A typical de-magnification factor is 4. Mask blank defects as small as one-eighth the equivalent minimum feature size are printable and may cause device failure. Defects might be the result of the surface preparation, such as polishing, or contamination due to handling or the environment. Table 2 shows the maximum tolerable defect sizes on the mask blank for each technology node. This downward trend puts a tremendous burden on mask fabrication, particularly in the area of defect detection and reduction. A new infrastructure for mask inspection will be

  4. Defect mapping system

    DOEpatents

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  5. Defect mapping system

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.

  6. Relativistic and quantum electrodynamics effects in the helium pair potential.

    PubMed

    Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K

    2010-05-01

    The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].

  7. Pairing symmetry and vortex zero mode for superconducting Dirac fermions

    SciTech Connect

    Lu, C.-K.; Herbut, Igor F.

    2010-10-01

    We study vortex zero-energy bound states in presence of pairing between low-energy Dirac fermions on the surface of a topological insulator. The pairing symmetries considered include the s-wave, p-wave, and, in particular, the mixed-parity symmetry, which arises in absence of the inversion symmetry on the surface. The zero mode is analyzed within the generalized Jackiw-Rossi-Dirac Hamiltonian that contains a momentum-dependent mass term, and includes the effects of the electromagnetic gauge field and the Zeeman coupling as well. At a finite chemical potential, as long as the spectrum without the vortex is fully gapped, the presence of a single Fermi surface with a definite helicity always leads to one Majorana zero mode, in which both electron's spin projections participate. In particular, the critical effects of the Zeeman coupling on the zero mode are discussed.

  8. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  9. Defect modes of chiral photonic crystals with an isotropic defect

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.; Oganesyan, K. B.

    2011-06-01

    Specific features of the defect modes of cholesteric liquid crystals (CLCs) with an isotropic defect, as well as their photonic density of states, Q factor, and emission, have been investigated. The effect of the thicknesses of the defect layer and the system as a whole, the position of the defect layer, and the dielectric boundaries on the features of the defect modes have been analyzed. It is shown that when the CLC layer is thin the density of states and emission intensity are maximum for the defect mode, whereas when the CLC layer is thick, these peaks are observed at the edges of the photonic band gap. Similarly, when the gain is low, the density of states and emission intensity are maximum for the defect mode, whereas at high gains these peaks are also observed at the edges of the photonic band gap. The possibilities of low-threshold lasing and obtaining high- Q microcavities have been investigated.

  10. Andreev bound state at a strongly correlated oxide interface

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre; Daley, Andrew; Lu, Shicheng; Veazey, Josh; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Pekker, David; Levy, Jeremy

    Strongly correlated electrons at oxide interfaces give rise to a set of novel physics phenomena including superconductivity and magnetism. At the LaAlO3/SrTiO3 (LAO/STO) interface, signatures of strong electron pairing persist even for conditions where superconductivity is suppressed. Meanwhile, an Andreev bound state (ABS) is a single quasiparticle excitation that mediates pair transport in confined superconductor-normal systems. Here we report a transition from pair resonant transport to ABS in sketched single electron transistors at the LAO/STO interface. This transition is consistent with a change of electron-electron interaction from attractive to repulsive, occurring at or near the Lifshitz transition. Such new electronically tunable electron-electron interaction may be useful for quantum simulation and engineering of novel quantum states in oxide materials. We gratefully acknowledge support from AFOSR FA9550-10-1-0524 (JL, CBE), AFOSR FA9550-12-1-0057 (JL, CBE, AD), NSF DMR-1104191 (JL), ONR N00014-15-1-2847 (JL).

  11. Missing energies at pair creation

    NASA Technical Reports Server (NTRS)

    El-Ela, A. A.; Hassan, S.; Bagge, E. R.

    1985-01-01

    Wilson cloud chamber measurements of the separated spectra of positrons and electrons produced by gamma quanta of 6.14 MeV differ considerably from the theoretically predicted spectra by BETHE and HEITLER, but are in good agreement with those of a modified theory of pair creation.

  12. Cooper pair transfer in nuclei

    NASA Astrophysics Data System (ADS)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2013-10-01

    The second-order distorted wave Born approximation implementation of two-particle transfer direct reactions which includes simultaneous and successive transfer, properly corrected by non-orthogonality effects, is tested with the help of controlled nuclear structure and reaction inputs against data spanning the whole mass table, and showed to constitute a quantitative probe of nuclear pairing correlations.

  13. Pick a Pair. Being Bony

    ERIC Educational Resources Information Center

    Miller, Pat

    2004-01-01

    This column suggests pairings of fiction and nonfiction books to meet curricular needs and help students to compare/contrast the texts as they may be asked on state tests. The author of this paper focuses on activities surrounding Halloween. Since many schools are discouraged from teaching about Halloween, this can be a great time to investigate…

  14. Pairing Linguistic and Music Intelligences

    ERIC Educational Resources Information Center

    DiEdwardo, MaryAnn Pasda

    2005-01-01

    This article describes how music in the language classroom setting can be a catalyst for developing reading, writing, and understanding skills. Studies suggest that pairing music and linguistic intelligences in the college classroom improves students' grades and abilities to compose theses statements for research papers in courses that emphasize…

  15. Bounds on double-diffusive convection

    NASA Astrophysics Data System (ADS)

    Balmforth, Neil J.; Ghadge, Shilpa A.; Kettapun, Atichart; Mandre, Shreyas D.

    2006-12-01

    We consider double-diffusive convection between two parallel plates and compute bounds on the flux of the unstably stratified species using the background method. The bound on the heat flux for Rayleigh Bénard convection also serves as a bound on the double-diffusive problem (with the thermal Rayleigh number equal to that of the unstably stratified component). In order to incorporate a dependence of the bound on the stably stratified component, an additional constraint must be included, like that used by Joseph (Stability of Fluid Motion, 1976, Springer) to improve the energy stability analysis of this system. Our bound extends Joseph's result beyond his energy stability boundary. At large Rayleigh number, the bound is found to behave like R_T(1/2) for fixed ratio R_S/R_T, where R_T and R_S are the Rayleigh numbers of the unstably and stably stratified components, respectively.

  16. Driven quantum tunneling and pair creation with graphene Landau levels

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Fillion-Gourdeau, François; Dumont, Joey; Lefebvre, Catherine; MacLean, Steve

    2016-05-01

    Driven tunneling between graphene Landau levels is theoretically linked to the process of pair creation from vacuum, a prediction of quantum electrodynamics (QED). Landau levels are created by the presence of a strong, constant, quantizing magnetic field perpendicular to a graphene monolayer. Following the formal analogy between QED and the description of low-energy excitations in graphene, solutions of the fully interacting Dirac equation are used to compute electron-hole pair creation driven by a circularly or linearly polarized field. This is achieved via the coupled channel method, a numerical scheme for the solution of the time-dependent Dirac equation in the presence of bound states. The case of a monochromatic driving field is first considered, followed by the more realistic case of a pulsed excitation. We show that the pulse duration yields an experimental control parameter over the maximal pair yield. Orders of magnitude of the pair yield are given for experimentally achievable magnetic fields and laser intensities weak enough to preserve the Landau level structure.

  17. Towards automatic identification of mismatched image pairs through loop constraints

    NASA Astrophysics Data System (ADS)

    Elibol, Armagan; Kim, Jinwhan; Gracias, Nuno; Garcia, Rafael

    2013-12-01

    Obtaining image sequences has become easier and easier thanks to the rapid progress on optical sensors and robotic platforms. Processing of image sequences (e.g., mapping, 3D reconstruction, Simultaneous Localisation and Mapping (SLAM)) usually requires 2D image registration. Recently, image registration is accomplished by detecting salient points in two images and nextmatching their descriptors. To eliminate outliers and to compute a planar transformation (homography) between the coordinate frames of images, robust methods (such as Random Sample Consensus (RANSAC) and Least Median of Squares (LMedS)) are employed. However, image registration pipeline can sometimes provide sufficient number of inliers within the error bounds even when images do not overlap. Such mismatches occur especially when the scene has repetitive texture and shows structural similarity. In this study, we present a method to identify the mismatches using closed-loop (cycle) constraints. The method exploits the fact that images forming a cycle should have identity mapping when all the homographies between images in the cycle multiplied. Cycles appear when the camera revisits an area that was imaged before, which is a common practice especially for mapping purposes. Our proposal extracts several cycles to obtain error statistics for each matched image pair. Then, it searches for image pairs that have extreme error histogram comparing to the other pairs. We present experimental results with artificially added mismatched image pairs on real underwater image sequences.

  18. Theory of Defect Interactions in Metals.

    NASA Astrophysics Data System (ADS)

    Thetford, Roger

    Available from UMI in association with The British Library. Requires signed TDF. The static relaxation program DEVIL has been updated to use N-body Finnis-Sinclair potentials. Initial calculations of self-interstitial and monovacancy formation energies confirm that the modified program is working correctly. An extra repulsive pair potential (constructed to leave the original fitting unaltered) overcomes some deficiencies in the published Finnis-Sinclair potentials. The modified potentials are used to calculate interstitial energies and relaxations in the b.c.c. transition metals vanadium, niobium, tantalum, molybdenum and tungsten. Further adaptation enables DEVIL to model dislocations running parallel to any lattice vector. Periodic boundary conditions are applied in the direction of the dislocation line, giving an infinite straight dislocation. The energies per unit length of two different dislocations are compared with experiment. A study of migration of point defects in the perfect lattice provides information on the mobility of interstitials and vacancies. The possible reorientation of split dumbbell interstitials in a migration step comes under scrutiny. The total energy needed to form and migrate an interstitial is compared with that required for a vacancy. The interaction between point defects and dislocations is studied in detail. Binding energies for both self-interstitials and monovacancies at edge dislocations are calculated for the five metals mentioned above. Formation energies of the point defects in the neighbourhood of the edge dislocation are calculated for niobium, and the extent of the regions from which the defects are spontaneously absorbed are found. For split dumbbell interstitials, the size and shape of the absorption region depends on the orientation of the dumbbell. Migration of both interstitials and vacancies into the absorption zone is studied; the presence of the dislocation has a particularly dramatic effect on vacancy migration. The

  19. Electronic structures of Stone-Wales defective chiral (6,2) silicon carbide nanotubes: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Song, Jiuxu; Liu, Hongxia; Guo, Yingna; Zhu, Kairan

    2015-11-01

    By using first-principle calculations based on density functional theory, the geometries and electronic structures of the Stone-Wales defective chiral (6,2) silicon carbide nanotubes (SiCNTs) are investigated. Independent on their orientations, Stone-Wales defects form two asymmetric pentagons and heptagons coupled in pairs (5-7-7-5) and a defect energy level in the band gap of the SiCNT. By applying transverse electric fields, significant differences in the electronic structures of the defective (6,2) SiCNTs are achieved, which may provide the foundation of identifying the orientation of Stone-Wales defects in chiral SiCNTs.

  20. Some Improved Nonperturbative Bounds for Fermionic Expansions

    NASA Astrophysics Data System (ADS)

    Lohmann, Martin

    2016-06-01

    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  1. Invisible defects in complex crystals

    SciTech Connect

    Longhi, Stefano Della Valle, Giuseppe

    2013-07-15

    We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out to be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.

  2. Effect of germanium doping on the annealing characteristics of oxygen and carbon-related defects in Czochralski silicon

    SciTech Connect

    Londos, C. A.; Andrianakis, A.; Sgourou, E. N.; Emtsev, V.; Ohyama, H.

    2010-05-15

    This paper is devoted to the annealing studies of defects produced in carbon-rich Ge-doped Czochralski-grown Si (Cz-Si) by 2 MeV electron irradiation. The annealing temperature of vacancy-oxygen (VO) complexes, carbon interstitial-oxygen interstitial (C{sub i}O{sub i}), and carbon interstitial-carbon substitutional (C{sub i}C{sub s}) pairs as well as the formation temperature of vacancy-two oxygen (VO{sub 2}) complexes are monitored as a function of Ge concentration. It has been established that the annealing of C{sub i}O{sub i} and C{sub i}C{sub s} defects remains practically unaffected by the Ge presence, whereas the annealing temperature of VO defects and the formation temperature of VO{sub 2} complexes are substantially lowered at Ge concentrations larger than 1x10{sup 19} cm{sup -3}. The hydrostatic component of elastic strains introduced by Ge atoms in the Si crystal lattice was calculated. It appears to be very small, at least insufficient to exert a pronounced effect upon the annealing behavior of radiation-produced defects. This conclusion is in line with what is observed for the C{sub i}O{sub i} and C{sub i}C{sub s} species. In the case of VO, whose annealing process in Cz-Si is concurrently conducted by two reaction paths VO+O{sub i}{yields}VO{sub 2} and VO+Si{sub I}{yields}O{sub i}, we suggest that the latter reaction in Ge-doped Cz-Si is enhanced by emitting self-interstitials (Si{sub I}) from loosely bound self-interstitial clusters predominantly formed around Ge impurity atoms. As a result, the liberation of self-interstitials at lower annealing temperatures leads to an enhanced annealing of VO defects. An enhanced formation of VO{sub 2} complexes at lower temperatures is also discussed in terms of other reactions running in parallel with the reaction VO+Si{sub I}{yields}O{sub i}.

  3. Germination-defective mutant of Neurospora crassa that responds to siderophores

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Williams, N. P.

    1977-01-01

    A conditionally germination-defective mutant of Neurospora crassa has been found to be partially curable by ferricrocin and other siderophores. The mutant conidia rapidly lose their membrane-bound siderophores when suspended in buffer or growth media. Germination is consequently delayed unless large numbers of conidia are present (positive population effect). This indicates that the mutant has a membrane defect involving the siderophore attachment site.

  4. First-Principles Investigations of Defects in Minerals

    NASA Astrophysics Data System (ADS)

    Verma, Ashok K.

    2011-07-01

    The ideal crystal has an infinite 3-dimensional repetition of identical units which may be atoms or molecules. But real crystals are limited in size and they have disorder in stacking which as called defects. Basically three types of defects exist in solids: 1) point defects, 2) line defects, and 3) surface defects. Common point defects are vacant lattice sites, interstitial atoms and impurities and these are known to influence strongly many solid-state transport properties such as diffusion, electrical conduction, creep, etc. In thermal equilibrium point defects concentrations are determined by their formation enthalpies and their movement by their migration barriers. Line and surface defects are though absent from the ideal crystal in thermal equilibrium due to higher energy costs but they are invariably present in all real crystals. Line defects include edge-, screw- and mixed-dislocations and their presence is essential in explaining the mechanical strength and deformation of real crystals. Surface defects may arise at the boundary between two grains, or small crystals, within a larger crystal. A wide variety of grain boundaries can form in a polycrystal depending on factors such growth conditions and thermal treatment. In this talk we will present our first-principles density functional theory based defect studies of SiO2 polymorphs (stishovite, CaCl2-, α-PbO2-, and pyrite-type), Mg2SiO4 polymorphs (forsterite, wadsleyite and ringwoodite) and MgO [1-3]. Briefly, several native point defects including vacancies, interstitials, and their complexes were studied in silica polymorphs upto 200 GPa. Their values increase by a factor of 2 over the entire pressure range studied with large differences in some cases between different phases. The Schottky defects are energetically most favorable at zero pressure whereas O-Frenkel pairs become systematically more favorable at pressures higher than 20 GPa. The geometric and electronic structures of defects and migrating

  5. Pair production in inhomogeneous fields

    SciTech Connect

    Gies, Holger; Klingmueller, Klaus

    2005-09-15

    We employ the recently developed worldline numerics, which combines string-inspired field theory methods with Monte Carlo techniques, to develop an algorithm for the computation of pair-production rates in scalar QED for inhomogeneous background fields. We test the algorithm with the classic Sauter potential, for which we compute the local production rate for the first time. Furthermore, we study the production rate for a superposition of a constant E field and a spatially oscillating field for various oscillation frequencies. Our results reveal that the approximation by a local derivative expansion already fails for frequencies small compared to the electron-mass scale, whereas for strongly oscillating fields a derivative expansion for the averaged field represents an acceptable approximation. The worldline picture makes the nonlocal nature of pair production transparent and facilitates a profound understanding of this important quantum phenomenon.

  6. Flux Quantization Without Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Kadin, Alan

    2013-03-01

    It is universally accepted that the superconducting flux quantum h/2e requires the existence of a phase-coherent macroscopic wave function of Cooper pairs, each with charge 2e. On the contrary, we assert that flux quantization can be better understood in terms of single-electron quantum states, localized on the scale of the coherence length and organized into a real-space phase-antiphase structure. This packing configuration is consistent with the Pauli exclusion principle for single-electron states, maintains long-range phase coherence, and is compatible with much of the BCS formalism. This also accounts for h/2e in the Josephson effect, without Cooper pairs. Experimental evidence for this alternative picture may be found in deviations from h/2e in loops and devices much smaller than the coherence length. A similar phase-antiphase structure may also account for superfluids, without the need for boson condensation.

  7. One-dimensional Cooper pairing

    NASA Astrophysics Data System (ADS)

    Mendoza, R.; Fortes, M.; de Llano, M.; Solís, M. A.

    2011-09-01

    We study electron pairing in a one-dimensional (1D) fermion gas at zero temperature under zero- and finite-range, attractive, two-body interactions. The binding energy of Cooper pairs (CPs) with zero total or center-of-mass momentum (CMM) increases with attraction strength and decreases with interaction range for fixed strength. The excitation energy of 1D CPs with nonzero CMM display novel, unique properties. It satisfies a dispersion relation with two branches: a phonon-like linear excitation for small CP CMM; this is followed by roton-like quadratic excitation minimum for CMM greater than twice the Fermi wavenumber, but only above a minimum threshold attraction strength. The expected quadratic-in-CMM dispersion in vacuo when the Fermi wavenumber is set to zero is recovered for any coupling. This paper completes a three-part exploration initiated in 2D and continued in 3D.

  8. Segmentation and the pairing hypothesis.

    PubMed

    Bragason, Orn

    2004-09-30

    The effect of stimulus contiguity and response contingency on responding in chain schedules was examined in two experiments. In Experiment 1, four pigeons were trained on two simple three-link chain schedules that alternated within sessions. Initial links were correlated with a variable-interval 30s schedule, and middle and terminal links were correlated with interdependent variable-interval 30s variable-interval 30s schedules. The combined duration of the interdependent schedules summed to 60s. The two chains differed with respect to signaling of the schedule components: a two-stimulus chain had one stimulus paired with the initial link and one stimulus paired with both the middle and the terminal link, while a three-stimulus chain had a different stimulus paired with the each of the three links. The results showed that the two-stimulus chain maintained lower initial-link responding than the three-stimulus chain. In Experiment 2, four pigeons were exposed to three separate conditions, the two- and three-stimulus chains of Experiment 1 and a three-stimulus chain that had a 3s delay to terminal-link entry from the middle-link response that produced it. The two-stimulus chain maintained lower initial-link responding than the three-stimulus chain, as in Experiment 1, and a similar initial-link responding was maintained by the two-stimulus chain and the three-stimulus chain with the delay contingency. The results demonstrate that a stimulus noncontiguous with food can maintain responding that is sometimes greater than a stimulus contiguous with food, depending on the response contingency for terminal-link entry. The results are contrary to the pairing hypothesis of conditioned reinforcement.

  9. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  10. First-principles DFT+U modeling of defect behaviors in anti-ferromagnetic uranium mononitride

    SciTech Connect

    Lan, Jian-Hui; Zhao, Zi-Chen; Wu, Qiong; Zhao, Yu-Liang; Shi, Wei-Qun; Chai, Zhi-Fang

    2013-12-14

    A series of point defects in uranium mononitride (UN) have been studied by first-principles DFT+U calculations. The influence of intrinsic defects on the properties of UN was explored by considering the anti-ferromagnetic (AFM) order along the [001] direction. Our results show that all the point defects lead to obvious volume swelling of UN crystal. Energetically, the interstitial nitrogen defect is the most favorable one among single-point defects in UN crystal with the formation energy of 4.539 eV, while the N-Frenkel pair becomes the most preferable one among double-point defects. The AFM order induces obvious electron spin polarization of uranium towards neighboring uranium atoms with opposite spin orientations in UN crystal.

  11. THE HOPF BIFURCATION WITH BOUNDED NOISE

    PubMed Central

    Botts, Ryan T.; Homburg, Ale Jan; Young, Todd R.

    2012-01-01

    We study Hopf-Andronov bifurcations in a class of random differential equations (RDEs) with bounded noise. We observe that when an ordinary differential equation that undergoes a Hopf bifurcation is subjected to bounded noise then the bifurcation that occurs involves a discontinuous change in the Minimal Forward Invariant set. PMID:24748762

  12. THE HOPF BIFURCATION WITH BOUNDED NOISE.

    PubMed

    Botts, Ryan T; Homburg, Ale Jan; Young, Todd R

    2012-08-01

    We study Hopf-Andronov bifurcations in a class of random differential equations (RDEs) with bounded noise. We observe that when an ordinary differential equation that undergoes a Hopf bifurcation is subjected to bounded noise then the bifurcation that occurs involves a discontinuous change in the Minimal Forward Invariant set.

  13. THE HOPF BIFURCATION WITH BOUNDED NOISE.

    PubMed

    Botts, Ryan T; Homburg, Ale Jan; Young, Todd R

    2012-08-01

    We study Hopf-Andronov bifurcations in a class of random differential equations (RDEs) with bounded noise. We observe that when an ordinary differential equation that undergoes a Hopf bifurcation is subjected to bounded noise then the bifurcation that occurs involves a discontinuous change in the Minimal Forward Invariant set. PMID:24748762

  14. Outward Bound: An Innovative Patient Education Program.

    ERIC Educational Resources Information Center

    Stich, Thomas F.; Gaylor, Michael S.

    A 1975 Dartmouth Outward Bound Mental Health Project, begun with a pilot project for disturbed adolescents, has evolved into an ongoing treatment option in three separate clinical settings for psychiatric patients and recovering alcoholics. Outward Bound consists of a series of prescribed physical and social tasks where the presence of stress,…

  15. Constrained bounds on measures of entanglement

    SciTech Connect

    Datta, Animesh; Flammia, Steven T.; Shaji, Anil; Caves, Carlton M.

    2007-06-15

    Entanglement measures constructed from two positive, but not completely positive, maps on density operators are used as constraints in placing bounds on the entanglement of formation, the tangle, and the concurrence of 4N mixed states. The maps are the partial transpose map and the phi map introduced by Breuer [H.-P. Breuer, Phys. Rev. Lett. 97, 080501 (2006)]. The norm-based entanglement measures constructed from these two maps, called negativity and phi negativity, respectively, lead to two sets of bounds on the entanglement of formation, the tangle, and the concurrence. We compare these bounds and identify the sets of 4N density operators for which the bounds from one constraint are better than the bounds from the other. In the process, we present a derivation of the already known bound on the concurrence based on the negativity. We compute bounds on the three measures of entanglement using both the constraints simultaneously. We demonstrate how such doubly constrained bounds can be constructed. We discuss extensions of our results to bipartite states of higher dimensions and with more than two constraints.

  16. Dipole defects in beryl

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Cordeiro, R. C.; Blak, A. R.

    2010-11-01

    Dipole defects in gamma irradiated and thermally treated beryl (Be3Al2Si6O18) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  17. HDL genetic defects.

    PubMed

    Nair, Devaki R; Nair, Arun; Jain, Anjly

    2014-01-01

    High density lipoprotein cholesterol (HDL-C) and its related apolipoproteins form part of the reverse cholesterol transport system that removes excessive cholesterol from the periphery to the liver. Many transport proteins and enzymes that are involved in this process are susceptible to genetic defects that influence plasma HDL-C concentrations and HDL function. The HDL-C concentration in the blood may not be as important as the function of this lipid fraction. The genetic defects affecting plasma HDL-C concentrations do not always show a consistent relationship with atherosclerosis. Familial hypoalphalipoproteinaemia is associated with mutations in genes responsible for the transport proteins or the enzymes involved in the biogenesis of HDL-C. Inheritance of a Milano mutation of apolipoprotein A1 decreases the risk of atherosclerotic disease despite low circulating levels of HDL-C. Tangier disease and Fish Eye disease are caused by mutations in the ATP binding cassette A1 (ABCA1), a transport protein, and lecithin cholesterol acyl transferase (LCAT), an enzyme, involved in the esterification of cholesterol, respectively. Patients with these conditions have very low levels of HDL-C concentration. The association between both these conditions and the risk of cardiovascular disease (CVD) is variable and inconsistent. Understanding the molecular mechanism of HDL biogenesis not only helped in defining the pathophysiology of low and high HDL-C syndromes, but also in developing new treatment options to raise HDL-C levels. PMID:24953397

  18. Point defects in thorium nitride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2016-11-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  19. Collision Energy Dependence of Defect Formation in Graphene

    SciTech Connect

    Mao, Fei; Zhang, Chao; Zhang, Yanwen; Zhang, Fenf-Shou

    2012-01-01

    Molecular dynamics simulations are performed using an empirical potential to simulate the collision process of an energetic carbon atom hitting a graphene sheet. According to the different impact locations within the graphene sheet, the incident threshold energies of different defects caused by the collision are determined to be 22 eV for a single vacancy, 36 eV for a divacancy, 60 eV for a Stone-Wales defect, and 65 eV for a hexavacancy. Study of the evolution and stability of the defects formed by these collisions suggests that the single vacancy reconstructs into a pentagon pair and the divacancy transforms into a pentagon-octagon-pentagon configuration. The displacement threshold energy in graphene is investigated by using the dynamical method, and a reasonable value 22.42 eV is clarified by eliminating the heating effect induced by the collision.

  20. SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS

    PubMed Central

    THIEDE, ERIK; VAN KOTEN, BRIAN; WEARE, JONATHAN

    2015-01-01

    For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations. PMID:26491218

  1. Covariant entropy bound and loop quantum cosmology

    SciTech Connect

    Ashtekar, Abhay; Wilson-Ewing, Edward

    2008-09-15

    We examine Bousso's covariant entropy bound conjecture in the context of radiation filled, spatially flat, Friedmann-Robertson-Walker models. The bound is violated near the big bang. However, the hope has been that quantum gravity effects would intervene and protect it. Loop quantum cosmology provides a near ideal setting for investigating this issue. For, on the one hand, quantum geometry effects resolve the singularity and, on the other hand, the wave function is sharply peaked at a quantum corrected but smooth geometry, which can supply the structure needed to test the bound. We find that the bound is respected. We suggest that the bound need not be an essential ingredient for a quantum gravity theory but may emerge from it under suitable circumstances.

  2. Rigorous bounds for optimal dynamical decoupling

    SciTech Connect

    Uhrig, Goetz S.; Lidar, Daniel A.

    2010-07-15

    We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in quantum dots. We show that if the total sequence time is fixed the optimal sequence can be used to make the distance between the protected and unperturbed qubit states arbitrarily small in the number of applied pulses. If, on the other hand, the minimum pulse interval is fixed and the total sequence time is allowed to scale with the number of pulses, then longer sequences need not always be advantageous. The rigorous bound may serve as a testbed for approximate treatments of optimal decoupling in bounded models of decoherence.

  3. Mutually unbiased bases and bound entanglement

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.; Löffler, Wolfgang

    2014-04-01

    In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement. We provide a general toolbox for analyzing and comparing entanglement of quantum states for different dimensions and numbers of particles. In particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communications. For a certain class of states—for which the state-space forms a ‘magic’ simplex—we analyze the set of bound entangled states detected by the MUB criterion for different dimensions d and number of particles n. We find that the geometry is similar for different d and n, consequently the MUB criterion opens possibilities to investigate the typicality of positivity under partial transposition (PPT)-bound and multipartite bound entanglement more deeply and provides a simple experimentally feasible tool to detect bound entanglement.

  4. Entropy Bounds for Hierarchical Molecular Networks

    PubMed Central

    Dehmer, Matthias; Borgert, Stephan; Emmert-Streib, Frank

    2008-01-01

    In this paper we derive entropy bounds for hierarchical networks. More precisely, starting from a recently introduced measure to determine the topological entropy of non-hierarchical networks, we provide bounds for estimating the entropy of hierarchical graphs. Apart from bounds to estimate the entropy of a single hierarchical graph, we see that the derived bounds can also be used for characterizing graph classes. Our contribution is an important extension to previous results about the entropy of non-hierarchical networks because for practical applications hierarchical networks are playing an important role in chemistry and biology. In addition to the derivation of the entropy bounds, we provide a numerical analysis for two special graph classes, rooted trees and generalized trees, and demonstrate hereby not only the computational feasibility of our method but also learn about its characteristics and interpretability with respect to data analysis. PMID:18769487

  5. Upper bounds on sequential decoding performance parameters

    NASA Technical Reports Server (NTRS)

    Jelinek, F.

    1974-01-01

    This paper presents the best obtainable random coding and expurgated upper bounds on the probabilities of undetectable error, of t-order failure (advance to depth t into an incorrect subset), and of likelihood rise in the incorrect subset, applicable to sequential decoding when the metric bias G is arbitrary. Upper bounds on the Pareto exponent are also presented. The G-values optimizing each of the parameters of interest are determined, and are shown to lie in intervals that in general have nonzero widths. The G-optimal expurgated bound on undetectable error is shown to agree with that for maximum likelihood decoding of convolutional codes, and that on failure agrees with the block code expurgated bound. Included are curves evaluating the bounds for interesting choices of G and SNR for a binary-input quantized-output Gaussian additive noise channel.

  6. Topological defects and interactions in nematic emulsions

    NASA Astrophysics Data System (ADS)

    Lubensky, T. C.; Pettey, David; Currier, Nathan; Stark, Holger

    1998-01-01

    Inverse nematic emulsions, in which surfactant-coated water droplets are dispersed in a nematic host fluid, have distinctive properties that set them apart from dispersions of two isotropic fluids or of nematic droplets in an isotropic fluid. We present a comprehensive theoretical study of the distortions produced in the nematic host by the dispersed droplets and of solvent-mediated dipolar interactions between droplets that lead to their experimentally observed chaining. A single droplet in a nematic host acts like a macroscopic hedgehog defect. Global boundary conditions force the nucleation of compensating topological defects in the nematic host. Using variational techniques, we show that in the lowest energy configuration, a single water droplet draws a single hedgehog out of the nematic host to form a tightly bound dipole. Configurations in which the water droplet is encircled by a disclination ring have higher energy. The droplet dipole induces distortions in the nematic host that lead to an effective dipole-dipole interaction between droplets, and hence to chaining.

  7. Bound-free Spectra for Diatomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2012-01-01

    It is now recognized that prediction of radiative heating of entering space craft requires explicit treatment of the radiation field from the infrared (IR) to the vacuum ultra violet (VUV). While at low temperatures and longer wavelengths, molecular radiation is well described by bound-bound transitions, in the short wavelength, high temperature regime, bound-free transitions can play an important role. In this work we describe first principles calculations we have carried out for bound-bound and bound-free transitions in N2, O2, C2, CO, CN, NO, and N2+. Compared to bound ]bound transitions, bound-free transitions have several particularities that make them different to deal with. These include more complicated line shapes and a dependence of emission intensity on both bound state diatomic and atomic concentrations. These will be discussed in detail below. The general procedure we used was the same for all species. The first step is to generate potential energy curves, transition moments, and coupling matrix elements by carrying out ab initio electronic structure calculations. These calculations are expensive, and thus approximations need to be made in order to make the calculations tractable. The only practical method we have to carry out these calculations is the internally contracted multi-reference configuration interaction (icMRCI) method as implemented in the program suite Molpro. This is a widely used method for these kinds of calculations, and is capable of generating very accurate results. With this method, we must first of choose which electrons to correlate, the one-electron basis to use, and then how to generate the molecular orbitals.

  8. Menaquinone as Well as Ubiquinone as a Bound Quinone Crucial for Catalytic Activity and Intramolecular Electron Transfer in Escherichia coli Membrane-bound Glucose Dehydrogenase*

    PubMed Central

    Mustafa, Golam; Migita, Catharina T.; Ishikawa, Yoshinori; Kobayashi, Kazuo; Tagawa, Seiichi; Yamada, Mamoru

    2008-01-01

    Escherichia coli membrane-bound glucose dehydrogenase (mGDH), which is one of quinoproteins containing pyrroloquinoline quinone (PQQ) as a coenzyme, is a good model for elucidating the function of bound quinone inside primary dehydrogenases in respiratory chains. Enzymatic analysis of purified mGDH from cells defective in synthesis of ubiquinone (UQ) and/or menaquinone (MQ) revealed that Q-free mGDH has very low levels of activity of glucose dehydrogenase and UQ2 reductase compared with those of UQ-bearing mGDH, and both activities were significantly increased by reconstitution with UQ1. On the other hand, MQ-bearing mGDH retains both catalytic abilities at the same levels as those of UQ-bearing mGDH. A radiolytically generated hydrated electron reacted with the bound MQ to form a semiquinone anion radical with an absorption maximum at 400 nm. Subsequently, decay of the absorbance at 400 nm was accompanied by an increase in the absorbance at 380 nm with a first order rate constant of 5.7 × 103 s–1. This indicated that an intramolecular electron transfer from the bound MQ to the PQQ occurred. EPR analysis revealed that characteristics of the semiquinone radical of bound MQ are similar to those of the semiquinone radical of bound UQ and indicated an electron flow from PQQ to MQ as in the case of UQ. Taken together, the results suggest that MQ is incorporated into the same pocket as that for UQ to perform a function almost equivalent to that of UQ and that bound quinone is involved at least partially in the catalytic reaction and primarily in the intramolecular electron transfer of mGDH. PMID:18708350

  9. Bound {mu}{sup +}{mu}{sup {minus}} system

    SciTech Connect

    Jentschura, U.D.; Soff, G.; Ivanov, V.G.; Karshenboim, S.G.

    1997-12-01

    We consider the hyperfine structure, the atomic spectrum, and the decay channels of the bound {mu}{sup +}{mu}{sup {minus}} system (dimuonium). The annihilation lifetimes of low-lying atomic states of the system lie in the 10{sup {minus}12} s range. The decay rates could be measured by detection of the decay products (high-energy photons or electron-positron pairs). The hyperfine-structure splitting of the dimuonic system and its decay rate are influenced by electronic vacuum polarization effects in the far timelike asymptotic region. This constitutes a previously unexplored kinematic regime. We evaluate next-to-leading-order radiative corrections to the decay rate of low-lying atomic states. We also obtain order {alpha}{sup 5}m{sub {mu}} corrections to the hyperfine splitting of the 1S and 2S levels. {copyright} {ital 1997} {ital The American Physical Society}

  10. Theoretical study of transition-metal ions bound to benzene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).

  11. Specific biomembrane adhesion -Indirect lateral interactions between bound receptor molecules

    NASA Astrophysics Data System (ADS)

    Maier, C. W.; Behrisch, A.; Kloboucek, A.; Simson, D. A.; Merkel, R.

    We studied biomembrane adhesion using the micropipet aspiration technique. Adhesion was caused by contact site A, a laterally mobile and highly specific cell adhesion molecule from Dictyostelium discoideum, reconstituted in lipid vesicles of DOPC (L-α-dioleoylphosphatidylcholine) with an addition of 5 mol % DOPE-PEG{2000} (1,2-diacyl-sn-glycero-3-phosphatidylethanolamine-N-[poly(ethyleneglycol) 2000]). The "fuzzy" membrane mimics the cellular plasma membrane including the glycocalyx. We found adhesion and subsequent receptor migration into the contact zone. Using membrane tension jumps to probe the equation of state of the two-dimensional "gas" of bound receptor pairs within the contact zone, we found strong, attractive lateral interactions.

  12. Continuum discretised BCS approach for weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Lay, J. A.; Alonso, C. E.; Fortunato, L.; Vitturi, A.

    2016-08-01

    The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the single-particle continuum in order to analyse the evolution of pairing in an isotopic chain from stability up to the drip-line. We propose a continuum discretised generalised BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalisation of the single-particle Hamiltonian within a transformed harmonic oscillator basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich oxygen and carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find an increasing influence of the non-resonant continuum as long as the Fermi level approaches the neutron separation threshold.

  13. Soluble and bound hydroxycinnamates in coffee pulp (Coffea arabica) from seven cultivars at three ripening stages.

    PubMed

    Rodríguez-Durán, Luis V; Ramírez-Coronel, Ma Ascención; Aranda-Delgado, Eduardo; Nampoothiri, K Madhavan; Favela-Torres, Ernesto; Aguilar, Cristóbal N; Saucedo-Castañeda, Gerardo

    2014-08-01

    The contents of soluble and bound hydroxycinnamates (HCAs) were analyzed in coffee pulp (CP) of seven cultivars of Coffea arabica at three different ripening stages. Methodologies for the extraction and analysis of HCAs were evaluated and improved. HCAs were present mainly in the soluble fraction (68-97%). Chlorogenic acid was the main phenolic acid (94-98%) in the soluble fraction, whereas caffeic acid was the most abundant HCA found in the bound fraction (72-88%). Small amounts of free and bound ferulic and p-coumaric acids were also detected. The content of total HCAs in CP reached the maximum concentration at the semiripe stage (7.4-25.5 mg/g CP, dw) but decreased at the ripe stage for six of the seven cultivars. These findings suggest that unripe or semiripe coffee cherries, considered as defective cherries, are a potential inexpensive source of phenolic compounds, such as chlorogenic and caffeic acids.

  14. Distance distributions of photogenerated charge pairs in organic photovoltaic cells.

    PubMed

    Barker, Alex J; Chen, Kai; Hodgkiss, Justin M

    2014-08-27

    Strong Coulomb interactions in organic photovoltaic cells dictate that charges must separate over relatively long distances in order to circumvent geminate recombination and produce photocurrent. In this article, we measure the distance distributions of thermalized charge pairs by accessing a regime at low temperature where charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The exponential attenuation of tunneling rate with distance provides a sensitive probe of the distance distribution of primary charge pairs, reminiscent of electron transfer studies in proteins. By fitting recombination dynamics to distributions of recombination rates, we identified populations of charge-transfer states and well-separated charge pairs. For the wide range of materials we studied, the yield of separated charges in the tunneling regime is strongly correlated with the yield of free charges measured via their intensity-dependent bimolecular recombination dynamics at room temperature. We therefore conclude that populations of free charges are established via long-range charge separation within the thermalization time scale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we estimate critical charge separation distances of ∼3-4 nm in all materials. In some blends, large fullerene crystals can enhance charge separation yields; however, the important role of the polymers is also highlighted in blends that achieved significant charge separation with minimal fullerene concentration. We expect that our approach of isolating the intrinsic properties of primary charge pairs will be of considerable value in guiding new material development and testing the validity of proposed mechanisms for long-range charge separation.

  15. Topological defects in extended inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.

    1990-01-01

    The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.

  16. Skyrmions in quantum Hall ferromagnets as spin waves bound to unbalanced magnetic-flux quanta

    NASA Astrophysics Data System (ADS)

    Oaknin, J. H.; Paredes, B.; Tejedor, C.

    1998-11-01

    A microscopic description of (baby) skyrmions in quantum Hall ferromagnets is derived from a scattering theory of collective (neutral) spin modes by a bare quasiparticle. We start by mapping the low-lying spectrum of spin waves in the uniform ferromagnet onto that of freely moving spin excitons, and then we study their scattering by the charge defect. In the presence of this disturbance, the local spin stiffness varies in space, and we translate it into an inhomogeneous metric in the Hilbert space supporting the excitons. An attractive potential is then required to preserve the symmetry under global spin rotations, and it traps the excitons around the charged defect. The quasiparticle now carries a spin texture. Textures containing more than one exciton are described within a mean-field theory, the interaction among the excitons being taken into account through a new renormalization of the metric. The number of excitons actually bound depends on the Zeeman coupling, which plays the same role as a chemical potential. For small Zeeman energies, the defect binds many excitons that condensate. As the bound excitons have a unit of angular momentum, provided by the quantum of magnetic flux left unbalanced by the defect of charge, the resulting texture turns out to be a topological excitation of charge 1. Its energy is that given by the nonlinear σ model for the ground state in this topological sector, i.e., the texture is a skyrmion.

  17. Genetics of Atrial Septal Defect

    PubMed Central

    Cascos, Andrés Sánchez

    1972-01-01

    Of 109 cases of atrial septal defect, cases with an isolated defect (92 cases) showed a female preponderance (sex ratio 0·64), but there was a higher risk to the sibs of the male patients, suggesting a multifactorial mechanism. Dermatoglyphs showed a large number of whorls on the fingers. In 17 cases there were multiple malformations, such as Holt-Oram syndrome (hypoplastic and triphalangic thumb, with ostium secundum atrial septal defect), polydactyly plus ostium primum defect, and tracheo-oesophageal fistula. ImagesFIG. 1.FIG. 2.FIG. 3. PMID:4261647

  18. Pair Tunneling through Single Molecules

    NASA Astrophysics Data System (ADS)

    Raikh, Mikhail

    2007-03-01

    Coupling to molecular vibrations induces a polaronic shift, and can lead to a negative charging energy, U. For negative U, the occupation of the ground state of the molecule is even. In this situation, virtual pair transitions between the molecule and the leads can dominate electron transport. At low temperature, T, these transitions give rise to the charge-Kondo effect [1]. We developed the electron transport theory through the negative-U molecule [2] at relatively high T, when the Kondo correlations are suppressed. Two physical ingredients distinguish our theory from the transport through a superconducting grain coupled to the normal leads [3]: (i) in parallel with sequential pair-tunneling processes, single-particle cotunneling processes take place; (ii) the electron pair on the molecule can be created (or annihilated) by two electrons tunneling in from (or out to) opposite leads. We found that, even within the rate-equation description, the behavior of differential conductance through the negative-U molecule as function of the gate voltage is quite peculiar: the height of the peak near the degeneracy point is independent of temperature, while its width is proportional to T. This is in contrast to the ordinary Coulomb-blockade conductance peak, whose integral strength is T-independent. At finite source-drain bias, V>>T, the width of the conductance peak is ˜V, whereas the conventional Coulomb-blockade peak at finite V splits into two sharp peaks at detunings V/2, and -V/2. Possible applications to the gate-controlled current rectification and switching will be discussed. [1] A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991). [2] J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96, 056803 (2006). [3] F. W. J. Hekking, L. I. Glazman, K. A. Matveev, and R. I. Shekhter, Phys. Rev. Lett. 70, 4138 (1993).

  19. Match-bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2003-01-01

    We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h+1 then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.

  20. Photoproduction of η π pairs off nucleons and deuterons

    NASA Astrophysics Data System (ADS)

    Käser, A.; Müller, F.; Ahrens, J.; Annand, J. R. M.; Arends, H. J.; Bantawa, K.; Bartolome, P. A.; Beck, R.; Braghieri, A.; Briscoe, W. J.; Cherepnya, S.; Costanza, S.; Dieterle, M.; Downie, E. J.; Drexler, P.; Fil'kov, L. V.; Fix, A.; Garni, S.; Glazier, D. I.; Hamilton, D.; Hornidge, D.; Howdle, D.; Huber, G. M.; Jaegle, I.; Jude, T. C.; Kashevarov, V. L.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lisin, V.; Livingston, K.; MacGregor, I. J. D.; Maghrbi, Y.; Mancell, J.; Manley, D. M.; Marinides, Z.; McGeorge, J. C.; McNicoll, E.; Mekterovic, D.; Metag, V.; Micanovic, S.; Middleton, D. G.; Mushkarenkov, A.; Nikolaev, A.; Novotny, R.; Oberle, M.; Ostrick, M.; Otte, P.; Oussena, B.; Pedroni, P.; Pheron, F.; Polonski, A.; Prakhov, S.; Robinson, J.; Rostomyan, T.; Schumann, S.; Sikora, M. H.; Sober, D.; Starostin, A.; Strub, Th.; Supek, I.; Thiel, M.; Thomas, A.; Unverzagt, M.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Witthauer, L.

    2016-09-01

    Quasi-free photoproduction of πη-pairs has been investigated from threshold up to incident photon energies of 1.4 GeV, respectively up to photon-nucleon invariant masses up to 1.9 GeV. Total cross sections, angular distributions, invariant-mass distributions of the πη and meson-nucleon pairs, and beam-helicity asymmetries have been measured for the reactions γ p→ pπ0η, γ n→ nπ0η , γ p→ nπ+η , and γ n→ pπ-η from nucleons bound inside the deuteron. For the γ p initial-state data for free protons have also been analyzed. Finally, the total cross sections for quasi-free production of π0η pairs from nucleons bound in 3 He nuclei have been investigated in view of final state interaction (FSI) effects. The experiments were performed at the tagged photon beam facility of the Mainz MAMI accelerator using an almost 4 π covering electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. The shapes of all differential cross section data and the asymmetries are very similar for protons and neutrons and agree with the conjecture that the reactions are dominated by the sequential Δ^{star}3/2-→ ηΔ(1232) →πη N decay chain, mainly with Δ(1700)3/2- and Δ(1940)3/2- . The ratios of the magnitude of the total cross sections also agree with this assumption. However, the absolute magnitudes of the cross sections are reduced by FSI effects with respect to free proton data.

  1. Majorana bound states in magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2016-06-01

    Magnetic skyrmions are highly mobile nanoscale topological spin textures. We show, both analytically and numerically, that a magnetic skyrmion of an even azimuthal winding number placed in proximity to an s -wave superconductor hosts a zero-energy Majorana bound state in its core, when the exchange coupling between the itinerant electrons and the skyrmion is strong. This Majorana bound state is stabilized by the presence of a spin-orbit interaction. We propose the use of a superconducting trijunction to realize non-Abelian statistics of such Majorana bound states.

  2. Lightweight Distance Bounding Protocol against Relay Attacks

    NASA Astrophysics Data System (ADS)

    Kim, Jin Seok; Cho, Kookrae; Yum, Dae Hyun; Hong, Sung Je; Lee, Pil Joong

    Traditional authentication protocols are based on cryptographic techniques to achieve identity verification. Distance bounding protocols are an enhanced type of authentication protocol built upon both signal traversal time measurement and cryptographic techniques to accomplish distance verification as well as identity verification. A distance bounding protocol is usually designed to defend against the relay attack and the distance fraud attack. As there are applications to which the distance fraud attack is not a serious threat, we propose a streamlined distance bounding protocol that focuses on the relay attack. The proposed protocol is more efficient than previous protocols and has a low false acceptance rate under the relay attack.

  3. Bounds on dark matter in solar orbit

    SciTech Connect

    Anderson, J.D.; Lau, E.L.; Taylor, A.H.; Dicus, D.A.; Teplitz, D.C.; Texas Univ., Austin; Maryland Univ., College Park )

    1989-07-01

    The possibility is considered that a spherical distribution of dark matter (DM), matter not visible with current instruments, is trapped in the sun's gravitational field. Bounds are placed from the motion of Uranus and Neptune, on the amount of DM that could be so trapped within the radius of those planets' orbits, as follows: from the Voyager 2, Uranus-flyby data new, more accurate ephemeris values are generated. Trapped DM mass is bounded by noting that such a distribution would increase the effective mass of the sun as seen by the outer planets and by using the new ephemeris values to bound such an increase. 34 refs.

  4. Pattern Search Algorithms for Bound Constrained Minimization

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Torczon, Virginia

    1996-01-01

    We present a convergence theory for pattern search methods for solving bound constrained nonlinear programs. The analysis relies on the abstract structure of pattern search methods and an understanding of how the pattern interacts with the bound constraints. This analysis makes it possible to develop pattern search methods for bound constrained problems while only slightly restricting the flexibility present in pattern search methods for unconstrained problems. We prove global convergence despite the fact that pattern search methods do not have explicit information concerning the gradient and its projection onto the feasible region and consequently are unable to enforce explicitly a notion of sufficient feasible decrease.

  5. Background Defect Density Reduction Using Automated Defect Inspection And Analysis

    NASA Astrophysics Data System (ADS)

    Weirauch, Steven C.

    1988-01-01

    Yield maintenance and improvement is a major area of concern in any integrated circuit manufacturing operation. A major aspect of this concern is controlling and reducing defect density. Obviously, large defect excursions must be immediately addressed in order to maintain yield levels. However, to enhance yields, the subtle defect mechanisms must be reduced or eliminated as well. In-line process control inspections are effective for detecting large variations in the defect density on a real time basis. Examples of in-line inspection strategies include after develop or after etch inspections. They are usually effective for detecting when a particular process segment has gone out of control. However, when a process is running normally, there exists a background defect density that is generally not resolved by in-line process control inspections. The inspection strategies that are frequently used to monitor the background defect density are offline inspections. Offline inspections are used to identify the magnitude and characteristics of the background defect density. These inspections sample larger areas of product wafers than the in-line inspections to allow identification of the defect generating mechanisms that normally occur in the process. They are used to construct a database over a period of time so that trends may be studied. This information enables engineering efforts to be focused on the mechanisms that have the greatest impact on device yield. Once trouble spots in the process are identified, the data base supplies the information needed to isolate and solve them. The key aspect to the entire program is to utilize a reliable data gathering mechanism coupled with a flexible information processing system. This paper describes one method of reducing the background defect density using automated wafer inspection and analysis. The tools used in this evaluation were the KLA 2020 Wafer Inspector, KLA Utility Terminal (KLAUT), and a new software package developed

  6. Localized states and their stability in an anharmonic medium with a nonlinear defect

    SciTech Connect

    Gerasimchuk, I. V.

    2015-10-15

    A comprehensive analysis of soliton states localized near a plane defect (a defect layer) possessing nonlinear properties is carried out within a quasiclassical approach for different signs of nonlinearity of the medium and different characters of interaction of elementary excitations of the medium with the defect. A quantum interpretation is given to these nonlinear localized modes as a bound state of a large number of elementary excitations. The domains of existence of such states are determined, and their properties are analyzed as a function of the character of interaction of elementary excitations between each other and with the defect. A full analysis of the stability of all the localized states with respect to small perturbations of amplitude and phase is carried out analytically, and the frequency of small oscillations of the state localized on the defect is determined.

  7. Early LHC phenomenology of Yukawa-bound heavy QQ mesons

    SciTech Connect

    Enkhbat, Tsedenbaljir; Hou, Wei-Shu; Yokoya, Hiroshi

    2011-11-01

    Current limits from the LHC on fourth generation quarks are already at the unitarity bound of 500 GeV or so. If they exist, the strong Yukawa couplings are turning nonperturbative, and may form bound states. We study the domain of m{sub b'} and m{sub t'} in the range of 500 to 700 GeV, where we expect binding energies are mainly of Yukawa origin, with QCD subdominant. To be consistent with electroweak precision tests, the t' and b' quarks have to be nearly degenerate, exhibiting a new 'isospin'. Comparing relativistic expansion with a relativistic bound state approach, we find the most interesting is the production of a color octet, isosinglet vector meson (a 'gluon-prime') via qq-bar{yields}{omega}{sub 8}. Leading decay modes are {pi}{sub 8}{sup {+-}}W{sup {+-}}, {pi}{sub 8}{sup 0}Z{sup 0}, and constituent quark decay, with qq and tt-bar' and bb' subdominant. The color octet, isovector pseudoscalar {pi}{sub 8} meson decays via constituent quark decay, or to Wg. These decay rates are parameterized by the decay constant, the binding energy and mass differences, and V{sub tb'}. For small V{sub t'b}, one could have a spectacular signal of WWg, where a soft W accompanies a very massive Wg pair. In general, however, one has high multiplicity signals with b, W, and t jet substructures that are not so different from the t't-bar' and b'b-bar' search.

  8. Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES): A Catalog of Very Wide, Low-mass Pairs

    NASA Astrophysics Data System (ADS)

    Dhital, Saurav; West, Andrew A.; Stassun, Keivan G.; Bochanski, John J.

    2010-06-01

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES), a catalog of 1342 very-wide (projected separation gsim500 AU), low-mass (at least one mid-K to mid-M dwarf component) common proper motion pairs identified from astrometry, photometry, and proper motions in the Sloan Digital Sky Survey. A Monte Carlo-based Galactic model is constructed to assess the probability of chance alignment for each pair; only pairs with a probability of chance alignment <=0.05 are included in the catalog. The overall fidelity of the catalog is expected to be 98.35%. The selection algorithm is purposely exclusive to ensure that the resulting catalog is efficient for follow-up studies of low-mass pairs. The SLoWPoKES catalog is the largest sample of wide, low-mass pairs to date and is intended as an ongoing community resource for detailed study of bona fide systems. Here, we summarize the general characteristics of the SLoWPoKES sample and present preliminary results describing the properties of wide, low-mass pairs. While the majority of the identified pairs are disk dwarfs, there are 70 halo subdwarf (SD) pairs and 21 white dwarf-disk dwarf pairs, as well as four triples. Most SLoWPoKES pairs violate the previously defined empirical limits for maximum angular separation or binding energies. However, they are well within the theoretical limits and should prove very useful in putting firm constraints on the maximum size of binary systems and on different formation scenarios. We find a lower limit to the wide binary frequency (WBF) for the mid-K to mid-M spectral types that constitute our sample to be 1.1%. This frequency decreases as a function of Galactic height, indicating a time evolution of the WBF. In addition, the semi-major axes of the SLoWPoKES systems exhibit a distinctly bimodal distribution, with a break at separations around 0.1 pc that is also manifested in the system binding energy. Compared with theoretical predictions for the disruption of

  9. Rashba Splitting of Cooper Pairs

    NASA Astrophysics Data System (ADS)

    Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.

    2016-05-01

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals.

  10. Rashba Splitting of Cooper Pairs.

    PubMed

    Shekhter, R I; Entin-Wohlman, O; Jonson, M; Aharony, A

    2016-05-27

    We investigate theoretically the properties of a weak link between two superconducting leads, which has the form of a nonsuperconducting nanowire with a strong Rashba spin-orbit coupling caused by an electric field. In the Coulomb-blockade regime of single-electron tunneling, we find that such a weak link acts as a "spin splitter" of the spin states of Cooper pairs tunneling through the link, to an extent that depends on the direction of the electric field. We show that the Josephson current is sensitive to interference between the resulting two transmission channels, one where the spins of both members of a Cooper pair are preserved and one where they are both flipped. As a result, the current is a periodic function of the strength of the spin-orbit interaction and of the bending angle of the nanowire (when mechanically bent); an identical effect appears due to strain-induced spin-orbit coupling. In contrast, no spin-orbit induced interference effect can influence the current through a single weak link connecting two normal metals. PMID:27284669

  11. Detection of Majorana Kramers Pairs Using a Quantum Point Contact.

    PubMed

    Li, Jian; Pan, Wei; Bernevig, B Andrei; Lutchyn, Roman M

    2016-07-22

    We propose a setup that integrates a quantum point contact (QPC) and a Josephson junction on a quantum spin Hall sample, experimentally realizable in InAs/GaSb quantum wells. The confinement due to both the QPC and the superconductor results in a Kramers pair of Majorana zero-energy bound states when the superconducting phases in the two arms differ by an odd multiple of π across the Josephson junction. We investigate the detection of these Majorana pairs with the integrated QPC, and find a robust switching from normal to Andreev scattering across the edges due to the presence of Majorana Kramers pairs. Such a switching of the current represents a qualitative signature where multiterminal differential conductances oscillate with alternating signs when the external magnetic field is tuned. We show that this qualitative signature is also present in current cross-correlations. Thus, the change of the backscattering current nature affects both conductance and shot noise, the measurement of which offers a significant advantage over quantitative signatures such as conductance quantization in realistic measurements. PMID:27494493

  12. Detection of Majorana Kramers Pairs Using a Quantum Point Contact

    NASA Astrophysics Data System (ADS)

    Li, Jian; Pan, Wei; Bernevig, B. Andrei; Lutchyn, Roman M.

    2016-07-01

    We propose a setup that integrates a quantum point contact (QPC) and a Josephson junction on a quantum spin Hall sample, experimentally realizable in InAs/GaSb quantum wells. The confinement due to both the QPC and the superconductor results in a Kramers pair of Majorana zero-energy bound states when the superconducting phases in the two arms differ by an odd multiple of π across the Josephson junction. We investigate the detection of these Majorana pairs with the integrated QPC, and find a robust switching from normal to Andreev scattering across the edges due to the presence of Majorana Kramers pairs. Such a switching of the current represents a qualitative signature where multiterminal differential conductances oscillate with alternating signs when the external magnetic field is tuned. We show that this qualitative signature is also present in current cross-correlations. Thus, the change of the backscattering current nature affects both conductance and shot noise, the measurement of which offers a significant advantage over quantitative signatures such as conductance quantization in realistic measurements.

  13. Finding Bounded Rational Equilibria. Part 2; Alternative Lagrangians and Uncountable Move Spaces

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2004-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality characterizing all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. It has recently been shown that the same information theoretic mathematical structure, known as Probability Collectives (PC) underlies both issues. This relationship between statistical physics and game theory allows techniques and insights &om the one field to be applied to the other. In particular, PC provides a formal model-independent definition of the degree of rationality of a player and of bounded rationality equilibria. This pair of papers extends previous work on PC by introducing new computational approaches to effectively find bounded rationality equilibria of common-interest (team) games.

  14. Degeneracy of Majorana bound states and fractional Josephson effect in a dirty SNS junction

    NASA Astrophysics Data System (ADS)

    Ikegaya, S.; Asano, Y.

    2016-09-01

    We theoretically study the stability of more than one Majorana fermion appearing in a p-wave superconductor/dirty normal metal/p-wave superconductor junction in two-dimensions by using the chiral symmetry of a Hamiltonian. At the phase difference across the junction φ being π, we will show that all of the Majorana bound states in the normal metal belong to the same chirality. Due to this pure chiral feature, the Majorana bound states retain their high degree of degeneracy at zero energy even in the presence of a random potential. As a consequence, the resonant transmission of a Cooper pair via the degenerate Majorana bound states carries the Josephson current at \\varphi =π -{{0}+} , which explains the fractional current-phase relationship discussed in a number of previous papers.

  15. Pair bonds: arrival synchrony in migratory birds.

    PubMed

    Gunnarsson, T G; Gill, J A; Sigurbjörnsson, T; Sutherland, W J

    2004-10-01

    Synchronous arrival of pairs of migratory birds at their breeding grounds is important for maintaining pair bonds and is achieved by pairs that remain together all year round. Here we show that arrival is also synchronized in paired individuals of a migratory shorebird, the black-tailed godwit (Limosa limosa islandica), even though they winter hundreds of kilometres apart and do not migrate together. The mechanisms required to achieve this synchrony and prevent 'divorce' illustrate the complexity of migratory systems. PMID:15470417

  16. Studying dissociative electron attachment through formation of heavy-Rydberg ion-pair states

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Buathong, Sitti; Dunning, F. Barry

    2016-05-01

    Following dissociative electron transfer in collisions between Rydberg atoms and electron-attaching targets, it is possible for the resulting pair of ions to remain electrostatically bound, forming heavy-Rydberg ion-pair states. Precise measurement of the velocity distributions of such ion-pair states provides information concerning the dissociation dynamics of the excited intermediates initially created by electron transfer. Here, electric-field-induced dissociation is used to detect the product ion pairs and observe their velocity distributions. These distributions are analyzed with the aid of a Monte Carlo collision code that models the electron transfer. Measurements with a number of different target species show that through this analysis, dissociation energetics, the branching ratios into different dissociation products, and the lifetimes of the excited intermediates can be examined. Research supported by the Robert A. Welch Foundation.

  17. Existence and consequences of Coulomb pairing of electrons in a solid

    SciTech Connect

    Mahajan, S.M.; Thyagaraja, A.

    1996-11-01

    It is shown from first principles that, in the periodic potential of a crystalline solid, short-range (i.e., screened) binary Coulomb interactions can lead to a two-electron bound state. It is further suggested that these composite bosonic states (charge -2e, and typically spin zero) could mediate an effectively attractive interaction between pairs of conduction electrons close to the Fermi level. This necessarily short range attractive interaction, which is crucially dependent on the band structure of the solid, and is complementary to the phonon-mediated one, may provide a source for the existence and properties of short correlation-length electron pairs (analogous to but distinct from Cooper pairs) needed to understand high temperature superconductivity. Several distinctive and observable characteristics of the proposed pairing scheme are discussed.

  18. Antioxidant activity of albumin-bound bilirubin.

    PubMed Central

    Stocker, R; Glazer, A N; Ames, B N

    1987-01-01

    Bilirubin, when bound to human albumin and at concentrations present in normal human plasma, protects albumin-bound linoleic acid from peroxyl radical-induced oxidation in vitro. Initially, albumin-bound bilirubin (Alb-BR) is oxidized at the same rate as peroxyl radicals are formed and biliverdin is produced stoichiometrically as the oxidation product. On an equimolar basis, Alb-BR successfully competes with uric acid for peroxyl radicals but is less efficient in scavenging these radicals than vitamin C. These results show that 1 mol of Alb-BR can scavenge 2 mol of peroxyl radicals and that small amounts of plasma bilirubin are sufficient to prevent oxidation of albumin-bound fatty acids as well as of the protein itself. The data indicate a role for Alb-BR as a physiological antioxidant in plasma and the extravascular space. PMID:3475708

  19. Slot antenna as a bound charge oscillator.

    PubMed

    Choe, Jong-Ho; Kang, Ji-Hun; Kim, Dai-Sik; Park, Q-Han

    2012-03-12

    We study the scattering properties of an optical slot antenna formed from a narrow rectangular hole in a metal film. We show that slot antennas can be modeled as bound charge oscillators mediating resonant light scattering. A simple closed-form expression for the scattering spectrum of a slot antenna is obtained that reveals the nature of a bound charge oscillator and also the effect of a substrate. We find that the spectral width of scattering resonance is dominated by a radiative damping caused by the Abraham-Lorentz force acting on a bound charge. The bound charge oscillator model provides not only an intuitive physical picture for the scattering of an optical slot antenna but also reasonable numerical agreements with rigorous calculations using the finite-difference time-domain method. PMID:22418535

  20. Bound phenolics in foods, a review.

    PubMed

    Acosta-Estrada, Beatriz A; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2014-01-01

    Among phytochemicals, phenolic compounds have been extensively researched due to their diverse health benefits. Phenolic compounds occur mostly as soluble conjugates and insoluble forms, covalently bound to sugar moieties or cell wall structural components. Absorption mechanisms for bound phenolic compounds in the gastrointestinal tract greatly depend on the liberation of sugar moieties. Food processes such as fermentation, malting, thermoplastic extrusion or enzymatic, alkaline and acid hydrolyses occasionally assisted with microwave or ultrasound have potential to release phenolics associated to cell walls. Different kinds of wet chemistry methodologies to release and detect bound phenolic have been developed. These include harsh heat treatments, chemical modifications or biocatalysis. New protocols for processing and determining phenolics in food matrices must be devised in order to release bound phenolics and for quality control in the growing functional food industry.

  1. Facts about Atrial Septal Defect

    MedlinePlus

    ... prevalence estimates for selected birth defects in the United States, 2004-2006. Birth Defects Res A Clin Mol Teratol. 2010;88(12):1008-16. Related Links Disability & Health Family Health History & Genetics Healthy Pregnancy Planning for Pregnancy A-Z ...

  2. Highly Efficient Defect Emission from ZnO:Zn and ZnO:S Powders

    NASA Astrophysics Data System (ADS)

    Everitt, Henry

    2013-03-01

    Bulk Zinc Oxide (ZnO) is a wide band gap semiconductor with an ultraviolet direct band gap energy of 3.4 eV and a broad, defect-related visible wavelength emission band centered near 2 eV. We have shown that the external quantum efficiency can exceed 50% for this nearly white emission band that closely matches the human dark-adapted visual response. To explore the potential of ZnO as a rare earth-free white light phosphor, we investigated the mechanism of efficient defect emission in three types of ZnO powders: unannealed, annealed, and sulfur-doped. Annealing and sulfur-doping of ZnO greatly increase the strength of defect emission while suppressing the UV band edge emission. Continuous wave and ultrafast one- and two-photon excitation spectroscopy are used to examine the defect emission mechanism. Low temperature photoluminescence (PL) and PL excitation (PLE) spectra were measured for all three compounds, and it was found that bound excitons mediate the defect emission. Temperature-dependent PLE spectra for the defect and band edge emission were measured to estimate trapping and activation energies of the bound excitons and clarify the role they play in the defect emission. Time-resolved techniques were used to ascertain the role of exciton diffusion, the effects of reabsorption, and the spatial distributions of radiative and non-radiative traps. In unannealed ZnO we find that defect emission is suppressed and UV band edge emission is inefficient (< 2%) because of reabsorption and non-radiative recombination due to a high density of non-radiative bulk traps. By annealing ZnO, bulk trap densities are reduced, and a high density of defects responsible for the broad visible emission are created near the surface. Interestingly, nearly identical PLE spectra are found for both the band edge and the defect emission, one of many indications that the defect emission is deeply connected to bound excitons. Quantum efficiency, also measured as a function of excitation

  3. Point defect states in Sb-doped germanium

    SciTech Connect

    Patel, Neil S. Monmeyran, Corentin; Agarwal, Anuradha; Kimerling, Lionel C.

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  4. Molecular Andreev bound states and Majorana modes in a double dot system

    NASA Astrophysics Data System (ADS)

    Vernek, Edson; Silva, Joelson F.

    Nanostructured systems such as quantum dots (QD) connected to superconductors has attracted a lot of attention in the recent years. One of the well known phenomena in such a system is the formation of a pair of bound called Andreev bound states (ABS). Recently, it have been shown that when a QD is coupled to a topological superconductor wire, a Majorana bound state (MBS) leaks from the end of the wire into the dot. The character of these bound states is much reacher in structures like molecules and is far from being completely understood. In this work we study a system composed by a two inter-connected QDs in which one of then is coupled to a normal superconductor and to a normal lead while the other is coupled to a topological superconductor and to a distinct normal metallic lead. We show that in the atomic limit (for small interdot coupling), one of the dot has a pair of ABS whereas the other has a single a MBS. More interestingly, in the molecular regime (large inter-dot coupling) we observe a localized Majorana mode coexisting with a delocalized molecular ABS. We would like to thank financial support from the Brazilian agencies CNPq, CAPES and FAPEMIG.

  5. Performance bound for real OTEC heat engines

    SciTech Connect

    Wu, C.

    1987-01-01

    Maximum power and efficiency at the maximum power of an irreversible OTEC heat engine are treated. When time is explicitly considered in the energy exchanges between the heat engine and its surroundings, it is found that there is a bound on the efficiency of the real OTEC heat engine at the maximum power condition. This bound can guide the evaluation of existing OTEC systems or influence design of future OTEC heat engines.

  6. An upper bound on quantum entropy.

    SciTech Connect

    Zachos, C. K.; High Energy Physics

    2008-01-01

    Following ref [1], a classical upper bound for quantum entropy is identified and illustrated, 0 {le} S{sub q} {le} ln (e{sigma}{sup 2}/2{h_bar}), involving the variance {sigma}{sup 2} in phase space of the classical limit distribution of a given system. A fortiori, this further bounds the corresponding information-theoretical generalizations of the quantum entropy proposed by Renyi.

  7. New spectral features from bound dark matter

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Kouvaris, Chris

    2016-07-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  8. Bound states in the Higgs model

    NASA Astrophysics Data System (ADS)

    di Leo, Leo; Darewych, Jurij W.

    1994-02-01

    We derive relativistic wave equations for the bound states of two Higgs bosons within the Higgs sector of the minimal standard model. The variational method and the Hamiltonian formalism of QFT are used to obtain the equations using a simple ||hh>+||hhh> Fock-space ansatz. We present approximate solutions of these equations for a range of Higgs boson masses, and explore the parameter space which corresponds to the existence of two-Higgs-boson bound states.

  9. Individuation of Pairs of Objects in Infancy

    ERIC Educational Resources Information Center

    Leslie, Alan M.; Chen, Marian L.

    2007-01-01

    Looking-time studies examined whether 11-month-old infants can individuate two pairs of objects using only shape information. In order to test individuation, the object pairs were presented sequentially. Infants were familiarized either with the sequential pairs, disk-triangle/disk-triangle (XY/XY), whose shapes differed within but not across…

  10. The Associability of CVC Pairs. Research Report.

    ERIC Educational Resources Information Center

    Montague, William E.; Kiess, Harold O.

    To obtain an a priori estimate of natural language mediators (NLM's) 320 pairs of words with the consonant-vowel-consonant-pattern (CVC's) were broken into four series of 90 pairs and presented to 240 male and female undergraduates. Pairs were shown for 15 seconds while the subjects wrote down any associative device or NLM they could generate that…

  11. Native defects and self-diffusion in GaSb

    NASA Astrophysics Data System (ADS)

    Shaw, D.

    2003-07-01

    The recent results for the self-diffusivities, D(Ga) and D(Sb), of Ga and Sb in GaSb obtained by Bracht et al (Bracht H, Nicols S P, Walukjewicz W, Silveira J P, Briones F and Haller E E 2000 Nature 408 69 and Bracht H, Nicols S P, Haller E E, Silveira J P and Briones F 2001 J. Appl. Phys. 89 5393) are compared and related to the earlier measurements by Weiler and Mehrer (Weiler D and Mehrer H 1984 Phil. Mag. A 49 309). It is proposed that the differences between the two sets of data are due to higher concentrations of hydrogen impurity in the samples of Weiler and Mehrer. The experimental evidence indicates that the diffusion mechanisms associated with D(Ga) and D(Sb) both have two parallel mechanisms. For D(Ga) the native defects involved are the Frenkel pair, GaiVGa, and the Ga vacancy, VGa. For D(Sb) one mechanism is due to the defect pair SbiVGa and the second to either the vacancy pair VGaVSb or the triple defect VGaGaSbVGa. It is proposed that the mobilities of all these defects, excepting GaiVGa, are enhanced in the presence of hydrogen as an impurity in the GaSb lattice. On this basis the differences in the data obtained by Bracht et al and Weiler and Mehrer can be reconciled. It is also shown that measured free hole concentrations identify Ga2-Sb as the residual acceptor in GaSb and that undoped GaSb is intrinsic at diffusion anneal temperatures.

  12. Toward Intelligent Software Defect Detection

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2011-01-01

    Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.

  13. Global topological k-defects

    SciTech Connect

    Babichev, E.

    2006-10-15

    We consider global topological defects in symmetry-breaking models with a noncanonical kinetic term. Apart from a mass parameter entering the potential, one additional dimensional parameter arises in such models - a kinetic mass. The properties of defects in these models are quite different from standard global domain walls, vortices, and monopoles, if their kinetic mass scale is smaller than their symmetry-breaking scale. In particular, depending on the concrete form of the kinetic term, the typical size of such a defect can be either much larger or much smaller than the size of a standard defect with the same potential term. The characteristic mass of a nonstandard defect, which might have been formed during a phase transition in the early universe, depends on both the temperature of a phase transition and the kinetic mass.

  14. Holographic Chern-Simons defects

    NASA Astrophysics Data System (ADS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-06-01

    We study SU( N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  15. Holographic Chern-Simons defects

    DOE PAGES

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-06-28

    Here, we study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of themore » defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.« less

  16. Observability of surface Andreev bound states in a topological insulator in proximity to an s-wave superconductor.

    PubMed

    Snelder, M; Golubov, A A; Asano, Y; Brinkman, A

    2015-08-12

    To guide experimental work on the search for Majorana zero-energy modes, we calculate the superconducting pairing symmetry of a three-dimensional topological insulator in combination with an s-wave superconductor. We show how the pairing symmetry changes across different topological regimes. We demonstrate that a dominant p-wave pairing relation is not sufficient to realise a Majorana zero-energy mode useful for quantum computation. Our main result is the relation between odd-frequency pairing and Majorana zero energy modes by using Green functions techniques in three-dimensional topological insulators in the so-called Majorana regime. We discuss thereafter how the pairing relations in the different regimes can be observed in the tunneling conductance of an s-wave proximised three-dimensional topological insulator. We discuss the necessity to incorporate a ferromagnetic insulator to localise the zero-energy bound state to the interface as a Majorana mode.

  17. Importance of the single-particle continuum in BCS pairing with a pseudostate basis

    NASA Astrophysics Data System (ADS)

    Lay, J. A.; Alonso, C. E.; Fortunato, L.; Vitturi, A.

    2016-05-01

    In a recent work [arXiv:1510.03185] the use of the Transformed Harmonic Oscillator (THO) basis for the discretization of the singleparticle continuum into a Generalized Bardeen-Cooper-Schrieffer (BCS) formalism was proposed for the description of weakly bound nuclei. We make use of the flexibility of this formalism to study the evolution of the pairing when the nucleus becomes more and more weakly bound. Specifically we focus on the evolution of the occupation of the different partial waves in 22O when the Fermi level approaches zero.

  18. Mask defect verification using actinic inspection and defect mitigation technology

    SciTech Connect

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Goldberg, Kenneth; Mochi, Iacopo; Gullikson, Eric

    2009-04-14

    The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. The successful production of defect-free masks will depend on the timely development of defect inspection tools, including both mask blank inspection tools and absorber pattern inspection tools to meet the 22 nm half-pitch node. EUV mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360 is operated at SEMA TECH's Mask blank Development Center (MBDC) in Albany, with sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for the next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. This paper will also discuss the kind of infrastructure that will be required in the development and mass production stages.

  19. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Wirth, Brian D.; Kurtz, Richard J.

    2015-07-01

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (∼780 × Ed , where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect at a transition energy which occurs at approximately 250 × Ed . The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (∼0.5Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <1 0 0>{1 1 0} SIA loops are observed to form directly in the highest energy cascades, while vacancy <1 0 0> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <1 0 0> type is relatively rare.

  20. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Wirth, Brian D.; Kurtz, Richard J.

    2015-07-01

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780×Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect at a transition energy which occurs at approximately 250×Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.

  1. Neural tube defects.

    PubMed

    Hasenau, Susan M; Covington, Chandice

    2002-01-01

    The purpose of this article is to describe the etiology of neural tube defects (NTDs) and the role of folic acid in their prevention. NTDs are all too common and devastating outcomes of many pregnancies. The brain and spinal cord malformations that develop during gestation in the NTD-affected pregnancies are expressed through various anomalies. Estimates by the Centers for Disease Control and Prevention (CDC) for 1995 reported over 4,000 occurrences of NTDs in the United States alone. Research has demonstrated that the preconception and prenatal addition of folic acid can greatly reduce the incidence of NTDs. Recent advances in genetic studies have increased awareness of the important role of folic acid in preventing NTDs. Identification of a genetic marker will allow for specific treatment of those women at high risk for NTDs. Despite recommendations from the CDC for folic acid supplementation, there is insufficient awareness of these guidelines by both the public and by healthcare providers. A National campaign to promote awareness of the role of folic acid in the prevention of NTDs has been initiated, and has been successful at reducing NTDs's by 19%. Nurses can be instrumental in the dissemination of information not only to women of childbearing age, but also to other nurses and physicians. PMID:11984276

  2. Nonconsecutive Pars Interarticularis Defects.

    PubMed

    Elgafy, Hossein; Hart, Ryan C; Tanios, Mina

    2015-12-01

    Lumbar spondylolysis is a well-recognized condition occurring in adolescents because of repetitive overuse in sports. Nonconsecutive spondylolysis involving the lumbar spine is rare. In contrast to single-level pars defects that respond well to conservative treatment, there is no consensus about the management of multiple-level pars fractures; a few reports indicated that conservative management is successful, and the majority acknowledged that surgery is often required. The current study presents a rare case of pars fracture involving nonconsecutive segments and discusses the management options. In this case report, we review the patient's history, clinical examination, radiologic findings, and management, as well as the relevant literature. An 18-year-old man presented to the clinic with worsening lower back pain related to nonconsecutive pars fractures at L2 and L5. After 6 months of conservative management, diagnostic computed tomography-guided pars block was used to localize the symptomatic level at L2, which was treated surgically; the L5 asymptomatic pars fracture did not require surgery. At the last follow-up 2 years after surgery, the patient was playing baseball and basketball, and denied any back pain. This article reports a case of rare nonconsecutive pars fractures. Conservative management for at least 6 months is recommended. Successful management depends on the choice of appropriate treatment for each level. Single-photon emission computed tomography scan, and computed tomography-guided pars block are valuable preoperative tools to identify the symptomatic level in such a case. PMID:26665257

  3. Nonconsecutive Pars Interarticularis Defects.

    PubMed

    Elgafy, Hossein; Hart, Ryan C; Tanios, Mina

    2015-12-01

    Lumbar spondylolysis is a well-recognized condition occurring in adolescents because of repetitive overuse in sports. Nonconsecutive spondylolysis involving the lumbar spine is rare. In contrast to single-level pars defects that respond well to conservative treatment, there is no consensus about the management of multiple-level pars fractures; a few reports indicated that conservative management is successful, and the majority acknowledged that surgery is often required. The current study presents a rare case of pars fracture involving nonconsecutive segments and discusses the management options. In this case report, we review the patient's history, clinical examination, radiologic findings, and management, as well as the relevant literature. An 18-year-old man presented to the clinic with worsening lower back pain related to nonconsecutive pars fractures at L2 and L5. After 6 months of conservative management, diagnostic computed tomography-guided pars block was used to localize the symptomatic level at L2, which was treated surgically; the L5 asymptomatic pars fracture did not require surgery. At the last follow-up 2 years after surgery, the patient was playing baseball and basketball, and denied any back pain. This article reports a case of rare nonconsecutive pars fractures. Conservative management for at least 6 months is recommended. Successful management depends on the choice of appropriate treatment for each level. Single-photon emission computed tomography scan, and computed tomography-guided pars block are valuable preoperative tools to identify the symptomatic level in such a case.

  4. Perturbations of vortex ring pairs

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.; Horn, Bart; Parikh, Sarthak

    2016-02-01

    We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  5. Differential refractive index sensor based on photonic molecules and defect cavities.

    PubMed

    Andueza, Ángel; Pérez-Conde, Jesús; Sevilla, Joaquín

    2016-08-01

    We present a novel differential refractive index sensor prototype based on a matrix of photonic molecules (PM) of soda-lime glass cylinders (εc = 4.5) and two defect cavities. The measured and simulated spectra in the microwave range (8-12 GHz) show a wide photonic stop band with two localized states: the reference state, bound to a decagonal ring of cylinders and the sensing state, bound to the defect cavities. The defect mode is very sensitive to the permittivity of the material inserted in the cavity while the state in the PM remains unperturbed. We find that the response of the sensor is linear. These results can be extrapolated to the visible range due to scale invariance of Maxwell equations. PMID:27505844

  6. Dimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes.

    PubMed

    Dalm, Daniela; Galaz-Montoya, Jesus G; Miller, Jaimy L; Grushin, Kirill; Villalobos, Alex; Koyfman, Alexey Y; Schmid, Michael F; Stoilova-McPhie, Svetla

    2015-01-01

    Membrane-bound Factor VIII (FVIII) has a critical function in blood coagulation as the pro-cofactor to the serine-protease Factor IXa (FIXa) in the FVIIIa-FIXa complex assembled on the activated platelet membrane. Defects or deficiency of FVIII cause Hemophilia A, a mild to severe bleeding disorder. Despite existing crystal structures for FVIII, its membrane-bound organization has not been resolved. Here we present the dimeric FVIII membrane-bound structure when bound to lipid nanotubes, as determined by cryo-electron microscopy. By combining the structural information obtained from helical reconstruction and single particle subtomogram averaging at intermediate resolution (15-20 Å), we show unambiguously that FVIII forms dimers on lipid nanotubes. We also demonstrate that the organization of the FVIII membrane-bound domains is consistently different from the crystal structure in solution. The presented results are a critical step towards understanding the mechanism of the FVIIIa-FIXa complex assembly on the activated platelet surface in the propagation phase of blood coagulation.

  7. Dimeric Organization of Blood Coagulation Factor VIII bound to Lipid Nanotubes

    PubMed Central

    Dalm, Daniela; Galaz-Montoya, Jesus G.; Miller, Jaimy L.; Grushin, Kirill; Villalobos, Alex; Koyfman, Alexey Y.; Schmid, Michael F.; Stoilova-McPhie, Svetla

    2015-01-01

    Membrane-bound Factor VIII (FVIII) has a critical function in blood coagulation as the pro-cofactor to the serine-protease Factor IXa (FIXa) in the FVIIIa-FIXa complex assembled on the activated platelet membrane. Defects or deficiency of FVIII cause Hemophilia A, a mild to severe bleeding disorder. Despite existing crystal structures for FVIII, its membrane-bound organization has not been resolved. Here we present the dimeric FVIII membrane-bound structure when bound to lipid nanotubes, as determined by cryo-electron microscopy. By combining the structural information obtained from helical reconstruction and single particle subtomogram averaging at intermediate resolution (15-20 Å), we show unambiguously that FVIII forms dimers on lipid nanotubes. We also demonstrate that the organization of the FVIII membrane-bound domains is consistently different from the crystal structure in solution. The presented results are a critical step towards understanding the mechanism of the FVIIIa-FIXa complex assembly on the activated platelet surface in the propagation phase of blood coagulation. PMID:26082135

  8. Model of defect reactions and the influence of clustering in pulse-neutron-irradiated Si

    SciTech Connect

    Myers, S. M.; Cooper, P. J.; Wampler, W. R.

    2008-08-15

    Transient reactions among irradiation defects, dopants, impurities, and carriers in pulse-neutron-irradiated Si were modeled taking into account the clustering of the primal defects in recoil cascades. Continuum equations describing the diffusion, field drift, and reactions of relevant species were numerically solved for a submicrometer spherical volume, within which the starting radial distributions of defects could be varied in accord with the degree of clustering. The radial profiles corresponding to neutron irradiation were chosen through pair-correlation-function analysis of vacancy and interstitial distributions obtained from the binary-collision code MARLOWE, using a spectrum of primary recoil energies computed for a fast-burst fission reactor. Model predictions of transient behavior were compared with a variety of experimental results from irradiated bulk Si, solar cells, and bipolar-junction transistors. The influence of defect clustering during neutron bombardment was further distinguished through contrast with electron irradiation, where the primal point defects are more uniformly dispersed.

  9. Te-defect interaction in GaSb: donor-vacancy pair or DX-center?

    NASA Astrophysics Data System (ADS)

    Wende, L.; Sielemann, R.; Weyer, G.

    1999-09-01

    We have studied 119Te donor atoms in GaSb incorporated by a recoil implantation technique by applying emission Mössbauer spectroscopy on 119Sn. Since 119Te decays via the intermediate 119Sb the thermal stability of the microscopic environment of the implanted Te atoms can be probed either in the Te state or, after transmutation, in the Sb state. It is found that part of the probes is situated in a strongly distorted configuration which cannot be annealed as long as the probes are Te. After transmutation to Sb the distorted state anneals at 405 K. From these results we conclude that the distorted configuration is implantation induced (very likely a probe-vacancy association) stabilized by the Te chemistry and not a DX center which should anneal with a much lower barrier.

  10. 2010 Defects in Semiconductors GRC

    SciTech Connect

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  11. Serine biosynthesis and transport defects.

    PubMed

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. PMID:27161889

  12. Biomaterials in periodontal osseous defects

    PubMed Central

    Lal, Nand; Dixit, Jaya

    2012-01-01

    Introduction Osseous defects in periodontal diseases require osseous grafts and guided tissue regeneration (GTR) using barrier membranes. The present study was undertaken with the objectives to clinically evaluate the osteogenic potential of hydroxyapatite (HA), cissus quadrangularis (CQ), and oxidized cellulose membrane (OCM) and compare with normal bone healing. Materials and Methods Twenty subjects with periodontitis in the age group ranging from 20 years to 40 years were selected from our outpatient department on the basis of presence of deep periodontal pockets, clinical probing depth ≥5 mm, vertical osseous defects obvious on radiograph and two- or three-walled involvement seen on surgical exposure. Infrabony defects were randomly divided into four groups on the basis of treatment to be executed, such that each group comprised 5 defects. Group I was control, II received HA, III received CQ and IV received OCM. Probing depth and attachment level were measured at regular months after surgery. Defects were re-exposed using crevicular incisions at 6 months. Results There was gradual reduction in the mean probing pocket depth in all groups, but highly significant in the site treated with HA. Gain in attachment level was higher in sites treated with HA, 3.2 mm at 6 months. Conclusion Hydroxyapatite and OCM showed good reduction in pocket depth, attachment level gain and osseous defect fill. Further study should be conducted by using a combination of HA and OCM in periodontal osseous defects with growth factors and stem cells. PMID:25756030

  13. Error bounds from extra precise iterative refinement

    SciTech Connect

    Demmel, James; Hida, Yozo; Kahan, William; Li, Xiaoye S.; Mukherjee, Soni; Riedy, E. Jason

    2005-02-07

    We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub w}, the computed normwise (resp. componentwise) error bound is at most 2 max{l_brace}10,{radical}n{r_brace} {center_dot} {var_epsilon}{sub w}, and indeed bounds the true error. Here, n is the matrix dimension and w is single precision roundoff error. For worse conditioned problems, we get similarly small correct error bounds in over 89.4% of cases.

  14. Defect studies in low-temperature-grown GaAs

    SciTech Connect

    Bliss, D.E.

    1992-11-01

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies V[sub Ga]. The neutral AsGa-related defects were measured by infrared absorption at 1[mu]m. Gallium vacancies, V[sub Ga], was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 10[sup 19] cm[sup [minus]3] Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more As[sub Ga] in the layer. As As[sub Ga] increases, photoquenchable As[sub Ga] decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral As[sub Ga] content around 500C, similar to irradiation damaged and plastically deformed Ga[sub As], as opposed to bulk grown GaAs in which As[sub Ga]-related defects are stable up to 1100C. The lower temperature defect removal is due to V[sub Ga] enhanced diffusion of As[sub Ga] to As precipitates. The supersaturated V[sub GA] and also decreases during annealing. Annealing kinetics for As[sub Ga]-related defects gives 2.0 [plus minus] 0.3 eV and 1.5 [plus minus] 0.3 eV migration enthalpies for the As[sub Ga] and V[sub Ga]. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable As[sub Ga]-related defects anneal with an activation energy of 1.1 [plus minus] 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of As[sub Ga]-Be[sub Ga] pairs. Si donors can only be partially activated.

  15. Defect studies in low-temperature-grown GaAs

    SciTech Connect

    Bliss, D.E.

    1992-11-01

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies V{sub Ga}. The neutral AsGa-related defects were measured by infrared absorption at 1{mu}m. Gallium vacancies, V{sub Ga}, was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 10{sup 19} cm{sup {minus}3} Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more As{sub Ga} in the layer. As As{sub Ga} increases, photoquenchable As{sub Ga} decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral As{sub Ga} content around 500C, similar to irradiation damaged and plastically deformed Ga{sub As}, as opposed to bulk grown GaAs in which As{sub Ga}-related defects are stable up to 1100C. The lower temperature defect removal is due to V{sub Ga} enhanced diffusion of As{sub Ga} to As precipitates. The supersaturated V{sub GA} and also decreases during annealing. Annealing kinetics for As{sub Ga}-related defects gives 2.0 {plus_minus} 0.3 eV and 1.5 {plus_minus} 0.3 eV migration enthalpies for the As{sub Ga} and V{sub Ga}. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable As{sub Ga}-related defects anneal with an activation energy of 1.1 {plus_minus} 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of As{sub Ga}-Be{sub Ga} pairs. Si donors can only be partially activated.

  16. Bounds Estimation Via Regression with Asymmetric Cost Functions

    NASA Technical Reports Server (NTRS)

    DeCoste, D.

    1997-01-01

    This paper addresses a significant but mostly-neglected class of problems that we call bounds estimation. This includes learning empirical best-case and worst-case algorithmic complexity bounds and red-line bounds on sensor data.

  17. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    SciTech Connect

    Wampler, William R.; Myers, Samuel M.

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  18. A defect stream function formulation for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Wahls, Richard A.

    1990-01-01

    Progress to date on the development of a method for turbulent, wall-bounded flow which uses the defect stream function formulation in the outer layer and an analytic law of the wall and wake formulation in the inner region is reviewed. This two-formulation approach avoids the need to computationally resolve the high-gradient inner layer. One of the most appealing recent developments is the transformation of the compressible governing equation for the defect stream function into a linear, second-order differential equation which has analytic solutions for many problems of practical interest. Numerical and analytic results for incompressible and compressible flows are shown to be in excellent agreement with experimental results. In this paper the two-formulation approach is applied to primitive-variable computations. Excellent comparisons with experiment are presented for two compressible flat plate flows.

  19. Self healing of defected graphene

    SciTech Connect

    Chen, Jianhui; Shi, Tuwan; Cai, Tuocheng; Wu, Xiaosong; Yu, Dapeng; Xu, Tao; Sun, Litao

    2013-03-11

    For electronics applications, defects in graphene are usually undesirable because of their ability to scatter charge carriers, thereby reduce the carrier mobility. It would be extremely useful if the damage can be repaired. In this work, we employ Raman spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy, and electrical measurements to study defects in graphene introduced by argon plasma bombardment. We have found that majority of these defects can be cured by a simple thermal annealing process. The self-healing is attributed to recombination of mobile carbon adatoms with vacancies. With increasing level of plasma induced damage, the self-healing becomes less effective.

  20. Defect dynamics in active nematics

    PubMed Central

    Giomi, Luca; Bowick, Mark J; Mishra, Prashant; Sknepnek, Rastko; Cristina Marchetti, M

    2014-01-01

    Topological defects are distinctive signatures of liquid crystals. They profoundly affect the viscoelastic behaviour of the fluid by constraining the orientational structure in a way that inevitably requires global changes not achievable with any set of local deformations. In active nematic liquid crystals, topological defects not only dictate the global structure of the director, but also act as local sources of motion, behaving as self-propelled particles. In this article, we present a detailed analytical and numerical study of the mechanics of topological defects in active nematic liquid crystals. PMID:25332389

  1. Lifetimes of Heavy-Rydberg Ion-Pair States Formed through Rydberg Electron Transfer

    SciTech Connect

    Cannon, M.; Wang, C. H.; Dunning, F. B.; Reinhold, Carlos O

    2010-01-01

    The lifetimes of K{sup +}-Cl{sup -}, K{sup +}-CN{sup -}, and K{sup +}-SF{sub 6}{sup -} heavy-Rydberg ion-pair states produced through Rydberg electron transfer reactions are measured directly as a function of binding energy using electric field induced detachment and the ion-pair decay channels discussed. The data are interpreted using a Monte Carlo collision code that models the detailed kinematics of electron transfer reactions. The lifetimes of K{sup +}-Cl{sup -} ion-pair states are observed to be very long, >100 {micro}s, and independent of binding energy. The lifetimes of strongly bound (>30 meV) K{sup +}-CN{sup -} ion pairs are found to be similarly long but begin to decrease markedly as the binding energy is reduced below this value. This behavior is attributed to conversion of rotational energy in the CN{sup -} ion into translational energy of the ion pair. No long-lived K{sup +}-SF{sub 6}{sup -} ion pairs are observed, their lifetimes decreasing with increasing binding energy. This behavior suggests that ion-pair loss is associated with mutual neutralization as a result of charge transfer.

  2. Care and Treatment for Congenital Heart Defects

    MedlinePlus

    ... Physical Activity Recommendations for Heart Health • Tools & Resources Web Booklets on Congenital Heart Defects These online publications ... to you or your child’s defect and concerns. Web Booklet: Adults With Congenital Heart Defects Web Booklet: ...

  3. Effects of defects in composite structures

    NASA Technical Reports Server (NTRS)

    Sendeckyj, G. P.

    1983-01-01

    The effect of defects in composite structures is addressed. Defects in laminates such as wrinkles, foreign particles, scratches and breaks are discussed. Effects of plygap plywaviness and machining defects are also studied.

  4. Folic acid and birth defect prevention

    MedlinePlus

    ... of certain birth defects. These include spina bifida, anencephaly, and some heart defects. Experts recommend women who ... Women who have had a baby with a neural tube defect may need a higher dose of folic acid. ...

  5. Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations

    SciTech Connect

    Vidya, R.; Ravindran, P.; Fjellvaag, H.; Svensson, B. G.; Monakhov, E.; Ganchenkova, M.; Nieminen, R. M.

    2011-01-15

    Formation energies of various intrinsic defects and defect complexes in ZnO have been calculated using a density-functional-theory-based pseudopotential all-electron method. The various defects considered are oxygen vacancy (V{sub O}), zinc vacancy (V{sub Zn}), oxygen at an interstitial site (O{sub i}), Zn at an interstitial site (Zn{sub i}), Zn at V{sub O} (Zn{sub O}), O at V{sub Zn}(O{sub Zn}), and an antisite pair (combination of the preceding two defects). In addition, defect complexes like (V{sub O}+Zn{sub i}) and Zn-vacancy clusters are studied. The Schokkty pair (V{sub O}+V{sub Zn}) and Frenkel pairs [(V{sub O}+O{sub i}) and (V{sub Zn}+Zn{sub i})] are considered theoretically for the first time. Upon comparing the formation energies of these defects, we find that V{sub O} would be the dominant intrinsic defect under both Zn-rich and O-rich conditions and it is a deep double donor. Both Zn{sub O} and Zn{sub i} are found to be shallow donors. The low formation energy of donor-type intrinsic defects could lead to difficulty in achieving p-type conductivity in ZnO. Defect complexes have charge transitions deep inside the band gap. The red, yellow, and green photoluminescence peaks of undoped samples can be assigned to some of the defect complexes considered. It is believed that the red luminescence originates from an electronic transition in V{sub O}, but we find that it can originate from the antisite Zn{sub O} defect. Charge density and electron-localization function analyses have been used to understand the effect of these defects on the ZnO lattice. The electronic structure of ZnO with intrinsic defects has been studied using density-of-states and electronic band structure plots. The acceptor levels introduced by V{sub Zn} are relatively localized, making it difficult to achieve p-type conductivity with sufficient hole mobility.

  6. Conformational phases of membrane bound cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  7. Revisiting cosmological bounds on radiative neutrino lifetime

    SciTech Connect

    Mirizzi, Alessandro; Montanino, Daniele; Serpico, Pasquale D.

    2007-09-01

    Neutrino oscillation experiments and direct bounds on absolute masses constrain neutrino mass differences to fall into the microwave energy range, for most of the allowed parameter space. As a consequence of these recent phenomenological advances, older constraints on radiative neutrino decays based on diffuse background radiations and assuming strongly hierarchical masses in the eV range are now outdated. We thus derive new bounds on the radiative neutrino lifetime using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board the Cosmic Background Explorer. The lower bound on the lifetime is between a fewx10{sup 19} s and {approx}5x10{sup 20} s, depending on the neutrino mass ordering and on the absolute mass scale. However, due to phase space limitations, the upper bound in terms of the effective magnetic moment mediating the decay is not better than {approx}10{sup -8} Bohr magnetons. We also comment about possible improvements of these limits, by means of recent diffuse infrared photon background data. We compare these bounds with preexisting limits coming from laboratory or astrophysical arguments. We emphasize the complementarity of our results with others available in the literature.

  8. Computations of entropy bounds: Multidimensional geometric methods

    SciTech Connect

    Makaruk, H.E.

    1998-02-01

    The entropy bounds for constructive upper bound on the needed number-of-bits for solving a dichotomy is represented by the quotient of two multidimensional solid volumes. For minimization of this upper bound exact calculation of the volume of this quotient is needed. Three methods for exact computing of the volume of a given nD volume are presented: (1) general method for calculation any nD volume by slicing it into volumes of decreasing dimension is presented; (2) a method applying appropriate curvilinear coordinate system is described for volume bounded by symmetrical curvilinear hypersurfaces (spheres, cones, hyperboloids, ellipsoids, cylinders, etc.); and (3) an algorithm for dividing any nD complex into simplices and computing of the volume of the simplices is presented, supplemented by a general formula for calculation of volume of an nD simplex. These mathematical methods enable exact calculation of volume of any complicated multidimensional solids. The methods allow for the calculation of the minimal volume and lead to tighter bounds on the needed number-of-bits.

  9. Thermalization Time Bounds for Pauli Stabilizer Hamiltonians

    NASA Astrophysics Data System (ADS)

    Temme, Kristan

    2016-09-01

    We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))} , where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.

  10. Neutral versus charged defect patterns in curved crystals.

    PubMed

    Azadi, Amir; Grason, Gregory M

    2016-07-01

    Characterizing the complex spectrum of topological defects in ground states of curved crystals is a long-standing problem with wide implications, from the mathematical Thomson problem to diverse physical realizations, including fullerenes and particle-coated droplets. While the excess number of "topologically charged" fivefold disclinations in a closed, spherical crystal is fixed, here we study the elementary transition from defect-free, flat crystals to curved crystals possessing an excess of "charged" disclinations in their bulk. Specifically, we consider the impact of topologically neutral patterns of defects-in the form of multidislocation chains or "scars" stable for small lattice spacing-on the transition from neutral to charged ground-state patterns of a crystalline cap bound to a spherical surface. Based on the asymptotic theory of caps in continuum limit of vanishing lattice spacing, we derive the morphological phase diagram of ground-state defect patterns, spanned by surface coverage of the sphere and forces at the cap edge. For the singular limit of zero edge forces, we find that scars reduce (by half) the threshold surface coverage for excess disclinations. Even more significant, scars flatten the geometric dependence of excess disinclination number on Gaussian curvature, leading to a transition between stable "charged" and "neutral" patterns that is, instead, critically sensitive to the compressive vs tensile nature of boundary forces on the cap. PMID:27575209

  11. Report on Pairing-based Cryptography.

    PubMed

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.

  12. Report on Pairing-based Cryptography

    PubMed Central

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST’s position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435

  13. Report on Pairing-based Cryptography.

    PubMed

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed. PMID:26958435

  14. FIR statistics of paired galaxies

    NASA Technical Reports Server (NTRS)

    Sulentic, Jack W.

    1990-01-01

    Much progress has been made in understanding the effects of interaction on galaxies (see reviews in this volume by Heckman and Kennicutt). Evidence for enhanced emission from galaxies in pairs first emerged in the radio (Sulentic 1976) and optical (Larson and Tinsley 1978) domains. Results in the far infrared (FIR) lagged behind until the advent of the Infrared Astronomy Satellite (IRAS). The last five years have seen numerous FIR studies of optical and IR selected samples of interacting galaxies (e.g., Cutri and McAlary 1985; Joseph and Wright 1985; Kennicutt et al. 1987; Haynes and Herter 1988). Despite all of this work, there are still contradictory ideas about the level and, even, the reality of an FIR enhancement in interacting galaxies. Much of the confusion originates in differences between the galaxy samples that were studied (i.e., optical morphology and redshift coverage). Here, the authors report on a study of the FIR detection properties for a large sample of interacting galaxies and a matching control sample. They focus on the distance independent detection fraction (DF) statistics of the sample. The results prove useful in interpreting the previously published work. A clarification of the phenomenology provides valuable clues about the physics of the FIR enhancement in galaxies.

  15. Congenital Heart Defects (For Parents)

    MedlinePlus

    ... in utero. previous continue Common Heart Defects (cont.) Patent Ductus Arteriosus (PDA) The ductus arteriosus is a ... newborn's lungs. PDA is common in premature babies . Patent Foramen Ovale (PFO) The patent foramen ovale is ...

  16. Defective Autophagy Initiates Malignant Transformation.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kroemer, Guido

    2016-05-19

    In this issue of Molecular Cell, Park et al. (2016) elegantly demonstrate that a partial defect in autophagy supports malignant transformation as it favors the production of genotoxic reactive oxygen species by mitochondria.

  17. Facts about Ventricular Septal Defect

    MedlinePlus

    ... The size of the ventricular septal defect will influence what symptoms, if any, are present, and whether ... this image. Close Information For... Media Policy Makers Language: English Español (Spanish) File Formats Help: How do ...

  18. Bound water in Kevlar 49 fibers

    SciTech Connect

    Garza, R.G.; Pruneda, C.O.; Morgan, R.J.

    1981-04-01

    From elemental analyses, thermogravimetric-mass spectroscopy studies and re-evaluation of previous water diffusion studies in Kevlar 49 fibers it is concluded that these fibers can contain two types of sorbed moisture. The fibers can absorb up to approx. 6 wt % loosely bound water with an activation energy for outgassing by desorption of 6 kcal/mole. This loosely bound water is a direct result of the presence of Na/sub 2/SO/sub 4/ impurities and the perturbations they induce on the packing of the rod-like poly (p-phenylene terephthalamide) macromolecules. Kevlar 49 fibers also inherently contain up to 30 wt % additional water which is tightly bound within the crystal lattice. This water exhibits an activation energy for outgassing by diffusion of approx. 40 kcal/mole and is only evolved from the fiber in significant quantities at t > 350/sup 0/C over a period of hours.

  19. Bounds on Neutrino Non-Standard Interactions

    SciTech Connect

    Fernandez-Martinez, Enrique

    2010-03-30

    We review the present model independent bounds on neutrino non-standard interactions both at neutrino production and detection and in its interactions with matter. For matter non-standard interactions the direct bounds are rather weak. However, matter non-standard interactions are related by gauge invariance to the production and detection ones as well as to flavour changing processes involving charged leptons. Taking into account these relations much stronger bounds of at least O(10{sup -2}) can be derived unless significant fine tunings are implemented. Testing non-standard interactions at this level at future neutrino oscillation facilities is challenging but still feasible at very ambitious proposals such as the Neutrino Factory.

  20. Weakly bound atomic trimers in ultracold traps

    SciTech Connect

    Yamashita, M. T.; Frederico, T.; Tomio, Lauro; Delfino, A.

    2003-09-01

    The experimental three-atom recombination coefficients of the atomic states {sup 23}Na|F=1,m{sub F}=-1>, {sup 87}Rb|F=1,m{sub F}=-1>, and {sup 85}Rb|F=2,m{sub F}=-2>, together with the corresponding two-body scattering lengths, allow predictions of the trimer bound-state energies for such systems in a trap. The recombination parameter is given as a function of the weakly bound trimer energies, which are in the interval 1bound state to our prediction, in the case of {sup 85}Rb|F=2,m{sub F}=-2>, for a particular trap, is shown to be relatively small.

  1. Experimental bound entanglement through a Pauli channel

    PubMed Central

    Amselem, Elias; Sadiq, Muhammad; Bourennane, Mohamed

    2013-01-01

    Understanding the characteristics of a quantum systems when affected by noise is one of the biggest challenges for quantum technologies. The general Pauli error channel is an important lossless channel for quantum communication. In this work we consider the effects of a Pauli channel on a pure four-qubit state and simulate the Pauli channel experimentally by studying the action on polarization encoded entangled photons. When the noise channel acting on the photons is correlated, a set spanned by four orthogonal bound entangled states can be generated. We study this interesting case experimentally and demonstrate that products of Bell states can be brought into a bound entangled regime. We find states in the set of bound entangled states which experimentally violate the CHSH inequality while still possessing a positive partial transpose. PMID:23752651

  2. Laboratory bounds on electron Lorentz violation

    SciTech Connect

    Altschul, Brett

    2010-07-01

    Violations of Lorentz boost symmetry in the electron and photon sectors can be constrained by studying several different high-energy phenomenon. Although they may not lead to the strongest bounds numerically, measurements made in terrestrial laboratories produce the most reliable results. Laboratory bounds can be based on observations of synchrotron radiation, as well as the observed absences of vacuum Cerenkov radiation (e{sup {+-}{yields}e{+-}+{gamma}}) and photon decay ({gamma}{yields}e{sup +}+e{sup -}). Using measurements of synchrotron energy losses at LEP and the survival of TeV photons, we place new bounds on the three electron Lorentz-violation coefficients c{sub (TJ)}, at the 3x10{sup -13} to 6x10{sup -15} levels.

  3. Convex Lower Bounds for Free Energy Minimization

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan

    We construct lower bounds on free energy with convex relaxations from the nonlinear minimization over probabilities to linear programs over expectation values. Finite-temperature expectation values are further resolved into distributions over energy. A superset of valid expectation values is delineated by an incomplete set of linear constraints. Free energy bounds can be improved systematically by adding constraints, which also increases their computational cost. We compute several free energy bounds of increasing accuracy for the triangular-lattice Ising model to assess the utility of this method. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Bound States in Boson Impurity Models

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Wu, Ying-Hai; González-Tudela, A.; Cirac, J. I.

    2016-04-01

    The formation of bound states involving multiple particles underlies many interesting quantum physical phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite number of such states for some boson impurity models. They describe free bosons coupled to an impurity and include some of the most representative models in quantum optics. We also propose a family of wave functions to describe the bound states and verify that it accurately characterizes all parameter regimes by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling relations of physical quantities, such as the ground-state energy and localization length, and find a nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.

  5. A restoration method for distorted image scanned from a bound book

    NASA Astrophysics Data System (ADS)

    Ohk, HyungSoo; Seo, HyunSeok; Kang, KiMin; Kim, Sangho; Choi, DonChul

    2011-01-01

    When a bound document such as a book is scanned or copied with a flat-bed scanner, there are two kinds of defects in the scanned image; the geometric and photometric distortion. The root cause of the defects is the imperfect contact between the book to be scanned and the scanner glass plate. The long gap between the book center and the glass plate causes the optical path from the surface of the book and the imaging unit(CCD/CIS) to be different from the optimal condition. In this paper, we propose a method for restoring bound document scan images without any additional information or sensor. We correct the bound document images based on the estimation of the boundary feature and background profile. Boundary Feature is obtained after calculating and analyzing the Minimum Boundary Rectangle which encloses the whole foreground contents with minimum size and the extracted feature is used for correcting geometric distortion; de-skew, warping, and page separation. Background profile is estimated from the gradient map and it is utilized to correct photometric distortion; exposure problem. Experimental results show effectiveness of our proposed method.

  6. Stable line defects in silicene

    NASA Astrophysics Data System (ADS)

    Ghosh, Dibyajyoti; Parida, Prakash; Pati, Swapan K.

    2015-11-01

    Line defects in two-dimensional (2D) materials greatly modulate various properties of their pristine form. Using ab initio molecular dynamics (AIMD) simulations, we investigate the structural reconstructions of different kinds of grain boundaries in the silicene sheets. It is evident that depending upon the presence of silicon adatoms and edge shape of grain boundaries (i.e., armchair or zigzag), stable extended line defects (ELDs) can be introduced in a controlled way. Further studies show the stability of these line-defects in silicene, grown on Ag(111) surface at room-temperature. Importantly, unlike most of the 2D sheet materials such as graphene and hexagonal boron nitride, 5-5-8 line defects modify the nonmagnetic semimetallic pristine silicene sheet to spin-polarized metal. As ferromagnetically ordered magnetic moments remain strongly localized at the line defect, a one-dimensional spin channel gets created in silicene. Interestingly, these spin channels are quite stable because, unlike the edge of nanoribbons, structural reconstruction or contamination cannot destroy the ordering of magnetic moments here. Zigzag silicene nanoribbons with a 5-5-8 line defect also exhibit various interesting electronic and magnetic properties depending upon their width as well as the nature of the magnetic coupling between edge and defect spin states. Upon incorporation of other ELDs, such as 4-4-4 and 4-8 defects, 2D sheets and nanoribbons of silicene show a nonmagnetic metallic or semiconducting ground state. Highlighting the controlled formation of ELDs and consequent emergence of technologically important properties in silicene, we propose new routes to realize silicene-based nanoelectronic and spintronic devices.

  7. Weak and electromagnetic mechanisms of neutrino-pair photoproduction in a strongly magnetized electron gas

    SciTech Connect

    Borisov, A. V.; Kerimov, B. K.; Sizin, P. E.

    2012-11-15

    Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.

  8. Bounds on the minimum number of recombination events in a sample history.

    PubMed Central

    Myers, Simon R; Griffiths, Robert C

    2003-01-01

    Recombination is an important evolutionary factor in many organisms, including humans, and understanding its effects is an important task facing geneticists. Detecting past recombination events is thus important; this article introduces statistics that give a lower bound on the number of recombination events in the history of a sample, on the basis of the patterns of variation in the sample DNA. Such lower bounds are appropriate, since many recombination events in the history are typically undetectable, so the true number of historical recombinations is unobtainable. The statistics can be calculated quickly by computer and improve upon the earlier bound of Hudson and Kaplan 1985. A method is developed to combine bounds on local regions in the data to produce more powerful improved bounds. The method is flexible to different models of recombination occurrence. The approach gives recombination event bounds between all pairs of sites, to help identify regions with more detectable recombinations, and these bounds can be viewed graphically. Under coalescent simulations, there is a substantial improvement over the earlier method (of up to a factor of 2) in the expected number of recombination events detected by one of the new minima, across a wide range of parameter values. The method is applied to data from a region within the lipoprotein lipase gene and the amount of detected recombination is substantially increased. Further, there is strong clustering of detected recombination events in an area near the center of the region. A program implementing these statistics, which was used for this article, is available from http://www.stats.ox.ac.uk/mathgen/programs.html. PMID:12586723

  9. 77 FR 3751 - Extension of Deadlines; Upward Bound Program (Regular Upward Bound (UB))

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Regulations is available via the Federal Digital System at: www.gpo.gov/fdsys . At this site you can view this... Bound Program (Regular Upward Bound (UB)) notice on December 19, 2011 (76 FR 78621). DATES: Deadline for... notice in the Federal Register (76 FR 78621) inviting applications for new awards for fiscal year...

  10. Career Development and Personal Functioning Differences between Work-Bound and Non-Work Bound Students

    ERIC Educational Resources Information Center

    Creed, Peter A.; Patton, Wendy; Hood, Michelle

    2010-01-01

    We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parent education, school achievement), and tested differences among work-bound, college-bound and…

  11. Core hysteresis in nematic defects

    NASA Astrophysics Data System (ADS)

    Kralj, Samo; Virga, Epifanio G.

    2002-08-01

    We study field-induced transformations in the biaxial core of a nematic disclination with strength m=1, employing the Landau-de Gennes order tensor parameter Q. We first consider the transition from the defectless escaped radial structure into the structure hosting a line defect with a negative uniaxial order parameter along the axis of a cylinder of radius R. The critical field of the transition monotonically increases with R and asymptotically approaches a value corresponding to ξb/ξf~0.3, where the correlation lengths ξb and ξf are related to the biaxial order and the external field, respectively. Then, in the same geometry, we focus on the line defect structure with a positive uniaxial ordering along the axis, surrounded by the uniaxial sheath, the uniaxial cylinder of radius ξu with negative order parameter and director in the transverse direction. We study the hysteresis in the position of the uniaxial sheath upon increasing and decreasing the field strength. In general, two qualitatively different solutions exist, corresponding to the uniaxial sheath located close to the defect symmetry axis or close to the cylinder wall. This latter solution exists only for strong enough anchorings. The uniaxial sheath is for a line defect what the uniaxial ring is for a point defect: by resorting to an approximate analytic estimate, we show that essentially the same hysteresis exhibited by the uniaxial sheath is expected to occur at the uniaxial ring in the core structure of a point defect.

  12. Topological defects from the multiverse

    SciTech Connect

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-28

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  13. Topological defects from the multiverse

    SciTech Connect

    Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  14. CORRELATION ANALYSIS OF HYPERSPECTRAL IMAGERY FOR MULTISPECTRAL WAVELENGTH SELECTION FOR DETECTION OF DEFECTS ON APPLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible/near-infrared reflectance spectra extracted from hyperspectral images of apples were used to determine wavelength pairs that can be used to distinguish defect regions from normal regions on the apple surface. The optimal wavelengths were selected based on correlation analysis between the wa...

  15. Generalized mutual information and Tsirelson's bound

    SciTech Connect

    Wakakuwa, Eyuri; Murao, Mio

    2014-12-04

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the 'no-supersignalling condition' (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  16. Proof of a quantum Bousso bound

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Casini, Horacio; Fisher, Zachary; Maldacena, Juan

    2014-08-01

    We prove the generalized covariant entropy bound, ΔS≤(A-A')/4Gℏ, for light-sheets with initial area A and final area A'. The entropy ΔS is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.

  17. Upper bounds on the photon mass

    SciTech Connect

    Accioly, Antonio; Helayeel-Neto, Jose; Scatena, Eslley

    2010-09-15

    The effects of a nonzero photon rest mass can be incorporated into electromagnetism in a simple way using the Proca equations. In this vein, two interesting implications regarding the possible existence of a massive photon in nature, i.e., tiny alterations in the known values of both the anomalous magnetic moment of the electron and the gravitational deflection of electromagnetic radiation, are utilized to set upper limits on its mass. The bounds obtained are not as stringent as those recently found; nonetheless, they are comparable to other existing bounds and bring new elements to the issue of restricting the photon mass.

  18. NN*(1440) quasi-bound states

    SciTech Connect

    Zhao Lu; Zou Bingsong; Shen Pengnian; Zhang Yingjie

    2011-10-21

    Inspired by a recent observation of a narrow resonance-like structure around 2360 MeV in the pn {yields} d{pi}{sup 0}{pi}{sup 0} cross section, we investigate the possibility of forming NN*(1440) quasi-bound state by meson exchange potential. With parameters of the t-channel {pi}, {sigma}, {rho} and {omega} exchanges determined by relevant NN scattering and N*(1440) decay processes, it is found that a NN*(1440) quasi-bound state with the same quantum numbers as the deuteron can be formed with binding energy about 20 MeV.

  19. Learning within bounds and dream sleep

    NASA Astrophysics Data System (ADS)

    Geszti, T.; Pazmandi, F.

    1987-12-01

    In a bounded-synapses version of Hopfield's model (1984) for neural networks the quasienergy of a given memory, which is approximately equal to the depth of the corresponding energy well is calculated exactly by treating the change of a synaptic strength on learning as a random walk within bounds. Attractors corresponding to stored memories are found to be considerably flattened before serious retrieval errors arise. This allows dream sleep to be interpreted as random recall and relearning of fresh strong memories, in order to stack them on top of weak incidental memory imprints of a day.

  20. A note on BPS vortex bound states

    NASA Astrophysics Data System (ADS)

    Alonso-Izquierdo, A.; Garcia Fuertes, W.; Mateos Guilarte, J.

    2016-02-01

    In this note we investigate bound states, where scalar and vector bosons are trapped by BPS vortices in the Abelian Higgs model with a critical ratio of the couplings. A class of internal modes of fluctuation around cylindrically symmetric BPS vortices is characterized mathematically, analyzing the spectrum of the second-order fluctuation operator when the Higgs and vector boson masses are equal. A few of these bound states with low values of quantized magnetic flux are described fully, and their main properties are discussed.

  1. J/{Psi}-nuclear bound states

    SciTech Connect

    Tsushima, K.; Thomas, A. W.; Lu, D. H.; Krein, G.

    2011-06-15

    J/{Psi}-nuclear bound state energies are calculated for a range of nuclei by solving the Proca (Klein-Gordon) equation. Critical input for the calculations, namely the medium-modified D and D* meson masses, as well as the nucleon density distributions in nuclei, are obtained from the quark-meson coupling model. The attractive potential originates from the D and D* meson loops in the J/{Psi} self-energy in the nuclear medium. It appears that J/{Psi}-nuclear bound states should produce a clear experimental signature provided that the J/{Psi} meson is produced in recoilless kinematics.

  2. Quantum Kolmogorov complexity and bounded quantum memory

    SciTech Connect

    Miyadera, Takayuki

    2011-04-15

    The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.

  3. Pair programming in education: a literature review

    NASA Astrophysics Data System (ADS)

    Hanks, Brian; Fitzgerald, Sue; McCauley, Renée; Murphy, Laurie; Zander, Carol

    2011-06-01

    This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in solutions, and improvement in learning outcomes. Moreover, there is some evidence that women, in particular, benefit from pair programming. The literature also provides evidence that the transition from paired to solo programming is easy for students. The greatest challenges for paired students appear to concern scheduling and partner compatibility. This review also considers practical issues such as assigning partners, teaching students to work in pairs, and assessing individual contributions, and concludes with a discussion of open research questions.

  4. Pair production and escape in accretion disks.

    NASA Astrophysics Data System (ADS)

    Meirelles Filho, C.; Liang, E. P.

    It is shown that, in the absence of confining mechanisms, there will be a non-negligible amount of pairs escaping from the inner region of a Comptonized soft photon two-temperature accretion disk, when pair production is not balanced by annihilation. Assuming conditions such that the photons and particles in the disk can be regarded as close to a Wien plasma (Svensson, 1984), the authors calculate the rate of pair escape from the disk for both a situation close to pair balance and a situation with the rate of escape exceeding annihilation. The pairs are assumed to be created by photon-photon processes. Within this model one can account for the 511 keV γ-ray luminosity due to pair annihilation in the ISM, as recently observed in the Einstein source.

  5. Bounding the states of systems with unknown-but-bounded disturbances

    NASA Technical Reports Server (NTRS)

    Tsai, Wei K.; Parlos, Alexander G.; Verghese, George C.

    1990-01-01

    Control systems with hard constraints on certain variables are characterized, in an analytical review of recent investigations based on an unknown-but-bounded description of magnitude uncertainties. Hard-constraint problems typically arise in the design of controllers for potentially hazardous systems such as nuclear power plants. Consideration is given to norm bounds based on matrix measures, extensions of Schweppe's (1968) ellipsoid bounds, and set-theoretic regulator design. The performance of these approaches is evaluated by means of numerical simulations involving a third-order nonlinear steam-boiler model; the results are presented in graphs, and it is found that ellipsoid bounds are tightest in the general case, but that box bounds are even tighter for linear systems with Metzler system matrices.

  6. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  7. EUV mask defect mitigation through pattern placement

    NASA Astrophysics Data System (ADS)

    Burns, John; Abbas, Mansoor

    2010-09-01

    One of the challenges of EUVL is to bring EUV mask blank defect levels to zero. With uncertainty on when defect free masks may be routinely available, we explore a possibility for effectively using defective EUV mask blanks in production with a defect avoidance strategy. The key idea is to position the pattern/layout on the blank where the defects do not impact the final wafer image. Assuming that layout designs contain some non-critical areas in which defects can be safely positioned, it may be possible to align these regions with a given, small set of defect positions mapped from an imperfect mask blank. Using a few representative assortment of current-node, full-chip layout patterns we run multiple trials against real blank defect maps with various defect counts successfully. Our goal is to assess the probabilities that defect avoidance will work as a function of mask blank defect count, and by lithography layer.

  8. Repairing native defects on EUV mask blanks

    NASA Astrophysics Data System (ADS)

    Lawliss, Mark; Gallagher, Emily; Hibbs, Michael; Seki, Kazunori; Isogawa, Takeshi; Robinson, Tod; LeClaire, Jeff

    2014-10-01

    Mask defectivity is a serious problem for all lithographic masks, but especially for EUV masks. Defects in the EUV blank are particularly challenging because their elimination is beyond control of the mask fab. If defects have been identified on a mask blank, patterns can be shifted to place as many blank defects as possible in regions where printing impact will be eliminated or become unimportant. For those defects that cannot be mitigated through pattern shift, repair strategies must be developed. Repairing defects that occur naturally in the EUV blank is challenging because the printability of these defects varies widely. This paper describes some types of native defects commonly found and begins to outline a triage strategy for defects that are identified on the blank. Sample defects best suited to nanomachining repair are treated in detail: repairs are attempted, characterized using mask metrology and then tested for printability. Based on the initial results, the viability of repairing EUV blank native defects is discussed.

  9. Dynamical evolution of comet pairs

    NASA Astrophysics Data System (ADS)

    Sosa, Andrea; Fernández, Julio A.

    2016-10-01

    Some Jupiter family comets in near-Earth orbits (thereafter NEJFCs) show a remarkable similarity in their present orbits, like for instance 169P/NEAT and P/2003 T12 (SOHO), or 252P/LINEAR and P/2016 BA14 (PANSTARRS). By means of numerical integrations we studied the dynamical evolution of these objects. In particular, for each pair of presumably related objects, we are interested in assessing the stability of the orbital parameters for several thousand years, and to find a minimum of their relative spatial distance, coincident with a low value of their relative velocity. For those cases for which we find a well defined minimum of their relative orbital separation, we are trying to reproduce the actual orbit of the hypothetical fragment by modeling a fragmentation of the parent body. Some model parameters are the relative ejection velocity (a few m/s), the orbital point at which the fragmentation could have happened (e.g. perihelion), and the elapsed time since fragmentation. In addition, some possible fragmentation mechanisms, like thermal stress, rotational instability, or collisions, could be explored. According to Fernández J.A and Sosa A. 2015 (Planetary and Space Science 118,pp.14-24), some NEJFCs might come from the outer asteroid belt, and then they would have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud. Therefore, such objects would have a much longer physical lifetime in the near-Earth region, and could become potential candidates to produce visible meteor showers (as for example 169P/NEAT which has been identified as the parent body of the alpha-Capricornid meteoroid stream, according to Jenniskens, P., Vaubaillon, J., 2010 (Astron. J. 139), and Kasuga, T., Balam, D.D., Wiegert, P.A., 2010 (Astron. J. 139).

  10. Lax pairs for deformed Minkowski spacetimes

    NASA Astrophysics Data System (ADS)

    Kyono, Hideki; Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2016-01-01

    We proceed to study Yang-Baxter deformations of 4D Minkowski spacetime based on a conformal embedding. We first revisit a Melvin background and argue a Lax pair by adopting a simple replacement law invented in 1509.00173. This argument enables us to deduce a general expression of Lax pair. Then the anticipated Lax pair is shown to work for arbitrary classical r-matrices with Poincaré generators. As other examples, we present Lax pairs for pp-wave backgrounds, the Hashimoto-Sethi background, the Spradlin-Takayanagi-Volovich background.

  11. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  12. First-principles study of point defects in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2014-11-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  13. College Bound? Make the Right Choices

    ERIC Educational Resources Information Center

    Robinson, Jenna Ashley

    2009-01-01

    "College Bound? Make the Right Choices" is the Pope Center's latest tool for improving colleges and universities "from the bottom up" through better choices. Its purpose is to help high school students and their parents become smarter purchasers of higher education. This booklet by Jenna Ashley Robinson helps young people think through what they…

  14. Nondissipative decoherence bounds on quantum computation

    NASA Astrophysics Data System (ADS)

    Mancini, Stefano; Bonifacio, Rodolfo

    2001-03-01

    We investigate the capabilities of a quantum computer based on cold trapped ions in the presence of nondissipative decoherence. The latter is accounted by using the evolution time as a random variable and then averaging on a properly defined probability distribution. Severe bounds on computational performances are found.

  15. Interaction barriers for light, weakly bound projectiles

    SciTech Connect

    Kolata, J. J.; Aguilera, E. F.

    2009-02-15

    A parametrization of the interaction-barrier model of C. Y. Wong [Phys. Rev. Lett. 31, 766 (1973)] is given for light, weakly bound projectiles and also for the exotic 'halo' nuclei {sup 6}He and {sup 8}B. Comparisons are made with the original parametrization. The extremely anomalous behavior of the interaction radius and barrier curvature for halo nuclei is discussed.

  16. Bioactivity of albumins bound to silver nanoparticles.

    PubMed

    Mariam, Jessy; Sivakami, S; Kothari, D C; Dongre, P M

    2014-06-01

    The last decade has witnessed a tremendous rise in the proposed applications of nanomaterials in the field of medicine due to their very attractive physiochemical properties and novel actions such as the ability to reach previously inaccessible targets such as brain. However biological activity of functional molecules bound to nanoparticles and its physiological consequences is still unclear and hence this area requires immediate attention. The functional properties of Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) bound to silver nanoparticles (~60 nm) have been studied under physiological environment. Esterase activity, binding of drugs (warfarin and ibuprofen), antioxidant activity and copper binding by albumins was evaluated. The catalytic efficiencies of HSA and BSA diminished upon binding to silver nanoparticles. Perturbation in binding of warfarin and ibuprofen, loss of free sulphydryls, antioxidant activity and enhancement of copper binding were observed in albumins bound to nanoparticles. These alterations in functional activity of nanoparticle bound albumins which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.

  17. Bounds for the cumulative conditional expectation function

    SciTech Connect

    Fernández, M.; González-López, V. A.

    2015-03-10

    We introduce the concept of cumulative conditional expectation function. This is a quantity that provides statistical support for making decisions in applied problems. The goal of this paper is to find an analytical expression for upper and lower bounds of this function, assuming stochastic dependence types as being the underlying random structure.

  18. Opinion formation with upper and lower bounds

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Martin, Arnaud

    2015-12-01

    We investigate the opinion formation with upper and lower bounds. We formulate the binary exchange of opinions between two peoples under the second (or political) party using the relativistic inelastic-Boltzmann-Vlasov equation with randomly perturbed motion. In this paper, we discuss the relativistic effects on the opinion formation of peoples from the standpoint of the relativistic kinetic theory.

  19. Mentoring College Bound High School Seniors.

    ERIC Educational Resources Information Center

    Mowrer-Popiel, Elizabeth

    This article examines causes of the high rate of attrition of college freshmen during the first few weeks of school and describes a plan for mentorships between successful college students and college-bound secondary seniors prior to entrance into college. In discussing the challenges facing freshmen, the article suggests that they suffer stress…

  20. Book Selection, Collection Development, and Bounded Rationality.

    ERIC Educational Resources Information Center

    Schwartz, Charles A.

    1989-01-01

    Reviews previously proposed schemes of classical rationality in book selection, describes new approaches to rational choice behavior, and presents a model of book selection based on bounded rationality in a garbage can decision process. The role of tacit knowledge and symbolic content in the selection process are also discussed. (102 references)…

  1. Logistics Handbook, 1976. Colorado Outward Bound School.

    ERIC Educational Resources Information Center

    Colorado Outward Bound School, Denver.

    Logistics, a support mission, is vital to the successful operation of the Colorado Outward Bound School (COBS) courses. Logistics is responsible for purchasing, maintaining, transporting, and replenishing a wide variety of items, i.e., food, mountaineering and camping equipment, medical and other supplies, and vehicles. The Logistics coordinator…

  2. Ternary resin-bound Dynamic Combinatorial Chemistry.

    PubMed

    Gromova, Anna V; Ciszewski, Joseph M; Miller, Benjamin L

    2012-02-18

    The ability to carry out simultaneous orthogonal exchange chemistries has opened new opportunities for increasing the numerical and structural diversity accessible to Dynamic Combinatorial Chemistry. We present proof-of-concept experiments demonstrating this concept is transferrable to resin-bound DCC, facilitating the generation and analysis of libraries with greater structural diversity.

  3. Bound Indoleacetic Acid in Avena Coleoptiles 1

    PubMed Central

    Winter, Alan; Thimann, Kenneth V.

    1966-01-01

    When C14 carboxyl indoleacetic acid (IAA) is transported through Avena coleoptile sections a fraction of the activity becomes bound. The nature of this bound IAA has been investigated. Upon extraction with solvents and chromatography a substance having the RF of IAA in 4 solvents was detected. No evidence could be found for the formation of indoleacetyl conjugates. In pea stem sections subjected to a similar experimental regime good evidence was obtained for the occurrence of conjugates. When IAA was supplied exogenously to coleoptile sections floating in solutions the occurrence of conjugates was shown to be dependent on the presence of the primary leaf. In its absence no conjugates could be detected. On grinding coleoptile sections and subsequent centrifugation at 240 × g the radioactivity was found to be in the tissue fraction as opposed to the supernatant. The radioactivity cannot be removed from the tissue by extraction with water, buffer solution or treatment with ribonuclease. It is readily removed by 10% urea, crystalline trypsin and chymotrypsin. It is therefore concluded that IAA becomes bound to a protein. Bound IAA does not appear to be able to cause growth in Avena coleoptile sections. PMID:16656259

  4. Outward Bound as an Adjunct to Therapy.

    ERIC Educational Resources Information Center

    Chase, Nelson K.

    The Colorado Outward Bound School (COBS) provides successful adjunct programs for special populations undergoing therapy at the Adventure Home (Boulder, CO), the Juvenile Justice Program and the St. Luke's Hospital Alcoholism Recovery Unit (Denver, CO), and the Dartmouth-Hitchcock Medical Center Department of Psychiatry (Hanover, NH). The goals of…

  5. Theoretical Bounds of Direct Binary Search Halftoning.

    PubMed

    Liao, Jan-Ray

    2015-11-01

    Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.

  6. Lifetime of a Chemically Bound Helium Compound

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.

  7. Colorado Outward Bound School River Rafters' Manual.

    ERIC Educational Resources Information Center

    Leachman, Mark

    Instructional sequences, safety rules, duties of crew members, and procedures for Colorado Outward Bound School river rafting trips are summarized in this manual. Designed to acquaint instructors with the duties expected of them on the trips, the information in the manual is presented in outline form and is intended for those with prior river…

  8. College Bound Seniors, 1974-75.

    ERIC Educational Resources Information Center

    College Entrance Examination Board, New York, NY.

    Some one million college bound students, who were high school seniors during 1974-75 previously participated in the College Board's Admissions Testing Program (ATP), which included the Scholarship Aptitude Test (SAT), the Test of Standard Written English, the Student Descriptive Questionnaire, and the ATP Achievement Tests. These tests created a…

  9. Amorphous carbon film growth on Si: Correlation between stress and generation of defects into the substrate

    SciTech Connect

    Brusa, R.S.; Macchi, C.; Mariazzi, S.; Karwasz, G.P.; Laidani, N.; Bartali, R.; Anderle, M.

    2005-05-30

    Amorphous carbon films of several thicknesses were prepared by graphite sputtering on crystalline silicon substrate. The samples were depth profiled with positron annihilation spectroscopy for open-volume measurements and characterized for their residual internal stress. It was found that after film growth the substrate presents vacancy-like defects decorated by oxygen in a layer extending in the substrate by several tens of nanometers beyond the film/Si interface. The width of the defected layer and the decoration of vacancy-like defects are directly and inversely proportional to the measured intensity of the residual stress, respectively. These findings indicate the existence of a relaxation mechanism of the stress in the films that involves deeply the substrate. The decorated vacancy-like defects are suggested to be bounded to dislocations induced in the substrate by the stress relaxation.

  10. A Novel Type of Macrothrombocytopenia Associated with a Defect in α2,3-Sialylation

    PubMed Central

    Jones, Claire; Denecke, Jonas; Sträter, Ronald; Stölting, Torsten; Schunicht, Yvonne; Zeuschner, Dagmar; Klumperman, Judith; Lefeber, Dirk J.; Spelten, Oliver; Zarbock, Alexander; Kelm, Sørge; Strenge, Karen; Haslam, Stuart M.; Lühn, Kerstin; Stahl, Dorothea; Gentile, Luca; Schreiter, Thomas; Hilgard, Philip; Beck-Sickinger, Annette G.; Marquardt, Thorsten; Wild, Martin K.

    2011-01-01

    We describe a novel type of human thrombocytopenia characterized by the appearance of giant platelets and variable neutropenia. Searching for the molecular defect, we found that neutrophils had strongly reduced sialyl-Lewis X and increased Lewis X surface expression, pointing to a deficiency in sialylation. We show that the glycosylation defect is restricted to α2,3-sialylation and can be detected in platelets, neutrophils, and monocytes. Platelets exhibited a distorted structure of the open canalicular system, indicating defective platelet generation. Importantly, patient platelets, but not normal platelets, bound to the asialoglycoprotein receptor (ASGP-R), a liver cell-surface protein that removes desialylated thrombocytes from the circulation in mice. Taken together, this is the first type of human thrombocytopenia in which a specific defect of α2,3-sialylation and an induction of platelet binding to the liver ASGP-R could be detected. PMID:21864493

  11. A novel type of macrothrombocytopenia associated with a defect in α2,3-sialylation.

    PubMed

    Jones, Claire; Denecke, Jonas; Sträter, Ronald; Stölting, Torsten; Schunicht, Yvonne; Zeuschner, Dagmar; Klumperman, Judith; Lefeber, Dirk J; Spelten, Oliver; Zarbock, Alexander; Kelm, Sørge; Strenge, Karen; Haslam, Stuart M; Lühn, Kerstin; Stahl, Dorothea; Gentile, Luca; Schreiter, Thomas; Hilgard, Philip; Beck-Sickinger, Annette G; Marquardt, Thorsten; Wild, Martin K

    2011-10-01

    We describe a novel type of human thrombocytopenia characterized by the appearance of giant platelets and variable neutropenia. Searching for the molecular defect, we found that neutrophils had strongly reduced sialyl-Lewis X and increased Lewis X surface expression, pointing to a deficiency in sialylation. We show that the glycosylation defect is restricted to α2,3-sialylation and can be detected in platelets, neutrophils, and monocytes. Platelets exhibited a distorted structure of the open canalicular system, indicating defective platelet generation. Importantly, patient platelets, but not normal platelets, bound to the asialoglycoprotein receptor (ASGP-R), a liver cell-surface protein that removes desialylated thrombocytes from the circulation in mice. Taken together, this is the first type of human thrombocytopenia in which a specific defect of α2,3-sialylation and an induction of platelet binding to the liver ASGP-R could be detected. PMID:21864493

  12. Photoluminescence of defects induced in silicon by SF6/O2 reactive-ion etching

    NASA Astrophysics Data System (ADS)

    Buyanova, I. A.; Henry, A.; Monemar, B.; Lindström, J. L.; Oehrlein, G. S.

    1995-09-01

    Photoluminescence (PL) studies of SF6/O2 plasma-induced defect formation in n-type silicon samples are reported. Ion bombardment of the silicon surface during the SF6 reactive-ion etching (RIE) is shown to introduce defects giving rise to a broad PL band in the 0.70-1.00 eV spectral range and to the carbon-related C and G lines. The role of oxygen during SF6/O2 RIE on the photoluminescence observed is analyzed. It is argued that oxygen contamination enhances the formation of PL centers via the creation of extended defects, such as oxygen precipitates. A lattice contraction nearby these extended defects is suggested to be responsible for the observed splitting of the C and G lines as well as the shift of the phosphorous bound exciton line detected after SF6/O2 RIE.

  13. Tunable defect interactions and supersolidity in dipolar quantum gases on a lattice potential

    NASA Astrophysics Data System (ADS)

    Lechner, Wolfgang; Cinti, Fabio; Pupillo, Guido

    2015-11-01

    Point defects in self-assembled crystals, such as vacancies and interstitials, attract each other and form stable clusters. This leads to a phase separation between perfect crystalline structures and defect conglomerates at low temperatures. We propose a method that allows one to tune the effective interactions between point defects from attractive to repulsive by means of external periodic fields. In the quantum regime, this allows one to engineer strongly correlated many-body phases. We exemplify the microscopic mechanism by considering dipolar quantum gases of ground-state polar molecules and weakly bound molecules of strongly magnetic atoms trapped in a weak optical lattice in a two-dimensional configuration. By tuning the lattice depth, defect interactions turn repulsive, which allows us to deterministically design a novel supersolid phase in the continuum limit.

  14. Magnetization steps and bound magnetic polarons in diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    McCabe, Gao Hua

    1997-09-01

    Magnetization measurements and computer simulations were used to address several current problems in the area of the Diluted Magnetic Semiconductors (DMS). The method of Magnetization Steps (MSTs) was used to study Jahn-Teller Distortions in Zn1-xCrxTe, and exchange constants in Pb1-xEuxSe and Pb1- xEuxTe. Bound magnetic polarons in Cu2MnxZn1-xSnS4 were studied by conventional magnetometry. Jahn-Teller Distortions in cubic Zn1- xCrxTe were studied using MSTs. Possible Jahn- Teller Distortions in this material are along the three equivalent /langle 100/rangle axes. Energy states for the three distortion directions are equivalent at H = 0, but are different for finite H. The main issue is whether the populations of three possible distortions will vary with field, or remain frozen at their values in zero- field. The data showed that the populations of the distortions changed significantly. The dominant antiferomagnetic exchange constants J between Eu2+ ions in IV-VI Pb1- xEuxSe and Pb1-xEuxTe were determined using the MST method. Measurements were made at 0.6 K in fields up to 150 kOe. Supplementary data by our collaborators were taken at much lower temperatures. Simulations of various MSTs (from isolated Eu2+ ions, pairs of ions, and triplets) were performed to fit the experimental data. Because J is determined from the MSTs for pairs, the effects of other anisotropies and exchange interactions on these MSTs were considered. They were found to bring little change to the values of J. The exchange constants were J/kB = -0/24 ± 0.03 K for Ph 1-xEu xSe amd os J/KB = -0.264 ± 0.018 K for Ph1-xEuxTe. The dominant AF exchange constants were identified as J1, between nearest-neighbors, by comparing the experimental magnetization curves to the theoretical simulations using the single J model. The dominant antiferromagnetic exchange constants J between Eu2+ ions in IV-VI Pb1- xEuxSe and Pb1-xEuxTe were determined using the MST method. Measurements were made at 0.6 K in

  15. Torsion stiffness of a protein pair determined by magnetic particles.

    PubMed

    Janssen, X J A; van Noorloos, J M; Jacob, A; van Ijzendoorn, L J; de Jong, A M; Prins, M W J

    2011-05-01

    We demonstrate the ability to measure torsion stiffness of a protein complex by applying a controlled torque on a magnetic particle. As a model system we use protein G bound to an IgG antibody. The protein pair is held between a magnetic particle and a polystyrene substrate. The angular orientation of the magnetic particle shows an oscillating behavior upon application of a rotating magnetic field. The amplitude of the oscillation increases with a decreasing surface coverage of antibodies on the substrate and with an increasing magnitude of the applied field. For decreasing antibody coverage, the torsion spring constant converges to a minimum value of 1.5 × 10(3) pN·nm/rad that corresponds to a torsion modulus of 4.5 × 10(4) pN·nm(2). This torsion stiffness is an upper limit for the molecular bond between the particle and the surface that is tentatively assigned to a single protein G-IgG protein pair. This assignment is supported by interpreting the measured stiffness with a simple mechanical model that predicts a two orders of magnitude larger stiffness for the protein G-IgG complex than values found for micrometer length dsDNA. This we understand from the structural properties of the molecules, i.e., DNA is a long and flexible chain-like molecule, whereas the antibody-antigen couple is orders of magnitude smaller and more globular in shape due to the folding of the molecules.

  16. New HiggsBounds from LEP and the Tevatron

    SciTech Connect

    Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K.

    2010-02-10

    We review the program HiggsBounds that tests theoretical predictions of models with arbitrary Higgs sectors against the exclusion bounds obtained from the Higgs searches at LEP and the Tevatron. We explicitly list the bounds that have been added after the first release of HiggsBounds.

  17. Sample Complexity Bounds for Differentially Private Learning

    PubMed Central

    Chaudhuri, Kamalika; Hsu, Daniel

    2013-01-01

    This work studies the problem of privacy-preserving classification – namely, learning a classifier from sensitive data while preserving the privacy of individuals in the training set. In particular, the learning algorithm is required in this problem to guarantee differential privacy, a very strong notion of privacy that has gained significant attention in recent years. A natural question to ask is: what is the sample requirement of a learning algorithm that guarantees a certain level of privacy and accuracy? We address this question in the context of learning with infinite hypothesis classes when the data is drawn from a continuous distribution. We first show that even for very simple hypothesis classes, any algorithm that uses a finite number of examples and guarantees differential privacy must fail to return an accurate classifier for at least some unlabeled data distributions. This result is unlike the case with either finite hypothesis classes or discrete data domains, in which distribution-free private learning is possible, as previously shown by Kasiviswanathan et al. (2008). We then consider two approaches to differentially private learning that get around this lower bound. The first approach is to use prior knowledge about the unlabeled data distribution in the form of a reference distribution chosen independently of the sensitive data. Given such a reference , we provide an upper bound on the sample requirement that depends (among other things) on a measure of closeness between and the unlabeled data distribution. Our upper bound applies to the non-realizable as well as the realizable case. The second approach is to relax the privacy requirement, by requiring only label-privacy – namely, that the only labels (and not the unlabeled parts of the examples) be considered sensitive information. An upper bound on the sample requirement of learning with label privacy was shown by Chaudhuri et al. (2006); in this work, we show a lower bound. PMID:25285183

  18. Insoluble-Bound Phenolics in Food.

    PubMed

    Shahidi, Fereidoon; Yeo, Ju-Dong

    2016-01-01

    This contribution provides a review of the topic of insoluble-bound phenolics, especially their localization, synthesis, transfer and formation in plant cells, as well as their metabolism in the human digestive system and corresponding bioactivities. In addition, their release from the food matrix during food processing and extraction methods are discussed. The synthesis of phenolics takes place mainly at the endoplasmic reticulum and they are then transferred to each organ through transport proteins such as the ATP-binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) transporter at the organ's compartment membrane or via transport vesicles such as cytoplasmic and Golgi vesicles, leading to the formation of soluble and insoluble-bound phenolics at the vacuole and cell wall matrix, respectively. This part has not been adequately discussed in the food science literature, especially regarding the synthesis site and their transfer at the cellular level, thus this contribution provides valuable information to the involved scientists. The bound phenolics cannot be absorbed at the small intestine as the soluble phenolics do (5%-10%), thus passing into the large intestine and undergoing fermentation by a number of microorganisms, partially released from cell wall matrix of foods. Bound phenolics such as phenolic acids and flavonoids display strong bioactivities such as anticancer, anti-inflammation and cardiovascular disease ameliorating effects. They can be extracted by several methods such as acid, alkali and enzymatic hydrolysis to quantify their contents in foods. In addition, they can also be released from the cell wall matrix during food processing procedures such as fermentation, germination, roasting, extrusion cooking and boiling. This review provides critical information for better understanding the insoluble-bound phenolics in food and fills an existing gap in the literature. PMID:27626402

  19. Breatherlike defects and their dynamics in the one-dimensional roll structure of twisted nematics

    SciTech Connect

    Skaldin, O. A.; Delev, V. A. Shikhovtseva, E. S.; Lebedev, Yu. A.; Batyrshin, E. S.

    2015-12-15

    The dynamics of the nonsingular defects in the periodic structures of the rolls that appear in π/2-twisted nematic liquid crystals during electroconvection is studied experimentally and theoretically. The roll structures in twisted nematics are characterized by the presence of an axial component of the hydrodynamic flow velocity with opposite directions in neighboring rolls. The critical oscillation frequency of structural defects is quantitatively estimated using a nonlinear equation of motion for roll displacements. It is found that a pair of edge dislocations with topological charges of +1 and–1 nucleates and annihilates periodically during the oscillations of a defect with a nonsingular core. Oscillating defects with a zero topological charge is shown to correspond to the solution of the sine-Gordon equation in the form of standing breathers. Asymmetry is detected in the full oscillation cycle of a breather defect, and it is related to the twist symmetry of a twist nematic. This asymmetry is taken into account as effective anisotropic friction. The behavior of a breather on a trap, namely, a classical defect (dislocation), is investigated. Dislocation motion is shown to be anisotropic in the oscillation cycle: in one direction, a dislocation moves regularly; in the second phase, the transition into the initial state proceeds via the decay of the breather into a dipole pair of dislocations of opposite signs followed by their annihilation.

  20. Migrations of pentagon-heptagon defects in hexagonal boron nitride monolayer: the first-principles study.

    PubMed

    Wang, J; Li, S N; Liu, J B

    2015-04-16

    The first-principles calculations are employed to study the migrations of pentagon-heptagon (5-7) defects in hexagonal boron nitride monolayer (h-BN). A type of grain boundaries, consisted of 5-7 defects, is constructed on the basis of experimental observations. With the absorption of a pair of atoms, one 5-7 defect in the grain boundary migrates apart by one unit cell and afterward migrates again through the bond rotation. It is also found that the two migrations could be replaced by one single step when the pair of absorbed atoms is located at another specific site in the same heptagon. Energy barriers and reaction paths for the migrations of 5-7 defects in h-BN by the bond rotation are theoretically investigated by the standard nudged elastic band method and the generalized solid-state nudged elastic band method. To elucidate the difference between the bond rotation process of the 5-7 defects with N-N bonds and those with B-B bonds, a couple of typical 21.7° grain boundaries with either N-N or B-B bonds are investigated. It is shown that the energy barrier of the migration of defects with N-N bonds is lower than that with B-B bonds in this type of grain boundaries. PMID:25811102

  1. First-principles study of defect behavior in irradiated uranium monocarbide

    NASA Astrophysics Data System (ADS)

    Ducher, R.; Dubourg, R.; Barrachin, M.; Pasturel, A.

    2011-03-01

    Ab initio electron theory based on the projector-augmented-wave method in the generalized gradient approximation of the density functional theory is used for calculating formation and migration energies of point defects in uranium monocarbide (UC). The use of the Hubbard term to describe the 5f electrons of uranium is discussed on the basis of the density of states and cohesive energies. A formalism allowing the “raw” calculated energies to be normalized is proposed to take into account the compositional dependence of defective crystals. Such formation energies are then used to determine the population of predominant defects as a function of nonstoichiometry. We identify the most stable defects as uranium antisites and carbon vacancies for UC1-x, and dimers C2 for UC1+x. The most stable thermal defects are obtained, in turn, by formation of complex defects associating dimer C2 and carbon vacancies whereas carbon Frenkel pairs and Schottky defects require larger formation energies. The migration energies are also calculated for different mechanisms, using as diffusion vectors both thermal vacancy sources and preexisting constitutional defects in the case of off-stoichiometric alloys. We compare the calculated diffusion paths with available experimental data proposed by Matzke [J. Less-Common Met.JCOMAH0022-508810.1016/0022-5088(86)90573-4 121, 537 (1986)].

  2. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide

    SciTech Connect

    Wampler, William R. Myers, Samuel M.

    2015-01-28

    A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.

  3. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Wampler, William R.; Myers, Samuel M.

    2015-01-01

    A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.

  4. Effective actions for bosonic topological defects

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1990-01-01

    A gauge field theory is considered which admits p-dimensional topological defects, expanding the equations of motion in powers of the defect thickness. In this way an effective action and effective equation of motion is derived for the defect in terms of the coordinates of the p-dimensional worldsurface defined by the history of the core of the defect.

  5. Topological modes bound to dislocations in mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Paulose, Jayson; Chen, Bryan Gin-Ge; Vitelli, Vincenzo

    2015-02-01

    Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable vibrational properties, that originate in the geometry of their unit cell. Often at the heart of such unusual behaviour is a soft mode: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, soft modes become the building blocks of robots and smart materials. Here, we demonstrate the existence of topological soft modes that can be positioned at desired locations in a metamaterial while being robust against a wide range of structural deformations or changes in material parameters. These protected modes, localized at dislocations in deformed kagome and square lattices, are the mechanical analogue of topological states bound to defects in electronic systems. We create physical realizations of the topological modes in prototypes of kagome lattices built out of rigid triangular plates. We show mathematically that they originate from the interplay between two Berry phases: the Burgers vector of the dislocation and the topological polarization of the lattice. Our work paves the way towards engineering topologically protected nanomechanical structures for molecular robotics or information storage and read-out.

  6. Defects in ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.; Jokela, S. J.

    2009-10-01

    Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zn interstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the n-type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable p-type conductivity has not been achieved. Ferromagnetism is complicated by the presence of secondary phases, grain boundaries, and native defects. The famous green luminescence has several possible origins, including Cu impurities and Zn vacancies. The properties of group-I (Cu, Li, and Na) and group-V (N, P, As, and Sb) acceptors, and their complexes with H, are discussed. In the future, doping of ZnO nanocrystals will rely on an understanding of these fundamental properties.

  7. Repulsive interactions in quantum Hall systems as a pairing problem

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; Nussinov, Z.; Dukelsky, J.; Seidel, A.

    2013-10-01

    A subtle relation between quantum Hall physics and the phenomenon of pairing is unveiled. By use of second quantization, we establish a connection between (i) a broad class of rotationally symmetric two-body interactions within the lowest Landau level and (ii) integrable hyperbolic Richardson-Gaudin-type Hamiltonians that arise in (px+ipy) superconductivity. Specifically, we show that general Haldane pseudopotentials (and their sums) can be expressed as a sum of repulsive noncommuting (px+ipy)-type pairing Hamiltonians. The determination of the spectrum and individual null spaces of each of these noncommuting Richardson-Gaudin-type Hamiltonians is nontrivial yet is Bethe ansatz solvable. For the Laughlin sequence, it is observed that this problem is frustration free and zero-energy ground states lie in the common null space of all of these noncommuting Hamiltonians. This property allows for the use of a new truncated basis of pairing configurations in which to express Laughlin states at general filling factors. We prove separability of arbitrary Haldane pseudopotentials, providing explicit expressions for their second quantized forms, and further show by explicit construction how to exploit the topological equivalence between different geometries (disk, cylinder, and sphere) sharing the same topological genus number, in the second quantized formalism, through similarity transformations. As an application of the second quantized approach, we establish a “squeezing principle” that applies to the zero modes of a general class of Hamiltonians, which includes but is not limited to Haldane pseudopotentials. We also show how one may establish (bounds on) “incompressible filling factors” for those Hamiltonians. By invoking properties of symmetric polynomials, we provide explicit second quantized quasihole generators; the generators that we find directly relate to bosonic chiral edge modes and further make aspects of dimensional reduction in the quantum Hall systems

  8. Dynamical analysis of the cluster pair: A3407 + A3408

    NASA Astrophysics Data System (ADS)

    Nascimento, R. S.; Ribeiro, A. L. B.; Trevisan, M.; Carrasco, E. R.; Plana, H.; Dupke, R.

    2016-08-01

    We carried out a dynamical study of the galaxy cluster pair A3407 and A3408 based on a spectroscopic survey obtained with the 4 metre Blanco telescope at the Cerro Tololo Interamerican Observatory, plus 6dF data, and ROSAT All-Sky Survey. The sample consists of 122 member galaxies brighter than mR = 20. Our main goal is to probe the galaxy dynamics in this field and verify if the sample constitutes a single galaxy system or corresponds to an ongoing merging process. Statistical tests were applied to clusters members showing that both the composite system A3407 + A3408 as well as each individual cluster have Gaussian velocity distribution. A velocity gradient of ˜847 ± 114 km s- 1 was identified around the principal axis of the projected distribution of galaxies, indicating that the global field may be rotating. Applying the KMM algorithm to the distribution of galaxies, we found that the solution with two clusters is better than the single unit solution at the 99 per cent cl. This is consistent with the X-ray distribution around this field, which shows no common X-ray halo involving A3407 and A3408. We also estimated virial masses and applied a two-body model to probe the dynamics of the pair. The more likely scenario is that in which the pair is gravitationally bound and probably experiences a collapse phase, with the cluster cores crossing in less than ˜1 h-1 Gyr, a pre-merger scenario. The complex X-ray morphology, the gas temperature, and some signs of galaxy evolution in A3408 suggest a post-merger scenario, with cores having crossed each other ˜1.65 h-1 Gyr ago, as an alternative solution.

  9. Pair Programming in Education: A Literature Review

    ERIC Educational Resources Information Center

    Hanks, Brian; Fitzgerald, Sue; McCauley, Renee; Murphy, Laurie; Zander, Carol

    2011-01-01

    This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in…

  10. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  11. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  12. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  13. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  14. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  15. Top Quark Pair Production at the Tevatron

    SciTech Connect

    Nielsen, Jason

    2005-05-17

    The measurement of the top quark pair production crosssection inproton-antiproton collisions at 1.96 TeV is a test ofquantumchromodynamics and could potentially be sensitive to newphysics beyondthe standard model. I report on the latest t-tbarcross section resultsfrom the CDF and DZero experiments in various finalstate topologies whicharise from decays of top quark pairs.

  16. Attitudes on Using Pair-Programming

    ERIC Educational Resources Information Center

    Howard, Elizabeth V.

    2007-01-01

    During a research study conducted over four semesters, students enrolled in an introductory programming class at a commuter campus used the pair-programming approach for both in-class labs and out-of-class programming assignments. This study was a comprehensive assessment of pair-programming using multiple measures of both quantitative and…

  17. Bidirectional Synonym Ratings of 464 Noun Pairs.

    ERIC Educational Resources Information Center

    Whitten, William B.; And Others

    1979-01-01

    Each of 464 noun pairs was rated for synonymy on a seven-point scale by college students to provide an extensive set of synonym pairs for use as stimuli in experiments, and to evaluate the effects of word encoding order on perceived synonymy. (SW)

  18. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  19. Spontaneous formation of inert oscillator pairs

    NASA Astrophysics Data System (ADS)

    Tsygankov, Denis; Wiesenfeld, Kurt

    2004-05-01

    We describe a peculiar type of spontaneous synchronization in a transmission line studded with nonlinear oscillators. After a transient period of complicated interactions, the elements form strongly synchronized pairs with interactions between these pairs virtually nil. The creation of these “dynamical dimers” appears to stem from the coupling intrinsic to transmission lines rather than any specific property of the nonlinear oscillators.

  20. Probing dissociative electron attachment through heavy-Rydberg ion-pair production in Rydberg atom collisions

    NASA Astrophysics Data System (ADS)

    Buathong, S.; Kelley, M.; Dunning, F. B.

    2016-10-01

    Electron transfer in collisions between low-n, n = 12, Rydberg atoms and targets that attach low-energy electrons can lead to the formation of heavy-Rydberg ion-pair states comprising a weakly-bound positive-negative ion pair that orbit each other at large separations. Measurements of the velocity and angular distribution of ion-pair states produced in collisions with 1,1,1-C2Cl3F3, CBrCl3, BrCN, and Fe(CO)5 are used to show that electron transfer reactions furnish a new technique with which to examine the lifetime and decay energetics of the excited intermediates formed during dissociative electron capture. The results are analyzed with the aid of Monte Carlo simulations based on the free electron model of Rydberg atom collisions. The data further highlight the capabilities of Rydberg atoms as a microscale laboratory in which to probe the dynamics of electron attachment reactions.

  1. Neutral Higgs boson pair production at the linear collider in the noncommutative standard model

    SciTech Connect

    Das, Prasanta Kumar; Prakash, Abhishodh; Mitra, Anupam

    2011-03-01

    We study the Higgs boson pair production at the linear collider in the noncommutative extension of the standard model using the Seiberg-Witten map of this to the first order of the noncommutative parameter {Theta}{sub {mu}{nu}}. Unlike the standard model (where the process is forbidden) here the Higgs boson pair directly interacts with the photon. We find that the pair production cross section can be quite significant for the noncommutative scale {Lambda} lying in the range 0.5 TeV to 1.0 TeV. Using the experimental (LEP 2, Tevatron, and global electroweak fit) bound on the Higgs mass, we obtain 626 GeV{<=}{Lambda}{<=}974 GeV.

  2. Formation of Frustrated Lewis Pairs in Ptx -Loaded Zeolite NaY.

    PubMed

    Lee, Heeju; Choi, Yong Nam; Lim, Dae-Woon; Rahman, Md Mahbubur; Kim, Yong-Il; Cho, In Hwa; Kang, Hyun Wook; Seo, Jung-Hye; Jeon, Cheolho; Yoon, Kyung Byung

    2015-10-26

    The formation of a frustrated Lewis pair consisting of sodium hydride (Na(+) H(-) ) and a framework-bound hydroxy proton O(H(+) ) is reported upon H2 treatment of zeolite NaY loaded with Pt nanoparticles (Ptx /NaY). Frustrated Lewis pair formation was confirmed using in situ neutron diffraction and spectroscopic measurements. The activity of the intrazeolite NaH as a size-selective catalyst was verified by the efficient esterification of acetaldehyde (a small aldehyde) to form the corresponding ester ethyl acetate, whereas esterification of the larger molecule benzaldehyde was unsuccessful. The frustrated Lewis pair (consisting of Na(+) H(-) and O(H(+) )) generated within zeolite NaY may be a useful catalyst for various catalytic reactions which require both H(-) and H(+) ions, such as catalytic hydrogenation or dehydrogenation of organic compounds and activation of small molecules. PMID:26480339

  3. Palladium-defect complexes in diamond and silicon carbide

    NASA Astrophysics Data System (ADS)

    Abiona, A. A.; Kemp, W.; Timmers, H.; Bharuth-Ram, K.

    2015-04-01

    Time Differential Perturbed Angular Correlations (TDPAC) studies, supported by Density Functional Theory (DFT) modelling, have shown that palladium atoms in silicon and germanium pair with vacancies. Building on these results, here we present DFT predictions and some tentative TDPAC results on palladium-defect complexes and site locations of palladium impurities in diamond and silicon carbide. For both diamond and silicon carbide, the DFT calculations predict that a split-vacancy V-PdBI-V complex is favoured, with the palladium atom on a bond-centred interstitial site having a nearest-neighbour semi-vacancy on either side. Consistent with experimental results, this configuration is also assigned to palladium complexes in silicon and germanium. For silicon carbide, the DFT modelling predicts furthermore that a palladium atom in replacing a carbon atom moves to a bond-centred interstitial site and pairs with a silicon vacancy to form a complex that is more stable than that of a palladium atom which replaces a silicon atom and then moves to a bond-centred interstitial site pairings with a carbon vacancy. These two competing alternatives differ by 8.94 eV. The favourable pairing with a silicon vacancy is also supported independently by TRIM Monte Carlo calculations, which predict that more silicon vacancies than carbon vacancies are created during heavy ion. implantation.

  4. Entanglement bound for multipartite pure states based on local measurements

    SciTech Connect

    Jiang Lizhen; Chen Xiaoyu; Ye Tianyu

    2011-10-15

    An entanglement bound based on local measurements is introduced for multipartite pure states. It is the upper bound of the geometric measure and the relative entropy of entanglement. It is the lower bound of the minimal-measurement entropy. For pure bipartite states, the bound is equal to the entanglement entropy. The bound is applied to pure tripartite qubit states and the exact tripartite relative entropy of entanglement is obtained for a wide class of states.

  5. Pairing in a dry Fermi sea.

    PubMed

    Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J

    2016-01-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  6. Collective pairing Hamiltonian in the GCM approximation

    NASA Astrophysics Data System (ADS)

    Góźdź, A.; Pomorski, K.; Brack, M.; Werner, E.

    1985-08-01

    Using the generator coordinate method and the gaussian overlap approximation we derived the collective Schrödinger-type equation starting from a microscopic single-particle plus pairing hamiltonian for one kind of particle. The BCS wave function was used as the generator function. The pairing energy-gap parameter Δ and the gauge transformation anglewere taken as the generator coordinates. Numerical results have been obtained for the full and the mean-field pairing hamiltonians and compared with the cranking estimates. A significant role played by the zero-point energy correction in the collective pairing potential is found. The ground-state energy dependence on the pairing strength agrees very well with the exact solution of the Richardson model for a set of equidistant doubly-degenerate single-particle levels.

  7. Pairing in a dry Fermi sea

    NASA Astrophysics Data System (ADS)

    Maier, T. A.; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-06-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  8. Bounded hybrid superiority in an avian hybrid zone: effects of mate, diet, and habitat choice.

    PubMed

    Good, T P; Ellis, J C; Annett, C A; Pierotti, R

    2000-10-01

    There has been considerable debate in the study of hybrid zones as to whether hybrids may be superior to parental types within the area of contact (bounded hybrid superiority). In birds, naturally occurring hybridization is relatively common, and hybridization within this group always involves mate choice. If hybrids are superior, females choosing heterospecific mates should be expected to show higher fitness under the conditions prevalent in the hybrid zone. Hybrid superiority under these circumstances would reduce reinforcement and thereby help to maintain the hybrid zone. To examine this issue, we studied reproductive performances of hybrids and parental species of gulls (Larus occidentalis and Larus glaucescens) at two colonies within a linear hybrid zone along the west coast of the United States. This hybrid zone contains predominantly gulls of intermediate phenotype. Previous studies indicated that hybrids were superior to one or both parental types, but provided no data on possible mechanisms that underlie this hybrid superiority. Using a hybrid index designed specifically for these species, we identified to phenotype more than 300 individuals associated with nests, including both individual males and females within 73 pairs in the central portion of the hybrid zone and 74 pairs in the northern portion of the hybrid zone. There was little evidence of assortative mating, and what little there was resulted solely because of pairings within intergrades. In the central hybrid zone, females paired with hybrid males produced larger clutches and hatched and fledged more chicks compared with females paired to western gull males. This was a result of heavy predation on eggs in sand habitat, where male western gulls established territories. In contrast, many hybrid males established territories in vegetated cover that was less vulnerable to predation. In the northern part of the hybrid zone, clutch size did not differ among pair categories, however, there were

  9. Bounded hybrid superiority in an avian hybrid zone: effects of mate, diet, and habitat choice.

    PubMed

    Good, T P; Ellis, J C; Annett, C A; Pierotti, R

    2000-10-01

    There has been considerable debate in the study of hybrid zones as to whether hybrids may be superior to parental types within the area of contact (bounded hybrid superiority). In birds, naturally occurring hybridization is relatively common, and hybridization within this group always involves mate choice. If hybrids are superior, females choosing heterospecific mates should be expected to show higher fitness under the conditions prevalent in the hybrid zone. Hybrid superiority under these circumstances would reduce reinforcement and thereby help to maintain the hybrid zone. To examine this issue, we studied reproductive performances of hybrids and parental species of gulls (Larus occidentalis and Larus glaucescens) at two colonies within a linear hybrid zone along the west coast of the United States. This hybrid zone contains predominantly gulls of intermediate phenotype. Previous studies indicated that hybrids were superior to one or both parental types, but provided no data on possible mechanisms that underlie this hybrid superiority. Using a hybrid index designed specifically for these species, we identified to phenotype more than 300 individuals associated with nests, including both individual males and females within 73 pairs in the central portion of the hybrid zone and 74 pairs in the northern portion of the hybrid zone. There was little evidence of assortative mating, and what little there was resulted solely because of pairings within intergrades. In the central hybrid zone, females paired with hybrid males produced larger clutches and hatched and fledged more chicks compared with females paired to western gull males. This was a result of heavy predation on eggs in sand habitat, where male western gulls established territories. In contrast, many hybrid males established territories in vegetated cover that was less vulnerable to predation. In the northern part of the hybrid zone, clutch size did not differ among pair categories, however, there were

  10. Unified theory of bound and scattering molecular Rydberg states as quantum maps

    NASA Astrophysics Data System (ADS)

    Dietz, Barbara; Lombardi, Maurice; Seligman, Thomas H.

    2004-08-01

    Using a representation of multichannel quantum defect theory in terms of a quantum Poincaré map for bound Rydberg molecules, we apply Jung's scattering map to derive a generalized quantum map, that includes the continuum. We show that this representation not only simplifies the understanding of the method, but moreover produces considerable numerical advantages. Finally we show under what circumstances the usual semi-classical approximations yield satisfactory results. In particular we see that singularities that cause problems in semi-classics are irrelevant to the quantum map.

  11. Defect CFTs and holographic multiverse

    SciTech Connect

    Fiol, Bartomeu

    2010-07-01

    We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS{sub 4} × S{sup 7}, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.

  12. Optical Spectroscopy of Unbound Asteroid Pairs

    NASA Astrophysics Data System (ADS)

    Duddy, Samuel; Lowry, S. C.; Christou, A.; Wolters, S. D.; Snodgrass, C.; Fitzsimmons, A.; Deller, J. F.; Hainaut, O. R.; Rozitis, B.; Weissman, P. R.; Green, S. F.

    2012-10-01

    The recently discovered unbound asteroid pairs have been suggested to be the result of the decoupling of binary asteroids formed either through collision processes or, more likely, rotational fission of a rubble-pile asteroid after spin-up (Vokrouhlicky et al. 2008, AJ 136, 280; Pravec et al., 2010, Nature, 466, 1085). Much of the evidence for linkage of the asteroids in each pair relies solely on the backwards integrations of their orbits. We report new results from our continuing spectroscopic survey of the unbound asteroid pairs, including the youngest known pair, (6070) Rhineland - (54827) 2001 NQ8. The survey goal is to determine whether the asteroids in each unbound pair have similar spectra and therefore composition, expected if they have formed from a common parent body. Low-resolution spectroscopy covering the range 0.4-0.95 microns was conducted using the 3.6m ESO NTT+EFOSC2 during 2011-2012 and the 4.2m WHT+ACAM. We have attempted to maintain a high level of consistency between the observations of the components in each pair to ensure that differences in the asteroid spectra are not the result of the observing method or data reduction, but purely caused by compositional differences. Our WHT data indicates that the asteroids of unbound pair 17198 - 229056 exhibit different spectra and have been assigned different taxonomies, A and R respectively. Initial analysis of our data from the NTT suggests that the asteroids in unbound pairs 6070 - 54827 and 38707 - 32957 are likely silicate-dominated asteroids. The components of pair 23998 - 205383 are potentially X-type asteroids. We present final taxonomic classifications and the likelihood of spectral similarity in each pair.

  13. Stereo Pair: Wellington, New Zealand

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Wellington, the capital city of New Zealand, is located on the shores of Port Nicholson, a natural harbor at the south end of North Island. The city was founded in 1840 by British emigrants and now has a regional population of more than 400,000 residents. As seen here, the natural terrain imposes strong control over the urban growth pattern (urban features generally appear gray or white in this view). Rugged hills generally rising to 300 meters (1,000 feet) help protect the city and harbor from strong winter winds

    New Zealand is seismically active and faults are readily seen in the topography. The Wellington Fault forms the straight northwestern (left) shoreline of the harbor. Toward the southwest (down) the fault crosses through the city, then forms linear canyons in the hills before continuing offshore at the bottom. Toward the northeast (upper right) the fault forms the sharp mountain front along the northern edge of the heavily populated Hutt Valley.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced true color Landsat7 satellite image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30 meter (99 foot) spatial resolution of most Landsat images and will provide a valuable complement for studying the historic and growing Landsat data archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) data Center, Sioux Falls, South Dakota.

    Elevation data

  14. SRTM Stereo Pair: Fiji Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  15. Detecting a preformed pair phase: Response to a pairing forcing field

    NASA Astrophysics Data System (ADS)

    Tagliavini, A.; Capone, M.; Toschi, A.

    2016-10-01

    The normal state of strongly coupled superconductors is characterized by the presence of "preformed" Cooper pairs well above the superconducting critical temperature. In this regime, the electrons are paired, but they lack the phase coherence necessary for superconductivity. The existence of preformed pairs implies the existence of a characteristic energy scale associated with a pseudogap. Preformed pairs are often invoked to interpret systems where some signatures of pairing are present without actual superconductivity, but an unambiguous theoretical characterization of a preformed-pair system is still lacking. To fill this gap, we consider the response to an external pairing field of an attractive Hubbard model, which hosts one of the cleanest realizations of a preformed pair phase, and a repulsive model where s -wave superconductivity cannot be realized. Using dynamical mean-field theory to study this response, we identify the characteristic features which distinguish the reaction of a preformed pair state from a normal metal without any precursor of pairing. The theoretical detection of preformed pairs is associated with the behavior of the second derivative of the order parameter with respect to the external field, as confirmed by analytic calculations in limiting cases. Our findings provide a solid test bed for the interpretation of state-of-the-art calculations for the normal state of the doped Hubbard model in terms of d -wave preformed pairs and, in perspective, of nonequilibrium experiments in high-temperature superconductors.

  16. Interface effects on calculated defect levels for oxide defects

    NASA Astrophysics Data System (ADS)

    Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew

    2014-03-01

    Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.

  17. Chelonian perivitelline membrane-bound sperm detection: A new breeding management tool.

    PubMed

    Croyle, Kaitlin; Gibbons, Paul; Light, Christine; Goode, Eric; Durrant, Barbara; Jensen, Thomas

    2016-01-01

    Perivitelline membrane (PVM)-bound sperm detection has recently been incorporated into avian breeding programs to assess egg fertility, confirm successful copulation, and to evaluate male reproductive status and pair compatibility. Due to the similarities between avian and chelonian egg structure and development, and because fertility determination in chelonian eggs lacking embryonic growth is equally challenging, PVM-bound sperm detection may also be a promising tool for the reproductive management of turtles and tortoises. This study is the first to successfully demonstrate the use of PVM-bound sperm detection in chelonian eggs. Recovered membranes were stained with Hoechst 33342 and examined for sperm presence using fluorescence microscopy. Sperm were positively identified for up to 206 days post-oviposition, following storage, diapause, and/or incubation, in 52 opportunistically collected eggs representing 12 species. However, advanced microbial infection frequently hindered the ability to detect membrane-bound sperm. Fertile Centrochelys sulcata, Manouria emys, and Stigmochelys pardalis eggs were used to evaluate the impact of incubation and storage on the ability to detect sperm. Storage at -20°C or in formalin were found to be the best methods for egg preservation prior to sperm detection. Additionally, sperm-derived mtDNA was isolated and PCR amplified from Astrochelys radiata, C. sulcata, and S. pardalis eggs. PVM-bound sperm detection has the potential to substantially improve studies of artificial incubation and sperm storage, and could be used to evaluate the success of artificial insemination in chelonian species. Mitochondrial DNA from PVM-bound sperm has applications for parentage analysis, the study of sperm competition, and potentially species identification.

  18. Chelonian perivitelline membrane-bound sperm detection: A new breeding management tool.

    PubMed

    Croyle, Kaitlin; Gibbons, Paul; Light, Christine; Goode, Eric; Durrant, Barbara; Jensen, Thomas

    2016-01-01

    Perivitelline membrane (PVM)-bound sperm detection has recently been incorporated into avian breeding programs to assess egg fertility, confirm successful copulation, and to evaluate male reproductive status and pair compatibility. Due to the similarities between avian and chelonian egg structure and development, and because fertility determination in chelonian eggs lacking embryonic growth is equally challenging, PVM-bound sperm detection may also be a promising tool for the reproductive management of turtles and tortoises. This study is the first to successfully demonstrate the use of PVM-bound sperm detection in chelonian eggs. Recovered membranes were stained with Hoechst 33342 and examined for sperm presence using fluorescence microscopy. Sperm were positively identified for up to 206 days post-oviposition, following storage, diapause, and/or incubation, in 52 opportunistically collected eggs representing 12 species. However, advanced microbial infection frequently hindered the ability to detect membrane-bound sperm. Fertile Centrochelys sulcata, Manouria emys, and Stigmochelys pardalis eggs were used to evaluate the impact of incubation and storage on the ability to detect sperm. Storage at -20°C or in formalin were found to be the best methods for egg preservation prior to sperm detection. Additionally, sperm-derived mtDNA was isolated and PCR amplified from Astrochelys radiata, C. sulcata, and S. pardalis eggs. PVM-bound sperm detection has the potential to substantially improve studies of artificial incubation and sperm storage, and could be used to evaluate the success of artificial insemination in chelonian species. Mitochondrial DNA from PVM-bound sperm has applications for parentage analysis, the study of sperm competition, and potentially species identification. PMID:26890048

  19. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

    PubMed Central

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y. Q.

    2015-01-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25–0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries. PMID:26692345

  20. Carbon related defects in irradiated silicon revisited.

    PubMed

    Wang, H; Chroneos, A; Londos, C A; Sgourou, E N; Schwingenschlögl, U

    2014-05-09

    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci(SiI), CiOi, CiCs, and CiOi(SiI) with respect to the Fermi energy for all possible charge states. The Ci(SiI)(2+) state dominates in almost the whole Fermi energy range. The unpaired electron in the CiOi(+) state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the CiCs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the CiOi(SiI) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies.