Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-01-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557
NASA Astrophysics Data System (ADS)
Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.
2017-03-01
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.
Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same
Lindsey, Jonathan S [Raleigh, NC; Chinnasamy, Muthiah [Raleigh, NC; Fan, Dazhong [Raleigh, NC
2009-12-15
A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.
Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles
NASA Astrophysics Data System (ADS)
Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu
2017-06-01
Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.
Self-Assembly of a [1+1] Ionic Hexagonal Macrocycle and its Antiproliferative Activity
NASA Astrophysics Data System (ADS)
Singh, Khushwant; Gangrade, Ankit; Bhowmick, Sourav; Jana, Achintya; Mandal, Biman B.; Das, Neeladri
2018-04-01
A unique irregular hexagon was self-assembled using an organic donor clip (bearing terminal pyridyl units) and a complementary organometallic acceptor clip. The resulting metallamacrocycle was characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Molecular modeling confirmed hexagonal shaped cavity for this metallamacrocycle which is a unique example of a discrete hexagonal framework self-assembled from only two building blocks. Cytotoxicity of the Pt-based acceptor tecton and the self-assembled PtII-based macrocycle was evaluated using three cancer cell lines and results were compared with cisplatin. Results confirmed a positive effect of the metallamacrocycle formation on cell growth inhibition.
Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S
2014-01-01
Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.
Daigle, Maxime; Cantin, Katy
2014-01-01
Summary The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:25161718
Basile, M; Unruh, D K; Gojdas, K; Flores, E; Streicher, L; Forbes, T Z
2015-03-28
Uranyl citrate forms trimeric species at pH > 5.5, but exact structural characteristics of these important oligomers have not previously been reported. Crystallization and structural characterization of the trimers suggests the self-assembly of the 3 : 3 and 3 : 2 U : Cit complexes into larger sandwich and macrocyclic molecules. Raman spectroscopy and ESI-MS have been utilized to investigate the relative abundance of these species in solution under varying pH and citrate concentrations. Additional dynamic light scattering experiments indicate that self-assembly of the larger molecules does occur in aqueous solution.
Tsuya, Takuya; Iritani, Kohei; Tahara, Kazukuni; Tobe, Yoshito; Iwanaga, Tetsuo; Toyota, Shinji
2015-03-27
An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1-phenyloctane/graphite interface revealed that the molecules formed a self-assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two-dimensional chirality about the macrocyclic faces, which led to a unique conglomerate-type self-assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polar self-assembled thin films for non-linear optical materials
Yang, XiaoGuang; Swanson, Basil I.; Li, DeQuan
2000-01-01
The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-.pi.-A units bridged by methylene groups. These molecules were synthesized such that four D-.pi.-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d.sub.33, and the average molecular alignment, .PSI.. A value of d.sub.33 =60 pm/V at a fundamental wavelength of 890 nm, and .PSI..about.36.degree. was found with respect to the surface normal.
Self-Assembling Organic Nanopores as Synthetic Transmembrane Channels with Tunable Functions
NASA Astrophysics Data System (ADS)
Wei, Xiaoxi
A long-standing goal in the area of supramolecular self-assembly involves the development of synthetic ion/water channels capable of mimicking the mass-transport characteristics of biological channels and pores. Few examples of artificial transmembrane channels with large lumen, high conductivity and selectivity are known. A review of pronounced biological transmembrane protein channels and some representative synthetic models have been provided in Chapter 1, followed by our discovery and initial investigation of shape-persistent oligoamide and phenylene ethynylene macrocycles as synthetic ion/water channels. In Chapter 2, the systematic structural modification of oligoamide macrocycles 1, the so-called first-generation of these shape-persistent macrocycles, has led to third-generation macrocycles 3. The third generation was found to exhibit unprecedented, strong intermolecular association in both the solid state and solution via multiple techniques including X-ray diffraction (XRD), SEM, and 1H NMR. Fluorescence spectroscopy paired with dynamic light scattering (DLS) revealed that macrocycles 3 can assemble into a singly dispersed nanotubular structure in solution. The resultant self-assembling pores consisting of 3 were examined by HPTS-LUVs assays and BLM studies (Chapter 3) and found to form cation-selective (PK+/PCl- = 69:1) transmembrane ion channels with large conductance (200 ˜ 2000 pS for alkali cations) and high stability with open times reaching to 103 seconds. Tuning the aggregation state of macrocycles by choosing an appropriate polar solvent mixture (i.e., 3:1, THF:DMF, v/v) and concentration led to the formation of ion channels with well-defined square top behavior. A parallel study using DLS to examine the size of aggregates was used in conjunction with channel activity assays (LUVs/BLM) to reveal the effects of the aggregation state on channel activity. Empirical evidence now clearly indicates that a preassembled state, perhaps that of a nanotubular assembly, rather than the individual molecules of 3, is required to partition into the lipid bilayer in order for these macrocycles to act as channels. Further structural modification has led to fourth-generation macrocycles 4 having readily-tunable cavities (Chapter 4). Macrocycles 4 , with a hybrid backbone composed half of the oligoamide and half of the phenylene ethynylene moieties, exhibits similar self-assembling behavior by forming nanotubular stacks. The results of a preliminary study based on LUVs-assays and BLM single channel recording experiments are summarized and clearly indicate that ion channels formed by this fourth-generation exhibit high stability and differing ion selectivity largely consistent with the corresponding structural modification of the interior cavity. Especially, the increased anion conductance observed for 4d indicates that our strategy of tuning supramolecular function based on synthetic modification of the backbone and pore is effective. In Chapter 5, our four-residue tetraurea macrocycles 5 have shown significant potency to selectively interact with the G-quadruplex, leading to a strong stabilization effect for G-quadruplex without binding to duplex DNA as observed by UV-melt assays. The ready synthetic availability of these macrocycles makes them amenable to future chemical modification, which allows systematic improvement of binding affinity and specificity. Moreover, it has been discovered that these macrocycles can partition into lipid bilayers and form very stable transmembrane ion channels with a pore size of ˜5 A. Preliminary data shows that this smaller ion channel may lead to exceptional ion conducting selectivity, which is rarely seen in the field of synthetic ion pores. These molecules may serve as a unique platform for the rational development of potent and versatile therapeutic agents. The exceptional ion conducting properties of these channels place aromatic oligoamide macrocycles 3 and 4 at a unique position with both high conductance and long channel-opening duration. These results demonstrate that oligoamide macrocycles provide us a reliable platform based on which further development of highly conducting and selective synthetic mass-transporting channels, with functions that are comparable to or even rival those of natural channels and pores, may be developed. Further improvement of these synthetic channels could lead to numerous applications, such as those for complementing ion channel deficiency in clinical medicine, designing biosensors, and the development of new materials, as well as their use in separation and purifications.
Company, Anna; Jee, Joo-Eun; Ribas, Xavi; Lopez-Valbuena, Josep Maria; Gómez, Laura; Corbella, Montserrat; Llobet, Antoni; Mahía, José; Benet-Buchholz, Jordi; Costas, Miquel; van Eldik, Rudi
2007-10-29
A study of the reversible CO2 fixation by a series of macrocyclic dicopper complexes is described. The dicopper macrocyclic complexes [Cu2(OH)2(Me2p)](CF3SO3)2, 1(CF3SO3)2, and [Cu2(mu-OH)2(Me2m)](CF3SO3)2, 2(CF3SO3)2, (Scheme 1) containing terminally bound and bridging hydroxide ligands, respectively, promote reversible inter- and intramolecular CO2 fixation that results in the formation of the carbonate complexes [{Cu2(Me2p)}2(mu-CO3)2](CF3SO3)4, 4(CF3SO3)4, and [Cu2(mu-CO3)(Me2m)](CF3SO3)2, 5(CF3SO3)2. Under a N2 atmosphere the complexes evolve CO2 and revert to the starting hydroxo complexes 1(CF3SO3)2 and 2(CF3SO3)2, a reaction the rate of which linearly depends on [H2O]. In the presence of water, attempts to crystallize 5(CF3SO3)2 afford [{Cu2(Me2m)(H2O)}2(mu-CO3)2](CF3SO3)4, 6(CF3SO3)4, which appears to rapidly convert to 5(CF3SO3)2 in acetonitrile solution. [Cu2(OH)2(H3m)]2+, 7, which contains a larger macrocyclic ligand, irreversibly reacts with atmospheric CO2 to generate cagelike [{Cu2(H3m)}2(mu-CO3)2](ClO4)4, 8(ClO4)4. However, addition of 1 equiv of HClO4 per Cu generates [Cu2(H3m)(CH3CN)4]4+ (3), and subsequent addition of Et3N under air reassembles 8. The carbonate complexes 4(CF3SO3)4, 5(CF3SO3)2, 6(CF3SO3)4, and 8(ClO4)4 have been characterized in the solid state by X-ray crystallography. This analysis reveals that 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 consist of self-assembled molecular boxes containing two macrocyclic dicopper complexes, bridged by CO32- ligands. The bridging mode of the carbonate ligand is anti-anti-mu-eta1:eta1 in 4(CF3SO3)4, anti-anti-mu-eta2:eta1 in 6(CF3SO3)4 and anti-anti-mu-eta2:eta2 in 5(CF3SO3)2 and 8(ClO4)4. Magnetic susceptibility measurements on 4(CF3SO3)4, 6(CF3SO3)4, and 8(ClO4)4 indicate that the carbonate ligands mediate antiferromagnetic coupling between each pair of bridged CuII ions (J = -23.1, -108.3, and -163.4 cm-1, respectively, H = -JS1S2). Detailed kinetic analyses of the reaction between carbon dioxide and the macrocyclic complexes 1(CF3SO3)2 and 2(CF3SO3)2 suggest that it is actually hydrogen carbonate formed in aqueous solution on dissolving CO2 that is responsible for the observed formation of the different carbonate complexes controlled by the binding mode of the hydroxy ligands. This study shows that CO2 fixation can be used as an on/off switch for the reversible self-assembly of supramolecular structures based on macrocyclic dicopper complexes.
Maran, Umamageswaran; Britt, David; Fox, Christopher B; Harris, Joel M; Orendt, Anita M; Conley, Hiram; Davis, Robert; Hlady, Vladamir; Stang, Peter J
2009-08-24
The self-assembly and characterization of a novel supramolecular amphiphile built from a new 60 degree amphiphilic precursor that incorporates hydrophilic platinum(II) metals and hydrophobic dioctadecyloxy chains is reported. The amphiphilic macrocycle and its precursor compound have been characterized by multinuclear NMR spectroscopy, ESI-MS, and other standard techniques. The coacervate morphology of the amphiphile at the liquid-liquid interface has been studied by using confocal optical microscopy and in situ Raman spectroscopy. The self-assembly of the amphiphilic macrocycle at the air-water interface has been investigated through Langmuir-trough techniques. The study indicates the possible formation of surface micelle-like aggregates. The disparity between the experimental molecular areas and those derived from molecular models support the idea of aggregation. AFM images of the surface aggregates show the formation of a flat topology with arbitrary ridgelike patterns. Reasonable molecular-packing arrangements are proposed to explain the molecular organization within the observed structures.
Li, Xiaopeng; Chan, Yi-Tsu; Casiano-Maldonado, Madalis; Yu, Jing; Carri, Gustavo A; Newkome, George R; Wesdemiotis, Chrys
2011-09-01
The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the
NASA Astrophysics Data System (ADS)
Xu, Qizhi
This thesis introduces a new strategy to fabricate single molecular transistor by utilizing the covalent chemistry to reconnect the molecule with the electroburnt graphene nanogap. We studied the effect of coupling chemistry and molecular length on the efficiency of reconnection between the molecule and the graphene. With this technique, we are also able to observe the Coulomb Blockade phenomenon, which is a characteristics of single-electron transistors. The high yield and versatility of this approach augur well for creating a new generation of sensors, switches, and other functional devices using graphene contacts. This thesis also introduces a new type of organic single-crystal p-n heterojunction inspired from the ball-and-socket shape-complementarity between fullerene and contorted dibenzotetrathienocoronene (c-DBTTC). We studied the influence of temperature, pressure, and time on the self-assembly process of contorted dibenzotetrathienocoronene on the as-grown fullerene crystals. We also utilized fluorescence microscopy to investigate the charge transfer in this type of p-n heterojunction. Finally, this thesis introduces one-dimensional and two-dimensional programming in solid-state materials from superatom macrocycles. We find that the linkers that bridges the two superatoms determine the distance and electronic coupling between the two superatoms in the macrocycle, which in turn determines the way they self-assembled in the solid-state materials. The thesis is composed of four chapters. The first chapter introduces why we are in terested in molecular transistors and new functional materials, and what has been done so far. The second chapter described the approach we developed to assemble single molecule into circuits with graphene electrodes. The third chapter details the method to fabricate the organic single-crystal C60-DBTTC p-n heterojunction, which is of great importance to understand their charge transfer process. The last chapter introduced a new series of superatom macrocycles and their self-assembly into solid-state materials with electron acceptor tetracyanoethylene.
On-Surface Synthesis and Characterization of Honeycombene Oligophenylene Macrocycles.
Chen, Min; Shang, Jian; Wang, Yongfeng; Wu, Kai; Kuttner, Julian; Hilt, Gerhard; Hieringer, Wolfgang; Gottfried, J Michael
2017-01-24
We report the on-surface formation and characterization of [30]-honeycombene, a cyclotriacontaphenylene, which consists of 30 phenyl rings (C 180 H 120 ) and has a diameter of 4.0 nm. This shape-persistent, conjugated, and unsubstituted hexagonal hydrocarbon macrocycle was obtained by solvent-free synthesis on a silver (111) single-crystal surface, making solubility-enhancing alkyl side groups unnecessary. Side products include strained macrocycles with square, pentagonal, and heptagonal shape. The molecules were characterized by scanning tunneling microscopy and density functional theory (DFT) calculations. On the Ag(111) surface, the macrocycles act as molecular quantum corrals and lead to the confinement of surface-state electrons inside the central cavity. The energy of the confined surface state correlates with the size of the macrocycle and is well described by a particle-in-the-box model. Tunneling spectroscopy suggests conjugation within the planar rings and reveals influences of self-assembly on the electronic structure. While the adsorbed molecules appear to be approximately planar, the free molecules have nonplanar conformation, according to DFT.
Zerkoune, Leïla; Angelova, Angelina; Lesieur, Sylviane
2014-01-01
A variety of cyclodextrin-based molecular structures, with substitutions of either primary or secondary faces of the natural oligosaccharide macrocycles of α-, β-, or γ-cyclodextrins, have been designed towards innovative applications of self-assembled cyclodextrin nanomaterials. Amphiphilic cyclodextrins have been obtained by chemical or enzymatic modifications of their macrocycles using phospholipidyl, peptidolipidyl, cholesteryl, and oligo(ethylene oxide) anchors as well as variable numbers of grafted hydrophobic hydrocarbon or fluorinated chains. These novel compounds may self-assemble in an aqueous medium into different types of supramolecular nanoassemblies (vesicles, micelles, nanorods, nanospheres, and other kinds of nanoparticles and liquid crystalline structures). This review discusses the supramolecular nanoarchitectures, which can be formed by amphiphilic cyclodextrin derivatives in mixtures with other molecules (phospholipids, surfactants, and olygonucleotides). Biomedical applications are foreseen for nanoencapsulation of drug molecules in the hydrophobic interchain volumes and nanocavities of the amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), anticancer phototherapy, gene delivery, as well as for protection of instable active ingredients through inclusion complexation in nanostructured media. PMID:28344245
Supramolecular macrocycles reversibly assembled by Te…O chalcogen bonding
Ho, Peter C.; Szydlowski, Patrick; Sinclair, Jocelyn; Elder, Philip J. W.; Kübel, Joachim; Gendy, Chris; Lee, Lucia Myongwon; Jenkins, Hilary; Britten, James F.; Morim, Derek R.; Vargas-Baca, Ignacio
2016-01-01
Organic molecules with heavy main-group elements frequently form supramolecular links to electron-rich centres. One particular case of such interactions is halogen bonding. Most studies of this phenomenon have been concerned with either dimers or infinitely extended structures (polymers and lattices) but well-defined cyclic structures remain elusive. Here we present oligomeric aggregates of heterocycles that are linked by chalcogen-centered interactions and behave as genuine macrocyclic species. The molecules of 3-methyl-5-phenyl-1,2-tellurazole 2-oxide assemble a variety of supramolecular aggregates that includes cyclic tetramers and hexamers, as well as a helical polymer. In all these aggregates, the building blocks are connected by Te…O–N bridges. Nuclear magnetic resonance spectroscopic experiments demonstrate that the two types of annular aggregates are persistent in solution. These self-assembled structures form coordination complexes with transition-metal ions, act as fullerene receptors and host small molecules in a crystal. PMID:27090355
Imine-based [2]catenanes in water.
Caprice, Kenji; Pupier, Marion; Kruve, Anneli; Schalley, Christoph A; Cougnon, Fabien B L
2018-02-07
We report the efficient condensation of imine-based macrocycles from dialdehyde A and aliphatic diamines B n in pure water. Within the libraries, we identified a family of homologous amphiphilic [2]catenanes, whose self-assembly is primarily driven by the hydrophobic effect. The length and odd-even character of the diamine alkyl linker dictate both the yield and the conformation of the [2]catenanes, whose particular thermodynamic stability further shifts the overall equilibrium in favour of imine condensation. These findings highlight the role played by solvophobic effects in the self-assembly of complex architectures.
Chen, Liang; Xiang, Jun; Zhao, Yue; Yan, Qiang
2018-05-29
Chalcogen-bonding interactions have been viewed as new noncovalent forces in supramolecular chemistry. However, harnessing chalcogen bonds to drive molecular self-assembly processes is still unexplored. Here we report for the first time a novel class of supra-amphiphiles formed by Te···O or Se···O chalcogen-bonding interactions, and their self-assembly into supramolecular vesicles and nanofibers. A quasi-calix[4]chalcogenadiazole (C4Ch) as macrocyclic donor and a tailed pyridine N-oxide surfactant as molecular acceptor are designed to construct the donor-acceptor complex via chalcogen-chalcogen connection between the chalcogenadiazole moieties and oxide anion. The affinity of such chalcogen-bonding can dictate the geometry of supra-amphiphiles, driving diverse self-assembled morphologies. Furthermore, the reversible disassembly of these nanostructures can be promoted by introducing competing anions, such as halide ions, or by decreasing the systemic pH value.
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
Chlistunoff, Jerzy; Sansinena, Jose -Maria
2016-11-17
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
Nafion induced surface confinement of oxygen in carbon-supported oxygen reduction catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlistunoff, Jerzy; Sansinena, Jose -Maria
We studied the surface confinement of oxygen inside layers of Nafion self-assembled on carbon-supported oxygen reduction reaction (ORR) catalysts. It is demonstrated that oxygen accumulates in the hydrophobic component of the polymer remaining in contact with the carbon surface. Furthermore, the amount of surface confined oxygen increases with the degree of carbon surface graphitization, which promotes the self-assembly of the polymer. Planar macrocyclic ORR catalysts possessing a delocalized system of π electrons such as Co and Fe porphyrins and phthalocyanines have virtually no effect on the surface confinement of oxygen, in accordance with their structural similarity to graphitic carbon surfacesmore » where they adsorb. Platinum particles in carbon-supported ORR catalysts with high metal contents (20%) disrupt the self-assembly of Nafion and virtually eliminate the oxygen confinement, but the phenomenon is still observed for low Pt loading (4.8%) catalysts.« less
On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters.
Miró, Pere; Pierrefixe, Simon; Gicquel, Mickaël; Gil, Adrià; Bo, Carles
2010-12-22
Uranyl-peroxide nanoclusters display different topologies based on square, pentagonal and hexagonal building blocks. Computed complexation energies of different cations (Li(+), Na(+), K(+), Rb(+), and Cs(+)) with [UO(2)(O(2))(H(2)O)](n) (n = 4, 5, and 6) macrocycles suggest a strong cation templating effect. The inherent bent structure of a U-O(2)-U model dimer is demonstrated and justified through the analysis of its electronic structure, as well as of the inherent curvature of the four-, five-, and six-uranyl macrocyles. The curvature is enhaced by cation coordination, which is suggested to be the driving force for the self-assembly of the nanocapsules.
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
Switchable host-guest systems on surfaces.
Yang, Ying-Wei; Sun, Yu-Long; Song, Nan
2014-07-15
CONSPECTUS: For device miniaturization, nanotechnology follows either the "top-down" approach scaling down existing larger-scale devices or the "bottom-up' approach assembling the smallest possible building blocks to functional nanoscale entities. For synthetic nanodevices, self-assembly on surfaces is a superb method to achieve useful functions and enable their interactions with the surrounding world. Consequently, adaptability and responsiveness to external stimuli are other prerequisites for their successful operation. Mechanically interlocked molecules such as rotaxanes and catenanes, and their precursors, that is, molecular switches and supramolecular switches including pseudorotaxanes, are molecular machines or prototypes of machines capable of mechanical motion induced by chemical signals, biological inputs, light or redox processes as the external stimuli. Switching of these functional host-guest systems on surfaces becomes a fundamental requirement for artificial molecular machines to work, mimicking the molecular machines in nature, such as proteins and their assemblies operating at dynamic interfaces such as the surfaces of cell membranes. Current research endeavors in material science and technology are focused on developing either a new class of materials or materials with novel/multiple functionalities by shifting host-guest chemistry from solution phase to surfaces. In this Account, we present our most recent attempts of building monolayers of rotaxanes/pseudorotaxanes on surfaces, providing stimuli-induced macroscopic effects and further understanding on the switchable host-guest systems at interfaces. Biocompatible versions of molecular machines based on synthetic macrocycles, such as cucurbiturils, pillararenes, calixarenes, and cyclodextrins, have been employed to form self-assembled monolayers of gates on the surfaces of mesoporous silica nanoparticles to regulate the controlled release of cargo/drug molecules under a range of external stimuli, such as light, pH variations, competitive binding, and enzyme. Rotaxanes have also been assembled onto the surfaces of gold nanodisks and microcantilevers to realize active molecular plasmonics and synthetic molecular actuators for device fabrication and function. Pillararenes have been successfully used to control and aid the synthesis of gold nanoparticles, semiconducting quantum dots, and magnetic nanoparticles. The resulting organic-inorganic hydrid nanomaterials have been successfully used for controlled self-assembly, herbicide sensing and detection, pesticide removal, and so forth, taking advantage of the selective binding of pillarenes toward target molecules. Cyclodextrins have also been successfully functionalized onto the surface of gold nanoparticles to serve as recycling extractors for C60. Many interesting prototypes of nanodevices based on synthetic macrocycles and their host-guest chemistry have been constructed and served for different potential applications. This Account will be a summary of the efforts made mainly by us, and others, on the host-guest chemistry of synthetic macrocyclic compounds on the surfaces of different solid supports.
Kundeti, Vamsi; Rajasekaran, Sanguthevar
2012-06-01
Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235-253, 2009), to self assemble rectangles (of fixed aspect ratio) with high probability. The tile complexity of our algorithm is Θ(log( n )) and is optimal on the probabilistic tile assembly model (PTAM)- n being an upper bound on the dimensions of a rectangle.
Lu, Hoang D; Lim, Tristan L; Javitt, Shoshana; Heinmiller, Andrew; Prud'homme, Robert K
2017-06-12
Optical imaging is a rapidly progressing medical technique that can benefit from the development of new and improved optical imaging agents suitable for use in vivo. However, the molecular rules detailing what optical agents can be processed and encapsulated into in vivo presentable forms are not known. We here present the screening of series of highly hydrophobic porphyrin, phthalocyanine, and naphthalocyanine dye macrocycles through a self-assembling Flash NanoPrecipitation process to form a series of water dispersible dye nanoparticles (NPs). Ten out of 19 tested dyes could be formed into poly(ethylene glycol) coated nanoparticles 60-150 nm in size, and these results shed insight on dye structural criteria that are required to permit dye assembly into NPs. Dye NPs display a diverse range of absorbance profiles with absorbance maxima within the NIR region, and have absorbance that can be tuned by varying dye choice or by doping bulking materials in the NP core. Particle properties such as dye core load and the compositions of co-core dopants were varied, and subsequent effects on photoacoustic and fluorescence signal intensities were measured. These results provide guidelines for designing NPs optimized for photoacoustic imaging and NPs optimized for fluorescence imaging. This work provides important details for dye NP engineering, and expands the optical imaging tools available for use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jentzen, W.; Song, X.Z.; Shelnutt, J.A.
1997-02-27
The X-ray crystal structures of synthetic and protein-bound metalloporphyrins are analyzed using a new normal structural decomposition method for classifying and quantifying their out-of-plane and in-plane distortions. These distortions are characterized in terms of equivalent displacements along the normal coordinates of the D{sub 4h}-symmetric porphyrin macrocycle (normal deformations). It is shown that the macrocyclic structure is, even in highly distorted porphyrins, accurately represented by displacements along only the lowest-frequency normal coordinates. Accordingly, the macrocyclic structure obtained from just the out-of-plane normal deformations of the saddling (sad, B{sub 2u})-, ruffling (ruf, B{sub 1u})-, doming (dom, A{sub 2u})-, waving [wav(x), wav(y); E{submore » g}]-, and propellering (pro, A{sub 1u})-type essentially simulates the out-of-plane distortion of the X-ray crystal structure. Similarly, the observed in-plane distortions are decomposed into in-plane normal deformations corresponding to the lowest-frequency vibrational modes including macrocycle stretching in the direction of the meso-carbon atoms (meso-str, B{sub 2g}), stretching in the direction of the nitrogen atoms (N-str, B{sub 1g}), x and y pyrrole translations [trn(x), trn(y); E{sub u}], macrocycle breathing (bre, A{sub 1g}), and pyrrole rotation (rot, A{sub 2g}). 71 refs., 9 figs., 4 tabs.« less
Rajasekaran, Sanguthevar
2013-01-01
Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is Ω(log(n)log(log(n))) (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing Θ(log(n)log(log(n))) unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio (α:β), with high probability, using Θ(α + β) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85–94, 2009)—which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling. This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP ’09, Springer-Verlag, pp 235–253, 2009), to self assemble rectangles (of fixed aspect ratio) with high probability. The tile complexity of our algorithm is Θ(log(n)) and is optimal on the probabilistic tile assembly model (PTAM)—n being an upper bound on the dimensions of a rectangle. PMID:24311993
Aucagne, Vincent; Berna, José; Crowley, James D; Goldup, Stephen M; Hänni, Kevin D; Leigh, David A; Lusby, Paul J; Ronaldson, Vicki E; Slawin, Alexandra M Z; Viterisi, Aurélien; Walker, D Barney
2007-10-03
A synthetic approach to rotaxane architectures is described in which metal atoms catalyze covalent bond formation while simultaneously acting as the template for the assembly of the mechanically interlocked structure. This "active-metal" template strategy is exemplified using the Huisgen-Meldal-Fokin Cu(I)-catalyzed 1,3-cycloaddition of azides with terminal alkynes (the CuAAC "click" reaction). Coordination of Cu(I) to an endotopic pyridine-containing macrocycle allows the alkyne and azide to bind to metal atoms in such a way that the metal-mediated bond-forming reaction takes place through the cavity of the macrocycle--or macrocycles--forming a rotaxane. A variety of mono- and bidentate macrocyclic ligands are demonstrated to form [2]rotaxanes in this way, and by adding pyridine, the metal can turn over during the reaction, giving a catalytic active-metal template assembly process. Both the stoichiometric and catalytic versions of the reaction were also used to synthesize more complex two-station molecular shuttles. The dynamics of the translocation of the macrocycle by ligand exchange in these two-station shuttles could be controlled by coordination to different metal ions (rapid shuttling is observed with Cu(I), slow shuttling with Pd(II)). Under active-metal template reaction conditions that feature a high macrocycle:copper ratio, [3]rotaxanes (two macrocycles on a thread containing a single triazole ring) are also produced during the reaction. The latter observation shows that under these conditions the mechanism of the Cu(I)-catalyzed terminal alkyne-azide cycloaddition involves a reactive intermediate that features at least two metal ions.
Artificial enzymes based on supramolecular scaffolds.
Dong, Zeyuan; Luo, Quan; Liu, Junqiu
2012-12-07
Enzymes are nanometer-sized molecules with three-dimensional structures created by the folding and self-assembly of polymeric chain-like components through supramolecular interactions. They are capable of performing catalytic functions usually accompanied by a variety of conformational states. The conformational diversities and complexities of natural enzymes exerted in catalysis seriously restrict the detailed understanding of enzymatic mechanisms in molecular terms. A supramolecular viewpoint is undoubtedly helpful in understanding the principle of enzyme catalysis. The emergence of supramolecular artificial enzymes therefore provides an alternative way to approach the structural complexity and thus to unravel the mystery of enzyme catalysis. This critical review covers the recent development of artificial enzymes designed based on supramolecular scaffolds ranging from the synthetic macrocycles to self-assembled nanometer-sized objects. Such findings are anticipated to facilitate the design of supramolecular artificial enzymes as well as their potential uses in important fields, such as manufacturing and food industries, environmental biosensors, pharmaceutics and so on.
Bambus[6]uril as a novel macrocyclic receptor for the nitrate anion.
Toman, Petr; Makrlík, Emanuel; Vanura, Petr
2013-01-01
By using quantum mechanical DFT calculations, the most probable structure of the bambus[6]uril x NO3(-) anionic complex species was derived. In this complex having C3 symmetry, the nitrate anion NO3(-), included in the macrocyclic cavity, is bound by twelve weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the considered NO3(-) ion.
Host-guest capability of a three-dimensional heterometallic macrocycle.
Fan, Qi-Jia; Lin, Yue-Jian; Hahn, F Ekkehardt; Jin, Guo-Xin
2018-02-13
A three-dimensional heterometallic coordination macrocycle is found to be capable of encapsulating planar pyrene (G1), coronene (G4) and non-planar corannulene (G2) guest molecules in high yields, giving rise to 1 : 1 host-guest complexes. The bowl-shaped guest corannulene is found to be significantly flattened upon inclusion within the cavity. However, macrocyclic compounds with larger cavity sizes, which form 1 : 1 stoichiometry assemblies with a naphthalene bisimide planar molecule (G3), are more inclined to form infinite sandwich structures. Furthermore, these heterometallic coordination macrocycles can be destroyed in the presence of a soft base to form hexanuclear triangular prism complexes. These structures are unambiguously revealed by single-crystal X-ray analysis.
Sayed, Mhejabeen; Pal, Haridas
2015-04-14
The differential binding affinity of the hydroxypropyl-β-cyclodextrin (HPβCD) macrocycle, a drug delivery vehicle, towards the protonated and deprotonated forms of the well-known DNA binder and model anticancer drug acridine has been exploited as a strategy for dye-drug transportation and pH-responsive delivery to a natural DNA target. From pH-sensitive changes in the ground state absorption and steady-state fluorescence characteristics of the studied acridine dye-HPβCD-DNA ternary system and strongly supported by fluorescence lifetime, fluorescence anisotropy, Job's plots, (1)H NMR and circular dichroism results, it is revealed that in a moderately alkaline solution (pH ∼ 8.5), the dye can be predominantly bound to the HPβCD macrocycle and when the pH is lowered to a moderately acidic region (pH ∼ 4), the dye efficiently detaches from the HPβCD cavity and almost exclusively binds to DNA. In the present study we are thus able to construct a pH-sensitive supramolecular assembly where pH acts as a simple stimulus for controlled uptake and targeted release of the dye-drug. As pH is an essential and sensitive factor in various biological processes, a simple yet reliable pH-sensitive model such as is demonstrated here can have promising applications in the host-assisted delivery of prodrug to the target sites, such as cancer or tumour microenvironments, with an enhanced stability, bioavailability and activity, and also in the design of new fluorescent probes, sensors and smart materials for applications in nano-science.
Aggregation of p-Sulfonatocalixarene-Based Amphiphiles and Supra-Amphiphiles
Basilio, Nuno; Francisco, Vitor; Garcia-Rio, Luis
2013-01-01
p-Sulfonatocalixarenes are a special class of water soluble macrocyclic molecules made of 4-hydroxybenzenesulfonate units linked by methylene bridges. One of the main features of these compounds relies on their ability to form inclusion complexes with cationic and neutral species. This feature, together with their water solubility and apparent biological compatibility, had enabled them to emerge as one the most important host receptors in supramolecular chemistry. Attachment of hydrophobic alkyl chains to these compounds leads to the formation of macrocyclic host molecules with amphiphilic properties. Like other oligomeric surfactants, these compounds present improved performance with respect to their monomeric counterparts. In addition, they hold their recognition abilities and present several structural features that depend on the size of the macrocycle and on the length of the alkyl chain, such as preorganization, flexibility and adopted conformations, which make these molecules very interesting to study structure-aggregation relationships. Moreover, the recognition abilities of p-sulfonatocalixarenes enable them to be applied in the design of amphiphiles constructed from non-covalent, rather than covalent, bonds (supramolecular amphiphiles). In this review, we summarize the developments made on the design and synthesis of p-sulfonatocalixarenes-based surfactants, the characterization of their self-assembly properties and on how their structure affects these properties. PMID:23380960
Nosov, Roman; Padnya, Pavel; Shurpik, Dmitriy; Stoikov, Ivan
2018-05-08
A convenient approach to the synthesis of multithiacalix[4]arene derivatives containing amino groups and phthalimide fragments by the formation of quaternary ammonium salts is presented. As the initial macrocycle for the synthesis of multithiacalix[4]arenes, a differently substituted p-tert- butylthiacalix[4]arene containing bromoacetamide and three phthalimide fragments was used in a 1,3-alternate conformation. The macrocycle in cone conformation containing the tertiary amino groups was found to be a convenient core for the multithiacalix[4]arene systems. Interaction of the core multithiacalix[4]arene with monobromoacetamide derivatives of p-tert- butylthiacalix[4]arene resulted in formation in high yields of pentakisthiacalix[4]arene containing quaternary ammonium and phthalimide fragments. The removal of phthalimide groups led to the formation of amino multithiacalix[4]arene in a good yield. Based on dynamic light scattering, it was shown that the synthesized amino multithiacalix[4]arene, with pronounced hydrophobic and hydrophilic fragments, formed dendrimer-like nanoparticles in water via direct supramolecular self-assembly.
Iritani, Kohei; Ikeda, Motoki; Yang, Anna; Tahara, Kazukuni; Anzai, Masaru; Hirose, Keiji; De Feyter, Steven; Moore, Jeffrey S; Tobe, Yoshito
2018-05-29
We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C 10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.
Oxidative Carbocation Formation in Macrocycles: Synthesis of the Neopeltolide Macrocycle**
Tu, Wangyang
2009-01-01
Processes for the functionalization of carbon–hydrogen bonds are the focus of significant attention in organic synthesis[1] in response to the need to streamline molecular assembly. As a continuation of our efforts to generate carbocations through single-electron oxidation reactions,[2] we recently reported[3] DDQ-mediated cyclization reactions of benzylic and allylic ethers (Scheme 1; DDQ =2,3-dichloro-4,5-dicyanoquinone). PMID:19455526
Bilbao, Nerea; Destoop, Iris; De Feyter, Steven; González-Rodríguez, David
2016-01-11
We present an approach that makes use of DNA base pairing to produce hydrogen-bonded macrocycles whose supramolecular structure can be transferred from solution to a solid substrate. A hierarchical assembly process ultimately leads to two-dimensional nanostructured porous networks that are able to host size-complementary guests. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.
del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R
2011-08-14
A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011
High degree of polymerization in a fullerene-containing supramolecular polymer.
Isla, Helena; Pérez, Emilio M; Martín, Nazario
2014-05-26
Supramolecular polymers based on dispersion forces typically show lower molecular weights (MW) than those based on hydrogen bonding or metal-ligand coordination. We present the synthesis and self-assembling properties of a monomer featuring two complementary units, a C60 derivative and an exTTF-based macrocycle, that interact mainly through π-π, charge-transfer, and van der Waals interactions. Thanks to the preorganization in the host part, a remarkable log K(a)=5.1±0.5 in CHCl3 at room temperature is determined for the host-guest couple. In accordance with the large binding constant, the monomer self-assembles in the gas phase, in solution, and in the solid state to form linear supramolecular polymers with a very high degree of polymerization. A MW above 150 kDa has been found experimentally in solution, while in the solid state the monomer forms extraordinarily long, straight, and uniform fibers with lengths reaching several microns. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
m-Diethynylbenzene macrocycles: syntheses and self-association behavior in solution.
Tobe, Yoshito; Utsumi, Naoto; Kawabata, Kazuya; Nagano, Atsushi; Adachi, Kiyomi; Araki, Shunji; Sonoda, Motohiro; Hirose, Keiji; Naemura, Koichiro
2002-05-15
m-Diethynylbenzene macrocycles (DBMs), buta-1,3-diyne-bridged [4(n)]metacyclophanes, have been synthesized and their self-association behaviors in solution were investigated. Cyclic tetramers, hexamers, and octamers of DBMs having exo-annular octyl, hexadecyl, and 3,6,9-trioxadecyl ester groups were prepared by intermolecular oxidative coupling of dimer units or intramolecular cyclization of the corresponding open-chain oligomers. The aggregation properties were investigated by two methods, the (1)H NMR spectra and the vapor pressure osmometry (VPO). Although some discrepancies were observed between the association constants obtained from the two methods, the qualitative view was consistent with each other. The analysis of self-aggregation by VPO revealed unique aggregation behavior of DBMs in acetone and toluene, which was not elucidated by the NMR method. Namely, the association constants for infinite association are several times larger than the dimerization constant, suggesting that the aggregation is enhanced by the formation of dimers (a nucleation mechanism). In polar solvents, DBMs aggregate more strongly than in chloroform due to the solvophobic interactions between the macrocyclic framework and the solvents. Moreover, DBMs self-associate in aromatic solvents such as toluene and o-xylene more readily than in chloroform. In particular, the hexameric DBM having a large macrocyclic cavity exhibits extremely large association constants in aromatic solvents. By comparing the aggregation properties of DBMs with the corresponding acyclic oligomers, the effect of the macrocyclic structure on the aggregation propensity was clarified. Finally, it turned out that DBMs tend to aggregate more readily than the corresponding phenylacetylene macrocycles, acetylene-bridged [2(n)]metacyclophanes, owing to the withdrawal of the electron density from the aromatic rings by the butadiyne linkages which facilitates pi-pi stacking interactions.
One-Bead-Two-Compound Thioether Bridged Macrocyclic γ-AApeptide Screening Library against EphA2.
Shi, Yan; Challa, Sridevi; Sang, Peng; She, Fengyu; Li, Chunpu; Gray, Geoffrey M; Nimmagadda, Alekhya; Teng, Peng; Odom, Timothy; Wang, Yan; van der Vaart, Arjan; Li, Qi; Cai, Jianfeng
2017-11-22
Identification of molecular ligands that recognize peptides or proteins is significant but poses a fundamental challenge in chemical biology and biomedical sciences. Development of cyclic peptidomimetic library is scarce, and thus discovery of cyclic peptidomimetic ligands for protein targets is rare. Herein we report the unprecedented one-bead-two-compound (OBTC) combinatorial library based on a novel class of the macrocyclic peptidomimetics γ-AApeptides. In the library, we utilized the coding peptide tags synthesized with Dde-protected α-amino acids, which were orthogonal to solid phase synthesis of γ-AApeptides. Employing the thioether linkage, the desired macrocyclic γ-AApeptides were found to be effective for ligand identification. Screening the library against the receptor tyrosine kinase EphA2 led to the discovery of one lead compound that tightly bound to EphA2 (K d = 81 nM) and potently antagonized EphA2-mediated signaling. This new approach of macrocyclic peptidomimetic library may lead to a novel platform for biomacromolecular surface recognition and function modulation.
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2017-05-01
We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.
Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven
2018-04-11
A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.
1981-05-13
34molecular metals." THE COFACIAL ASSEMBLY STRATEGY Although the above molecular macrocycle, halogen cocrystalli - zation approach to the synthesis of...substitute various oxidizing quinones for halogens in the cocrystallization synthesis have failed because integrated stacK (Figure 2C,D) insulators are
NASA Astrophysics Data System (ADS)
Kates-Harbeck, Julian; Tilloy, Antoine; Prentiss, Mara
2013-07-01
Inspired by RecA-protein-based homology recognition, we consider the pairing of two long linear arrays of binding sites. We propose a fully reversible, physically realizable biased random walk model for rapid and accurate self-assembly due to the spontaneous pairing of matching binding sites, where the statistics of the searched sample are included. In the model, there are two bound conformations, and the free energy for each conformation is a weakly nonlinear function of the number of contiguous matched bound sites.
Choudhury, Sharmistha Dutta; Barooah, Nilotpal; Aswal, Vinod Kumar; Pal, Haridas; Bhasikuttan, Achikanath C; Mohanty, Jyotirmayee
2014-05-21
This article demonstrates, for the first time, construction of novel cucurbituril (CB)-adorned supramolecular micellar assemblies of a cationic surfactant, cetylpyridinium chloride (CPC), through noncovalent host-guest interactions. The distinct cation receptor features and cavity dimensions of the CB5 and CB7 homologues assert that the macrocyclic hosts remain complexed with the CPC monomers and take part in the micelle formation, a unique observation in contrast to that of the classical host, β-cyclodextrin. The cooperative contributions of the CB macrocycles in the micelle formation have been documented by the photochemical, surface tension, conductivity, DOSY NMR, and SANS measurements. The contrasting downward and upward shifts in the cmc of the CPC surfactant, respectively, with CB5 and CB7 hosts provide a unique opportunity for the controlled tuning of the micellization region for CPC from 0.57 to 1.6 mM, by using a combination of the macrocyclic hosts. The article also establishes the reversible response of these soft supramolecular micellar structures to thermal-stimuli, which projects their utility for on-demand smart drug-delivery vehicles.
Mono- and multilayers of molecular spoked carbazole wheels on graphite
Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd
2014-01-01
Summary Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes – depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer. PMID:25550744
Carbohydrates in Supramolecular Chemistry.
Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H
2016-02-24
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Mono- and multilayers of molecular spoked carbazole wheels on graphite.
Jester, Stefan-S; Aggarwal, A Vikas; Kalle, Daniel; Höger, Sigurd
2014-01-01
Self-assembled monolayers of a molecular spoked wheel (a shape-persistent macrocycle with an intraannular spoke/hub system) and its synthetic precursor are investigated by scanning tunneling microscopy (STM) at the liquid/solid interface of 1-octanoic acid and highly oriented pyrolytic graphite. The submolecularly resolved STM images reveal that the molecules indeed behave as more or less rigid objects of certain sizes and shapes - depending on their chemical structures. In addition, the images provide insight into the multilayer growth of the molecular spoked wheels (MSWs), where the first adlayer acts as a template for the commensurate adsorption of molecules in the second layer.
Light-powered autonomous and directional molecular motion of a dissipative self-assembling system
NASA Astrophysics Data System (ADS)
Ragazzon, Giulio; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto
2015-01-01
Biomolecular motors convert energy into directed motion and operate away from thermal equilibrium. The development of dynamic chemical systems that exploit dissipative (non-equilibrium) processes is a challenge in supramolecular chemistry and a premise for the realization of artificial nanoscale motors. Here, we report the relative unidirectional transit of a non-symmetric molecular axle through a macrocycle powered solely by light. The molecular machine rectifies Brownian fluctuations by energy and information ratchet mechanisms and can repeat its working cycle under photostationary conditions. The system epitomizes the conceptual and practical elements forming the basis of autonomous light-powered directed motion with a minimalist molecular design.
High Affinity Macrocycle Threading by a Near-Infrared Croconaine Dye with Flanking Polymer Chains
Liu, Wenqi; Peck, Evan M.; Smith, Bradley D.
2016-01-01
Croconaine dyes have narrow and intense absorption bands at ~800 nm, very weak fluorescence, and high photostabilities, which combine to make them very attractive chromophores for absorption-based imaging or laser heating technologies. The physical supramolecular properties of croconaine dyes have rarely been investigated, especially in water. This study focuses on a molecular threading process that encapsulates a croconaine dye inside a tetralactam macrocycle in organic or aqueous solvent. Macrocycle association and rate constant data are reported for a series of croconaine structures with different substituents attached to the ends of the dye. The association constants were highest in water (Ka ~109 M−1), and the threading rate constants (kon) increased in the solvent order H2O > MeOH > CHCl3. Systematic variation of croconaine substituents located just outside the croconaine/macrocycle complexation interface hardly changed Ka but had a strong influence on kon. A croconaine dye with N-propyl groups at each end of the structure exhibited a desirable mixture of macrocycle threading properties; that is, there was rapid and quantitative croconaine/macrocycle complexation at relatively high concentrations in water, and no dissociation of the pre-assembled complex when it was diluted into a solution of fetal bovine serum, even after laser induced photothermal heating of the solution. The combination of favorable near-infrared absorption properties and tunable mechanical stability makes threaded croconaine/macrocycle complexes very attractive as molecular probes or as supramolecular composites for various applications in absorption-based imaging or photothermal therapy. PMID:26807599
Patrick, J S; Cooks, R G; Pachuta, S J
1994-11-01
Nucleic acid constituents can be bound to a metal surface in the form of self-assembled monolayers. Binding is achieved either through ionic interactions with a self-assembled 2-aminoethanethiol monolayer or by direct covalent binding of a dithiophosphate oligonucleotide to a metal surface through a sulfur-metal bond. Nucleotides, polynucleotides (both normal and a dithiophosphate analog) and double-stranded DNA have all been bound to surfaces. When the surfaces are interrogated using static secondary ion mass spectrometry (SIMS), the surface-bound nucleic acid constituents are observed in the form of the characteristic protonated nucleic acid base ions (BH2+). While a silver foil substrate was found to provide the highest absolute signal, vapor-deposited gold yields the best signal-to-noise ratio for ionically bound deoxyguanosine monophosphate. Under comparable conditions, a Cs+ projectile produces a 10-fold increase in the secondary ion signal relative to a Ga+ projectile. The experiment has been extended to a triple-quadrupole instrument where tandem mass spectrometric experiments on ionically immobilized dGMP showed the characteristic loss of ammonia from the released BH2+ ion. When a 'biomimetic' surface formed by ionically immobilizing double-stranded DNA is exposed to a solution containing ethidium bromide, ions corresponding to the non-covalent adduct are readily detectable using SIMS. This adduct and the nucleic acid constituents can be monitored at levels below 10 fmol.
Albumin binds self-assembling dyes as specific polymolecular ligands.
Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz
2006-12-15
Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.
A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging
Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong
2016-01-01
The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane–modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. PMID:26874280
Chen, I-Jen; Foloppe, Nicolas
2013-12-15
Computational conformational sampling underpins much of molecular modeling and design in pharmaceutical work. The sampling of smaller drug-like compounds has been an active area of research. However, few studies have tested in details the sampling of larger more flexible compounds, which are also relevant to drug discovery, including therapeutic peptides, macrocycles, and inhibitors of protein-protein interactions. Here, we investigate extensively mainstream conformational sampling methods on three carefully curated compound sets, namely the 'Drug-like', larger 'Flexible', and 'Macrocycle' compounds. These test molecules are chemically diverse with reliable X-ray protein-bound bioactive structures. The compared sampling methods include Stochastic Search and the recent LowModeMD from MOE, all the low-mode based approaches from MacroModel, and MD/LLMOD recently developed for macrocycles. In addition to default settings, key parameters of the sampling protocols were explored. The performance of the computational protocols was assessed via (i) the reproduction of the X-ray bioactive structures, (ii) the size, coverage and diversity of the output conformational ensembles, (iii) the compactness/extendedness of the conformers, and (iv) the ability to locate the global energy minimum. The influence of the stochastic nature of the searches on the results was also examined. Much better results were obtained by adopting search parameters enhanced over the default settings, while maintaining computational tractability. In MOE, the recent LowModeMD emerged as the method of choice. Mixed torsional/low-mode from MacroModel performed as well as LowModeMD, and MD/LLMOD performed well for macrocycles. The low-mode based approaches yielded very encouraging results with the flexible and macrocycle sets. Thus, one can productively tackle the computational conformational search of larger flexible compounds for drug discovery, including macrocycles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Alivisatos, A. Paul; Colvin, Vicki L.
1998-01-01
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.
Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens
2015-04-07
In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crystal structures of two cross-bridged chromium(III) tetraazamacrocycles
Prior, Timothy J.; Maples, Danny L.; Maples, Randall D.; Hoffert, Wesley A.; Parsell, Trenton H.; Silversides, Jon D.; Archibald, Stephen J.; Hubin, Timothy J.
2014-01-01
The crystal structure of dichlorido(4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane)chromium(III) hexafluoridophosphate, [CrCl2(C12H26N4)]PF6, (I), has monoclinic symmetry (space group P21/n) at 150 K. The structure of the related dichlorido(4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane)chromium(III) hexafluoridophosphate, [CrCl2(C14H30N4)]PF6, (II), also displays monoclinic symmetry (space group P21/c) at 150 K. In each case, the CrIII ion is hexacoordinate with two cis chloride ions and two non-adjacent N atoms bound cis equatorially and the other two non-adjacent N atoms bound trans axially in a cis-V conformation of the macrocycle. The extent of the distortion from the preferred octahedral coordination geometry of the CrIII ion is determined by the parent macrocycle ring size, with the larger cross-bridged cyclam ring in (II) better able to accommodate this preference and the smaller cross-bridged cyclen ring in (I) requiring more distortion away from octahedral geometry. PMID:25309165
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hao; Dranchak, Patricia; Li, Zhiru
Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanismmore » placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.« less
Alivisatos, A.P.; Colvin, V.L.
1998-05-12
Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.
Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging.
Peck, Evan M; Battles, Paul M; Rice, Douglas R; Roland, Felicia M; Norquest, Kathryn A; Smith, Bradley D
2016-05-18
A programmable pre-assembly method is described and shown to produce near-infrared fluorescent molecular probes with tunable multivalent binding properties. The modular assembly process threads one or two copies of a tetralactam macrocycle onto a fluorescent PEGylated squaraine scaffold containing a complementary number of docking stations. Appended to the macrocycle periphery are multiple copies of a ligand that is known to target a biomarker. The structure and high purity of each threaded complex was determined by independent spectrometric methods and also by gel electrophoresis. Especially helpful were diagnostic red-shift and energy transfer features in the absorption and fluorescence spectra. The threaded complexes were found to be effective multivalent molecular probes for fluorescence microscopy and in vivo fluorescence imaging of living subjects. Two multivalent probes were prepared and tested for targeting of bone in mice. A pre-assembled probe with 12 bone-targeting iminodiacetate ligands produced more bone accumulation than an analogous pre-assembled probe with six iminodiacetate ligands. Notably, there was no loss in probe fluorescence at the bone target site after 24 h in the living animal, indicating that the pre-assembled fluorescent probe maintained very high mechanical and chemical stability on the skeletal surface. The study shows how this versatile pre-assembly method can be used in a parallel combinatorial manner to produce libraries of near-infrared fluorescent multivalent molecular probes for different types of imaging and diagnostic applications, with incremental structural changes in the number of targeting groups, linker lengths, linker flexibility, and degree of PEGylation.
Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles.
Crowley, James D; Hänni, Kevin D; Leigh, David A; Slawin, Alexandra M Z
2010-04-14
A synthesis of [2]rotaxanes in which Zn(II) or Cu(II) Lewis acids catalyze a Diels-Alder cycloaddition to form the axle while simultaneously acting as the template for the assembly of the interlocked molecules is described. Coordination of the Lewis acid to a multidentate endotopic 2,6-di(methyleneoxymethyl)pyridyl- or bipyridine-containing macrocycle orients a chelated dienophile through the macrocycle cavity. Lewis acid activation of the double bond causes it to react with an incoming "stoppered" diene, affording the [2]rotaxane in up to 91% yield. Unusually for an active-template synthesis, the metal binding site "lives on" in these rotaxanes. This was exploited in the synthesis of a molecular shuttle containing two different ligating sites in which the position of the macrocycle could be switched by complexation with metal ions [Zn(II) and Pd(II)] with different preferred coordination geometries.
Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.
Joshi, Tanmaya; Graham, Bim; Spiccia, Leone
2015-08-18
Examples of proteins that incorporate one or more metal ions within their structure are found within a broad range of classes, including oxidases, oxidoreductases, reductases, proteases, proton transport proteins, electron transfer/transport proteins, storage proteins, lyases, rusticyanins, metallochaperones, sporulation proteins, hydrolases, endopeptidases, luminescent proteins, iron transport proteins, oxygen storage/transport proteins, calcium binding proteins, and monooxygenases. The metal coordination environment therein is often generated from residues inherent to the protein, small exogenous molecules (e.g., aqua ligands) and/or macrocyclic porphyrin units found, for example, in hemoglobin, myoglobin, cytochrome C, cytochrome C oxidase, and vitamin B12. Thus, there continues to be considerable interest in employing macrocyclic metal complexes to construct low-molecular weight models for metallobiosites that mirror essential features of the coordination environment of a bound metal ion without inclusion of the surrounding protein framework. Herein, we review and appraise our research exploring the application of the metal complexes formed by two macrocyclic ligands, 1,4,7-triazacyclononane (tacn) and 1,4,7,10-tetraazacyclododecane (cyclen), and their derivatives in biological inorganic chemistry. Taking advantage of the kinetic inertness and thermodynamic stability of their metal complexes, these macrocyclic scaffolds have been employed in the development of models that aid the understanding of metal ion-binding natural systems, and complexes with potential applications in biomolecule sensing, diagnosis, and therapy. In particular, the focus has been on "coordinatively unsaturated" metal complexes that incorporate a kinetically inert and stable metal-ligand moiety, but which also contain one or more weakly bound ligands, allowing for the reversible binding of guest molecules via the formation and dissociation of coordinate bonds. With regards to mimicking metallobiosites, examples are presented from our work on tacn-based complexes developed as simplified structural models for multimetallic enzyme sites. In particular, structural comparisons are made between multinuclear copper(II) complexes formed by such ligands and multicopper enzymes featuring type-2 and type-3 copper centers, such as ascorbate oxidase (AO) and laccase (Lc). Likewise, with the aid of relevant examples, we highlight the importance of cooperativity between either multiple metal centers or a metal center and a proximal auxiliary unit appended to the macrocyclic ligand in achieving efficient phosphate ester cleavage. Finally, the critical importance of the Zn(II)-imido and Zn(II)-phosphate interactions in Zn-cyclen-based systems for delivering highly sensitive electrochemical and fluorescent chemosensors is also showcased. The Account additionally highlights some of the factors that limit the performance of these synthetic nucleases and the practical application of the biosensors, and then identifies some avenues for the development of more effective macrocyclic constructs in the future.
Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong
2016-04-01
The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jana, Achintya; Bhowmick, Sourav; Kaur, Supreet; Kashyap, Hemant K; Das, Neeladri
2017-02-14
The synthesis and characterization of a new pyrazine-based "flexible" and ditopic platinum(ii) organometallic molecule (3) is being reported. Flexibility in this molecule is due to the presence of ether functional groups that bridge the rigid core and periphery. Due to the presence of square planar Pt(ii) centers at the two ends, the molecule's potential to act as an acceptor building block in the construction of metallamacrocycles was tested. Upon reaction of 3 with various dicarboxylates in a 1 : 1 stoichiometric ratio, [2 + 2] self-assembled neutral metallacycles (M1-M3) were obtained in high yields. M1-M3 were characterized using multinuclear NMR, high resolution mass spectrometry and elemental analyses. The shape and dimensions of these supramolecular structures were also confirmed by optimizing the geometry using the density functional theory (DFT) approach. Computational studies suggest that M1-M3 are nanoscalar macrocyles. Furthermore, using isothermal titration calorimetry (ITC), it was shown that 3 can bind with picric acid (PA) to yield a 3·(PA) 2 host-guest complex. The magnitude of the binding constant indicates that 3 has significant affinity for PA.
Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface
Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; ...
2016-10-12
Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO 2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relativelymore » small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface.« less
Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface
Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; Madix, Robert J.; Kaxiras, Efthimios; Friend, Cynthia M.
2016-01-01
Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface. PMID:27731407
Interaction measurement of particles bound to a lipid membrane
NASA Astrophysics Data System (ADS)
Sarfati, Raphael; Dufresne, Eric
2015-03-01
The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.
Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants.
Chekan, Jonathan R; Estrada, Paola; Covello, Patrick S; Nair, Satish K
2017-06-20
Enzymes that can catalyze the macrocyclization of linear peptide substrates have long been sought for the production of libraries of structurally diverse scaffolds via combinatorial gene assembly as well as to afford rapid in vivo screening methods. Orbitides are plant ribosomally synthesized and posttranslationally modified peptides (RiPPs) of various sizes and topologies, several of which are shown to be biologically active. The diversity in size and sequence of orbitides suggests that the corresponding macrocyclases may be ideal catalysts for production of cyclic peptides. Here we present the biochemical characterization and crystal structures of the plant enzyme PCY1 involved in orbitide macrocyclization. These studies demonstrate how the PCY1 S9A protease fold has been adapted for transamidation, rather than hydrolysis, of acyl-enzyme intermediates to yield cyclic products. Notably, PCY1 uses an unusual strategy in which the cleaved C-terminal follower peptide from the substrate stabilizes the enzyme in a productive conformation to facilitate macrocyclization of the N-terminal fragment. The broad substrate tolerance of PCY1 can be exploited as a biotechnological tool to generate structurally diverse arrays of macrocycles, including those with nonproteinogenic elements.
Dai, Fangna; Dou, Jianmin; He, Haiyan; Zhao, Xiaoliang; Sun, Daofeng
2010-05-03
To assemble metal-organic supramolecules such as a metallamacrocycle and metal-organic coordination cage (MOCC), a series of flexible dicarboxylate ligands with the appropriate angle, 2,2'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(1)), 2,2'-(2,5-dimethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(2)), 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dinicotinic acid (H(2)L(3)), and 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(4)), have been designed and synthesized. Using these flexible ligands to assemble with metal ions, six metal-organic supramolecules, Cd(2)(L(1))(2)(dmf)(4)(H(2)O)(2).H(2)O (1), Mn(3)((1)L(2))(2)((2)L(2))(dmf)(2)(H(2)O)(2).5dmf (2), Cu(4)(L(3))(4)(H(2)O)(4).3dmf (3), Cu(4)(L(4))(4)(dmf)(2)(EtOH)(2).8dmf.6H(2)O (4), Mn(4)(L(4))(4)(dmf)(4)(H(2)O)(4).6dmf.H(2)O (5), and Mn(3)(L(4))(3)(dmf)(4).2dmf.3H(2)O (6), possessing a rectangular macrocycle, MOCCs or their extensions, and 1D or 2D coordination polymers, have been isolated. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravimetric analysis. Complex 1 is a discrete rectangular macrocycle, while complex 2 is a 2D macrocycle-based coordination polymer in which the L(2) ligand adopts both syn and anti conformations. Complexes 3-5 are discrete MOCCs in which two binuclear metal clusters are engaged by four organic ligands. The different geometries of the secondary building units (SBUs) and the axial coordinated solvates on the SBUs result in their different symmetries. Complex 6 is a 1D coordination polymer, extended from a MOCC made up of two metal ions and three L(4) ligands. All of the flexible dicarboxylate ligands adopt a syn conformation except that in complex 2, indicating that the syn conformational ligand is helpful for the formation of a metallamacrocycle and a MOCC. The magnetic properties of complexes 5 and 6 have also been studied.
Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito
2017-05-16
Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C 6 to C 20 . Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest chemistry in integrated nanoporous space that is modified for specific purposes.
Anion-free bambus[6]uril and its supramolecular properties.
Svec, Jan; Dusek, Michal; Fejfarova, Karla; Stacko, Peter; Klán, Petr; Kaifer, Angel E; Li, Wei; Hudeckova, Edita; Sindelar, Vladimir
2011-05-09
Methods for the preparation of anion-free bambus[6]uril (BU6) are presented. They are based on the oxidation of iodide anion, which is bound inside the macrocycle, utilizing dark oxidation by hydrogen peroxide or photooxidation in the presence of titanium dioxide. Anion-free BU6 was found to be insoluble in any of the investigated solvents; however, it dissolves in methanol/chloroform (1:1) or acetonitrile/water (1:1) mixtures in the presence of the tetrabutylammonium salt of a suitable anion. The association constants with halide ions, BF(4)(-), NO(3)(-), and CN(-), were measured by (1)H NMR spectroscopy. The highest association constant (8.9×10(5) M(-1)) was found for the 1:1 complex of BU6 with I(-) in acetonitrile/water mixture. A number of crystal structures of BU6 complexes with various anions were obtained. The influence of the anion size on the macrocycle diameter is discussed together with an unusual arrangement of the macrocycles into separate layers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots
NASA Astrophysics Data System (ADS)
Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang
2013-09-01
How protein-protein interaction affects protein-nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein-nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD-protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD-protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD-His-tag interaction and protein-protein interaction can result in unique properties of protein-nanoparticle assembly for the first time.
Gershberg, Jana; Fennel, Franziska; Rehm, Thomas H; Lochbrunner, Stefan; Würthner, Frank
2016-03-01
A perylene bisimide dye bearing amide functionalities at the imide positions derived from amino acid l-alanine and a dialkoxy-substituted benzyl amine self-assembles into tightly bound dimers by π-π-stacking and hydrogen bonding in chloroform. In less polar or unpolar solvents like toluene and methylcyclohexane, and in their mixtures, these dimers further self-assemble into extended oligomeric aggregates in an anti-cooperative process in which even numbered aggregates are highly favoured. The stepwise transition from dimers into oligomers can not be properly described by conventional K 2 - K model, and thus a new K 2 - K aggregation model has been developed, which interpretes the present anti-cooperative supramolecular polymerization more appropriately. The newly developed K 2 - K model will be useful to describe self-assembly processes of a plethora of other π-conjugated molecules that are characterized by a favored dimer species.
Controllable self-assembly of sodium caseinate with a zwitterionic vitamin-derived bolaamphiphile.
Sun, Li-Hui; Sun, Yu-Long; Yang, Li-Jun; Zhang, Jian; Chen, Zhong-Xiu
2013-11-06
The control of self-assembly of sodium caseinate (SC) including the formation of mixed layers, microspheres, or nanoparticles is highly relevant to the microstructure of food and the design of promising drug delivery systems. In this paper, we designed a structure-switchable zwitterionic bolaamphiphile, 1,12-diaminododecanediorotate (DDO), from orotic acid, which has special binding sites and can guide the self-assembly of SC. Complexation between SC and DDO was investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, and fluorescence spectra measurements. Monomeric DDO was bound to the negatively charged sites on the SC micelle and made the structure of SC more compact with decreased electrostatic repulsion between the head groups. Vesicular DDO led to reassociation of vesicles with enlarged size via preferable hydrophobic interactions. Moreover, the aggregation between SC and DDO was found to be temperature-dependent and reversible. This research provides an effective way to control the reversible self-assembly of SC by the zwitterionic vitamin-derived bolaamphiphile.
Wan, Xuejuan; Liu, Tao; Liu, Shiyong
2011-04-11
We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ∼60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.
Methods of nanoassembly of a fractal polymer and materials formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newkome, George R; Moorefield, Charles N
2012-07-24
The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to 36 Ru and 6 Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.
Methods of nanoassembly of a fractal polymer and materials formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newkome, George R; Moorefield, Charles N
2014-09-23
The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to (36) Ru and (6) Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.
The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.
Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R
2016-05-01
The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.
Self-assembled virus-like particles with magnetic cores.
Huang, Xinlei; Bronstein, Lyudmila M; Retrum, John; Dufort, Chris; Tsvetkova, Irina; Aniagyei, Stella; Stein, Barry; Stucky, Galen; McKenna, Brandon; Remmes, Nicholas; Baxter, David; Kao, C Cheng; Dragnea, Bogdan
2007-08-01
Efficient encapsulation of functionalized spherical nanoparticles by viral protein cages was found to occur even if the nanoparticle is larger than the inner cavity of the native capsid. This result raises the intriguing possibility of reprogramming the self-assembly of viral structural proteins. The iron oxide nanotemplates used in this work are superparamagnetic, with a blocking temperature of about 250 K, making these virus-like particles interesting for applications such as magnetic resonance imaging and biomagnetic materials. Another novel feature of the virus-like particle assembly described in this work is the use of an anionic lipid micelle coat instead of a molecular layer covalently bound to the inorganic nanotemplate. Differences between the two functionalization strategies are discussed.
Nondeterministic self-assembly of two tile types on a lattice.
Tesoro, S; Ahnert, S E
2016-04-01
Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.
Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; Grant, Richard P.; Monson, Todd C.
2017-01-01
Many challenges must be overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. To begin addressing these challenges (and others), we report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers. The tethered array of nanoparticles, MnO in this case, bound directly to a gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). This strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles. PMID:28287183
En route to surface-bound electric field-driven molecular motors.
Jian, Huahua; Tour, James M
2003-06-27
Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.
From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111)
NASA Astrophysics Data System (ADS)
Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg
2016-04-01
The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort. Electronic supplementary information (ESI) available: More details and results of the XPS experiments and the DFT calculation including also the coordinates of the calculated configurations. See DOI: 10.1039/C5NR08953K
Low capping group surface density on zinc oxide nanocrystals.
Valdez, Carolyn N; Schimpf, Alina M; Gamelin, Daniel R; Mayer, James M
2014-09-23
The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.
Phthalocyanine-Based Organic Thin-Film Transistors: A Review of Recent Advances.
Melville, Owen A; Lessard, Benoît H; Bender, Timothy P
2015-06-24
Metal phthalocyanines (MPcs) are versatile conjugated macrocycles that have attracted a great deal of interest as active components in modern organic electronic devices. In particular, the charge transport properties of MPcs, their chemical stability, and their synthetic versatility make them ideal candidate materials for use in organic thin-film transistors (OTFTs). This article reviews recent progress in both the material design and device engineering of MPc-based OTFTs, including the introduction of solubilizing groups on the MPcs and the surface modification of substrates to induce favorable MPc self-assembly. Finally, a discussion on emerging niche applications based on MPc OTFTs will be explored, in addition to a perspective and outlook on these promising materials in OTFTs. The scope of this review is focused primarily on the advances made in the field of MPc-based OTFTs since 2008.
Ghosh, Aloke Kumar; Pait, Moumita; Shatruk, Michael; Bertolasi, Valerio; Ray, Debashis
2014-02-07
The communication reports the synthesis, characterization, and magnetic behavior of a novel μ4-carbonato supported and imidazole capped ligated nickel cage [Ni8(μ-H2bpmp)4(μ4-CO3)4(ImH)8](NO3)4·2H2O (1) through self-assembly of ligand bound ferromagnetic Ni2 building blocks. Structural analysis indicates newer geometrical features for the coordination cage formation and dominant interdimer antiferromagnetic coupling resulting in a diamagnetic ground state.
Farrow, Blake; Wong, Michelle; Malette, Jacquie; Lai, Bert; Deyle, Kaycie M; Das, Samir; Nag, Arundhati; Agnew, Heather D; Heath, James R
2015-06-08
Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ click screen is utilized to identify a second peptide macrocycle ligand that binds to an epitope that, in the folded BoNT structure, is active-site-adjacent. A second in situ click screen identifies a molecular bridge between the two macrocycles. The resulting divalent inhibitor exhibits an in vitro inhibition constant of 165 pM against the BoNT/A catalytic chain. The inhibitor is carried into cells by the intact holotoxin, and demonstrates protection and rescue of BoNT intoxication in a human neuron model. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fine tuning of the spectral properties of LH2 by single amino acid residues.
Silber, Martina V; Gabriel, Günther; Strohmann, Brigitte; Garcia-Martin, Adela; Robert, Bruno; Braun, Paula
2008-05-01
The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.
Directed Assembly of Cells with Magnetic Nanowires
NASA Astrophysics Data System (ADS)
Tanase, M.; Hultgren, A.; Chen, C. S.; Reich, D. H.
2003-03-01
We demonstrate the use of magnetic nanowires for assembly and manipulation of mammalian cells. Currently, superparamagnetic beads are used for manipulations of cells, but large field strengths and gradients are required for these to be effective. Unlike the beads, the large remnant magnetization of the nanowires offers the prospect of a variety of low-field manipulation techniques. Ferromagnetic nanowires suspended in fluids can be easily manipulated and assembled using small magnetic field [1]. The wires can be bound to cells, and the dipolar interaction between the nanowires can be used to create self-assembled cell chains. Microfabricated arrays of Py magnets were used to trap single cells or chains of cells bound to Ni nanowires. Possible applications of these techniques include controlled initiation of cell cultures, as well as isolation of individual cells. This work was supported by DARPA/AFOSR Grant No. F49620-02-1-0307 and by the David and Lucile Packard Foundation Grant No. 2001-17715. [1] M. Tanase et.al., Nanoletters 1, 155 (2001), J. Appl. Phys. 91, 8549 (2002).
Self-assembly of a double-helical complex of sodium.
Bell, T W; Jousselin, H
1994-02-03
Spontaneous self-organization of helical and multiple-helical molecular structures occurs on several levels in living organisms. Key examples are alpha-helical polypeptides, double-helical nucleic acids and helical protein structures, including F-actin, microtubules and the protein sheath of the tobacco mosaic virus. Although the self-assembly of double-helical transition-metal complexes bears some resemblance to the molecular organization of double-stranded DNA, selection between monohelical, double-helical and triple-helical structures is determined largely by the size and geometrical preference of the tightly bound metal. Here we present an example of double-helical assembly induced by the weaker and non-directional interactions of an alkali-metal ion with an organic ligand that is pre-organized into a coil. We have characterized the resulting complex by two-dimensional NMR and fast-atom-bombardment mass spectrometry. These results provide a step toward the creation of molecular tubes or ion channels consisting of intertwined coils.
Qiu, Penghe; Mao, Chuanbin
2010-01-01
Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250
Kadirov, M K; Knyazeva, I R; Nizameev, I R; Safiullin, R A; Matveeva, V I; Kholin, K V; Khrizanforova, V V; Ismaev, T I; Burilov, A R; Budnikova, Yu H; Sinyashin, O G
2016-10-18
The catalytic activity of the nickel complexes of thiophosphorylated calix[4]resorcinols for oxygen reduction in a polymer electrolyte membrane fuel cell (PEMFC) has been studied. The conformation of the macrocyclic ligand determines the morphology and catalytic properties of the resulting organometallic species.
Ho, Peter C; Jenkins, Hilary A; Britten, James F; Vargas-Baca, Ignacio
2017-10-13
The supramolecular macrocycles spontaneously assembled by iso-tellurazole N-oxides are stable towards Lewis bases as strong as N-heterocyclic carbenes (NHC) but readily react with Lewis acids such as BR 3 (R = Ph, F). The electron acceptor ability of the tellurium atom is greatly enhanced in the resulting O-bonded adducts, which consequently enables binding to a variety of Lewis bases that includes acetonitrile, 4-dimethylaminopyridine, 4,4'-bipyridine, triphenyl phosphine, a N-heterocyclic carbene and a second molecule of iso-tellurazole N-oxide.
NASA Astrophysics Data System (ADS)
Davis, Michael E.; Hsieh, Patrick C. H.; Takahashi, Tomosaburo; Song, Qing; Zhang, Shuguang; Kamm, Roger D.; Grodzinsky, Alan J.; Anversa, Piero; Lee, Richard T.
2006-05-01
Strategies for cardiac repair include injection of cells, but these approaches have been hampered by poor cell engraftment, survival, and differentiation. To address these shortcomings for the purpose of improving cardiac function after injury, we designed self-assembling peptide nanofibers for prolonged delivery of insulin-like growth factor 1 (IGF-1), a cardiomyocyte growth and differentiation factor, to the myocardium, using a "biotin sandwich" approach. Biotinylated IGF-1 was complexed with tetravalent streptavidin and then bound to biotinylated self-assembling peptides. This biotin sandwich strategy allowed binding of IGF-1 but did not prevent self-assembly of the peptides into nanofibers within the myocardium. IGF-1 that was bound to peptide nanofibers activated Akt, decreased activation of caspase-3, and increased expression of cardiac troponin I in cardiomyocytes. After injection into rat myocardium, biotinylated nanofibers provided sustained IGF-1 delivery for 28 days, and targeted delivery of IGF-1 in vivo increased activation of Akt in the myocardium. When combined with transplanted cardiomyocytes, IGF-1 delivery by biotinylated nanofibers decreased caspase-3 cleavage by 28% and increased the myocyte cross-sectional area by 25% compared with cells embedded within nanofibers alone or with untethered IGF-1. Finally, cell therapy with IGF-1 delivery by biotinylated nanofibers improved systolic function after experimental myocardial infarction, demonstrating how engineering the local cellular microenvironment can improve cell therapy. engineering | maturation | scaffold
Real-time visualization of perforin nanopore assembly.
Leung, Carl; Hodel, Adrian W; Brennan, Amelia J; Lukoyanova, Natalya; Tran, Sharon; House, Colin M; Kondos, Stephanie C; Whisstock, James C; Dunstone, Michelle A; Trapani, Joseph A; Voskoboinik, Ilia; Saibil, Helen R; Hoogenboom, Bart W
2017-05-01
Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.
Real-time visualization of perforin nanopore assembly
NASA Astrophysics Data System (ADS)
Leung, Carl; Hodel, Adrian W.; Brennan, Amelia J.; Lukoyanova, Natalya; Tran, Sharon; House, Colin M.; Kondos, Stephanie C.; Whisstock, James C.; Dunstone, Michelle A.; Trapani, Joseph A.; Voskoboinik, Ilia; Saibil, Helen R.; Hoogenboom, Bart W.
2017-05-01
Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.
Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; ...
2017-03-13
There are many challenges to overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. We report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers, in order to begin addressing these challenges (and others). The tethered array of nanoparticles, MnO in this case, bound directly to amore » gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). Our strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles.« less
NASA Astrophysics Data System (ADS)
Ernenwein, Dawn M.
2011-12-01
Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an ordered hydrophobic face had no effect on GNP assembly. The self-assembly system herein is advantageous due to its reversible nature upon addition of high salt concentrations which masks the surface charge. There is great potential for using this uniquely designed self-assembled peptide-gold nanoparticle system for exploring the interplay between peptide ligation and GNP self-assembly.
Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides
NASA Astrophysics Data System (ADS)
Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla
2012-12-01
Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael
Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.
Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules.
Usanov, Dmitry L; Chan, Alix I; Maianti, Juan Pablo; Liu, David R
2018-07-01
DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC 50 = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amdursky, Nadav; Gazit, Ehud; Rosenman, Gil, E-mail: gilr@eng.tau.ac.il
Highlights: Black-Right-Pointing-Pointer We observe lag-phase crystallization process in insulin. Black-Right-Pointing-Pointer The crystallization is a result of the formation of higher order oligomers. Black-Right-Pointing-Pointer The crystallization also changes the secondary structure of the protein. Black-Right-Pointing-Pointer The spectroscopic signature can be used for amyloid inhibitors assay. -- Abstract: Insulin, as other amyloid proteins, can form amyloid fibrils at certain conditions. The self-assembled aggregation process of insulin can result in a variety of conformations, starting from small oligomers, going through various types of protofibrils, and finishing with bundles of fibrils. One of the most common consensuses among the various self-assembly processes that aremore » suggested in the literature is the formation of an early stage nucleus conformation. Here we present an additional insight for the self-assembly process of insulin. We show that at the early lag phase of the process (prior to fibril formation) the insulin monomers self-assemble into ordered nanostructures. The most notable feature of this early self-assembly process is the formation of nanocrystalline nucleus regions with a strongly bound electron-hole confinement, which also change the secondary structure of the protein. Each step in the self-assembly process is characterized by an optical spectroscopic signature, and possesses a narrow size distribution. By following the spectroscopic signature we can measure the potency of amyloid fibrils inhibitors already at the lag phase. We further demonstrate it by the use of epigallocatechin gallate, a known inhibitor for insulin fibrils. The findings can result in a spectroscopic-based application for the analysis of amyloid fibrils inhibitors.« less
Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman-James, Kristin
The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hostsmore » joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO 4 2- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through the pyrazine π system. Additionally appendages capable of influencing solvation effects can be introduced, and a number of other potential applications can be realized in areas such as soft materials chemistry, catalysis, sensing, and proton switches, the latter for binding and release of targeted guests. These findings provide a better foundation for understanding the selective binding of anions by targeted placement of hydrogen binding sites, and the strengths and weaknesses of various functional groups, that will allow for more the design of more effective anion sequestering agents. Our design strategy also used simple, cost-effective building blocks for host synthesis to allow for scale-up should real-world applications be forthcoming.« less
Rhaman, Md Mhahabubur; Powell, Douglas R; Hossain, Md Alamgir
2017-11-30
Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate-covalent interactions with phosphates and π-π stackings with nucleobases and TMP through coordinate-covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay.
Kumar, Kuppusamy Senthil; Studniarek, Michał; Heinrich, Benoît; Arabski, Jacek; Schmerber, Guy; Bowen, Martin; Boukari, Samy; Beaurepaire, Eric; Dreiser, Jan; Ruben, Mario
2018-03-01
The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H 2 B(pz) 2 ) 2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C 12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral Fe II complex, [Fe(H 2 B(pz) 2 ) 2 (C 12 -bpy)] (C 12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiO x surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-02-04
Intl. Symposium on Macrocyclic and Supramolecular Chemistry, June 2010, Nara, Japan (Plenary talk). O. M. Yaghi, Zeolitic imidazolate frameworks, 5th...International Zeolite Membrane Meeting, May 2010, Loutraki, Greece (Plenary talk). O. M. Yaghi, Reticular chemistry and its applications to clean energy
Cysteine-rich Domain 1 of CD40 Mediates Receptor Self-assembly*
Smulski, Cristian R.; Beyrath, Julien; Decossas, Marion; Chekkat, Neila; Wolff, Philippe; Estieu-Gionnet, Karine; Guichard, Gilles; Speiser, Daniel; Schneider, Pascal; Fournel, Sylvie
2013-01-01
The activation of CD40 on B cells, macrophages, and dendritic cells by its ligand CD154 (CD40L) is essential for the development of humoral and cellular immune responses. CD40L and other TNF superfamily ligands are noncovalent homotrimers, but the form under which CD40 exists in the absence of ligand remains to be elucidated. Here, we show that both cell surface-expressed and soluble CD40 self-assemble, most probably as noncovalent dimers. The cysteine-rich domain 1 (CRD1) of CD40 participated to dimerization and was also required for efficient receptor expression. Modelization of a CD40 dimer allowed the identification of lysine 29 in CRD1, whose mutation decreased CD40 self-interaction without affecting expression or response to ligand. When expressed alone, recombinant CD40-CRD1 bound CD40 with a KD of 0.6 μm. This molecule triggered expression of maturation markers on human dendritic cells and potentiated CD40L activity. These results suggest that CD40 self-assembly modulates signaling, possibly by maintaining the receptor in a quiescent state. PMID:23463508
Fretellier, Nathalie; Idée, Jean-Marc; Guerret, Sylviane; Hollenbeck, Claire; Hartmann, Daniel; González, Walter; Robic, Caroline; Port, Marc; Corot, Claire
2011-02-01
the purpose of this study was to compare the clinical, pathologic, and biochemical effects of repeated administrations of ionic macrocyclic or nonionic linear gadolinium chelates (GC) in rats with impaired renal function. rats submitted to subtotal nephrectomy were allocated to single injections of 2.5 mmol/kg of gadodiamide (nonionic linear chelate), nonformulated gadodiamide (ie, without the free ligand caldiamide), gadoterate (ionic macrocyclic chelate), or saline for 5 consecutive days. Blinded semi-quantitative histopathologic and immunohistochemical examinations of the skin were performed, as well as clinical, hematological, and biochemical follow-up. Rats were killed at day 11. Long-term (up to day 32) follow-up of rats was also performed in an auxiliary study. epidermal lesions (ulcerations and scabs) were found in 4 of the 10 rats treated with nonformulated gadodiamide. Two rats survived the study period. Inflammatory signs were observed in this group. No clinical, hematological, or biochemical signs were observed in the saline and gadoterate- or gadodiamide-treated groups. Plasma fibroblast growth factor-23 levels were significantly higher in the gadodiamide group than in the gadoterate group (day 11). Decreased plasma transferrin-bound iron levels were measured in the nonformulated gadodiamide group. Histologic lesions were in the range: nonformulated gadodiamide (superficial epidermal lesions, inflammation, necrosis, and increased cellularity in papillary dermis) > gadodiamide (small superficial epidermal lesions and signs of degradation of collagen fibers in the dermis) > gadoterate (very few pathologic lesions, similar to control rats). repeated administration of the nonionic linear GC gadodiamide to renally impaired rats is associated with more severe histologic lesions and higher FGF-23 plasma levels than the macrocyclic GC gadoterate.
Modular assembly of metal-organic super-containers incorporating calixarenes
Wang, Zhenqiang; Dai, Feng-Rong
2018-01-16
A new strategy to design container molecules is presented. Sulfonylcalix[4]arenes, which are synthetic macrocyclic containers, are used as building blocks that are combined with various metal ions and tricarboxylate ligands to construct metal-organic `super-containers` (MOSCs). These MOSCs possess both endo and exo cavities and thus mimic the structure of viruses. The synthesis of MOSCs is highly modular, robust, and predictable.
Vieira, Vânia M. P.; Hay, Laura L.
2017-01-01
This paper reports self-assembled multi-component hybrid hydrogels including a range of nanoscale systems and characterizes the extent to which each component maintains its own unique functionality, demonstrating that multi-functionality can be achieved by simply mixing carefully-chosen constituents. Specifically, the individual components are: (i) pH-activated low-molecular-weight gelator (LMWG) 1,3;2,4-dibenzylidenesorbitol-4′,4′′-dicarboxylic acid (DBS–COOH), (ii) thermally-activated polymer gelator (PG) agarose, (iii) anionic biopolymer heparin, and (iv) cationic self-assembled multivalent (SAMul) micelles capable of binding heparin. The LMWG still self-assembles in the presence of PG agarose, is slightly modified on the nanoscale by heparin, but is totally disrupted by the micelles. However, if the SAMul micelles are bound to heparin, DBS–COOH self-assembly is largely unaffected. The LMWG endows hybrid materials with pH-responsive behavior, while the PG provides mechanical robustness. The rate of heparin release can be controlled through network density and composition, with the LMWG and PG behaving differently in this regard, while the presence of the heparin binder completely inhibits heparin release through complexation. This study demonstrates that a multi-component approach can yield exquisite control over self-assembled materials. We reason that controlling orthogonality in such systems will underpin further development of controlled release systems with biomedical applications. PMID:29147525
Satake, Akiharu; Kobuke, Yoshiaki
2007-06-07
This paper reviews selected types of structurally well defined assemblies of porphyrins and phthalocyanines with strong electronic coupling. Face-to-face, head-to-tail, slipped cofacial, and non-parallel dimeric motifs constructed by covalent and non-covalent bonds are compared in the earlier sections. Their molecular orientation, electronic overlap, and absorption and fluorescence properties are discussed with a view towards the development of artificial photosynthetic systems and molecular electronics. Complementary coordination dimers are fully satisfactory in terms of structural stability, orientation factor, pi-electronic overlap, and zero fluorescence quenching. In later sections, several polymeric and macrocyclic porphyrin assemblies constructed by a combination of covalent bonds and complementary coordination bonds are discussed from the viewpoint of light-harvesting antenna functions.
Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.
Si, Wen; Xin, Pengyang; Li, Zhan-Ting; Hou, Jun-Li
2015-06-16
Lipid bilayer membranes separate living cells from their environment. Membrane proteins are responsible for the processing of ion and molecular inputs and exports, sensing stimuli and signals across the bilayers, which may operate in a channel or carrier mechanism. Inspired by these wide-ranging functions of membrane proteins, chemists have made great efforts in constructing synthetic mimics in order to understand the transport mechanisms, create materials for separation, and develop therapeutic agents. Since the report of an alkylated cyclodextrin for transporting Cu(2+) and Co(2+) by Tabushi and co-workers in 1982, chemists have constructed a variety of artificial transmembrane channels by making use of either the multimolecular self-assembly or unimolecular strategy. In the context of the design of unimolecular channels, important advances have been made, including, among others, the tethering of natural gramicidin A or alamethicin and the modification of various macrocycles such as crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Many of these unimolecular channels exhibit high transport ability for metal ions, particularly K(+) and Na(+). Concerning the development of artificial channels based on macrocyclic frameworks, one straightforward and efficient approach is to introduce discrete chains to reinforce their capability to insert into bilayers. Currently, this approach has found the widest applications in the systems of crown ethers and calixarenes. We envisioned that for macrocycle-based unimolecular channels, control of the arrangement of the appended chains in the upward and/or downward direction would favor the insertion of the molecular systems into bilayers, while the introduction of additional interactions among the chains would further stabilize a tubular conformation. Both factors should be helpful for the formation of new efficient channels. In this Account, we discuss our efforts in designing new unimolecular artificial channels from tubular pillar[n]arenes by extending their lengths with various ester, hydrazide, and short peptide chains. We have utilized well-defined pillar[5]arene and pillar[6]arene as rigid frameworks that allow the appended chains to afford extended tubular structures. We demonstrate that the hydrazide and peptide chains form intramolecular N-H···O═C hydrogen bonds that enhance the tubular conformation of the whole molecule. The new pillar[n]arene derivatives have been successfully applied as unimolecular channels for the selective transport of protons, water, and amino acids and the voltage-gated transport of K(+). We also show that aromatic hydrazide helices and macrocycles appended with peptide chains are able to mediate the selective transport of NH4(+).
Macrocyclic drugs and synthetic methodologies toward macrocycles
Yu, Xufen; Sun, Dianqing
2015-01-01
Macrocyclic scaffolds are commonly found in bioactive natural products and pharmaceutical molecules. So far, a large number of macrocyclic natural products have been isolated and synthesized. The construction of macrocycles is generally considered as a crucial and challenging step in the synthesis of macrocyclic natural products. Over the last several decades, numerous efforts have been undertaken toward the synthesis of complex naturally occurring macrocycles and great progresses have been made to advance the field of total synthesis. The commonly used synthetic methodologies toward macrocyclization include macrolactonization, macrolactamization, transition metal-catalyzed cross coupling, ring-closing metathesis, and click reaction, among others. Selected recent examples of macrocyclic synthesis of natural products and druglike macrocycles with significant biological relevance are highlighted in each class. The primary goal of this review is to summarize currently used macrocyclic drugs, highlight the therapeutic potential of this underexplored drug class and outline the general synthetic methodologies for the synthesis of macrocycles. PMID:23708234
Molecular Self-Assembly Strategy for Generating Catalytic Hybrid Polypeptides
Ikezoe, Yasuhiro; Pike, Douglas H.; Nanda, Vikas; Matsui, Hiroshi
2016-01-01
Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β-sheets and amyloid fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. The enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality. PMID:27116246
Molecular self-assembly strategy for generating catalytic hybrid polypeptides
Maeda, Yoshiaki; Fang, Justin; Ikezoe, Yasuhiro; ...
2016-04-26
Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β- sheets and amyloidmore » fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. Furthermore, the enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality.« less
DFT Study on the Complexation of Bambus[6]uril with the Perchlorate and Tetrafluoroborate Anions.
Toman, Petr; Makrlík, Emanuel; Vaňura, Petr
2011-12-01
By using quantum mechanical DFT calculations, the most probable structures of the bambus[6]uril.ClO4- and bambus[6]uril.BF4- anionic complex species were derived. In these two complexes having C3 symmetry, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion.
Wang, Fang; Xu, Juan; Luo, Heyi; Wang, Jinggang; Wang, Qian
2009-10-12
Practical adhesion of rubber to aluminum is measured for various aluminum silanization treatments. In this study, 6-(3-triethoxysilylpropylamino)-1,3,5-triazine-2,4-dithiol (TES) was used as the coupling agent for preparing self-assembly monolayers (SAMs) on an aluminum surface. The structure and chemical composition of the SAMs were analyzed using Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The changes in the surface features of the aluminum surface due to TES treatment were investigated by atomic force microscopy (AFM). The adhesive properties of the silanized aluminum surface and EPDM rubber have been evaluated by a T-peel strength test. The results suggested that the Si-O-Al bonding at aluminum TES interface existed and a TES self-assembly monolayer was formed on the aluminum surface. More than 6.0 KN/m adhesion strength is obtained when the aluminum is silanized with 2.5 mmol/dm(3) TES, cured at 160 degrees C and vulcanized with EPDM rubber at 160 degrees C for 30 min. It is suggested that the TES self-assembly monolayer is bound to aluminum through its ethoxysilyl functional group, and the thiol function group is strongly crosslinked to EPDM rubber, respectively.
Multi-scale ordering of self-assembled InAs/GaAs(001) quantum dots
Songmuang, R; Rastelli, A; Heidemeyer, H; Schmidt, OG
2006-01-01
Ordering phenomena related to the self-assembly of InAs quantum dots (QD) grown on GaAs(001) substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the [1-10] directions and are bounded by {137} facets, while domes have a multi-facetted shape. By changing the growth rates, we are able to control the size and size homogeneity of freestanding QDs. QDs grown by using low growth rate are characterized by larger sizes and a narrower size distribution. The homogeneity of buried QDs is measured by photoluminescence spectroscopy and can be improved by low temperature overgrowth. The overgrowth induces the formation of nanostructures on the surface. The fabrication of self-assembled nanoholes, which are used as a template to induce short-range positioning of QDs, is also investigated. The growth of closely spaced QDs (QD molecules) containing 2–6 QDs per QD molecule is discussed. Finally, the long-range positioning of self-assembled QDs, which can be achieved by the growth on patterned substrates, is demonstrated. Lateral QD replication observed during growth of three-dimensional QD crystals is reported.
Sprenger, K G; Pfaendtner, Jim
2016-06-07
Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.
2017-01-01
Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate–covalent interactions with phosphates and π–π stackings with nucleobases and TMP through coordinate–covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay. PMID:29214233
Free energy landscape and localization of nanoparticles at block copolymer model defects.
Kim, Yongjoo; Chen, Hsieh; Alexander-Katz, Alfredo
2014-05-14
Nanoparticle localization in block copolymer model defects is studied using self-consistent field theory simulations. In particular we study the nanoparticle free energy landscape for three different model defects: X, T, Y shape defects. Our results indicate that nanoparticles can be strongly bound to certain locations in these defects. The symmetry of the defects affects in a non-trivial fashion the "stiffness of the trap", with the X shape defect displaying the deepest energy well. The T and Y defects exhibit orientations along which the potential energy well is rather shallow. Furthermore, we find that the free energy well is tunable by the size of the nanoparticles. Our results help to explain recent experimental observations in block copolymer templated assembly of nanoparticles. Furthermore, they may open new avenues to assemble arbitrary heterogeneous patterns with precise nanoparticle positions by carefully controlling the morphology of a block copolymer system by using directed self-assembly techniques.
Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup
2014-05-01
Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrostatically self-assembled polyoxometalates on molecular-dye-functionalized diamond.
Zhong, Yu Lin; Ng, Wibowo; Yang, Jia-Xiang; Loh, Kian Ping
2009-12-30
We have successfully immobilized phosphotungstic acid (PTA), a polyoxometalate, on the surface of boron-doped diamond (BDD) surface through electrostatic self-assembly of PTA on pyridinium dye-functionalized-BDD. The inorganic/organic bilayer structure on BDD is found to exhibit fast surface-confined reversible electron transfer. The molecular dye-grafted BDD can undergo controllable electrical stripping and regeneration of PTA which can be useful for electronics or sensing applications. Furthermore, we have demonstrated the use of PTA as a molecular switch in which the direction of photocurrent from diamond to methyl viologen is reversed by the surface bound PTA. Robust photocurrent converter based on such molecular system-diamond platform can operate in corrosive medium which is not tolerated by indium tin oxide electrodes.
Self-assembling multimeric nucleic acid constructs
Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary
1999-10-12
The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.
Self-assembling multimeric nucleic acid constructs
Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary
1996-01-01
The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.
Self-assembling multimeric nucleic acid constructs
Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.
1996-10-01
The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.
M-DNA: a self-assembling molecular wire for nanoelectronics and biosensing.
Wettig, Shawn D; Li, Chen-Zhong; Long, Yi-Tao; Kraatz, Heinz-Bernhard; Lee, Jeremy S
2003-01-01
M-DNA is a complex between divalent metal ions such as Zn2+ and duplex DNA which forms at pH 8.5. Unlike B-DNA, M-DNA does not bind ethidium so that M-DNA formation can be monitored conveniently by an ethidium fluorescence assay. M-DNA was shown to be a better conductor than B-DNA by fluorometric measurements of electron transport in donor-acceptor labelled duplexes; by direct conductivity measurements of M-DNA bound between gold electrodes and by cyclic voltammetric studies on ferrocene labelled duplexes attached to gold microelectrodes. As is the case with B-DNA, M-DNA can self-assemble into a variety of structures and is anticipated to find widespread use in nanoelectronics and biosensing.
Kim, Woojae; Sung, Jooyoung; Park, Kyu Hyung; Shimizu, Hideyuki; Imamura, Mika; Han, Minwoo; Sim, Eunji; Iyoda, Masahiko; Kim, Dongho
2015-11-05
Linkers adjoining chromophores play an important role in modulating the structure of conjugated systems, which is bound up with their photophysical properties. However, to date, the focus of works dealing with linker effects was limited only to linear π-conjugated materials, and there have been no detailed studies on cyclic counterparts. Herein we report the linker effects on the dynamic planarization processes of π-conjugated macrocyclic oligothiophene 12-mers, where the different ratio between ethynylene and vinylene linkers was chosen to control the backbone rigidity. By analyzing transient fluorescence spectra, we demonstrate that the connecting linkers play a crucial role in the excited-state dynamics of cyclic conjugated systems. Faster dynamic planarization, longer exciton delocalization length, and higher degree of planarity were observed in vinylene inserted cyclic oligothiophenes. Molecular dynamics simulations and density functional theory calculations also stress the importance of the role of linkers in modulating the structure of cyclic oligothiophenes.
Design and synthesis of binucleating macrocyclic clefts derived from Schiff-base calixpyrroles.
Givaja, Gonzalo; Volpe, Manuel; Leeland, James W; Edwards, Michael A; Young, Thomas K; Darby, S Barnie; Reid, Stuart D; Blake, Alexander J; Wilson, Claire; Wolowska, Joanna; McInnes, Eric J L; Schröder, Martin; Love, Jason B
2007-01-01
The syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).2 EtOH and H(4)L(6).H2O confirm that [2+2] cyclisation has occurred, with either EtOH or H2O hydrogen-bonded within the macrocyclic cleft. A series of complexation reactions generate the dipalladium [Pd2(L)] (L=L(1) to L(5)), dinickel [Ni2(L(1))] and dicopper [Cu2(L)] (L=L(1) to L(3)) complexes. All of these complexes have been structurally characterised in the solid state and are found to adopt wedged structures that are enforced by the rigidity of the aryl backbone to give a cleft reminiscent of the structures of Pacman porphyrins. The binuclear nickel complexes [Ni2(mu-OMe)2Cl2(HOMe)2(H(4)L(1))] and [Ni2(mu-OH)2Cl2(HOMe)(H(4)L(5))] have also been prepared, although in these cases the solid-state structures show that the macrocyclic ligand remains protonated at the pyrrolic nitrogen atoms, and the Ni(II) cations are therefore co-ordinated by the imine nitrogen atoms only to give an open conformation for the complex. The dicopper complex [Cu2(L(3))] was crystallised in the presence of pyridine to form the adduct [Cu2(py)(L(3))], in which, in the solid state, the pyridine ligand is bound within the binuclear molecular cleft. Reaction between H(4)L(1) and [Mn(thf){N(SiMe(3))2}2] results in clean formation of the dimanganese complex [Mn2(L(1))], which, upon crystallisation, formed the mixed-valent complex [Mn2(mu-OH)(L(1))] in which the hydroxo ligand bridges the metal centres within the molecular cleft.
NASA Astrophysics Data System (ADS)
Chen, Xianwen; Lei, Shulai; Lotze, Christian; Czekelius, Constantin; Paulus, Beate; Franke, Katharina J.
2017-03-01
Porphyrins are highly flexible molecules and well known to adapt to their local environment via conformational changes. We studied the self-assembly of manganese meso-tetra(4-pyridyl)porphyrin (Mn-TPyP) molecules on a Cu(111) surface by low temperature scanning tunneling microscopy (STM) and atomic force microscopy (ATM). We observe molecular chains along the ⟨1 1 ¯ 0 ⟩ direction of the substrate. Within these chains, we identify two molecular conformations, which differ by the orientation of the upward bending of the macrocycle. Using density functional theory, we show that this saddle shape is a consequence of the rotation and inclination of the pyridyl groups towards Cu adatoms, which stabilize the metal-organic chains. The molecular conformations obey a strict alternation, reflecting the mutual enforcement of conformational adaptation in densely packed structures. Tunneling electrons from the STM tip can induce changes in the orientation of the pyridyl endgroups. The switching behaviour varies with the different adsorption configurations.
Entropy-driven homochiral self-sorting of a dynamic library.
Atcher, Joan; Bujons, Jordi; Alfonso, Ignacio
2017-04-11
A dynamic mixture of stereoisomeric macrocycles derived from glutamic acid displayed a homochiral self-selection when increasing the acetonitrile content of the aqueous mixed medium. The homochiral self-sorting required the anionic form of the side chains and increased at higher temperature, implying an entropic origin. Conformational analysis (NMR and MD simulations) allowed us to explain the observed behaviour. The results show that entropy can play a role in the homochiral self-sorting in adaptive bio-inspired chemical systems.
Functionalization of Recombinant Amelogenin Nanospheres Allows Their Binding to Cellulose Materials.
Butler, Samuel J; Bülow, Leif; Bonde, Johan
2016-10-01
Protein engineering to functionalize the self-assembling enamel matrix protein amelogenin with a cellulose binding domain (CBD) is used. The purpose is to examine the binding of the engineered protein, rh174CBD, to cellulose materials, and the possibility to immobilize self-assembled amelogenin nanospheres on cellulose. rh174CBD assembled to nanospheres ≈35 nm in hydrodynamic diameter, very similar in size to wild type amelogenin (rh174). Uniform particles are formed at pH 10 for both rh174 and rh174CBD, but only rh174CBD nanospheres showes significant binding to cellulose (Avicel). Cellulose binding of rh174CBD is promoted when the protein is self-assembled to nanospheres, compared to being in a monomeric form, suggesting a synergistic effect of the multiple CBDs on the nanospheres. The amount of bound rh174CBD nanospheres reached ≈15 mg/g Avicel, which corresponds to 4.2 to 6.3 × 10 -7 mole/m 2 . By mixing rh174 and rh174CBD, and then inducing self-assembly, composite nanospheres with a high degree of cellulose binding can be formed, despite a lower proportion of rh174CBD. This demonstrates that amelogenin variants like rh174 can be incorporated into the nanospheres, and still retain most of the binding to cellulose. Engineered amelogenin nanoparticles can thus be utilized to construct a range of new cellulose based hybrid materials, e.g. for wound treatment. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lipid nanotechnologies for structural studies of membrane-associated proteins.
Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy
2014-11-01
We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.
Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Wang, Q. Q.; Muller, A.; Bianucci, P.; Rossi, E.; Xue, Q. K.; Takagahara, T.; Piermarocchi, C.; MacDonald, A. H.; Shih, C. K.
2005-07-01
Using photoluminescence spectroscopy, we have investigated the nature of Rabi oscillation damping during optical manipulation of excitonic qubits in self-assembled quantum dots. Rabi oscillations were recorded by varying the pulse amplitude for fixed pulse durations between 4ps and 10ps . Up to five periods are visible, making it possible to quantify the excitation dependent damping. We find that this damping is more pronounced for shorter pulse widths and show that its origin is the nonresonant excitation of carriers in the wetting layer, most likely involving bound-to-continuum and continuum-to-bound transitions.
Preassembled Fluorescent Multivalent Probes for the Imaging of Anionic Membranes.
Roland, Felicia M; Peck, Evan M; Rice, Douglas R; Smith, Bradley D
2017-04-19
A new self-assembly process known as Synthavidin (synthetic avidin) technology was used to prepare targeted probes for near-infrared fluorescence imaging of anionic membranes and cell surfaces, a hallmark of many different types of disease. The probes were preassembled by threading a tetralactam macrocycle with six appended zinc-dipicolylamine (ZnDPA) targeting units onto a linear scaffold with one or two squaraine docking stations to produce hexavalent or dodecavalent fluorescent probes. A series of liposome titration experiments showed that multivalency promoted stronger membrane binding by the dodecavalent probe. In addition, the dodecavalent probe exhibited turn-on fluorescence due to probe unfolding during fluorescence microscopy at the membrane surface. However, the dodecavalent probe also had a higher tendency to self-aggregate after membrane binding, leading to probe self-quenching under certain conditions. This self-quenching effect was apparent during fluorescence microscopy experiments that recorded low fluorescence intensity from anionic dead and dying mammalian cells that were saturated with the dodecavalent probe. Conversely, probe self-quenching was not a factor with anionic microbial surfaces, where there was intense fluorescence staining by the dodecavalent probe. A successful set of rat tumor imaging experiments confirmed that the preassembled probes have sufficient mechanical stability for effective in vivo imaging. The results demonstrate the feasibility of this general class of preassembled fluorescent probes for multivalent targeting, but fluorescence imaging performance depends on the specific physical attributes of the biomarker target, such as the spatial distance between different copies of the biomarker and the propensity of the probe-biomarker complex to self-aggregate.
Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring.
Pandey, M B; Porenta, T; Brewer, J; Burkart, A; Copar, S; Zumer, S; Smalyukh, Ivan I
2014-06-01
We describe dipolar nematic colloids comprising mutually bound solid microspheres, three-dimensional skyrmions, and point defects in a molecular alignment field of chiral nematic liquid crystals. Nonlinear optical imaging and numerical modeling based on minimization of Landau-de Gennes free energy reveal that the particle-induced skyrmions resemble torons and hopfions, while matching surface boundary conditions at the interfaces of liquid crystal and colloidal spheres. Laser tweezers and videomicroscopy reveal that the skyrmion-colloidal hybrids exhibit purely repulsive elastic pair interactions in the case of parallel dipoles and an unexpected reversal of interaction forces from repulsive to attractive as the center-to-center distance decreases for antiparallel dipoles. The ensuing elastic self-assembly gives rise to colloidal chains of antiparallel dipoles with particles entangled by skyrmions.
NASA Astrophysics Data System (ADS)
Brown, Alexandra M.; Miranda-Alarćon, Yoliem S.; Knoll, Grant A.; Santora, Anthony M.; Banerjee, Ipsita A.
In this work, self-assembled tumor targeting nanostructured surfaces were developed from a newly designed amphiphile by conjugating boc protected isoleucine with 2,2‧ ethylenedioxy bis ethylamine (IED). To target mouse mammary tumor cells, a short peptide sequence derived from the human alpha-fetoprotein (AFP), LSEDKLLACGEG was attached to the self-assembled nanostructures. Tumor targeting and cell proliferation were examined in the presence of nanoscale assemblies. To further obliterate mouse breast tumor cells, the chemotherapeutic drug tamoxifen was then entrapped into the nanoassemblies. Our studies indicated that the targeting systems were able to efficiently encapsulate and release tamoxifen. Cell proliferation studies showed that IED-AFP peptide loaded with tamoxifen decreased the proliferation of breast cancer cells while in the presence of the IED-AFP peptide nanoassemblies alone, the growth was relatively slower. In the presence of human dermal fibroblasts however cell proliferation continued similar to controls. Furthermore, the nanoscale assemblies were found to induce apoptosis in mouse breast cancer cells. To examine live binding interactions, SPR analysis revealed that tamoxifen encapsulated IED-AFP peptide nanoassemblies bound to the breast cancer cells more efficiently compared to unencapsulated assemblies. Thus, we have developed nanoscale assemblies that can specifically bind to and target tumor cells, with increased toxicity in the presence of a chemotherapeutic drug.
Thermal conductivity and rectification in asymmetric archaeal lipid membranes
NASA Astrophysics Data System (ADS)
Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven
2018-05-01
Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering applications.
Basu, Debashis; Mazumder, Shivnath; Niklas, Jens; ...
2016-02-02
Three new heteroaxial cobalt oxime catalysts, namely [Co III(prdioxH)( 4tBupy)(Cl)]PF 6 (1), [Co III(prdioxH)( 4Pyrpy)(Cl)]PF 6 (2), and [Co III(prdioxH)( 4Bzpy)(Cl)]PF 6 (3) have been studied. These species contain chloro and substituted tert-butyl/pyrrolidine/benzoyl-pyridino ligands axially coordinated to a trivalent cobalt ion bound to the N 4-oxime macrocycle (2 E,2' E,3 E,3' E)-3,3'-(propane-1,3-diylbis(azanylylidene))bis(butan-2-one)dioxime, abbreviated (prdioxH)– in its monoprotonated form. Emphasis was given to the spectroscopic investigation of the coordination preferences and spin configurations among the different 3d 6 Co III, 3d 7 Co II, and 3d 8 Co I oxidation states of the metal, and to the catalytic proton reduction withmore » an evaluation of the pathways for the generation of H 2 via Co III–H – or Co II–H – intermediates by mono and bimetallic routes. The strong field imposed by the (prdioxH)– ligand precludes the existence of high-spin configurations, and 6-coordinate geometry is favored by the LSCo III species. Species 1 and 3 show a split Co III/Co II electrochemical wave associated with partial chemical conversion to a [Co III(prdioxH)Cl 2] species, whereas 2 shows a single event. The reduction of these Co III complexes yields LSCo II and LSCo I species in which the pyridine acts as the dominant axial ligand. In the presence of protons, the catalytically active Co I species generates a Co III–H – hydride species that reacts heterolytically with another proton to generate dihydrogen. The intermediacy of a trifluoroacetate-bound Co III/Co II couple in the catalytic mechanism is proposed. Finally, these results allow for a generalization of the behavior of heteroaxial cobalt macrocycles and serve as guidelines for the development of new catalysts based on macrocyclic frameworks.« less
Zanichelli, Valeria; Dallacasagrande, Luca; Arduini, Arturo; Secchi, Andrea; Ragazzon, Giulio; Silvi, Serena; Credi, Alberto
2018-05-11
Catenanes with desymmetrized ring components can undergo co-conformational rearrangements upon external stimulation and can form the basis for the development of molecular rotary motors. We describe the design, synthesis and properties of a [2]catenane consisting of a macrocycle-the 'track' ring-endowed with two distinct recognition sites (a bipyridinium and an ammonium) for a calix[6]arene-the 'shuttle' ring. By exploiting the ability of the calixarene to thread appropriate non-symmetric axles with directional selectivity, we assembled an oriented pseudorotaxane and converted it into the corresponding oriented catenane by intramolecular ring closing metathesis. Cyclic voltammetric experiments indicate that the calixarene wheel initially surrounds the bipyridinium site, moves away from it when it is reduced, and returns in the original position upon reoxidation. A comparison with appropriate model compounds shows that the presence of the ammonium station is necessary for the calixarene to leave the reduced bipyridinium site.
NASA Astrophysics Data System (ADS)
Löwen, Hartmut
2018-03-01
Like ordinary molecules are composed of atoms, colloidal molecules consist of several species of colloidal particles tightly bound together. If one of these components is self-propelled or swimming, novel “active colloidal molecules” emerge. Active colloidal molecules exist on various levels such as “homonuclear”, “heteronuclear” and “polymeric” and possess a dynamical function moving as propellers, spinners or rotors. Self-assembly of such active complexes has been studied a lot recently and this perspective article summarizes recent progress and gives an outlook to future developments in the rapidly expanding field of active colloidal molecules.
Boixel, Julien; Fortage, Jérôme; Blart, Errol; Pellegrin, Yann; Hammarström, Leif; Becker, Hans-Christian; Odobel, Fabrice
2010-02-14
Supramolecular triads were prepared by self-assembly of 4'-pyridyl-2-tetrathiafulvalene axially bound on ZnP-spacer-AuP(+) dyads; the lifetime of the charge separated state ((+)TTF-ZnP-Spacer-AuP ) formed upon light excitation of the triad is greatly increased with respect to that found in the parent dyad.
Liu, Kai; Zhang, Han; Xing, Ruirui; Zou, Qianli; Yan, Xuehai
2017-12-26
Biomimetic organization provides a promising strategy to develop functional materials and understand biological processes. However, how to mimic complex biological systems using simple biomolecular units remains a great challenge. Herein, we design and fabricate a biomimetic cyanobacteria model based on self-integration of small bioinspired molecules, including amphiphilic amino acid, 3,4-dihydroxyphenylalanine (DOPA), and metalloporphyrin and cobalt oxide nanoparticles (Co 3 O 4 NPs), with the assistance of chemical conjugation and molecular self-assembly. The assembled amino acid fiber can be modified by DOPA to form covalently bound DOPA melanin containing hydroxyl and quinone species via Schiff base reaction. The adhering template can further tune the self-assembly of metalloporphyrin and Co 3 O 4 NPs into J-aggregation and dispersive distribution, respectively, mainly via coordination binding. Metalloporphyrin molecules in the resulting hybrid fibers capture light; quinone species accept the excited electrons, and Co 3 O 4 NPs catalyze water oxidation. Thus, the essential components of the photosystem-II protein complex in cyanobacteria are simplified and engineered into a simple framework, still retaining a similar photosynthetic mechanism. In addition, this architecture leads to efficient coupling of antenna, quinone-type reaction center, and photocatalyst, which increases the flux of light energy from antenna to reaction center for charge separation, resulting in enhanced oxygen evolution rate with excellent sustainability.
Morozova, Ju E; Syakaev, V V; Shalaeva, Ya V; Ermakova, A M; Nizameev, I R; Kadirov, M K; Voloshina, A D; Zobov, V V; Antipin, I S; Konovalov, A I
2017-03-08
The association of cetylpyridinium chloride (CPC) micelles in the presence of octaacetated tetraphenyleneoxymethylcalix[4]resorcinarene (CR) leads to the formation of unusual spherical supramolecular nanoparticles (SNPs). Within the range of CR/CPC molar ratios from 10/1 to 1/10 (except for 1/8), CR, acting as a counterion, decreases the critical micelle concentration of CPC by one order of magnitude and leads to the formation of SNPs with an average hydrodynamic radius of 164 nm and an average zeta potential of -60 mV. The formation of SNPs was studied by NMR FT-PGSE and 2D NOESY, DLS, TEM, fluorimetry, and UV-Vis methods. The stability of SNPs at different temperatures and pH values and in the presence of electrolytes was investigated. The specificity of the interactions of the SNPs with substrates that were preferentially bound by a macrocycle or CPC micelle was studied. The enhancement of cation dye binding in the presence of SNPs is shown. The presented supramolecular system may serve as a nanocapsule for water-soluble and water-insoluble compounds.
Bodsgard, Brett R; Clark, Robert W; Ehrbar, Anthony W; Burstyn, Judith N
2009-04-07
A series of silica-bound Cu(ii) triazacyclononane materials was prepared to study the effect of linker length and surface hydrophobicity on the hydrolysis of phosphate esters. The general synthetic approach for these heterogeneous reagents was rhodium-catalyzed hydrosilation between an alkenyl-modified triazacyclononane and hydride-modified silica followed by metallation with a Cu(ii) salt. Elemental analysis confirmed that organic functionalization of the silica gel was successful and provided an estimate of the surface concentration of triazacyclononane. EPR spectra were consistent with square pyramidal Cu(ii), indicating that Cu(ii) ions were bound to the immobilized macrocycles. The hydrolytic efficacies of these heterogeneous reagents were tested with bis(p-nitrophenyl)phosphate (BNPP) and diethyl 4-nitrophenyl phosphate (paraoxon). The agent that performed best was an octyl-linked, propanol-blocked material. This material had the most hydrophilic surface and the most accessible active site, achieving a rate maximum on par with the other materials, but in fewer cycles and without an induction period.
NASA Astrophysics Data System (ADS)
Khan, Burhan; Shah, Muhammad Raza; Rabnawaz, Muhammad
2018-03-01
Macrocycles with ultra dense functionalities are very useful but are difficult to synthesize. In this study, we report six novel macrocycles bearing a pincer ligand alone or a combination of pincer-calixarenes, and pincer-fluorene moieties. Click chemistry was utilized to synthesize the desired macrocycles in good yields. These macrocycles were fully characterized using mass spectrometry (EI-MS, ESI-MS, and MALDI-TOF MS), and NMR spectroscopy. These macrocycles are under investigations as size-selective and recyclable catalysts for various chemical transformations.
Villar, Elizabeth A.; Beglov, Dmitri; Chennamadhavuni, Spandan; Porco, John A.; Kozakov, Dima; Vajda, Sandor; Whitty, Adrian
2014-01-01
The potential utility of synthetic macrocycles as drugs, particularly against low druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of macrocycles for good target protein-binding activity or bioavailability. To address this knowledge gap we analyze the binding modes of a representative set of macrocycle-protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic macrocycles libraries possessing structural and physicochemical features likely to favor strong binding to protein targets and also good bioavailability. We additionally provide evidence that large, natural product derived macrocycles can bind to targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product inspired synthetic macrocycles can expand the number of proteins that are druggable by synthetic small molecules. PMID:25038790
Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha
2012-03-28
A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).
Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.
Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay
2016-01-26
A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling Evaporation and Particle Assembly in Colloidal Droplets.
Zhao, Mingfei; Yong, Xin
2017-06-13
Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.
Sanna, Elena; Escudero-Adán, Eduardo C.; Bauzá, Antonio; Ballester, Pablo; Frontera, Antonio; Rotger, Carmen
2015-01-01
A crystalline porous material showing one-dimensional (1-D) rectangular micropores (12 × 9 Å2) has been assembled from a semirigid macrocyclic tetraimine and EtOAc as the templating agent. The 1-D nature of the material is intrinsic to the conformationally rigid structure of a macrocyclic sub-unit bearing four cyclohexylidene residues. The multiple dispersive forces established among the aliphatic residues glutted the 1-D channels and provided thermal stability to the material at temperatures below 160 °C. Upon removal of the template, the structure of the empty solid exhibited permanent microporosity (S BET = 342 m2 g–1). Being a true molecular sponge, the channel framework of this material allowed the inclusion of a variety of molecular sample guests without compromising its crystalline nature. Remarkably, this crystalline material enabled the structure determination by X-ray diffraction of the included molecules. Theoretical studies demonstrated the vital role played by the dispersive forces in the overall stabilization of the crystal packing. PMID:28757946
Two novel self-assemblies of supramolecular solar cells using N-heterocyclic-anchoring porphyrins.
Zhang, Qian; Wu, Fang-Yuan; Liu, Jia-Cheng; Li, Ren-Zhi; Jin, Neng-Zhi
2018-02-15
Two novel N-substituted anchoring porphyrins (ZnPAtz and ZnPAim) have been devised and synthesized. Moreover, these two anchoring porphyrins were linked to the TiO 2 semiconductor through carboxyl groups and then a zinc porphyrin ZnP was bound to the anchoring porphyrin using a zinc-to-ligand axial coordination approach. The different performances of these assemblies were compared with single anchoring porphyrin devices ZnPAtz and ZnPAim. The photoelectric conversion efficiency of the new supramolecular solar cells sensitized by ZnP-ZnPAx (x=tz, im) has been improved. The ZnP-ZnPAtz-based DSSCs provided the highest photovoltaic efficiency (1.86%). Fundamental studies showed that incorporation of these assemblies promote light-harvesting efficiency. Copyright © 2017. Published by Elsevier B.V.
The structure and protein binding of amyloid-specific dye reagents.
Stopa, Barbara; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Spólnik, Paweł; Zemanek, Grzegorz; Roterman, Irena; Król, Marcin
2003-01-01
The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for beta-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of beta-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.
Core protein: a pleiotropic keystone in the HBV lifecycle
Zlotnick, Adam; Venkatakrishnan, Balasubramanian; Tan, Zhenning; Lewellyn, Eric; Turner, William; Francis, Samson
2015-01-01
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals -- while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on “From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story.” PMID:26129969
Bogdan, Andrew R.; Jerome, Steven V.; Houk, K. N.; James, Keith
2012-01-01
The synthesis, X-ray crystal structures, and calculated strain energies are reported for a homologous series of 11- to 14-membered drug-like cyclophane macrocycles, representing an unusual region of chemical space that can be difficult to access synthetically. The ratio of macrocycle to dimer, generated via a copper catalyzed azide-alkyne cycloaddition macrocyclization in flow at elevated temperature, could be rationalized in terms of the strain energy in the macrocyclic product. The progressive increase in strain resulting from reduction in macrocycle ring size, or the introduction of additional conformational constraints, results in marked deviations from typical geometries. These strained cyclophane macrocyclic systems provide access to spatial orientations of functionality that would not be readily available in unstrained or acyclic analogs. The most strained system prepared represents the first report of an 11-membered cyclophane containing a 1,4-disubstituted 1,2,3-triazole ring, and establishes a limit to the ring strain that can be generated using this macrocycle synthesis methodology. PMID:22133103
Arumugaperumal, Reguram; Srinivasadesikan, Venkatesan; Ramakrishnam Raju, Mandapati V; Lin, Ming-Chang; Shukla, Tarun; Singh, Ravinder; Lin, Hong-Cheu
2015-12-09
A novel multifunctional mechanically interlocked switchable [2]rotaxane R4 containing two molecular stations and rotaxane arms terminated with boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click reaction. The shuttling motion of macrocycle between the dibenzylammonium and triazolium recognition sites and the distance dependent photoinduced electron transfer process of R4 is demonstrated by utilizing external chemical stimuli (acid/base). Interestingly, the reversible self-assembly process of R4 was recognized by the acid-base molecular switch strategy. Notably, two symmetrical triazolium groups acted as molecular stations, H2PO4(-) receptors, and H-bonded donors. Both [2]rotaxane R4 and thread R2 demonstrated excellent optical responses and high selectivity toward H2PO4(-) ion. The specific motion and guest-host interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. The thread R2 also demonstrated to enable the detection of H2PO4(-) in RAW 264.7 cells successfully.
Photoluminescence spectra of thin films of ZnTPP–C{sub 60} and CuTPP–C{sub 60} molecular complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elistratova, M. A., E-mail: marina.elistratova@mail.ioffe.ru; Zakharova, I. B.; Romanov, N. M.
2016-09-15
The results of studies of thin composite films of zinc and copper tetraphenylporphyrins with different fractions of fullerene C{sub 60} are reported. The photoluminescence spectra are recorded, and the composition and surface morphology are analyzed by means of scanning electron microscopy. The results show a difference in the structure of films with two types of metals (Zn, Cu) entering into the complex of the porphyrin macrocycle. An additional long-wavelength photoluminescence band at 1.4 eV is detected for the first time, which is evidence of the formation of ZnTPP–C{sub 60} molecular complexes from a gas-dynamic vapor flow upon condensation. In CuTPPmore » thin films, the processes of self-assembly into nanowires 20 nm in diameter and up to 50 µm in length and the formation of nanoheterojunctions upon the addition of fullerene C{sub 60} are observed. Quantum-chemical calculations in the context of density-functional theory are carried out to interpret the experimental data.« less
L2, the minor capsid protein of papillomavirus
Wang, Joshua W.; Roden, Richard B.S.
2013-01-01
The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ~8kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. PMID:23689062
Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles
Zhang, Wei; Song, Yunmei; Eldi, Preethi; Guo, Xiuli; Hayball, John D; Garg, Sanjay; Albrecht, Hugo
2018-01-01
Prostate cancer cells frequently overexpress the gastrin-releasing peptide receptor, and various strategies have been applied in preclinical settings to target this receptor for the specific delivery of anticancer compounds. Recently, elastin-like polypeptide (ELP)-based self-assembling micelles with tethered GRP on the surface have been suggested to actively target prostate cancer cells. Poorly soluble chemotherapeutics such as docetaxel (DTX) can be loaded into the hydrophobic cores of ELP micelles, but only limited drug retention times have been achieved. Herein, we report the generation of hybrid ELP/liposome nanoparticles which self-assembled rapidly in response to temperature change, encapsulated DTX at high concentrations with slow release, displayed the GRP ligand on the surface, and specifically bound to GRP receptor expressing PC-3 cells as demonstrated by flow cytometry. This novel type of drug nanocarrier was successfully used to reduce cell viability of prostate cancer cells in vitro through the specific delivery of DTX. PMID:29391790
Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings.
Landskron, Kai; Hatton, Benjamin D; Perovic, Doug D; Ozin, Geoffrey A
2003-10-10
A periodic mesoporous organosilica composed of interconnected three-ring [Si(CH2)]3 units built of three SiO2(CH2)2 tetrahedral subunits is reported. It represents the archetype of a previously unknown class of nanocomposite materials in which two bridging organic groups are bound to each silicon atom. It can be obtained with powder and oriented film morphologies. The nanocomposite is self-assembled from the cyclic three-ring silsesquioxane [(EtO)2Si(CH2)]3 precursor and a surfactant mesophase to give a well-ordered mesoporous framework. Low dielectric constants and good mechanical stability of the films were measured, making this material interesting for microelectronic applications. Methylene group reactivity of the three-ring precursor provides entry to a family of nanocomposites, exemplified by the synthesis and self-assembly of [(EtO)2Si(CHR)][(EtO)2Si(CH2)]2 (where R indicates iodine, bromine, or an ethyl group).
Bambus[n]urils: a new family of macrocyclic anion receptors.
Havel, Vaclav; Svec, Jan; Wimmerova, Michaela; Dusek, Michal; Pojarova, Michaela; Sindelar, Vladimir
2011-08-05
A recently discovered anion receptor is jointed by three related macrocycles differing in the number of glycoluril units and type of substitution. The synthesis is carried out in nonpolar solvents compared to aqueous media used in the case of the original macrocycle. The size of macrocycle is controlled by a template. A hexameric macrocycle with benzyl substitution binds halide anions with an affinity exceeding 10(9) M(-1) while a tetrameric analog does not bind any of the investigated anions. © 2011 American Chemical Society
Collin, Jean-Paul; Durola, Fabien; Frey, Julien; Heitz, Valérie; Reviriego, Felipe; Sauvage, Jean-Pierre; Trolez, Yann; Rissanen, Kari
2010-05-19
Two related cyclic [4]rotaxanes consisting of double macrocycles and rigid rods incorporating two bidentate chelates have each been prepared in high yield. The first step is a multigathering and threading reaction driven by coordination of two different bidentate chelates (part of either the rings or the rods) to each copper(I) center so as to afford the desired precursor. In both cases, the assembly step is done under very mild conditions, and it is quantitative. The second key reaction is the stopper-attaching reaction, based on click chemistry. Even if the quadruple stoppering reaction is not quantitative, it is relatively high-yielding (60% and 95%), and the copper-driven assembly process is carried out at room temperature without any aggressive reagent. The final copper-complexed [4]rotaxanes obtained contain two aromatic plates roughly parallel to one another located at the center of each bis-macrocycle. In the most promising case in terms of host-guest properties, the plates are zinc(II) porphyrins of the tetra-aryl series. The compounds have been fully characterized by various spectroscopic techniques ((1)H NMR, mass spectrometry, and electronic absorption spectroscopy). Unexpectedly, the copper-complexed porphyrinic [4]rotaxane could be crystallized as its 4PF(6)(-) salt to afford X-ray quality crystals. The structure obtained is in perfect agreement with the postulated chemical structure of the compound. It is particularly attractive in terms of symmetry and molecular aesthetics. The distance between the zinc atoms of the two porphyrins is 8.673 A, which is sufficient to allow insertion between the two porphyrinic plates of small ditopic basic substrates able to interact with the central porphyrinic Zn atoms. This prediction has been confirmed by absorption spectroscopy measurements in the presence of various organic substrates. However, large substrates cannot be introduced in the corresponding recognition site and are thus complexed mostly in an exo fashion, being located outside the receptor cavity. Noteworthy, the stability constants of the 1:1 host-guest complexes are high (10(7) M(-1)).
Impact of molecular flexibility on binding strength and self-sorting of chiral π-surfaces.
Safont-Sempere, Marina M; Osswald, Peter; Stolte, Matthias; Grüne, Matthias; Renz, Manuel; Kaupp, Martin; Radacki, Krzysztof; Braunschweig, Holger; Würthner, Frank
2011-06-22
In this work, we have explored for the first time the influence of conformational flexibility of π-core on chiral self-sorting properties of perylene bisimides (PBIs) that are currently one of the most prominent classes of functional dyes. For this purpose, two series of chiral macrocyclic PBIs 3a-c and 4a-c comprising oligoethylene glycol bridges of different lengths at the 1,7 bay positions were synthesized and their atropo-enantiomers (P and M enantiomers) were resolved. Single crystal analysis of atropo-enantiomerically pure (P)-3a not only confirmed the structural integrity of the ethylene glycol bridged macrocycle but also illustrated the formation of π-stacked dimers with left-handed supramolecular helicity. Our detailed studies with the series of highly soluble chiral PBIs 4a-c by 1- and 2-D (1)H NMR techniques, and temperature- and concentration-dependent UV/vis absorption and circular dichroism (CD) spectroscopy revealed that in π-π-stacking dimerization of these PBIs chiral self-recognition (i.e., PP and MM homodimer formation) prevails over self-discrimination (i.e., PM heterodimer formation). Our studies clearly showed that with increasing conformational flexibility of PBI cores imparted by longer bridging units, the binding strength for the dimerization process increases, however, the efficiency for chiral self-recognition decreases. These results are rationalized in terms of an induced-fit mechanism facilitating more planarized π-scaffolds of PBIs containing longer bridging units upon π-π-stacking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, T.C.; Rubin, Y.
1995-12-31
This research is focused on the synthesis of macrocycles with high carbon content for the purpose of total synthesis of fullerenes or fullerene-like structures with the ultimate goal of obtaining endohedral metal complexes of fullerene C{sub 60}. Toward this goal, the authors have utilized organometallic chemistry to synthesize novel cyclophanes such as 1 which are constituted primarily of acetylenic units. The authors believe such macrocycles may be C{sub 60} precursors since studies have shown that acetylenic macrocycles form fullerenes in the gas phase. The authors have synthesized macrocycle 1 using a highly convergent route from commercially available starting materials. Themore » macrocycle 1 is produced from copper (I) catalyzed coupling of 2 which is obtained in turn by the coupling of the copper acetylide 3 with 4. The suitability of macrocycles such as 1 for fullerene precursors is currently under investigation.« less
Yang, Teng-Chieh; Maluf, Nasib Karl
2012-02-21
Human adenovirus (Ad) is an icosahedral, double-stranded DNA virus. Viral DNA packaging refers to the process whereby the viral genome becomes encapsulated by the viral particle. In Ad, activation of the DNA packaging reaction requires at least three viral components: the IVa2 and L4-22K proteins and a section of DNA within the viral genome, called the packaging sequence. Previous studies have shown that the IVa2 and L4-22K proteins specifically bind to conserved elements within the packaging sequence and that these interactions are absolutely required for the observation of DNA packaging. However, the equilibrium mechanism for assembly of IVa2 and L4-22K onto the packaging sequence has not been determined. Here we characterize the assembly of the IVa2 and L4-22K proteins onto truncated packaging sequence DNA by analytical sedimentation velocity and equilibrium methods. At limiting concentrations of L4-22K, we observe a species with two IVa2 monomers and one L4-22K monomer bound to the DNA. In this species, the L4-22K monomer is promoting positive cooperative interactions between the two bound IVa2 monomers. As L4-22K levels are increased, we observe a species with one IVa2 monomer and three L4-22K monomers bound to the DNA. To explain this result, we propose a model in which L4-22K self-assembly on the DNA competes with IVa2 for positive heterocooperative interactions, destabilizing binding of the second IVa2 monomer. Thus, we propose that L4-22K levels control the extent of cooperativity observed between adjacently bound IVa2 monomers. We have also determined the hydrodynamic properties of all observed stoichiometric species; we observe that species with three L4-22K monomers bound have more extended conformations than species with a single L4-22K bound. We suggest this might reflect a molecular switch that controls insertion of the viral DNA into the capsid.
Selective Attachment of Nucleic Acid Molecules to Patterned Self-Assembled Surfaces.
1994-12-01
of different sequence is accomplished by placement of 8 liquid portions of nucleic acids at the desired position on the 9 filter. This method is...acids are selectively 24 bound from regions to which nucleic acids are excluded, other than 25 by placement of liquid aliquots (generally >1 Al) of...is typically non-covalent (i.e., ionic 16 bonding, or, less often, hydrogen bonding). Advantageously, non- 17 covalent bonding of nucleic acid
Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets.
Yu, Haoyu S; Deng, Yuqing; Wu, Yujie; Sindhikara, Dan; Rask, Amy R; Kimura, Takayuki; Abel, Robert; Wang, Lingle
2017-12-12
Macrocycles have been emerging as a very important drug class in the past few decades largely due to their expanded chemical diversity benefiting from advances in synthetic methods. Macrocyclization has been recognized as an effective way to restrict the conformational space of acyclic small molecule inhibitors with the hope of improving potency, selectivity, and metabolic stability. Because of their relatively larger size as compared to typical small molecule drugs and the complexity of the structures, efficient sampling of the accessible macrocycle conformational space and accurate prediction of their binding affinities to their target protein receptors poses a great challenge of central importance in computational macrocycle drug design. In this article, we present a novel method for relative binding free energy calculations between macrocycles with different ring sizes and between the macrocycles and their corresponding acyclic counterparts. We have applied the method to seven pharmaceutically interesting data sets taken from recent drug discovery projects including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in good agreement with experimental data with an overall root-mean-square error (RMSE) of 0.94 kcal/mol. This is to our knowledge the first time where the free energy of the macrocyclization of linear molecules has been directly calculated with rigorous physics-based free energy calculation methods, and we anticipate the outstanding accuracy demonstrated here across a broad range of target classes may have significant implications for macrocycle drug discovery.
Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R J D; Giacomini, Elisa; Hansen, Mette R; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F; Spring, David R
2015-04-21
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity.
Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment.
Christensen, Mikkel; Skeby, Katrine K; Schiøtt, Birgit
2017-09-12
Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.
Salvito, Daniel; Lapczynski, Aurelia; Sachse-Vasquez, Christen; McIntosh, Colin; Calow, Peter; Greim, Helmut; Escher, Beate
2011-09-01
A screening-level aquatic environmental risk assessment for macrocyclic fragrance materials using a "group approach" is presented using data for 30 macrocyclic fragrance ingredients. In this group approach, conservative estimates of environmental exposure and ecotoxicological effects thresholds for compounds within two subgroups (15 macrocyclic ketones and 15 macrocyclic lactones/lactides) were used to estimate the aquatic ecological risk potential for these subgroups. It is reasonable to separate these fragrance materials into the two subgroups based on the likely metabolic pathway required for biodegradation and on expected different ecotoxicological modes of action. The current volumes of use for the macrocyclic ketones in both Europe and North America ranges from <1 (low kg quantities) to no greater than 50 metric tonnes in either region and for macrocyclic lactones/lactides the volume of use range for both regions is <1 to no greater than 1000 metric tonnes in any one region. Based on these regional tonnages, biodegradability of these two subgroups of materials, and minimal in stream dilution (3:1), the conservatively predicted exposure concentrations for macrocyclic ketones would range from <0.01 to 0.05 μg/L in Europe and from <0.01 to 0.03 μg/L in North America. For macrocyclic lactones/lactides, the concentration within the mixing zone would range from <0.01 to 0.7 μg/L in Europe and from <0.01 to 1.0 μg/L in North America. The PNECs derived for the macrocyclic ketones is 0.22 μg/L and for macrocyclic lactones/lactides is 2.7 μg/L. The results of this screening-level aquatic ecological risk assessment indicate that at their current tonnage, often referred to as volumes of use, macrocyclic fragrance materials in Europe and North America, pose a negligible risk to aquatic biota; with no PEC/PNEC ratio exceeding 1 for any material in any subgroup. Copyright © 2011 Elsevier Inc. All rights reserved.
Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi
2014-06-28
Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption,more » and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.« less
NMR detects molecular interactions of graphene with aromatic and aliphatic hydrocarbons in water
NASA Astrophysics Data System (ADS)
Bichenkova, Elena V.; Raju, Arun P. A.; Burusco, Kepa K.; Kinloch, Ian A.; Novoselov, Kostya S.; Clarke, David J.
2018-03-01
Polyaromatic carbon is widely held to be strongly diamagnetic and hydrophobic, with textbook van der Waals and ‘π-stacked’ binding of hydrocarbons, which disrupt their self-assembled supramolecular structures. The NMR of organic molecules sequestered by polyaromatic carbon is expected to be dominated by shielding from the orbital diamagnetism of π electrons. We report the first evidence of very different polar and magnetic behavior in water, wherein graphene remained well-dispersed after extensive dialysis and behaved as a 1H-NMR-silent ghost. Magnetic effects dominated the NMR of organic structures which interacted with graphene, with changes in spin-spin coupling, vast increase in relaxation, line broadening and decrease in NMR peak heights when bound to graphene. However, the interactions were weak, reversible and did not disrupt organic self-assemblies reliant on hydrophobic ‘π-stacking’, even when substantially sequestered on the surface of graphene by the high surface area available. Interacting assemblies of aromatic molecules retained their strongly-shielded NMR signals and remained within self-assembled structures, with slower rates of diffusion from association with graphene, but with no further shielding from graphene. Binding to graphene was selective for positively-charged organic assemblies, weaker for non-aromatic and negligible for strongly-negatively-charged molecules, presumably repelled by a negative zeta potential of graphene in water. Stronger binders, or considerable excess of weaker binders readily reversed physisorption, with no evidence of structural changes from chemisorption. The fundamental nature of these different electronic interactions between organic and polyaromatic carbon is considered with relevance to electronics, charge storage, sensor, medical, pharmaceutical and environmental research.
Size-Selective Detection of Picric Acid by Fluorescent Palladium Macrocycles.
Kumar, Sushil; Kishan, Ram; Kumar, Pramod; Pachisia, Sanya; Gupta, Rajeev
2018-02-19
This work presents the synthesis and characterization of two palladium-based fluorescent macrocycles offering hydrogen-bonding cavities of contrasting dimensions. Both palladium macrocycles function as chemosensors for the detection of nitroaromatics, whereas the larger macrocycle not only illustrates nanomolar detection of picric acid but also transports its significant amount from an aqueous to an organic phase.
Life and Understanding: The Origins of “Understanding” in Self-Organizing Nervous Systems
Yufik, Yan M.; Friston, Karl
2016-01-01
This article is motivated by a formulation of biotic self-organization in Friston (2013), where the emergence of “life” in coupled material entities (e.g., macromolecules) was predicated on bounded subsets that maintain a degree of statistical independence from the rest of the network. Boundary elements in such systems constitute a Markov blanket; separating the internal states of a system from its surrounding states. In this article, we ask whether Markov blankets operate in the nervous system and underlie the development of intelligence, enabling a progression from the ability to sense the environment to the ability to understand it. Markov blankets have been previously hypothesized to form in neuronal networks as a result of phase transitions that cause network subsets to fold into bounded assemblies, or packets (Yufik and Sheridan, 1997; Yufik, 1998a). The ensuing neuronal packets hypothesis builds on the notion of neuronal assemblies (Hebb, 1949, 1980), treating such assemblies as flexible but stable biophysical structures capable of withstanding entropic erosion. In other words, structures that maintain their integrity under changing conditions. In this treatment, neuronal packets give rise to perception of “objects”; i.e., quasi-stable (stimulus bound) feature groupings that are conserved over multiple presentations (e.g., the experience of perceiving “apple” can be interrupted and resumed many times). Monitoring the variations in such groups enables the apprehension of behavior; i.e., attributing to objects the ability to undergo changes without loss of self-identity. Ultimately, “understanding” involves self-directed composition and manipulation of the ensuing “mental models” that are constituted by neuronal packets, whose dynamics capture relationships among objects: that is, dependencies in the behavior of objects under varying conditions. For example, movement is known to involve rotation of population vectors in the motor cortex (Georgopoulos et al., 1988, 1993). The neuronal packet hypothesis associates “understanding” with the ability to detect and generate coordinated rotation of population vectors—in neuronal packets—in associative cortex and other regions in the brain. The ability to coordinate vector representations in this way is assumed to have developed in conjunction with the ability to postpone overt motor expression of implicit movement, thus creating a mechanism for prediction and behavioral optimization via mental modeling that is unique to higher species. This article advances the notion that Markov blankets—necessary for the emergence of life—have been subsequently exploited by evolution and thus ground the ways that living organisms adapt to their environment, culminating in their ability to understand it. PMID:28018185
Tang, Jun; Jones, Stacey A; Jeffery, Jerry L; Miranda, Sonia R; Galardi, Cristin M; Irlbeck, David M; Brown, Kevin W; McDanal, Charlene B; Han, Nianhe; Gao, Daxin; Wu, Yongyong; Shen, Bin; Liu, Chunyu; Xi, Caiming; Yang, Heping; Li, Rui; Yu, Yajun; Sun, Yufei; Jin, Zhimin; Wang, Erjuan; Johns, Brian A
2014-01-01
A macrocycle provides diverse functionality and stereochemical complexity in a conformationally preorganized ring structure, and it occupies a unique chemical space in drug discovery. However, the synthetic challenge to access this structural class is high and hinders the exploration of macrocycles. In this study, efficient synthetic routes to macrocyclized betulin derivatives have been established. The macrocycle containing compounds showed equal potency compared to bevirimat in multiple HIV-1 antiviral assays. The synthesis and biological evaluation of this novel series of HIV-1 maturation inhibitors will be discussed.
Computational characterization of DNA/peptide/nanotube self assembly for bioenergy applications
NASA Astrophysics Data System (ADS)
Ortiz, Vanessa; Araki, Ruriko; Collier, Galen
2012-02-01
Multi-enzyme pathways have become a subject of increasing interest for their role in the engineering of biomimetic systems for applications including biosensors, bioelectronics, and bioenergy. The efficiencies found in natural metabolic pathways partially arise from biomolecular self-assembly of the component enzymes in an effort to avoid transport limitations. The ultimate goal of this effort is to design and build biofuel cells with efficiencies similar to those of native systems by introducing biomimetic structures that immobilize multiple enzymes in specific orientations on a bioelectrode. To achieve site-specific immobilization, the specificity of DNA-binding domains is exploited with an approach that allows any redox enzyme to be modified to site-specifically bind to double stranded (ds) DNA while retaining activity. Because of its many desirable properties, the bioelectrode of choice is single-wall carbon nanotubes (SWNTs), but little is known about dsDNA/SWNT assembly and how this might affect the activity of the DNA-binding domains. Here we evaluate the feasibility of the proposed assembly by performing atomistic molecular dynamics simulations to look at the stability and conformations adopted by dsDNA when bound to a SWNT. We also evaluate the effects of the presence of a SWNT on the stability of the complex formed by a DNA-binding domain and DNA.
Isidro-Llobet, Albert; Hadje Georgiou, Kathy; Galloway, Warren R. J. D.; Giacomini, Elisa; Hansen, Mette R.; Méndez-Abt, Gabriela; Tan, Yaw Sing; Carro, Laura; Sore, Hannah F.
2015-01-01
Macrocyclic peptidomimetics are associated with a broad range of biological activities. However, despite such potentially valuable properties, the macrocyclic peptidomimetic structural class is generally considered as being poorly explored within drug discovery. This has been attributed to the lack of general methods for producing collections of macrocyclic peptidomimetics with high levels of structural, and thus shape, diversity. In particular, there is a lack of scaffold diversity in current macrocyclic peptidomimetic libraries; indeed, the efficient construction of diverse molecular scaffolds presents a formidable general challenge to the synthetic chemist. Herein we describe a new, advanced strategy for the diversity-oriented synthesis (DOS) of macrocyclic peptidomimetics that enables the combinatorial variation of molecular scaffolds (core macrocyclic ring architectures). The generality and robustness of this DOS strategy is demonstrated by the step-efficient synthesis of a structurally diverse library of over 200 macrocyclic peptidomimetic compounds, each based around a distinct molecular scaffold and isolated in milligram quantities, from readily available building-blocks. To the best of our knowledge this represents an unprecedented level of scaffold diversity in a synthetically derived library of macrocyclic peptidomimetics. Cheminformatic analysis indicated that the library compounds access regions of chemical space that are distinct from those addressed by top-selling brand-name drugs and macrocyclic natural products, illustrating the value of our DOS approach to sample regions of chemical space underexploited in current drug discovery efforts. An analysis of three-dimensional molecular shapes illustrated that the DOS library has a relatively high level of shape diversity. PMID:25778821
Jiang, Nan; Ma, Jing
2011-09-12
The proton-binding behavior of solvated tetraamido/diamino quaternized macrocyclic compounds with rigid phenyl and flexible phenyl bridges in the absence or presence of an external electric field is investigated by molecular dynamics simulation. The proton can be held through H-bonding interactions with the two carbonyl oxygen atoms in macrocycles containing rigid (phenyl) and flexible (propyl) bridges. The solute-solvent H-bonding interactions cause the macrocyclic backbones to twist to different extents, depending on the different bridges. The macrocycle with the rigid phenyl linkages folds into a cuplike shape due to π-π interaction, while the propyl analogue still maintains the ellipsoidal ringlike shape with just a slight distortion. The potential energy required for proton transfer is larger in the phenyl-containing macrocycle than in the compound with propyl units. When an external electric field with a strength of 2.5 V nm(-1) is exerted along the carbonyl oxygen atoms, a difference in proton encircling is exhibited for macrocycles with rigid and flexible bridges. In contrast to encapsulation of a proton in the propyl analogue, the intermolecular solute-solvent H-bonding and intramolecular π-π stacking between the two rigid phenyl spacers leads to loss of the proton from the highly distorted cuplike macrocycle with phenyl bridges. The competition between intra- and intermolecular interactions governs the behavior of proton encircling in macrocycles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Amyloid-like Self-Assembly of a Cellular Compartment.
Boke, Elvan; Ruer, Martine; Wühr, Martin; Coughlin, Margaret; Lemaitre, Regis; Gygi, Steven P; Alberti, Simon; Drechsel, David; Hyman, Anthony A; Mitchison, Timothy J
2016-07-28
Most vertebrate oocytes contain a Balbiani body, a large, non-membrane-bound compartment packed with RNA, mitochondria, and other organelles. Little is known about this compartment, though it specifies germline identity in many non-mammalian vertebrates. We show Xvelo, a disordered protein with an N-terminal prion-like domain, is an abundant constituent of Xenopus Balbiani bodies. Disruption of the prion-like domain of Xvelo, or substitution with a prion-like domain from an unrelated protein, interferes with its incorporation into Balbiani bodies in vivo. Recombinant Xvelo forms amyloid-like networks in vitro. Amyloid-like assemblies of Xvelo recruit both RNA and mitochondria in binding assays. We propose that Xenopus Balbiani bodies form by amyloid-like assembly of Xvelo, accompanied by co-recruitment of mitochondria and RNA. Prion-like domains are found in germ plasm organizing proteins in other species, suggesting that Balbiani body formation by amyloid-like assembly could be a conserved mechanism that helps oocytes function as long-lived germ cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Comprehensive computational design of ordered peptide macrocycles
Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fátima; Rettie, Stephen A.; Kim, David E.; Silva, Daniel-Adriano; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David
2018-01-01
Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods. PMID:29242347
Direct patterning of a cyclotriveratrylene derivative for directed self-assembly of C60
NASA Astrophysics Data System (ADS)
Osner, Zachary R.; Nyamjav, Dorjderem; Holz, Richard C.; Becker, Daniel P.
2011-07-01
A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials.
Sierra, Miguel A; Pellico, Daniel; Gómez-Gallego, Mar; Mancheño, María José; Torres, Rosario
2006-11-10
The easily available macrocyclic diimines 4-7 can be stereoselectively transformed to macrocyclic bis-beta-amino acids 13-17, macrocyclic bisazetidines 18-20, and macrocyclic bisamides 21 and 22 by means of the corresponding bis-beta-lactam scaffolds 8-12. These key intermediates are available through standard Staudinger reaction and obtained as the cis-cis diastereomers, exclusively. An interesting relation between the proximity of the reactive C=N bonds and the selectivity in the formation of the bis-beta-lactams 8-12 is observed. Thus, diimine 4 leads to low selectivities, producing a 1:1 mixture of cis-syn-cis and cis-anti-cis diastereomers, while diimines 5-7 having the diimine sites more separated lead almost exclusively to the cis-anti-cis diastereomers. The stereochemistry of all the products was unambiguously assigned by X-ray diffraction analysis of compounds cis-syn-cis 8 and cis-anti-cis 12-Co2CO6 complex.
Nie, Feilin; Kunciw, Dominique L.; Wilcke, David; Stokes, Jamie E.; Galloway, Warren R. J. D.; Bartlett, Sean; Sore, Hannah F.
2016-01-01
Abstract Synthetic macrocycles are an attractive area in drug discovery. However, their use has been hindered by a lack of versatile platforms for the generation of structurally (and thus shape) diverse macrocycle libraries. Herein, we describe a new concept in library synthesis, termed multidimensional diversity‐oriented synthesis, and its application towards macrocycles. This enabled the step‐efficient generation of a library of 45 novel, structurally diverse, and highly‐functionalized macrocycles based around a broad range of scaffolds and incorporating a wide variety of biologically relevant structural motifs. The synthesis strategy exploited the diverse reactivity of aza‐ylides and imines, and featured eight different macrocyclization methods, two of which were novel. Computational analyses reveal a broad coverage of molecular shape space by the library and provides insight into how the various diversity‐generating steps of the synthesis strategy impact on molecular shape. PMID:27484830
Structural and conformational determinants of macrocycle cell permeability.
Over, Björn; Matsson, Pär; Tyrchan, Christian; Artursson, Per; Doak, Bradley C; Foley, Michael A; Hilgendorf, Constanze; Johnston, Stephen E; Lee, Maurice D; Lewis, Richard J; McCarren, Patrick; Muncipinto, Giovanni; Norinder, Ulf; Perry, Matthew W D; Duvall, Jeremy R; Kihlberg, Jan
2016-12-01
Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.
Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian
2018-07-06
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625 /S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
Folding dynamics of linear emulsion polymers into 3D architectures
NASA Astrophysics Data System (ADS)
McMullen, Angus; Bargteil, Dylan; Brujic, Jasna
Colloidal polymers have been limited to inflexible, solid colloids. Here we show that the fluidity of emulsion droplets allows for the self-assembly of flexible droplet chains, which can subsequently be folded into 3D structures via secondary interactions. We achieve this using DNA-guided interactions, to initially form the chain, and then program its folding pathways. When two emulsion droplets labeled with complementary DNA meet, the balance of hybridization energy and droplet deformation yields an equilibrium patch size. Therefore, the concentration of DNA on the surface determines the number of droplet-droplet bonds in the assembly. We find that 96 % of bound droplets successfully self-assemble into chains. Droplet binding is a stochastic process, following a Poisson distribution of lengths. Since the fluid droplets can rearrange, we compare the dynamics of emulsion chains to that of polymers. We also trigger secondary interactions along the chain, causing the formation of specific loops or compact clusters. This approach will allow us to fold our emulsion polymers into a wide array of soft structures, giving us a powerful biomimetic colloidal system to investigate protein folding on the mesoscopic scale. This work was supported by the NSF MRSEC Program (DMR-0820341).
Langenstroer, Anja; Dorca, Yeray; Kartha, Kalathil K; Mayoral, Maria Jose; Stepanenko, Vladimir; Fernández, Gustavo; Sánchez, Luis
2018-05-10
The self-assembly features of hydrophobic bispyridyldichlorido Pd(II) complexes, equipped with an extended aromatic surface derived from oligophenyleneethynylene (OPE) and polarizable amide functional groups, are reported. The cooperative supramolecular polymerization of these complexes results in bundles of thin fibers in which the monomer units are arranged in a translationally displaced or slipped fashion. Spectroscopic and microscopy studies reveal that these assemblies are held together by simultaneous π-stacking of the OPE moieties and NH···ClPd hydrogen bonds. These unconventional forces are often observed in crystal engineering but remain largely unexploited in supramolecular polymers. Both steric and electronic effects (the presence of bulky and polarizable metal-bound Cl ligands as well as hydrogen bonding donor NH units) prevent the establishment of short Pd-Pd contacts and strongly condition the aggregation mode of the reported complexes, in close analogy to the previously reported amphiphilic Pd(II) complex 4. The results presented herein shed light on the subtle interplay between different noncovalent interactions and their impact on the self-assembly of metallosupramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian
2018-07-01
Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.
Stability of self-assembled polymer films investigated by optical laser reflectometry.
Dejeu, Jérôme; Diziain, Séverine; Dange, Catherine; Membrey, François; Charraut, Daniel; Foissy, Alain
2008-04-01
We studied the influence of post-treatment rinsing after the formation of self-assembled polyelectrolyte films made with the weak base poly(allylamine hydrochloride) (PAH) and the strong acid poly(styrene sulfonate) (PSS). The stability of the film was studied using optical fixed-angle laser reflectometry to measure the release of polymeric material and AFM experiments to reveal the change of morphology and thickness. We found that the polymer films were stable upon rinsing when the pH was the same in the solution as that used in the buildup (pH 9). The films released most of the polymeric material when rinsed at higher pH values, but a layer remained that corresponded to a PAH monolayer directly bound with the silica surface. Films containing at least four bilayers were stable upon rinsing at lower pH values, but the stability of thinner films depended on the type of the last polymer deposited. They were stable in the case of PSS as an outermost deposit, but they released a large part of their material in the case of PAH. The stability results were determined using a simple model of the step-by-step assembly of the polymer film described formerly.
Linker-mediated assembly of gold nanoparticles into multimeric motifs
NASA Astrophysics Data System (ADS)
Sikora, Mateusz; Szymczak, Piotr; Thompson, Damien; Cieplak, Marek
2011-11-01
We present a theoretical description of linker-mediated self-assembly of gold nanoparticles (Au-NP). Using mesoscale simulations with a coarse-grained model for the Au NPs and dirhenium-based linker molecules, we investigate the conditions under which large clusters can grow and construct a phase diagram that identifies favorable growth conditions in terms of floating and bound linker concentrations. The findings can be considered as generic, as we expect other NP-linker systems to behave in a qualitatively similar way. In particular, we also discuss the case of antibody-functionalised Au NPs connected by the C-reactive proteins (CRPs). We extract some general rules for NP linking that may aid the production of size- and shape-specific NP clusters for technology applications.
Ambrosi, Gianluca; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Pontellini, Roberto; Rossi, Patrizia
2011-02-01
Binding properties of 24,29-dimethyl-6,7,15,16-tetraoxotetracyclo[19.5.5.0(5,8).0(14,17)]-1,4,9,13,18,21,24,29-octaazaenatriaconta-Δ(5,8),Δ(14,17)-diene ligand L towards Zn(II) and anions, such as the halide series and inorganic oxoanions (phosphate (Pi), sulfate, pyrophosphate (PPi), and others), were investigated in aqueous solution; in addition, the Zn(II)/L system was tested as a metal-ion-based receptor for the halide series. Ligand L is a cryptand receptor incorporating two squaramide functions in an over-structured chain that connects two opposite nitrogen atoms of the Me(2)[12]aneN(4) polyaza macrocyclic base. It binds Zn(II) to form mononuclear species in which the metal ion, coordinated by the Me(2)[12]aneN(4) moiety, lodges inside the three-dimensional cavity. Zn(II)-containing species are able to bind chloride and fluoride at the physiologically important pH value of 7.4; the anion is coordinated to the metal center but the squaramide units play the key role in stabilizing the anion through a hydrogen-bonding network; two crystal structures reported here clearly show this aspect. Free L is able to bind fluoride, chloride, bromide, sulfate, Pi, and PPi in aqueous solution. The halides are bound at acidic pH, whereas the oxoanions are bound in a wide range of pH values ranging from acidic to basic. The cryptand cavity, abundant in hydrogen-bonding sites at all pH values, allows excellent selectivity towards Pi to be achieved mainly at physiological pH 7.4. By joining amine and squaramide moieties and using this preorganized topology, it was possible, with preservation of the solubility of the receptor, to achieve a very wide pH range in which oxoanions can be bound. The good selectivity towards Pi allows its discrimination in a manner not easily obtainable with nonmetallic systems in aqueous environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High photoreactivity in a non-fluorescent photocleavable ligands on gold
NASA Astrophysics Data System (ADS)
Robinson, Hans D.; Daengngam, Chalongrat; Stoianov, Stefan V.; Thorpe, Steven B.; Guo, Xi; Santos, Webster L.; Morris, John R.
2014-03-01
We report on the photo-patterning of a gold surface functionalized with a self-assembled monolayer of an o-nitrobenzyl-based photocleavable ligand bound to the gold surface with a thiol anchor. We find that the dose of UV light required to induce the photoreaction on gold is very similar to the dose in an alcohol solution, even though many optical phenomena are strongly suppressed on metal surfaces. We attribute this finding to a combination of the large skin depth in gold at UV wavelengths, the high speed of the photoreaction, and the spatially indirect nature of the lowest excited singlet. Any photoreactive compound where the quantum efficiency of fluorescence is sufficiently low, preferably no larger than about 10-5 in the case of gold surfaces, will show a similarly high photoreactivity in metal-surface monolayers. The implications of this result for optically driven self-assembly in plasmonic systems will be discussed. This work was supported by a grant from the National Science Foundation (DMR-106753).
Li, Wei; Schneider, Christopher M; Georg, Gunda I
2015-08-07
A copper-mediated macrocyclization involving the reaction of a vinyl iodide and a terminal alkyne followed by an in situ reduction of the enyne intermediate is reported. The reaction generates a conjugated Z-double bond within a strained medium-size lactone, lactam, or ether macrocycle. A variety of macrocyclic compounds bearing different ring sizes and functionalities were synthesized. A complementary stepwise procedure was also developed for less strained ring systems.
Synthesis of 5-iodo-1,2,3-triazole-containing macrocycles using copper flow reactor technology.
Bogdan, Andrew R; James, Keith
2011-08-05
A new macrocyclization strategy to synthesize 12- to 31-membered 5-iodo-1,2,3-triazole-containing macrocycles is described. The macrocycles have been generated using a simple and efficient copper-catalyzed cycloaddition in flow under environmentally friendly conditions. This methodology also permits the facile, regioselective synthesis of 1,4,5-trisubstituted-1,2,3-triazole-containing macrocyles using palladium-catalyzed cross-coupling reactions. © 2011 American Chemical Society
Predicting bioactive conformations and binding modes of macrocycles
NASA Astrophysics Data System (ADS)
Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen
2016-10-01
Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.
Comprehensive computational design of ordered peptide macrocycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple
Mixed chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to-date, but there is currently no way to systematically search through the structural space spanned by such compounds for new drug candidates. Natural proteins do not provide a useful guide: peptide macrocycles lack regular secondary structures and hydrophobic cores and have different backbone torsional constraints. Hence the development of new peptide macrocycles has been approached by modifying natural products or using library selection methods; the former is limited by the small number of known structures, and the latter by the limited size and diversity accessible throughmore » library-based methods. To overcome these limitations, here we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L and D amino acids. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. We synthesize and characterize by NMR twelve 7-10 residue macrocycles, 9 of which have structures very close to the design models in solution. NMR structures of three 11-14 residue bicyclic designs are also very close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide based macrocycles unparalleled for other molecular systems, and vastly increase the available starting scaffolds for both rational drug design and library selection methods.« less
Qin, Haifang; Jiang, Xiyuan; Fan, Jie; Wang, Jianpeng; Liu, Li; Qiu, Lin; Wang, Jianhao; Jiang, Pengju
2017-01-01
Capillary electrophoresis with fluorescence detection was utilized to probe the self-assembly between cyanine group dye labeled tetrahistidine containing peptide and CdSe/ZnS quantum dots, inside the capillary. Quantum dots and cyanine group dye labeled tetrahistidine containing peptide were injected into the capillary one after the other and allowed to self-assemble. Their self-assembly resulted into a measurable Förster resonance energy transfer signal between quantum dots and cyanine group dye labeled tetrahistidine containing peptide. The Förster resonance energy transfer signal increased upon increasing the cyanine group dye labeled tetrahistidine containing peptide/quantum dot molar ratio and reached a plateau at the 32/1 molar ratio. Additionally, the Förster resonance energy transfer signal was also affected by the increment of the interval time of injection and the sampling time. Online ligand exchange experiments were used to assess, the potential of a monovalent ligand of imidazole and a hexavalent ligand peptide, to displace surface bound cyanine group dye labeled peptide ligands from the quantum dots surface. Under optimal conditions, a linear relationship between the integrated peak areas and hexavalent ligand peptide was obtained at a hexavalent ligand concentration range of 0-0.5 mM. Therefore, the present assay has the potential to be applied in the online ligands detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tran, Hai L; Lexa, Katrina W; Julien, Olivier; Young, Travis S; Walsh, Christopher T; Jacobson, Matthew P; Wells, James A
2017-02-22
Macrocycles are appealing drug candidates due to their high affinity, specificity, and favorable pharmacological properties. In this study, we explored the effects of chemical modifications to a natural product macrocycle upon its activity, 3D geometry, and conformational entropy. We chose thiocillin as a model system, a thiopeptide in the ribosomally encoded family of natural products that exhibits potent antimicrobial effects against Gram-positive bacteria. Since thiocillin is derived from a genetically encoded peptide scaffold, site-directed mutagenesis allows for rapid generation of analogues. To understand thiocillin's structure-activity relationship, we generated a site-saturation mutagenesis library covering each position along thiocillin's macrocyclic ring. We report the identification of eight unique compounds more potent than wild-type thiocillin, the best having an 8-fold improvement in potency. Computational modeling of thiocillin's macrocyclic structure revealed a striking requirement for a low-entropy macrocycle for activity. The populated ensembles of the active mutants showed a rigid structure with few adoptable conformations while inactive mutants showed a more flexible macrocycle which is unfavorable for binding. This finding highlights the importance of macrocyclization in combination with rigidifying post-translational modifications to achieve high-potency binding.
Liu, Kexi; Lei, Yinkai; Wang, Guofeng
2013-11-28
Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.
Peptides and peptidomimetics in medicine, surgery and biotechnology.
Gentilucci, Luca; Tolomelli, Alessandra; Squassabia, Federico
2006-01-01
Despite the fact that they have been used for a century to treat several kinds of diseases, peptides and short proteins are now considered the new generation of biologically active tools. Indeed, recent findings suggest a wide range of novel applications in medicine, biotechnology, and surgery. The efficacy of native peptides has been greatly enhanced by introducing structural modifications in the original sequences, giving rise to the class of peptidomimetics. This review gives an overview of both classical applications and promising new categories of biologically active peptides and analogs. Besides the new entries in well known peptide families, such as antibiotic macrocyclic peptides, integrin inhibitors, as well as immunoactive, anticancer, neuromodulator, opioid, and hormone peptides, a number of novel applications have been recently reported. Outstanding examples include peptide-derived semi-synthetic vaccines, drug delivery systems, radiolabeled peptides, self-assembling peptides, which can serve as biomaterials in tissue engineering for creating cartilage, blood vessels, and other tissues, or as substrates for neurite outgrowth and synapse formation, immobilized peptides, and proteins. Finally, peptide-based biomaterials can find applications in bio-nanotechnology for bio-microchips, peptide nanorods and nanotubes, bio-sensors, bio-electronic devices, and peptide-metal wires.
PtII6 nanoscopic cages with an organometallic backbone as sensors for picric acid.
Samanta, Dipak; Mukherjee, Partha Sarathi
2013-12-28
An organometallic building block 1,3,5-tris(4-trans-Pt(PEt3)2I(ethynyl)phenyl)benzene (1) incorporating Pt-ethynyl functionality has been synthesized and characterized. [2 + 3] self-assembly of its nitrate analogue 1,3,5-tris(4-trans-Pt(PEt3)2(ONO2)(ethynyl)phenyl)benzene (2) with "clip" type bidentate donors (L1-L3) separately afforded three trigonal prismatic architectures (3a-3c), respectively. All these prisms were characterized and their shapes/sizes are predicted through geometry optimization employing molecular mechanics universal force field (MMUFF) simulation. The extended π-conjugation including the presence of Pt-ethynyl functionality makes them electron rich as well as luminescent in nature. Macrocycles 3b and 3c exhibit fluorescence quenching in solution upon addition of picric acid [PA], which is a common constituent of many explosives. Interestingly, the non-responsive nature of fluorescent intensity towards other electron-deficient nitro-aromatic explosives (NAEs) makes them promising selective sensors for PA with a detection limit predicted to be ppb level. Furthermore, solid-state quenching of fluorescent intensity of the thin film of 3b upon exposure to saturated vapor of picric acid has drawn special attention for infield applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Arun K.; Sean Fyvie, W.; Brindisi, Margherita
Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1'-P2' tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.
Stein, M. Jeanette; Weidner, Tobias; McCrea, Keith; Castner, David G.; Ratner, Buddy D.
2010-01-01
Sum frequency generation (SFG) vibrational spectroscopy is used to study the surface and the underlying substrate of both homogeneous and mixed self-assembled monolayers (SAMs) of 11-mercaptoundecyl-1-sulphobetainethiol (HS(CH2)11N+(CH3)2(CH2)3SO3−, SB) and 1-mercapto-11-undecyl tetra(ethylene glycol) (HS(CH2)11O(CH2CH2O)4OH, EG4) with an 11-mercapto-1-undecanol (HS(CH2)11OH, MCU) diluent. SFG results on the C–H region of the dry and hydrated SAMs gave an in situ look into the molecular orientation and suggested an approach to maximize signal-to-noise ratio on these difficult to analyze hydrophilic SAMs. Vibrational fingerprint studies in the 3000–3600 cm−1 spectral range for the SAMs exposed serially to air, water, and deuterated water revealed that a layer of tightly-bound structured water was associated with the surface of a non-fouling monolayer but was not present on a hydrophobic N-undecylmercaptan (HS(CH2)10CH3, UnD) control. The percentage of water retained upon submersion in D2O correlated well with the relative amount of protein that was previously shown to absorb onto the monolayers. These results provide evidence supporting the current theory regarding the role of a tightly-bound vicinal water layer in the protein resistance of a non-fouling group. PMID:19639981
Electronic and vibrational exciton coupling in oxidized trianglimines.
Szymkowiak, Joanna; Kwit, Marcin
2018-02-01
Readily available chiral trianglimine and their (poly)oxygenated congeners represent a unique class of macrocyclic rigid compounds optimal for testing electronic and vibrational circular dichroism exciton chirality methods. Electronic and vibrational circular dichroism spectra of such trianglimines are strongly affected by polar substituents in macrocycle skeletons. Double substitution by OH groups in each aromatic fragment of the macrocycle causes sign reversal of the exciton couplet in the region of the strongest UV absorption. On the other hand, electronic circular dichroism spectrum of the macrocycle having 2 methoxy groups shows 2 exciton couplets-the long-wavelength positive and the second of the negative sign, observed at the shorter wavelengths. VCD spectra of macrocyclic imines show vibrational exciton couplets in the region of strong C=N stretches. The signs of these couplets are positive and the opposite of the diamine chirality. For trianglimine macrocycles the interpretation of VCD spectra in terms of excitons is much more convincing than for electronic circular dichroism spectra. By contrast, trans-1,2-diaminocyclohexane-based vicinal diimines, being a one-third of the respective macrocycle, do not exhibit any vibrational exciton effect. Experimental data were confronted with DFT calculations. We observed good-to-excellent agreement between experimental and computed data. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromm, A.J. Jr.; Vallarino, L.M.; Leif, R.C.
At present, the microscopic visualization of luminescent labels containing lanthanide(III) ions, primarily europium(III), as light-emitting centers is best performed with time-gated instrumentation, which by virtually eliminating the background fluorescence results in an improved signal to noise ratio. However, the use of the europium(III) macrocycle, Quantum Dye{trademark}, in conjunction with the strong luminescence enhancing effect (cofluorescence) of yttrium(III) or gadolinium(III), can eliminate the need for such specialized instrumentation. In the presence of Gd(III), the luminescence of the Eu(III)-macrocycles can be conveniently observed with conventional fluorescence instrumentation at previously unattainable low levels. The Eu(III) {sup 5}D{sub 0} {r_arrow} {sup 7}F{sub 2} emissionmore » of the Eu(III)-macrocycles was observed as an extremely sharp band with a maximum at 619 nm and a clearly resolved characteristic pattern. At very low Eu(III)-macrocycle concentrations, another sharp emission was detected at 614 nm, arising from traces of Eu(III) present in even the purest commercially available gadolinium products. Discrimination of the resolved emissions of the Eu(III)-macrocycle and Eu(III) contaminant should provide a means to further lower the limit of detection of the Eu(III)-macrocycle.« less
Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio
2007-04-01
This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response time of no more than ca. 10 min. Figure A single-step multi-sandwich immunoassay step increases SPR sensor signal by ca. 12 times affording a low detection limit for benzaldehyde of 5 ppt.
Waelès, Philip; Fournel-Marotte, Karine; Coutrot, Frédéric
2017-08-25
This paper reports on the synthesis of a tri-stable [2]rotaxane molecular shuttle, in which the motion of the macrocycle is triggered by either selective protonation/deprotonation or specific carbamoylation/decarbamoylation of an alkylbenzylamine. The threaded axle is surrounded by a dibenzo[24]crown[8] (DB24C8) macrocycle and contains three sites of different binding affinities towards the macrocycle. An N-methyltriazolium moiety acts as a molecular station that has weak affinity for the DB24C8 macrocycle and is located in the centre of the molecular axle. Two other molecular stations, arylammonium and alkylbenzylammonium moieties, sit on either side of the triazolium moiety along the molecular axle and have stronger affinities for the DB24C8 macrocycle. These two ammonium moieties are covalently linked to two different stopper groups at each extremity of the thread: a tert-butylphenyl group and a substituted DB24C8 unit. Owing to steric hindrance, the former does not allow any π-π stacking interactions with the encircling DB24C8 macrocycle, whereas the latter residue does; therefore, this allows the discrimination of the two ammonium stations by the surrounding DB24C8 macrocycle in the fully protonated state. In the deprotonated state, the contrasting reactivity of the amine functional groups, as either a base or a nucleophile, allows for selective reactions that trigger the controlled shuttling of the macrocycle around the three molecular stations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng
2009-07-01
Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.
Smith, Andrew M.; Pajovich, Harrison T.; Banerjee, Ipsita A.
2018-01-01
Degenerative neurological disorders and traumatic brain injuries cause significant damage to quality of life and often impact survival. As a result, novel treatments are necessary that can allow for the regeneration of neural tissue. In this work, a new biomimetic scaffold was designed with potential for applications in neural tissue regeneration. To develop the scaffold, we first prepared a new bolaamphiphile that was capable of undergoing self-assembly into nanoribbons at pH 7. Those nanoribbons were then utilized as templates for conjugation with specific proteins known to play a critical role in neural tissue growth. The template (Ile-TMG-Ile) was prepared by conjugating tetramethyleneglutaric acid with isoleucine and the ability of the bolaamphiphile to self-assemble was probed at a pH range of 4 through 9. The nanoribbons formed under neutral conditions were then functionalized step-wise with the basement membrane protein laminin, the neurotropic factor artemin and Type IV collagen. The conductive polymer polyaniline (PANI) was then incorporated through electrostatic and π–π stacking interactions to the scaffold to impart electrical properties. Distinct morphology changes were observed upon conjugation with each layer, which was also accompanied by an increase in Young’s Modulus as well as surface roughness. The Young’s Modulus of the dried PANI-bound biocomposite scaffolds was found to be 5.5 GPa, indicating the mechanical strength of the scaffold. Thermal phase changes studied indicated broad endothermic peaks upon incorporation of the proteins which were diminished upon binding with PANI. The scaffolds also exhibited in vitro biodegradable behavior over a period of three weeks. Furthermore, we observed cell proliferation and short neurite outgrowths in the presence of rat neural cortical cells, confirming that the scaffolds may be applicable in neural tissue regeneration. The electrochemical properties of the scaffolds were also studied by generating I-V curves by conducting cyclic voltammetry. Thus, we have developed a new biomimetic composite scaffold that may have potential applications in neural tissue regeneration. PMID:29342881
Rapid fixation of methylene chloride by a macrocyclic amine.
Lee, Jung-Jae; Stanger, Keith J; Noll, Bruce C; Gonzalez, Carlos; Marquez, Manuel; Smith, Bradley D
2005-03-30
A simple macrocyclic amine is alkylated by methylene chloride to give a quaternary ammonium chloride salt. When methylene chloride is the solvent, the reaction exhibits pseudo-first-order kinetics, and the reaction half-life at 25.0 degrees C is 2.0 min. The reaction half-life for a structurally related, acyclic amine is approximately 50 000 times longer. Detailed calculations favor a mechanism where the methylene chloride associates with the macrocycle to form an activated prereaction complex. The macrocyclic nitrogen subsequently attacks the methylene chloride with a classic SN2 trajectory, and although the carbon-chlorine bond breaks, the chloride leaving group does not separate from the newly formed cationic macrocycle, such that the product is a tightly associated ion-pair. X-ray crystal structures of the starting amine and the product salt, as well as kinetic data, support this mechanism.
Maurya, Sushil K; Rana, Rohit
2017-01-01
An efficient, eco-compatible diversity-oriented synthesis (DOS) approach for the generation of library of sugar embedded macrocyclic compounds with various ring size containing 1,2,3-triazole has been developed. This concise strategy involves the iterative use of readily available sugar-derived alkyne/azide-alkene building blocks coupled through copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction followed by pairing of the linear cyclo-adduct using greener reaction conditions. The eco-compatibility, mild reaction conditions, greener solvents, easy purification and avoidance of hazards and toxic solvents are advantages of this protocol to access this important structural class. The diversity of the macrocycles synthesized (in total we have synthesized 13 macrocycles) using a set of standard reaction protocols demonstrate the potential of the new eco-compatible approach for the macrocyclic library generation.
Squaraine rotaxanes with boat conformation macrocycles.
Fu, Na; Baumes, Jeffrey M; Arunkumar, Easwaran; Noll, Bruce C; Smith, Bradley D
2009-09-04
Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C(4)O(2) core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye's brightness by a factor of 6. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes.
Squaraine Rotaxanes with Boat Conformation Macrocycles
Fu, Na; Baumes, Jeffrey M.; Arunkumar, Easwaran; Noll, Bruce C.; Smith, Bradley D.
2010-01-01
Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene-sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid-state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C4O2 core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye’s brightness by a factor of six. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes. PMID:19639940
Structural basis for precursor protein-directed ribosomal peptide macrocyclization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kunhua; Condurso, Heather L.; Li, Gengnan
Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight intomore » the unique protein–protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.« less
Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.
Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E
2015-07-20
Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interference of interchromophoric energy-transfer pathways in π-conjugated macrocycles
Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.; ...
2016-11-10
The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less
Direct comparison of linear and macrocyclic compound libraries as a source of protein ligands.
Gao, Yu; Kodadek, Thomas
2015-03-09
There has been much discussion of the potential desirability of macrocyclic molecules for the development of tool compounds and drug leads. But there is little experimental data comparing otherwise equivalent macrocyclic and linear compound libraries as a source of protein ligands. In this Letter, we probe this point in the context of peptoid libraries. Bead-displayed libraries of macrocyclic and linear peptoids containing four variable positions and 0-2 fixed residues, to vary the ring size, were screened against streptavidin and the affinity of every hit for the target was measured. The data show that macrocyclization is advantageous, but only when the ring contains 17 atoms, not 20 or 23 atoms. This technology will be useful for conducting direct comparisons between many different types of chemical libraries to determine their relative utility as a source of protein ligands.
Divergent Synthesis of Revised Apratoxin E, 30-epi-Apratoxin E, and 30S/30R-Oxoapratoxin E.
Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang
2017-10-20
In this report, originally proposed apratoxin E (30S-7), revised apratoxin E (30R-7), and (30S)/(30R)-oxoapratoxin E (30S)-38/(30R)-38 were efficiently prepared by two synthetic methods. The chiral lactone 10, recycled from the degradation of saponin glycosides, was utilized to prepare the key nonpeptide fragment 9. Our alternative convergent assembly strategy was applied to the divergent synthesis of revised apratoxin E and its three analogues. Moreover, ring-closing metathesis (RCM) was for the first time found to be an efficient strategy for the macrocyclization of apratoxins.
NASA Astrophysics Data System (ADS)
Vlakh, E. G.; Grachova, E. V.; Zhukovsky, D. D.; Hubina, A. V.; Mikhailova, A. S.; Shakirova, J. R.; Sharoyko, V. V.; Tunik, S. P.; Tennikova, T. B.
2017-02-01
The growing attention to the luminescent nanocarriers is strongly stimulated by their potential application as drug delivery systems and by the necessity to monitor their distribution in cells and tissues. In this communication we report on the synthesis of amphiphilic polypeptides bearing C-terminal phosphorescent label together with preparation of nanoparticles using the polypeptides obtained. The approach suggested is based on a unique and highly technological process where the new phosphorescent Pt-cysteine complex serves as initiator of the ring-opening polymerization of α-amino acid N-carboxyanhydrides to obtain the polypeptides bearing intact the platinum chromophore covalently bound to the polymer chain. It was established that the luminescent label retains unchanged its emission characteristics not only in the polypeptides but also in more complicated nanoaggregates such as the polymer derived amphiphilic block-copolymers and self-assembled nanoparticles. The phosphorescent nanoparticles display no cytotoxicity and hemolytic activity in the tested range of concentrations and easily internalize into living cells that makes possible in vivo cell visualization, including prospective application in time resolved imaging and drug delivery monitoring.
Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on au(111).
Yan, Jiawei; Ouyang, Runhai; Jensen, Palle S; Ascic, Erhad; Tanner, David; Mao, Bingwei; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Ulstrup, Jens; Reimers, Jeffrey R
2014-12-10
The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS(•)Au(0)S(•)R or involves direct binding of RS(•) to face-centered-cubic or hexagonal-close-packed sites. Binding as RS(•) produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS(•) also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs.
Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie
2014-01-01
Summary A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern. PMID:25247126
Disc Antenna Enhanced Infrared Spectroscopy: From Self-Assembled Monolayers to Membrane Proteins.
Pfitzner, Emanuel; Seki, Hirofumi; Schlesinger, Ramona; Ataka, Kenichi; Heberle, Joachim
2018-05-25
Plasmonic surfaces have emerged as a powerful platform for biomolecular sensing applications and can be designed to optimize the plasmonic resonance for probing molecular vibrations at utmost sensitivity. Here, we present a facile procedure to generate metallic microdisc antenna arrays that are employed in surface-enhanced infrared absorption (SEIRA) spectroscopy of biomolecules. Transmission electron microscopy (TEM) grids are used as shadow mask deployed during physical vapor deposition of gold. The resulting disc-shaped antennas exhibit enhancement factors of the vibrational bands of 4 × 10 4 giving rise to a detection limit <1 femtomol (10 -15 mol) of molecules. Surface-bound monolayers of 4-mercaptobenzoic acid show polyelectrolyte behavior when titrated with cations in the aqueous medium. Conformational rigidity of the self-assembled monolayer is validated by density functional theory calculations. The membrane protein sensory rhodopsin II is tethered to the disc antenna arrays and is fully functional as inferred from the light-induced SEIRA difference spectra. As an advance to previous studies, the accessible frequency range is improved and extended into the fingerprint region.
Frictional response of fatty acids on steel.
Sahoo, Rashmi R; Biswas, S K
2009-05-15
Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the surface as carboxylate in a bidentate manner. To explore the effect of saturation in the carbon backbone on friction in sliding tribology, we study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. It is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.
Self-Assembled Structures of Benzoic Acid on Au(111) Surface
NASA Astrophysics Data System (ADS)
Vu, Thu-Hien; Wandlowski, Thomas
2017-06-01
Electrochemical scanning tunneling microscopy combined with cyclic voltammetry were employed to explore the self-assembly of benzoic acid (BA) on a Au(111) substrate surface in a 0.1-M HClO4 solution. At the negatively charged surface, BA molecules form two highly ordered physisorbed adlayers with their phenyl rings parallel to the substrate surface. High-resolution scanning tunneling microscopy images reveal the packing arrangement and internal molecular structures. The striped pattern and zigzag structure of the BA adlayers are composed of parallel rows of dimers, in which two BA molecules are bound through a pair of O-H···O hydrogen bonds. Increasing the electrode potential further to positive charge densities of Au(111) leads to the desorption of the physisorbed hydrogen-bonded networks and the formation of a chemisorbed adlayer. BA molecules change their orientation from planar to upright fashion, which is accompanied by the deprotonation of the carboxyl group. Furthermore, potential-induced formation and dissolution of BA adlayers were also investigated. Structural transitions between the various types of ordered adlayers occur according to a nucleation and growth mechanism.
Brun, Sandra; Garcia, Lídia; González, Iván; Torrent, Anna; Dachs, Anna; Pla-Quintana, Anna; Parella, Teodor; Roglans, Anna
2008-09-28
A series of fused tetracycles with a benzene or cyclohexadiene core (2a-h) is satisfactorily prepared by intramolecular [2 + 2 + 2] cycloadditions of triynic and enediynic macrocycles (1a-h) under RhCl(PPh3)3 catalysis; the enantioselective cycloaddition of macrocycles 1b and 1e and gives chiral tetracycles with moderate enantiomeric excess.
Wu, Zhi-Chen; Guo, Qing-Hui; Wang, Mei-Xiang
2017-06-12
Corona[5]arenes, a novel type of macrocyclic compound that is composed of alternating heteroatoms and para-arylenes, were synthesized efficiently by two distinct methods. In a macrocycle-to-macrocycle transformation approach, S 6 -corona[3]arene[3]tetrazine underwent sequential S N Ar reactions with HS-C 6 H 4 -X-C 6 H 4 -SH (X=S, CH 2 , CMe 2 , SO 2 , and O) to produce the corresponding corona[3]arene[2]tetrazines. Different corona[3]arene[2]tetrazine compounds were also constructed in a straightforward manner by a one-pot three-component reaction of HS-C 6 H 4 -X-C 6 H 4 -SH (X=S, CH 2 , CMe 2 , SO 2 , and O) with diethyl 2,5-dimercaptoterephthalate and 2 equiv of 3,6-dichlorotetrazine under very mild conditions. All corona[5]arenes adopted 1,2,4-alternate conformational structures in the crystalline state yielding similar nearly regular pentagonal cavities. Both the cavity size and the electronic property of the acquired macrocycles were fine-tuned by the nature of the bridging element X. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Król, Marcin; Roterman, Irena; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Stopa, Barbara; Spólnik, Paweł
2005-05-15
It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction. Copyright 2005 Wiley-Liss, Inc.
Hepatitis C Virus-Induced Rab32 Aggregation and Its Implications for Virion Assembly.
Pham, Tu M; Tran, Si C; Lim, Yun-Sook; Hwang, Soon B
2017-02-01
Hepatitis C virus (HCV) is highly dependent on cellular factors for viral propagation. Using high-throughput next-generation sequencing, we analyzed the host transcriptomic changes and identified 30 candidate genes which were upregulated in cell culture-grown HCV (HCVcc)-infected cells. Of these candidates, we selected Rab32 for further investigation. Rab32 is a small GTPase that regulates a variety of intracellular membrane-trafficking events in various cell types. In this study, we demonstrated that both mRNA and protein levels of Rab32 were increased in HCV-infected cells. Furthermore, we showed that HCV infection converted the predominantly expressed GTP-bound Rab32 to GDP-bound Rab32, contributing to the aggregation of Rab32 and thus making it less sensitive to cellular degradation machinery. In addition, GDP-bound Rab32 selectively interacted with HCV core protein and deposited core protein into the endoplasmic reticulum (ER)-associated Rab32-derived aggregated structures in the perinuclear region, which were likely to be viral assembly sites. Using RNA interference technology, we demonstrated that Rab32 was required for the assembly step but not for other stages of the HCV life cycle. Taken together, these data suggest that HCV may modulate Rab32 activity to facilitate virion assembly. Rab32, a member of the Ras superfamily of small GTPases, regulates various intracellular membrane-trafficking events in many cell types. In this study, we showed that HCV infection concomitantly increased Rab32 expression at the transcriptional level and altered the balance between GDP- and GTP-bound Rab32 toward production of Rab32-GDP. GDP-bound Rab32 selectively interacted with HCV core protein and enriched core in the ER-associated Rab32-derived aggregated structures that were probably necessary for viral assembly. Indeed, we showed that Rab32 was specifically required for the assembly of HCV. Collectively, our study identifies that Rab32 is a novel host factor essential for HCV particle assembly. Copyright © 2017 American Society for Microbiology.
Kumar, Challa V; Duff, Michael R
2008-12-01
Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non-natural systems have been self-assembled which can capture donor-acceptor pairs and facilitate singlet-singlet energy transfer. Such systems may form a basis for the design and construction of protein-based multi-chromophore self-assemblies for solar light harvesting, conversion and storage.
Frenzel, Thomas; Apte, Chirag; Jost, Gregor; Schöckel, Laura; Lohrke, Jessica; Pietsch, Hubertus
2017-07-01
Multiple clinical and preclinical studies have reported a signal intensity increase and the presence of gadolinium (Gd) in the brain after repeated administration of Gd-based contrast agents (GBCAs). This bioanalytical study in rat brain tissue was initiated to investigate whether the residual Gd is present as intact GBCA or in other chemical forms by using tissue fractionation and chromatography. Rats were divided randomly in 6 groups of 10 animals each. They received 10 daily injections of 2.5 mmol/kg bodyweight of 1 of 5 different GBCAs: linear GBCAs such as gadodiamide (Omniscan; GE Healthcare), gadopentetate dimeglumine (Gd-DTPA, Magnevist; Bayer), or gadobenate dimeglumine (Multihance; Bracco) and macrocyclic GBCAs such as gadobutrol (Gadovist; Bayer) and gadoterate meglumine (Gd-DOTA, Dotarem; Guerbet) or saline. On days 3 and 24 after the last injection (p.i.), 5 randomly chosen animals of each group were killed by exsanguination, and their brains were excised and divided into cerebrum, pons, and cerebellum. The brain sections were homogenized by sonication in ice-cold buffer at pH 7.4. Soluble and insoluble fractions were separated by centrifugation, and the soluble fractions were further separated by gel permeation chromatography (GPC). The Gd concentration in all tissue fractions and in the GPC eluate was measured by inductively coupled plasma-mass spectrometry. In a recovery control experiment, all GBCAs were spiked to blank brain tissue and more than 94% recovery of Gd in the tissue fractions was demonstrated. Only traces of the administered Gd were found in the rat brain tissue on day 3 and day 24 p.i. In the animals treated with macrocyclic GBCAs, Gd was found only in the soluble brain fraction and was present solely as low molecular weight molecules, most likely the intact GBCA. In the animals treated with linear GBCAs Gd was found to a large extent in the insoluble tissue fraction. The Gd concentration in the soluble fraction was comparable to the macrocyclic agents. According to GPC, a smaller portion of the Gd in the soluble fraction of the linear GBCAs groups was bound to macromolecules larger than 250 to 300 kDa. The nature of the Gd-containing macromolecules and the insoluble species were not determined, but they appeared to be saturable with Gd. The excretion of the soluble Gd species in the linear and macrocyclic GBCA groups was still ongoing between days 3 and 24 p.i. This was also observed for the macromolecular Gd species in the linear GBCA groups, but at a slower rate. The residual Gd found in the rat brain after repeated administration of all 3 linear GBCAs was present in at least 3 distinctive forms-soluble small molecules, including the intact GBCA, soluble macromolecules, and to a large extent in insoluble form. The latter 2 are most likely responsible for the prolonged signal intensity enhancement in brain structures observed in magnetic resonance imaging. No relevant differences between the 3 linear GBCAs were observed. The Gd concentrations in the brain after administration of macrocyclic GBCAs are lower, and the Gd is only present in soluble small molecules, which were slowly excreted. This underlines the crucial importance of the kinetic inertness of macrocyclic agents in the prevention of potential retention of Gd in the brain compared with the 3 linear, kinetically less restricted GBCAs.
Frenzel, Thomas; Apte, Chirag; Jost, Gregor; Schöckel, Laura; Lohrke, Jessica; Pietsch, Hubertus
2017-01-01
Objective Multiple clinical and preclinical studies have reported a signal intensity increase and the presence of gadolinium (Gd) in the brain after repeated administration of Gd-based contrast agents (GBCAs). This bioanalytical study in rat brain tissue was initiated to investigate whether the residual Gd is present as intact GBCA or in other chemical forms by using tissue fractionation and chromatography. Materials and Methods Rats were divided randomly in 6 groups of 10 animals each. They received 10 daily injections of 2.5 mmol/kg bodyweight of 1 of 5 different GBCAs: linear GBCAs such as gadodiamide (Omniscan; GE Healthcare), gadopentetate dimeglumine (Gd-DTPA, Magnevist; Bayer), or gadobenate dimeglumine (Multihance; Bracco) and macrocyclic GBCAs such as gadobutrol (Gadovist; Bayer) and gadoterate meglumine (Gd-DOTA, Dotarem; Guerbet) or saline. On days 3 and 24 after the last injection (p.i.), 5 randomly chosen animals of each group were killed by exsanguination, and their brains were excised and divided into cerebrum, pons, and cerebellum. The brain sections were homogenized by sonication in ice-cold buffer at pH 7.4. Soluble and insoluble fractions were separated by centrifugation, and the soluble fractions were further separated by gel permeation chromatography (GPC). The Gd concentration in all tissue fractions and in the GPC eluate was measured by inductively coupled plasma–mass spectrometry. In a recovery control experiment, all GBCAs were spiked to blank brain tissue and more than 94% recovery of Gd in the tissue fractions was demonstrated. Results Only traces of the administered Gd were found in the rat brain tissue on day 3 and day 24 p.i. In the animals treated with macrocyclic GBCAs, Gd was found only in the soluble brain fraction and was present solely as low molecular weight molecules, most likely the intact GBCA. In the animals treated with linear GBCAs Gd was found to a large extent in the insoluble tissue fraction. The Gd concentration in the soluble fraction was comparable to the macrocyclic agents. According to GPC, a smaller portion of the Gd in the soluble fraction of the linear GBCAs groups was bound to macromolecules larger than 250 to 300 kDa. The nature of the Gd-containing macromolecules and the insoluble species were not determined, but they appeared to be saturable with Gd. The excretion of the soluble Gd species in the linear and macrocyclic GBCA groups was still ongoing between days 3 and 24 p.i. This was also observed for the macromolecular Gd species in the linear GBCA groups, but at a slower rate. Conclusions The residual Gd found in the rat brain after repeated administration of all 3 linear GBCAs was present in at least 3 distinctive forms—soluble small molecules, including the intact GBCA, soluble macromolecules, and to a large extent in insoluble form. The latter 2 are most likely responsible for the prolonged signal intensity enhancement in brain structures observed in magnetic resonance imaging. No relevant differences between the 3 linear GBCAs were observed. The Gd concentrations in the brain after administration of macrocyclic GBCAs are lower, and the Gd is only present in soluble small molecules, which were slowly excreted. This underlines the crucial importance of the kinetic inertness of macrocyclic agents in the prevention of potential retention of Gd in the brain compared with the 3 linear, kinetically less restricted GBCAs. PMID:28125438
Rhaman, Md Mhahabubur; Hasan, Mohammad H; Alamgir, Azmain; Xu, Lihua; Powell, Douglas R; Wong, Bryan M; Tandon, Ritesh; Hossain, Md Alamgir
2018-01-10
The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.
NASA Astrophysics Data System (ADS)
Zhang, Ying-Ming; Yang, Yang; Zhang, Yu-Hui; Liu, Yu
2016-07-01
Biomacromolecular pKa shifting is considered as one of the most ubiquitous processes in biochemical events, e.g., the enzyme-catalyzed reaction and protein conformational stabilization. In this paper, we report on the construction of biocompatible polysaccharide nanoparticle with targeting ability and lower toxicity by supramolecular pKa shift strategy. This was realized through a ternary assembly constructed by the dual host‒guest interactions of an adamantane-bis(diamine) conjugate (ADA) with cucurbit[6]uril (CB[6]) and a polysaccharide. The potential application of such biocompatible nanostructure was further implemented by the selective transportation of small interfering RNA (siRNA) in a controlled manner. It is demonstrated that the strong encapsulation of the ADA’s diammonium tail by CB[6] not only reduced the cytotoxicity of the nano-scaled vehicle but also dramatically enhanced cation density through an obvious positive macrocycle-induced pKa shift, which eventually facilitated the subsequent siRNA binding. With a targeted polysaccharide shell containing a cyclodextrin‒hyaluronic acid conjugate, macrocycle-incorporated siRNA polyplexes were specifically delivered into malignant human prostate PC-3 cells. The supramolecular polysaccharide nanoparticles, the formation of which was enabled and promoted by the complexation-assisted pKa shift, may be used as a versatile tool for controlled capture and release of biofunctional substrates.
Treatment of MDR1 Mutant Dogs with Macrocyclic Lactones
Geyer, Joachim; Janko, Christina
2012-01-01
P-glycoprotein, encoded by the multidrug resistance gene MDR1, is an ATP-driven drug efflux pump which is highly expressed at the blood-brain barrier of vertebrates. Drug efflux of macrocyclic lactones by P-glycoprotein is highly relevant for the therapeutic safety of macrocyclic lactones, as thereby GABA-gated chloride channels, which are confined to the central nervous system in vertebrates, are protected from high drug concentrations that otherwise would induce neurological toxicity. A 4-bp deletion mutation exists in the MDR1 gene of many dog breeds such as the Collie and the Australian Shepherd, which results in the expression of a non-functional P-glycoprotein and is associated with multiple drug sensitivity. Accordingly, dogs with homozygous MDR1 mutation are in general prone to neurotoxicity by macrocyclic lactones due to their increased brain penetration. Nevertheless, treatment of these dogs with macrocyclic lactones does not inevitably result in neurological symptoms, since, the safety of treatment highly depends on the treatment indication, dosage, route of application, and the individual compound used as outlined in this review. Whereas all available macrocyclic lactones can safely be administered to MDR1 mutant dogs at doses usually used for heartworm prevention, these dogs will experience neurological toxicity following a high dose regimen which is common for mange treatment in dogs. Here, we review and discuss the neurotoxicological potential of different macrocyclic lactones as well as their treatment options in MDR1 mutant dogs. PMID:22039792
Tan, Shu-Zhen; Hu, Yan-Jun; Gong, Fu-Chun; Cao, Zhong; Xia, Jiao-Yun; Zhang, Ling
2009-03-23
A novel technique of covalent immobilization of indicator dyes in the preparation of fluorescence sensors is developed. Silver nanoparticles are used as bridges and carriers for anchoring indicator dyes. 3-amino-9-ethylcarbazole (AEC) was employed as an example of indicator dyes with terminal amino groups and covalently immobilized onto the outmost surface of a quartz glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where silver nanoparticles were strongly bound to the surface through covalent bonding. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surface of silver nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic groups into succinimide esters. Finally, the active succinimide esters on the surface of silver nanoparticles were reacted with AEC. Thus, AEC was covalently bound to the glass slide and an AEC-immobilized sensor was obtained. The sensor exhibited very satisfactory reproducibility and reversibility, rapid response and no dye-leaching. Rutin can quench the fluorescence intensity of the sensor and be measured by using the sensor. The linear response of the sensor to rutin covers the range from 2.0 x 10(-6) to 1.5 x 10(-4) molL(-1) with a detection limit of 8.0 x 10(-7) molL(-1). The proposed technique may be feasible to the covalent immobilization of other dyes with primary amino groups.
Miyake, Ryosuke; Kuwata, Chika; Masumoto, Yui
2015-02-21
Crystalline peptide Ni(ii)-macrocycles (BF4(-) salt) exhibited moderate CO2 gas adsorption (ca. 6-7 CO2 molecules per macrocycle) into very narrow cavities (narrowest part <2 Å), accompanied by the expansion of the cavities. The BF4(-) salt demonstrated selective uptake of CO2 gas in preference to CH4 and N2 gases.
Quantitative Analysis of Self-Association and Mobility of Annexin A4 at the Plasma Membrane
Crosby, Kevin C.; Postma, Marten; Hink, Mark A.; Zeelenberg, Christiaan H.C.; Adjobo-Hermans, Merel J.W.; Gadella, Theodorus W.J.
2013-01-01
Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca2+ binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca2+ influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology. PMID:23663830
Quantitative analysis of self-association and mobility of annexin A4 at the plasma membrane.
Crosby, Kevin C; Postma, Marten; Hink, Mark A; Zeelenberg, Christiaan H C; Adjobo-Hermans, Merel J W; Gadella, Theodorus W J
2013-05-07
Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca(2+) binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca(2+) influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Hwang, Seok-Ho; Moorefield, Charles N; Wang, Pingshan; Fronczek, Frank R; Courtney, Brandy H; Newkome, George R
2006-08-07
Synthesis of a novel bis(terpyridine) ligand, 4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine, utilizing triphenylamine, as a specific angle controller, has led to the self-assembly of a unique hexagonal metallomacrocycle family, [Fe6(2)6(PF6)12] and [Zn6(2)6(BF4)12], utilizing terpyridine-metal(II)-terpyridine connectivity. The crystal structure of the novel ligand shows that the angle between the two terpyridinyl moieties is 119.69 degrees , which enabled the formation of the hexagonal-shaped macrocycles. The crystal packing architectures of this starting ligand revealed channels induced by solvent encapsulation. Following complexation of this ligand with transition metals [Fe(II) or Zn(II)] in a one-pot reaction, the resultant structures were characterized by (1)H and (13)C NMR, UV/Vis and mass spectroscopies. The expected metal-to-ligand charge transfer (MLCT; lambda(max) = 582 nm) and emission (lambda(em) = 575 nm) characteristics were exhibited by both [Fe6(2)6(PF6)12] and[Zn6(2)6(BF4)12]. The photoelectrochemical characteristics of these hexagonal metallomacrocycles demonstrate that they can be used as sensitizers in dye-sensitized solar cells.
Li, Xi; Li, Zheng; Yang, Ying-Wei
2018-05-01
A luminescent conjugated macrocycle polymer (CMP) with strong two-photon fluorescence property, namely, P[5]-TPE-CMP, is constructed from ditriflate-functionalized pillar[5]arene and a 1,1,2,2-tetrakis(4-ethynylphenyl)ethylene (TPE) linker through a Sonogashira-Hagihara cross-coupling reaction. Significantly, in sharp contrast with the corresponding conjugated microporous polymer without synthetic macrocycles, P[5]-TPE-CMP shows an outstanding stability against photobleaching and exhibits highly selective cation sensing capability toward Fe 3+ at different excitation wavelengths (both UV and red-near-infrared regions). Meanwhile, its fluorescence could also be sufficiently quenched by 4-amino azobenzene, a frequently used organic dye that is certified to be carcinogenic, as compared with a group of common organic compounds. This work paves a new way for enhancing the properties of porous organic polymers through the introduction of supramolecular macrocycles like macrocyclic arenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saupe, Jörn; Kunz, Oliver; Haustedt, Lars Ole; Jakupovic, Sven; Mang, Christian
2017-09-04
Macrocycles are a structural class bearing great promise for future challenges in medicinal chemistry. Nevertheless, there are few flexible approaches for the rapid generation of structurally diverse macrocyclic compound collections. Here, an efficient method for the generation of novel macrocyclic peptide-based scaffolds is reported. The process, named here as "MacroEvoLution", is based on a cyclization screening approach that gives reliable access to novel macrocyclic architectures. Classification of building blocks into specific pools ensures that scaffolds with orthogonally addressable functionalities are generated, which can easily be used for the generation of structurally diverse compound libraries. The method grants rapid access to novel scaffolds with scalable synthesis (multi gram scale) and the introduction of further diversity at a late stage. Despite being developed for peptidic systems, the approach can easily be extended for the synthesis of systems with a decreased peptidic character. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Böhm, Stanislav; Makrlík, Emanuel; Vaňura, Petr
2017-07-01
By using quantum chemical calculations, the most probable structures of the anionic complex species dodecabenzylbambus[6]uril-ClO4-, dodecabenzylbambus[6]uril-MnO4-, dodecabenzylbambus[6]uril-TcO4- and dodecabenzylbambus[6]uril-ReO4- were derived. In these four complexes, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion. Further, the corresponding interaction energies of the investigated four anionic complexes were calculated; the absolute values of these calculated energies increase in the series of ReO4- < TcO4- < MnO4- < ClO4-.
Tuning peptide self-assembly by an in-tether chiral center
Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang
2018-01-01
The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.
Peptide π-Electron Conjugates: Organic Electronics for Biology?
Ardoña, Herdeline Ann M; Tovar, John D
2015-12-16
Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.
Prasuhn, Duane E.; Kuzelka, Jane; Strable, Erica; Udit, Andrew K.; Cho, So-Hye; Lander, Gabriel C.; Quispe, Joel D.; Diers, James R.; Bocian, David F.; Potter, Clint; Carragher, Bridget; Finn, M.G.
2009-01-01
SUMMARY The addition of a hexahistidine tag to the N terminus of the hepatitis B capsid protein gives rise to a self-assembled particle with 80 sites of high local density of histidine side chains. Iron protoporphyrin IX has been found to bind tightly at each of these sites, making a polyvalent system of well-defined spacing between metalloporphyrin complexes. The spectroscopic and redox properties of the resulting particle are consistent with the presence of 80 site-isolated bis(histidine)-bound heme centers, comprising a polyvalent b-type cytochrome mimic. PMID:18482703
Halogen bonding in solution: thermodynamics and applications.
Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S
2013-02-21
Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.
Membrane-Assisted Growth of DNA Origami Nanostructure Arrays
2015-01-01
Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors—a three-layered rectangular block and a Y-shaped DNA structure—to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes. PMID:25734977
Membrane-assisted growth of DNA origami nanostructure arrays.
Kocabey, Samet; Kempter, Susanne; List, Jonathan; Xing, Yongzheng; Bae, Wooli; Schiffels, Daniel; Shih, William M; Simmel, Friedrich C; Liedl, Tim
2015-01-01
Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors--a three-layered rectangular block and a Y-shaped DNA structure--to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes.
A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress.
McHugh, Colleen A; Fontana, Juan; Nemecek, Daniel; Cheng, Naiqian; Aksyuk, Anastasia A; Heymann, J Bernard; Winkler, Dennis C; Lam, Alan S; Wall, Joseph S; Steven, Alasdair C; Hoiczyk, Egbert
2014-09-01
Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (~30,000 iron atoms versus ~3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration. © 2014 The Authors.
Wu, Wei; Chen, Junhua; Fang, Zhiyuan; Ge, Chenchen; Xiang, Zhicheng; Ouyang, Chuanyan; Lie, Puchang; Xiao, Zhuo; Yu, Luxin; Wang, Lin; Zeng, Lingwen
2013-12-04
Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAF(T1799A) oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAF(T1799A) DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAF(T1799A) DNA in complex human serum with excellent recovery (94-103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes. Copyright © 2013 Elsevier B.V. All rights reserved.
Macrocyclic BACE inhibitors: Optimization of a micromolar hit to nanomolar leads.
Huang, Yifang; Strobel, Eric D; Ho, Chih Y; Reynolds, Charles H; Conway, Kelly A; Piesvaux, Jennifer A; Brenneman, Douglas E; Yohrling, George J; Moore Arnold, H; Rosenthal, Daniel; Alexander, Richard S; Tounge, Brett A; Mercken, Marc; Vandermeeren, Marc; Parker, Michael H; Reitz, Allen B; Baxter, Ellen W
2010-05-15
We have identified macrocyclic inhibitors of the aspartic protease BACE, implicated in the etiology of Alzheimer's disease. An X-ray structure of screening hit 1 in the BACE active site revealed a hairpin conformation suggesting that constrained macrocyclic derivatives may also bind there. Several of the analogs we prepared were >100x more potent than 1, such as 7 (5 nM K(i)). Copyright 2010 Elsevier Ltd. All rights reserved.
Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films.
Hatton, Ross A; Blanchard, Nicholas P; Stolojan, Vlad; Miller, Anthony J; Silva, S Ravi P
2007-05-22
We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is consistent with an o-MWCNT scaffold decorated with phthalocyanine molecules self-assembled into extended aggregates reminiscent of 1-D linearly stacked phthalocyanine polymers. Remarkably, this self-organization occurs in a fraction of a second during the spin-coating process. To demonstrate the potential utility of this hybrid material, it is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction. The resulting enhancement in power conversion efficiency is rationalized in terms of the electronic, optical, and morphological properties of the nanostructured thin film.
NASA Astrophysics Data System (ADS)
Yuan, Ai-Hua; Liu, Wen-Yan; Zhou, Hu.; Chen, Ying-Ying; Shen, Xiao-Ping
2009-02-01
A new cyanide-bridged heterobimetallic assembly based on octacyanotungstate(V) as building block, {[Cu II(L)] 3[W V(CN) 8] 2}·[Cu II(L)·2H 2O]·(ClO 4) 2·4H 2O 1 (L = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane), has been prepared and characterized. X-ray single-crystal analysis reveals that 1 displays a two-dimensional structure with corrugated sheets, in which the 12-membered rings are the basic building units. Magnetic studies reveal that 1 displays a ferromagnetic interaction between Cu II and W V through cyano bridges.
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.; ...
2017-01-24
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
Thermodynamic and dynamic behaviors of self-organizing polymeric systems
NASA Astrophysics Data System (ADS)
Zhao, Yiqiang
Two topics of self-organizing polymeric systems are explored in this work: thermodynamic and dynamic properties of liquid crystal polymers in solutions and rheological behaviors of self-organizing gels. For dilute nematic solutions of end-on side-chain liquid crystal polysiloxanes (SCLCP) dissolved in 5CB, the chain anisotropies R∥/R ⊥, obtained from electrorheological(ER) analysis based on the Brochard model, are consistent with independent measurements of Rg∥/R g⊥ via small-angle neutron scattering (SANS), which unambiguously demonstrating a slightly prolate SCLCP chain conformation. Dissolution of this prolate SCLCP in flow-aligning 5CB produces a tumbling flow, clearly indicating a discrepancy with the Brochard hydrodynamic theory which predicts such a transition only for oblate conformation. A numerical comparison using a modified version of the Brochard model leads to improved self-consistent agreement between SANS, ER and shear transient experiments. The molecular weight dependence of the chain conformational relaxation time it indicates an extended SCLCP chain conformation in 5CB. SANS analysis suggests that the SCLCP conformation is sensitive to the solvent interaction, i.e. a more extended conformation is observed in isotropic acetone-d6 than in nematic 5CB. A SANS conformational study of SCLCCs with methoxyphenylbenzoate mesogenic side group in CDC13 demonstrates that the form factor of a single comb-like SCLCP chain is well described by a wormlike chain model with finite cross-sectional thickness over the entire q range, taking into account the molecular weight polydispersity. Consistent with measurement of a large R g from low q analysis, the resulting persistence length lp is in the range 28˜32 A, substantially larger than that of unsubstituted polydimethylsiloxane (PDMS) chain (l p =5.8 A), which suggests a relatively rigid SCLCP chain due to the influence of densely attached mesogenic groups. For nematic mixtures of copolysiloxane SCLCP in 5OCB, a metastably extended miscible nematic range is observed at low SCLCP concentration upon cooling. Onset of an induced smectic phase occurs upon cooling at 60%wt SCLCP concentration which corresponds to 48:52 molar ratio of mesogens. Dielectric spectra of these mixtures over a wide concentration range exhibit two distinct regimes of relaxation behavior reflecting the crossover from dilute and semidilute to concentrated regime. Rheological behavior of a metallo-supramolecular gel with thixotropic feature is explored to understand the viscoelastic behaviors of self-assembling networks consisting of "living polymers". A well-defined yield point and non-linear viscoelasticity at small strain are probed via the controlled-stress and controlled-strain measurements, respectively. The self-assembled network is readily presheared into a Newtonian sol and displays a three-stage kinetic recovery process, closely associated with the metal ion-ligand binding kinetics and related phase behaviors. Finally, we investigate the viscoelastic properties of a novel colloidal gel in which macrocycles self-assemble into interconnected self-organized clusters. A series of rheological experiments are combined to reveal the shear responsive nature as well as linear and nonlinear viscoelasticity of this gel. Certain features of observed viscoelastic properties demonstrate the characteristics of the behavior of colloidal gels which show slow glassy dynamics. The negative temperature dependence of the storage modulus at low frequency suggests that enthalpic contributions to elasticity need to be considered, presumably due to internal energy changes upon deformation.
Interfaces and thin films as seen by bound electromagnetic waves.
Knoll, W
1998-01-01
This contribution summarizes the use of plasmon surface polaritons and guided optical waves for the characterization of interfaces and thin organic films. After a short introduction to the theoretical background of evanescent wave optics, examples are given that show how this interfacial "light" can be employed to monitor thin coatings at a solid/air or solid/liquid interface. Examples are given for a very sensitive thickness determination of samples ranging from self-assembled monolayers, to multilayer assemblies prepared by the Langmuir/Blodgett/Kuhn technique or by the alternate polyelectrolyte deposition. These are complemented by the demonstration of the potential of the technique to also monitor time-dependent processes in a kinetic mode. Here, we put an emphasis on the combination set-up of surface plasmon optics with electrochemical techniques, allowing for the on-line characterization of various surface functionalization strategies, e.g. for (bio-) sensor purposes.
Structural basis of nonribosomal peptide macrocyclization in fungi.
Zhang, Jinru; Liu, Nicholas; Cacho, Ralph A; Gong, Zhou; Liu, Zhu; Qin, Wenming; Tang, Chun; Tang, Yi; Zhou, Jiahai
2016-12-01
Nonribosomal peptide synthetases (NRPSs) in fungi biosynthesize important pharmaceutical compounds, including penicillin, cyclosporine and echinocandin. To understand the fungal strategy of forging the macrocyclic peptide linkage, we determined the crystal structures of the terminal condensation-like (C T ) domain and the holo thiolation (T)-C T complex of Penicillium aethiopicum TqaA. The first, to our knowledge, structural depiction of the terminal module in a fungal NRPS provides a molecular blueprint for generating new macrocyclic peptide natural products.
Fujii, Kana; Morita, Daichi; Onoda, Kenji; Kuroda, Teruo; Miyachi, Hiroyuki
2016-05-01
Macrocyclic bis(bibenzyl)-type phenolic natural products, found exclusively in bryophytes, exhibit potent antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Here, in order to identify the minimum essential structure for cell membrane leakage-mediated anti-MRSA activity of these compounds, we synthesized acyclic fragment structures and evaluated their anti-MRSA activity. The activities of all of the acyclic fragments tested exhibited similar characteristics to those of the macrocycles, i.e., anti-MRSA bactericidal activity, an enhancing effect on influx and efflux of ethidium bromide (EtBr: fluorescent DNA-binder) in Staphylococcus aureus cells, and bactericidal activity towards a Staphylococcus aureus strain resistant to 2-phenoxyphenol (4). The latter result suggests that they have a different mechanism of action from 4, which is a FabI inhibitor previously proposed to be the minimum active fragment of riccardin-type macrocycles. Thus, cyclic structure is not a necessary condition for cell membrane leakage-mediated anti-MRSA activity of macrocyclic bis(bibenzyl)s. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turek, Bor Lucijan; Kočevar, Marijan; Kranjc, Krištof; Perdih, Franc
2017-12-01
With the application of a double dienophile 1,1'-(hexane-1,6-diyl)bis(1H-pyrrole-2,5-dione) for a [4+2] cycloaddition with a substituted 2H-pyran-2-one a novel 26-membered tetraaza heteromacrocyclic system 3 was prepared via a direct method under solvent-free conditions with microwave irradiation. The macrocycle prepared is composed of two units of the dienophile and two of the diene. The structure of the macrocycle was characterized on the basis of IR, 1H and 13C NMR and mass spectroscopy, as well as by the elemental analysis and melting point determination. With X-ray diffraction of a single crystal of the macrocycle we have determined that the two acetyl groups (attached to the bridging double bond of the bicyclo[2.2.2]octene fragments) are oriented towards each other (and also towards the inside of the cavity of the macrocycle), therefore, mostly filling it completely.
Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation
NASA Astrophysics Data System (ADS)
Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng
2018-04-01
Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.
Reddy, P Muralidhar; Prasad, Adapa V S S; Rohini, Rondla; Ravinder, Vadde
2008-08-01
Efficient catalytic method for the reduction of pralidoxime to its amine derivative by macrocyclic Ni(II) compounds has been developed. Ten macrocyclic Schiff base Ni(II) compounds were synthesized via non-template synthesis by treating the corresponding macrocycles with nickel chloride in 1:1 ratio. The resulting compounds were characterized by elemental, IR, (1)H NMR, (13)C NMR, mass, electronic spectra, conductance, magnetic, thermal studies and their structures have been proposed. These compounds were used as catalysts for the reduction of pralidoxime to its amino derivative. The reduced pralidoxime was also characterized by spectral analysis and catalytic cycle has been established. The reduced product was determined spectrophotometrically by treating with ninhydrin reagent and the percent yields were found to be in the range of 75.12-82.36%.
Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State
Martí-Centelles, Vicente; Burguete, M. Isabel; Luis, Santiago V.
2012-01-01
Several kinetic models for the macrocyclization of a C2 pseudopeptide with a dihalide through a SN2 reaction have been developed. These models not only focus on the kinetic analysis of the main macrocyclization reaction, but also consider the competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes. PMID:22666148
Woehl, Taylor J.; Prozorov, Tanya
2015-08-20
The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less
Advances in macrocyclic peptide-based antibiotics.
Luther, Anatol; Bisang, Christian; Obrecht, Daniel
2018-06-01
Macrocyclic peptide-based natural products have provided powerful new antibiotic drugs, drug candidates, and scaffolds for medicinal chemists as a source of inspiration to design novel antibiotics. While most of those natural products are active mainly against Gram-positive pathogens, novel macrocyclic peptide-based compounds have recently been described, which exhibit potent and specific activity against some of the most problematic Gram-negative ESKAPE pathogens. This mini-review gives an up-date on recent developments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feng, Hai-Tao; Zhang, Xing; Zheng, Yan-Song
2015-08-21
New chiral tetraphenylethylene (TPE) macrocycles bearing optically pure amine groups were synthesized and found to have a discriminating ability between the two enantiomers of not only chiral acidic compounds but also α-amino acids by enantioselective aggregation and aggregation-induced emission (AIE) effects. NMR spectra, including 2D-NOESY, disclosed that the host-guest interaction of the macrocycle receptor played a key role in addition to the acid-base interactions.
Mitchell, Scott S; Nicholson, Benjamin; Teisan, Sy; Lam, Kin S; Potts, Barbara C M
2004-08-01
During the course of our screening program designed to discover novel anticancer and anti-infective agents from marine microorganisms, a strain of Streptomyces aureoverticillatus (NPS001583) isolated from a marine sediment was found to produce a novel macrocyclic lactam with cytotoxicity against various tumor cell lines. Using extensive MS, UV, and NMR spectral analyses, the structure has been established as compound 1, aureoverticillactam, a 22-atom macrocyclic lactam incorporating both triene and tetraene conjugated olefins.
Selective Binding, Self-Assembly and Nanopatterning of the Creutz-Taube Ion on Surfaces
Wang, Yuliang; Lieberman, Marya; Hang, Qingling; Bernstein, Gary
2009-01-01
The surface attachment properties of the Creutz-Taube ion, i.e., [(NH3)5Ru(pyrazine)Ru(NH3)5]5+, on both hydrophilic and hydrophobic types of surfaces were investigated using X-ray photoelectron spectroscopy (XPS). The results indicated that the Creutz-Taube ions only bound to hydrophilic surfaces, such as SiO2 and –OH terminated organic SAMs on gold substrates. No attachment of the ions on hydrophobic surfaces such as –CH3 terminated organic SAMs and poly(methylmethacrylate) (PMMA) thin films covered gold or SiO2 substrates was observed. Further ellipsometric, atomic force microscopy (AFM) and time-dependent XPS studies suggested that the attached cations could form an inorganic analog of the self-assembled monolayer on SiO2 substrate with a “lying-down” orientation. The strong electrostatic interaction between the highly charged cations and the anionic SiO2 surface was believed to account for these observations. Based on its selective binding property, patterning of wide (∼200 nm) and narrow (∼35 nm) lines of the Creutz-Taube ions on SiO2 surface were demonstrated through PMMA electron resist masks written by electron beam lithography (EBL). PMID:19333420
Charge Separation Mechanisms in Ordered Films of Self-Assembled Donor–Acceptor Dyad Ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logsdon, Jenna L.; Hartnett, Patrick E.; Nelson, Jordan N.
2017-04-21
Orthogonal attachment of polar and nonpolar side-chains to a zinc porphyrin-perylenediimide dyad (ZnP-PDI, 1a) is shown to result in self-assembly of ordered supramolecular ribbons in which the ZnP and PDI molecules form segregated π-stacked columns. Following photoexcitation of the ordered ribbons, ZnP+•-PDI–• radical ion pairs form in <200 fs and subsequently produce a 30 ± 3% yield of free charge carriers that live for about 100 μs. Elongating the side chains on ZnP and PDI in 1b enhances the order of the films, but does not result in an increase in free charge carrier yield. In addition, this yield ismore » independent of temperature, free energy of reaction, and the ZnP-PDI distance in the covalent dyad. These results suggest that the free charge carrier yield in this system is not limited by a bound charge transfer (CT) state or promoted by a vibronically hot CT state. Instead, it is likely that π-stacking of the segregated donors and acceptors within the ribbons results in delocalization of the charges following photoexcitation, allowing them to overcome Coulombic attraction and generate free charge carriers.« less
Correard, Florian; Roy, Myriam; Terrasson, Vincent; Braguer, Diane; Estève, Marie-Anne; Gingras, Marc
2018-06-28
Self-assembly of a covalently-bound lipophilic drug to a dendronic scaffold for making organic nanoparticles is reported as a proof of concept in nanovectorization. A minimalist structural approach with a small PEG-dendron conjugated to paclitaxel (PTX), incorporating safe succinic and gallic acids, is efficient to provide the expected anticancer bioactivity, but also significantly retards and targets intracellular delivery of PTX in 2D and 3D lung cancer cell cultures. A branching effect of dendrons is crucial, when compared to linear PTX conjugates. Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) studies indicate the formation of stable, low-disperse nanoparticles at 10 -5 m in H 2 0, which could also be responsible for the biological effects. An ultrasensitive LC-MS/MS method was used for the determination of intracellular PTX concentration over time, along with the survival rates of cancer cells. Similarly, cell survival assays were successfully correlated to a 3D cell culture with spheroids for mimicking tumors, when treated with PTX conjugates. Our work opens the way to a full evaluation program required for new chemical entities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.
Ikeda, Toshiaki; Adachi, Hiroaki; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Haino, Takeharu
2017-10-06
A benzotrithiophene derivative possessing phenylisoxazoles self-assembled to form stacks. The molecule isodesmically self-assembled in chloroform, whereas it self-assembled in a cooperative fashion in decalin and in methylcyclohexane. Thermodynamic studies based on isodesmic, van der Schoot, and Goldstein-Stryer mathematical models revealed that the self-assembly processes are enthalpically driven and entropically opposed. An enthalpy-entropy compensation plot indicates that the assembly processes in chloroform, decalin, and methylcyclohexane are closely related. The enthalpic gains in less-polar solvents are greater than those in more-polar solvents, resulting in the formation of large assemblies in decalin and in methylcyclohexane. The formation of large assemblies leads to cooperative assemblies. The elongation process is enthalpically more favored than the nucleation process, which drives the cooperativity of the self-assembly. DFT calculations suggested that a hexameric assembly is more stable than tetrameric or dimeric assemblies. Cooperative self-assemblies based on intermolecular interactions other than hydrogen bonding have rarely been reported. It is demonstrated herein that van der Waals interactions, including induced dipole-dipole interactions, can drive the cooperative assembly of planar π-conjugated molecules.
Raymond, Kenneth N.; Xu, Jide; Pham, Tiffany A.
2016-09-13
The invention provides macrocycles useful in chelating metal ions, particularly radionuclides, to provide metal ion complexes. The invention also provides methods of using the compounds and complexes of the invention, such as in therapeutic and diagnostic applications.
Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery.
Feshitan, Jameel A; Vlachos, Fotis; Sirsi, Shashank R; Konofagou, Elisa E; Borden, Mark A
2012-01-01
We have synthesized a biomaterial consisting of Gd(III) ions chelated to lipid-coated, size-selected microbubbles for utility in both magnetic resonance and ultrasound imaging. The macrocyclic ligand DOTA-NHS was bound to PE headgroups on the lipid shell of pre-synthesized microbubbles. Gd(III) was then chelated to DOTA on the microbubble shell. The reaction temperature was optimized to increase the rate of Gd(III) chelation while maintaining microbubble stability. ICP-OES analysis of the microbubbles determined a surface density of 7.5 × 10(5) ± 3.0 × 10(5) Gd(III)/μm(2) after chelation at 50 °C. The Gd(III)-bound microbubbles were found to be echogenic in vivo during high-frequency ultrasound imaging of the mouse kidney. The Gd(III)-bound microbubbles also were characterized by magnetic resonance imaging (MRI) at 9.4 T by a spin-echo technique and, surprisingly, both the longitudinal and transverse proton relaxation rates were found to be roughly equal to that of no-Gd(III) control microbubbles and saline. However, the relaxation rates increased significantly, and in a dose-dependent manner, after sonication was used to fragment the Gd(III)-bound microbubbles into non-gas-containing lipid bilayer remnants. The longitudinal (r(1)) and transverse (r(2)) molar relaxivities were 4.0 ± 0.4 and 120 ± 18 mM(-1)s(-1), respectively, based on Gd(III) content. The Gd(III)-bound microbubbles may find application in the measurement of cavitation events during MRI-guided focused ultrasound therapy and to track the biodistribution of shell remnants. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, Alexander J.; Johnson, Samantha I.; Bullock, R. Morris
We report the first discrete molecular Cr-based catalysts for the reduction of N2. This study is focused on the reactivity of the Cr-N2 complex, trans-[Cr(N2)2(PPh4NBn4)] P4Cr(N2)2, bearing a 16-membered tetraphosphine macrocycle. The architecture of the [16]-PPh4NBn4 ligand is critical to preserve the structural integrity of the catalyst. P4Cr(N2)2 was found to mediate the reduction of N2 by three complementary reaction pathways: (1) Cr-catalyzed reduction of N2 to N(SiMe3)3 by Na and Me3SiCl affording up to 34 equiv N(SiMe3)3; (2) stoichiometric reduction of N2 by protons and electrons. For example, the reaction of cobaltocene (CoCp2) and collidinium triflate (ColH[OTf]) at roommore » temperature to afforded 1.9 equiv of NH3, or at -78 °C to afforded a mixture of NH3 and N2H4; (3) the first example of NH3 formation from the reaction of a terminally bound N2 ligand with a traditional H atom source, TEMPOH, (2,2,6,6-tetramethylpiperidine-1-ol). We found that trans-[Cr(15N2)2(PPh4NBn4)] reacts with excess TEMPOH to afford a 1.4 equiv of 15NH3.« less
Bartoli, Sandra; De Nicola, Gina; Roelens, Stefano
2003-10-17
A set of macrocyclic and open-chain aromatic ligands endowed with polyether side chains has been prepared to assess the contribution of ether oxygen donors to the binding of tetramethylammonium (TMA), a cation believed incapable of interacting with oxygen donors. The open-chain hosts consisted of an aromatic binding site and side chains possessing a variable number of ether oxygen donors; the macrocyclic ligands were based on the structure of a previously investigated host, the dimeric cyclophane 1,4-xylylene-1,4-phenylene diacetate (DXPDA), implemented with polyether-type side chains in the backbone. Association to tetramethylammonium picrate (TMAP) was measured in CDCl(3) at T = 296 K by (1)H NMR titrations. Results confirm that the main contribution to the binding of TMA comes from the cation-pi interaction established with the aromatic binding sites, but they unequivocally show that polyether chains participate with cooperative contributions, although of markedly smaller entity. Water is also bound, but the two guests interact with aromatic rings and oxygen donors in an essentially noncompetitive way. An improved procedure for the preparation of cyclophanic tetraester derivatives has been developed that conveniently recycles the oligomeric ester byproducts formed in the one-pot cyclization reaction. An alternative entry to benzylic diketones has also been provided that makes use of a low-order cyanocuprate reagent to prepare in fair yields a class of compounds otherwise uneasily accessible.
Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones
Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H.; Kleiner, Ralph E.; Du, Xiu Quan; Leissring, Malcolm A.; Tang, Wei-Jen; Charron, Maureen J.; Seeliger, Markus A.; Saghatelian, Alan; Liu, David R.
2014-01-01
Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes1, 2, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene3, 4, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide−/− mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction5, 6. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE’s physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation. PMID:24847884
Soe, Cho Z; Codd, Rachel
2014-04-18
To acquire iron essential for growth, the bacterium Shewanella putrefaciens produces the macrocyclic dihydroxamic acid putrebactin (pbH2; [M + H(+)](+), m/zcalc 373.2) as its native siderophore. The assembly of pbH2 requires endogenous 1,4-diaminobutane (DB), which is produced from the ornithine decarboxylase (ODC)-catalyzed decarboxylation of l-ornithine. In this work, levels of endogenous DB were attenuated in S. putrefaciens cultures by augmenting the medium with the ODC inhibitor 1,4-diamino-2-butanone (DBO). The presence in the medium of DBO together with alternative exogenous non-native diamine substrates, (15)N2-1,4-diaminobutane ((15)N2-DB) or 1,4-diamino-2(E)-butene (E-DBE), resulted in the respective biosynthesis of (15)N-labeled pbH2 ((15)N4-pbH2; [M + H(+)](+), m/zcalc 377.2, m/zobs 377.2) or the unsaturated pbH2 variant, named here: E,E-putrebactene (E,E-pbeH2; [M + H(+)](+), m/zcalc 369.2, m/zobs 369.2). In the latter system, remaining endogenous DB resulted in the parallel biosynthesis of the monounsaturated DB-E-DBE hybrid, E-putrebactene (E-pbxH2; [M + H(+)](+), m/zcalc 371.2, m/zobs 371.2). These are the first identified unsaturated macrocyclic dihydroxamic acid siderophores. LC-MS measurements showed 1:1 complexes formed between Fe(III) and pbH2 ([Fe(pb)](+); [M](+), m/zcalc 426.1, m/zobs 426.2), (15)N4-pbH2 ([Fe((15)N4-pb)](+); [M](+), m/zcalc 430.1, m/zobs 430.1), E,E-pbeH2 ([Fe(E,E-pbe)](+); [M](+), m/zcalc 422.1, m/zobs 422.0), or E-pbxH2 ([Fe(E-pbx)](+); [M](+), m/zcalc 424.1, m/zobs 424.2). The order of the gain in siderophore-mediated Fe(III) solubility, as defined by the difference in retention time between the free ligand and the Fe(III)-loaded complex, was pbH2 (ΔtR = 8.77 min) > E-pbxH2 (ΔtR = 6.95 min) > E,E-pbeH2 (ΔtR = 6.16 min), which suggests one possible reason why nature has selected for saturated rather than unsaturated siderophores as Fe(III) solubilization agents. The potential to conduct multiple types of ex situ chemical conversions across the double bond(s) of the unsaturated macrocycles provides a new route to increased molecular diversity in this class of siderophore.
Equilibrium polymerization models of re-entrant self-assembly
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.
2009-04-01
As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.
Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A
2017-08-04
The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.
Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.
Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi
2014-01-05
We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.
Chemical reactions directed Peptide self-assembly.
Rasale, Dnyaneshwar B; Das, Apurba K
2015-05-13
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.
Chemical Reactions Directed Peptide Self-Assembly
Rasale, Dnyaneshwar B.; Das, Apurba K.
2015-01-01
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603
Self-assembled biomimetic nanoreactors I: Polymeric template
NASA Astrophysics Data System (ADS)
McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish
2015-09-01
The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J
2010-01-01
When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less
Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.
Sowden, Rebecca J; Trotter, Katherine D; Dunbar, Lynsey; Craig, Gemma; Erdemli, Omer; Spickett, Corinne M; Reglinski, John
2013-02-01
A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.
Breslin, Henry J; Lane, Brandon M; Ott, Gregory R; Ghose, Arup K; Angeles, Thelma S; Albom, Mark S; Cheng, Mangeng; Wan, Weihua; Haltiwanger, R Curtis; Wells-Knecht, Kevin J; Dorsey, Bruce D
2012-01-12
A novel set of 2,4,8,22-tetraazatetracyclo[14.3.1.1(3,7).1(9,13)]docosa-1(20),3(22),4,6,9(21),10,12,16,18-nonaene macrocycles were prepared as potential anaplastic lymphoma kinase (ALK) inhibitors, designed to rigidly lock an energy-minimized bioactive conformation of the diaminopyrimidine (DAP) scaffold, a well-documented kinase platform. From 13 analogues prepared, macrocycle 2m showed the most promising in vitro ALK enzymatic (IC(50) = 0.5 nM) and cellular (IC(50) = 10 nM) activities. In addition, macrocycle 2m exhibited a favorable kinase selectivity preference for inhibition of ALK relative to the highly homologous insulin receptor (IR) kinase (IR/ALK ratio of 173). The inclusive in vitro biological results for this set of macrocycles validate this scaffold as a viable kinase template and further corroborate recent DAP/ALK solid state studies indicating that the inverted "U" shaped conformation of the acyclic DAPs is a preferred bioactive conformation.
L2, the minor capsid protein of papillomavirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joshua W.; Roden, Richard B.S., E-mail: roden@jhmi.edu; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287
2013-10-15
The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 ismore » not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.« less
Self-assembled single-crystal silicon circuits on plastic
Stauth, Sean A.; Parviz, Babak A.
2006-01-01
We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780
Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.
Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou
2014-06-25
We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.
Feltham, Humphrey L C; Dumas, Christophe; Mannini, Matteo; Otero, Edwige; Sainctavit, Philippe; Sessoli, Roberta; Meledandri, Carla J; Brooker, Sally
2017-02-21
In a proof-of-principle study, a soluble macrocyclic single-molecule magnet (SMM) containing a Cu II 3 Tb III magnetic core was covalently grafted onto small gold nanoparticles pre-functionalised with carboxylate-terminated tethers. A modified microemulsion method allowed production of the small and monodisperse nanoparticles (approximately 3.5 nm in diameter) for the chemisorption of a large amount of intact macrocyclic complexes in the hybrid system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luminescent macrocyclic lanthanide complexes
Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide
2014-05-20
The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.
Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip
NASA Astrophysics Data System (ADS)
Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs
2013-12-01
Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.
NASA Technical Reports Server (NTRS)
Palacci, Jeremie (Inventor); Pine, David J. (Inventor); Chaikin, Paul Michael (Inventor); Sacanna, Stefano (Inventor)
2017-01-01
A self-assembling structure using non-equilibrium driving forces leading to 'living crystals' and other maniputable particles with a complex dynamics. The dynamic self-assembly assembly results from a competition between self-propulsion of particles and an attractive interaction between the particles. As a result of non-equilibrium driving forces, the crystals form, grow, collide, anneal, repair themselves and spontaneously self-destruct, thereby enabling reconfiguration and assembly to achieve a desired property.
The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles
NASA Astrophysics Data System (ADS)
Taniguchi, Masahiko; Ptaszek, Marcin; Chandrashaker, Vanampally; Lindsey, Jonathan S.
2017-03-01
Attempts to develop a credible prebiotic route to tetrapyrroles have relied on enzyme-free recapitulation of the extant biosynthesis, but this process has foundered from the inability to form the pyrrole porphobilinogen ( PBG) in good yield by self-condensation of the precursor δ-aminolevulinic acid ( ALA). PBG undergoes robust oligomerization in aqueous solution to give uroporphyrinogen (4 isomers) in good yield. ALA, PBG, and uroporphyrinogen III are universal precursors to all known tetrapyrrole macrocycles. The enzymic formation of PBG entails carbon-carbon bond formation between the less stable enolate/enamine of one ALA molecule (3-position) and the carbonyl/imine (4-position) of the second ALA molecule; without enzymes, the first ALA reacts at the more stable enolate/enamine (5-position) and gives the pyrrole pseudo-PBG. pseudo-PBG cannot self-condense, yet has one open α-pyrrole position and is proposed to be a terminator of oligopyrromethane chain-growth from PBG. Here, 23 analogues of ALA have been subjected to density functional theoretical (DFT) calculations, but no motif has been identified that directs reaction at the 3-position. Deuteriation experiments suggested 5-(phosphonooxy)levulinic acid would react preferentially at the 3- versus 5-position, but a hybrid condensation with ALA gave no observable uroporphyrin. The results suggest efforts toward a biomimetic, enzyme-free route to tetrapyrroles from ALA should turn away from structure-directed reactions and focus on catalysts that orient the two aminoketones to form PBG in a kinetically controlled process, thereby avoiding formation of pseudo-PBG.
From self-organization to self-assembly: a new materialism?
Vincent, Bernadette Bensaude
2016-09-01
While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.
Gavrish, Sergey P; Lampeka, Yaroslaw D; Pritzkow, Hans; Lightfoot, Philip
2010-09-07
The crystal structures of the palladium(II) complexes of the open-chain and macrocyclic ligands PdL(1).3H(2)O, PdL(2).6H(2)O and PdL(3).5H(2)O have been determined (H(2)L(1) = 1,4,8,11-tetraazaundecane-5,7-dione, H(2)L(2) = 1,4,8,11-tetraazacyclotetradecane-5,7-dione, H(2)L(3) = 1,4,8,11-tetraazacyclotridecane-5,7-dione). The coordination polyhedra of the palladium(II) ions in all complexes are formed by two deprotonated amide and two amine donors with Pd-N distances being similar in PdL(1) and PdL(2) and substantially shorter in PdL(3). A detailed analysis of the (1)H NMR spectra of the macrocyclic complexes supports the formation in aqueous solution of only N-meso isomers of both compounds in agreement with the X-ray data. The spectra of the palladium(II) macrocyclic complexes are shifted downfield as a whole as compared to those of the nickel(II) analogues with the shifts being essentially non-uniform. The latter feature can be related to the differences in magnetic anisotropy of the M-N bonds. The maxima of d-d absorption bands of the palladium(II) complexes demonstrate weaker dependence on the macrocycle size as compared to those of the nickel(II) analogues. Both macrocyclic compounds PdL(2).6H(2)O and PdL(3).5H(2)O are characterized by lamellar crystal structures consisting of interleaved layers formed by macrocyclic units and by water molecules with similar metal complex layers and different 2D water sheets. A columnar crystal structure is inherent for PdL(1).3H(2)O with the water molecules present as discrete (H(2)O)(3) clusters.
The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.
Elliott, Tim; Williams, Anthony
2005-10-01
Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.
Zn2+ -Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles.
Ullmann, Steve; Schnorr, René; Handke, Marcel; Laube, Christian; Abel, Bernd; Matysik, Jörg; Findeisen, Matthias; Rüger, Robert; Heine, Thomas; Kersting, Berthold
2017-03-17
A macrocyclic ligand (H 2 L) containing two o,o'-bis(iminomethyl)phenol and two calix[4]arene head units has been synthesized and its coordination chemistry towards divalent Ni and Zn investigated. The new macrocycle forms complexes of composition [ML] (M=Zn, M=Ni) and [ZnL(py) 2 ], which were characterized by elemental analysis; IR, UV/Vis, and NMR spectroscopy; electrospray ionization mass spectrometry (ESI-MS); and X-ray crystallography (for [ZnL(py) 2 ] and [NiL]). H 2 L allows the sensitive optical detection of Zn 2+ among a series of biologically relevant metal ions by a dual fluorescence enhancement/quenching effect in solution. The fluorescence intensity of the macrocycle increases by a factor of ten in the presence of Zn 2+ with a detection limit in the lower nanomolar region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing.
Wong, Joseph K-H; Todd, Matthew H; Rutledge, Peter J
2017-01-25
Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed.
Zhang, Wenchao; Wang, Xiaoxia; Wu, Yiwei; Qi, Zhi; Yang, Rongjie
2018-04-02
Organic-inorganic hybrid macrocyclic compounds, cyclic polyphenylsilsesquioxanes (cyc-PSQs), have been synthesized through hydrolysis and condensation reactions of phenyltrichlorosilane. Structural characterization has revealed that cyc-PSQs consist of a closed-ring double-chain siloxane inorganic backbone bearing organic phenyl groups. The cyc-PSQ molecules have been simulated and structurally optimized using the Forcite tool as implemented in Materials Studio. Structurally optimized cyc-PSQs are highly symmetrical and regular with high stereoregularity, consistent with the dimensions of their experimentally derived structures. Thermogravimetric analysis showed that these macrocyclic compounds have excellent thermal stability. In addition to these perfectly structured compounds, macrocyclic compounds with the same ring ladder structure but bearing an additional Si-OH group, cyc-PSQs-OH, have also been synthesized. A possible mechanism for the formation of the closed-ring molecular structures of cyc-PSQs and cyc-PSQs-OH is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonso Hernandez, Laura; Nelson, Tammie Renee; Gelin, Maxim F.
The interchromophoric energy-transfer pathways between weakly coupled units in a π-conjugated phenylene–ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unitmore » but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Finally, simulation results are validated by modeling the fluorescence anisotropy decay.« less
Response of a benzoxainone derivative linked to monoaza-15-crown-5 with divalent heavy metals.
Addleman, R S; Bennett, J; Tweedy, S H; Elshani, S; Wai, C M
1998-08-01
The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.
Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluth, Michael; Bergman, Robert; Raymond, Kenneth
2009-04-10
Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of protonated guests was translated into chemical catalysis by taking advantage of the potential for accelerating reactions that take place via positively charged transition states, which could be potentially stabilized by encapsulation. Orthoformates, generally stable in neutral or basic solution, were found to be suitable substrates for catalytic hydrolysis by the assembly. Orthoformates small enough to undergo encapsulation were readily hydrolyzed by the assembly in basic solution, with rate acceleration factors up to 3900 compared with those of the corresponding uncatalyzed reactions. Furthering the analogy to enzymes that obey Michaelis-Menten kinetics, we observed competitive inhibition with the inhibitor NPr{sub 4}{sup +}, thereby confirming that the interior cavity of the assembly was the active site for catalysis. Mechanistic studies revealed that the assembly is required for catalysis and that the rate-limiting step of the reaction involves proton transfer from hydronium to the encapsulated substrate. Encapsulation in the assembly changes the orthoformate hydrolysis from an A-1 mechanism (in which decomposition of the protonated substrate is the rate-limiting step) to an A-S{sub E}2 mechanism (in which proton transfer is the rate-limiting step). The study of hydrolysis in the assembly was next extended to acetals, which were also catalytically hydrolyzed by the assembly in basic solution. Acetal hydrolysis changed from the A-1 mechanism in solution to an A-2 mechanism inside the assembly, where attack of water on the protonated substrate is rate limiting. This work provides rare examples of assembly-catalyzed reactions that proceed with substantial rate accelerations despite the absence of functional groups in the cavity and with mechanisms fully elucidated by quantitative kinetic studies.« less
Role of the AP2 β-Appendage Hub in Recruiting Partners for Clathrin-Coated Vesicle Assembly
Burtey, Anne; Praefcke, Gerrit J. K; Peak-Chew, Sew-Yeu; Mills, Ian G; Benmerah, Alexandre; McMahon, Harvey T
2006-01-01
Adaptor protein complex 2 α and β-appendage domains act as hubs for the assembly of accessory protein networks involved in clathrin-coated vesicle formation. We identify a large repertoire of β-appendage interactors by mass spectrometry. These interact with two distinct ligand interaction sites on the β-appendage (the “top” and “side” sites) that bind motifs distinct from those previously identified on the α-appendage. We solved the structure of the β-appendage with a peptide from the accessory protein Eps15 bound to the side site and with a peptide from the accessory cargo adaptor β-arrestin bound to the top site. We show that accessory proteins can bind simultaneously to multiple appendages, allowing these to cooperate in enhancing ligand avidities that appear to be irreversible in vitro. We now propose that clathrin, which interacts with the β-appendage, achieves ligand displacement in vivo by self-polymerisation as the coated pit matures. This changes the interaction environment from liquid-phase, affinity-driven interactions, to interactions driven by solid-phase stability (“matricity”). Accessory proteins that interact solely with the appendages are thereby displaced to areas of the coated pit where clathrin has not yet polymerised. However, proteins such as β-arrestin (non-visual arrestin) and autosomal recessive hypercholesterolemia protein, which have direct clathrin interactions, will remain in the coated pits with their interacting receptors. PMID:16903783
Müller, Michael; König, Finja; Meyer, Nina; Gattlen, Jasmin; Pieles, Uwe; Peters, Kirsten; Kreikemeyer, Bernd; Mathes, Stephanie; Saxer, Sina
2018-01-01
Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy. PMID:29657766
Rancan, Marzio; Tessarolo, Jacopo; Casarin, Maurizio; Zanonato, Pier Luigi; Quici, Silvio; Armelao, Lidia
2014-07-21
A constitutional dynamic library (CDL) of Cu(II) metallo-supramolecular polygons has been studied as a bench test to examine an interesting selection case based on molecular recognition. Sorting of the CDL polygons is achieved through a proper guest that is hosted into the triangular metallo-macrocycle constituent. Two selection mechanisms are observed, a guest induced path and a guest templated self-assembly (virtual library approach). Remarkably, the triangular host can accommodate several guests with a degree of selectivity ranging from ∼1 to ∼10(4) for all possible guest pairs. A double level selection operates: guests drive the CDL toward the triangular polygon, and, at the same time, this is able to pick a specific guest from a set of competitive molecules, according to a selectivity-affinity correlation. Association constants of the host-guest systems have been determined. Guest competition and exchange studies have been analyzed through variable temperature UV-Vis absorption spectroscopy and single crystal X-ray diffraction studies. Molecular structures and electronic properties of the triangular polygon and of the host-guest systems also have been studied by means of all electrons density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations including dispersive contributions. DFT outcomes ultimately indicate the dispersive nature of the host-guest interactions, while TDDFT results allow a thorough assignment of the host and host-guests spectral features.
Paulo Coelho, Joao; Osío Barcina, José; Aicart, Emilio; Tardajos, Gloria; Cruz-Gil, Pablo; Salgado, Cástor; Díaz-Núñez, Pablo
2018-01-01
Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays. PMID:29547539
Colloidosome like structures: self-assembly of silica microrods
Datskos, P.; Polizos, G.; Bhandari, M.; ...
2016-03-07
Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.
Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)
NASA Astrophysics Data System (ADS)
Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang
2002-12-01
In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.
La Rosa, Marcello; Denisov, Sergey A; Jonusauskas, Gediminas; McClenaghan, Nathan D; Credi, Alberto
2018-03-12
The size-tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface-bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self-assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle.
Lu, Ying; Wu, Jiayi; Dong, Yuanchen; Chen, Shuobing; Sun, Shuangwu; Ma, Yong-Bei; Ouyang, Qi; Finley, Daniel; Kirschner, Marc W; Mao, Youdong
2017-07-20
The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly. Copyright © 2017 Elsevier Inc. All rights reserved.
Chemically programmed self-sorting of gelator networks.
Morris, Kyle L; Chen, Lin; Raeburn, Jaclyn; Sellick, Owen R; Cotanda, Pepa; Paul, Alison; Griffiths, Peter C; King, Stephen M; O'Reilly, Rachel K; Serpell, Louise C; Adams, Dave J
2013-01-01
Controlling the order and spatial distribution of self-assembly in multicomponent supramolecular systems could underpin exciting new functional materials, but it is extremely challenging. When a solution of different components self-assembles, the molecules can either coassemble, or self-sort, where a preference for like-like intermolecular interactions results in coexisting, homomolecular assemblies. A challenge is to produce generic and controlled 'one-pot' fabrication methods to form separate ordered assemblies from 'cocktails' of two or more self-assembling species, which might have relatively similar molecular structures and chemistry. Self-sorting in supramolecular gel phases is hence rare. Here we report the first example of the pH-controlled self-sorting of gelators to form self-assembled networks in water. Uniquely, the order of assembly can be predefined. The assembly of each component is preprogrammed by the pK(a) of the gelator. This pH-programming method will enable higher level, complex structures to be formed that cannot be accessed by simple thermal gelation.
Quantitative computational models of molecular self-assembly in systems biology
Thomas, Marcus; Schwartz, Russell
2017-01-01
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally. PMID:28535149
Quantitative computational models of molecular self-assembly in systems biology.
Thomas, Marcus; Schwartz, Russell
2017-05-23
Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.
13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY ...
13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Bailey, D S; Burke, J; Sinclair, R; Mukherjee, B B
1981-01-01
Glycoprotein biosynthesis was studied with mouse L-cells grown in suspension culture. Glucose-deprived cells incorporated [3H]mannose into 'high-mannose' protein-bound oligosaccharides and a few relatively high-molecular-weight lipid-linked oligosaccharides. The latter were retained by DEAE-cellulose and turned over quite slowly during pulse--chase experiments. Increased heterogeneity in size of lipid-linked oligosaccharides developed during prolonged glucose deprivation. Sequential elongation of lipid-linked oligosaccharides was also observed, and conditions that prevented the assembly of the higher lipid-linked oligosaccharides also prevented the formation of the larger protein-bound 'high-mannose' oligosaccharides. In parallel experiments, [3H]mannose was incorporated into a total polyribosome fraction, suggesting that mannose residues were transferred co-translationally to nascent protein. Membrane preparations from these cells catalysed the assembly from UDP-N-acetyl-D-[6-3H]glucosamine and GDP-D-[U-14C]mannose of polyisoprenyl diphosphate derivatives whose oligosaccharide moieties were heterogeneous in size. Elongation of the N-acetyl-D-[6-3H]glucosamine-initiated glycolipids with mannose residues produced several higher lipid-linked oligosaccharides similar to those seen during glucose deprivation in vivo. Glucosylation of these mannose-containing oligosaccharides from UDP-D-[6-3H]glucose was restricted to those of a relatively high molecular weight. Protein-bound saccharides formed in vitro were mainly smaller in size than those assembled on the lipid acceptors. These results support the involvement of lipid-linked saccharides in the synthesis of asparagine-linked glycoproteins, but show both in vivo and in vitro that protein-bound 'high-mannose' oligosaccharide formation can occur independently of higher lipid-linked oligosaccharide synthesis. PMID:7306042
Self-assembled nanomaterials for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao
2016-01-01
In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.
Self-assembled nanomaterials for photoacoustic imaging.
Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao
2016-02-07
In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.
Challenges and breakthroughs in recent research on self-assembly
Ariga, Katsuhiko; Hill, Jonathan P; Lee, Michael V; Vinu, Ajayan; Charvet, Richard; Acharya, Somobrata
2008-01-01
The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. However, existing fabrication techniques suffer from several disadvantages including size-restrictions and a general paucity of applicable materials. Because of this, the development of alternative approaches based on supramolecular self-assembly processes is anticipated as a breakthrough methodology. This review article aims to comprehensively summarize the salient aspects of self-assembly through the introduction of the recent challenges and breakthroughs in three categories: (i) types of self-assembly in bulk media; (ii) types of components for self-assembly in bulk media; and (iii) self-assembly at interfaces. PMID:27877935
How to synthesize macrocycles efficiently by using virtual combinatorial libraries.
Storm, Ole; Lüning, Ulrich
2002-02-15
The selection of different diimines 4 a-c by alkaline earth ions from a virtual combinatorial library (VCL) is described. The products were stabilized by reduction to the diamines 6 a-c; this allowed easy analysis. The library can be directed toward different target molecules 6 a-c upon addition of alkaline earth ions with different radii. Competition experiments show the possibility of synthesizing the macrocycles 6 a, 6 b, and 6 c simultaneously when using Mg(2+), Ca(2+), and Ba(2+) as template ions. The scope of this thermodynamically controlled, reversible approach for macrocycle syntheses is illustrated.
Tung, Shun-Te; Cheng, Hung-Te; Inthasot, Alex; Hsueh, Fang-Che; Gu, Ting-Jia; Yan, Pei-Cong; Lai, Chien-Chen; Chiu, Sheng-Hsien
2018-02-01
[2]Rotaxanes displaying one-off photo-triggerable gelation properties have been synthesized through the "clipping" of photo-degradable macrocycles around the amide or urea functionalities of organo- and hydrogelators. Irradiation with UV-light cleaved the photo-labile macrocyclic components from the [2]rotaxanes, resulting in the free gelators being released into solution and, thereafter, forming gels. When the rate of gelation was sufficiently rapid, selective gelation of specific regions of the solution-and, indeed, photo-patterning of the solution-was possible. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gas Sorption and Storage Properties of Calixarenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Rahul S.; Banerjee, Debasis; Atwood, Jerry L.
2016-12-01
Calixarenes, a class of organic macrocyclic molecules have shown interesting gas sorption properties towards industrially important gases such as carbon di-oxide, hydrogen, methane and acetylene. These macrocycles are involved in weak van der Waals interaction to form multidimensional supramolecular frameworks. The gas-diffusion and subsequent sorption occurs due to a cooperative behavior between neighboring macrocycles. Furthermore, the flexibility at the upper rim functional group also plays a key role in the overall gas uptake of calixarene. In this book chapter, we give a brief account of interaction and diffusion of gases in calixarene and selected derivatives.
Development of inexpensive metal macrocyclic complexes for use in fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.
Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.
Shimamura, Hiroyuki; Breazzano, Steven P; Garfunkle, Joie; Kimball, F Scott; Trzupek, John D; Boger, Dale L
2010-06-09
Full details of the initial development and continued examination of a powerful intramolecular palladium(0)-mediated indole annulation for macrocyclization closure of the strained 16-membered biaryl ring system found in complestatin (1, chloropeptin II) and the definition of factors impacting its intrinsic atropodiastereoselectivity are described. Its examination and use in an alternative, second-generation total synthesis of complestatin are detailed in which the order of the macrocyclization reactions was reversed from our first-generation total synthesis. In this approach and with the ABCD biaryl ether ring system in place, the key Larock cyclization was conducted with substrate 36 (containing four phenols, five secondary amides, one carbamate, and four labile aryl chlorides) and provided the product 37 (56%) exclusively as a single atropisomer (>20:1, detection limits) possessing the natural (R)-configuration. In this instance, the complexity of the substrate and the reverse macrocyclization order did not diminish the atropodiastereoselectivity; rather, it provided an improvement over the 4:1 selectivity that was observed with the analogous substrate used to provide the isolated DEF ring system in our first-generation approach. Just as significant, the atroposelectivity represents a complete reversal of the diasteroselectivity observed with analogous macrocyclizations conducted using a Suzuki biaryl coupling.
Vitha, Tomas; Kubícek, Vojtech; Hermann, Petr; Kolar, Zvonimir I; Wolterbeek, Hubert Th; Peters, Joop A; Lukes, Ivan
2008-03-04
The adsorption on hydroxyapatite of three conjugates of a bisphosphonate and a macrocycle having C1, C2, and C3 spacers and their terbium complexes was studied by the radiotracer method using 160Tb as the label. The radiotracer-containing complex of the conjugate with the C3 spacer was used as a probe for the determination of the adsorption parameters of other bisphosphonates that lack a DOTA unit. A physicochemical model describing the competitive adsorption was successfully applied in the fitting of the obtained data. The maximum adsorption capacity of bisphosphonates containing bulky substituents is determined mainly by their size. For bisphosphonates having no DOTA moiety, the maximum adsorption capacity is determined by the electrostatic repulsion between negatively charged bisphosphonate groups. Compounds with a hydroxy or amino group attached to the alpha-carbon atom show higher affinities. Macrocyclic compounds containing a short spacer between the different bisphosphonic acid groups and the macrocyclic unit exhibit high affinities, indicating a synergic effect of the bisphosphonic and the macrocyclic groups during adsorption. The competition method described uses a well-characterized complex and allows a simple evaluation of the adsorption behavior of bisphosphonates. The application of the macrocycle-bisphosphonate conjugates allows easy radiolabeling via complexation of a suitable metal isotope.
NASA Astrophysics Data System (ADS)
Tsai, Chih-Hung; Shih, Chun-Jyun; Wang, Wun-Shiuan; Chi, Wen-Feng; Huang, Wei-Chih; Hu, Yu-Chung; Yu, Yuan-Hsiang
2018-03-01
In this study, macrocyclic Co complexes were successfully grafted onto graphene oxide (GO) to produce GO/Co nanocomposites with a large surface area, high electrical conductivity, and excellent catalytic properties. The novel GO/Co nanocomposites were applied as counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Various ratios of macrocyclic Co complexes were used as the reductant to react with the GO, with which the surface functional groups of the GO were reduced and the macrocyclic ligand of the Co complexes underwent oxidative dehydrogenation, after which the conjugated macrocyclic Co systems were grafted onto the surface of the reduced GO to form GO/Co nanocomposites. The surface morphology, material structure, and composition of the GO/Co composites and their influences on the power-conversion efficiency of DSSC devices were comprehensively investigated. The results showed that the GO/Co (1:10) counter electrode (CE) exhibited an optimal power conversion efficiency of 7.48%, which was higher than that of the Pt CE. The GO/Co (1:10) CE exhibited superior electric conductivity, catalytic capacity, and redox capacity. Because GO/Co (1:10) CEs are more efficient and cheaper than Pt CEs, they could potentially be used as a replacement for Pt electrodes.
Edmonds, M D; Vatta, A F; Marchiondo, A A; Vanimisetti, H B; Edmonds, J D
2018-03-15
In 2013, a 118-day study was initiated to investigate the efficacy of concurrent treatment at pasture turnout with an injectable macrocyclic lactone with activity up to 28 days and an oral benzimidazole, referred to as "conventional" anthelmintics, when compared to treatment with conventional macrocyclic lactone alone or an injectable macrocyclic lactone with extended activity of 100 days or longer. A group of 210 steers were obtained from a ranch in California and transported to Idaho, USA. A total of 176 steers with the highest fecal egg counts were blocked by pre-treatment body weights and pasture location. A total of 44 pasture paddocks were assigned with 4 steers per paddock with 12 paddocks per therapeutic treatment group and 8 paddocks per controls. The four treatments were injectable doramectin (Dectomax ® , Zoetis Inc., 0.2 mg kg -1 BW, SC), injectable doramectin concurrently with oral albendazole (Valbazen ® , Zoetis Inc., 10 mg kg -1 BW, PO), extended release injectable eprinomectin (LongRange™, Merial Limited, 1 mg kg -1 BW, SC) or saline. Cattle were individually weighed and sampled for fecal egg count on Days 0, 31/32, 61, 88, and 117/118 with an additional fecal sample on Day 14. At conclusion, one steer per paddock was euthanized for nematode recovery. The results from the first 32 days found evidence of macrocyclic lactone resistance against injectable doramectin and extended release eprinomectin. During this period the concurrent therapy provided nearly 100% efficacy based on fecal egg count reduction and a 19.98% improvement in total weight gain compared to controls (P = 0.039). At the conclusion of the 118-day study and past the approved efficacy for the conventional anthelmintics, the concurrent therapy with conventional anthelmintics provided a 22.98% improvement in total weight gain compared to controls (P = 0.004). The 118-day improvement in weight gain for the extended release eprinomectin group (29.06% compared to control) was not statistically different from the concurrent therapy with conventional anthelmintics. The results indicate that concurrent treatment with a conventional macrocyclic lactone and benzimidazole may provide production benefits early in the grazing period that continue throughout the entire period for cattle harboring macrocyclic lactone resistant nematodes. By using two different anthelmintic classes together, macrocyclic lactone resistant parasites were effectively controlled early in the period. Furthermore, the use of an effective conventional anthelmintic treatment regimen without an extended period of drug release may help to promote refugia and decrease the further selection for anthelmintic resistant parasites. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makabe, Koki; Biancalana, Matthew; Yan, Shude
2010-02-08
{beta}-Rich self-assembly is a major structural class of polypeptides, but still little is known about its atomic structures and biophysical properties. Major impediments for structural and biophysical studies of peptide self-assemblies include their insolubility and heterogeneous composition. We have developed a model system, termed peptide self-assembly mimic (PSAM), based on the single-layer {beta}-sheet of Borrelia outer surface protein A. PSAM allows for the capture of a defined number of self-assembly-like peptide repeats within a water-soluble protein, making structural and energetic studies possible. In this work, we extend our PSAM approach to a highly hydrophobic peptide sequence. We show that amore » penta-Ile peptide (Ile{sub 5}), which is insoluble and forms {beta}-rich self-assemblies in aqueous solution, can be captured within the PSAM scaffold in a form capable of self-assembly. The 1.1-{angstrom} crystal structure revealed that the Ile{sub 5} stretch forms a highly regular {beta}-strand within this flat {beta}-sheet. Self-assembly models built with multiple copies of the crystal structure of the Ile5 peptide segment showed no steric conflict, indicating that this conformation represents an assembly-competent form. The PSAM retained high conformational stability, suggesting that the flat {beta}-strand of the Ile{sub 5} stretch primed for self-assembly is a low-energy conformation of the Ile{sub 5} stretch and rationalizing its high propensity for self-assembly. The ability of the PSAM to 'solubilize' an otherwise insoluble peptide stretch suggests the potential of the PSAM approach to the characterization of self-assembling peptides.« less
Toward a molecular programming language for algorithmic self-assembly
NASA Astrophysics Data System (ADS)
Patitz, Matthew John
Self-assembly is the process whereby relatively simple components autonomously combine to form more complex objects. Nature exhibits self-assembly to form everything from microscopic crystals to living cells to galaxies. With a desire to both form increasingly sophisticated products and to understand the basic components of living systems, scientists have developed and studied artificial self-assembling systems. One such framework is the Tile Assembly Model introduced by Erik Winfree in 1998. In this model, simple two-dimensional square 'tiles' are designed so that they self-assemble into desired shapes. The work in this thesis consists of a series of results which build toward the future goal of designing an abstracted, high-level programming language for designing the molecular components of self-assembling systems which can perform powerful computations and form into intricate structures. The first two sets of results demonstrate self-assembling systems which perform infinite series of computations that characterize computably enumerable and decidable languages, and exhibit tools for algorithmically generating the necessary sets of tiles. In the next chapter, methods for generating tile sets which self-assemble into complicated shapes, namely a class of discrete self-similar fractal structures, are presented. Next, a software package for graphically designing tile sets, simulating their self-assembly, and debugging designed systems is discussed. Finally, a high-level programming language which abstracts much of the complexity and tedium of designing such systems, while preventing many of the common errors, is presented. The summation of this body of work presents a broad coverage of the spectrum of desired outputs from artificial self-assembling systems and a progression in the sophistication of tools used to design them. By creating a broader and deeper set of modular tools for designing self-assembling systems, we hope to increase the complexity which is attainable. These tools provide a solid foundation for future work in both the Tile Assembly Model and explorations into more advanced models.
Ballbot-type motion of N-heterocyclic carbenes on gold surfaces
NASA Astrophysics Data System (ADS)
Wang, Gaoqiang; Rühling, Andreas; Amirjalayer, Saeed; Knor, Marek; Ernst, Johannes Bruno; Richter, Christian; Gao, Hong-Jun; Timmer, Alexander; Gao, Hong-Ying; Doltsinis, Nikos L.; Glorius, Frank; Fuchs, Harald
2017-02-01
Recently, N-heterocyclic carbenes (NHCs) were introduced as alternative anchors for surface modifications and so offered many attractive features, which might render them superior to thiol-based systems. However, little effort has been made to investigate the self-organization process of NHCs on surfaces, an important aspect for the formation of self-assembled monolayers (SAMs), which requires molecular mobility. Based on investigations with scanning tunnelling microscopy and first-principles calculations, we provide an understanding of the microscopic mechanism behind the high mobility observed for NHCs. These NHCs extract a gold atom from the surface, which leads to the formation of an NHC-gold adatom complex that displays a high surface mobility by a ballbot-type motion. Together with their high desorption barrier this enables the formation of ordered and strongly bound SAMs. In addition, this mechanism allows a complementary surface-assisted synthesis of dimeric and hitherto unknown trimeric NHC gold complexes on the surface.
Ballbot-type motion of N-heterocyclic carbenes on gold surfaces.
Wang, Gaoqiang; Rühling, Andreas; Amirjalayer, Saeed; Knor, Marek; Ernst, Johannes Bruno; Richter, Christian; Gao, Hong-Jun; Timmer, Alexander; Gao, Hong-Ying; Doltsinis, Nikos L; Glorius, Frank; Fuchs, Harald
2017-02-01
Recently, N-heterocyclic carbenes (NHCs) were introduced as alternative anchors for surface modifications and so offered many attractive features, which might render them superior to thiol-based systems. However, little effort has been made to investigate the self-organization process of NHCs on surfaces, an important aspect for the formation of self-assembled monolayers (SAMs), which requires molecular mobility. Based on investigations with scanning tunnelling microscopy and first-principles calculations, we provide an understanding of the microscopic mechanism behind the high mobility observed for NHCs. These NHCs extract a gold atom from the surface, which leads to the formation of an NHC-gold adatom complex that displays a high surface mobility by a ballbot-type motion. Together with their high desorption barrier this enables the formation of ordered and strongly bound SAMs. In addition, this mechanism allows a complementary surface-assisted synthesis of dimeric and hitherto unknown trimeric NHC gold complexes on the surface.
Using multivalency to tailor the superselective binding of polymers on substrates
NASA Astrophysics Data System (ADS)
Tito, Nicholas; Frenkel, Daan
2014-03-01
Multivalency is a microscopic design concept in which a single nanoscopic entity contains multiple ligands, each of which may bind to multiple receptors on another entity. A useful property of many multivalent systems is ``superselectivity,'' where the fraction of the multivalent species bound to their complementary receptors grows sharply with the total number of receptors available. For example in the past two decades, multivalency has been exploited to develop DNA-coated nanoparticles that self-assemble into aggregates over an extremely narrow temperature window. In this talk, we use analytic and self-consistent field theories to explore the binding of multivalent polymers to receptors on a flat substrate. Discussion will focus on how the sequence, number, and binding strength of ligands along the polymer chain can be used to tune the superselectivity of the system. Comparison with recent experiments on model systems will be presented as time permits. We wish to thank ERC Advanced Grant 227758.
Self-assembling membranes and related methods thereof
Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L
2013-08-20
The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).
Tumor detection and elimination by a targeted gallium corrole
Agadjanian, Hasmik; Ma, Jun; Rentsendorj, Altan; Valluripalli, Vinod; Hwang, Jae Youn; Mahammed, Atif; Farkas, Daniel L.; Gray, Harry B.; Gross, Zeev; Medina-Kauwe, Lali K.
2009-01-01
Sulfonated gallium(III) corroles are intensely fluorescent macrocyclic compounds that spontaneously assemble with carrier proteins to undergo cell entry. We report in vivo imaging and therapeutic efficacy of a tumor-targeted corrole noncovalently assembled with a heregulin-modified protein directed at the human epidermal growth factor receptor (HER). Systemic delivery of this protein-corrole complex results in tumor accumulation, which can be visualized in vivo owing to intensely red corrole fluorescence. Targeted delivery in vivo leads to tumor cell death while normal tissue is spared. These findings contrast with the effects of doxorubicin, which can elicit cardiac damage during therapy and required direct intratumoral injection to yield similar levels of tumor shrinkage compared with the systemically delivered corrole. The targeted complex ablated tumors at >5 times a lower dose than untargeted systemic doxorubicin, and the corrole did not damage heart tissue. Complexes remained intact in serum and the carrier protein elicited no detectable immunogenicity. The sulfonated gallium(III) corrole functions both for tumor detection and intervention with safety and targeting advantages over standard chemotherapeutic agents. PMID:19342490
Methods and intermediates for the synthesis of dipyrrin-substituted porphyrinic macrocycles
Yu, Lianhe; Muthukumaran, Kannan; Sreedharan, Prathapan; Lindsey, Jonathan S.
2010-05-25
The present invention provides dipyrrin substituted porphyrinic macrocycles, intermediates useful for making the same, and methods of making the same. Such compounds may be used for purposes including the making of molecular memory devices, solar cells and light harvesting arrays.
Self-Assembly of Optical Molecules with Supramolecular Concepts
Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko
2009-01-01
Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931
NASA Astrophysics Data System (ADS)
Ojkic, Nikola; Vavylonis, Dimitrios
2009-03-01
Fission yeast cells assemble an equatorial contractile ring for cytokinesis, the last step of mitosis. The ring assembles from ˜ 65 membrane-bound ``nodes''' containing myosin motors and other proteins. Actin filaments that grow out from the nodes establish transient connections among the nodes and aid in pulling them together in a process that appears as pair-wise attraction (Vavylonis et al. Science 97:319, 2008). We used scaling arguments, coarse grained stability analysis of homogeneous states, and Monte Carlo simulations of simple models, to explore the conditions that yield fast and efficient ring formation, as opposed to formation of isolated clumps. We described our results as a function of: number of nodes, rate of establishing connections, range of node interaction, distance traveled per node interaction and broad band width, w. Uniform cortical 2d distributions of nodes are stable over short times due to randomness of connections among nodes, but become unstable over long times due to fluctuations in the initial node distribution. Successful condensation of nodes into a ring requires sufficiently small w such that lateral contraction occurs faster then clump formation.
Yataka, Yusuke; Sawada, Toshiki; Serizawa, Takeshi
2016-10-04
The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.
Cytoskeletal motor-driven active self-assembly in in vitro systems
Lam, A. T.; VanDelinder, V.; Kabir, A. M. R.; ...
2015-11-11
Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode whichmore » complements robotic manipulation and passive self-assembly.« less
Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.
Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K
2016-01-26
Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.
Bouvier, Benjamin
2014-01-07
Ubiquitin is a highly conserved, highly represented protein acting as a regulating signal in numerous cellular processes. It leverages a single hydrophobic binding patch to recognize and bind a large variety of protein domains with remarkable specificity, but can also self-assemble into chains of poly-diubiquitin units in which these interfaces are sequestered, profoundly altering the individual monomers' recognition characteristics. Despite numerous studies, the origins of this varied specificity and the competition between substrates for the binding of the ubiquitin interface patch remain under heated debate. This study uses enhanced sampling all-atom molecular dynamics to simulate the unbinding of complexes of mono- or K48-linked diubiquitin bound to several ubiquitin-associated domains, providing insights into the mechanism and free energetics of ubiquitin recognition and binding. The implications for the subtle tradeoff between the stability of the polyubiquitin signal and its easy recognition by target protein assemblies are discussed, as is the enhanced affinity of the latter for long polyubiquitin chains compared to isolated mono- or diubiquitin.
Zhang, Shichao; Xing, Malcolm; Li, Bingyun
2018-06-01
Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.
Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E
2017-06-21
While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.
Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G
2016-11-30
Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.
Contribution of TyrB26 to the Function and Stability of Insulin
Pandyarajan, Vijay; Phillips, Nelson B.; Rege, Nischay; Lawrence, Michael C.; Whittaker, Jonathan; Weiss, Michael A.
2016-01-01
Crystallographic studies of insulin bound to receptor domains have defined the primary hormone-receptor interface. We investigated the role of TyrB26, a conserved aromatic residue at this interface. To probe the evolutionary basis for such conservation, we constructed 18 variants at B26. Surprisingly, non-aromatic polar or charged side chains (such as Glu, Ser, or ornithine (Orn)) conferred high activity, whereas the weakest-binding analogs contained Val, Ile, and Leu substitutions. Modeling of variant complexes suggested that the B26 side chains pack within a shallow depression at the solvent-exposed periphery of the interface. This interface would disfavor large aliphatic side chains. The analogs with highest activity exhibited reduced thermodynamic stability and heightened susceptibility to fibrillation. Perturbed self-assembly was also demonstrated in studies of the charged variants (Orn and Glu); indeed, the GluB26 analog exhibited aberrant aggregation in either the presence or absence of zinc ions. Thus, although TyrB26 is part of insulin's receptor-binding surface, our results suggest that its conservation has been enjoined by the aromatic ring's contributions to native stability and self-assembly. We envisage that such classical structural relationships reflect the implicit threat of toxic misfolding (rather than hormonal function at the receptor level) as a general evolutionary determinant of extant protein sequences. PMID:27129279
High coverage fluid-phase floating lipid bilayers supported by ω-thiolipid self-assembled monolayers
Hughes, Arwel V.; Holt, Stephen A.; Daulton, Emma; Soliakov, Andrei; Charlton, Timothy R.; Roser, Steven J.; Lakey, Jeremy H.
2014-01-01
Large area lipid bilayers, on solid surfaces, are useful in physical studies of biological membranes. It is advantageous to minimize the interactions of these bilayers with the substrate and this can be achieved via the formation of a floating supported bilayer (FSB) upon either a surface bound phospholipid bilayer or monolayer. The FSB's independence is enabled by the continuous water layer (greater than 15 Å) that remains between the two. However, previous FSBs have had limited stability and low density. Here, we demonstrate by surface plasmon resonance and neutron reflectivity, the formation of a complete self-assembled monolayer (SAM) on gold surfaces by a synthetic phosphatidylcholine bearing a thiol group at the end of one fatty acyl chain. Furthermore, a very dense FSB (more than 96%) of saturated phosphatidylcholine can be formed on this SAM by sequential Langmuir–Blodgett and Langmuir–Schaefer procedures. Neutron reflectivity used both isotopic and magnetic contrast to enhance the accuracy of the data fits. This system offers the means to study transmembrane proteins, membrane potential effects (using the gold as an electrode) and even model bacterial outer membranes. Using unsaturated phosphatidylcholines, which have previously failed to form stable FSBs, we achieved a coverage of 73%. PMID:25030385
DNA microdevice for electrochemical detection of Escherichia coli 0157:H7 molecular markers.
Berganza, J; Olabarria, G; García, R; Verdoy, D; Rebollo, A; Arana, S
2007-04-15
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.
Interpreting medium ring canonical conformers by a triangular plane tessellation of the macrocycle
NASA Astrophysics Data System (ADS)
Khalili, Pegah; Barnett, Christopher B.; Naidoo, Kevin J.
2013-05-01
Cyclic conformational coordinates are essential for the distinction of molecular ring conformers as the use of Cremer-Pople coordinates have illustrated for five- and six-membered rings. Here, by tessellating medium rings into triangular planes and using the relative angles made between triangular planes we are able to assign macrocyclic pucker conformations into canonical pucker conformers such as chairs, boats, etc. We show that the definition is straightforward compared with other methods popularly used for small rings and that it is computationally simple to implement for complex macrocyclic rings. These cyclic conformational coordinates directly couple to the motion of individual nodes of a ring. Therefore, they are useful for correlating the physical properties of macrocycles with their ring pucker and measuring the dynamic ring conformational behavior. We illustrate the triangular tessellation, assignment, and pucker analysis on 7- and 8-membered rings. Sets of canonical states are given for cycloheptane and cyclooctane that have been previously experimentally analysed.
Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization
2018-01-01
Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design. PMID:29652495
Lysine-Tryptophan-Crosslinked Peptides Produced by Radical SAM Enzymes in Pathogenic Streptococci.
Schramma, Kelsey R; Seyedsayamdost, Mohammad R
2017-04-21
Macrocycles represent a common structural framework in many naturally occurring peptides. Several strategies exist for macrocyclization, and the enzymes that incorporate them are of great interest, as they enhance our repertoire for creating complex molecules. We recently discovered a new peptide cyclization reaction involving a crosslink between the side chains of lysine and tryptophan that is installed by a radical SAM enzyme. Herein, we characterize relatives of this metalloenzyme from the pathogens Streptococcus agalactiae and Streptococcus suis. Our results show that the corresponding enzymes, which we call AgaB and SuiB, contain multiple [4Fe-4S] clusters and catalyze Lys-Trp crosslink formation in their respective substrates. Subsequent high-resolution-MS and 2D-NMR analyses located the site of macrocyclization. Moreover, we report that AgaB can accept modified substrates containing natural or unnatural amino acids. Aside from providing insights into the mechanism of this unusual modification, the substrate promiscuity of AgaB may be exploited to create diverse macrocyclic peptides.
Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization.
Kamenik, Anna S; Lessel, Uta; Fuchs, Julian E; Fox, Thomas; Liedl, Klaus R
2018-05-29
Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design.
NASA Astrophysics Data System (ADS)
Zhang, Xuekai; Lu, Gang; Sun, Meng; Mahankali, Madhu; Ma, Yanfei; Zhang, Mingming; Hua, Wangde; Hu, Yuting; Wang, Qingbing; Chen, Jinghuo; He, Gang; Qi, Xiangbing; Shen, Weijun; Liu, Peng; Chen, Gong
2018-05-01
New methods capable of effecting cyclization, and forming novel three-dimensional structures while maintaining favourable physicochemical properties are needed to facilitate the development of cyclic peptide-based drugs that can engage challenging biological targets, such as protein-protein interactions. Here, we report a highly efficient and generally applicable strategy for constructing new types of peptide macrocycles using palladium-catalysed intramolecular C(sp3)-H arylation reactions. Easily accessible linear peptide precursors of simple and versatile design can be selectively cyclized at the side chains of either aromatic or modified non-aromatic amino acid units to form various cyclophane-braced peptide cycles. This strategy provides a powerful tool to address the long-standing challenge of size- and composition-dependence in peptide macrocyclization, and generates novel peptide macrocycles with uniquely buttressed backbones and distinct loop-type three-dimensional structures. Preliminary cell proliferation screening of the pilot library revealed a potent lead compound with selective cytotoxicity toward proliferative Myc-dependent cancer cell lines.
Advances in colloidal manipulation and transport via hydrodynamic interactions.
Martínez-Pedrero, F; Tierno, P
2018-06-01
In this review article, we highlight many recent advances in the field of micromanipulation of colloidal particles using hydrodynamic interactions (HIs), namely solvent mediated long-range interactions. At the micrsocale, the hydrodynamic laws are time reversible and the flow becomes laminar, features that allow precise manipulation and control of colloidal matter. We focus on different strategies where externally operated microstructures generate local flow fields that induce the advection and motion of the surrounding components. In addition, we review cases where the induced flow gives rise to hydrodynamic bound states that may synchronize during the process, a phenomenon essential in different systems such as those that exhibit self-assembly and swarming. Copyright © 2018 Elsevier Inc. All rights reserved.
Pandey, Binod; Tan, Yih Horng; Fujikawa, Kohki; Demchenko, Alexei V.
2013-01-01
We have prepared SAMs containing 8-mercaptooctyl α-D-mannopyranoside, either as a single component or in mixed SAMs with n-octanethiol on flat gold surfaces and on nanoporous gold. Electrochemical impedance spectroscopy showed that the mixed SAMs on flat gold surfaces showed the highest Con A binding near 1:9 solution molar ratio of thiolatedα-mannoside to n-octanethiol whereas those on NPG showed the highest response at 1:19 solution molar ratio of thiolated α-mannoside to n-octanethiol. Atomic force microscopy was employed to image the monolayers, and also to image the bound Con A protein. PMID:23519474
Gong, Ming; Zhang, Weiwei; Guo, Guang-Can; He, Lixin
2011-06-03
We derive a general relation between the fine-structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exciton polarization angle and FSS under zero stress. The critical stress can also be determined by monitoring the change in exciton polarization angle. We confirm the theory by performing atomistic pseudopotential calculations for the InAs/GaAs quantum dots. The work provides deep insight into the dot asymmetry and their optical properties and a useful guide in selecting quantum dots with the smallest FSS, which are crucial in entangled photon source applications.
Generic concept to program the time domain of self-assemblies with a self-regulation mechanism.
Heuser, Thomas; Steppert, Ann-Kathrin; Lopez, Catalina Molano; Zhu, Baolei; Walther, Andreas
2015-04-08
Nature regulates complex structures in space and time via feedback loops, kinetically controlled transformations, and under energy dissipation to allow non-equilibrium processes. Although man-made static self-assemblies realize excellent control over hierarchical structures via molecular programming, managing their temporal destiny by self-regulation is a largely unsolved challenge. Herein, we introduce a generic concept to control the time domain by programming the lifetimes of switchable self-assemblies in closed systems. We conceive dormant deactivators that, in combination with fast promoters, enable a unique kinetic balance to establish an autonomously self-regulating, transient pH-state, whose duration can be programmed over orders of magnitude-from minutes to days. Coupling this non-equilibrium state to pH-switchable self-assemblies allows predicting their assembly/disassembly fate in time, similar to a precise self-destruction mechanism. We demonstrate a platform approach by programming self-assembly lifetimes of block copolymers, nanoparticles, and peptides, enabling dynamic materials with a self-regulation functionality.
Chiral Recognition with Macrocyclic Glycopeptides: Mechanisms and Applications
NASA Astrophysics Data System (ADS)
Berthod, Alain; Qiu, Hai Xiao; Staroverov, Sergey M.; Kuznestov, Mikhail A.; Armstrong, Daniel W.
The macrocyclic glycopeptide chiral selectors are natural molecules produced by bacterial fermentation. Purified and bonded to silica particles, they make very useful chiral stationary phases (CSP) with a broad spectrum of applicability in enantiomeric separation. The macrocyclic glycopeptide CSPs are multimodal, the same column being able to work in normal phase mode with apolar mobile phase, in reversed-phase mode, or in polar ionic mode with 100% alcoholic mobile phase of adjusted pH. The role of the carbohydrate units is described as well as the critical charge-charge docking interaction responsible for the amino acid enantiomer recognition. The complimentary phenomenon is also exposed.
Li, Jian-Song; Zhang, Hui; Zhang, Shao-Yong; Wang, Hai-Yan; Zhang, Ji; Chen, An-Liang; Wang, Ji-Dong; Xiang, Wen-Sheng
2017-04-01
Two new macrocyclic lactones, 4,25-diethyl-4,25-demethyl-milbemycin β 3 (1) and 27-formaldehyde-milbemycin β 14 (2), were isolated from a genetically engineered strain Streptomyces bingchenggensis BCJ60. Their structures were determined on the basis of spectroscopic analysis, including 1D and 2D NMR techniques as well as ESI-MS and comparison with data from the literature. The acaricidal and nematocidal capacities of compounds 1 and 2 were evaluated against Tetranychus cinnabarinus and Bursaphelenchus xylophilus, respectively. The results showed that the two new macrocyclic lactones 1 and 2 possessed potent acaricidal and nematocidal activities.
A Macrocyclic β-Iodoallenolate Intermediate is Key: Synthesis of the ABD Core of Phomactin A
Ciesielski, Jennifer; Cariou, Kevin
2012-01-01
An enantioselective strategy for the synthesis of phomactin natural products is described. The Lewis acid-triggered cyclization of a β-iodoallenolate embedded in a 12-membered macrocycle was used to obtain a highly functionalized bicyclo[9.3.1]pentadecane in good yield and high diastereoselectivity. This iodoenone contains the substituents of the AD ring system of the phomactin family of natural products, appropriate for further functionalization. Synthesis of the oxadecalin core of phomactin A from the AD iodoenone intermediate was achieved. In this unusual strategy, rings A and B are both fashioned within a macrocyclic precursor. PMID:22853449
Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev
2010-01-01
In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles. PMID:20559513
Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev
2010-05-25
In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.
Chen, Hui; Ma, Xiang; Wu, Shuaifan; Tian, He
2014-12-15
Development of self-healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host-guest recognition between a β-cyclodextrin (β-CD) host polymer (poly-β-CD) and an α-bromonaphthalene (α-BrNp) polymer (poly-BrNp) without any additional gelator, which can self-heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room-temperature phosphorescence (RTP) signals based on the fact that the inclusion of β-CD macrocycle with α-BrNp moiety is able to induce RTP emission (CD-RTP). The RTP signal can be adjusted reversibly by competitive complexation of β-CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly-Azo). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Mao; Ishihara, Shinsuke; Ji, Qingmin; Akada, Misaho; Hill, Jonathan P.; Ariga, Katsuhiko
2012-10-01
Current nanotechnology based on top-down nanofabrication may encounter a variety of drawbacks in the near future so that development of alternative methods, including the so-called bottom-up approach, has attracted considerable attention. However, the bottom-up strategy, which often relies on spontaneous self-assembly, might be inefficient in the development of the requisite functional materials and systems. Therefore, assembly processes controlled by external stimuli might be a plausible strategy for the development of bottom-up nanotechnology. In this review, we demonstrate a paradigm shift from self-assembly to commanded assembly by describing several examples of assemblies of typical functional molecules, i.e. porphyrins and fullerenes. In the first section, we describe recent progress in the design and study of self-assembled and co-assembled supramolecular architectures of porphyrins and fullerenes. Then, we show examples of assembly induced by external stimuli. We emphasize the paradigm shift from self-assembly to commanded assembly by describing the recently developed electrochemical-coupling layer-by-layer (ECC-LbL) methodology.
A macrocyclic ellagitannin trimer, oenotherin T(1), from Oenothera species.
Taniguchi, Shoko; Imayoshi, Yoko; Yabu-uchi, Ryoko; Ito, Hideyuki; Hatano, Tsutomu; Yoshida, Takashi
2002-01-01
Oenotherin T(1) was isolated from leaves of Oenothera tetraptera as a major ellagitannin. Its structure, that of a macrocyclic trimer with a new acyl group, an isodehydrovaloneoyl group, was established. This compound was also produced by callus tissues induced from O. laciniata leaves.
Radbruch, Alexander; Weberling, Lukas D; Kieslich, Pascal J; Hepp, Johanna; Kickingereder, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin
2016-11-01
Recent studies reported an increase in the dentate nucleus (DN)-to-pons signal intensity (SI) ratio (DN-pons SI ratio) on unenhanced T1-weighted images in patients who received consecutive serial injections of linear gadolinium-based contrast agents (GBCAs). In contrast, most studies found no increase in the DN-pons SI ratio when patients were treated with consecutive serial injections of macrocyclic GBCAs. However, the potential difference between macrocyclic and linear GBCAs has never been assessed in individuals who received subsequent applications of both contrast agents. In this retrospective study, we assessed the evolution of the DN-pons SI ratio change in patients that were treated with a comparable number of serial consecutive injections of the linear GBCA gadopentetate dimeglumine and subsequent serial injections of the macrocyclic GBCAs gadobutrol and gadoterate meglumine. Data of 36 patients was analyzed. All patients underwent at least 5 consecutive administrations of the linear GBCA gadopentetate dimeglumine followed by an equal number of consecutive administrations of the macrocyclic GBCA gadobutrol. In 12 of the 36 patients, 5 or more final consecutive injections of the macrocyclic GBCA gadoterate meglumine were analyzed additionally. The difference of DN-pons SI ratios on unenhanced T1-weighted images was calculated by subtracting the ratio at the first examination from the ratio at the last examination in each of the 3 periods. The mean DN-pons SI ratio difference in the gadopentetate dimeglumine period was significantly greater than 0 (mean ± SD, 0.0448 ± 0.0345; P < 0.001), whereas the mean DN-pons SI ratio difference in the subsequent gadobutrol and gadoterate meglumine period was significantly smaller than 0 (gadobutrol: -0.0178 ± 0.0459, P = 0.026; gadoterate meglumine: -0.0250 ± 0.0284, P = 0.011). In this observational study, the application of the linear GBCA gadopentetate dimeglumine was associated with a DN-pons SI ratio increase, whereas subsequent applications of the macrocyclic GBCAs gadobutrol or gadoterate meglumine in the same patients were not. Rather, the current data tentatively suggest a decrease in preexisting hyperintensities over time when linear GBCAs are changed to macrocyclic GBCAs, potentially indicating a washout effect or precipitation of gadolinium. Future patient studies need to include control groups to replicate the present results, and additional animal studies should be conducted to clarify the underlying mechanism of the proposed SI decrease.
Total synthesis and structural revision of the marine macrolide neopeltolide.
Custar, Daniel W; Zabawa, Thomas P; Scheidt, Karl A
2008-01-23
The total synthesis and structural revision of the marine natural product neopeltolide is reported. The key bond-forming step involves a Lewis acid-catalyzed intramolecular cyclization to install the tetrahydropyran ring and the macrocycle simultaneously. This type of cyclization is the first of its kind and assembles the carbon backbone of the natural product efficiently. The synthesis of the reported structure revealed differences in the data between the natural and synthetic material. After significant investigation, the diastereomeric molecule with the C11 and C13 configurations inverted was synthesized using the initial route. This compound matches the data reported for neopeltolide (1H, 13C, HRMS, IR, NOESY, [alpha]), thereby establishing the correct overall structure for this potent macrolide natural product, including the relative and absolute stereochemistry.
Okesola, Babatunde O; Mata, Alvaro
2018-05-21
Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.
NASA Astrophysics Data System (ADS)
Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian
2012-04-01
Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.
Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.
Vlasceanu, Alexandru; Frandsen, Benjamin N; Skov, Anders B; Hansen, Anne Schou; Rasmussen, Mads Georg; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted
2017-10-06
Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.
A Neural Assembly-Based View on Word Production: The Bilingual Test Case
ERIC Educational Resources Information Center
Strijkers, Kristof
2016-01-01
I will propose a tentative framework of how words in two languages could be organized in the cerebral cortex based on neural assembly theory, according to which neurons that fire synchronously are bound into large-scale distributed functional units (assemblies), which represent a mental event as a whole ("gestalt"). For language this…
Dynamic and programmable self-assembly of micro-rafts at the air-water interface
Wang, Wendong; Giltinan, Joshua; Zakharchenko, Svetlana; Sitti, Metin
2017-01-01
Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future. PMID:28560332
Dynamic and programmable self-assembly of micro-rafts at the air-water interface.
Wang, Wendong; Giltinan, Joshua; Zakharchenko, Svetlana; Sitti, Metin
2017-05-01
Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future.
Self-bound droplets of a dilute magnetic quantum liquid
NASA Astrophysics Data System (ADS)
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Self-bound droplets of a dilute magnetic quantum liquid.
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-10
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki
2016-11-29
The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.
Elucidating dominant pathways of the nano-particle self-assembly process.
Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui
2016-09-14
Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.
Zhang, Yuanming; Sun, Tingting; Jiang, Wei; Han, Guangting
2018-05-01
In this paper, the crystalline modification of a rare earth nucleating agent (WBG) for isotactic polypropylene (PP) based on its supramolecular self-assembly was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. In addition, the relationship between the self-assembly structure of the nucleating agent and the crystalline structure, as well as the possible reason for the self-assembly behaviour, was further studied. The structure evolution of WBG showed that the self-assembly structure changed from a needle-like structure to a dendritic structure with increase in the content of WBG. When the content of WBG exceeded a critical value (0.4 wt%), it self-assembled into a strip structure. This revealed that the structure evolution of WBG contributed to the K β and the crystallization morphology of PP with different content of WBG. In addition, further studies implied that the behaviour of self-assembly was a liquid-solid transformation of WBG, followed by a liquid-liquid phase separation of molten isotactic PP and WBG. The formation of the self-assembly structure was based on the free molecules by hydrogen bond dissociation while being heated, followed by aggregation into another structure by hydrogen bond association while being cooled. Furthermore, self-assembly behaviour depends largely on the interaction between WBG themselves.
Ma, Hongmin; Hao, Jingcheng
2011-11-01
Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011
Guided molecular self-assembly: a review of recent efforts
NASA Astrophysics Data System (ADS)
Huie, Jiyun C.
2003-04-01
This paper serves as an introductory review of significant and novel successes achieved in the fields of nanotechnology, particularly in the formation of nanostructures using guided molecular self-assembly methods. Self-assembly is a spontaneous process by which molecules and nanophase entities may materialize into organized aggregates or networks. Through various interactive mechanisms of self-assembly, such as electrostatics, chemistry, surface properties, and via other mediating agents, the technique proves indispensable to recent functional materials and device realizations. The discussion will extend to spontaneous and Langmuir-Blodgett formation of self-assembled monolayers on various substrates, and a number of different categories of self-assembly techniques based on the type of interaction exploited. Combinatorial techniques, known as soft lithography, of micro-contact printing and dip-pen nanolithography, which can be effectively used to up-size nanostructured molecular assemblies to submicrometer and micrometer scale patterns, will also be mentioned.
Building polyhedra by self-assembly: theory and experiment.
Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind
2014-01-01
We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.
Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway
NASA Astrophysics Data System (ADS)
Kim, Kyunghee; Pochan, Darrin
Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.
Title: Lanthanide Enhance Luminescence (LEL) with one and two photon excitation of Quantum Dyes? Lanthanide(III)-Macrocycles
Principal Author:
Robert C. Leif, Newport Instruments
Secondary Authors:
Margie C. Becker, Phoenix Flow Systems
Al Bromm, Virginia Commonw...
USDA-ARS?s Scientific Manuscript database
Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A (1) and B (2), which consist of a Phe unit condensed with a nonaketide....
Imaging enzyme-triggered self-assembly of small molecules inside live cells
Gao, Yuan; Shi, Junfeng; Yuan, Dan; Xu, Bing
2012-01-01
Self-assembly of small molecules in water to form nanofibers, besides generating sophisticated biomaterials, promises a simple system inside cells for regulating cellular processes. But lack of a convenient approach for studying the self-assembly of small molecules inside cells hinders the development of such systems. Here we report a method to image enzyme-triggered self-assembly of small molecules inside live cells. After linking a fluorophore to a self-assembly motif to make a precursor, we confirmed by 31P NMR and rheology that enzyme-triggered conversion of the precursor to a hydrogelator results in the formation of a hydrogel via self-assembly. The imaging contrast conferred by the nanofibers of the hydrogelators allowed the evaluation of intracellular self-assembly; the dynamics, and the localization of the nanofibers of the hydrogelators in live cells. This approach explores supramolecular chemistry inside cells and may lead to new insights, processes, or materials at the interface of chemistry and biology. PMID:22929790
Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.
Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M
2013-12-01
Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery. Published by Elsevier Ltd.
Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank
2013-01-01
Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005
Stable centrosomal roots disentangle to allow interphase centriole independence
2018-01-01
The centrosome is a non–membrane-bound cellular compartment consisting of 2 centrioles surrounded by a protein coat termed the pericentriolar material (PCM). Centrioles generally remain physically associated together (a phenomenon called centrosome cohesion), yet how this occurs in the absence of a bounding lipid membrane is unclear. One model posits that pericentriolar fibres formed from rootletin protein directly link centrioles, yet little is known about the structure, biophysical properties, or assembly kinetics of such fibres. Here, I combine live-cell imaging of endogenously tagged rootletin with cell fusion and find previously unrecognised plasticity in centrosome cohesion. Rootletin forms large, diffusionally stable bifurcating fibres, which amass slowly on mature centrioles over many hours from anaphase. Nascent centrioles (procentrioles), in contrast, do not form roots and must be licensed to do so through polo-like kinase 1 (PLK1) activity. Transient separation of roots accompanies centriolar repositioning during the interphase, suggesting that centrioles organize as independent units, each containing discrete roots. Indeed, forced induction of duplicate centriole pairs allows independent reshuffling of individual centrioles between the pairs. Therefore collectively, these findings suggest that progressively nucleated polymers mediate the dynamic association of centrioles as either 1 or 2 interphase centrosomes, with implications for the understanding of how non–membrane-bound organelles self-organise. PMID:29649211
Self-Assembly: How Nature Builds
ERIC Educational Resources Information Center
Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon
2006-01-01
Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…
Blood coagulation reactions on nanoscale membrane surfaces
NASA Astrophysics Data System (ADS)
Pureza, Vincent S.
Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.
Reducing Conservatism of Analytic Transient Response Bounds via Shaping Filters
NASA Technical Reports Server (NTRS)
Kwan, Aiyueh; Bedrossian, Nazareth; Jan, Jiann-Woei; Grigoriadis, Karolos; Hua, Tuyen (Technical Monitor)
1999-01-01
Recent results show that the peak transient response of a linear system to bounded energy inputs can be computed using the energy-to-peak gain of the system. However, analytically computed peak response bound can be conservative for a class of class bounded energy signals, specifically pulse trains generated from jet firings encountered in space vehicles. In this paper, shaping filters are proposed as a Methodology to reduce the conservatism of peak response analytic bounds. This Methodology was applied to a realistic Space Station assembly operation subject to jet firings. The results indicate that shaping filters indeed reduce the predicted peak response bounds.
Biocatalytic Self-Assembly on Magnetic Nanoparticles.
Conte, Maria P; Sahoo, Jugal Kishore; Abul-Haija, Yousef M; Lau, K H Aaron; Ulijn, Rein V
2018-01-24
Combining (bio)catalysis and molecular self-assembly provides an effective approach for the production and processing of self-assembled materials by exploiting catalysis to direct the assembly kinetics and hence controlling the formation of ordered nanostructures. Applications of (bio)catalytic self-assembly in biologically interfacing systems and in nanofabrication have recently been reported. Inspired by self-assembly in biological cells, efforts to confine catalysts on flat or patterned surfaces to exert spatial control over molecular gelator generation and nanostructure self-assembly have also emerged. Building on our previous work in the area, we demonstrate in this report the use of enzymes immobilized onto magnetic nanoparticles (NPs) to spatially localize the initiation of peptide self-assembly into nanofibers around NPs. The concept is generalized for both an equilibrium biocatalytic system that forms stable hydrogels and a nonequilibrium system that normally has a preset lifetime. Characterization of the hydrogels shows that self-assembly occurs at the site of enzyme immobilization on the NPs to give rise to gels with a "hub-and-spoke" morphology, where the nanofibers are linked through the enzyme-NP conjugates. This NP-controlled arrangement of self-assembled nanofibers enables both remarkable enhancements in the shear strength of hydrogel systems and a dramatic extension of the hydrogel stability in the nonequilibrium system. We are also able to show that the use of magnetic NPs enables the external control of both the formation of the hydrogel and its overall structure by application of an external magnetic field. We anticipate that the enhanced properties and stimuli-responsiveness of our NP-enzyme system will have applications ranging from nanomaterial fabrication to biomaterials and biosensing.
Self-Assembly at the Colloidal Scale
NASA Astrophysics Data System (ADS)
Zhong, Xiao
The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.
Physical principles for DNA tile self-assembly.
Evans, Constantine G; Winfree, Erik
2017-06-19
DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.
Rajbhandary, Annada; Nilsson, Bradley L
2017-03-01
Low molecular weight agents that undergo self-assembly into fibril networks with hydrogel properties are promising biomaterials. Most low molecular weight hydrogelators are discovered empirically or serendipitously due to imperfect understanding of the mechanisms of self-assembly, the packing structure of self-assembled materials, and how the self-assembly process corresponds to emergent hydrogelation. Herein, the mechanisms of self-assembly and hydrogelation of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-PhePhe), a well-studied low molecular weight hydrogelator, is probed by systematic comparison with derivatives in which Phe residues are replaced by corresponding N-benzyl glycine peptoid (Nphe) analogs. Peptoids are peptidomimetics that shift display of side chain functionality from the α-carbon to the terminal nitrogen. This alters the hydrogen bonding capacity, the side chain presentation geometry, amide cis/trans isomerization equilibrium, and β-sheet potential of the peptoid relative to the corresponding amino acid in the context of peptidic polymers. It was found that amino acid/peptoid hybrids Fmoc-Phe-Nphe and Fmoc-Nphe-Phe have altered fibril self-assembly propensity and reduced hydrogelation capacity relative to the parent dipeptide, and that fibril self-assembly of the dipeptoid, Fmoc-Nphe-Nphe, is completely curtailed. These findings provide insight into the potential of low molecular weight peptoids and peptide/peptoid hybrids as hydrogelation agents and illuminate the importance of hydrogen bonding and π-π interaction geometry in facilitating self-assembly of Fmoc-Phe-Phe. © 2016 Wiley Periodicals, Inc.
Active control of complex, multicomponent self-assembly processes
NASA Astrophysics Data System (ADS)
Schulman, Rebecca
The kinetics of many complex biological self-assembly processes such as cytoskeletal assembly are precisely controlled by cells. Spatiotemporal control over rates of filament nucleation, growth and disassembly determine how self-assembly occurs and how the assembled form changes over time. These reaction rates can be manipulated by changing the concentrations of the components needed for assembly by activating or deactivating them. I will describe how we can use these principles to design driven self-assembly processes in which we assemble and disassemble multiple types of components to create micron-scale networks of semiflexible filaments assembled from DNA. The same set of primitive components can be assembled into many different, structures depending on the concentrations of different components and how designed, DNA-based chemical reaction networks manipulate these concentrations over time. These chemical reaction networks can in turn interpret environmental stimuli to direct complex, multistage response. Such a system is a laboratory for understanding complex active material behaviors, such as metamorphosis, self-healing or adaptation to the environment that are ubiquitous in biological systems but difficult to quantitatively characterize or engineer.
Process for separation and preconcentration of radium from water
Dietz, Mark; Horwitz, E. Philip; Chiarizia, Renato; Bartsch, Richard A.
1999-01-01
A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an ›H.sup.+ ! concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured.
Process for separation and preconcentration of radium from water
Dietz, M.; Horwitz, E.P.; Chiarizia, R.; Bartsch, R.A.
1999-01-26
A process for preconcentrating and separating radium from a contaminated solution containing at least water and radium includes the steps of adding a quantity of a water-soluble macrocyclic polyether to the contaminated solution to form a combined solution. An acid is added to the combined solution to form an acidic combined solution having an [H{sup +}] concentration of about 0.5M. The acidic combined solution is contacted with a sulfonic acid-based strong acid cation exchange medium or a organophilic sulfonic acid medium having a plurality of binding sites thereon to bind the radium thereto and to form a radium-depleted solution. The radium-depleted solution is separated from the strong acid cation exchange medium or organophilic sulfonic acid medium. The radium remaining bound to the exchange medium or organophilic reagent is then stripped from the exchange medium or organophilic medium and the activity of the radium is measured. 24 figs.
Functionalization of Carbon Spheres with a Porphyrin-Ferrocene Dyad.
Possanza, Fabio; Limosani, Francesca; Tagliatesta, Pietro; Zanoni, Robertino; Scarselli, Manuela; Ciotta, Erica; Pizzoferrato, Roberto
2018-05-21
Meso-tetraphenylporphyrin connected with a ferrocene molecule in the beta-position of the macrocycle through a triple carbon-carbon bond has been bound to carbon spheres using the Prato-Maggini reaction. The ethynyl or/and phenylene ethynylene subunits were chosen as a linking bridge to give a high conjugation degree between the donor (i. e., ferrocene), the photoactive compound (i. e., porphyrin), and the acceptor (i. e., carbon spheres). The molecular bridges have been directly linked to the beta-pyrrole positions of the porphyrin ring, generating a new example of a long-range donor-acceptor system. Steady-state fluorescence studies together with Raman and XPS measurements helped understanding the chemical and physical properties of the porphyrin ring in the new adduct. The spectroscopic characteristics were also compared with those obtained from a similar compound bearing fullerene instead of carbon spheres. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The self-assembled behavior of DNA bases on the interface.
Liu, Lei; Xia, Dan; Klausen, Lasse H; Dong, Mingdong
2014-01-27
A successful example of self-assembly in a biological system is that DNA can be an excellent agent to self-assemble into desirable two and three-dimensional nanostructures in a well-ordered manner by specific hydrogen bonding interactions between the DNA bases. The self-assembly of DNA bases have played a significant role in constructing the hierarchical nanostructures. In this review article we will introduce the study of nucleic acid base self-assembly by scanning tunneling microscopy (STM) at vacuum and ambient condition (the liquid/solid interface), respectively. From the ideal condition to a more realistic environment, the self-assembled behaviors of DNA bases are introduced. In a vacuum system, the energetic advantages will dominate the assembly formation of DNA bases, while at ambient condition, more factors such as conformational freedom and the biochemical environment will be considered. Therefore, the assemblies of DNA bases at ambient condition are different from the ones obtained under vacuum. We present the ordered nanostructures formed by DNA bases at both vacuum and ambient condition. To construct and tailor the nanostructure through the interaction between DNA bases, it is important to understand the assembly behavior and features of DNA bases and their derivatives at ambient condition. The utilization of STM offers the advantage of investigating DNA base self-assembly with sub-molecular level resolution at the surface.
The Self-Assembled Behavior of DNA Bases on the Interface
Liu, Lei; Xia, Dan; Klausen, Lasse H.; Dong, Mingdong
2014-01-01
A successful example of self-assembly in a biological system is that DNA can be an excellent agent to self-assemble into desirable two and three-dimensional nanostructures in a well-ordered manner by specific hydrogen bonding interactions between the DNA bases. The self-assembly of DNA bases have played a significant role in constructing the hierarchical nanostructures. In this review article we will introduce the study of nucleic acid base self-assembly by scanning tunneling microscopy (STM) at vacuum and ambient condition (the liquid/solid interface), respectively. From the ideal condition to a more realistic environment, the self-assembled behaviors of DNA bases are introduced. In a vacuum system, the energetic advantages will dominate the assembly formation of DNA bases, while at ambient condition, more factors such as conformational freedom and the biochemical environment will be considered. Therefore, the assemblies of DNA bases at ambient condition are different from the ones obtained under vacuum. We present the ordered nanostructures formed by DNA bases at both vacuum and ambient condition. To construct and tailor the nanostructure through the interaction between DNA bases, it is important to understand the assembly behavior and features of DNA bases and their derivatives at ambient condition. The utilization of STM offers the advantage of investigating DNA base self-assembly with sub-molecular level resolution at the surface. PMID:24473140
Ravi Krishna, E; Muralidhar Reddy, P; Sarangapani, M; Hanmanthu, G; Geeta, B; Shoba Rani, K; Ravinder, V
2012-11-01
A series of tetraaza (N(4) donor) macrocyclic ligands (L(1)-L(4)) were derived from the condensation of o-phthalaldehyde (OPA) with some substituted aromatic amines/azide, and subsequently used to synthesize the metal complexes of Ru(II), Pd(II) and Pt(II). The structures of macrocyclic ligands and their metal complexes were characterized by elemental analyses, IR, (1)H &(13)C NMR, mass and electronic spectroscopy, thermal, magnetic and conductance measurements. Both the ligands and their complexes were screened for their antibacterial activities against Gram positive and Gram negative bacteria by MIC method. Besides, these macrocyclic complexes were investigated as catalysts in the oxidation of pharmaceutical drug didanosine. The oxidized products were further treated with sulphanilic acid to develop the colored products to determine by spectrophotometrically. The current oxidation method is an environmentally friendly, simple to set-up, requires short reaction time, produces high yields and does not require co-oxidant. Copyright © 2012 Elsevier B.V. All rights reserved.
Bansal, Anil; Singh, Randhir
2000-01-01
Tetraazamacrocyclie complexes of lead and palladium have been synthesized by the template process using the bis(benzil)ethylenediamine precursor. The tetradentate macrocycle (maL) reacts with PbCl2, PdCl2 and different diamines in a 1:1:1 molar ratio in methanol to give several solid complexes of the types [Pb(maL)(R)Cl2] and [Pd(maL)(R)]Cl2 (where R = 2,6-diaminopyridine or 1,2-phenylenediamine). The macrocycle and its metal complexes have been characterized by elemental analysis, molecular weight determinations, molar conductivity, IR, 1H NMR, 13C NMR, electronic, mass and electrochemical studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. The macrocycle along with its complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential. PMID:18475947
Roy, Arundhati; Saha, Tanmoy; Gening, Marina L; Titov, Denis V; Gerbst, Alexey G; Tsvetkov, Yury E; Nifantiev, Nikolay E; Talukdar, Pinaki
2015-11-23
Cyclo-oligo-(1→6)-β-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion-transport activity increased from di- to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion-transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion-selectivity sequence: Cl(-) >Br(-) >I(-) . From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Self-Assembly of Particles with Multipolar Interactions
2004-01-01
the LATEX template in which this thesis has been written. I also thank Kevin Van Workum and Jack Douglas for contributing simulation work and some...of the computational expense of simulating such complex self-assembly systems at the molecular level and a desire to understand the self-assembly at...Dissertation directed by: Professor Wolfgang Losert Department of Physics In this thesis , we describe results from investigations of the self-assembly of
Self-Assembly of Human Serum Albumin: A Simplex Phenomenon
Thakur, Garima; Prashanthi, Kovur; Jiang, Keren; Thundat, Thomas
2017-01-01
Spontaneous self-assemblies of biomolecules can generate geometrical patterns. Our findings provide an insight into the mechanism of self-assembled ring pattern generation by human serum albumin (HSA). The self-assembly is a process guided by kinetic and thermodynamic parameters. The generated protein ring patterns display a behavior which is geometrically related to a n-simplex model and is explained through thermodynamics and chemical kinetics. PMID:28930179
Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu
Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering.more » Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.« less
Student Learning about Biomolecular Self-Assembly Using Two Different External Representations
Höst, Gunnar E.; Larsson, Caroline; Olson, Arthur; Tibell, Lena A. E.
2013-01-01
Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning about the process of self-assembly in a group exercise. A conceptual analysis of self-assembly into a set of facets was performed to support study design and analysis. Written responses were collected in a pretest/posttest experimental design with 32 Swedish university students. A quantitative analysis of close-ended items indicated that the students improved their scores between pretest and posttest, with no significant difference between the conditions (tangible model/image). A qualitative analysis of an open-ended item indicated students were unfamiliar with self-assembly prior to the study. Students in the tangible model condition used the facets of self-assembly in their open-ended posttest responses more frequently than students in the image condition. In particular, it appears that the dynamic properties of the tangible model may support student understanding of self-assembly in terms of the random and reversible nature of molecular interactions. A tentative difference was observed in response complexity, with more multifaceted responses in the tangible model condition. PMID:24006395
Student learning about biomolecular self-assembly using two different external representations.
Höst, Gunnar E; Larsson, Caroline; Olson, Arthur; Tibell, Lena A E
2013-01-01
Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning about the process of self-assembly in a group exercise. A conceptual analysis of self-assembly into a set of facets was performed to support study design and analysis. Written responses were collected in a pretest/posttest experimental design with 32 Swedish university students. A quantitative analysis of close-ended items indicated that the students improved their scores between pretest and posttest, with no significant difference between the conditions (tangible model/image). A qualitative analysis of an open-ended item indicated students were unfamiliar with self-assembly prior to the study. Students in the tangible model condition used the facets of self-assembly in their open-ended posttest responses more frequently than students in the image condition. In particular, it appears that the dynamic properties of the tangible model may support student understanding of self-assembly in terms of the random and reversible nature of molecular interactions. A tentative difference was observed in response complexity, with more multifaceted responses in the tangible model condition.
NASA Astrophysics Data System (ADS)
Carny, Ohad; Gazit, Ehud
2011-04-01
Any attempt to uncover the origins of life must tackle the known `blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
Carny, Ohad; Gazit, Ehud
2011-04-01
Any attempt to uncover the origins of life must tackle the known 'blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
The Self-Assembly of Nanogold for Optical Metamaterials
NASA Astrophysics Data System (ADS)
Nidetz, Robert A.
2011-12-01
Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger nanoparticles and larger poly(styrene) ligands resulted in larger and smaller assemblies, respectively. Stirring the solution resulted in a wider size distribution of microbead assemblies due to the stirring's shear forces. Two undeveloped methods to self-assemble nanogold were investigated. One method used block-copolymer thin films as chemical templates to direct the electrostatic self-assembly of nanogold. Another method used gold nanorods that are passivated with different ligands on different faces. The stability of an alkanethiol ligand in different acids and bases was investigated to determine which materials could be used to produce Janus nanorods.
Self-assembled software and method of overriding software execution
Bouchard, Ann M.; Osbourn, Gordon C.
2013-01-08
A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.
Xie, Yong; Guo, Shengming; Ji, Yinglu; Guo, Chuanfei; Liu, Xinfeng; Chen, Ziyu; Wu, Xiaochun; Liu, Qian
2011-09-20
The self-assembly of anisotropic gold nanorods (GNRs) into ordered phases remains a challenge. Herein, we demonstrated the fabrication of symmetric circular- or semicircular-like self-assembled superlattices composed of multilayers of standing GNRs by fine-tuning the repulsive interactions among GNRs. The repulsive force is tailored from electrostatic interaction to steric force by replacing the surface coating of cetyltrimethylammonium bromide (CTAB) (ζ potential of 20-50 mV) with an OH-terminated hexa(ethylene glycol) alkanethiol (here termed as EG(6)OH, ζ potential of -10 mV). The assembly mechanism is discussed via theoretical analyses of the major interactions, and an effective balance between the repulsive steric and attractive depletion interactions is the main driving force for the self-assembly. The real-time observations of solution assembly (UV-vis-NIR absorption spectroscopy) supports the mechanism that we suggested. The superlattices obtained here not only enrich the categories of the self-assembled structures but more importantly deepen the insight of the self-assembly process and pave the way for various potential applications. © 2011 American Chemical Society
Onoda, Kenji; Sawada, Hiromi; Morita, Daichi; Fujii, Kana; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki
2015-07-01
We synthesized three geometrical isomers of a macrocyclic bis(bibenzyl) based on isoplagiochin, a natural product isolated from bryophytes, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The isomer containing a 1,4-linked ring (5) showed only weak activity, whereas the isomers containing a 1,3-linked (6) or 1,2-linked (7) C ring showed potent anti-MRSA activity. Molecular dynamics calculations indicated that these differences are probably due to differences in the conformational flexibility of the macrocyclic ring; the active compounds 6 and 7 were more rigid than 5. In order to understand the action mechanism of anti-MRSA activity, we investigated the cellular flux of a fluorescent DNA-binder, ethidium bromide (EtBr), in the presence and absence of these macrocycles. The active compound 6 increased the levels of EtBr inflow and outflow in S. aureus cells, as did our potent anti-MRSA riccardin derivative (4), indicating that these compounds increased the permeability of the cytoplasmic membrane. Inactive 5 had no effect on EtBr inflow or outflow. Furthermore, compound 6 abrogated the normal intracellular concentration gradients of Na(+) and K(+) in S. aureus cells, increasing the intracellular Na(+) concentration and decreasing the K(+) concentration, while 5 had no such effect. These results indicate that anti-MRSA-active macrocyclic bis(bibenzyl) derivatives directly damage the gram-positive bacterial membrane, resulting in increased permeability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ciardiello, J J; Stewart, H L; Sore, H F; Galloway, W R J D; Spring, D R
2017-06-01
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vantomme, Ghislaine; Lehn, Jean-Marie
2014-12-01
Light irradiation of the molecular photoswitch 1-E causes isomerization into the 1-Z configuration stabilized by an internal hydrogen bond. 1-E bears aldehyde groups allowing for dynamic covalent reaction with linear diamines. On photoinduced E/Z shape switching of 1 in presence of diamines, the system undergoes interconversion between two states, a non-cyclic oligomeric one and a macrocyclic one, corresponding respectively to the E and Z configurations of 1. With a mixture of linear α,ω-diamines, 1-E yields non-selective dynamic oligomers by random incorporation of diamine components. Photoswitching to the 1-Z form leads to constitutional adaptation with preferential formation of the macrocycle incorporating the best suited diamine, H2 N(CH2 )7 NH2 . In presence of metal cations, the E form switches from its unbound W shape to its coordinated U shape and yields the macrocycle resulting from the selective incorporation of the diamine H2 NCH2 CH2 OCH2 CH2 NH2 that contains an additional O coordination site. Taken together, the results obtained describe constitutional adaptation in a triple state system: an oligomeric one and two different macrocyclic ones generated in response to two orthogonal agents, a physical stimulus, light, or a chemical effector, metal cations. These three states present, towards the incorporation of diamine components, respectively no selection, photoselection and metalloselection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kumar, Anuj; Vashistha, Vinod Kumar; Tevatia, Prashant; Singh, Randhir
2017-04-01
Tetraazamacrocyclic complexes of MnII, FeIII, CoII and NiII have been synthesized by template method. These tetraazamacrocycles have been analyzed with various techniques like molar conductance, IR, UV-vis, mass spectral and cyclic voltammetric studies. On the basis of all these studies, octahedral geometry has been assigned to these tetraazamacrocyclic complexes. The DNA binding properties of these macrocyclic complexes have been investigated by electronic absorption spectra, fluorescence spectra, cyclic voltammetric and differential pulse voltammetric studies. The cyclic voltammetric data showed that ipc and ipa were effectively decreased in the presence of calf thymus DNA, which is a strong evidence for the interaction of these macrocyclic complexes with the calf thymus DNA (ct-DNA). The heterogeneous electron transfer rate constant found in the order: KCoII > KNiII > KMnII which indicates that CoII macrocyclic complex has formed a strong intercalated intermediate. The Stern-Volmer quenching constant (KSV) and voltammetric binding constant were found in the order KSV(CoII) > KSV(NiII) > KSV(MnII) and K+(CoII) > K+(NiII) > K+(MnII) which shows that CoII macrocyclic complex exhibits the high interaction affinity towards ct-DNA by the intercalation binding. Biological studies of the macrocyclic complexes compared with the standard drug like Gentamycin, have shown antibacterial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal activity against C. albicans.
Xu, Qingsong; Huang, Tong; Li, Shanlong; Li, Ke; Li, Chuanlong; Liu, Yannan; Wang, Yuling; Yu, Chunyang; Zhou, Yongfeng
2018-05-09
Hierarchical solution self-assembly has nowadays become an important biomimetic method to prepare highly complex and multifunctional supramolecular structures. However, despites the great progress, it is still highly challenging to prepare hierarchical self-assemblies in a large scale since the self-assembly processes are generally performed at high dilution. Herein, we report an emulsion-assisted polymerization-induced self-assembly (EAPISA) method with the advantages of in-situ self-assembly process, scalable preparation and facile functionalization to prepare hierarchical multiscale sea urchin-like aggregates (SUAs). It also extends horizons of PISA in monomers and in polymerization method. The obtained SUAs from amphiphilic alternating copolymers represent a novel self-assembled structure with micron-sized rattan ball-like capsule (RBC) acting as the hollow core body and radiating nanotubes tens of micrometers in length as the hollow spines. They can effectively capture model proteins at an ultra-low concentration (≈10 nM) after functionalized with amino groups through click copolymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-assembly in the ferritin nano-cage protein superfamily.
Zhang, Yu; Orner, Brendan P
2011-01-01
Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.
Machine learning assembly landscapes from particle tracking data.
Long, Andrew W; Zhang, Jie; Granick, Steve; Ferguson, Andrew L
2015-11-07
Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways.
Wierzchowski, Marcin; Sobotta, Lukasz; Skupin-Mrugalska, Paulina; Kruk, Justyna; Jusiak, Weronika; Yee, Michael; Konopka, Krystyna; Düzgüneş, Nejat; Tykarska, Ewa; Gdaniec, Maria; Mielcarek, Jadwiga; Goslinski, Tomasz
2013-10-01
Four novel magnesium(II) and zinc(II) phthalocyanines bearing 1,4,7-trioxanonyl, polyether and/or (2-methyl-5-nitro-1H-imidazol-1-yl)ethoxy, heterocyclic substituents at their non-peripheral positions were synthesized and assessed in terms of physicochemical and biological properties. Magnesium phthalocyanine derivatives bearing polyether substituents (Pc-1), a mixed system of polyether and heterocyclic substituents (Pc-3), and four heterocyclic substituents (Pc-4), respectively, were synthesized following the Linstead macrocyclization reaction procedure. Zinc phthalocyanine (Pc-2) bearing polyether substituents at non-peripheral positions was synthesized following the procedure in n-pentanol with the zinc acetate, and DBU. Novel phthalocyanines were purified by flash column chromatography and characterized using NMR, MS, UV-Vis and HPLC. Moreover, two precursors in macrocyclization reaction phthalonitriles were characterized using X-ray. Photophysical properties of the novel macrocycles were evaluated, including UV-Vis spectra analysis and aggregation study. All macrocycles subjected to singlet oxygen generation and the oxidation rate constant measurements exhibited lower quantum yields of singlet oxygen generation in DMSO than in DMF. In addition, the Pc-2 molecule was found to be the most efficient singlet oxygen generator from the group of macrocycles studied. The photocytotoxicity evaluated on the human oral squamous cell carcinoma cell line, HSC-3, for Pc-3 was significantly higher than that for Pc-1, Pc-2, and Pc-4. Interestingly, Pc-3 was found to be the most active macrocycle in vitro although its ability to generate singlet oxygen was significantly lower than those of Pc-1 and Pc-2. However, attempts to encapsulate phthalocyanines Pc-1-Pc-3 in liposomal membranes were unsuccessful. The phthalocyanine-nitroimidazole conjugate, Pc-4 was encapsulated in phosphatidylglycerol:phosphatidylcholine unilamellar liposomes and subjected to photocytotoxicity study. © 2013.
Kinetically E-selective macrocyclic ring-closing metathesis
NASA Astrophysics Data System (ADS)
Shen, Xiao; Nguyen, Thach T.; Koh, Ming Joo; Xu, Dongmin; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.
2017-01-01
Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: the potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization—a particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib—a potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis—was prepared by RCM carried out at a substrate concentration 20 times greater than when a ruthenium carbene was used.
CHEMO/mechanical energy conversiona via supramolecular self-assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn, David G.; Conticello, Vincent
With the assembly codes for protein/peptide self-assembly sufficiently developed to control these phases, we are positioned to address critical requirements for generating unique self-propagating functional assemblies such as chemical batteries and engines that can be used to extend the capability of living cells. These integrative functional assemblies can then be used within cells to create new functions that will address the world’s energy challenges.
Yan, Gengwei; Yamaguchi, Takumi; Suzuki, Tatsuya; Yanaka, Saeko; Sato, Sota; Fujita, Makoto; Kato, Koichi
2017-05-04
Hybridization of a self-assembled, spherical complex with oligosaccharides containing Lewis X, a functional trisaccharide displayed on various cell surfaces, yielded well-defined glycoclusters. The self-assembled glycoclusters exhibited homophilic hyper-assembly in aqueous solution in a Ca 2+ -dependent manner through specific carbohydrate-carbohydrate interactions, offering a structural scaffold for functional biomimetic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymeric amphiphile branching leads to rare nanodisc shaped planar self-assemblies.
Qu, Xiaozhong; Omar, Leila; Le, Thi Bich Hang; Tetley, Laurence; Bolton, Katherine; Chooi, Kar Wai; Wang, Wei; Uchegbu, Ijeoma F
2008-09-16
Self-assembly is fundamental to the biological function of cells and the fabrication of nanomaterials. However, the origin of the shape of various self-assemblies, such as the shape of cells, is not altogether clear. Polymeric, oligomeric, or low molecular weight amphiphiles are a rich source of nanomaterials, and controlling their self-assembly is the route to tailored nanosystems with specific functionalities. Here, we provide direct evidence that a particular molecular architecture, polymeric branching, leads to a rare form of self-assembly, the planar nanodisc. Cholesterol containing self-assemblies formed from amphiphilic linear or branched cetyl poly(ethylenimine) (Mn approximately 1000 Da) or amphiphilic cetyl poly(propylenimine) dendrimer derivatives (Mn approximately 2000 Da) show that branching, by reducing the hydrophilic headgroup area, alters the shape of the self-assemblies transforming closed 60 nm spherical bilayer vesicles to rare 50 nm x 10 nm planar bilayer discs. Increasing the hydrophilic headgroup area, by the inclusion of methoxy poly(ethylene glycol) moieties into the amphiphilic headgroup, transforms the planar discs to 100 nm spherical bilayer vesicles. This study provides insight into the key role played by molecular shape on molecular self-organization into rare nanodiscs.
An exactly solvable model of hierarchical self-assembly
NASA Astrophysics Data System (ADS)
Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.
2009-06-01
Many living and nonliving structures in the natural world form by hierarchical organization, but physical theories that describe this type of organization are scarce. To address this problem, a model of equilibrium self-assembly is formulated in which dynamically associating species organize into hierarchical structures that preserve their shape at each stage of assembly. In particular, we consider symmetric m-gons that associate at their vertices into Sierpinski gasket structures involving the hierarchical association of triangles, squares, hexagons, etc., at their corner vertices, thereby leading to fractal structures after many generations of assembly. This rather idealized model of hierarchical assembly yields an infinite sequence of self-assembly transitions as the morphology progressively organizes to higher levels of the hierarchy, and these structures coexists at dynamic equilibrium, as found in real hierarchically self-assembling systems such as amyloid fiber forming proteins. Moreover, the transition sharpness progressively grows with increasing m, corresponding to larger and larger loops in the assembled structures. Calculations are provided for several basic thermodynamic properties (including the order parameters for assembly for each stage of the hierarchy, average mass of clusters, specific heat, transition sharpness, etc.) that are required for characterizing the interaction parameters governing this type of self-assembly and for elucidating other basic qualitative aspects of these systems. Our idealized model of hierarchical assembly gives many insights into this ubiquitous type of self-organization process.
Self-Organization and the Self-Assembling Process in Tissue Engineering
Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.
2015-01-01
In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238
Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug.
Qiu, Yeyan; Zhu, Jun; Wang, Jianting; Gong, Renmin; Zheng, Mingming; Huang, Fenghong
2013-08-01
Self-assembled nanoparticles were synthesized from water-soluble fructose-chitosan, substituted by succinyl linkages with phytosterols as hydrophobic moieties for self-assembly. The physicochemical properties of the prepared self-assembled nanoparticles were characterized by Fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. Doxorubicin (DOX), as a model anticancer drug, was physically entrapped inside prepared self-assembled nanoparticles by the dialysis method. With increasing initial levels of the drug, the drug loading content increased, but the encapsulation efficiency decreased. The release profiles in vitro demonstrated that the DOX showed slow sustained released over 48 h, and the release rate in phosphate buffered saline (PBS) solution (pH 7.4) was much slower than in PBS solution (pH 5.5 and pH 6.5), indicating the prepared self-assembled nanoparticles had the potential to be used as a carrier for targeted delivery of hydrophobic anticancer drugs with declined cytotoxicity to normal tissues.
NASA Astrophysics Data System (ADS)
Tortora, Maxime M. C.; Doye, Jonathan P. K.
2017-12-01
We detail the application of bounding volume hierarchies to accelerate second-virial evaluations for arbitrary complex particles interacting through hard and soft finite-range potentials. This procedure, based on the construction of neighbour lists through the combined use of recursive atom-decomposition techniques and binary overlap search schemes, is shown to scale sub-logarithmically with particle resolution in the case of molecular systems with high aspect ratios. Its implementation within an efficient numerical and theoretical framework based on classical density functional theory enables us to investigate the cholesteric self-assembly of a wide range of experimentally relevant particle models. We illustrate the method through the determination of the cholesteric behavior of hard, structurally resolved twisted cuboids, and report quantitative evidence of the long-predicted phase handedness inversion with increasing particle thread angles near the phenomenological threshold value of 45°. Our results further highlight the complex relationship between microscopic structure and helical twisting power in such model systems, which may be attributed to subtle geometric variations of their chiral excluded-volume manifold.
Harnessing surface-bound enzymatic reactions to organize microcapsules in solution
Shklyaev, Oleg E.; Shum, Henry; Sen, Ayusman; Balazs, Anna C.
2016-01-01
By developing new computational models, we examine how enzymatic reactions on an underlying surface can be harnessed to direct the motion and organization of reagent-laden microcapsules in a fluid-filled microchannel. In the presence of appropriate reagents, surface-bound enzymes can act as pumps, which drive large-scale fluid flows. When the reagents diffuse through the capsules’ porous shells, they can react with enzymatic sites on the bottom surface. The ensuing reaction generates fluid density variations, which result in fluid flows. These flows carry the suspended microcapsules and drive them to aggregate into “colonies” on and near the enzyme-covered sites. This aggregation continues until the reagent has been depleted and the convection stops. We show that the shape of the assembled colonies can be tailored by patterning the distribution of enzymes on the surface. This fundamental physicochemical mechanism could have played a role in the self-organization of early biological cells (protocells) and can be used to regulate the autonomous motion and targeted delivery of microcarriers in microfluidic devices. PMID:27034990
Induced helical backbone conformations of self-organizable dendronized polymers.
Rudick, Jonathan G; Percec, Virgil
2008-12-01
Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural information to rationalize function as retrostructural analysis. Retrostructural analysis validates our hypothesis that the self-assembling dendrons induce a helical backbone conformation in cylindrical self-organizable dendronized polymers. This helical conformation mediates unprecedented functions. Self-organizable dendronized polymers have emerged as powerful building blocks for nanoscience by virtue of their dimensions and ability to self-organize. Discrete cylindrical and spherical structures with well-defined dimensions can be visualized and manipulated individually. More importantly, they provide a robust framework for elucidating functions available only at the nanoscale. This Account will highlight structures and functions generated from self-organizable dendronized polymers that enable integration of the nanoworld with its macroscopic universe. Emphasis is placed on those structures and functions derived from the induced helical backbone conformation of cylindrical self-organizable dendronized polymers.
Design of fluidic self-assembly bonds for precise component positioning
NASA Astrophysics Data System (ADS)
Ramadoss, Vivek; Crane, Nathan B.
2008-02-01
Self Assembly is a promising alternative to conventional pick and place robotic assembly of micro components. Its benefits include parallel integration of parts with low equipment costs. Various approaches to self assembly have been demonstrated, yet demanding applications like assembly of micro-optical devices require increased positioning accuracy. This paper proposes a new method for design of self assembly bonds that addresses this need. Current methods have zero force at the desired assembly position and low stiffness. This allows small disturbance forces to create significant positioning errors. The proposed method uses a substrate assembly feature to provide a high accuracy alignment guide to the part. The capillary bond region of the part and substrate are then modified to create a non-zero positioning force to maintain the part in the desired assembly position. Capillary force models show that this force aligns the part to the substrate assembly feature and reduces sensitivity of part position to process variation. Thus, the new configuration can substantially improve positioning accuracy of capillary self-assembly. This will result in a dramatic decrease in positioning errors in the micro parts. Various binding site designs are analyzed and guidelines are proposed for the design of an effective assembly bond using this new approach.
Christ, Bastien; Das, Aditi; Hörtensteiner, Stefan
2016-01-01
Chlorophyll degradation is the most obvious hallmark of leaf senescence. Phyllobilins, linear tetrapyrroles that are derived from opening of the chlorin macrocycle by the Rieske-type oxygenase PHEOPHORBIDE a OXYGENASE (PAO), are the end products of chlorophyll degradation. Phyllobilins carry defined modifications at several peripheral positions within the tetrapyrrole backbone. While most of these modifications are species-specific, hydroxylation at the C32 position is commonly found in all species analyzed to date. We demonstrate that this hydroxylation occurs in senescent chloroplasts of Arabidopsis thaliana. Using bell pepper (Capsicum annuum) chromoplasts, we establish that phyllobilin hydroxylation is catalyzed by a membrane-bound, molecular oxygen-dependent, and ferredoxin-dependent activity. As these features resemble the requirements of PAO, we considered membrane-bound Rieske-type oxygenases as potential candidates. Analysis of mutants of the two Arabidopsis Rieske-type oxygenases (besides PAO) uncovered that phyllobilin hydroxylation depends on TRANSLOCON AT THE INNER CHLOROPLAST ENVELOPE55 (TIC55). Our work demonstrates a catalytic activity for TIC55, which in the past has been considered as a redox sensor of protein import into plastids. Given the wide evolutionary distribution of both PAO and TIC55, we consider that chlorophyll degradation likely coevolved with land plants. PMID:27655840
Microscale mass spectrometry systems, devices and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, John Michael
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
Microscale mass spectrometry systems, devices and related methods
Ramsey, John Michael
2016-06-21
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
Photocontrolled reversible self-assembly of dodecamer nitrilase.
Yu, Qiao; Wang, Yong; Zhao, Shengyun; Ren, Yuhong
2017-01-01
Naturally photoswitchable proteins act as a powerful tool for the spatial and temporal control of biological processes by inducing the formation of a photodimerizer. In this study, a method for the precise and reversible inducible self-assembly of dodecamer nitrilase in vivo (in Escherichia coli ) and in vitro (in a cell-free solution) was developed by means of the photoswitch-improved light-inducible dimer (iLID) system which could induce protein-protein dimerization. Nitrilase was fused with the photoswitch protein AsLOV2-SsrA to achieve the photocontrolled self-assembly of dodecamer nitrilase. The fusion protein self-assembled into a supramolecular assembly when illuminated at 470 nm. Scanning electron microscopy showed that the assembly formed a circular sheet structure. Self-assembly was also induced by light in E. coli . Dynamic light scattering and turbidity assay experiments showed that the assemblies formed within a few seconds under 470-nm light and completely disassembled within 5 min in the dark. Assembly and disassembly could be maintained for at least five cycles. Both in vitro and in vivo, the assemblies retained 90% of the initial activity of nitrilase and could be reused at least four times in vitro with 90% activity. An efficient method was developed for the photocontrolled assembly and disassembly of dodecamer nitrilase and for scaffold-free reversible self-assembly of multiple oligomeric enzymes in vivo and in vitro, providing new ideas and methods for immobilization of enzyme without carrier.
Hydration of AMP and ATP molecules in aqueous solution and solid films.
Faizullin, Dzhigangir; Zakharchenko, Nataliya; Zuev, Yuriy; Puzenko, Alexander; Levy, Evgeniya; Feldman, Yuri
2013-11-20
Water enables life and plays a critical role in biology. Considered as a versatile and adaptive component of the cell, water engages a wide range of biomolecular interactions. An organism can exist and function only if its self-assembled molecular structures are hydrated. It was shown recently that switching of AMP/ATP binding to the insulin-independent glucose transporter Human Erythrocyte Glucose Transport Protein (GLUT1) may greatly influence the ratio of bulk and bound water during regulation of glucose uptake by red blood cells. In this paper, we present the results on the hydration properties of AMP/ATP obtained by means of dielectric spectroscopy in aqueous solution and for fully ionized forms in solid amorphous films with the help of gravimetric studies.
Day-Ahead Anticipation of Complex Network Vulnerability
NASA Astrophysics Data System (ADS)
Stefanov, S. Z.; Wang, Paul P.
2017-11-01
In this paper, a day-ahead anticipation of complex network vulnerability for an intentional threat of an attack or a shock is carried out. An ecological observer is introduced for that reason, which is a watch in the intentional multiverse, tiled by cells; dynamics of the intentional threat for a day-ahead is characterized by a space-time cell; spreading of the intentional threat is derived from its energy; duration of the intentional threat is found by the self-assembling of a space-time cell; the lower bound of probability is assessed to anticipate for a day-ahead the intentional threat; it is indicated that this vulnerability anticipation for a day-ahead is right when the intentional threat leads to dimension doubling of the complex network.
Fast photo-switchable surfaces for boiling heat transfer applications
NASA Astrophysics Data System (ADS)
Hunter, C. N.; Turner, D. B.; Jespersen, M. L.; Check, M. H.; Borton, P. T.; Glavin, N. R.; Voevodin, A. A.
2012-11-01
Several milligrams of the ruthenium-centered organometallic complex, ruthenium bis-4,4'-di(thiomethyl)-2,2'-bipyridine, mono-2 -(2-pyridyl)-1,3-oxathiane ([Ru{(HS-CH2)2-bpy}2{pox}](PF6)2) were synthesized and used to produce a self assembled monolayer film on a gold substrate. X-ray photoelectron spectroscopy analysis of the film detected the presence of bound thiolate, which is an indication of a chemisorbed film. Water contact angle measurements were performed before and after 5 min of visible light irradiation using an ozone-free 1000 W Xe(Hg) arc source with a 425-680 nm long pass mirror. The contact angle changed from 52° pre-irradiation (hydrophilic state) to 95° post-irradiation (hydrophobic state).
Rotational and constitutional dynamics of caged supramolecules
Kühne, Dirk; Klappenberger, Florian; Krenner, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V.
2010-01-01
The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules’ chirality signature, reflecting decay and reassembly of the caged units. PMID:21098303
Suresh, D; Balakrishna, Maravanji S; Mague, Joel T
2008-07-07
Novel octanuclear copper(I) macrocyclic complexes and hexanuclear 2-dimensional grid-like polymers containing [P(micro-NR)](2) scaffold in which the anionic moieties are trapped inside the cationic macrocyclic cavities are reported.
Organic Materials as Electrodes for Li-ion Batteries
2015-09-04
Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the forefront of battery
Paquette, Joseph A; Sauvé, Ethan R; Gilroy, Joe B
2015-04-01
The synthesis and characterization of a new class of nickel-containing polymers is described. The optimized copolymerization of alkyne-bearing nickel(II) complexes of Goedken's macrocycle (4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) and brominated 9,9-dihexylfluorene produced polymers with potential application as functional redox-active materials. The title polymers exhibit electrochemically reversible, ligand-centered oxidation events at 0.24 and 0.73 V versus the ferrocene/ferrocenium redox couple. They also display exceptional thermal stability and interesting absorption properties due to the presence of the macrocyclic nickel(II) complexes and π-conjugated units incorporated in their backbones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure of the Tetrameric p53 Tumor Suppressor Bound to DNA
2002-05-01
been unable to prepare suitable p53/DNA cocrystals for structure determination. Nonetheless, we have successfully determined the medium resolution (2.7A... cocrystallization with longer DNA targets or DNA targets assembled into nucleosome core particles. The structure of tetrameric p53 bound to DNA will provide
Differentially photo-crosslinked polymers enable self-assembling microfluidics
Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.
2012-01-01
An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594
Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids
NASA Astrophysics Data System (ADS)
Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian
We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.
GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.
Tsutsumi, Takanobu; Asakawa, Takeshi; Kanegami, Akemi; Okada, Takao; Tahira, Tomoko; Hayashi, Kenshi
2014-01-01
DNA has been recognized as an ideal material for bottom-up construction of nanometer scale structures by self-assembly. The generation of sequences optimized for unique self-assembly (GENESUS) program reported here is a straightforward method for generating sets of strand sequences optimized for self-assembly of arbitrarily designed DNA nanostructures by a generate-candidates-and-choose-the-best strategy. A scalable procedure to prepare single-stranded DNA having arbitrary sequences is also presented. Strands for the assembly of various structures were designed and successfully constructed, validating both the program and the procedure.
Hierarchical and Helical Self-assembly of ADP-ribosyl Cyclase into Large-scale Protein Microtubes
Liu, Qun; Kriksunov, Irina A.; Wang, Zhongwu; Graeff, Richard; Lee, Hon Cheung; Hao, Quan
2013-01-01
Proteins are macromolecules with characteristic structures and biological functions. It is extremely challenging to obtain protein microtube structures through self-assembly as proteins are very complex and flexible. Here we present a strategy showing how a specific protein, ADP-ribosyl cyclase, helically self-assembles from monomers into hexagonal nanochains and further to highly ordered crystalline microtubes. The structures of protein nanochains and consequently self-assembled superlattice were determined by X-ray crystallography at 4.5 Å resolution and imaged by Scanning Electron Microscopy. The protein initially forms into dimers that have a fixed size of 5.6 nm, and then, helically self-assembles into 35.6 nm long hexagonal nanochains. One such nanochain consists of six dimers (12 monomers) that stack in order by a pseudo P61 screw axis. Seven nanochains produce a series of largescale assemblies, nanorods, forming the building blocks for microrods. A proposed aging process of microrods results in the formation of hollow microstructures. Synthesis and characterization of large scale self-assembled protein microtubes may pave a new pathway, capable of not only understanding the self-assembly dynamics of biological materials, but also directing design and fabrication of multifunctional nanobuilding blocks with particular applications in biomedical engineering. PMID:18956900
Hunt, Geoffrey C.; Singh, Purva; Schwarzbauer, Jean E.
2012-01-01
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture. PMID:22710062
Hunt, Geoffrey C; Singh, Purva; Schwarzbauer, Jean E
2012-09-10
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture. Copyright © 2012 Elsevier Inc. All rights reserved.
Kendall, Alexander J; Johnson, Samantha I; Bullock, R Morris; Mock, Michael T
2018-02-21
We report the first discrete molecular Cr-based catalysts for the reduction of N 2 . This study is focused on the reactivity of the Cr-N 2 complex, trans-[Cr(N 2 ) 2 (P Ph 4 N Bn 4 )] (P 4 Cr(N 2 ) 2 ), bearing a 16-membered tetraphosphine macrocycle. The architecture of the [16]-P Ph 4 N Bn 4 ligand is critical to preserve the structural integrity of the catalyst. P 4 Cr(N 2 ) 2 was found to mediate the reduction of N 2 at room temperature and 1 atm pressure by three complementary reaction pathways: (1) Cr-catalyzed reduction of N 2 to N(SiMe 3 ) 3 by Na and Me 3 SiCl, affording up to 34 equiv N(SiMe 3 ) 3 ; (2) stoichiometric reduction of N 2 by protons and electrons (for example, the reaction of cobaltocene and collidinium triflate at room temperature afforded 1.9 equiv of NH 3 , or at -78 °C afforded a mixture of NH 3 and N 2 H 4 ); and (3) the first example of NH 3 formation from the reaction of a terminally bound N 2 ligand with a traditional H atom source, TEMPOH (2,2,6,6-tetramethylpiperidine-1-ol). We found that trans-[Cr( 15 N 2 ) 2 (P Ph 4 N Bn 4 )] reacts with excess TEMPOH to afford 1.4 equiv of 15 NH 3 . Isotopic labeling studies using TEMPOD afforded ND 3 as the product of N 2 reduction, confirming that the H atoms are provided by TEMPOH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xia; School of Ocean, Shandong University, Weihai 264209; Wu, William K.K.
2011-03-01
Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G{sub 2}/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine,more » suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21{sup Waf1/Cip1}. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B{sub 1}, a cyclin required for progression through the G{sub 2}/M phase. Taken together, DHA induces G{sub 2}/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.« less
Ma, Chu Jian; Gibb, Bryan; Kwon, YoungHo; Sung, Patrick; Greene, Eric C.
2017-01-01
Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly. PMID:27903895
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepf, Matthieu; Bergkamp, Jesse J.; Teillout, Anne-Lucie
The association of different metals in stable, well-defined molecular assemblies remains a great challenge of supramolecular chemistry. In such constructs, the emergence of synergism, or cooperative effects between the different metal centers is particularly intriguing. These effects can lead to uncommon reactivity or remarkable physico-chemical properties that are not otherwise achievable. For example, the association of alkaline or alkaline-earth cations and transition metals is pivotal for the activity of several biomolecules and human-made catalysts that carry out fundamental redox transformations (water oxidation, nitrogen reduction, water–gas shift reaction, etc.). In many cases the precise nature of the interactions between the alkaline-earthmore » cations and the redox-active transition metals remains elusive due to the difficulty of building stable molecular heterometallic assemblies that associate transition metals and alkaline or alkaline-earth cations in a controlled way. In this work we present the rational design of porphyrin-based ligands possessing a second binding site for alkaline-earth cations above the porphyrin macrocycle primary complexation site. We demonstrate that by using a combination of crown ether and carboxylic acid substituents suitably positioned on the periphery of the porphyrin, bitopic ligands can be obtained. The binding of calcium, a typical alkaline-earth cation, by the newly prepared ligands has been studied in detail and we show that a moderately large binding constant can be achieved in protic media using ligands that possess some degree of structural flexibility. The formation of Zn–Ca assemblies discussed in this work is viewed as a stepping stone towards the assembly of well defined molecular transition metal-alkaline earth bimetallic centers using a versatile organic scaffold.« less
One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces
NASA Astrophysics Data System (ADS)
Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.
2017-02-01
The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.
Electrostatic Unfolding and Interactions of Albumin Driven by pH Changes: A Molecular Dynamics Study
2015-01-01
A better understanding of protein aggregation is bound to translate into critical advances in several areas, including the treatment of misfolded protein disorders and the development of self-assembling biomaterials for novel commercial applications. Because of its ubiquity and clinical potential, albumin is one of the best-characterized models in protein aggregation research; but its properties in different conditions are not completely understood. Here, we carried out all-atom molecular dynamics simulations of albumin to understand how electrostatics can affect the conformation of a single albumin molecule just prior to self-assembly. We then analyzed the tertiary structure and solvent accessible surface area of albumin after electrostatically triggered partial denaturation. The data obtained from these single protein simulations allowed us to investigate the effect of electrostatic interactions between two proteins. The results of these simulations suggested that hydrophobic attractions and counterion binding may be strong enough to effectively overcome the electrostatic repulsions between the highly charged monomers. This work contributes to our general understanding of protein aggregation mechanisms, the importance of explicit consideration of free ions in protein solutions, provides critical new insights about the equilibrium conformation of albumin in its partially denatured state at low pH, and may spur significant progress in our efforts to develop biocompatible protein hydrogels driven by electrostatic partial denaturation. PMID:24393011
Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta
2017-04-01
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.
Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics.
Xu, Xuejiao; Appel, Eric A; Liu, Xin; Parker, Richard M; Scherman, Oren A; Abell, Chris
2015-09-14
Herein we describe the use of microdroplets as templates for the fabrication of uniform-sized supramolecular hydrogel beads, assembled by supramolecular cross-linking of functional biopolymers with the macrocyclic host molecule, cucurbit[8]uril (CB[8]). The microdroplets were formed containing diluted hydrogel precursors in solution, including the functional polymers and CB[8], in a microfluidic device. Subsequent evaporation of water from collected microdroplets concentrated the contents, driving the formation of the CB[8]-mediated host-guest ternary complex interactions and leading to the assembly of condensed three-dimensional polymeric scaffolds. Rehydration of the dried particles gave monodisperse hydrogel beads. Their equilibrium size was shown to be dependent on both the quantity of material loaded and the dimensions of the microfluidic flow focus. Fluorescein-labeled dextran was used to evaluate the efficacy of the hydrogel beads as a vector for controlled cargo release. Both passive, sustained release (hours) and triggered, fast release (minutes) of the FITC-dextran was observed, with the rate of sustained release dependent on the formulation. The kinetics of release was fitted to the Ritger-Peppas controlled release equation and shown to follow an anomalous (non-Fickian) transport mechanism.
Computational studies of the 2D self-assembly of bacterial microcompartment shell proteins
NASA Astrophysics Data System (ADS)
Mahalik, Jyoti; Brown, Kirsten; Cheng, Xiaolin; Fuentes-Cabrera, Miguel
Bacterial microcomartments (BMCs) are subcellular organelles that exist within wide variety of bacteria and function like nano-reactors. Among the different types of BMCs known, the carboxysome has been studied the most. The carboxysomes plays an important role in the transport of metabolites across its outer proteinaceous shell. Plenty of studies have investigated the structure of this shell, yet little is known about its self-assembly . Understanding the self-assembly process of BMCs' shell might allow disrupting their functioning and designing new synthetic nano-reactors. We have investigated the self-assembly process of a major protein component of the carboxysome's shell using a Monte Carlo technique that employed a coarse-grained protein model that was calibrated with the all-atomistic potential of mean force. The simulations reveal that this protein self-assembles into clusters that resemble what were seen experimentally in 2D layers. Further analysis of the simulation results suggests that the 2D self-assembly of carboxysome's facets is driven by nucleation-growth process, which in turn could play an important role in the hierarchical self-assembly of BMCs' shell in general. 1. Science Undergraduate Laboratory Internships, ORNL 2. Oak Ridge Leadership Computing Facility, ORNL.
Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.
1998-01-01
The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762
Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.
Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël
2008-09-01
Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.
Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.
Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M
2017-02-01
Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.
Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly
Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.
2015-01-01
Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems in the literature. PMID:26421616
21st International Conference on DNA Computing and Molecular Programming: 8.1 Biochemistry
include information storage and biological applications of DNA systems, biomolecular chemical reaction networks, applications of self -assembled DNA...nanostructures, tile self -assembly and computation, principles and models of self -assembly, and strand displacement and biomolecular circuits. The fund
NASA Astrophysics Data System (ADS)
Neff, H.; Laborde, H. M.; Lima, A. M. N.
2016-11-01
An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.
Hermann, Stefanie; Wessig, Martin; Kollofrath, Dennis; Gerigk, Melanie; Hagedorn, Kay; Odendal, James A; Hagner, Matthias; Drechsler, Markus; Erler, Philipp; Fonin, Mikhail; Maret, Georg; Polarz, Sebastian
2017-05-08
Gaining external control over self-organization is of vital importance for future smart materials. Surfactants are extremely valuable for the synthesis of diverse nanomaterials. Their self-assembly is dictated by microphase separation, the hydrophobic effect, and head-group repulsion. It is desirable to supplement surfactants with an added mode of long-range and directional interaction. Magnetic forces are ideal, as they are not shielded in water. We report on surfactants with heads containing tightly bound transition-metal centers. The magnetic moment of the head was varied systematically while keeping shape and charge constant. Changes in the magnetic moment of the head led to notable differences in surface tension, aggregate size, and contact angle, which could also be altered by an external magnetic field. The most astonishing result was that the use of magnetic surfactants as structure-directing agents enabled the formation of porous solids with 12-fold rotational symmetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apaydin, Dogukan H; Seelajaroen, Hathaichanok; Pengsakul, Orathip; Thamyongkit, Patchanita; Sariciftci, Niyazi Serdar; Kunze-Liebhäuser, Julia; Portenkirchner, Engelbert
2018-04-24
We report on a self-assembled system comprising a molecular copper-porphyrin photoelectrocatalyst, 5-(4-carboxy-phenyl)-10,15,20-triphenylporphyrinatocopper(II) (CuTPP-COOH), covalently bound to self-organized, anodic titania nanotube arrays (TiO 2 NTs) for photoelectrochemical reduction of oxygen. Visible light irradiation of the porphyrin-covered TiO 2 NTs under cathodic polarization up to -0.3 V vs. Normal hydrogen electrode (NHE) photocatalytically produces H 2 O 2 in pH neutral electrolyte, at room temperature and without need of sacrificial electron donors. The formation of H 2 O 2 upon irradiation is proven and quantified by direct colorimetric detection using 4-nitrophenyl boronic acid ( p -NPBA) as a reactant. This simple approach for the attachment of a small molecular catalyst to TiO 2 NTs may ultimately allow for the preparation of a low-cost H 2 O 2 evolving cathode for efficient photoelectrochemical energy storage under ambient conditions.
Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.
Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi
2016-02-01
Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.
Integrating DNA strand-displacement circuitry with DNA tile self-assembly
Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik
2013-01-01
DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381
NASA Astrophysics Data System (ADS)
Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Zhu, Lian; Haataja, Mikko; Brangwynne, Clifford P.
2015-03-01
Nonmembrane-bound organelles are functional, dynamic assemblies of RNA and/or protein that can self-assemble and disassemble within the cytoplasm or nucleoplasm. The possibility that underlying intracellular phase transitions may drive and mediate the morphological evolution of some membrane-less organelles has been supported by several recent studies. In this talk, results from a collaborative experimental-theoretical study of the growth and dissolution kinetics of nucleoli and extranucleolar droplets (ENDs) in C. elegans embryos will be presented. We have employed Flory-Huggins solution theory, reaction-diffusion kinetics, and quantitative statistical dynamic scaling analysis to characterize the specific growth mechanisms at work. Our findings indicate that both in vivo and in vitro droplet scaling and growth kinetics are consistent with those resulting from an equilibrium liquid-liquid phase transition mediated by passive nonequilibrium growth mechanisms - simultaneous Brownian coalescence and Ostwald ripening. This supports a view in which cells can employ phase transitions to drive structural organization, while utilizing active processes, such as local transcriptional activity, to fine tune the kinetics of these phase transitions in response to given conditions.
Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers.
Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu
2014-01-07
The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct Imaging of Exciton Transport in Tubular Porphyrin Aggregates by Ultrafast Microscopy.
Wan, Yan; Stradomska, Anna; Knoester, Jasper; Huang, Libai
2017-05-31
Long-range exciton transport is a key challenge in achieving efficient solar energy harvesting in both organic solar cells and photosynthetic systems. Self-assembled molecular aggregates provide the potential for attaining long-range exciton transport through strong intermolecular coupling. However, there currently lacks an experimental tool to directly characterize exciton transport in space and in time to elucidate mechanisms. Here we report a direct visualization of exciton diffusion in tubular molecular aggregates by transient absorption microscopy with ∼200 fs time resolution and ∼50 nm spatial precision. These direct measurements provide exciton diffusion constants of 3-6 cm 2 s -1 for the tubular molecular aggregates, which are 3-5 times higher than a theoretical lower bound obtained by assuming incoherent hopping. These results suggest that coherent effects play a role, despite the fact that exciton states near the band bottom crucial for transport are only weakly delocalized (over <10 molecules). The methods presented here establish a direct approach for unraveling the mechanisms and main parameters underlying exciton transport in large molecular assemblies.
Meshing complex macro-scale objects into self-assembling bricks
Hacohen, Adar; Hanniel, Iddo; Nikulshin, Yasha; Wolfus, Shuki; Abu-Horowitz, Almogit; Bachelet, Ido
2015-01-01
Self-assembly provides an information-economical route to the fabrication of objects at virtually all scales. However, there is no known algorithm to program self-assembly in macro-scale, solid, complex 3D objects. Here such an algorithm is described, which is inspired by the molecular assembly of DNA, and based on bricks designed by tetrahedral meshing of arbitrary objects. Assembly rules are encoded by topographic cues imprinted on brick faces while attraction between bricks is provided by embedded magnets. The bricks can then be mixed in a container and agitated, leading to properly assembled objects at high yields and zero errors. The system and its assembly dynamics were characterized by video and audio analysis, enabling the precise time- and space-resolved characterization of its performance and accuracy. Improved designs inspired by our system could lead to successful implementation of self-assembly at the macro-scale, allowing rapid, on-demand fabrication of objects without the need for assembly lines. PMID:26226488
Magnetism in (Semi)Conducting Macrocycles of pi conjugated Polymers
2016-12-09
wise and avoiding a break in the continuity of the macrocycle. As a first criterion we tested the continuity of the electron orbitals over the...magnesium chloride) and post polymerization functionalization by a Sonogashira coupling reaction is required (scheme 2). Scheme 2: Synthetic...Sonogashira post - polymerization chain end functionalization and B isotopic model of the different population present in the final batch
Our recently discovered, selective, on-resin route to N(s)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently
Knapp, John M.; Fettinger, James C.; Kurth, Mark J.
2011-01-01
An efficient synthesis of spiro-fused macrolactams by a multicomponent macrocyclization reaction (MCMR) is reported. The use of highly reactive, transient intermediates in this MCMR permits short reaction times, even at high dilution. The methods employed for this MCMR were first developed as a four component strategy for the synthesis of β-ketoamide isoxazolines. PMID:21827181
Barnard, Anna; Posocco, Paola; Pricl, Sabrina; Calderon, Marcelo; Haag, Rainer; Hwang, Mark E; Shum, Victor W T; Pack, Daniel W; Smith, David K
2011-12-21
This paper uses a combined experimental and theoretical approach to gain unique insight into gene delivery. We report the synthesis and investigation of a new family of second-generation dendrons with four triamine surface ligands capable of binding to DNA, degradable aliphatic-ester dendritic scaffolds, and hydrophobic units at their focal points. Dendron self-assembly significantly enhances DNA binding as monitored by a range of experimental methods and confirmed by multiscale modeling. Cellular uptake studies indicate that some of these dendrons are highly effective at transporting DNA into cells (ca. 10 times better than poly(ethyleneimine), PEI). However, levels of transgene expression are relatively low (ca. 10% of PEI). This indicates that these dendrons cannot navigate all of the intracellular barriers to gene delivery. The addition of chloroquine indicates that endosomal escape is not the limiting factor in this case, and it is shown, both experimentally and theoretically, that gene delivery can be correlated with the ability of the dendron assemblies to release DNA. Mass spectrometric assays demonstrate that the dendrons, as intended, do degrade under biologically relevant conditions over a period of hours. Multiscale modeling of degraded dendron structures suggests that complete dendron degradation would be required for DNA release. Importantly, in the presence of the lower pH associated with endosomes, or when bound to DNA, complete degradation of these dendrons becomes ineffective on the transfection time scale-we propose this explains the poor transfection performance of these dendrons. As such, this paper demonstrates that taking this kind of multidisciplinary approach can yield a fundamental insight into the way in which dendrons can navigate barriers to cellular uptake. Lessons learned from this work will inform future dendron design for enhanced gene delivery. © 2011 American Chemical Society
Orabi, Mohamed A A; Taniguchi, Shoko; Yoshimura, Morio; Yoshida, Takashi; Kishino, Kaori; Sakagami, Hiroshi; Hatano, Tsutomu
2010-05-28
Three new hellinoyl-type ellagitannins, nilotinins M4 (7), D7 (8), and D8 (9), and a new macrocyclic-type, nilotinin D9 (10), together with eight known tannins, hirtellins B (2), C (11), and F (12), isohirtellin C (13), tamarixinin A (3), tellimagrandins I and II, and 1,2,6-tri-O-galloyl-beta-d-glucose (14), were isolated from an aqueous acetone extract of Tamarix nilotica dried leaves. Nilotinin M4 (7) is a monomeric tannin possessing a hellinoyl moiety. The structure of 8 demonstrated replacement of one of the HHDP groups at the glucose core O-4/O-6 in ordinary dimeric tannins with a galloyl moiety at O-6. This is a new structural feature among the tamaricaceous ellagitannins. On the basis of the results, reported spectroscopic assignments for 2, 3, and the macrocyclic tannins 11-13 were revised. Unusual shifts in the NMR spectra of these macrocyclic tannins are also discussed in relation to their conformations. Several tannins isolated from T. nilotica were assessed for possible cytotoxic activity against four human tumor cell lines, and nilotinin D8 (9) and hirtellin A (1) showed high cytotoxic effects.
Characterization of zein assemblies by ultra-small-angle X-ray scattering
Uzun, Suzan; Ilavsky, Jan; Padua, Graciela Wild
2017-03-23
Zein, a protein of corn, has an amphiphilic molecule capable of self-assembly into distinctly different structures. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. Our study included observing structural changes due to aging. Three hierarchical structures were identified in zein-solvent systems, molecular zein 2D films, believed to be formed by zein rods assembled first into one-dimensional fibers and then into two-dimensional films, and 3D spherical aggregates. Aging did not change the size or shape of primary units, but promoted their self-assembly into intermediatemore » 2D structures and shaped 3D structures into well19 defined spheres. We found that the rheological parameters, consistency index (K) and behavior index (n), storage and loss moduli (G’ and G”) were also measured. K and n, changed markedly with aging, from nearly Newtonian low consistency fresh samples to highly viscous pseudoplastic aged samples. G’ and G” increased with aging for all samples reflecting increased interactions among zein self-assembled structures. Furthermore, viscoelastic parameters indicated that zein dispersions formed gels upon aging. It was observed that USAX reported on molecular scale self-assembly processes, while rheological measurements reported on the macroscale interaction between self-assembled particles. Raman spectra suggested that α-helix to β-sheet transformations prompted zein self-assembly, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein dispersions.« less
Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
Brown, Noam; Lei, Jiangtao; Zhan, Chendi; Shimon, Linda J W; Adler-Abramovich, Lihi; Wei, Guanghong; Gazit, Ehud
2018-04-24
Self-assembly is a process of key importance in natural systems and in nanotechnology. Peptides are attractive building blocks due to their relative facile synthesis, biocompatibility, and other unique properties. Diphenylalanine (FF) and its derivatives are known to form nanostructures of various architectures and interesting and varied characteristics. The larger triphenylalanine peptide (FFF) was found to self-assemble as efficiently as FF, forming related but distinct architectures of plate-like and spherical nanostructures. Here, to understand the effect of triaromatic systems on the self-assembly process, we examined carboxybenzyl-protected diphenylalanine (z-FF) as a minimal model for such an arrangement. We explored different self-assembly conditions by changing solvent compositions and peptide concentrations, generating a phase diagram for the assemblies. We discovered that z-FF can form a variety of structures, including nanowires, fibers, nanospheres, and nanotoroids, the latter were previously observed only in considerably larger or co-assembly systems. Secondary structure analysis revealed that all assemblies possessed a β-sheet conformation. Additionally, in solvent combinations with high water ratios, z-FF formed rigid and self-healing hydrogels. X-ray crystallography revealed a "wishbone" structure, in which z-FF dimers are linked by hydrogen bonds mediated by methanol molecules, with a 2-fold screw symmetry along the c-axis. All-atom molecular dynamics (MD) simulations revealed conformations similar to the crystal structure. Coarse-grained MD simulated the assembly of the peptide into either fibers or spheres in different solvent systems, consistent with the experimental results. This work thus expands the building block library for the fabrication of nanostructures by peptide self-assembly.
A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan
NASA Astrophysics Data System (ADS)
Bhongade, A. S.; Khodke, P. M.
2014-04-01
Manufacturing systems, in which, several parts are processed through machining workstations and later assembled to form final products, is common. Though scheduling of such problems are solved using heuristics, available solution approaches can provide solution for only moderate sized problems due to large computation time required. In this work, scheduling approach is developed for such flow-shop manufacturing system having machining workstations followed by assembly workstations. The initial schedule is generated using Disjunctive method and genetic algorithm (GA) is applied further for generating schedule for large sized problems. GA is found to give near optimal solution based on the deviation of makespan from lower bound. The lower bound of makespan of such problem is estimated and percent deviation of makespan from lower bounds is used as a performance measure to evaluate the schedules. Computational experiments are conducted on problems developed using fractional factorial orthogonal array, varying the number of parts per product, number of products, and number of workstations (ranging upto 1,520 number of operations). A statistical analysis indicated the significance of all the three factors considered. It is concluded that GA method can obtain optimal makespan.
Inverse Problem in Self-assembly
NASA Astrophysics Data System (ADS)
Tkachenko, Alexei
2012-02-01
By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.
Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi
2014-01-01
In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045
On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.
Yue, Tao; Nakajima, Masahiro; Takeuchi, Masaru; Hu, Chengzhi; Huang, Qiang; Fukuda, Toshio
2014-03-21
Currently, research on the construction of vascular-like tubular structures is a hot area of tissue engineering, since it has potential applications in the building of artificial blood vessels. In this paper, we report a fluidic self-assembly method using cell embedded microstructures to construct vascular-like microtubes. A novel 4-layer microfluidic device was fabricated using polydimethylsiloxane (PDMS), which contains fabrication, self-assembly and extraction areas inside one channel. Cell embedded microstructures were directly fabricated using poly(ethylene glycol) diacrylate (PEGDA) in the fabrication area, namely on-chip fabrication. Self-assembly of the fabricated microstructures was performed in the assembly area which has a micro well. Assembled tubular structures (microtubes) were extracted outside the channel into culture dishes using a normally closed (NC) micro valve in the extraction area. The self-assembly mechanism was experimentally demonstrated. The performance of the NC micro valve and embedded cell concentration were both evaluated. Fibroblast (NIH/3T3) embedded vascular-like microtubes were constructed inside this reusable microfluidic device.
NASA Astrophysics Data System (ADS)
Groehn, Franziska
2015-03-01
With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.
Mesoscale Graphene-like Honeycomb Mono- and Multilayers Constructed via Self-Assembly of Coclusters.
Hou, Xue-Sen; Zhu, Guo-Long; Ren, Li-Jun; Huang, Zi-Han; Zhang, Rui-Bin; Ungar, Goran; Yan, Li-Tang; Wang, Wei
2018-02-07
Honeycomb structure endows graphene with extraordinary properties. But could a honeycomb monolayer superlattice also be generated via self-assembly of colloids or nanoparticles? Here we report the construction of mono- and multilayer molecular films with honeycomb structure that can be regarded as self-assembled artificial graphene (SAAG). We construct fan-shaped molecular building blocks by covalently connecting two kinds of clusters, one polyoxometalate and four polyhedral oligomeric silsesquioxanes. The precise shape control enables these complex molecules to self-assemble into a monolayer 2D honeycomb superlattice that mirrors that of graphene but on the mesoscale. The self-assembly of the SAAG was also reproduced via coarse-grained molecular simulations of a fan-shaped building block. It revealed a hierarchical process and the key role of intermediate states in determining the honeycomb structure. Experimental images also show a diversity of bi- and trilayer stacking modes. The successful creation of SAAG and its stacks opens up prospects for the preparation of novel self-assembled nanomaterials with unique properties.
Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie
2005-01-07
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.
126. DETAIL OF NORTH PLANT AMMUNITION DEMOLITION FACILITY, WITH ASSEMBLY ...
126. DETAIL OF NORTH PLANT AMMUNITION DEMOLITION FACILITY, WITH ASSEMBLY PLANT/WAREHOUSE (BUILDING 1601/1606/1701) IN BACKGROUND, FROM GB MANUFACTURING PLANT. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO
125. NORTH PLANT AMMUNITION DEMOLITION FACILITY IN FOREGROUND AND ASSEMBLY ...
125. NORTH PLANT AMMUNITION DEMOLITION FACILITY IN FOREGROUND AND ASSEMBLY PLANT/WAREHOUSE (BUILDING 1601/1606/1701) IN BACKGROUND. FROM GB MANUFACTURING PLANT. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzun, Suzan; Ilavsky, Jan; Padua, Graciela Wild
Zein, a protein of corn, has an amphiphilic molecule capable of self-assembly into distinctly different structures. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. Our study included observing structural changes due to aging. Three hierarchical structures were identified in zein-solvent systems, molecular zein 2D films, believed to be formed by zein rods assembled first into one-dimensional fibers and then into two-dimensional films, and 3D spherical aggregates. Aging did not change the size or shape of primary units, but promoted their self-assembly into intermediatemore » 2D structures and shaped 3D structures into well19 defined spheres. We found that the rheological parameters, consistency index (K) and behavior index (n), storage and loss moduli (G’ and G”) were also measured. K and n, changed markedly with aging, from nearly Newtonian low consistency fresh samples to highly viscous pseudoplastic aged samples. G’ and G” increased with aging for all samples reflecting increased interactions among zein self-assembled structures. Furthermore, viscoelastic parameters indicated that zein dispersions formed gels upon aging. It was observed that USAX reported on molecular scale self-assembly processes, while rheological measurements reported on the macroscale interaction between self-assembled particles. Raman spectra suggested that α-helix to β-sheet transformations prompted zein self-assembly, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein dispersions.« less
Self-Organization in Coordination-Driven Self-Assembly
Northrop, Brian H.; Zheng, Yao-Rong; Chi, Ki-Whan; Stang, Peter J.
2009-01-01
Conspectus Self-assembly allows for the preparation of highly complex molecular and supramolecular systems from relatively simple starting materials. Typically, self-assembled supramolecules are constructed by combining complementary pairs of two highly symmetric molecular components, thus limiting the chances of forming unwanted side products. Combining asymmetric molecular components or multiple complementary sets of molecules in one complex mixture can produce myriad different ordered and disordered supramolecular assemblies. Alternatively, spontaneous self-organization phenomena can promote the formation of specific product(s) out of a collection of multiple possibilities. Self-organization processes are common throughout much of nature and are especially common in biological systems. Recently, researchers have studied self-organized self-assembly in purely synthetic systems. This Account describes our investigations of self-organization in the coordination-driven self-assembly of platinum(II)-based metallosupramolecules. The modularity of the coordination-driven approach to self-assembly has allowed us to systematically study a wide variety of different factors that can control the extent of supramolecular self-organization. In particular, we have evaluated the effects of the symmetry and polarity of ambidentate donor subunits, differences in geometrical parameters (e.g. the size, angularity, and dimensionality) of Pt(II)-based acceptors and organic donors, the influence of temperature and solvent, and the effects of intermolecular steric interactions and hydrophobic interactions on self-organization. Our studies have shown that the extent of self-organization in the coordination-driven self-assembly of both 2D polygons and 3D polyhedra ranges from no organization (a statistical mixture of multiple products), to amplified organization (wherein a particular product or products are favored over others), and all the way to the absolute self-organization of discrete supramolecular assemblies. In many cases, inputs such as dipolar interactions, steric interactions, and differences in the geometric parameters of subunits—used either alone or as multiple factors simultaneously—can achieve absolute self-organization of discrete supramolecules. We have also observed instances where self-organization is not absolute and varies in its deviation from statistical results. Steric interactions are particularly useful control factors for driving such amplified self-organization because they can be subtly tuned through small structural variations. Having the ability to fully understand and control the self-organization of complex mixtures into specific synthetic supramolecules can provide a better understanding of analogous processes in biological systems. Furthermore, self-organization may allow for the facile synthesis of complex multifunctional, multicomponent systems from simply mixing a collection of much simpler, judiciously designed individual molecular components. PMID:19555073
Regulating DNA Self-assembly by DNA-Surface Interactions.
Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde
2017-12-14
DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanisms of kinetic trapping in self-assembly and phase transformation
Hagan, Michael F.; Elrad, Oren M.; Jack, Robert L.
2011-01-01
In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions. PMID:21932884
Self-assembling biomolecular catalysts for hydrogen production
NASA Astrophysics Data System (ADS)
Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor
2016-02-01
The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.
Self-assembled peptide nanostructures for functional materials
NASA Astrophysics Data System (ADS)
Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.
2016-10-01
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.
Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao
2016-01-13
Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems.
Klinger, Daniel; Robb, Maxwell J.; Spruell, Jason M.; Lynd, Nathaniel A.; Hawker, Craig J.
2014-01-01
Supramolecular interactions between different hydrogen-bonding guests and poly(2-vinyl pyridine)-block-poly (styrene) can be exploited to prepare remarkably diverse self-assembled nanostructures in dispersion from a single block copolymer (BCP). The characteristics of the BCP can be efficiently controlled by tailoring the properties of a guest which preferentially binds to the P2VP block. For example, the incorporation of a hydrophobic guest creates a hydrophobic BCP complex that forms phase separated nanoparticles upon self-assembly. Conversely, the incorporation of a hydrophilic guest results in an amphiphilic BCP complex that forms spherical micelles in water. The ability to tune the self-assembly behavior and access dramatically different nanostructures from a single BCP substrate demonstrates the exceptional versatility of the self-assembly of BCPs driven by supramolecular interactions. This approach represents a new methodology that will enable the further design of complex, responsive self-assembled nanostructures. PMID:25525473