Science.gov

Sample records for bound state approach

  1. Sturmian function approach and {bar N}N bound states

    SciTech Connect

    Yan, Y.; Tegen, R.; Gutsche, T.; Faessler, A.

    1997-09-01

    A suitable numerical approach based on Sturmian functions is employed to solve the {bar N}N bound state problem for local and nonlocal potentials. The approach accounts for both the strong short-range nuclear potential and the long-range Coulomb force and provides directly the wave function of protonium and {bar N}N deep bound states with complex eigenvalues E=E{sub R}{minus}i({Gamma}/2). The spectrum of {bar N}N bound states has two parts, the atomic states bound by several keV, and the deep bound states which are bound by several hundred MeV. The observed very small hyperfine splitting of the 1s level and the 1s and 2p decay widths are reasonably well reproduced by both the Paris and Bonn potentials (supplemented with a microscopically derived quark annihilation potential), although there are differences in magnitude and level ordering. We present further arguments for the identification of the {sup 13}PF{sub 2} deep bound state with the exotic tensor meson f{sub 2}(1520). Both investigated models can accommodate the f{sub 2}(1520) but differ greatly in the total number of levels and in their ordering. The model based on the Paris potential predicts the {sup 13}P{sub 0} level slightly below 1.1 GeV while the model based on the Bonn potential puts this state below 0.8 GeV. It remains to be seen if this state can be identified with a scalar partner of the f{sub 2}(1520). {copyright} {ital 1997} {ital The American Physical Society}

  2. Computational approach for calculating bound states in quantum field theory

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-09-01

    We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.

  3. Study of BB ¯*/DD ¯* bound states in a Bethe-Salpeter approach

    NASA Astrophysics Data System (ADS)

    He, Jun

    2014-10-01

    In this work the BB ¯*/DD ¯* system is studied in the Bethe-Salpeter approach with quasipotential approximation. In our calculation both direct and cross diagrams are included in the one-boson-exchange potential. The numerical results indicate the existence of an isoscalar bound state DD ¯* with JPC=1++, which may be related to the X(3872). In the isovector sector, no bound state is produced from the interactions of DD ¯* and BB ¯*, which suggests the molecular state explanations for Zb(10610) and Zc(3900) are excluded.

  4. Three-body bound states with zero-range interaction in the Bethe-Salpeter approach

    NASA Astrophysics Data System (ADS)

    Ydrefors, E.; Alvarenga Nogueira, J. H.; Gigante, V.; Frederico, T.; Karmanov, V. A.

    2017-07-01

    The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding energies, Bethe-Salpeter amplitudes and light-front wave functions. Three different regimes are analyzed: (i) For weak enough two-body interaction the three-body system is unbound. (ii) For stronger two-body interaction a three-body bound state appears. It provides an interesting example of a deeply bound Borromean system. (iii) For even stronger two-body interaction this state becomes unphysical with a negative mass squared. However, another physical (excited) state appears, found previously in light-front calculations. The Bethe-Salpeter approach implicitly incorporates three-body forces of relativistic origin, which are attractive and increase the binding energy.

  5. Born Level Bound States

    NASA Astrophysics Data System (ADS)

    Hoyer, Paul

    2017-05-01

    Bound state poles in the S-matrix of perturbative QED are generated by the divergence of the expansion in α . The perturbative corrections are necessarily singular when expanding around free, {O}( α ^0 ) in and out states that have no overlap with finite-sized atomic wave functions. Nevertheless, measurables such as binding energies do have well-behaved expansions in powers of α (and log α ). It is desirable to formulate the concept of "lowest order" for gauge theory bound states such that higher order corrections vanish in the α → 0 limit. This may allow to determine a lowest order term for QCD hadrons which incorporates essential features such as confinement and chiral symmetry breaking, and thus can serve as the starting point of a useful perturbative expansion. I discuss a "Born" (no loop, lowest order in \\hbar ) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. Gauss' law determines a distinct field A^0({\\varvec{x}}) for each instantaneous position of the charges. A Poincaré covariant boundary condition for the gluon field leads to a confining potential for q\\bar{q} and qqq states. In frames where the bound state is in motion the classical gauge field is obtained by a Lorentz boost of the rest frame field.

  6. Kinematic constraints on formation of bound states of cosmic strings: Field theoretical approach

    SciTech Connect

    Salmi, P.; Achucarro, A.; Copeland, E. J.; Kibble, T. W. B.; Putter, R. de; Steer, D. A.

    2008-02-15

    Superstring theory predicts the potential formation of string networks with bound states ending in junctions. Kinematic constraints for junction formation have been derived within the Nambu-Goto thin string approximation. Here we test these constraints numerically in the framework of the Abelian-Higgs model in the Type-I regime and report on good agreement with the analytical predictions. We also demonstrate that strings can effectively pass through each other when they meet at speeds slightly above the critical velocity permitting bound-state formation. This is due to reconnection effects that are beyond the scope of the Nambu-Goto approximation.

  7. Bound states and the Bekenstein bound

    SciTech Connect

    Bousso, Raphael

    2003-10-16

    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  8. Bose-Einstein condensation of heteronuclear bound states formed in a Fermi gas of two atomic species: a microscopic approach

    NASA Astrophysics Data System (ADS)

    Peletminskii, A. S.; Peletminskii, S. V.; Slyusarenko, Yu V.

    2017-07-01

    We study a many-body system of interacting fermionic atoms of two species that are in thermodynamic equilibrium with their condensed heteronuclear bound states (molecules). In order to describe such an equilibrium state, we use a microscopic approach that involves the Bogoliubov model for a weakly interacting Bose gas and approximate formulation of the second quantization method in the presence of bound states of particles elaborated earlier by the authors. This microscopic approach is valid at low temperatures, when the average kinetic energy of all the components in the system is small in comparison with the bound state energy. The coupled equations, which relate the chemical potentials of fermionic components and molecular condensate density, are obtained within the proposed theory. At zero temperature, these equations are analyzed both analytically and numerically, attracting the relevant experimental data. We find the conditions at which a condensate of heteronuclear molecules coexists in equilibrium with degenerate components of a Fermi gas. The ground state energy and single-particle excitation spectrum are found. The boundaries of the applicability of the developed microscopic approach are analyzed.

  9. Exact diagrammatic approach for dimer-dimer scattering and bound states of three and four resonantly interacting particles

    SciTech Connect

    Brodsky, I. V.; Kagan, M. Yu.; Klaptsov, A. V.; Combescot, R.; Leyronas, X.

    2006-03-15

    We present a diagrammatic approach for the dimer-dimer scattering problem in two or three spatial dimensions, within the resonance approximation where these dimers are in a weakly bound resonant state. This approach is first applied to the calculation of the dimer-dimer scattering length a{sub B} in three spatial dimensions, for dimers made of two fermions in a spin-singlet state, with corresponding scattering length a{sub F}, and the already known result a{sub B}=0.60 a{sub F} is recovered exactly. Then we make use of our approach to obtain results in two spatial dimensions for fermions as well as for bosons. Specifically, we calculate bound-state energies for three bbb and four bbbb resonantly interacting bosons in two dimensions. We consider also the case of a resonant interaction between fermions and bosons, and we obtain the exact bound-state energies of two bosons plus one fermion bbf, two bosons plus two fermions bf{sub {up_arrow}}bf{sub {down_arrow}}, and three bosons plus one fermion bbbf.

  10. Bound Anionic States of Aadenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation,wehave demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  11. Bound Anionic States of Adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S.; Li, Xiang; Bowen, Kit H.

    2007-03-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the newfound anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The new valence states observed here, unlike the dipole-bound state, could exist in condensed phases and might be relevant to radiobiological damage. The discovery of these valence anionic states of adenine was facilitated by the development of (i) an experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (it) a combinatorial/quantum chemical approach for identification of the most stable tautomers of organic molecules.

  12. Bound states in string nets

    NASA Astrophysics Data System (ADS)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  13. Hamiltonian anomalies of bound states in QED

    SciTech Connect

    Shilin, V. I.; Pervushin, V. N.

    2013-10-15

    The Bound State in QED is described in systematic way by means of nonlocal irreducible representations of the nonhomogeneous Poincare group and Dirac's method of quantization. As an example of application of this method we calculate triangle diagram Para-Positronium {yields} {gamma}{gamma}. We show that the Hamiltonian approach to Bound State in QED leads to anomaly-type contribution to creation of pair of parapositronium by two photon.

  14. A Transformation Approach to Optimal Control Problems with Bounded State Variables

    NASA Technical Reports Server (NTRS)

    Hanafy, Lawrence Hanafy

    1971-01-01

    A technique is described and utilized in the study of the solutions to various general problems in optimal control theory, which are converted in to Lagrange problems in the calculus of variations. This is accomplished by mapping certain properties in Euclidean space onto closed control and state regions. Nonlinear control problems with a unit m cube as control region and unit n cube as state region are considered.

  15. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  16. SO(4) algebraic approach to the three-body bound state problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Salom, Igor

    2014-08-01

    We use the permutation symmetric hyperspherical three-body variables to cast the non-relativistic three-body Schrödinger equation in two dimensions into a set of (possibly decoupled) differential equations that define an eigenvalue problem for the hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan coefficients and use the latter's properties to derive selection rules for potentials with different dynamical/permutation symmetries. Three-body potentials acting on three identical particles may have different dynamical symmetries, in order of increasing symmetry, as follows: (1) S3 ⊗ OL(2), the permutation times rotational symmetry, that holds in sums of pairwise potentials, (2) O(2) ⊗ OL(2), the so-called "kinematic rotations" or "democracy symmetry" times rotational symmetry, that holds in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that holds in hyper-radial three-body potentials. We show how the different residual dynamical symmetries of the non-relativistic three-body Hamiltonian lead to different degeneracies of certain states within O(4) multiplets.

  17. Wronskian Method for Bound States

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2011-01-01

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…

  18. Wronskian Method for Bound States

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2011-01-01

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…

  19. Elastic scattering, muon transfer, bound states and resonances in the three-body mesic molecular systems in the reduced adiabatic hyperspherical approach

    NASA Astrophysics Data System (ADS)

    Abramov, D. I.; Gusev, V. V.; Ponomarev, L. I.

    1999-06-01

    The uniform method of numerical investigation of bound states and scattering processes 2→ 2 (including resonance states) in the Coulomb three-body (CTB) systems is developed. It is based on the adiabatic hyperspherical approach (AHSA) and includes the numerical realization and applications to the three-body mesic atomic systems. The results of calculations of bound states of these systems (including the local characteristics of the wave functions) and the scattering processes 2→ 2 (including the characteristics of the resonance states) are presented.

  20. η-nuclear bound states revisited

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.; Mareš, J.

    2013-10-01

    The strong energy dependence of the s-wave ηN scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11N* (1535) resonance, is included self-consistently in η-nuclear bound-state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of η-nuclear binding, with a minimum value of ReaηN ≈ 0.9 fm required to accommodate an η-4He bound state. Binding energies and widths of η-nuclear states are calculated within several underlying ηN models for nuclei across the periodic table, including Mg25η for which some evidence was proposed in a recent COSY experiment.

  1. Creating multiphoton-polarization bound entangled states

    SciTech Connect

    Wei, Tzu-Chieh; Lavoie, Jonathan; Kaltenbaek, Rainer

    2011-03-15

    Bound entangled states are the exotic objects in the entangled world. They require entanglement to create them, but once they are formed, it is not possible to locally distill any free entanglement from them. It is only until recently that a few bound entangled states were realized in the laboratory. Motivated by these experiments, we propose schemes for creating various classes of bound entangled states with photon polarization. These include Acin-Bruss-Lewenstein-Sanpara states, Duer's states, Lee-Lee-Kim bound entangled states, and an unextendible-product-basis bound entangled state.

  2. Asymmetric dark matter bound state

    NASA Astrophysics Data System (ADS)

    Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun

    2017-02-01

    We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.

  3. Bound states in the continuum

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin

    2016-09-01

    Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.

  4. Few-body model approach to the bound states of helium-like exotic three-body systems

    NASA Astrophysics Data System (ADS)

    Khan, Md A.

    2016-10-01

    In this paper, calculated energies of the lowest bound S-state of Coulomb three-body systems containing an electron (e —), a negatively charged muon (μ—) and a nucleus (NZ+) of charge number Z are reported. The 3-body relative wave function in the resulting Schrödinger equation is expanded in the complete set of hyperspherical harmonics (HH). Use of the orthonormality of HH leads to an infinite set of coupled differential equations (CDE) which are solved numerically to get the energy E.

  5. Unified ab initio approach to bound and unbound states: No-core shell model with continuum and its application to 7He

    DOE PAGES

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-03-26

    In this study, we introduce a unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating group method (NCSM/RGM), a nuclear scattering technique. This new ab initio method, no-core shell model with continuum (NCSMC), leads to convergence properties superior to either NCSM or NCSM/RGM while providing a balanced approach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function includes (i) a square-integrable A-nucleon component expanded in a complete harmonic oscillator basis and (ii) a binary-cluster component with asymptoticmore » boundary conditions that can properly describe weakly bound states, resonances, and scattering. The Schrödinger equation is transformed into a system of coupled-channel integral-differential equations that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis. We demonstrate the usefulness of the approach by investigating the unbound 7He nucleus.« less

  6. A spline function approach to the numerical treatment of scattering and bound-state problems for nonlocal potentials

    NASA Astrophysics Data System (ADS)

    Fiebig, H. R.

    1980-10-01

    The Lippman-Schwinger equation for the reactance operator is converted into a system of linear equations. By using spline functions the principal-value singularity of the integral kernel can be treated analytically. Throughout this work recurrence relations suitable for automatic computation are derived, relying on the properties of normalized B-splines as given by de Boor. The algorithm developed is recommended for problems with a nonlocal interaction admitting partial wave decomposition. This case occurs, e.g. in the low-energy scattering of two composite nuclei when antisymmetrisation is taken into account. It is shown that addition of a repulsive Coulomb interaction requires no essential modifications of the method. Supplementary applications to bound-state energies and wave functions are given.

  7. Coulomb bound states of strongly interacting photons

    SciTech Connect

    Maghrebi, M. F.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.

    2015-09-16

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency (EIT) can interact via an effective Coulomb potential. The interaction then gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb problem, thus obtaining a photonic analogue of the hydrogen atom. These states propagate with a negative group velocity in the medium, which allows for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms. As a result, we verify the metastability and backward propagation of these Coulomb bound states with exact numerical simulations.

  8. Coulomb bound states of strongly interacting photons

    DOE PAGES

    Maghrebi, M. F.; Gullans, Michael J.; Bienias, P.; ...

    2015-09-16

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency (EIT) can interact via an effective Coulomb potential. The interaction then gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb problem, thus obtaining a photonic analogue of the hydrogen atom. These states propagate with a negative group velocity in the medium, which allows for a simple preparation and detection scheme, before they slowlymore » decay to pairs of bound Rydberg atoms. As a result, we verify the metastability and backward propagation of these Coulomb bound states with exact numerical simulations.« less

  9. On Aharonov-Casher bound states

    NASA Astrophysics Data System (ADS)

    Silva, E. O.; Andrade, F. M.; Filgueiras, C.; Belich, H.

    2013-04-01

    In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the ∇ṡ E term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem.

  10. Anomalous Andreev bound state in noncentrosymmetric superconductors.

    PubMed

    Tanaka, Yukio; Mizuno, Yoshihiro; Yokoyama, Takehito; Yada, Keiji; Sato, Masatoshi

    2010-08-27

    We study edge states of noncentrosymmetric superconductors where spin-singlet d-wave pairing mixes with spin-triplet p (or f)-wave one by spin-orbit coupling. For d(xy)-wave pairing, the obtained Andreev bound state has an anomalous dispersion as compared to conventional helical edge modes. A unique topologically protected time-reversal invariant Majorana bound state appears at the edge. The charge conductance in the noncentrosymmetric superconductor junctions reflects the anomalous structures of the dispersions, particularly the time-reversal invariant Majorana bound state is manifested as a zero bias conductance peak.

  11. Coulomb Bound States of Strongly Interacting Photons

    NASA Astrophysics Data System (ADS)

    Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.

    2015-09-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  12. Bound States as Fundamental Quantum Structures

    NASA Astrophysics Data System (ADS)

    Kastner, R. E.

    Bound states arise in many interactions among elementary field states, and are representedby poles in the scattering matrix. The emergent nature of bound states suggests that they play an perhaps underappreciated role in specifying the ontologically relevant degrees of freedom pertaining to composite systems. The basics of this ontology are presented, and it is discussed in light of an example of M. Arsenijević, J. Jeknić-Dugić and M. Dugić.

  13. Bound states in the Higgs model

    NASA Astrophysics Data System (ADS)

    di Leo, Leo; Darewych, Jurij W.

    1994-02-01

    We derive relativistic wave equations for the bound states of two Higgs bosons within the Higgs sector of the minimal standard model. The variational method and the Hamiltonian formalism of QFT are used to obtain the equations using a simple ||hh>+||hhh> Fock-space ansatz. We present approximate solutions of these equations for a range of Higgs boson masses, and explore the parameter space which corresponds to the existence of two-Higgs-boson bound states.

  14. Irreversibility for All Bound Entangled States

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Horodecki, Michał; Horodecki, Ryszard; Synak-Radtke, Barbara

    2005-11-01

    We derive a new inequality for entanglement for a mixed four-partite state. Employing this inequality, we present a one-shot lower bound for entanglement cost and prove that entanglement cost is strictly larger than zero for any entangled state. We demonstrate that irreversibility occurs in the process of formation for all nondistillable entangled states. In this way we solve a long standing problem of how “real” is entanglement of bound entangled states. Using the new inequality we also prove the impossibility of local cloning of a known entangled state.

  15. Description of weakly bound or unbound nuclear states

    SciTech Connect

    Kruppa, A.T.; Nazarewicz, W.

    2004-09-13

    A major theoretical challenge when dealing with weakly bound nuclei is to obtain a consistent microscopic description of bound states, resonances, and the non-resonant continuum. In this talk, resonances in deformed nuclei are described within the coupled-channel approach employing the Gamow state formalism. The coupled-channel method is compared with the expansion schemes employing the harmonic oscillator basis and the Berggren ensemble.

  16. Family of nonlocal bound entangled states

    NASA Astrophysics Data System (ADS)

    Yu, Sixia; Oh, C. H.

    2017-03-01

    Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.

  17. Narrow deeply bound K- atomic states

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    1999-07-01

    Using optical potentials fitted to a comprehensive set of strong interaction level shifts and widths in K- atoms, we predict that the K- atomic levels which are inaccessible in the atomic cascade process are generally narrow, spanning a range of widths about 50-1500 keV over the entire periodic table. The mechanism for this narrowing is different from the mechanism for narrowing of pionic atom levels. Examples of such `deeply bound' K- atomic states are given, showing that in many cases these states should be reasonably well resolved. Several reactions which could be used to form these `deeply bound' states are mentioned. Narrow deeply bound states are expected also in overlinep atoms.

  18. Simple approach for the bound-state energy spectrum of the generalized exponential-cosine Coulomb potential.

    PubMed

    Moulay, M; Mansouri, A; Houamer, S

    2003-01-01

    Based on the series expansion formalism, a relatively simple approach is proposed to solve the eigenvalues problems with partially screened and screened exponential-cosine Coulomb potentials. This approach is used to derive solutions to the Schrödinger equation with the two forms of potentials. The eigenenergies are explicitly deduced from solving the obtained corresponding polynomial equations. For illustration, high accuracy results have been obtained in the entire range of parameter values of these potential forms, with no constraints or adjustable constants. The present approach compares well, with existing methods, the results of which are precisely recovered as particular cases and does allow solutions to eigenvalues problems with any combination of potential parameters.

  19. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    SciTech Connect

    Cari, C. Suparmi, A.

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  20. Φ -meson-nucleus bound states

    NASA Astrophysics Data System (ADS)

    Cobos-Martínez, J. J.; Tsushima, K.; Krein, G.; Thomas, A. W.

    2017-09-01

    ϕ -meson-nucleus bound state energies and absorption widths are calculated for seven selected nuclei by solving the Klein-Gordon equation with complex optical potentials. Essential input for the calculations, namely the medium-modified K and K ¯ meson masses, as well as the density distributions in nuclei, are obtained from the quark-meson coupling model. The attractive potential for the ϕ meson in the nuclear medium originates from the in-medium enhanced K K ¯ loop in the ϕ -meson self-energy. The results suggest that the ϕ meson should form bound states with all the nuclei considered. However, the identification of the signal for these predicted bound states will need careful investigation because of their sizable absorption widths.

  1. Bound states in the Higgs model

    SciTech Connect

    Di Leo, L.; Darewych, J.W. )

    1994-02-01

    We derive relativistic wave equations for the bound states of two Higgs bosons within the Higgs sector of the minimal standard model. The variational method and the Hamiltonian formalism of QFT are used to obtain the equations using a simple [vert bar][ital hh][r angle]+[vert bar][ital hhh][r angle] Fock-space ansatz. We present approximate solutions of these equations for a range of Higgs boson masses, and explore the parameter space which corresponds to the existence of two-Higgs-boson bound states.

  2. Construction of bound entangled states based on permutation operators

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Guo, Sha; Jing, Naihuan; Fei, Shaoming

    2016-04-01

    We present a construction of new bound entangled states from given bound entangled states for arbitrary dimensional bipartite systems. One way to construct bound entangled states is to show that these states are positive partial transpose (PPT) and violate the range criterion at the same time. By applying certain operators to given bound entangled states or to one of the subsystems of the given bound entangled states, we obtain a set of new states which are both PPT and violate the range criterion. We show that the derived bound entangled states are not local unitary equivalent to the original bound entangled states by detail examples.

  3. Bound entangled states with extremal properties

    NASA Astrophysics Data System (ADS)

    BadziaÂģ, Piotr; Horodecki, Karol; Horodecki, Michał; Jenkinson, Justin; Szarek, Stanisław J.

    2014-07-01

    Following recent work of Beigi and Shor, we investigate positive partial transpose (PPT) states that are "heavily entangled." We first exploit volumetric methods to show that in a randomly chosen direction, there are PPT states whose distance in trace norm from separable states is (asymptotically) at least 1/4. We then provide explicit examples of PPT states which are nearly as far from separable ones as possible. To obtain a distance of 2-ɛ from the separable states, we need a dimension of 2poly [log(1/ɛ)], as opposed to 2poly (1/ɛ) given by the construction of Beigi and Shor [J. Math. Phys. 51, 042202 (2010), 10.1063/1.3364793]. We do so by exploiting the so-called private states, introduced earlier in the context of quantum cryptography. We also provide a lower bound for the distance between private states and PPT states and investigate the distance between pure states and the set of PPT states.

  4. Bound states of screened coulomb potentials

    NASA Astrophysics Data System (ADS)

    Dutt, Ranabir; Ray, Aparna; Ray, Pritam P.

    1981-05-01

    We propose an extension of the Ecker-Weizel approximation to treat the non-zero angular momentum bound states of a class of screened Coulomb potentials. As an illustration of our prescription, we have calculated the discrete energies Enl of the Yukawa potential, which are in excellent agreement with those of Rogers et al.

  5. The bound states of ultracold KRb molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul; Hanna, Thomas

    2009-03-01

    Recently ultracold vibrational ground state ^40K^87Rb polar molecules have been made using magnetoassociation of two cold atoms to a weakly bound Feshbach molecule, followed by a two-color optical STIRAP process to transfer molecules to the molecular ground state [1]. We have used accurate potential energy curves for the singlet and triplet states of the KRb molecule [2] with coupled channels calculations to calculate all of the bound states of the ^40K^87Rb molecule as a function of magnetic field from the cold atom collision threshold to the v=0 ground state. We have also developed approximate models for understanding the changing properties of the molecular bound states as binding energy increases. Some overall conclusions from these calculations will be presented. [1] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science, 2008, 322, 231--235. [2] A. Pashov, O. Docenko, M. Tamanis, R. Ferber, H. Kn"ockel, and E. Tiemann, Phys. Rev. A, 2007, 76, 022511.

  6. Topological edge states of bound photon pairs

    NASA Astrophysics Data System (ADS)

    Gorlach, Maxim A.; Poddubny, Alexander N.

    2017-05-01

    We predict the existence of interaction-driven edge states of bound two-photon quasiparticles in a dimer periodic array of nonlinear optical cavities. The energy spectrum of photon pairs is dramatically richer than in the noninteracting case or in a simple lattice, featuring collapse and revival of multiple edge and bulk modes as well as edge states in continuum. We link the edge-state existence to the two-photon quantum walk graph connectivity. Our results offer a route to control quantum entanglement and provide insights into the physics of many-body topological states.

  7. Andreev-Majorana bound states in superfluids

    SciTech Connect

    Silaev, M. A. Volovik, G. E.

    2014-12-15

    We consider Andreev-Majorana (AM) bound states with zero energy on surfaces, interfaces, and vortices in different phases of the p-wave superfluids. We discuss the chiral superfluid {sup 3}He-A and time reversal invariant phases: superfluid {sup 3}He-B, planar and polar phases. The AM zero modes are determined by topology in the bulk and disappear at the quantum phase transition from the topological to nontopological state of the superfluid. The topology demonstrates the interplay of dimensions. In particular, the zero-dimensional Weyl points in chiral superfluids (the Berry phase monopoles in momentum space) give rise to the one-dimensional Fermi arc of AM bound states on the surface and to the one-dimensional flat band of AM modes in the vortex core. The one-dimensional nodal line in the polar phase produces a two-dimensional flat band of AM modes on the surface. The interplay of dimensions also connects the AM states in superfluids with different dimensions. For example, the topological properties of the spectrum of bound states in three-dimensional {sup 3}He-B are connected to the properties of the spectrum in the two-dimensional planar phase (thin film)

  8. Nuclear internal conversion between bound atomic states

    NASA Astrophysics Data System (ADS)

    Chemin, J. F.; Harston, M. R.; Karpeshin, F. F.; Carreyre, J.; Attallah, F.; Aleonard, M. M.; Scheurer, J. N.; Boggaert, G.; Grandin, J. R.; Trzhaskovskaya, M. B.

    2003-01-01

    We present experimental and theoretical results for rate of decay of the (3/2)+ isomeric state in 125Te versus the ionic charge state. For charge state larger than 44 the nuclear transition lies below the threshold for emission of a K-shell electron into the continuum with the result that normal internal conversion is energetically forbiden. Rather surprisingly, for the charge 45 and 46 the lifetime of the level was found to have a value close to that in neutral atoms. We present direct evidence that the nuclear transition could still be converted but without the emission of the electron into the continuum, the electron being promoted from the K-shell to an other empty bound state lying close to the continuum. We called this process BIC. The experimental results agree whith theoretical calculations if BIC resonances are taken into account. This leads to a nuclear decay constant that is extremely sensitive to the precise initial state and simple specification of the charge state is no longer appropriate. The contribution to decay of the nucleus of BIC has recently been extended to the situation in which the electron is promoted to an intermediate filled bound state (PFBIC) with an apparent violation of the Pauli principle. Numerical results of the expected dependence of PFBIC on the charge state will be presented for the decay of the 77.351 keV level in 197Au.

  9. Tsirelson's bound and supersymmetric entangled states

    PubMed Central

    Borsten, L.; Brádler, K.; Duff, M. J.

    2014-01-01

    A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound pwin=cos2π/8≃0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964

  10. Towards flavored bound states beyond rainbows and ladders

    SciTech Connect

    El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de; Paracha, M. A.

    2014-11-11

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  11. Towards flavored bound states beyond rainbows and ladders

    NASA Astrophysics Data System (ADS)

    El-Bennich, B.; Rojas, E.; Paracha, M. A.; de Melo, J. P. B. C.

    2014-11-01

    We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken.

  12. Sufficient Conditions for Global Minimality of Metastable States in a Class of Non-convex Functionals: A Simple Approach Via Quadratic Lower Bounds

    NASA Astrophysics Data System (ADS)

    Shirokoff, David; Choksi, Rustum; Nave, Jean-Christophe

    2015-06-01

    We consider mass-constrained minimizers for a class of non-convex energy functionals involving a double-well potential. Based upon global quadratic lower bounds to the energy, we introduce a simple strategy to find sufficient conditions on a given critical point (metastable state) to be a global minimizer. We show that this strategy works well for the one exact and known metastable state: the constant state. In doing so, we numerically derive an almost optimal lower bound for both the order-disorder transition curve of the Ohta-Kawasaki energy and the liquid-solid interface of the phase-field crystal energy. We discuss how this strategy extends to non-constant computed metastable states, and the resulting symmetry issues that one must overcome. We give a preliminary analysis of these symmetry issues by addressing the global optimality of a computed lamellar structure for the Ohta-Kawasaki energy in one (1D) and two (2D) space dimensions. We also consider global optimality of a non-constant state for a spatially in-homogenous perturbation of the 2D Ohta-Kawasaki energy. Finally we use one of our simple quadratic lower bounds to rigorously prove that for certain values of the Ohta-Kawasaki parameter and aspect ratio of an asymmetric torus, any global minimizer for the 1D problem is automatically a global minimizer for the 2D problem on the asymmetric torus.

  13. Entanglement bound for multipartite pure states based on local measurements

    SciTech Connect

    Jiang Lizhen; Chen Xiaoyu; Ye Tianyu

    2011-10-15

    An entanglement bound based on local measurements is introduced for multipartite pure states. It is the upper bound of the geometric measure and the relative entropy of entanglement. It is the lower bound of the minimal-measurement entropy. For pure bipartite states, the bound is equal to the entanglement entropy. The bound is applied to pure tripartite qubit states and the exact tripartite relative entropy of entanglement is obtained for a wide class of states.

  14. Bound states in gauge theories as the Poincare group representations

    SciTech Connect

    Cherny, A. Yu.; Dorokhov, A. E.; Han, Nguyen Suan; Pervushin, V. N. Shilin, V. I.

    2013-03-15

    The bound-state generating functional is constructed in gauge theories. This construction is based on the Dirac Hamiltonian approach to gauge theories, the Poincare group classification of fields and their nonlocal bound states, and the Markov-Yukawa constraint of irreducibility. The generating functional contains additional anomalous creations of pseudoscalar bound states: para-positronium in QED and mesons inQCDin the two-gamma processes of the type of {gamma} + {gamma} {yields} {pi}{sub 0} +para-positronium. The functional allows us to establish physically clear and transparent relations between the perturbativeQCD to its nonperturbative low-energy model by means of normal ordering and the quark and gluon condensates. In the limit of small current quark masses, the Gell-Mann-Oakes-Renner relation is derived from the Schwinger-Dyson and Bethe-Salpeter equations. The constituent quark masses can be calculated from a self-consistent nonlinear equation.

  15. Nuclear dynamics of K¯ bound states

    NASA Astrophysics Data System (ADS)

    Mareš, J.; Friedman, E.; Gal, A.

    2006-07-01

    K¯ nuclear bound states were generated dynamically within a relativistic mean field (RMF) model. Substantial polarization of the core nucleus was found for light nuclei. The behavior of the dynamically calculated width ΓK¯ as function of the K¯ binding energy was studied. A lower limit of ΓK¯ ˜ 35 - 45 MeV for 1s K¯ nuclear states in light nuclei such as 12C was placed on the width expected for deep binding in the range B K¯ ˜ 100 - 200 MeV.

  16. Andreev bound states. Some quasiclassical reflections

    SciTech Connect

    Lin, Y. Leggett, A. J.

    2014-12-15

    We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.

  17. Bounds on internal state variables in viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1993-01-01

    A typical viscoplastic model will introduce up to three types of internal state variables in order to properly describe transient material behavior; they are as follows: the back stress, the yield stress, and the drag strength. Different models employ different combinations of these internal variables--their selection and description of evolution being largely dependent on application and material selection. Under steady-state conditions, the internal variables cease to evolve and therefore become related to the external variables (stress and temperature) through simple functional relationships. A physically motivated hypothesis is presented that links the kinetic equation of viscoplasticity with that of creep under steady-state conditions. From this hypothesis one determines how the internal variables relate to one another at steady state, but most importantly, one obtains bounds on the magnitudes of stress and back stress, and on the yield stress and drag strength.

  18. Spin susceptibility of Andreev bound states

    NASA Astrophysics Data System (ADS)

    Rosemeyer, B. M.; Vorontsov, Anton B.

    2016-10-01

    We calculate the electronic spin susceptibility and spin-lattice relaxation rate in a singlet superconductor near a pair-breaking surface, or in a domain wall of the order parameter. We directly link the presence of high-density Andreev bound states in the inhomogeneous region, combined with coherence factors, to the enhancement of the susceptibility above the normal state's value for certain q vectors. Besides the dominant peak at ferromagnetic vector q =0 , we find significant enhancement of antiferromagnetic correlations at vectors q ≲2 kf , with q along the domain wall in an S -wave superconductor, and across the domain wall in D -wave (nodes along the wall). These features are destroyed by applying a moderate Zeeman field that splits the zero-energy peak. We solve Bogoliubov-de Gennes equations in momentum space and discuss the deviation of our results from the lattice models investigated previously. Large enhancement of the spin-lattice relaxation rate T1-1 at the domain wall provides a clear signature of the quasiparticle bound states, and is in good agreement with recent experiment in organic superconductor κ -(BEDT-TTF ) 2Cu (NCS) 2 .

  19. Engineering the coupling between Majorana bound states

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shao, X. Q.; Xia, Y.; Yi, X. X.

    2017-09-01

    We study the coupling between Majorana bound states (CMBS), which is mediated by a topologically trivial chain in the presence of pairing coupling and long-range coupling. The results show that CMBS can be enhanced by the pairing coupling and long-range coupling of the trivial chain. When driving the trivial chain by periodic driving field, we deduce the analytical expressions of CMBS in the high-frequency limit, and demonstrate that CMBS can be modulated by the frequency and amplitude of driving field. Finally we exhibit the application of tunable CMBS in realizing quantum logic gates.

  20. Interferometric resonance signatures of Majorana bound states

    NASA Astrophysics Data System (ADS)

    Golub, Anatoly; Horovitz, Baruch

    2015-07-01

    We calculate the current noise power spectrum in a nanoscopic interferometer consisting of a Majorana bound state (MBS) and a localized spin. We show that for large voltage (though less than the superconducting gap) several strong resonance peaks appear at frequencies that depend on the Zeeman splitting of the localized spin and on its tunneling to the localized spin. We also evaluate the differential conductance and find the unitary limit peak 2{{e}2}/h at zero voltage as well as peaks at voltages corresponding to the resonances. We propose that detection of the resonances and related peaks in the differential conductance provide as strong support for the presence of an MBS.

  1. A balance for dark matter bound states

    NASA Astrophysics Data System (ADS)

    Nozzoli, F.

    2017-05-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Current and past experiments for direct detection of massive Dark Matter particles are focusing to relatively low cross sections with ordinary matter, however they cannot rule out very large cross sections, σ/M > 0.01 barn/GeV, due to atmosphere and material shielding. Cosmology places a strong indirect limit for the presence of large interactions among Dark Matter and baryons in the Universe, however such a limit cannot rule out the existence of a small sub-dominant component of Dark Matter with non negligible interactions with ordinary matter in our galactic halo. Here, the possibility of the existence of bound states with ordinary matter, for a similar Dark Matter candidate with not negligible interactions, is considered. The existence of bound states, with binding energy larger than ∼ 1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection for a mass increasing of cryogenic samples, due to the possible particle accumulation, would allow the investigation of these Dark Matter candidates with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  2. Gluon mass generation in the massless bound-state formalism

    NASA Astrophysics Data System (ADS)

    Ibañez, D.; Papavassiliou, J.

    2013-02-01

    We present a detailed, all-order study of gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which give rise to effective vertices containing massless poles; these latter vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. This particular approach has the conceptual advantage of relating the gluon mass directly to quantities that are intrinsic to the bound-state formation itself, such as the “transition amplitude” and the corresponding “bound-state wave function.” As a result, the dynamical evolution of the gluon mass is largely determined by a Bethe-Salpeter equation that controls the dynamics of the relevant wave function, rather than the Schwinger-Dyson equation of the gluon propagator, as happens in the standard treatment. The precise structure and field-theoretic properties of the transition amplitude are scrutinized in a variety of independent ways. In particular, a parallel study within the linear-covariant (Landau) gauge and the background-field method reveals that a powerful identity, known to be valid at the level of conventional Green’s functions, also relates the background and quantum transition amplitudes. Despite the differences in the ingredients and terminology employed, the massless bound-state formalism is absolutely equivalent to the standard approach based on Schwinger-Dyson equations. In fact, a set of powerful relations allows one to demonstrate the exact coincidence of the integral equations governing the momentum evolution of the gluon mass in both frameworks.

  3. Unified treatment of bound-state and scattering problems

    SciTech Connect

    Adhikari, S.K.; Tomio, L.

    1988-01-01

    The iteration-subtraction method for the unified treatment of bound-state and scattering problems is compared and contrasted with a similar method for the two-body bound-state problem via nonsingular scattering equations developed recently. We also compare another recent method for solving bound-state problems with the iteration-subtraction method.

  4. Integral Equations and the Bound-State Problem.

    ERIC Educational Resources Information Center

    Bagchi, B.; Seyler, R. G.

    1980-01-01

    An integral equation for the s-wave bound-state solution is derived and then solved for a square-well potential. It is shown that the scattering solutions continue to exist at negative energies, and when evaluated at the energy of a bound state these solutions do reduce to the bound-state solution.

  5. Extending Quantum Chemistry of Bound States to Electronic Resonances

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.

    2017-05-01

    Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.

  6. Bound states in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.

    2013-03-25

    We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB{approx}m{sup 2}{sub {pi}}{approx} 0.02 GeV{sup 2} at the RHIC and eB{approx} 15m{sup 2}{sub {pi}}{approx} 0.3 GeV{sup 2} at the LHC. We investigate the effects of the magnetic field on B{sup 0} and D{sup 0} mesons, focusing on the changes of the energy levels and of the mass of the bound states.

  7. Unified ab initio approach to bound and unbound states: No-core shell model with continuum and its application to 7He

    SciTech Connect

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-03-26

    In this study, we introduce a unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating group method (NCSM/RGM), a nuclear scattering technique. This new ab initio method, no-core shell model with continuum (NCSMC), leads to convergence properties superior to either NCSM or NCSM/RGM while providing a balanced approach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function includes (i) a square-integrable A-nucleon component expanded in a complete harmonic oscillator basis and (ii) a binary-cluster component with asymptotic boundary conditions that can properly describe weakly bound states, resonances, and scattering. The Schrödinger equation is transformed into a system of coupled-channel integral-differential equations that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis. We demonstrate the usefulness of the approach by investigating the unbound 7He nucleus.

  8. Radial sensitivity of kaonic atoms and strongly boundstates

    NASA Astrophysics Data System (ADS)

    Barnea, N.; Friedman, E.

    2007-02-01

    The strength of the low-energy K--nucleus real potential has recently received renewed attention in view of experimental evidence for the possible existence of strongly bound K- states. Previous fits to kaonic atom data led to either “shallow” or “deep” potentials, where only the former are in agreement with chiral approaches but only the latter can produce strongly bound states. Here we explore the uncertainties of the K--nucleus optical potentials, obtained from fits to kaonic atom data, using the functional derivatives of the best-fit χ2 values with respect to the potential. We find that only the deep type of potential provides information that is applicable to the K- interaction in the nuclear interior.

  9. Viewing Majorana Bound States by Rabi Oscillations

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Liang, Qi-Feng; Yao, Dao-Xin; Hu, Xiao

    2015-07-01

    We propose to use Rabi oscillation as a probe to view the fractional Josepshon relation (FJR) associated with Majorana bound states (MBSs) expected in one-dimensional topological superconductors. The system consists of a quantum dot (QD) and an rf-SQUID with MBSs at the Josephson junction. Rabi oscillations between energy levels formed by MBSs are induced by ac gate voltage controlling the coupling between QD and MBS when the photon energy proportional to the ac frequency matches gap between quantum levels formed by MBSs and QD. As a manifestation of the Rabi oscillation in the whole system involving MBSs, the electron occupation on QD oscillates with time, which can be measured by charge sensing techniques. With Floquet theorem and numerical analysis we reveal that from the resonant driving frequency for coherent Rabi oscillation one can directly map out the FJR cos(πΦ/Φ0) as a signature of MBSs, with Φ the magnetic flux through SQUID and Φ0 = hc/2e the flux quantum. The present scheme is expected to provide a clear evidence for MBSs under intensive searching.

  10. Real weights, bound states and duality orbits

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Riccioni, Fabio; Romano, Luca

    2016-01-01

    We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both 𝒩 = 2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of 𝒩 = 2 and 𝒩 = 4 theories in D = 4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally noncompact and therefore all the weights are real, the stratification is due to the presence of weights of different lengths, while in the other cases it is due to the presence of complex weights.

  11. Lifetimes of Bound Excited States of Si^-

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven M.; Beck, Donald R.

    2003-05-01

    The bound excited states of Si^- lie 6955 cm-1 (^2D_3/2), 6969 cm-1 (M. Scheer et al, Phys. Rev. Lett. 80), 2562 (1998). (^2D_5/2), and 10 977 cm-1 (A. Kasden et al, J. Chem. Phys. 62), 541 (1975). (^2P_1/2) above the ^4S_3/2 ground state. Transitions from each of the bottom three levels to the ^2P_1/2 level are LS allowed (both E2 and M1) and thus relatively uncomplicated calculations, resulting in a lifetime for the ^2P_1/2 level of ˜25 s. The ^4S/^2D/^2P mixing is critical for the ^4S arrow ^2D LS forbidden transitions, and LS purity is greater than 99.5% for such a light (nonrelativistic) system. At the Dirac-Fock level we find the most important factor in the ^4S_3/2 arrow ^2D_3/2 transition is the amount of ^4S mixing in the ^2D_3/2 level. With no such ^4S component in the ^2D_5/2 level, its lifetime is over 100 000 s. Important correlation configurations which act to lower the ^2D_3/2 lifetime include the valence excitations 3p arrow p and 3p^2 arrow p^2 and the core-valence 3s,3p and 2p,3p pair excitations. Our current ^2D_3/2 lifetime in an ongoing series of calculations is ˜200 s.

  12. Matrix algorithms for solving (in)homogeneous bound state equations.

    PubMed

    Blank, M; Krassnigg, A

    2011-07-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe-Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe-Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems.

  13. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  14. Three-body Coulomb bound states

    NASA Astrophysics Data System (ADS)

    Bhatia, A. K.; Drachman, Richard J.

    1987-05-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  15. Three-body Coulomb bound states

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Drachman, Richard J.

    1987-01-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  16. Approach to chaos in ultracold atomic and molecular physics: Statistics of near-threshold bound states for Li+CaH and Li+CaF

    NASA Astrophysics Data System (ADS)

    Frye, Matthew D.; Morita, Masato; Vaillant, Christophe L.; Green, Dermot G.; Hutson, Jeremy M.

    2016-05-01

    We calculate near-threshold bound states and Feshbach resonance positions for atom-rigid-rotor models of the highly anisotropic systems Li+CaH and Li+CaF. We perform statistical analysis on the resonance positions to compare with the predictions of random matrix theory. For Li+CaH with total angular momentum J =0 we find fully chaotic behavior in both the nearest-neighbor spacing distribution and the level number variance. However, for J >0 we find different behavior due to the presence of a nearly conserved quantum number. Li+CaF (J =0 ) also shows apparently reduced levels of chaotic behavior despite its stronger effective coupling. This may indicate the development of another good quantum number relating to a bending motion of the complex. However, continuously varying the rotational constant over a wide range shows unexpected structure in the degree of chaotic behavior, including a dramatic reduction around the rotational constant of CaF. This demonstrates the complexity of the relationship between coupling and chaotic behavior.

  17. Bound states in a hyperbolic asymmetric double-well

    SciTech Connect

    Hartmann, R. R.

    2014-01-15

    We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.

  18. Magnetoelectric spectroscopy of Andreev bound states in Josephson quantum dots

    NASA Astrophysics Data System (ADS)

    Wentzell, Nils; Florens, Serge; Meng, Tobias; Meden, Volker; Andergassen, Sabine

    2016-08-01

    We theoretically investigate the behavior of Andreev levels in a single-orbital interacting quantum dot in contact with superconducting leads, focusing on the effect of electrostatic gating and applied magnetic field, as relevant for recent experimental spectroscopic studies. In order to account reliably for spin-polarization effects in the presence of correlations, we extend here two simple and complementary approaches that are tailored to capture effective Andreev levels: the static functional renormalization group (fRG) and the self-consistent Andreev bound states (SCABS) theory. We provide benchmarks against the exact large-gap solution as well as renormalization group (NRG) calculations and find good quantitative agreement in the range of validity. The large flexibility of the implemented approaches then allows us to analyze a sizable parameter space, allowing us to get a deeper physical understanding into the Zeeman field, electrostatic gate, and flux dependence of Andreev levels in interacting nanostructures.

  19. Dynamics of F/D networks: the role of bound states

    SciTech Connect

    Sakellariadou, Mairi; Stoica, Horace E-mail: f.stoica@imperial.ac.uk

    2008-08-15

    In a field theory model, we study, via numerical experiments, the role of bound states in the evolution of cosmic superstring networks, being composed by p F strings, q D strings and (p,q) bound states. We find robust evidence for scaling of all three components of the network, independently of initial conditions. The novelty of our numerical approach consists of having control over the initial abundance of bound states. This indeed allows us to identify the effect of bound states on the evolution of the network. We also find an additional energy loss mechanism, resulting in a lower overall string network energy, and thus scaling of the network. This new mechanism consists of the formation of bound states with an increasing length.

  20. Bound states of spinning black holes in five dimensions

    NASA Astrophysics Data System (ADS)

    Crichigno, P. Marcos; Porri, Flavio; Vandoren, Stefan

    2017-05-01

    We find and study supergravity BPS bound states of five-dimensional spinning black holes in asymptotically flat spacetime. These solutions follow from multi-string solutions in six-dimensional minimal supergravity and can be uplifted to F-theory or M-theory. We analyze the regularity conditions and work out the example of a bound state of two black holes in detail. The bound state is supported by fluxes through nontrivial topologies exterior to the horizons and KK momentum. Furthermore, we determine the entropy and compare with other macroscopic BPS solutions.

  1. Majorana bound states in magnetic skyrmions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stano, Peter

    2016-10-01

    Magnetic skyrmions are highly mobile nanoscale topological spin textures. We show, both analytically and numerically, that a magnetic skyrmion of an even azimuthal winding number placed in proximity to an s-wave superconductor hosts a zero-energy Majorana bound state in its core, when the exchange coupling between the itinerant electrons and the skyrmion is strong. This Majorana bound state is stabilized by the presence of a spin-orbit interaction. We propose the use of a superconducting tri-junction to realize non-Abelian statistics of such Majorana bound states. http://arxiv.org/abs/1602.00968

  2. Quasi-bound states in strained graphene

    NASA Astrophysics Data System (ADS)

    Bahamon, Dario; Qi, Zenan; Park, Harold; Pareira, Vitor; Campbell, David

    In this work, we explore the possibility of manipulating electronic states in graphene nanostructures by mechanical means. Specifically, we use molecular dynamics and tight-binding models to access the electronic and transport properties of strained graphene nanobubbles and graphene kirigami. We establish that low energy electrons can be confined in the arms of the kirigami and within the nanobubbles; under different load conditions the coupling between confined states and continuous states is modified creating different conductance line-shapes.

  3. Coexistence of bound and virtual-bound states in shallow-core to valence x-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Sen Gupta, Subhra; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Tanaka, A.; Sawatzky, G. A.

    2011-08-01

    With the example of the non-resonant inelastic x-ray scattering (NIXS) at the O45 edges (5d→5f) of the actinides, we develop the theory for shallow-core to valence excitations, where the multiplet spread is larger than the core-hole attraction, such as if the core and valence orbitals have the same principal quantum number. This involves very strong final state configuration interaction (CI), which manifests itself as huge reductions in the Slater-Condon integrals, needed to explain the spectral shapes within a simple renormalized atomic multiplet theory. But more importantly, this results in a cross-over from bound (excitonic) to virtual-bound excited states with increasing energy, within the same core-valance multiplet structure, and in large differences between the dipole and high-order multipole transitions, as observed in NIXS. While the bound states (often higher multipole allowed) can still be modeled using local cluster-like models, the virtual-bound resonances (often dipole-allowed) cannot be interpreted within such local approaches. This is in stark contrast to the more familiar core-valence transitions between different principal quantum number shells, where all the final excited states almost invariably form bound core-hole excitons and can be modeled using local approaches. The possibility of observing giant multipole resonances for systems with high angular momentum ground states is also predicted. The theory is important to obtain ground state information from core-level x-ray spectroscopies of strongly correlated transition metal, rare-earth, and actinide systems.

  4. Hyperon polarizabilities in the bound-state soliton model

    NASA Astrophysics Data System (ADS)

    Gobbi, Carlo; Schat, Carlos L.; Scoccola, Norberto N.

    1996-02-01

    A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound-state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions.

  5. Electron teleportation via Majorana bound states in a mesoscopic superconductor.

    PubMed

    Fu, Liang

    2010-02-05

    Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.

  6. Creedmoor State Hospital, 8045 Winchester Boulevard (site bounded by Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Creedmoor State Hospital, 80-45 Winchester Boulevard (site bounded by Union Turnpike on north, Hillside Avenue on south, Winchester Boulevard on west, & 240th, 241st, & 242nd Streets on east), Queens (subdivision), Queens County, NY

  7. Skyrmion-induced bound states in a p -wave superconductor

    NASA Astrophysics Data System (ADS)

    Pöyhönen, Kim; Westström, Alex; Pershoguba, Sergey S.; Ojanen, Teemu; Balatsky, Alexander V.

    2016-12-01

    In s -wave systems, it has been theoretically shown that a ferromagnetic film hosting a skyrmion can induce a bound state embedded in the opposite-spin continuum. In this work, we consider a case of skyrmion-induced state in a p -wave superconductor. We find that the skyrmion induces a bound state that generally resides within the spectral gap and is isolated from all other states, in contrast to the case of conventional superconductors. To this end, we derive an approximate expression for the T matrix, through which we calculate the spin-polarized local density of states which is observable in scanning tunneling microscopy measurements. We find the unique spectroscopic features of the skyrmion-induced bound state and discuss how our predictions could be employed as experimental probes for p -wave superconducting states.

  8. Fermionic bound states on a one-dimensional lattice

    SciTech Connect

    Nguenang, Jean-Pierre; Flach, Sergej

    2009-07-15

    We study bound states of two fermions with opposite spins in an extended Hubbard chain. The particles interact when located both on a site or on adjacent sites. We find three different types of bound states. Type U is predominantly formed of basis states with both fermions on the same site, while two states of type V originate from both fermions occupying neighboring sites. Type U and one of the states from type V are symmetric with respect to spin flips. The remaining one from type V is antisymmetric. V states disappear by merging with the two-particle continuum below some critical wave number. All bound states become compact for wave numbers at the edge of the Brillouin zone.

  9. The vibrational bound states of isomerising disilyne

    NASA Astrophysics Data System (ADS)

    Law, Mark M.; Perotto, Carlo U.

    2013-08-01

    Full-dimensional variational calculations are reported for the isomerising disilyne molecule, Si2H2. Large-scale calculations using coordinates based on orthogonal satellite vectors permitted the computation of excited vibrational state energies and wavefunctions for all four isomeric forms: dibridged Si(H2)Si, monobridged Si(H)SiH, disilavinylidene H2SiSi, and trans-bent HSiSiH. Energies and wavefunctions have been determined for the lowest 2400 totally symmetric vibrational states; this set includes highly excited states above all three chemically relevant isomerisation barriers - up to about 8300 cm-1 above the (dibridged) ground state. States strongly localised in the dibridged, monobridged, and disilavinylidene regions of the potential energy surface have been found as well as many partially or fully delocalised states. For the trans-bent form, only partially localised states have been identified. Comparisons are made with similar literature calculations on the isovalent acetylene-vinylidene system HCCH/H2CC.

  10. Exact Solutions of Relativistic Bound State Problem for Spinless Bosons

    NASA Astrophysics Data System (ADS)

    Aslanzadeh, M.; Rajabi, A. A.

    2017-01-01

    We investigated in detail the relativistic bound states of spin-zero bosons under the influence of Coulomb-plus-linear potentials with an arbitrary combination of scalar and vector couplings. Through an exact analytical solution of three-dimensional Klein-Gordon equation, closed form expressions were derived for energy eigenvalues and wave functions and some correlations between potential parameters were found. We also presented the relativistic description of bound states and nonrelativistic limit of the problem in some special cases.

  11. Surface bound states and spin currents in noncentrosymmetric superconductors.

    PubMed

    Vorontsov, A B; Vekhter, I; Eschrig, M

    2008-09-19

    We investigate the ground state properties of a noncentrosymmetric superconductor near a surface. We determine the spectrum of Andreev bound states due to surface-induced mixing of bands with opposite spin helicities for a Rashba-type spin-orbit coupling. We find that the order parameter suppression qualitatively changes the bound state spectrum. The spin structure of Andreev states leads to a spin supercurrent along the interface, which is strongly enhanced compared to the normal state spin current. Particle and hole coherence amplitudes show Faraday-like rotations of the spin along quasiparticle trajectories.

  12. Electrical measurement of the linewidth of a quantum well bound state

    NASA Astrophysics Data System (ADS)

    Kobos, Z. A.; Noonan, A.; Reed, M. A.

    2017-03-01

    We investigate electron tunneling spectroscopy in the presence of a bound state within a double quantum barrier, single quantum well structure. We demonstrate a new technique to directly measure the intrinsic linewidth of the bound state within the quantum well from the current-voltage signature of the resonant tunneling phenomena and contrast our results with the standing approach in the literature. We then examine the signal behavior for the influence of device temperature and find support for electron-electron interactions within the well. The measured intrinsic bound-state width, ΓE , in the negative differential conductance regime is 1.11 ± 0.01 meV.

  13. Narrow deeply bound K- and p atomic states

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    2000-01-01

    Examples of recently predicted narrow `deeply bound' K- and p atomic states are shown. The saturation of widths for strong absorptive potentials due to the induced repulsion, and the resulting suppression of atomic wave functions within the nucleus, are demonstrated. Production reactions for K- atomic states using φ(1020) decay, and the (p,p) reaction for p atomic states, are discussed.

  14. NOON states via a quantum walk of bound particles

    NASA Astrophysics Data System (ADS)

    Compagno, Enrico; Banchi, Leonardo; Gross, Christian; Bose, Sougato

    2017-01-01

    Tight-binding lattice models allow the creation of bound composite objects which, in the strong-interacting regime, are protected against dissociation. We show that a local impurity in the lattice potential can generate a coherent split of an incoming bound particle wave packet which consequently produces a NOON state between the endpoints. This is nontrivial because, when finite lattices are involved, edge-localization effects render challenging their use for nonclassical state generation and information transfer. We derive an effective model to describe the propagation of bound particles in a Bose-Hubbard chain. We introduce local impurities in the lattice potential to inhibit localization effects and to split the propagating bound particle, thus enabling the generation of distant NOON states. We analyze how minimal engineering transfer schemes improve the transfer fidelity and we quantify the robustness to typical decoherence effects in optical lattice implementations. Our scheme potentially has an impact on quantum-enhanced atomic interferometry in a lattice.

  15. Effects of QCD bound states on dark matter relic abundance

    NASA Astrophysics Data System (ADS)

    Liew, Seng Pei; Luo, Feng

    2017-02-01

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ˜ 30-100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ˜ 2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.

  16. Bounded state variables and the calculus of variations

    NASA Technical Reports Server (NTRS)

    Hanafy, L. M.

    1972-01-01

    An optimal control problem with bounded state variables is transformed into a Lagrange problem by means of differentiable mappings which take some Euclidean space onto the control and state regions. Whereas all such mappings lead to a Lagrange problem, it is shown that only those which are defined as acceptable pairs of transformations are suitable in the sense that solutions to the transformed Lagrange problem will lead to solutions to the original bounded state problem and vice versa. In particular, an acceptable pair of transformations is exhibited for the case when the control and state regions are right parallelepipeds. Finally, a description of the necessary conditions for the bounded state problem which were obtained by this method is given.

  17. Internal conversion to bound final states in 125Te

    NASA Astrophysics Data System (ADS)

    Harston, M. R.; Carreyre, T.; Chemin, J. F.; Karpeshin, F.; Trzhaskovskaya, M. B.

    2000-08-01

    Theoretical results are presented for rate of decay of the 3/2+ isomeric nuclear state of 125Te by excitation of atomic electrons to bound states in the ions Te 45+ and Te 46+. In these ions the nuclear transition energy lies just below the threshold for emission of a K-shell electron to the continuum with the result that normal K-shell internal conversion is energetically forbidden. However recent experimental results indicate that excitation of K-shell electrons is still significant in these ions. The theoretical results presented here for internal conversion to bound final states are in quantitative agreement with experiment and thereby confirm the contribution of near-resonant electron-nucleus transitions involving a bound final state.

  18. Search for bound-state electron+positron pair decay

    NASA Astrophysics Data System (ADS)

    Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.

    2016-09-01

    The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.

  19. Three-nucleon forces and the trinucleon bound states

    SciTech Connect

    Friar, J.L.; Frois, B.

    1986-01-01

    A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The paper includes a discussion of presently used calculational techniques, experimental evidence for three-nucleon forces in trinucleon ground states, future directions in theoretical research and future experimental research. (DWL)

  20. Vibrational Bound States of the He2Ne+ Cation

    NASA Astrophysics Data System (ADS)

    Zúniga, José; Bastida, Adolfo; Requena, Alberto; Halberstadt, Nadine; Beswick, J. Alberto; Janda, Kenneth C.

    2009-10-01

    The vibrational bound states of the He2Ne+ complex have been determined using a potential energy surface previously published by Seong et al. [J. Chem. Phys. 2004, 120, 7456]. The calculation was performed by sequential diagonalization-truncation techniques in a discrete variable representation using Radau hyperspherical coordinates. There are 52 bound levels. The ground state has an energy of 605.3 cm-1 above the absolute minimum and lies about half way to dissociation. The evaporation energy of one He atom is equal to 866.1 cm-1. Only four levels have energies below the classical energy for dissociation, and all the other 48 states are bound by the zero-point energy of the HeNe+ fragment. The implications of the properties of the eigenvalue spectrum and of the corresponding wave functions on the vibrational relaxation dynamics and infrared spectra of HeNNe+ clusters is discussed.

  1. Bounding the persistency of the nonlocality of W states

    NASA Astrophysics Data System (ADS)

    Diviánszky, Péter; Trencsényi, Réka; Bene, Erika; Vértesi, Tamás

    2016-04-01

    The nonlocal properties of the W states are investigated under particle loss. By removing all but two particles from an N -qubit W state, the resulting two-qubit state is still entangled. Hence, the W state has high persistency of entanglement. We ask an analogous question regarding the persistency of nonlocality [see N. Brunner and T. Vértesi, Phys. Rev. A 86, 042113 (2012), 10.1103/PhysRevA.86.042113]. Namely, we inquire what is the minimal number of particles that must be removed from the W state so that the resulting state becomes local. We bound this value in function of N qubits by considering Bell nonlocality tests with two alternative settings per site. In particular, we find that this value is between 2 N /5 and N /2 for large N . We also develop a framework to establish bounds for more than two settings per site.

  2. Force-producing ADP state of myosin bound to actin.

    PubMed

    Wulf, Sarah F; Ropars, Virginie; Fujita-Becker, Setsuko; Oster, Marco; Hofhaus, Goetz; Trabuco, Leonardo G; Pylypenko, Olena; Sweeney, H Lee; Houdusse, Anne M; Schröder, Rasmus R

    2016-03-29

    Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the β-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a β-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.

  3. Waltzing Volvox/: Orbiting Bound States of Flagellated Multicellular Algae

    NASA Astrophysics Data System (ADS)

    Drescher, K.; Leptos, K.; Pedley, T. J.; Goldstein, R. E.; Ishikawa, T.

    2008-11-01

    The spherical colonial alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size makes it a model organism for the fluid dynamics of multicellularity. Remarkably, when two nearby colonies swim close to a solid surface, they are attracted together and can form a stable bound state in which they continuously waltz around each other. A surface-mediated hydrodynamic attraction between colonies combined with the rotational motion of bottom-heavy Volvox are shown to explain the stability and dynamics of the bound state. This phenomenon is suggested to underlie observed clustering of colonies at surfaces.

  4. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae

    NASA Astrophysics Data System (ADS)

    Drescher, Knut; Leptos, Kyriacos C.; Tuval, Idan; Ishikawa, Takuji; Pedley, Timothy J.; Goldstein, Raymond E.

    2009-04-01

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox colonies swim close to a solid surface, they attract one another and can form stable bound states in which they “waltz” or “minuet” around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability, and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces.

  5. Dancing volvox: hydrodynamic bound states of swimming algae.

    PubMed

    Drescher, Knut; Leptos, Kyriacos C; Tuval, Idan; Ishikawa, Takuji; Pedley, Timothy J; Goldstein, Raymond E

    2009-04-24

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox colonies swim close to a solid surface, they attract one another and can form stable bound states in which they "waltz" or "minuet" around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability, and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces.

  6. Probing Majorana and Andreev bound states with waiting times

    NASA Astrophysics Data System (ADS)

    Chevallier, D.; Albert, M.; Devillard, P.

    2016-10-01

    We consider a biased normal-superconducting junction with various types of superconductivity. Depending on the class of superconductivity, a Majorana bound state may appear at the interface. We show that this has important consequences on the statistical distribution of time delays between detection of consecutive electrons flowing out of such an interface, namely the waiting time distribution. Therefore, this quantity is shown to be a clear fingerprint of Majorana bound-state physics and may be considered as an experimental signature of its presence.

  7. First direct proof of internal conversion between bound states

    NASA Astrophysics Data System (ADS)

    Carreyre, T.; Harston, M. R.; Aiche, M.; Bourgine, F.; Chemin, J. F.; Claverie, G.; Goudour, J. P.; Scheurer, J. N.; Attallah, F.; Bogaert, G.; Kiener, J.; Lefebvre, A.; Durell, J.; Grandin, J. P.; Meyerhof, W. E.; Phillips, W.

    2000-08-01

    We present direct evidence for the process of internal conversion between bound atomic states (BIC) when the binding energy of the converted electron becomes larger than the nuclear transition energy. This process has been proposed as an explanation of the measured, unexpectedly short lifetime of the first excited state of 125Te with charge state larger than 44+. We have detected the Kα x rays emitted in flight which follow the filling of the K-shell vacancy created by the bound internal conversion process, together with γ rays from Te ions in charge states ranging between 44+ and 48+. For Te45+ and Te46+, the comparison of the x-ray to γ-ray ratios with the theoretical calculations of the internal conversion coefficients including decay to bound atomic states, assuming Te ions in their ground electronic state, show poor agreement. The agreement becomes good if account is taken of BIC decay of excited initial states with different occupancies of the 2p1/2 and 2p3/2 subshells. In this situation, the half-life becomes sensitive to the precise initial state and simple specification of the charge state alone is no longer appropriate.

  8. Approaching Tsirelson's Bound in a Photon Pair Experiment

    NASA Astrophysics Data System (ADS)

    Poh, Hou Shun; Joshi, Siddarth K.; Cerè, Alessandro; Cabello, Adán; Kurtsiefer, Christian

    2015-10-01

    We present an experimental test of the Clauser-Horne-Shimony-Holt Bell inequality on photon pairs in a maximally entangled state of polarization in which a value S =2.82759 ±0.00051 is observed. This value comes close to the Tsirelson bound of |S |≤2 √{2 } , with S -2 √{2 }=0.00084 ±0.00051 . It also violates the bound |S |≤2.82537 introduced by Grinbaum by 4.3 standard deviations. This violation allows us to exclude that quantum mechanics is only an effective description of a more fundamental theory.

  9. Directional detection of dark matter in universal bound states

    SciTech Connect

    Laha, Ranjan

    2015-10-06

    It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.

  10. Variational study of bound states in the Higgs model

    NASA Astrophysics Data System (ADS)

    Siringo, Fabio

    2000-12-01

    The possible existence of Higgs-boson-Higgs-boson bound states in the Higgs sector of the standard model is explored using the \\|hh>+\\|hhh> variational ansatz of Di Leo and Darewych. The resulting integral equations can be decoupled exactly, yielding a one-dimensional integral equation, solved numerically. We thereby avoid the extra approximations employed by Di Leo and Darewych, and we find a qualitatively different mass renormalization. Within the conventional scenario, where a not-too-large cutoff is invoked to avoid ``triviality,'' we find, as usual, an upper bound on the Higgs boson mass. Bound-state solutions are only found in the very strong coupling regime, but at the same time a relatively small physical mass is required as a consequence of renormalization.

  11. A search for unexpected bound states in 15B

    NASA Astrophysics Data System (ADS)

    Hoffman, Calem R.

    2014-09-01

    Bound states in 15B are to be populated through the one proton removal reaction from a 16C beam produced at the RCNP EN Course through 18O fragmentation. γ-decays from these states will be identified by an array of Compton-suppressed HPGe Clover detectors (CAGRA). The goals consist of i) identifying any previously unobserved and unexpected bound states in 15B and ii) to assign total angular momenta to known excited states for the first time. At present only two bound states have been observed in 15B, neither with firm spin or parity assignments. The present work to be discussed is aimed at determining whether an excited 3 /2- state, a state with identical spin-parity as the ground state, resides below the neutron separation energy in 15B. Such an excited 3 /2- state is not predicted to appear below the 15B Sn by shell-model calculations using various p- sd interactions. However, a robust systematic, probably related to the s-wave trends found in the single-neutron states in this region, has been observed for neutron-rich N=10 nuclei and it suggests that the state may appear lower in excitation energy than expected. Providing some measure of validation for the N=10 prediction is a similar trend noticed in the energy differences between ground (p)2 neutron states and excited (sd)2 neutron states in the N=8 neutron-rich isotones. In addition to a search for this unexpected state, additional spectroscopic information on 15B will better aid in the understanding of the N=10 isotones when transitioning from 16C into sparsely probed 14Be. Details of the experimental procedures and motivation will be presented and discussed. Bound states in 15B are to be populated through the one proton removal reaction from a 16C beam produced at the RCNP EN Course through 18O fragmentation. γ-decays from these states will be identified by an array of Compton-suppressed HPGe Clover detectors (CAGRA). The goals consist of i) identifying any previously unobserved and unexpected bound

  12. Soliton-plasmon resonances as Maxwell nonlinear bound states.

    PubMed

    Milián, C; Ceballos-Herrera, D E; Skryabin, D V; Ferrando, A

    2012-10-15

    We demonstrate that soliplasmons (soliton-plasmon bound states) appear naturally as eigenmodes of nonlinear Maxwell's equations for a metal/Kerr interface. Conservative stability analysis is performed by means of finite element numerical modeling of the time-independent nonlinear Maxwell equations. Dynamical features are in agreement with the presented nonlinear oscillator model.

  13. Quantization of closed mini-superspace models as bound states

    NASA Astrophysics Data System (ADS)

    Kung, J. H.

    1995-01-01

    The Wheeler-DeWitt equation is applied to closedk>0 Friedmann-Robertson-Walker metric with various combination of cosmological constant and matter (e.g., radiation or pressureless gas). It is shown that if the universe ends in the matter dominated era (e.g., radiation or pressureless gas) with zero cosmological constant, then the resulting Wheeler-DeWitt equation describes a bound state problem. As solutions of a nondegenerate bound state system, the eigen-wave functions are real (Hartle-Hawking). Furthermore, as a bound state problem, there exists a quantization condition that relates the curvature of the three space with the various energy densities of the universe. If we assume that our universe is closed, then the quantum number of our universe isN˜(Gk)-1˜10122. The largeness of this quantum number is naturally explained by an early inflationary phase which resulted in a flat universe we observe today. It is also shown that if there is a cosmological constant Λ>0 in our universe that persists for all time, then the resulting Wheeler-DeWitt equation describes a non-bound state system, regardless of the magnitude of the cosmological constant. As a consequence, the wave functions are in general complex (Vilenkin).

  14. State of Washington 1978 College Bound Seniors: Characteristics and Plans.

    ERIC Educational Resources Information Center

    Noeth, Richard J.

    Information describing the characteristics and plans of 1978 college-bound seniors in the state of Washington is presented. This information is routinely collected through administration of the Washington Pre-College Testing Program (WPC) test battery and is presented in tabular form with highlights cited in the text. Focus is on high school…

  15. A Framework for Bounding Nonlocality of State Discrimination

    NASA Astrophysics Data System (ADS)

    Childs, Andrew M.; Leung, Debbie; Mančinska, Laura; Ozols, Maris

    2013-11-01

    We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper Quantum nonlocality without entanglement (Bennett et al., Phys Rev A 59:1070-1091, 1999), we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the “rotated” domino states, resolving a long-standing open question (Bennett et al., Phys Rev A 59:1070-1091, 1999).

  16. Density of bound states in a vortex core

    NASA Astrophysics Data System (ADS)

    Klein, U.

    1990-03-01

    The local density of states as derived from Kramer and Pesch's theory of bound states in a vortex core is compared with recent scanning-tunneling experiments. Effects of impurities and finite flux-line distance are approximately taken into account. In the isolated vortex regime one finds qualitative, but not quantitative, agreement with all experimental data reported so far. The results depend sensitively on impurity content. A nonmonotonic behavior of the density of states as a function of the distance from the flux-line center is predicted. The unexpected properties of the density of states are discussed in terms of the direction-dependent single-particle excitations bound to the core.

  17. New approaches for bound and scattering states

    SciTech Connect

    Friar, J.L.

    1991-01-01

    We present in this paper a rather personal view (i.e., very incomplete and somewhat biased) of the development of the primary methods that have been used for solving the few-nucleon Schroedinger equation, all of which have achieved a significant measure of success when applied to realistic potentials, and which may be promising in the future. Much other work has contributed to this success and must necessarily go unmentioned. The new developments described in this discussion session by the various speakers have some connection with one or more of these methods. One thing is virtually certain: the future holds surprises for us. It is not at all clear that the methods of choice today will be those at the turn of the century. Our future lies in new and improved methods. 33 refs.

  18. Andreev bound states in topological superconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanaka, Yukio; Lu, Bo; Yada, Keiji; Sato, Masatoshi

    2016-10-01

    Andreev bound states in topological superconductors Yukio Tanaka1, Lu Bo1,, K. Yada1, A. Yamakage1, M. Sato2 1Department of Applied Physics, Nagoya University 2Yukawa Institute, Kyoto University e-mail: ytanaka@nuap.nagoya-u.ac.jp It is known that Andreev bound state is an important ingredient to identify unconventional superconductors [1]. Up to now, there have been several types of Andreev bound states stemming from their topological origins [2-3]. It can be classified into i)dispersionless flat band type realized in cuprate, ii)linear dispersion type realized in chiral superconductor like Sr2RuO4, iii)helical dispersion type realized in non-centrosymmetric superconductor and iv)cone type in the surface state on B-phase of superfluid 3He [3]. It has been noted that certain surfaces of Weyl semimetals have bound states forming open Fermi arcs, which are never seen in typical metallic states. We show that the Fermi arcs enable them to support an even more exotic surface state with crossed flat bands in the superconducting state. We clarify the topological origin of the crossed dispersionless flat bands and the relevant symmetry that stabilizes the cross point. Our symmetry analysis are applicable to known candidate materials of time-reversal breaking Weyl semimetals[4]. [1]S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63 1641 (2000). [2]Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81 011013 (2012). [3] M. Sato, et al., Phys. Rev. Lett. 103 (2009) 020401. [4] B. Lu, K. Yada, M. Sato, and Y. Tanaka, Phys. Rev. Lett. 114 09

  19. Bound states of PT-symmetric separable potentials

    SciTech Connect

    Bender, Carl M.; Jones, Hugh F.

    2011-09-15

    All of the PT-symmetric potentials that have been studied so far have been local. In this paper, nonlocal PT-symmetric separable potentials of the form V(x,y)=i{epsilon}[U(x)U(y)-U(-x)U(-y)], where U(x) is real, are examined. Two specific models are examined. In each case, it is shown that there is a parametric region of the coupling strength {epsilon} for which the PT symmetry of the Hamiltonian is unbroken and the bound-state energies are real. The critical values of {epsilon} that bound this region are calculated.

  20. Rotational and rotationless states of weakly bound molecules

    SciTech Connect

    Lemeshko, Mikhail; Friedrich, Bretislav

    2009-05-15

    By making use of the quantization rule of Raab and Friedrich [Phys. Rev. A 78, 022707 (2008)], we derive simple and accurate formulae for the number of rotational states supported by a weakly bound vibrational level of a diatomic molecule and the rotational constants of any such levels up to the threshold, and provide a criterion for determining whether a given weakly bound vibrational level is rotationless. The results depend solely on the long-range part of the molecular potential and are applicable to halo molecules.

  1. Baryons as relativistic three-quark bound states

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.

    2016-11-01

    We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.

  2. High-performance bound-to-bound state QWIP detectors. [QWIP (quantum well infrared photoconductive detector)

    SciTech Connect

    Braddock, W.D. IV.

    1992-01-01

    The details of the design, growth, fabrication, and modeling of bound-to-bound state III-V quantum well infrared photoconductive (QWIP) detectors are described in this thesis. High performance is attainable in this class of QWIP for the first time. The steps necessary to realize the improved performance in this class of QWIP detector are discussed in detail. The materials growth of a detector with a relatively wide and high barrier is described. The material characterization issues important for high performance operation of these detectors are discussed. The dark current and photocurrent are examined from an experimental and theoretical point of view. The performance of these detectors is considered when the figures of merit of QWIP detectors are discussed. Electron scattering off of impurities in the wells is shown to affect both the dark current and the photocurrent. This scattering does not degrade the detectivity of these devices. A strong enhancement in the temperature dependence of the photocurrent is observed experimentally. The source of this enhancement is originates from electron scattering off of impurities in the quantum wells in bound-to-bound state QWIP detectors. A comprehensive model which includes the effects of this scattering is presented, and is shown to predict the voltage and temperature dependence of the dark current and the photocurrent. The consideration of the device performance of these detectors follows from the analysis of the dark current and photocurrent. The effect of elastic impurity scattering on the ultimate signal to noise ratio in this detector is of interest. The dark current and the noise is increased by this scattering. The enhancement in the signal compensates for noise. Record dark current limited detectivities at 50[degrees]K are observed. An adequate detectivity for many applications are attainable at temperatures as high as 90[degrees]K where the D[sub DL] exceed 1.8 [times] 10[sup 9] cm[radical]Hz/W.

  3. The uncertainty principle and a semiclassical nonlinear differential equation formulation for bound states

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Bhattacharyya, K.

    2000-10-01

    The kinship of a simple variational scheme involving the uncertainty product with a prevalent semiclassical nonlinear differential equation approach for finding energies of stationary states is established. This leads to a transparent physical interpretation of the embedded parameters in the latter approach, providing additionally a lower bound to the integration constant. The domain of applicability of this strategy is also extended to encompass neighbouring states. Other advantages of the simpler alternative route are stressed. Pilot calculations demonstrate nicely the efficacy of the endeavour.

  4. Scattering and bound states of fermions in a mixed vector–scalar smooth step potential

    SciTech Connect

    Castilho, W.M. Castro, A.S. de

    2014-07-15

    The scattering of a fermion in the background of a smooth step potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling. Charge-conjugation and chiral-conjugation transformations are discussed and it is shown that a finite set of intrinsically relativistic bound-state solutions appears as poles of the transmission amplitude. It is also shown that those bound solutions disappear asymptotically as one approaches the conditions for the realization of the so-called spin and pseudospin symmetries in a four-dimensional space–time. - Highlights: • Scattering and bound states of fermions in a kink-like potential. • No pair production despite the high localization. • No bounded solution under exact spin and pseudospin symmetries.

  5. Bound states of He atoms on Ag(110)

    NASA Astrophysics Data System (ADS)

    King, J. A.; Brown, J. S.

    1996-07-01

    The spectrum of bound states of He atoms adsorbed on Ag(110) is calculated, using an interaction potential based on effective medium theory EMT for the repulsive term A exp(-bz) and the Zaremba-Kohn form for the attractive van der Waals dispersion term. The electronic charge density of the host in the selvedge region is modeled by superimposing atomic-charge densities using the Herman-Skillman tables and the prefactor A of the repulsive term is fitted to the exact ground state energy obtained from elastic He scattering data. Comparisons are made with the bound-state spectrum extracted from the measured resonances in the He scattering data and with the results of several other models used in the current literature. An assessment of the role played by higher-order dispersion contributions to the attractive potential is also included.

  6. Bound States in the Continuum in double layer structures

    PubMed Central

    Li, LiangSheng; Yin, Hongcheng

    2016-01-01

    We have theoretically investigated the reflectivity spectrums of single- and double-layer photonic crystal slabs and the dielectric multilayer stack. It is shown that light can be perfectly confined in a single-layer photonic crystal slab at a given incident angle by changing the thickness, permittivity or hole radius of the structure. With a tunable double-layer photonic crystal slab, we demonstrate that the occurrence of tunable bound states in the continuum is dependent on the spacing between two slabs. Moreover, by analytically investigating the Drude lossless multilayer stack model, the spacing dependence of bound states in the continuum is characterized as the phase matching condition that illuminates these states can occur at any nonzero incident angles by adjusting the spacing. PMID:27245435

  7. Detecting Majorana nonlocality using strongly coupled Majorana bound states

    NASA Astrophysics Data System (ADS)

    Rubbert, S.; Akhmerov, A. R.

    2016-09-01

    Majorana bound states (MBS) differ from the regular zero energy Andreev bound states in their nonlocal properties, since two MBS form a single fermion. We design strategies for detection of this nonlocality by using the phenomenon of Coulomb-mediated Majorana coupling in a setting which still retains falsifiability and does not require locally separated MBS. Focusing on the implementation of MBS based on the quantum spin Hall effect, we also design a way to probe Majoranas without the need to open a magnetic gap in the helical edge states. In the setup that we analyze, long range MBS coupling manifests in the h /e magnetic flux periodicity of tunneling conductance and supercurrent. While h /e is also the periodicity of Aharonov-Bohm effect and persistent current, we show how to ensure its Majorana origin by verifying that switching off the charging energy restores h /2 e periodicity conventional for superconducting systems.

  8. Shooting quasiparticles from Andreev bound states in a superconducting constriction

    SciTech Connect

    Riwar, R.-P.; Houzet, M.; Meyer, J. S.; Nazarov, Y. V.

    2014-12-15

    A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.

  9. Schwinger functions and light-quark bound states.

    SciTech Connect

    Bhagwat, M. S.; Hoell, A.; Krassnigg, A.; Roberts, C. D.; Wright, S. V.; Physics; Univ. Rostock; Univ. Graz

    2007-06-01

    We examine the applicability and viability of methods to obtain knowledge about bound states from information provided solely in Euclidean space. Rudimentary methods can be adequate if one only requires information about the ground and first excited state and assumptions made about analytic properties are valid. However, to obtain information from Schwinger functions about higher mass states, something more sophisticated is necessary. A method based on the correlator matrix can be dependable when operators are carefully tuned and errors are small. This method is nevertheless not competitive when an unambiguous analytic continuation of even a single Schwinger function to complex momenta is available.

  10. The role of interaction vertices in bound state calculations

    SciTech Connect

    Cetin Savkli; Franz Gross; John Tjon

    2001-02-01

    In recent studies of the one and two-body problem for scalar interactions it was shown that crossed ladder and ''crossed rainbow'' (for the one-body case) exchanges play a crucial role in nonperturbative dynamics. In this letter we use exact analytical and numerical results to show that the contribution of vertex dressings to the two-body bound state mass for scalar QED are canceled by the wavefunction normalization. This proves, for the first time, that the mass of a two-body bound state given by the full theory can be obtained by summing only ladder and crossed ladder diagrams using a bare vertex and a constant dressed mass. We also discuss the implications of the remarkable cancellation between rainbow and crossed rainbow diagrams that is a feature of one-body calculations.

  11. Bound state equation for the Nakanishi weight function

    NASA Astrophysics Data System (ADS)

    Carbonell, J.; Frederico, T.; Karmanov, V. A.

    2017-06-01

    The bound state Bethe-Salpeter amplitude was expressed by Nakanishi using a two-dimensional integral representation, in terms of a smooth weight function g, which carries the detailed dynamical information. A similar, but one-dimensional, integral representation can be obtained for the Light-Front wave function in terms of the same weight function g. By using the generalized Stieltjes transform, we first obtain g in terms of the Light-Front wave function in the complex plane of its arguments. Next, a new integral equation for the Nakanishi weight function g is derived for a bound state case. It has the standard form g = N g, where N is a two-dimensional integral operator. We give the prescription for obtaining the kernel N starting with the kernel K of the Bethe-Salpeter equation. The derivation is valid for any kernel given by an irreducible Feynman amplitude.

  12. Understanding the nucleon as a Borromean bound-state

    DOE PAGES

    Segovia, Jorge; Roberts, Craig D.; Schmidt, Sebastian M.

    2015-08-20

    Analyses of the three valence-quark bound-state problem in relativistic quantum field theory predict that the nucleon may be understood primarily as a Borromean bound-state, in which binding arises mainly from two separate effects. One originates in non-Abelian facets of QCD that are expressed in the strong running coupling and generate confined but strongly-correlated colourantitriplet diquark clusters in both the scalar-isoscalar and pseudovector-isotriplet channels. That attraction is magnified by quark exchange associated with diquark breakup and reformation. Diquark clustering is driven by the same mechanism which dynamically breaks chiral symmetry in the Standard Model. It has numerous observable consequences, the completemore » elucidation of which requires a framework that also simultaneously expresses the running of the coupling and masses in the strong interaction. Moreover, planned experiments are capable of validating this picture.« less

  13. Bound-state signatures in quenched Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Corson, John P.; Bohn, John L.

    2015-01-01

    We investigate the dynamics of a homogenous Bose-Einstein condensate (BEC) following a sudden quench of the scattering length. Our focus is the time evolution of short-range correlations via the dynamical contact. We compute the dynamics using a combination of two- and many-body models and we propose an intuitive connection between them that unifies their short-time, short-range predictions. Our two-body models are exactly solvable and, when properly calibrated, lead to analytic formulas for the contact dynamics. Immediately after the quench, the contact exhibits strong oscillations at the frequency of the two-body bound state. These oscillations are large in amplitude and their time average is typically much larger than the Bogoliubov prediction. The condensate fraction shows similar oscillations, whose amplitude we are able to estimate. These results demonstrate the importance of including the bound state in descriptions of diabatically quenched BEC experiments.

  14. Positron-HF collisions: Prediction of a weakly bound state

    SciTech Connect

    Danby, G.; Tennyson, J.

    1988-12-12

    Ab initio molecular R-matrix calculations are presented for collisions of low-energy positrons with the hydrogen fluoride molecule as a function of HF internuclear separation. Calculations presented are for ..sigma.. total symmetry with and without polarization effects. These calculations mirror recent electron-HF scattering calculations by Morgan and Burke. Strong evidence is obtained for the presence of a bound state of the e/sup +/HF system. The experimental consequences of this result are discussed.

  15. R-matrix calculations for few-quark bound states

    NASA Astrophysics Data System (ADS)

    Shalchi, M. A.; Hadizadeh, M. R.

    2016-10-01

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data.

  16. Detecting positron-atom bound states through resonant annihilation.

    PubMed

    Dzuba, V A; Flambaum, V V; Gribakin, G F

    2010-11-12

    A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition-metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.

  17. K¯ nuclear bound states in a dynamical model

    NASA Astrophysics Data System (ADS)

    Mareš, J.; Friedman, E.; Gal, A.

    2006-05-01

    A comprehensive data base of K-atom level shifts and widths is re-analyzed in order to study the density dependence of the K¯-nuclear optical potential. Significant departure from a tρ form is found only for ρ(r)/ρ ≲ 0.2 and extrapolation to nuclear-matter density ρ yields an attractive potential, about 170 MeV deep. Partial restoration of chiral symmetry compatible with pionic atoms and low-energy pion-nuclear data plays no role at the relevant low-density regime, but this effect is not ruled out at densities of order ρ and beyond. K¯-nuclear bound states are generated across the periodic table self consistently, using a relativistic mean-field model Lagrangian which couples the K¯ to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for K¯ absorption from these bound states is taken into account by adding an energy-dependent imaginary term which underlies the corresponding K¯-nuclear level widths, with a strength required by fits to the atomic data. Substantial polarization of the core nucleus is found for light nuclei, and the binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. A wide range of binding energies is spanned by varying the K¯ couplings to the meson fields. Our calculations provide a lower limit of Γ=50±10 MeV on the width of nuclear bound states for K¯-binding energy in the range B˜100-200 MeV. Comments are made on the interpretation of the FINUDA experiment at DAΦNE which claimed evidence for deeply bound Kpp states in light nuclei.

  18. Rapid thermal co-annihilation through bound states in QCD

    NASA Astrophysics Data System (ADS)

    Kim, Seyong; Laine, M.

    2016-07-01

    The co-annihilation rate of heavy particles close to thermal equilibrium, which plays a role in many classic dark matter scenarios, can be "simulated" in QCD by considering the pair annihilation rate of a heavy quark and antiquark at a temperature of a few hundred MeV. We show that the so-called Sommerfeld factors, parameterizing the rate, can be defined and measured non-perturbatively within the NRQCD framework. Lattice measurements indicate a modest suppression in the octet channel, in reasonable agreement with perturbation theory, and a large enhancement in the singlet channel, much above the perturbative prediction. The additional enhancement is suggested to originate from bound state formation and subsequent decay. Making use of a Green's function based method to incorporate thermal corrections in perturbative co-annihilation rate computations, we show that qualitative agreement with lattice data can be found once thermally broadened bound states are accounted for. We suggest that our formalism may also be applicable to specific dark matter models which have complicated bound state structures.

  19. Two-body bound states & the Bethe-Salpeter equation

    SciTech Connect

    Pichowsky, M.; Kennedy, M.; Strickland, M.

    1995-01-18

    The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.

  20. Positron-molecule bound states and positive ion production

    NASA Technical Reports Server (NTRS)

    Leventhal, M.; Passner, A.; Surko, C. M.

    1990-01-01

    The interaction was studied of low energy positrons with large molecules such as alkanes. These data provide evidencce for the existence of long lived resonances and bound states of positrons with neutral molecules. The formation process and the nature of these resonances are discussed. The positive ions produced when a positron annihilates with an electron in one of these resonances were observed and this positive ion formation process is discussed. A review is presented of the current state of the understanding of these positron-molecule resonances and the resulting positive ion formation. A number of outstanding issues in this area is also discussed.

  1. Encrypting Majorana fermion qubits as bound states in the continuum

    NASA Astrophysics Data System (ADS)

    Guessi, L. H.; Dessotti, F. A.; Marques, Y.; Ricco, L. S.; Pereira, G. M.; Menegasso, P.; de Souza, M.; Seridonio, A. C.

    2017-07-01

    We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit recorded over a single QD, which is detectable by means of conductance measurements due to the asymmetrical MF-qubit leaked state into the QDs; (ii) an encrypted qubit recorded in both QDs when the leakage is symmetrical. In such a regime, we have a cryptographylike manifestation, since the MF qubit becomes bound states in the continuum, which is not detectable in conductance experiments.

  2. Andreev spectra and subgap bound states in multiband superconductors.

    PubMed

    Golubov, A A; Brinkman, A; Tanaka, Yukio; Mazin, I I; Dolgov, O V

    2009-08-14

    A theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended s(+/-)-wave order parameter symmetry, as possibly realized in the recently discovered ferropnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection in the case of a highly transparent N/S interface and to a current deficit in the tunneling regime. Second, surface bound states may appear, both at zero and at nonzero energies.

  3. Quasiclassical asymptotics and coherent states for bounded discrete spectra

    SciTech Connect

    Gorska, K.; Penson, K. A.; Horzela, A.; Blasiak, P.; Duchamp, G. H. E.; Solomon, A. I.

    2010-12-15

    We consider discrete spectra of bound states for nonrelativistic motion in attractive potentials V{sub {sigma}}(x)=-|V{sub 0}| |x|{sup -}{sigma}, 0<{sigma}{<=}2. For these potentials the quasiclassical approximation for n{yields}{infinity} predicts quantized energy levels e{sub {sigma}}(n) of a bounded spectrum varying as e{sub {sigma}}(n){approx}-n{sup -}2{sigma}/(2-{sigma}). We construct collective quantum states using the set of wavefunctions of the discrete spectrum assuming this asymptotic behavior. We give examples of states that are normalizable and satisfy the resolution of unity, using explicit positive functions. These are coherent states in the sense of Klauder and their completeness is achieved via exact solutions of Hausdorff moment problems, obtained by combining Laplace and Mellin transform methods. For {sigma} in the range 0 < {sigma}{<=} 2/3 we present exact implementations of such states for the parametrization {sigma}= 2(k-l)/(3k-l) with k and l positive integers satisfying k>l.

  4. Accurate calculations of bound rovibrational states for argon trimer

    NASA Astrophysics Data System (ADS)

    Brandon, Drew; Poirier, Bill

    2014-07-01

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar3), using the ScalIT suite of parallel codes. The Ar3 rovibrational energy levels are computed to a very high level of accuracy (10-3 cm-1 or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar3 are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar3 is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar3 may be found in the current literature—and only for the lowest-lying rotational excitations.

  5. Accurate calculations of bound rovibrational states for argon trimer

    SciTech Connect

    Brandon, Drew; Poirier, Bill

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  6. Directional detection of dark matter in universal bound states

    DOE PAGES

    Laha, Ranjan

    2015-10-06

    It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angularmore » recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.« less

  7. K- and p¯ deeply bound atomic states

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    1999-12-01

    The strongly absorptive optical potentials Vopt which have been deduced from the strong-interaction level shifts and widths in X-ray spectra of K- and p¯ atoms produce effective repulsion leading to substantial suppression of the atomic wave functions within the nucleus. The width of atomic levels then saturates as function of the strength of Im Vopt. We find that `deeply bound' atomic states, which are inaccessible in the atomic cascade process, are generally narrow, due to this mechanism, over the entire periodic table and should be reasonably well resolved. These predictions are insensitive to Vopt, provided it was fitted to the observed X-ray spectra. In contrast, the nuclear states bound by Vopt are very broad and their spectrum depends sensitively on details of Vopt. We discuss production reactions for K- atomic states using slow K- mesons from the decay of the φ(1020) vector meson, and the ( p¯,p ) reaction for p¯ atomic states. Rough cross section estimates are given.

  8. Bounds on Epistemic Interpretations of the Quantum State from Contextuality

    NASA Astrophysics Data System (ADS)

    Leifer, Matthew

    2014-03-01

    The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (representing knowledge, information, or belief) or an ontic state (a direct reflection of reality)? In the ontological models framework, quantum states correspond to probability measures over more fundamental states of reality. The quantum state is then ontic if every pair of pure states corresponds to a pair of measures that do not overlap, and is otherwise epistemic. Recently, several authors have derived theorems that aim to show that the quantum state must be ontic in this framework. Each of these theorems involve auxiliary assumptions of varying degrees of plausibility. Without such assumptions, it has been shown that models exist in which the quantum state is epistemic. However, the definition of an epistemic quantum state used in these works is extremely permissive. Only two quantum states need correspond to overlapping measures and furthermore the amount of overlap may be arbitrarily small. In order to provide an explanation of quantum phenomena such as no-cloning and the indistinguishability of pure states, the amount of overlap should be comparable to the inner product of the quantum states. In this talk, I show, without making auxiliary assumptions, that the ratio of overlap to inner product must go to zero exponentially in Hilbert space dimension for some families of states. This is done by connecting the overlap to Kochen-Specker noncontextuality, from which we infer that any contextuality inequality gives a bound on the ratio of overlap to inner product.

  9. Autodetachment spectroscopy of the aluminum oxide anion dipole bound state

    SciTech Connect

    Mascaritolo, Kyle J.; Gardner, Adrian M.; Heaven, Michael C.

    2015-09-21

    The {sup 1}Σ{sup +}←X{sup 1}Σ{sup +} ground state to dipole bound state (DBS) electronic transition of AlO{sup −} has been studied by means of autodetachment spectroscopy. Vibrational and rotational molecular constants for AlO{sup −} have been determined for both the ground state (υ″ = 0, 1) and the excited DBS (υ′ = 0, 1). These data provide an improved determination of the electron affinity for AlO (2.6110(7) eV) that is consistent with an earlier measurement. The electron binding energy of the DBS was found to be 52 ± 6 cm{sup −1}. Experimental results are compared with the predictions from high level ab initio calculations.

  10. Configuration space Faddeev formalism: Λ + n + n bound state search

    NASA Astrophysics Data System (ADS)

    Suslov, Vladimir; Filikhin, Igor; Vlahovic, Branislav

    2015-04-01

    The HypHI Collaboration has recently reported the evidence for bound state of Λ + n + n system (Phys. Rev. C 88, 041001(R) (2013)). However, the theoretical analysis did not find Λ3n bound state (see, for instance, Phys. Lett. B 736, 93 (2014)). In the present work we will describe our attempt to construct a phenomenological three-body ΛNN force with the spin-isospin dependence that is attractive in the channel T=1, S=1/2. This dependence was tested to reproduce the value of ground state energy for Λ3H hypernuclei. The formalism of the configuration-space Faddeev equations is applied for Λ + n + n and Λ + n + p systems. As Λ + n interaction the s-wave potential simulating model NSC97f is used. This potential reproduces well the hyperon binding energy for Λ3H nuclei (J. Phys. G: 31, 389 (2005)). The details of the model and obtained results will be presented. This work is supported by the NSF (HRD-1345219) and NASA (NNX09AV07A).

  11. Extrapolating bound state data of anions into the metastable domain

    NASA Astrophysics Data System (ADS)

    Feuerbacher, Sven; Sommerfeld, Thomas; Cederbaum, Lorenz S.

    2004-10-01

    Computing energies of electronically metastable resonance states is still a great challenge. Both scattering techniques and quantum chemistry based L2 methods are very time consuming. Here we investigate two more economical extrapolation methods. Extrapolating bound states energies into the metastable region using increased nuclear charges has been suggested almost 20 years ago. We critically evaluate this attractive technique employing our complex absorbing potential/Green's function method that allows us to follow a bound state into the continuum. Using the 2Πg resonance of N2- and the 2Πu resonance of CO2- as examples, we found that the extrapolation works suprisingly well. The second extrapolation method involves increasing of bond lengths until the sought resonance becomes stable. The keystone is to extrapolate the attachment energy and not the total energy of the system. This method has the great advantage that the whole potential energy curve is obtained with quite good accuracy by the extrapolation. Limitations of the two techniques are discussed.

  12. Exotic hadron bound state production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Li, Shi-Yuan; Liu, Yan-Rui; Meng, Lu; Si, Zong-Guo; Zhang, Xiao-Feng

    2017-08-01

    The non-relativistic wave function framework is applied to study the production and decay of exotic hadrons, which can be effectively described as bound states of other hadrons. Employing the factorized formulation, with the help of event generators, we investigate the production of exotic hadrons in multiproduction processes at high energy hadron colliders. This study provides crucial information for the measurements of the relevant exotic hadrons. Supported by Natural Science Foundation of Shandong Province (ZR2014AM016, ZR2016AM16) and National Natural Science Foundation of China (11275115, 11325525, 11635009)

  13. Observation of Excited Quadrupole-Bound States in Cold Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-07-01

    We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.

  14. Influence of low-energy scattering on loosely bound states

    SciTech Connect

    Sparenberg, Jean-Marc; Capel, Pierre; Baye, Daniel

    2010-01-15

    Compact algebraic equations are derived that connect the binding energy and the asymptotic normalization constant (ANC) of a subthreshold bound state with the effective-range expansion of the corresponding partial wave. These relations are established for positively charged and neutral particles, using the analytic continuation of the scattering (S) matrix in the complex wave-number plane. Their accuracy is checked on simple local potential models for the {sup 16}O+n, {sup 16}O+p, and {sup 12}C+alpha nuclear systems, with exotic nuclei and nuclear astrophysics applications in mind.

  15. Scattering and bound states in two-dimensional anisotropic potentials

    SciTech Connect

    Rosenkranz, Matthias; Bao Weizhu

    2011-11-15

    We propose a framework for calculating scattering and bound-state properties in anisotropic two-dimensional potentials. Using our method, we derive systematic approximations of partial wave phase shifts and binding energies. Moreover, the method is suitable for efficient numerical computations. We calculate the s-wave phase shift and binding energy of polar molecules in two layers polarized by an external field along an arbitrary direction. We find that scattering depends strongly on their polarization direction and that absolute interlayer binding energies are larger than thermal energies at typical ultracold temperatures.

  16. Quarkonium-nucleus bound states from lattice QCD

    SciTech Connect

    Beane, S.  R.; Chang, E.; Cohen, S.  D.; Detmold, W.; Lin, H. -W.; Orginos, K.; Parreño, A.; Savage, M.  J.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  17. Fermi edge singularities: Bound states and finite-size effects

    NASA Astrophysics Data System (ADS)

    Zagoskin, Alexandre M.; Affleck, Ian

    1997-08-01

    Fermi edge absorption singularities (FES) are studied using a combination of conformal field theory (CFT), an exact sum rule and numerical work on a tight-binding model which is shown to exhibit remarkable simplifying features. The relationship between FES and the Anderson orthogonality exponent is established in great generality, using CFT, including the case where the core hole potential produces a bound state. Universal results on the absorption intensity in a finite-sized sample are obtained. Various predictions are checked numerically and the evolution of the absorption intensity with electron density is studied.

  18. Signatures of bound-state-assisted nonsequential double ionization

    SciTech Connect

    Sukiasyan, Suren; McDonald, Chris; Van Vlack, Cole; Destefani, Carlos; Fennel, Thomas; Brabec, Thomas; Ivanov, Misha

    2009-07-15

    The time-dependent multiconfiguration Hartree method is optimized for intense laser dynamics and applied to nonsequential double ionization in a two-electron diatomic model molecule with two dimensions per electron. The efficiency of our method brings these calculations from the realm of large scale computation facilities to single processor machines. The resulting two-electron spectrum exhibits pronounced signatures from which the ionic bound states involved in nonsequential double ionization are retrieved with the help of a semiclassical model. A mechanism for the ionization dynamics is suggested.

  19. Bound States in Dimerized and Frustrated Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Bouzerar, G.; Sil, S.

    Using the Bond-Operator Technique (BOT), we have studied the low energy excitation spectrum of a frustrated dimerized antiferromagnetic Heisenberg chain. In particular, we have compared our analytical results with previous Exact Diagonalization (ED) data. Qualitatively, the BOT results are in good agreement with the ED data. And even a very good quantitative agreement is obtained in some parameter region. It is clearly shown that there is only one elementary excitation branch (lowest triplet branch) and that the two other well defined excitations which appear below the continuum, one singlet and one triplet, are bound states of two elementary triplets.

  20. Effect of transverse current on Andreev bound state

    SciTech Connect

    Takahashi, Y.; Hashimoto, Y.; Yun, D. H.; Kim, S. W.; Nakamura, T.; Iye, Y.; Katsumoto, S.

    2013-12-04

    In a superconductor-normal-superconductor (SNS) structure, the effect of transverse current across the normal part on the transport through Andreev bound states (ABSs) has been examined. Here a ballistic InAs two-dimensional electron system (2DES) is used as the N-layer to form ABSs. At the same time the 2DES has strong spin-orbit interaction, hence there should emerge the spin-Hall effect associated with the transverse current. We have observed strong reduction of characteristic oscillation in the conductance versus bias voltage, which may be attributed to spin polarization due to the spin-Hall effect.

  1. Observable quasi-bound states of the H{sub 2} molecule

    SciTech Connect

    Selg, Matti

    2012-03-21

    Characteristic parameters (energetic positions, widths, etc.) of the 23 spectroscopically observed (or potentially observable) quasi-bound energy levels for the ground state H{sub 2} molecule are determined with high accuracy. The recent advances concerning nonadiabatic, relativistic, and quantum electrodynamical corrections have been taken into consideration. Theoretical approach is based on the careful investigation of the energy dependences of the real stationary scattering-state wave functions (their phase shifts and amplitudes). These energy dependences can be very accurately fitted to simple analytic formulas resulting from the quantum scattering theory. General criteria for the assignment of quasi-bound states are discussed and a new criterion is proposed, which excludes too broad and ambiguous resonances. To implement the proposed approach, a special high-precision computational method was used, which is described in full detail.

  2. Measurement of the excited-state position of bound-to-bound quantum-well infrared detectors

    SciTech Connect

    Zhou, L.; Chee, Y. H.; Karunasiri, G.

    2001-08-15

    The energy of the first excited state of quantum-well infrared detectors plays an important role in determining performance. The uncertainties in material and growth parameters make it difficult to design quantum-well detectors with a precise control of the location of energy states. Such uncertainties will cause detectors to be either bound to continuum or bound to bound. In this article, we present a technique to locate the excited-state position in bound-to-bound quantum-well infrared detectors by measuring the bias dependence of the photoresponse. We have employed an InGaAs/AlGaAs quantum-well detector operating near 5 {mu}m for this study. The photocurrent was found to have a strong bias dependence indicating the infrared transition in the quantum well is bound to bound in nature. The bias dependence of the photoresponse was compared with theoretical estimates including the tunneling of photoexcited electrons through the barrier. The results showed a good agreement and this allowed us to determine the location of the excited state from the barrier edge. {copyright} 2001 American Institute of Physics.

  3. Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry.

    PubMed

    Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi

    2016-04-22

    We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (AB) flux ϕ. We show that by varying the AB flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2e^{2}/h. We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the AB effect between the MBS and ABS.

  4. Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry

    NASA Astrophysics Data System (ADS)

    Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi

    2016-04-01

    We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.

  5. Bound and Scattering States of Itinerant Charge Carriers in Complex Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    The concept of magnetic polaron is analyzed and developed to elucidate the nature of itinerant charge carrier states in magnetic semiconductors and similar complex magnetic materials. By contrasting the scattering and bound states of carriers within the s-d exchange model, the nature of bound states at finite temperatures is clarified. The free magnetic polaron at certain conditions is realized as a bound state of the carrier (electron or hole) with the spin wave. Quite generally, a self-consistent theory of a magnetic polaron is formulated within a nonperturbative many-body approach, the Irreducible Green Functions (IGF) method which is used to describe the quasiparticle many-body dynamics at finite temperatures. Within the above many-body approach we elaborate a self-consistent picture of dynamic behavior of two interacting subsystems, the localized spins and the itinerant charge carriers. In particular, we show that the relevant generalized mean fields emerges naturally within our formalism. At the same time, the correct separation of elastic scattering corrections permits one to consider the damping effects (inelastic scattering corrections) in the unified and coherent fashion. The damping of magnetic polaron state, which is quite different from the damping of the scattering states, finds a natural interpretation within the present self-consistent scheme.

  6. Spin-dependent quasiparticle reflection and bound States at interfaces with itinerant antiferromagnets.

    PubMed

    Bobkova, I V; Hirschfeld, P J; Barash, Yu S

    2005-01-28

    We find a novel channel of quasiparticle reflection from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. Low-energy quasiparticles in a normal metal (N) experience spin-dependent retroreflection at AF/N interfaces. As a combined effect of antiferromagnetic and Andreev reflections, subgap Andreev states arise at an AF/superconductor (SC) interface. When the antiferromagnetic reflection dominates the specular one, Andreev bound states have almost zero energy on AF/s-wave superconductor (sSC) interfaces, whereas there are no low-energy subgap states on AF/d-wave superconductor (dSC) boundaries. For an sSC/AF/sSC junction, the bound states are found to split, due to the finite width of the AF interlayer, and carry the supercurrent. The theory developed in the present Letter is based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets.

  7. Operations of Majorana Bound States in Charge-qubit Arrays

    NASA Astrophysics Data System (ADS)

    Mao, Ting; Wang, Zidan

    2014-03-01

    The experimental pursuit of Majorana bound state (MBS) in one-dimensional (1D) solid state systems has been brought into the limelight since the proposal of Kitaev's toy lattice model. Here we use the inductively coupled charge-qubit array to realize a tunable Kitaev model. With the advantages of the superconducting-qubit circuit, we can manipulate the parameters of Kitaev model and change the symmetry class to which the model Hamiltonian belongs from the class D to the class BDI. We also discuss a simple class DIII model constructed by coupling two copies of the class D charge-qubit array. Using the time reversal symmetry and a residual U(1) spin rotation symmetry of the model, we explore the possibility of implementing universal single topological qubit operations.

  8. N2(+) bound quartet and sextet state potential energy curves

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Bauschlicher, C. W., Jr.; Stallcop, J. R.

    1985-01-01

    The N2(+) potential energies have been determined from a complete active space self-consistent field calculation with active 2s and 2p electrons. A (6s 4p 3d 1f) Gaussian basis set was used together with additional higher angular momentum and diffuse functions. The calculated potential energy curves for the states 4Sigma(mu)(+), 4Pi(g), and 6Sigma(g)(+), for which there are no spectroscopic observations, are presented. The corresponding spectroscopic constants have been determined from a polynomial curve fit to the computed energies near the well minima and are shown. The 6Sigma(g)(+) state is found to be significantly bound, with a minimum at 1.72 A.

  9. Fermionic and Majorana bound states in hybrid nanowires with non-uniform spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Klinovaja, Jelena; Loss, Daniel

    2015-03-01

    We study intragap bound states in the topological phase of a Rashba nanowire in the presence of a magnetic field and with non-uniform spin orbit interaction (SOI) and proximity-induced superconductivity gap. We show that fermionic bound states (FBS) can emerge inside the proximity gap. They are localized at the junction between two wire sections characterized by different directions of the SOI vectors, and they coexist with Majorana bound states (MBS) localized at the nanowire ends. The energy of the FBS is determined by the angle between the SOI vectors and the lengthscale over which the SOI changes compared to the Fermi wavelength and the localization length. We also consider double-junctions and show that the two emerging FBSs can hybridize and form a double quantum dot-like structure inside the gap. We find explicit analytical solutions of the bound states and their energies for certain parameter regimes such as weak and strong SOI. The analytical results are confirmed and complemented by an independent numerical tight-binding model approach. Such FBS can act as quasiparticle traps and thus can have implications for topological quantum computing schemes based on braiding MBSs.

  10. Lasing action from photonic bound states in continuum

    NASA Astrophysics Data System (ADS)

    Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2017-01-01

    In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.

  11. Universal bounds on charged states in 2d CFT and 3d gravity

    SciTech Connect

    Benjamin, Nathan; Dyer, Ethan; Fitzpatrick, A. Liam; Kachru, Shamit

    2016-08-04

    We derive an explicit bound on the dimension of the lightest charged state in two dimensional conformal field theories with a global abelian symmetry. We find that the bound scales with c and provide examples that parametrically saturate this bound. We also prove that any such theory must contain a state with charge-to-mass ratio above a minimal lower bound. As a result, we comment on the implications for charged states in three dimensional theories of gravity.

  12. Conformal mapping and bound states in bent waveguides

    SciTech Connect

    Sadurni, E.; Schleich, W. P.

    2010-12-23

    Is it possible to trap a quantum particle in an open geometry? In this work we deal with the boundary value problem of the stationary Schroedinger (or Helmholtz) equation within a waveguide with straight segments and a rectangular bending. The problem can be reduced to a one-dimensional matrix Schroedinger equation using two descriptions: oblique modes and conformal coordinates. We use a corner-corrected WKB formalism to find the energies of the one-dimensional problem. It is shown that the presence of bound states is an effect due to the boundary alone, with no classical counterpart for this geometry. The conformal description proves to be simpler, as the coupling of transversal modes is not essential in this case.

  13. Tunable magnetic textures: From Majorana bound states to braiding

    NASA Astrophysics Data System (ADS)

    Matos-Abiague, Alex; Shabani, Javad; Kent, Andrew D.; Fatin, Geoffrey L.; Scharf, Benedikt; Žutić, Igor

    2017-08-01

    A versatile control of magnetic systems, widely used to store information, can also enable manipulating Majorana bounds states (MBS) and implementing fault-tolerant quantum information processing. The proposed platform relies on the proximity-induced superconductivity in a two-dimensional electron gas placed next to an array of magnetic tunnel junctions (MTJs). A change in the magnetization configuration in the MTJ array creates tunable magnetic textures thereby removing several typical requirements for MBS: strong spin-orbit coupling, applied magnetic field, and confinement by one-dimensional structures which complicates demonstrating non-Abelian statistics through braiding. Recent advances in fabricating two-dimensional epitaxial superconductor/semiconductor heterostructures and designing tunable magnetic textures support the feasibility of this novel platform for MBS.

  14. Two-Dimensional Platform for Networks of Majorana Bound States

    NASA Astrophysics Data System (ADS)

    Hell, Michael; Leijnse, Martin; Flensberg, Karsten

    2017-03-01

    We model theoretically a two-dimensional electron gas (2DEG) covered by a superconductor and demonstrate that topological superconducting channels are formed when stripes of the superconducting layer are removed. As a consequence, Majorana bound states (MBSs) are created at the ends of the stripes. We calculate the topological invariant and energy gap of a single stripe, using realistic values for an InAs 2DEG proximitized by an epitaxial Al layer. We show that the topological gap is enhanced when the structure is made asymmetric. This can be achieved either by imposing a phase difference (by driving a supercurrent or using a magnetic-flux loop) over the strip or by replacing one superconductor by a metallic gate. Both strategies also enable control over the MBS splitting, thereby facilitating braiding and readout schemes based on controlled fusion of MBSs. Finally, we outline how a network of Majorana stripes can be designed.

  15. Two-Dimensional Platform for Networks of Majorana Bound States.

    PubMed

    Hell, Michael; Leijnse, Martin; Flensberg, Karsten

    2017-03-10

    We model theoretically a two-dimensional electron gas (2DEG) covered by a superconductor and demonstrate that topological superconducting channels are formed when stripes of the superconducting layer are removed. As a consequence, Majorana bound states (MBSs) are created at the ends of the stripes. We calculate the topological invariant and energy gap of a single stripe, using realistic values for an InAs 2DEG proximitized by an epitaxial Al layer. We show that the topological gap is enhanced when the structure is made asymmetric. This can be achieved either by imposing a phase difference (by driving a supercurrent or using a magnetic-flux loop) over the strip or by replacing one superconductor by a metallic gate. Both strategies also enable control over the MBS splitting, thereby facilitating braiding and readout schemes based on controlled fusion of MBSs. Finally, we outline how a network of Majorana stripes can be designed.

  16. Three-boson bound states in finite volume with EFT

    NASA Astrophysics Data System (ADS)

    Kreuzer, S.; Hammer, H.-W.

    2010-04-01

    The universal properties of a three-boson system with large scattering length are well understood within the framework of Effective Field Theory. They include a geometric spectrum of shallow three-body bound states called “Efimov states” and log-periodic dependence of scattering observables on the scattering length. We investigate the modification of this spectrum in a finite cubic box using a partial wave expansion. The dependence of the binding energies on the box size is calculated for systems with positive and negative two-body scattering length. We compare the full results to results obtained using an expansion around the infinite volume binding energy. The renormalization of the Effective Field Theory in the finite volume is verified explicitly.

  17. Bound-state effects in diabatically quenched BECs

    NASA Astrophysics Data System (ADS)

    Corson, John; Bohn, John

    2015-05-01

    We investigate the dynamics of a uniform Bose-Einstein condensate following a sudden quench of the scattering length. Our focus is the time evolution of short-range correlations via the dynamical contact. We compute the dynamics using a combination of two- and many-body models, and we propose a connection between them that unifies their short-time, short-range predictions. Our two-body models are exactly solvable and, when properly calibrated, lead to analytic formulas for the contact dynamics. We observe high-contrast oscillations of the contact, and their time average is typically much larger than the Bogoliubov prediction. The condensate fraction shows similar oscillations, whose amplitude we are able to estimate. Such pronounced effects originate from the Feshbach-molecular bound state, often ignored in BEC quench calculations.

  18. Continuum-state and bound-state β--decay rates of the neutron

    NASA Astrophysics Data System (ADS)

    Faber, M.; Ivanov, A. N.; Ivanova, V. A.; Marton, J.; Pitschmann, M.; Serebrov, A. P.; Troitskaya, N. I.; Wellenzohn, M.

    2009-09-01

    For the β--decay of the neutron we analyze the continuum-state and bound-state decay modes. We calculate the decay rates, the electron energy spectrum for the continuum-state decay mode, and angular distributions of the decay probabilities for the continuum-state and bound-state decay modes. The theoretical results are obtained for the new value for the axial coupling constant gA=1.2750(9), obtained recently by H. Abele [Prog. Part. Nucl. Phys. 60, 1 (2008)] from the fit of the experimental data on the coefficient of the correlation of the neutron spin and the electron momentum of the electron energy spectrum of the continuum-state decay mode. We take into account the contribution of radiative corrections and the scalar and tensor weak couplings. The calculated angular distributions of the probabilities of the bound-state decay modes of the polarized neutron can be used for the experimental measurements of the bound-state β--decays into the hyperfine states with total angular momentum F=1 and scalar and tensor weak coupling constants.

  19. Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide

    DOE PAGES

    Wright, A. F.; Modine, N. A.

    2015-01-23

    The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained usingmore » a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge. To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.« less

  20. Application of the bounds-analysis approach to arsenic and gallium antisite defects in gallium arsenide

    SciTech Connect

    Wright, A. F.; Modine, N. A.

    2015-01-23

    The As antisite in GaAs (AsGa) has been the subject of numerous experimental and theoretical studies. Recent density-functional-theory (DFT) studies report results in good agreement with experimental data for the +2, +1, and 0 charge states of the stable EL2 structure, the 0 charge state of the metastable EL2* structure, and the activation energy to transform from EL2* to EL2 in the 0 charge state. However, these studies did not report results for EL2* in the -1 charge state. In this paper, we report new DFT results for the +2, +1, 0, and -1 charge states of AsGa, obtained using a semilocal exchange-correlation functional and interpreted using a bounds-analysis approach. In good agreement with experimental data, we find a -1/0 EL2* level 0.06 eV below the conduction-band edge and an activation energy of 0.05 eV to transform from EL2* to EL2 in the -1 charge state. While the Ga antisite in GaAs (GaAs) has not been studied as extensively as AsGa, experimental studies report three charge states (-2, -1, 0) and two levels (-2/-1, -1/0) close to the valence-band edge. Recent DFT studies report the same charge states, but the levels are found to be well-separated from the valence-band edge. To resolve this disagreement, we performed new DFT calculations for GaAs and interpreted them using a bounds analysis. The analysis identified the -1 and 0 charge states as hole states weakly bound to a highly-localized -2 charge state. Moreover, the -2/-1, -1/0 levels were found to be near the valence-band edge, in good agreement with the experimental data.

  1. Fano resonances in photonic crystal slabs near optical bound states in the continuum

    NASA Astrophysics Data System (ADS)

    Blanchard, Cédric; Hugonin, Jean-Paul; Sauvan, Christophe

    2016-10-01

    Photonic crystal slabs are able to support optical bound states in the continuum. The latter are eigenmodes of the structure that are truly guided (no radiation leakage) despite the fact that they lie above the light cone within the continuum of radiation modes. Such peculiar states can be viewed as modes with an infinite quality factor Q . Therefore, the question of the behavior of Fano resonances, as optogeometrical parameters are tuned close to optical bound states in the continuum, is of importance for applications of photonic crystal slabs with ultrahigh Q factors. We study theoretically the reflection and transmission of a photonic crystal slab close to an optical bound state in the continuum with a phenomenological approach involving the poles and zeros of the scattering matrix. In particular, we derive a general relation valid for asymmetric structures that gives the position of a pole in the complex plane as a function of the positions of the zeros. We provide closed-form expressions for the reflection and transmission. The proposed phenomenological approach is validated through rigorous numerical calculations.

  2. Probing the Dark Sector with Dark Matter Bound States.

    PubMed

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  3. Probing the Dark Sector with Dark Matter Bound States

    NASA Astrophysics Data System (ADS)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-01

    A model of the dark sector where O (few GeV ) mass dark matter particles χ couple to a lighter dark force mediator V , mV≪mχ, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ , such as 0-+ and 1-- states, ηD and ϒD, is an important search channel. We show that e+e-→ηD+V or ϒD+γ production at B factories for αD>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via ηD→2 V →2 (l+l-) and ϒD→3 V →3 (l+l-) (l =e ,μ ,π ). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e+e-→χ χ ¯+n V , resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  4. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Sau, Jay D.; Stanescu, Tudor D.; Das Sarma, S.

    2017-08-01

    Motivated by an important recent experiment [Deng et al., Science 354, 1557 (2016), 10.1126/science.aaf3961], we theoretically consider the interplay between Andreev and Majorana bound states in disorder-free quantum dot-nanowire semiconductor systems with proximity-induced superconductivity in the presence of spin-orbit coupling and Zeeman spin splitting (induced by an external magnetic field). The quantum dot induces Andreev bound states in the superconducting nanowire, which show complex behavior as a function of magnetic field and chemical potential, and the specific question is whether two such Andreev bound states can come together forming a robust zero-energy topological Majorana bound state. We find generically that the Andreev bound states indeed have a high probability of coalescing together producing near-zero-energy midgap states as Zeeman splitting and/or chemical potential are increased, but this mostly happens in the nontopological regime below the topological quantum phase transition, although there are situations where the Andreev bound states could indeed come together to form a zero-energy topological Majorana bound state. The two scenarios (two Andreev bound states coming together to form a nontopological almost-zero-energy Andreev bound state or to form a topological zero-energy Majorana bound state) are difficult to distinguish just by tunneling conductance spectroscopy, since they produce essentially the same tunneling transport signatures. We find that the "sticking together" propensity of Andreev bound states to produce an apparent stable zero-energy midgap state is generic in class D systems in the presence of superconductivity, spin-orbit coupling, and magnetic field, even in the absence of any disorder. We also find that the conductance associated with the coalesced zero-energy nontopological Andreev bound state is nonuniversal and could easily be 2 e2/h , mimicking the quantized topological Majorana zero-bias conductance value. We

  5. Observation of bound and antibound states of cavity polariton pairs in a CuCl microcavity

    NASA Astrophysics Data System (ADS)

    Matsuura, S.; Mitsumori, Y.; Kosaka, H.; Edamatsu, K.; Miyazaki, K.; Kim, D.; Nakayama, M.; Oohata, G.; Oka, H.; Ajiki, H.; Ishihara, H.

    2014-01-01

    We observed the antibound state, as well as the bound state, for cavity polariton pairs in a planar CuCl microcavity by spectrally resolved four-wave mixing. We obtained dispersion curves of the bound and antibound states by changing the incident angle of the pump pulses corresponding to the cavity detuning. The dispersion curve for the bound state suggests that the bound state is mainly composed of a bare biexciton and is weakly coupled to the cavity photons. The dephasing time of the bound state was faster than that of a bare biexciton in a thin sample, supporting the hypothesis that the bound state is coupled to the cavity photons. On the other hand, the antibound state consists of two lower polaritons having the same spin. The clear observation of the antibound state can be qualitatively explained by the phase-space filling, which reduces the Rabi splitting.

  6. Andreev bound state at a strongly correlated oxide interface

    NASA Astrophysics Data System (ADS)

    Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre; Daley, Andrew; Lu, Shicheng; Veazey, Josh; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Pekker, David; Levy, Jeremy

    Strongly correlated electrons at oxide interfaces give rise to a set of novel physics phenomena including superconductivity and magnetism. At the LaAlO3/SrTiO3 (LAO/STO) interface, signatures of strong electron pairing persist even for conditions where superconductivity is suppressed. Meanwhile, an Andreev bound state (ABS) is a single quasiparticle excitation that mediates pair transport in confined superconductor-normal systems. Here we report a transition from pair resonant transport to ABS in sketched single electron transistors at the LAO/STO interface. This transition is consistent with a change of electron-electron interaction from attractive to repulsive, occurring at or near the Lifshitz transition. Such new electronically tunable electron-electron interaction may be useful for quantum simulation and engineering of novel quantum states in oxide materials. We gratefully acknowledge support from AFOSR FA9550-10-1-0524 (JL, CBE), AFOSR FA9550-12-1-0057 (JL, CBE, AD), NSF DMR-1104191 (JL), ONR N00014-15-1-2847 (JL).

  7. X (1576) as diquark-antidiquark bound state

    NASA Astrophysics Data System (ADS)

    Ding, Gui-Jun; Yan, Mu-Lin

    2006-11-01

    We propose that the broad 1-- resonance structure recently discovered by BES in J / ψ →K+K-π0 is the P-wave excitation of a diquark-antidiquark bound state. This interpretation implies that there exists a negative parity, vector nonet. A rough estimate of the mass spectrum of the nonet is presented, and the prediction for the mass of X (1576) is consistent with the experimental data. The OZI allowed strong decays are studied, it can decay into two pseudoscalars or one pseudoscalar plus one vector meson. A crucial prediction is that X (1576) should dominantly decay into K+K-, KLKS, ϕπ0. The observation of I3 = 1 or I3 = - 1 states which predominantly decays into strange mesons could provide another important test to our proposal. To search the charged I3 = 1 isospin partner of X (1576), careful search in J / ψ →K+KLπ-, J / ψ →K+KSπ- and J / ψ → ϕπ+π- is suggested.

  8. Three-nucleon problem: trinucleon bound states and trinucleon interactions

    SciTech Connect

    Friar, J.L.

    1985-01-01

    The assumptions underlying the formulation and solution of the Schroedinger equation for three nucleons in configuration space are reviewed, in conjunction with those qualitative aspects of the two-nucleon problem which are important. The geometrical features of the problem and the crucial role of the angular momentum barrier are developed. The boundary conditions for scattering are discussed qualitatively, and the Faddeev-Noyes equation is motivated. The method of splines and orthogonal collocation are shown to provide convenient techniques for generating numerical solutions. Properties of the many numerical solutions for the bound states and zero-energy scattering states are discussed. The evidence for three-body forces is reviewed, and the results of the recent calculations including such forces are discussed. The importance of electromagnetic interactions in the three-nucleon systems is motivated. Relativistic corrections and meson-exchange currents are discussed in the context of ''rules of scale'', and the pion-exchange currents of nonrelativistic order are derived. The experimental results for trinucleon electromagnetic interactions are reviewed, including recent tritium data. Conclusions are presented. 56 refs., 23 figs.

  9. Lower bound on concurrence for arbitrary-dimensional tripartite quantum states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Fei, Shao-Ming; Zheng, Zhu-Jun

    2016-09-01

    In this paper, we study the concurrence of arbitrary-dimensional tripartite quantum states. An explicit operational lower bound of concurrence is obtained in terms of the concurrence of substates. A given example shows that our lower bound may improve the well-known existing lower bounds of concurrence. The significance of our result is to get a lower bound when we study the concurrence of arbitrary m⊗ n⊗ l-dimensional tripartite quantum states.

  10. Finite state projection based bounds to compare chemical master equation models using single-cell data.

    PubMed

    Fox, Zachary; Neuert, Gregor; Munsky, Brian

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  11. Finite state projection based bounds to compare chemical master equation models using single-cell data

    NASA Astrophysics Data System (ADS)

    Fox, Zachary; Neuert, Gregor; Munsky, Brian

    2016-08-01

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  12. Bound states for multiple Dirac-δ wells in space-fractional quantum mechanics

    SciTech Connect

    Tare, Jeffrey D. Esguerra, Jose Perico H.

    2014-01-15

    Using the momentum-space approach, we obtain bound states for multiple Dirac-δ wells in the framework of space-fractional quantum mechanics. Introducing first an attractive Dirac-comb potential, i.e., Dirac comb with strength −g (g > 0), in the space-fractional Schrödinger equation we show that the problem of obtaining eigenenergies of a system with N Dirac-δ wells can be reduced to a problem of obtaining the eigenvalues of an N × N matrix. As an illustration we use the present matrix formulation to derive expressions satisfied by the bound-state energies of N = 1, 2, 3 delta wells. We also obtain the corresponding wave functions and express them in terms of Fox's H-function.

  13. Realization of negative mass regime and bound state of solitons in inhomogeneous Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Das, Priyam; Khan, Ayan; Panigrahi, Prasanta K.

    2016-05-01

    We study the dispersion mechanism (Lieb-mode excitation) of both single and two-component Bose-Einstein condensates, subject to an external trap in a mean-field approach, where the second quantized Lieb-mode is realized as grey soliton. Through the coupling between the centre of mass motion (Kohn mode) and the soliton's momenta arising from the kinematic chirp, induced by time modulated trap, we realize the exotic negative mass regime of the solitonic excitation. We show that the expulsive parabolic trap significantly modifies the energy-momentum dispersion in the low momenta regime, where these modes can be clearly identified, opening up the possibility to observe the Lieb-mode excitation. In case of two-component, we demonstrate the controlled formation of a bound state, in presence of an expulsive harmonic trap, through the shape compatibility of grey and bright solitons. Possible application of such a bound state to information storage and retrieval is pointed out.

  14. Bound states for multiple Dirac-δ wells in space-fractional quantum mechanics

    SciTech Connect

    Tare, Jeffrey D. Esguerra, Jose Perico H.

    2014-01-15

    Using the momentum-space approach, we obtain bound states for multiple Dirac-δ wells in the framework of space-fractional quantum mechanics. Introducing first an attractive Dirac-comb potential, i.e., Dirac comb with strength −g (g > 0), in the space-fractional Schrödinger equation we show that the problem of obtaining eigenenergies of a system with N Dirac-δ wells can be reduced to a problem of obtaining the eigenvalues of an N × N matrix. As an illustration we use the present matrix formulation to derive expressions satisfied by the bound-state energies of N = 1, 2, 3 delta wells. We also obtain the corresponding wave functions and express them in terms of Fox's H-function.

  15. Majorana bound states from exceptional points in non-topological superconductors

    PubMed Central

    San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón

    2016-01-01

    Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity. PMID:26865011

  16. Majorana bound states from exceptional points in non-topological superconductors

    NASA Astrophysics Data System (ADS)

    San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón

    2016-02-01

    Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity.

  17. Majorana bound states from exceptional points in non-topological superconductors.

    PubMed

    San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón

    2016-02-11

    Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of 'exceptional points' (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity.

  18. Molecular Bound States of Supercritical Charged Impurities on Graphene

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill; Adamska, Lyudmyla; Solenov, Dmitry

    2015-03-01

    Functionalization of graphene by chemical groups/atoms allows one to tune its electronic, chemical and mechanical properties. For example, metallic adatoms (e.g., Li, Ca, Y) can be important in applications ranging from hydrogen storage to superconductivity. Such adatoms bind ionically to graphene and the resulting positive ions move along graphene relatively freely, so understanding the energetics of their interaction with graphene and between each other becomes critical for assessing stability of resulting materials in practical applications. It has recently been demonstrated that ions with charge greater than Z ~ 1 induce a very peculiar non-linear electronic polarization of graphene, which is reminiscent to the Dirac vacuum reconstruction around superheavy nuclei. In our work we demonstrate that such non-linear polarization qualitatively changes not only graphene electronic structure but also the energetics of the effective graphene-mediated interaction between such ions. In my talk, I will discuss the properties of such effective interaction and its dependence on various parameters of the system. In particular, I will report on our finding that molecular bound states of supercritically charged ions can be formed on graphene at certain conditions. This work was performed under the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396.

  19. Path integral Monte Carlo on a lattice. II. Bound states

    NASA Astrophysics Data System (ADS)

    O'Callaghan, Mark; Miller, Bruce N.

    2016-07-01

    The equilibrium properties of a single quantum particle (qp) interacting with a classical gas for a wide range of temperatures that explore the system's behavior in the classical as well as in the quantum regime is investigated. Both the qp and the atoms are restricted to sites on a one-dimensional lattice. A path integral formalism developed within the context of the canonical ensemble is utilized, where the qp is represented by a closed, variable-step random walk on the lattice. Monte Carlo methods are employed to determine the system's properties. To test the usefulness of the path integral formalism, the Metropolis algorithm is employed to determine the equilibrium properties of the qp in the context of a square well potential, forcing the qp to occupy bound states. We consider a one-dimensional square well potential where all atoms on the lattice are occupied with one atom with an on-site potential except for a contiguous set of sites of various lengths centered at the middle of the lattice. Comparison of the potential energy, the energy fluctuations, and the correlation function are made between the results of the Monte Carlo simulations and the numerical calculations.

  20. Electron transport in multiterminal networks of Majorana bound states

    NASA Astrophysics Data System (ADS)

    Weithofer, Luzie; Recher, Patrik; Schmidt, Thomas L.

    2014-11-01

    We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics. In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically nontrivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T junction. Interestingly, we show that the elementary transport processes at the central lead are different compared to the outer leads, giving rise to characteristic nonlocal signatures in electronic transport. We find quantitative agreement between our analytical model and numerical simulations of a tight-binding model. Using the numerical simulations, we discuss the effect of weak disorder on the current and the cross-correlation functions.

  1. Absorption of Bound States in Hot, Dense Matter

    SciTech Connect

    Sheperd, R; Audebert, P; Chenais-Popovics, C; Geindre, J P; Fajardo, M; Iglesias, C; Moon, S; Rogers, F; Gauthier, J C; Springer, P

    2001-03-06

    Preliminary experiments using a long pulse laser generated X-ray source to back-light a short pulse laser heated thin foil have been performed at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) at Ecole Polytechnique in France. In this experiment, a 2 J, 300 ps, 532 nm laser was used to create the X-ray back-lighter. The primary diagnostic was a von Hamos spectrograph coupled to a 500 fs X-ray streak camera (TREX-VHS) developed at LLNL. This diagnostic combines high collection efficiency ({approx} 10{sup -4} steradians) with fast temporal response ({approx} 500 fs), allowing resolution of extremely transient spectral variations. The TREX-VHS was used to determine the time history, intensity, and spectral content of the back-lighter. The second diagnostic, Fourier Domain Interferometry (FDI), provides information about the position of the critical density of the target and thus the expansion hydrodynamics, laying the ground work for the plasma characterization. The plasmas were determined to be moderately to strongly coupled, resulting in absorption measurements that provide insight into bound states under such conditions.

  2. Resonances and Bound States in Positron Annihilation on Molecules

    NASA Astrophysics Data System (ADS)

    Surko, C. M.

    2007-10-01

    Positron annihilation is important in such diverse areas as study of metabolic processes in the human brain and the characterization of materials. Annihilation on molecules has been a subject of keen interest for decades. In particular, annihilation rates can be orders of magnitude greater than those expected for simple collisions. Recent results put our understanding of many aspects of this long-standing problem on a firm footing. We now understand that the annihilation proceeds by vibrational Feshbach resonances (VFR). A prerequisite for the existence of these VFR is that the positron binds to the target. The annihilation energy spectra provide the best measures to date of positron binding energies. Predictions of a new theory of VFR-enhanced annihilation in small molecules (methyl halides) [1] show excellent, quantitative agreement with experiment. New data and analyses for larger molecules (e.g., hydrocarbons with more than two carbon atoms) show that annihilation rates depend strongly on the number of vibrational degrees of freedom but, surprisingly, only weakly on positron binding energy. This places important constraints on theories of annihilation in these molecules. Results for second bound (i.e., positronically excited) states and overtone and combination-mode VFR, as well as outstanding questions, will also be discussed. This work is done in collaboration with Jason Young. [1] G. F. Gribakin and C. M. R. Lee, Phys. Rev. Lett. 97, 193201 (2006).

  3. Mapping the orbital structure of impurity bound states in a superconductor

    NASA Astrophysics Data System (ADS)

    Choi, Deung-Jang; Rubio-Verdú, Carmen; de Bruijckere, Joeri; Ugeda, Miguel M.; Lorente, Nicolás; Pascual, Jose Ignacio

    2017-05-01

    A magnetic atom inside a superconductor locally distorts superconductivity. It scatters Cooper pairs as a potential with broken time-reversal symmetry, leading to localized bound states with subgap excitation energies, named Shiba states. Most conventional approaches regarding Shiba states treat magnetic impurities as point scatterers with isotropic exchange interaction. Here, we show that the number and the shape of Shiba states are correlated to the spin-polarized atomic orbitals of the impurity, hybridized with the superconductor. Using scanning tunnelling spectroscopy, we spatially map the five Shiba excitations found on subsurface chromium atoms in Pb(111), resolving their particle and hole components. While particle components resemble d orbitals of embedded Cr atoms, hole components differ strongly from them. Density functional theory simulations correlate the orbital shapes to the magnetic ground state of the atom, and identify scattering channels and interactions, all valuable tools for designing atomic-scale superconducting devices.

  4. Mapping the orbital structure of impurity bound states in a superconductor.

    PubMed

    Choi, Deung-Jang; Rubio-Verdú, Carmen; de Bruijckere, Joeri; Ugeda, Miguel M; Lorente, Nicolás; Pascual, Jose Ignacio

    2017-05-08

    A magnetic atom inside a superconductor locally distorts superconductivity. It scatters Cooper pairs as a potential with broken time-reversal symmetry, leading to localized bound states with subgap excitation energies, named Shiba states. Most conventional approaches regarding Shiba states treat magnetic impurities as point scatterers with isotropic exchange interaction. Here, we show that the number and the shape of Shiba states are correlated to the spin-polarized atomic orbitals of the impurity, hybridized with the superconductor. Using scanning tunnelling spectroscopy, we spatially map the five Shiba excitations found on subsurface chromium atoms in Pb(111), resolving their particle and hole components. While particle components resemble d orbitals of embedded Cr atoms, hole components differ strongly from them. Density functional theory simulations correlate the orbital shapes to the magnetic ground state of the atom, and identify scattering channels and interactions, all valuable tools for designing atomic-scale superconducting devices.

  5. Bound states of fractionalized excitations in a modulated Kitaev spin liquid

    NASA Astrophysics Data System (ADS)

    Théveniaut, Hugo; Vojta, Matthias

    2017-08-01

    Fractionalization is a hallmark of spin-liquid behavior; it typically leads to response functions consisting of continua instead of sharp modes. However, microscopic processes can enable the formation of short-distance bound states of fractionalized excitations, despite asymptotic deconfinement. Here we study such bound-state formation for the Z2 spin liquid realized in Kitaev's honeycomb compass model, supplemented by a kekulé distortion of the lattice. Bound states between flux pairs and Majorana fermions form in the Majorana band gaps. We calculate the dynamic spin susceptibility and show that bound states lead to sharp modes in the magnetic response of the spin liquid, with the momentum dependence of the corresponding spectral weight encoding the internal symmetry of the bound state. As a byproduct, we also show that isolated fluxes may produce Majorana bound states at exactly zero energy. Generalizations and implications of the results are discussed.

  6. Family of Bell inequalities violated by higher-dimensional bound entangled states

    NASA Astrophysics Data System (ADS)

    Pál, Károly F.; Vértesi, Tamás

    2017-08-01

    We construct (d ×d )-dimensional bound entangled states, which violate, for any d >2 , a bipartite Bell inequality introduced in this paper. We conjecture that the proposed class of Bell inequalities acts as a dimension witness for bound entangled states: For any d >2 there exists a Bell inequality from this class that can be violated with bound entangled states only if their Hilbert space dimension is at least d ×d . Numerics supports this conjecture up to d =8 .

  7. Studying the scalar bound states of KK system in Bethe-Salpeter formalism

    SciTech Connect

    Guo Xinheng; Wu Xinghua

    2007-09-01

    We study the possible bound states of the KK system in the Bethe-Salpeter formalism in the ladder and instantaneous approximations. We find that the bound states exist. However, these bound states have very small decay widths. Therefore, besides the possible KK component, there may be some other structures in the observed f{sub 0}(980) and a{sub 0}(980)

  8. String Models for the Heavy Quark-Antiquark Bound States.

    NASA Astrophysics Data System (ADS)

    Tse, Sze-Man

    1988-12-01

    The heavy quark-antiquark bound state is examined in the phenomenological string models. Specifically, the Nambu-Goto model and the Polyakov's smooth string model are studied in the large-D limit, D being the number of transverse space-time dimensions. The static potential V(R) is extracted in both models in the large-D limit. In the former case, this amounts to the usual saddle point calculation. In the latter case, the renormalized, physical string tension is expressed in terms of the bare string tension and the extrinsic curvature coupling. A systematic loop expansion of V(R) is developed and carried out explicitly to one loop order, with the two loops result presented without detail. For large separations R, the potential is linear in R with corrections of order 1/R. The coefficient of the 1/R Luscher term has the universal value -piD/24 to any finite order in the loop expansion. For very small separations R, the potential V(R) is also proportional to 1/R with a coefficient twice that of Luscher's term. The corrections are logarithmically small. Polyakov's smooth string model is extended to the finite temperature situation. The temperature dependence of the string tension is investigated in the large-D limit. The effective string tension is calculated to the second order in the loop expansion. At low temperature, it differs from that of the Nambu-Goto model only by terms that fall exponentially with inverse temperature. Comparison of the potential V(R) in the smooth string model with lattice gauge calculation and hadron spectroscopy data yields a consistent result.

  9. Distributed bounded-error state estimation based on practical robust positive invariance

    NASA Astrophysics Data System (ADS)

    Riverso, Stefano; Rubini, Daria; Ferrari-Trecate, Giancarlo

    2015-11-01

    We propose a state estimator for linear discrete-time systems composed by coupled subsystems affected by bounded disturbances. The architecture is distributed in the sense that each subsystem is equipped with a local state estimator that exploits suitable pieces of information from parent subsystems. Furthermore, each local estimator reconstructs the state of the corresponding subsystem only. Different from methods based on moving horizon estimation, our approach does not require the online solution to optimisation problems. Our state estimation scheme, which is based on the notion of practical robust positive invariance, also guarantees satisfaction of constraints on local estimation errors and it can be updated with a limited computational effort when subsystems are added or removed.

  10. Analytical perspective for bound states in the continuum in photonic crystal slabs.

    PubMed

    Yang, Yi; Peng, Chao; Liang, Yong; Li, Zhengbin; Noda, Susumu

    2014-07-18

    We investigate the formation of photonic bound states in the continuum (BICs) in photonic crystal slabs from an analytical perspective. Unlike the stationary at-Γ BICs which originate from the geometric symmetry, the tunable off-Γ BICs are due to the weighted destructive via the continuum interference in the vicinity of accidental symmetry when the majority of the radiation is precanceled. The symmetric compatible nature of the off-Γ BICs leads to a trapping of light that can be tuned through continuously varying the wave vector. With the analytical approach, we explain a reported experiment and predict the existence of a new BIC at an unrevealed symmetry.

  11. Bound state solutions of Dirac equation with radial exponential-type potentials

    NASA Astrophysics Data System (ADS)

    Peña, J. J.; Morales, J.; García-Ravelo, J.

    2017-04-01

    In this work, a direct approach for obtaining analytical bound state solutions of the Dirac equation for radial exponential-type potentials with spin and pseudospin symmetry conditions within the frame of the Green and Aldrich approximation to the centrifugal term is presented. The proposal is based on the relation existing between the Dirac equation and the exactly solvable Schrödinger equation for a class of multi-parameter exponential-type potential. The usefulness of the present approach is exemplified by considering some known specific exponential-type potentials which are obtained as particular cases from our proposal. That is, instead of solving the Dirac equation for a special exponential potential, by means of a specialized method, the energy spectra and wave functions are derived directly from the proposed approach. Beyond the applications considered in this work, our proposition could be used as an alternative way in the search of bound state solutions of the Dirac equation for other potentials as well as it can be easily adapted to other approximations to the centrifugal term.

  12. A Lower Bound for Quantifying Overlap Effects: An Empirical Approach

    SciTech Connect

    Bassetti, Federico

    1997-12-31

    Among the many features that are implemented in today`s microprocessors there are some that have the capability of reducing the execution time via overlapping of different operations. Overlapping of instructions with other instructions, and overlapping of computation with memory activities are the main way in which execution time is reduced. In this paper we will introduce a notion of overlap and its definition, and a few different ways to capture its effects. We will characterize some of the DOE Accelerated Strategic Computing Initiative (ASCI) benchmarks using the overlap and some other quantities related to it. Also, we will present a characterization of the overlap effects using a lower bound derived empirically from measured data. We will conclude by using the lower bound to estimate other components of the overall execution time.

  13. Concepts and Bounded Rationality: An Application of Niestegge's Approach to Conditional Quantum Probabilities

    NASA Astrophysics Data System (ADS)

    Blutner, Reinhard

    2009-03-01

    Recently, Gerd Niestegge developed a new approach to quantum mechanics via conditional probabilities developing the well-known proposal to consider the Lüders-von Neumann measurement as a non-classical extension of probability conditionalization. I will apply his powerful and rigorous approach to the treatment of concepts using a geometrical model of meaning. In this model, instances are treated as vectors of a Hilbert space H. In the present approach there are at least two possibilities to form categories. The first possibility sees categories as a mixture of its instances (described by a density matrix). In the simplest case we get the classical probability theory including the Bayesian formula. The second possibility sees categories formed by a distinctive prototype which is the superposition of the (weighted) instances. The construction of prototypes can be seen as transferring a mixed quantum state into a pure quantum state freezing the probabilistic characteristics of the superposed instances into the structure of the formed prototype. Closely related to the idea of forming concepts by prototypes is the existence of interference effects. Such inference effects are typically found in macroscopic quantum systems and I will discuss them in connection with several puzzles of bounded rationality. The present approach nicely generalizes earlier proposals made by authors such as Diederik Aerts, Andrei Khrennikov, Ricardo Franco, and Jerome Busemeyer. Concluding, I will suggest that an active dialogue between cognitive approaches to logic and semantics and the modern approach of quantum information science is mandatory.

  14. Improved lower bounds on the ground-state entropy of the antiferromagnetic Potts model.

    PubMed

    Chang, Shu-Chiuan; Shrock, Robert

    2015-05-01

    We present generalized methods for calculating lower bounds on the ground-state entropy per site, S(0), or equivalently, the ground-state degeneracy per site, W=e(S(0)/k(B)), of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on W for several lattices.

  15. Solitons in superfluid (He-3)-A - Bound states on domain walls

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Fulco, J. R.; Schrieffer, J. R.; Wilczek, F.

    1984-01-01

    The effects of solitons on the spectrum of fermion excitations in superfluid (He-3)-A are investigated. It is found that there is a two-dimensional manifold of bound states with energies within the gap of the bulk superfluid. The bound-state spectrum lacks inversion symmetry parallel to the wall.

  16. Weakly bound states of the He-He-Mg trimer

    SciTech Connect

    Li Yong; Huang Deping; Gou Qingdong; Han Huili; Shi Tingyun

    2011-07-15

    We search for the existence of the weakly bound He-He-Mg molecules. The He-He-Mg molecule is treated as a three-body system. By using hyperspherical coordinates, the Schroedinger equation for the triatomic system is solved in the adiabatic approximation. We obtain that the binding of the three atoms is possible. The binding energies of such molecules are estimated.

  17. Spectrum of Andreev bound states in a molecule embedded inside a microwave-excited superconducting junction.

    PubMed

    Sköldberg, Jonas; Löfwander, Tomas; Shumeiko, Vitaly S; Fogelström, Mikael

    2008-08-22

    Nondissipative Josephson current through nanoscale superconducting constrictions is carried by spectroscopically sharp energy states, the so-called Andreev states. Although theoretically predicted almost 40 years ago, no direct spectroscopic evidence of these Andreev bound states exists to date. We propose a novel type of spectroscopy based on embedding a superconducting constriction, formed by a single-level molecule junction, in a microwave QED cavity environment. In the electron-dressed cavity spectrum we find a polariton excitation at twice the Andreev bound state energy, and a superconducting-phase-dependent ac Stark shift of the cavity frequency. Dispersive measurement of this frequency shift can be used for Andreev bound state spectroscopy.

  18. Helical Spin Texture and Interference of Majorana Bound States in One-Dimensional Topological Superconductor

    NASA Astrophysics Data System (ADS)

    Kawakami, Takuto; Hu, Xiao

    2016-01-01

    We investigate one-dimensional (1D) Majorana bound states (MBSs) realized in terms of the helical edge states of a 2D quantum spin-Hall insulator in a heterostructure with a superconducting substrate and two ferromagnetic insulators (FIs). By means of Bogoliubov-de Gennes approach we demonstrate that there is a helical spin texture in the MBS wave function with a pitch proportional to the Fermi momentum. Moreover, simultaneous detection on local density of states by scanning tunneling microscopy and spectroscopy at a position close to one FI edge and at the midpoint between the two FIs can not only map out the energy spectrum ±E cos(ϕ/2) where ϕ is the relative angle between the magnetizations of two FIs, but also prove experimentally that the two quasiparticle excitations do not mix with each other as protected by the parity conservation associated with the MBSs.

  19. Coherent tunneling through a double quantum dot coupled to Majorana bound states

    NASA Astrophysics Data System (ADS)

    Ivanov, T. I.

    2017-07-01

    We consider a double quantum dot coupled to a one-dimensional superconducting quantum wire with Majorana bound states at the ends of the wire. We compute the conductance of the double dot in the coherent tunneling regime. When only one of the dots is coupled to one Majorana bound state the conductance is enhanced/diminished in the vicinity of zero voltage if it has minimum/maximum at this voltage with no Majorana bound state and has two local maximums/minimums at voltage equal plus or minus the Majorana bound states overlapping energy. When each dot is coupled to one Majorana bound state with zero overlapping energy it is possible by tuning the magnetic flux through the system to change the zero-voltage conductance from minimum to local maximum. We show that when both electron levels in the double quantum dot are below the right chemical potential the Fano resonance occurs only for the lower energy level.

  20. Formation of bound states in expanded metal studied via path integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Oh, Ki-Dong

    2004-03-01

    The usefulness of the restricted path integral molecular dynamics method for the study of strongly correlated electrons is demonstrated by studying the formation of bound electronic states in a half-filled expanded three-dimensional hydrogenoid body-centred cubic lattice at finite temperature. Starting from a metallic state with one-component plasma character, we find that bound electrons form upon expansion of the lattice. The bound electrons are spatially localized with their centre for the motion of gyration located at ionic positions. The number of bound electrons increases monotonically with decreasing density.

  1. Observation of spin-charge separation and boundary bound states via the local density of states

    NASA Astrophysics Data System (ADS)

    Schoenauer, Benedikt; Schmitteckert, Peter; Schuricht, Dirk

    2017-05-01

    We numerically calculate the local density of states (LDOS) of a one-dimensional Mott insulator with open boundaries, which is modelled microscopically by a (extended) Hubbard chain at half filling. In the Fourier transform of the LDOS we identify several dispersing features corresponding to propagating charge and spin degrees of freedom, thus providing a visualization of the spin-charge separation in the system. We also consider the effect of an additional boundary potential, which, if sufficiently strong, leads to the formation of a boundary bound state which is clearly visible in the LDOS as a nondispersing feature inside the Mott gap.

  2. Two-electron bound states near a Coulomb impurity in gapped graphene

    NASA Astrophysics Data System (ADS)

    De Martino, Alessandro; Egger, Reinhold

    2017-02-01

    We formulate and solve the perhaps simplest two-body bound-state problem for interacting Dirac fermions in two spatial dimensions. A two-body bound state is predicted for gapped graphene monolayers in the presence of weakly repulsive electron-electron interactions and a Coulomb impurity with charge Z e >0 , where the most interesting case corresponds to Z =1 . We introduce a variational Chandrasekhar-Dirac spinor wave function and show the existence of at least one bound state. This state leaves clear signatures accessible by scanning tunneling microscopy. One may thereby obtain direct information about the strength of electron-electron interactions in graphene.

  3. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices.

    PubMed

    Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco

    2014-03-04

    The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1-xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.

  4. Spinon and bound-state excitation light cones in Heisenberg XXZ chains

    NASA Astrophysics Data System (ADS)

    de Paula, A. L.; Bragança, H.; Pereira, R. G.; Drumond, R. C.; Aguiar, M. C. O.

    2017-01-01

    We investigate the out-of-equilibrium dynamics after a local quench that connects two spin-1/2 XXZ chains prepared in the ground state of the Hamiltonian in different phases, one in the ferromagnetic phase and the other in the critical phase. We analyze the time evolution of the on-site magnetization and bipartite entanglement entropy via adaptive time-dependent density matrix renormalization group. In systems with short-range interactions, such as the one we consider, the velocity of information transfer is expected to be bounded, giving rise to a light-cone effect. Interestingly, our results show that, when the anisotropy parameter of the critical chain is sufficiently close to that of the isotropic ferromagnet, the light cone is determined by the velocity of spin-wave bound states that propagate faster than single-particle ("spinon") excitations. Furthermore, we investigate how the system approaches equilibrium in the inhomogeneous ground state of the connected system, in which the ferromagnetic chain induces a nonzero magnetization in the critical chain in the vicinity of the interface.

  5. SPAM: A Simple Approach for Profiling Bound Water Molecules.

    PubMed

    Cui, Guanglei; Swails, Jason M; Manas, Eric S

    2013-12-10

    A method that identifies the hydration shell structure of proteins and estimates the relative free energies of water molecules within that hydration shell is described. The method, which we call "SPAM" (maps spelled in reverse), utilizes explicit solvent molecular dynamics (MD) simulations to capture discrete hydration sites at the water-protein interface and computes a local free energy measure from the distribution of interaction energies between water and the environment at a specific site. SPAM is able to provide a qualitative estimate of the thermodynamic profile of bound water molecules that correlates nicely with well-studied structure-activity relationships and observed binding "hot spots". This is demonstrated in retrospective analyses of HIV1 protease and hen egg white lysozyme, where the effects of water displacement and solvent binding have been studied extensively. The simplicity and effectiveness of SPAM allow for prospective application during the drug discovery process.

  6. Optimal unambiguous state discrimination of two density matrices: Lower bound and class of exact solutions

    SciTech Connect

    Raynal, Philippe; Luetkenhaus, Norbert

    2005-08-15

    Recently the problem of unambiguous state discrimination of mixed quantum states has attracted much attention. So far, bounds on the optimum success probability have been derived [T. Rudolph, R. W. Spekkens, and P. S. Turner, Phys. Rev. A 68, 010301(R) (2003)]. For two mixed states they are given in terms of the fidelity. Here we give tighter bounds as well as necessary and sufficient conditions for two mixed states to reach these bounds. Moreover we construct the corresponding optimal measurement strategies. With this result, we provide analytical solutions for unambiguous discrimination of a class of generic mixed states. This goes beyond known results which are all reducible to some pure state case. Additionally, we show that examples exist where the bounds cannot be reached.

  7. Nuclear Bound States of Molecular Hydrogen Physisorbed on Graphene: An Effective Two-Dimensional Model.

    PubMed

    de Lara-Castells, María Pilar; Mitrushchenkov, Alexander O

    2015-11-05

    The interaction potential of molecular hydrogen physisorbed on a graphene sheet is evaluated using the ab initio-based periodic dlDF+Das scheme and its accuracy is assessed by comparing the nuclear bound-state energies supported by the H2(D2/HD)/graphite potentials with the experimental energies. The periodic dlDF+Das treatment uses DFT-based symmetry-adapted perturbation theory on surface cluster models to extract the dispersion contribution to the interaction whereas periodic dispersionless density functional (dlDF) calculations are performed to determine the dispersion-free counterpart. It is shown that the H2/graphene interaction is effectively two-dimensional (2D), with the distance from the molecule center-of-mass to the surface plane and the angle between the diatomic axis and the surface normal as the relevant degrees of freedom. The global potential minimum is found at the orthogonal orientation of the molecule with respect to the surface plane, with an equilibrium distance of 3.17 Å and a binding energy of -51.9 meV. The comparison of the binding energies shows an important improvement of our approach over the vdW-corrected DFT schemes when we are dealing with the very weak H2/surface interaction. Next, the 2D nuclear bound-state energies are calculated numerically. As a cross-validation of the interaction potential, the bound states are also determined for molecular hydrogen on the graphite surface (represented as an assembly of graphene sheets). With the largest absolute deviation being 1.7 meV, the theoretical and experimental energy levels compare very favorably.

  8. Photon-assisted tunneling through a topological superconductor with Majorana bound states

    SciTech Connect

    Tang, Han-Zhao; Zhang, Ying-Tao; Liu, Jian-Jun

    2015-12-15

    Employing the Keldysh Nonequilibrium Green’s function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.

  9. Photon-assisted tunneling through a topological superconductor with Majorana bound states

    NASA Astrophysics Data System (ADS)

    Tang, Han-Zhao; Zhang, Ying-Tao; Liu, Jian-Jun

    2015-12-01

    Employing the Keldysh Nonequilibrium Green's function method, we investigate time-dependent transport through a topological superconductor with Majorana bound states in the presence of a high frequency microwave field. It is found that Majorana bound states driven by photon-assisted tunneling can absorb(emit) photons and the resulting photon-assisted tunneling side band peaks can split the Majorana bound state that then appears at non-zero bias. This splitting breaks from the current opinion that Majorana bound states appear only at zero bias and thus provides a new experimental method for detecting Majorana bound states in the Non-zero-energy mode. We not only demonstrate that the photon-assisted tunneling side band peaks are due to Non-zero-energy Majorana bound states, but also that the height of the photon-assisted tunneling side band peaks is related to the intensity of the microwave field. It is further shown that the time-varying conductance induced by the Majorana bound states shows negative values for a certain period of time, which corresponds to a manifestation of the phase coherent time-varying behavior in mesoscopic systems.

  10. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    DOE PAGES

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo; ...

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectorsmore » not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.« less

  11. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    SciTech Connect

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo; Lin, Xiao; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectors not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.

  12. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs.

    PubMed

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo; Lin, Xiao; Joannopoulos, John D; Soljačić, Marin; Chen, Hongsheng

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry-Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. We show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectors not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.

  13. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    PubMed Central

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo; Lin, Xiao; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng

    2016-01-01

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. We show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectors not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors. PMID:27557882

  14. Search for bound states of the eta-meson in light nuclei

    NASA Technical Reports Server (NTRS)

    Chrien, R. E.; Bart, S.; Pile, P.; Sutter, R.; Tsoupas, N.; Funsten, H. O.; Finn, J. M.; Lyndon, C.; Punjabi, V.; Perdrisat, C. F.

    1988-01-01

    A search for nuclear-bound states of the eta meson was carried out. Targets of lithium, carbon, oxygen, and aluminum were placed in a pion(+) beam at 800 MeV/c. A predicted eta bound state in O-15* (E sub x approx. = 540 MeV) with a width of approx. 9 MeV was not observed. A bound state of a size 1/3 of the predicted cross section would have been seen in this experiment at a confidence level of 3sigma (P is greater than 0.9987).

  15. Visualization of vortex bound states in polarized fermi gases at unitarity.

    PubMed

    Hu, Hui; Liu, Xia-Ji; Drummond, Peter D

    2007-02-09

    We theoretically analyze a single vortex in a spin polarized 3D trapped atomic Fermi gas near a broad Feshbach resonance. Above a critical polarization the Andreev-like bound states inside the core become occupied by the majority spin component. As a result, the local density difference at the core center suddenly rises at low temperatures. This provides a way to visualize the lowest bound state using phase-contrast imaging. As the polarization increases, the core expands gradually and the energy of the lowest bound state decreases.

  16. Visualization of Vortex Bound States in Polarized Fermi Gases at Unitarity

    SciTech Connect

    Hu Hui; Liu Xiaji; Drummond, Peter D.

    2007-02-09

    We theoretically analyze a single vortex in a spin polarized 3D trapped atomic Fermi gas near a broad Feshbach resonance. Above a critical polarization the Andreev-like bound states inside the core become occupied by the majority spin component. As a result, the local density difference at the core center suddenly rises at low temperatures. This provides a way to visualize the lowest bound state using phase-contrast imaging. As the polarization increases, the core expands gradually and the energy of the lowest bound state decreases.

  17. Ensemble-based characterization of unbound and bound states on protein energy landscape

    PubMed Central

    Ruvinsky, Anatoly M; Kirys, Tatsiana; Tuzikov, Alexander V; Vakser, Ilya A

    2013-01-01

    Physicochemical description of numerous cell processes is fundamentally based on the energy landscapes of protein molecules involved. Although the whole energy landscape is difficult to reconstruct, increased attention to particular targets has provided enough structures for mapping functionally important subspaces associated with the unbound and bound protein structures. The subspace mapping produces a discrete representation of the landscape, further called energy spectrum. We compiled and characterized ensembles of bound and unbound conformations of six small proteins and explored their spectra in implicit solvent. First, the analysis of the unbound-to-bound changes points to conformational selection as the binding mechanism for four proteins. Second, results show that bound and unbound spectra often significantly overlap. Moreover, the larger the overlap the smaller the root mean square deviation (RMSD) between the bound and unbound conformational ensembles. Third, the center of the unbound spectrum has a higher energy than the center of the corresponding bound spectrum of the dimeric and multimeric states for most of the proteins. This suggests that the unbound states often have larger entropy than the bound states. Fourth, the exhaustively long minimization, making small intrarotamer adjustments (all-atom RMSD ≤ 0.7 Å), dramatically reduces the distance between the centers of the bound and unbound spectra as well as the spectra extent. It condenses unbound and bound energy levels into a thin layer at the bottom of the energy landscape with the energy spacing that varies between 0.8–4.6 and 3.5–10.5 kcal/mol for the unbound and bound states correspondingly. Finally, the analysis of protein energy fluctuations showed that protein vibrations itself can excite the interstate transitions, including the unbound-to-bound ones. PMID:23526684

  18. Efficient method for calculating electronic bound states in arbitrary one-dimensional quantum wells

    NASA Astrophysics Data System (ADS)

    de Aquino, V. M.; Iwamoto, H.; Dias, I. F. L.; Laureto, E.; da Silva, M. A. T.; da Silva, E. C. F.; Quivy, A. A.

    2017-01-01

    In the present paper it is demonstrated that the bound electronic states of multiple quantum wells structures may be calculated very efficiently by expanding their eigenstates in terms of the eigenfunctions of a particle in a box. The bound states of single and multiple symmetric or nonsymmetric wells are calculated within the single-band effective mass approximation. A comparison is then made between the results obtained for simple cases with exact calculations. We also apply our approach to a GaAs/AlGaAs multiple quantum well structure composed of forty periods each one with seven quantum wells. The method may be very useful to design narrow band quantum cascade photodetectors to work without applied bias in a photovoltaic mode. With the presented method the effects of a electric field may also be easily included which is very important if one desires study quantum well structures for application to the development of quantum cascade lasers. The advantages of the method are also presented.

  19. Andreev and Majorana bound states in single and double quantum dot structures.

    PubMed

    Silva, Joelson F; Vernek, E

    2016-11-02

    We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green's function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.

  20. Quasi-Bound States of the F·CH4 Complex.

    PubMed

    Schäpers, Daniela; Manthe, Uwe

    2016-05-19

    The F + CH4 → HF + CH3 reaction is an intensively studied prototypical example of a polyatomic reaction showing an early transition state. Prereactive complexes are assumed to play an important role in the dynamics of the reaction. In this work, the long-living resonance states resulting from the formation of a metastable F·CH4 complex are investigated in detail. Full-dimensional quantum dynamics calculations employing the multiconfigurational time-dependent Hartree (MCTDH) approach and a single adiabatic potential energy surface are used to study the low-lying quasi-bound states of the F·CH4 complex for vanishing total (nuclear) angular momentum. The computed dissociation energy of the F·CH4 complex with respect to the reactant asymptote is 170 cm(-1). About 60 resonance states with energies below the reactant asymptote are found. A detailed analysis of the computed wave function of the low-lying states shows an almost free relative rotation of F and CH4 and an approximately separable F-CH4 stretching vibration. The present results are compared with transition state spectroscopy experiments which study the photodetachment spectrum of the CH4F(-) anion.

  1. Extremal extensions of entanglement witnesses: Finding new bound entangled states

    SciTech Connect

    Sengupta, R.; Arvind

    2011-09-15

    In this paper, we discuss extremal extensions of entanglement witnesses based on Choi's map. The constructions are based on a generalization of the Choi map, from which we construct entanglement witnesses. These extremal extensions are powerful in terms of their capacity to detect entanglement of positive under partial transpose (PPT) entangled states and lead to unearthing of entanglement of new PPT states. We also use the Cholesky-like decomposition to construct entangled states which are revealed by these extremal entanglement witnesses.

  2. Pair creation induced by transitions between electronic and positronic bound states

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Lv, Q. Z.; Li, Y. T.; Grobe, R.; Su, Q.

    2015-05-01

    We study the creation process of electron-positron pairs from the quantum electrodynamical vacuum under very strong electric fields by solving the quantum field theoretical Dirac equation on a space-time grid. We investigate the role of bound-bound state mixing in such a process, which can be studied if the external force can be modeled by a combination of a potential barrier and a potential well. By increasing the magnitude of the two potentials, discrete states that originate from the positive and negative energy continua can become quasidegenerate in the mass gap region (between -mc 2 and mc 2). We show that this bound-bound state mixing is quite different from the usual bound-continuum state mixing where the particles are created until the Pauli exclusion principle inhibits this process. In the case of bound-bound mixing the particle number exhibits a characteristic oscillatory behavior that in principle can last forever. These findings can be modeled by an effective two-state model.

  3. Topological superconducting phase and Majorana bound states in Shiba chains

    NASA Astrophysics Data System (ADS)

    Pientka, Falko; Peng, Yang; Glazman, Leonid; von Oppen, Felix

    2015-12-01

    Chains of magnetic adatoms on a conventional superconducting substrate constitute a promising venue for realizing topological superconductivity and Majorana end states. Here, we give a brief overview over recent attempts to describe these systems theoretically, emphasizing how the topological phase emerges from the physics of individual magnetic impurities and their associated Shiba states.

  4. Disorder-induced bound states within an adatom-quantum wire system

    NASA Astrophysics Data System (ADS)

    Magnetta, Bradley; Ordonez, Gonzalo

    2014-03-01

    Bound states induced by disorder are theoretically observed within a quantum wire and adatom system. The quantum wire is modeled as an array of quantum wells with random energies and exhibits Anderson Localization. By varying the energy of our adatom and adjusting the tunneling strength between the adatom and the quantum wire we observe disorder-induced bound states between the the adatom and its attached point. The characteristics of these disorder-induced bound states are greatly influenced by the site of interest on the quantum wire. Utilizing random quantum wires and disordered superlattices to produce bound states may offer flexibility in fabrication as well as provide grounds for energy transmission in photovoltaics.

  5. Splitting of a Cooper pair by a pair of Majorana bound states.

    PubMed

    Nilsson, Johan; Akhmerov, A R; Beenakker, C W J

    2008-09-19

    We propose a method to probe the nonlocality of a pair of Majorana bound states by crossed Andreev reflection, which is the injection of an electron into one bound state followed by the emission of a hole by the other (equivalent to the splitting of a Cooper pair). We find that, at sufficiently low excitation energies, this nonlocal scattering process dominates over local Andreev reflection involving a single bound state. As a consequence, the low-temperature and low-frequency fluctuations deltaI(i) of currents into the two bound states i=1, 2 are maximally correlated: deltaI_1deltaI_2[over ]=deltaI_i(2).[over ].

  6. Splitting of a Cooper Pair by a Pair of Majorana Bound States

    SciTech Connect

    Nilsson, Johan; Akhmerov, A. R.; Beenakker, C. W. J.

    2008-09-19

    We propose a method to probe the nonlocality of a pair of Majorana bound states by crossed Andreev reflection, which is the injection of an electron into one bound state followed by the emission of a hole by the other (equivalent to the splitting of a Cooper pair). We find that, at sufficiently low excitation energies, this nonlocal scattering process dominates over local Andreev reflection involving a single bound state. As a consequence, the low-temperature and low-frequency fluctuations {delta}I{sub i} of currents into the two bound states i=1, 2 are maximally correlated: {delta}I{sub 1}{delta}I{sub 2}={delta}I{sub i}{sup 2}.

  7. Quark-antiquark bound-state spectroscopy and QCD

    SciTech Connect

    Bloom, E.D.

    1982-11-01

    The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)

  8. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    NASA Astrophysics Data System (ADS)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-03-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id‧-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id‧-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id‧-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry.

  9. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    PubMed Central

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  10. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters.

    PubMed

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M

    2017-03-10

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id'-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id'-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id'-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry.

  11. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    SciTech Connect

    Audenaert, Koenraad M. R.; Mosonyi, Milán

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ₁, …, σ{sub r}. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ₁, …, σ{sub r}), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov's classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min{sub jstates the bound is actually achieved. It was known to be achieved, in particular, when the state pair that is closest together in Chernoff divergence is more than 6 times closer than the next closest pair. Our results improve on this in two ways. First, we show that the optimal asymptotic rate must lie between C/2 and C. Second, we show that the Chernoff bound is already achieved when the closest state pair is more than 2 times closer than the next closest pair. We also show that the Chernoff bound is achieved when at least r - 2 of the states are pure, improving on a previous result by Nussbaum and Szkoła. Finally, we indicate a number of potential pathways along which a proof (or disproof) may eventually be found that the multi-hypothesis quantum Chernoff bound is always achieved.

  12. Bound soliton state in all-polarization maintaining fiber laser mode-locked by graphene

    NASA Astrophysics Data System (ADS)

    Bogusławski, Jakub; Soboń, Grzegorz; Pasternak, Iwona; Krajewska, Aleksandra; Strupiński, Włodek; Abramski, Krzysztof M.; Sotor, Jarosław

    2016-12-01

    We report our observations of both fundamental and bound soliton states generated in all-polarization maintaining (all-PM) fiber laser mode-locked by graphene saturable absorber. The laser can generate fundamental soliton pulses with 312 fs duration, centered at 1560 nm. For higher pumping power the laser operates in bound soliton state. Stable 460 fs pulses with equal intensities and 9.4 pulse-to-pulse separation.

  13. On the number of bound states of point interactions on hyperbolic manifolds

    NASA Astrophysics Data System (ADS)

    Erman, Fatih

    2017-09-01

    We study the bound state problem for N attractive point Dirac δ-interactions in two- and three-dimensional Riemannian manifolds. We give a sufficient condition for the Hamiltonian to have N bound states and give an explicit criterion for it in hyperbolic manifolds ℍ2 and ℍ3. Furthermore, we study the same spectral problem for a relativistic extension of the model on ℝ2 and ℍ2.

  14. Scattering and bound state Green's functions on a plane via so(2,1) Lie algebra

    SciTech Connect

    Borges, P. F.; Boschi-Filho, H.; Vaidya, A. N.

    2006-11-15

    We calculate the Green's functions for the particle-vortex system, for two anyons on a plane with and without a harmonic regulator and in a uniform magnetic field. These Green's functions which describe scattering or bound states (depending on the specific potential in each case) are obtained exactly using an algebraic method related to the SO(2,1) Lie group. From these Green's functions we obtain the corresponding wave functions and for the bound states we also find the energy spectra.

  15. Calculations of bar K-nuclear quasi-bound states using chiral bar KN amplitudes

    NASA Astrophysics Data System (ADS)

    Mareš, J.; Barnea, N.; Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.

    2014-03-01

    We review our recent calculations of K- quasi-bound states in nuclear systems using subthreshold energy dependent chiral bar KN amplitudes. Strong energy dependence of the scattering amplitudes requires self-consistent evaluation of the involved bar KN interactions. In view of sizable widths predicted by our calculations, an unambiguous identification of K--nuclear quasi-bound states in ongoing experimental searches would be difficult.

  16. Eta bound states in nuclei: a probe of flavour-singlet dynamics

    SciTech Connect

    Steven D. Bass; Anthony W. Thomas

    2005-07-01

    We argue that eta bound states in nuclei are sensitive to the singlet component in the eta. The bigger the singlet component, the more attraction and the greater the binding. Thus, measurements of eta bound states will yield new information about axial U(1) dynamics and glue in mesons. Eta - etaprime mixing plays an important role in understanding the value of the eta-nucleon scattering length.

  17. Towards experimental determination of conical intersection properties: a twin state based comparison with bound excited states.

    PubMed

    Zilberg, Shmuel; Haas, Yehuda

    2011-07-07

    The energy and approximate structure of certain S(0)/S(1) conical intersections (CI) are shown computationally to be deducible from those of two bound states: the first triplet (T(1)), which is iso-energetic with the CI, and the second excited singlet state (S(2)). This is demonstrated for acepentalene (I) and its perfluoro derivative (II) using the twin state concept for three states systems and based on the fact that the triplet T(1) is almost degenerate with the CI. The stable S(2) (C(3v) configuration) state exhibits unusual exaltation of Jahn-Teller active degenerate mode-ν(JT) = 2058 cm(-1) (∼500 cm(-1) higher than analogous e-mode of the symmetric (C(3v)) T(1) and the dianion I(-2) or any C-C vibration of the Jahn-Teller distorted (C(s)) ground state minimum). The acepentalene molecule, whose rigid structure and possibility to attain the relatively high symmetry C(3v) configuration, is a particularly suitable candidate for this purpose.

  18. Transfer Function Bounds for Partial-unit-memory Convolutional Codes Based on Reduced State Diagram

    NASA Technical Reports Server (NTRS)

    Lee, P. J.

    1984-01-01

    The performance of a coding system consisting of a convolutional encoder and a Viterbi decoder is analytically found by the well-known transfer function bounding technique. For the partial-unit-memory byte-oriented convolutional encoder with m sub 0 binary memory cells and (k sub 0 m sub 0) inputs, a state diagram of 2(K) (sub 0) was for the transfer function bound. A reduced state diagram of (2 (m sub 0) +1) is used for easy evaluation of transfer function bounds for partial-unit-memory codes.

  19. The variational-relaxation algorithm for finding quantum bound states

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2017-09-01

    I describe a simple algorithm for numerically finding the ground state and low-lying excited states of a quantum system. The algorithm is an adaptation of the relaxation method for solving Poisson's equation, and is fundamentally based on the variational principle. It is especially useful for two-dimensional systems with nonseparable potentials, for which simpler techniques are inapplicable yet the computation time is minimal.

  20. Expansion of Bound-State Energies in Powers of m/M

    SciTech Connect

    Melnikov, Kirill

    2001-07-25

    We describe a new approach to computing energy levels of a non-relativistic bound-state of two constituents with masses M and m, by a systematic expansion in powers of m/M. After discussing the method, we demonstrate its potential with an example of the radiative recoil corrections to the Lamb shift and hyperfine splitting relevant for the hydrogen, muonic hydrogen, and muonium. A discrepancy between two previous calculations of O({alpha}(Z{alpha}){sup 5} m{sup 2}/M) radiative recoil corrections to the Lamb shift is resolved and several new terms of O({alpha}(Z{alpha}){sup 5} m{sup 4}/M{sup 3}) and higher are obtained.

  1. Expansion of Bound-State Energies in Powers of m/M

    SciTech Connect

    Czarnecki, Andrzej; Melnikov, Kirill

    2001-07-02

    We describe a new approach to computing energy levels of a nonrelativistic bound state of two constituents with masses M and m , by a systematic expansion in powers of m/M . After discussing the method, we demonstrate its potential with an example of the radiative recoil corrections to the Lamb shift and hyperfine splitting relevant for the hydrogen, muonic hydrogen, and muonium. A discrepancy between two previous calculations of O({alpha}(Z{alpha} ){sup 5}m{sup 2}/M) radiative recoil corrections to the Lamb shift is resolved and several new terms of O({alpha}(Z{alpha} ){sup 5}m{sup 4}/M{sup 3}) and higher are obtained.

  2. Computational method for the quantum Hamilton-Jacobi equation: bound states in one dimension.

    PubMed

    Chou, Chia-Chun; Wyatt, Robert E

    2006-11-07

    An accurate computational method for the one-dimensional quantum Hamilton-Jacobi equation is presented. The Mobius propagation scheme, which can accurately pass through singularities, is used to numerically integrate the quantum Hamilton-Jacobi equation for the quantum momentum function. Bound state wave functions are then synthesized from the phase integral using the antithetic cancellation technique. Through this procedure, not only the quantum momentum functions but also the wave functions are accurately obtained. This computational approach is demonstrated through two solvable examples: the harmonic oscillator and the Morse potential. The excellent agreement between the computational and the exact analytical results shows that the method proposed here may be useful for solving similar quantum mechanical problems.

  3. Bound Electron States in Skew-symmetric Quantum Wire Intersections

    DTIC Science & Technology

    2014-01-01

    in transistors, solar cells , LEDs, and diode lasers. They have also investigated quantum dots as agents for medical imaging and as possible qubits in... solar cells .” Chemical reviews 110.11 (2010): 6873-6890. [9] Bonadeo, Nicolas H., et al. ”Coherent optical control of the quantum state of a single...dots on GaAs /InP , (inset) a single InAs quantum dot. two reasons. First, the superposition of the ground and excited states de- phases more slowly in

  4. SUSY in silico: Numerical D-brane bound state spectroscopy

    NASA Astrophysics Data System (ADS)

    Anous, Tarek

    2016-11-01

    We numerically construct the supersymmetric and non-supersymmetric wave functions of an N =4 quiver quantum mechanics with two Abelian nodes and a single arrow. This model captures the dynamics of a pair of wrapped D-branes interacting via a single light string mode. A dimensionless parameter ν , which is inversely proportional to the Fayet-Iliopoulos parameter, controls whether the bulk of the wave functions are supported on the Higgs branch or the Coulomb branch. We demonstrate how the supersymmetric and excited states morph as ν is tuned. We also numerically compute the energy gap between the ground state and the first excited states as a function of ν . An expression for the gap, computed on the Coulomb branch, matches nicely with our numerics at large ν but deviates at small ν where the Higgs branch becomes the relevant description of the physics. In the appendix, we provide the Schrödinger equations fully reduced via symmetries which, in principle, allow for the numerical determination of the entire spectrum at any point in moduli space. For the ground states, this numerical determination of the spectrum can be thought of as the first in silico check of various Witten index calculations.

  5. Behavior of Neutral s-States in Loosely Bound Nuclei

    NASA Astrophysics Data System (ADS)

    Hoffman, C. R.; Kay, B. P.; Schiffer, J. P.

    2014-09-01

    We have shown that the variation in binding energy of 1/2+ and 5/2+ states in isotopes of Be to O with N = 5 to 13 can largely be described in simple geometrical terms. The behavior of neutral s-states is qualitatively different from other l values, showing a tendency to linger below threshold whereas others do not, and nor do proton s-states. This observation is supported by a wealth of experimental data obtained from radioactive ion beams experiments. While calculations, such as those using the shell model, may reproduce the data, it is likely this simple geometrical effect is subsumed in the effective interactions used. The lingering of neutral s-states is the same mechanism responsible for neutron halos, and leads one to speculate the existence of heavier halo nuclei close to 78Ni. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  6. On the spin- 1/2 Aharonov–Bohm problem in conical space: Bound states, scattering and helicity nonconservation

    SciTech Connect

    Andrade, F.M.; Silva, E.O.; Pereira, M.

    2013-12-15

    In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.

  7. Bound state eigenfunctions need to vanish faster than | x{| }^{-3/2}

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar

    2016-07-01

    In quantum mechanics, students are taught to practice that the eigenfunction of a physical bound state must be continuous and vanishing asymptotically so that it is normalizable in x\\in (-∞ ,∞ ). Here we caution that such states may also give rise to infinite uncertainty in the position ({{Δ }}x=∞ ), whereas {{Δ }}p remains finite. Such states may be called loosely bound and spatially extended states, and may be avoided by an additional condition that the eigenfunction vanishes asymptotically faster than | x{| }-3/2.

  8. Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices

    PubMed Central

    Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco

    2014-01-01

    The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1−xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge. PMID:28788537

  9. Internal Composite Bound States in Deterministic Reaction Diffusion Models

    NASA Astrophysics Data System (ADS)

    Cooper, Fred; Ghoshal, Gourab; Pawling, Alec; Pérez-Mercader, Juan

    2013-07-01

    By identifying potential composite states that occur in the Sel’kov-Gray-Scott (GS) model, we show that it can be considered as an effective theory at large spatiotemporal scales, arising from a more fundamental theory (which treats these composite states as fundamental chemical species obeying the diffusion equation) relevant at shorter spatiotemporal scales. When simulations in the latter model are performed as a function of a parameter M=λ-1, the generated spatial patterns evolve at late times into those of the GS model at large M, implying that the composites follow their own unique dynamics at short scales. This separation of scales is an example of dynamical decoupling in reaction diffusion systems.

  10. Dynamical signatures of bound states in waveguide QED

    NASA Astrophysics Data System (ADS)

    Sánchez-Burillo, E.; Zueco, D.; Martín-Moreno, L.; García-Ripoll, J. J.

    2017-08-01

    We study the spontaneous decay of an impurity coupled to a linear array of bosonic cavities forming a single-band photonic waveguide. The average frequency of the emitted photon is different from the frequency for single-photon resonant scattering, which perfectly matches the bare frequency of the excited state of the impurity. We study how the energy of the excited state of the impurity influences the spatial profile of the emitted photon. The farther the energy is from the middle of the photonic band, the farther the wave packet is from the causal limit. In particular, if the energy lies in the middle of the band, the wave packet is localized around the causal limit. Besides, the occupation of the excited state of the impurity presents a rich dynamics: it shows an exponential decay up to intermediate times, this is followed by a power-law tail in the long-time regime, and it finally reaches an oscillatory stationary regime. Finally, we show that this phenomenology is robust under the presence of losses, both in the impurity and in the cavities.

  11. Unitary photoassociation: One-step production of ground-state bound molecules

    SciTech Connect

    Kallush, S.; Kosloff, R.

    2008-02-15

    Bound-state molecules can be photoassociated directly from ultracold free-atom pairs by excitation to a purely repulsive electronic state. The process is explained on the basis of quantum unitarity: the initially free-scattering state is transformed by an impulsive light pulse to a deformed superposition which contains bound-state components. For pulse durations which are short compared to the ultracold dynamics, the maximal rate of photoassociation was found to be determined by the initial stationary distribution of scattering states of the atom pairs. The process was simulated for an ultracold gas of {sup 87}Rb with a temperature of T=44 {mu}K and a density of {approx_equal}10{sup 11} cm{sup -3}. Transform-limited pulses maximize the photoassociation, yielding {approx}1 bound molecule per pulse. Coherent control calculated by a local control scheme can increase the photoassociation yield by two orders of magnitude.

  12. Stochastic analysis of bounded unsaturated flow in heterogeneous aquifers: Spectral/perturbation approach

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2009-01-01

    This paper describes a stochastic analysis of steady state flow in a bounded, partially saturated heterogeneous porous medium subject to distributed infiltration. The presence of boundary conditions leads to non-uniformity in the mean unsaturated flow, which in turn causes non-stationarity in the statistics of velocity fields. Motivated by this, our aim is to investigate the impact of boundary conditions on the behavior of field-scale unsaturated flow. Within the framework of spectral theory based on Fourier-Stieltjes representations for the perturbed quantities, the general expressions for the pressure head variance, variance of log unsaturated hydraulic conductivity and variance of the specific discharge are presented in the wave number domain. Closed-form expressions are developed for the simplified case of statistical isotropy of the log hydraulic conductivity field with a constant soil pore-size distribution parameter. These expressions allow us to investigate the impact of the boundary conditions, namely the vertical infiltration from the soil surface and a prescribed pressure head at a certain depth below the soil surface. It is found that the boundary conditions are critical in predicting uncertainty in bounded unsaturated flow. Our analytical expression for the pressure head variance in a one-dimensional, heterogeneous flow domain, developed using a nonstationary spectral representation approach [Li S-G, McLaughlin D. A nonstationary spectral method for solving stochastic groundwater problems: unconditional analysis. Water Resour Res 1991;27(7):1589-605; Li S-G, McLaughlin D. Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour Res 1995; 31(3):541-51], is precisely equivalent to the published result of Lu et al. [Lu Z, Zhang D. Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation. Adv Water Resour 2004;27:775-84].

  13. Strong Coupling Effects on Bound States in Plasmas.

    DTIC Science & Technology

    1985-02-01

    inverse Debye length; strong coupling means r P 1 or y > 1. In the systems of interest y m 1 20. For this reason, conventional perturbation approaches do...using one of the strongly coupled static plasma schemes-either the mean field theories , or HNC. - Finally X is to be determined by calculating the free...energy of the system and minimizing it with respect to X. The salient feature of this scheme is that it applies the philosophy of the TF-DH ( Debye

  14. Search for a Kaonic Nuclear Bound State at FOPI

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Berger, M.; Fopi Collaboration

    We search for the most basic kaonic nuclear state, K^-pp, by studying an exclusive p + p → p + Λ + K^+ process at T_p = 3.1 GeV using FOPI apparatus at GSI, Darmstadt, Germany. A possible signature of the K^-pp is searched as a p+p → K^-pp + K^+ → p+Λ+K^+ reaction in the event sample of pΛ K^+ three body process. A missing-mass Δ M(pK^+) spectrum, a Λ p invariant-mass M(Λ p) spectrum and a mono energetic kaon will characterize such a two body process. The reaction channel is basically the same as the one which T. Yamazaki {et al.} very recently reported a possible hint of such state with M = 2267 MeV/c^2 and Γ = 118 MeV from a re-analysis of the DISTO experiment data. The DISTO data was taken at T_p = 2.85 GeV. The beam energy of the FOPI experiment is chosen to optimize the signal to background ratio and also to see the background shape separately. FOPI data taking took place in August-September 2009 and analysis is currently undergoing.

  15. Observing Majorana bound states of Josephson vortices in topological superconductors

    PubMed Central

    Grosfeld, Eytan; Stern, Ady

    2011-01-01

    In recent years there has been an intensive search for Majorana fermion states in condensed matter systems. Predicted to be localized on cores of vortices in certain nonconventional superconductors, their presence is known to render the exchange statistics of bulk vortices non-Abelian. Here we study the equations governing the dynamics of phase solitons (fluxons) in a Josephson junction in a topological superconductor. We show that the fluxon will bind a localized zero energy Majorana mode and will consequently behave as a non-Abelian anyon. The low mass of the fluxon, as well as its experimentally observed quantum mechanical wave-like nature, will make it a suitable candidate for vortex interferometry experiments demonstrating non-Abelian statistics. We suggest two experiments that may reveal the presence of the zero mode carried by the fluxon. Specific experimental realizations will be discussed as well. PMID:21730165

  16. Narrow nucleon-ψ (2 S ) bound state and LHCb pentaquarks

    NASA Astrophysics Data System (ADS)

    Eides, Michael I.; Petrov, Victor Yu.; Polyakov, Maxim V.

    2016-03-01

    We interpret the newly discovered pentaquark Pc(4450 ) as a bound state of charmonium ψ (2 S ) and the nucleon. The binding potential is due to the charmonium-nucleon interaction that in the heavy quark approximation is proportional to the product of the charmonium chromoelectric polarizability and the nucleon energy-momentum distribution. We use the large Nc expansion to estimate the quarkonium polarizability and calculate the nucleon properties in the framework of the mean-field picture of light baryons. Two almost degenerate states JP=(1 /2 )- and JP=(3/2) - are predicted at the position of the Pc(4450 ) pentaquark. We find that the nucleon-ψ (2 S ) bound state has a naturally narrow width in the range of tens of MeV. The unitary multiplet partners of the Pc(4450 ) pentaquark and the generalization to b b ¯-nucleon pentaquark bound states are discussed.

  17. Emergent gauge field for a chiral bound state on curved surface

    NASA Astrophysics Data System (ADS)

    Shi, Zhe-Yu; Zhai, Hui

    2017-09-01

    Emergent physics is one of the most important concepts in modern physics, and one of the most intriguing examples is the emergent gauge field. Here we show that a gauge field emerges for a chiral bound state formed by two attractively interacting particles on a curved surface. We demonstrate explicitly that the center-of-mass wave function of such a deeply bound state is monopole harmonic instead of spherical harmonic, which means that the bound state experiences a magnetic monopole at the center of the sphere. This emergent gauge field is due to the coupling between the center-of-mass and the relative motion on a curved surface, and our results can be generalized to an arbitrary curved surface. This result establishes an intriguing connection between the space curvature and gauge field, and paves an alternative way to engineer a topological state with space curvature, and may be observed in a cold atom system.

  18. Fingerprint of topological Andreev bound states in phase-dependent heat transport

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Hankiewicz, Ewelina M.

    2016-08-01

    We demonstrate that phase-dependent heat currents through superconductor-topological insulator Josephson junctions provide a useful tool to probe the existence of topological Andreev bound states, even for multichannel surface states. We predict that in the tunneling regime topological Andreev bound states lead to a minimum of the thermal conductance for a phase difference ϕ =π , in clear contrast to a maximum of the thermal conductance at ϕ =π that occurs for trivial Andreev bound states in superconductor-normal-metal tunnel junctions. This opens up the possibility that phase-dependent heat transport can distinguish between topologically trivial and nontrivial 4 π modes. Furthermore, we propose a superconducting quantum interference device geometry where phase-dependent heat currents can be measured using available experimental technology.

  19. Asymptotic behavior of impurity-induced bound states in low-dimensional topological superconductors

    NASA Astrophysics Data System (ADS)

    Kaladzhyan, V.; Bena, C.; Simon, P.

    2016-12-01

    We study theoretically the asymptotic behavior of the Shiba bound states associated with magnetic impurities embedded in both 2D and 1D anomalous superconductors. We calculate analytically the spatial dependence of the local density of states together with the spin polarization associated with the Shiba bound states. We show that the latter quantity exhibits drastic differences between s-wave and different types of p-wave superconductors. Such properties, which could be measured using spin-polarized STM, offer therefore a way to discriminate between singlet and triplet pairing in low-dimensional superconductors, as well as a way to estimate the amplitude of the triplet pairing in these systems.

  20. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    NASA Astrophysics Data System (ADS)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  1. Asymptotic behavior of impurity-induced bound states in low-dimensional topological superconductors.

    PubMed

    Kaladzhyan, V; Bena, C; Simon, P

    2016-12-07

    We study theoretically the asymptotic behavior of the Shiba bound states associated with magnetic impurities embedded in both 2D and 1D anomalous superconductors. We calculate analytically the spatial dependence of the local density of states together with the spin polarization associated with the Shiba bound states. We show that the latter quantity exhibits drastic differences between s-wave and different types of p-wave superconductors. Such properties, which could be measured using spin-polarized STM, offer therefore a way to discriminate between singlet and triplet pairing in low-dimensional superconductors, as well as a way to estimate the amplitude of the triplet pairing in these systems.

  2. In-medium mathaccent "7016relax K- and eta -meson Interactions and Bound States

    NASA Astrophysics Data System (ADS)

    Gal, A.; Friedman, E.; Barnea, N.; Cieplý, A.; Mareš, J.; Gazda, D.

    The role played by subthreshold meson-baryon dynamics is demonstrated in kaonic-atom, Kbar-nuclear and eta-nuclear bound-state calculations within in-medium models of Kbar-N and eta-N interactions. New analyses of kaonic atom data reveal appreciable multi-nucleon contributions. Calculations of eta-nuclear bound states show, in particular, that the eta-N scattering length is not a useful indicator of whether or not eta mesons bind in nuclei nor of the widths anticipated for such states.

  3. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.

    PubMed

    Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M

    2016-08-19

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  4. Control of Andreev bound state population and related charge-imbalance effect.

    PubMed

    Riwar, Roman-Pascal; Houzet, Manuel; Meyer, Julia S; Nazarov, Yuli V

    2015-03-11

    Motivated by recent experimental research, we study a superconducting constriction subject to a dc and ac phase bias. We consider the processes whereby the ac drive promotes one quasiparticle from an Andreev bound state to a delocalized state outside the superconducting gap. We demonstrate that with these processes one can control the population of the Andreev bound states in the constriction. We stress an interesting charge asymmetry of these processes that may produce a charge imbalance of accumulated quasiparticles, which depends on the phase.

  5. Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Holt, J. D.; Menéndez, J.; Schwenk, A.

    2013-03-01

    We study the spectra of neutron-rich oxygen isotopes based on chiral two- and three-nucleon interactions. First, we benchmark our many-body approach by comparing ground-state energies to coupled-cluster results for the same two-nucleon interaction, with overall good agreement. We then calculate bound excited states in 21, 22, 23O , focusing on the role of three-nucleon forces, in the standard sd shell and an extended sdf_{7/2}p_{3/2} valence space. Chiral three-nucleon forces provide important one- and two-body contributions between valence neutrons. We find that both these contributions and an extended valence space are necessary to reproduce key signatures of novel shell evolution, such as the N = 14 magic number and the low-lying states in 21O and 23O , which are too compressed with two-nucleon interactions only. For the extended space calculations, this presents first work based on nuclear forces without adjustments. Future work is needed and open questions are discussed.

  6. Andreev and Majorana bound states in single and double quantum dot structures

    NASA Astrophysics Data System (ADS)

    Silva, Joelson F.; Vernek, E.

    2016-11-01

    We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green’s function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.

  7. Search for eta '(958)-nucleus Bound States by (p,d) Reaction at GSI and FAIR

    NASA Astrophysics Data System (ADS)

    Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K.-T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.

    The mass of the {\\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.

  8. Surface Andreev bound states of superfluid 3He and Majorana fermions.

    PubMed

    Okuda, Y; Nomura, R

    2012-08-29

    Superfluid (3)He is an intensively investigated and well characterized p-wave superfluid. In the bulk Balian-Werthamer state, which is commonly called the (3)He B phase, the superfluid gap is opened isotropically but near a flat boundary such as a wall of a container it can harbor interesting quasi-particle states inside the gap. These states are called surface Andreev bound states, and have not been experimentally explored in detail. Transverse acoustic impedance measurement has revealed their existence and provided spectroscopic details of the dispersion of the bound states. Recent theoretical arguments claim that the surface Andreev bound states of the superfluid (3)He B phase can be recognized as the edge states of the topological superfluid and be regarded as a Majorana fermion, a fancy particle which has not been confirmed in elementary particle physics. In this review, we present up-to-date knowledge on the surface Andreev bound states of the (3)He B phase revealed by acoustic spectroscopy and the possible realization of a Majorana fermion, along with related studies on this topic.

  9. Automatic computation of quantum-mechanical bound states and wavefunctions

    NASA Astrophysics Data System (ADS)

    Ledoux, V.; Van Daele, M.

    2013-04-01

    We discuss the automatic solution of the multichannel Schrödinger equation. The proposed approach is based on the use of a CP method for which the step size is not restricted by the oscillations in the solution. Moreover, this CP method turns out to form a natural scheme for the integration of the Riccati differential equation which arises when introducing the (inverse) logarithmic derivative. A new Prüfer type mechanism which derives all the required information from the propagation of the inverse of the log-derivative, is introduced. It improves and refines the eigenvalue shooting process and implies that the user may specify the required eigenvalue by its index. Catalogue identifier: AEON_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEON_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/license/license.html No. of lines in distributed program, including test data, etc.: 3822 No. of bytes in distributed program, including test data, etc.: 119814 Distribution format: tar.gz Programming language: Matlab. Computer: Personal computer architectures. Operating system: Windows, Linux, Mac (all systems on which Matlab can be installed). RAM: Depends on the problem size. Classification: 4.3. Nature of problem: Computation of eigenvalues and eigenfunctions of multichannel Schrödinger equations appearing in quantum mechanics. Solution method: A CP-based propagation scheme is used to advance the R-matrix in a shooting process. The shooting algorithm is supplemented by a Prüfer type mechanism which allows the eigenvalues to be computed according to index: the user specifies an integer k≥0, and the code computes an approximation to the kth eigenvalue. Eigenfunctions are also available through an auxiliary routine, called after the eigenvalue has been determined. Restrictions: The program can only deal with non-singular problems. Additional

  10. An Incremental Approach to Scope-Bounded Checking Using a Lightweight Formal Method

    NASA Astrophysics Data System (ADS)

    Shao, Danhua; Khurshid, Sarfraz; Perry, Dewayne E.

    We present a novel approach to optimize scope-bounded checking programs using a relational constraint solver. Given a program and its correctness specification, the traditional approach translates a bounded code segment of the entire program into a declarative formula and uses a constraint solver to search for any correctness violations. Scalability is a key issue with such approaches since for non-trivial programs the formulas are complex and represent a heavy workload that can choke the solvers. Our insight is that bounded code segments, which can be viewed as a set of (possible) execution paths, naturally lend to incremental checking through a partitioning of the set, where each partition represents a sub-set of paths. The partitions can be checked independently, and thus the problem of scope-bounded checking for the given program reduces to several sub-problems, where each sub-problem requires the constraint solver to check a less complex formula, thereby likely reducing the solver’s overall workload. Experimental results show that our approach provides significant speed-ups over the traditional approach.

  11. Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem

    SciTech Connect

    Suzuki, Jun

    2016-04-15

    The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results of this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.

  12. Experimental and theoretical study of bound and quasibound states of Ce{sup -}

    SciTech Connect

    Walter, C. W.; Gibson, N. D.; Li, Y.-G.; Matyas, D. J.; Alton, R. M.; Lou, S. E.; Field, R. L. III; Hanstorp, D.; Pan, Lin; Beck, Donald R.

    2011-09-15

    The negative ion of cerium is investigated experimentally with tunable infrared laser photodetachment spectroscopy and theoretically with relativistic configuration interaction in the continuum formalism. The relative cross section for neutral atom production is measured with a crossed ion-beam-laser-beam apparatus over the photon energy range of 0.54-0.75 eV. A rich resonance spectrum is revealed near the threshold with, at least, 12 peaks observed due to transitions from bound states of Ce{sup -} to either bound or quasibound excited states of the negative ion. Theoretical calculations of the photodetachment cross sections enable identification of the transitions responsible for the measured peaks. Two of the peaks are due to electric dipole-allowed bound-bound transitions in Ce{sup -}, making cerium only the second atomic negative ion that has been demonstrated to support multiple bound states of opposite parity. In addition, combining the experimental data with the theoretical analysis determines the electron affinity of cerium to be 0.628(10) eV and the fine structure splitting of the ground state of Ce{sup -} ({sup 4} H{sub 7/2}-{sup 4} H{sub 9/2}) to be 0.097 75(4) eV.

  13. Fermi polaron in two dimensions: Importance of the two-body bound state

    SciTech Connect

    Klawunn, Michael; Recati, Alessio

    2011-09-15

    We investigate a single impurity interacting with a free two-dimensional atomic Fermi gas. The interaction between the impurity and the gas is characterized by an arbitrary attractive short-range potential, which, in two dimensions, always admits a two-particle bound state. We provide analytical expressions for the energy and the effective mass of the dressed impurity by including the two-body bound state, which is crucial for strong interactions, in the integral equation for the effective interaction. Using the same method, we also give the results for the polaron parameters in one and three dimensions and find good agreement with previous results. Thus, our relations can be used as a simple way to estimate the polaron parameters once the two-body bound state of the interaction potential is known.

  14. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    NASA Astrophysics Data System (ADS)

    Gadella, M.; Kuru, Ş.; Negro, J.

    2017-04-01

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen-Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case.

  15. Widths of K¯-nuclear deeply bound states in a dynamical model

    NASA Astrophysics Data System (ADS)

    Mareš, J.; Friedman, E.; Gal, A.

    2005-01-01

    The relativistic mean field (RMF) model is applied to a system of nucleons and a Kbar meson, interacting via scalar and vector boson fields. The model incorporates the standard RMF phenomenology for bound nucleons and, for the Kbar meson, it relates to low-energy Kbar N and K- atom phenomenology. Deeply bound Kbar nuclear states are generated dynamically across the periodic table and are exhibited for 12C and 16O over a wide range of binding energies. Substantial polarization of the core nucleus is found for these light nuclei. Absorption modes are also included dynamically, considering explicitly both the resulting compressed nuclear density and the reduced phase space for Kbar absorption from deeply bound states. The behavior of the calculated width as function of the Kbar binding energy is studied in order to explore limits on the possible existence of narrow Kbar nuclear states.

  16. Critical field enhancement of asymptotic optical bound states in the continuum

    PubMed Central

    Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2015-01-01

    We study spectral singularities and critical field enhancement factors associated with embedded photonic bound states in subwavelength periodic Si films. Ultrahigh-Q resonances supporting field enhancement factor exceeding 108 are obtained in the spectral vicinity of exact embedded eigenvalues in spite of deep surface modulation and vertical asymmetry of the given structure. Treating relations between the partial resonance Q and field enhancement factors with an analytical coupled-mode model, we derive a general strategy to maximize the field enhancement associated with these photonic bound states in the presence of material dissipation. The analytical expression for the field enhancement quantitatively agrees with rigorous numerical calculations. Therefore, our results provide a general knowledge for designing practical resonance elements based on optical bound states in the continuum in various applications. PMID:26673548

  17. Majorana bound state in a coupled quantum-dot hybrid-nanowire system

    NASA Astrophysics Data System (ADS)

    Deng, M. T.; Vaitiekėnas, S.; Hansen, E. B.; Danon, J.; Leijnse, M.; Flensberg, K.; Nygård, J.; Krogstrup, P.; Marcus, C. M.

    2016-12-01

    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.

  18. Majorana bound state in a coupled quantum-dot hybrid-nanowire system.

    PubMed

    Deng, M T; Vaitiekėnas, S; Hansen, E B; Danon, J; Leijnse, M; Flensberg, K; Nygård, J; Krogstrup, P; Marcus, C M

    2016-12-23

    Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system. Copyright © 2016, American Association for the Advancement of Science.

  19. Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    NASA Astrophysics Data System (ADS)

    Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert

    2017-07-01

    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  20. Evolution of Density of States and a Spin-Resolved Checkerboard-Type Pattern Associated with the Majorana Bound State

    NASA Astrophysics Data System (ADS)

    Kawakami, Takuto; Hu, Xiao

    2015-10-01

    In terms of the Bogoliubov-de Gennes approach, we investigate the Majorana bound state (MBS) in a vortex of proximity-induced superconductivity on the surface of a topological insulator. Mapping out the local density of states (LDOS) of quasiparticle excitations as a function of energy and distance from the vortex center, it is found that the spectral distribution evolves from a V shape to a Y shape with the emergence of a MBS upon variation of the chemical potential, consistent with the STM/STS measurement in a very recent experiment [Xu et al., Phys. Rev. Lett. 114, 017001 (2015)] on a Bi2Te3 thin layer on the top of NbSe2 . Moreover, we demonstrate that there is a checkerboard-type pattern in the relative LDOS between the spin-up and -down channels, where the quantum mechanical wave function of the MBS manifests itself clearly as a single quantum state. Therefore, a spin-resolved STM/STS technique is expected to be able to provide phase-sensitive evidence for a MBS in the vortex core of a topological superconductor.

  1. The Analogue of the Aharonov-Bohm Effect for Bound States for Neutral Particles

    NASA Astrophysics Data System (ADS)

    Bakke, Knut; Furtado, C.

    We study the analogue of the Aharonov-Bohm effect for bound states for a neutral particle with a permanent magnetic dipole moment interacting with an external field. We consider a neutral particle confined to moving between two coaxial cylinders and show the dependence of the energy levels on the Aharonov-Casher quantum flux. Moreover, we show that the same flux dependence of the bound states can be found when the neutral particle is confined to a one-dimensional quantum ring and a quantum dot, and we also calculate the persistent currents in each case.

  2. Bound state solutions of the Schrödinger equation for modified Kratzer's molecular potential

    NASA Astrophysics Data System (ADS)

    Berkdemir, Cüneyt; Berkdemir, Ayşe; Han, Jiaguang

    2006-01-01

    We present the arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the modified Kratzer potential De[( r - re)/ r] 2. The bound state energy eigenvalues and the corresponding eigenfunctions are obtained by the use of the Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bound states are calculated for various values of ℓ with n ⩽ 5 and applied to several diatomic molecules. All of these calculations present an effective and methodological procedure under the NU method to investigate the Kratzer's molecular systems.

  3. Accidental bound states in the continuum in an open Sinai billiard

    NASA Astrophysics Data System (ADS)

    Pilipchuk, A. S.; Sadreev, A. F.

    2017-02-01

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides.

  4. Bound states of the ϕ4 model via the nonperturbative renormalization group

    NASA Astrophysics Data System (ADS)

    Rose, F.; Benitez, F.; Léonard, F.; Delamotte, B.

    2016-06-01

    Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar ϕ4 theory in all dimensions between two and four and as a function of the temperature. The accurate description of the momentum dependence of the two-point function, required to get the spectrum of the theory, is provided by means of the Blaizot-Méndez-Galain-Wschebor approximation scheme. We confirm the existence of a bound state in dimension three, with a mass within 1% of previous Monte-Carlo and numerical diagonalization values.

  5. Investigation of bound states and transmission across orderly arranged pairs of attractive and repulsive delta potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2017-07-01

    The pattern of bands generated by the transmission coefficient T for transmission across N ionic molecules in one dimension simulated by N alternating pairs of attractive and repulsive delta potential is studied by exploring its relation with the conditions for the occurence of threshold bound state. The number of peaks in the first band of T is found to be the difference between N and the number of negative energy bound states generated by this potential. Further we systematically study the nature of distribution of peaks in higher bands as a function of potential strength and distance parameters and compare it with the results obtained in our earlier works.

  6. Dynamic undocking and the quasi-bound state as tools for drug discovery

    NASA Astrophysics Data System (ADS)

    Ruiz-Carmona, Sergio; Schmidtke, Peter; Luque, F. Javier; Baker, Lisa; Matassova, Natalia; Davis, Ben; Roughley, Stephen; Murray, James; Hubbard, Rod; Barril, Xavier

    2017-03-01

    There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein-ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other 'thermodynamic' methods. We demonstrate the potential of the docking-undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40%.

  7. Dynamic undocking and the quasi-bound state as tools for drug discovery.

    PubMed

    Ruiz-Carmona, Sergio; Schmidtke, Peter; Luque, F Javier; Baker, Lisa; Matassova, Natalia; Davis, Ben; Roughley, Stephen; Murray, James; Hubbard, Rod; Barril, Xavier

    2017-03-01

    There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein-ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other 'thermodynamic' methods. We demonstrate the potential of the docking-undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40%.

  8. Dynamic undocking and the quasi-bound state as tools for drug discovery

    NASA Astrophysics Data System (ADS)

    Ruiz-Carmona, Sergio; Schmidtke, Peter; Luque, F. Javier; Baker, Lisa; Matassova, Natalia; Davis, Ben; Roughley, Stephen; Murray, James; Hubbard, Rod; Barril, Xavier

    2016-11-01

    There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein-ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other 'thermodynamic' methods. We demonstrate the potential of the docking-undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40%.

  9. Probing Majorana bound states via counting statistics of a single electron transistor

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-06-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.

  10. Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

    NASA Astrophysics Data System (ADS)

    Higashi, Yoichi; Nagai, Yuki; Yoshida, Tomohiro; Kato, Masaru; Yanase, Youichi

    2015-11-01

    We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair-density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceeds the critical value.

  11. Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach

    SciTech Connect

    Woods, M. P.; Plenio, M. B.

    2016-02-15

    Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.

  12. Fermion parity flips and Majorana bound states at twist defects in superconducting fractional topological phases

    NASA Astrophysics Data System (ADS)

    Khan, Mayukh Nilay; Teo, Jeffrey C. Y.; Hughes, Taylor L.; Vishveshwara, Smitha

    2017-05-01

    In this paper, we consider a layered heterostructure of an Abelian topologically ordered state (TO), such as a fractional Chern insulator (FCI)/quantum Hall state (FQH) with an s -wave superconductor in order to explore the existence of non-Abelian defects. To uncover such defects, we note that the ground state corresponds to a charge 2 e Cooper pair, the electron can no longer be treated as a local particle, and hence we must consider a larger TO due to the presence of h /2 e flux vortices, which strictly speaking are not deconfined. Quantum dimension and species of the defects follow directly from the fusion algebra. For FCI/Laughlin states, we show the presence of three kinds of defects, two of which had been previously ignored. They owe their origin to a general anyon permutation symmetry (AS) that exists in any fermionic Abelian TO state in contact with an s -wave superconductor. Physically, this permutation corresponds to adding a fermion to odd flux vortices (in units of h /2 e ) as they travel around the associated topological (twist) defect. As such, we call it a fermion parity flip AS. We show that calculations can be handled more simply, by considering an equivalent fermion parity gauged theory, where the original TO is suitably augmented by a Z2 gauge sector coming from the s -wave SC, but with identical fusion structure. This trick makes our approach useful for analyzing a wide variety of FQH/FCI heterostructures. We give examples of the fermion parity gauging procedure for a large number of hierarchy and spin singlet states. We consider twist defects which mutate anyons according to the fermion parity flip symmetry and show that they can be realized at domain walls between distinct gapped edges or interfaces of the TO superconducting state. We analyze the properties of such defects and show that fermion parity flip twist defects are always associated with Majorana zero modes. When defects corresponding to AS which is a combination of fermion parity

  13. A new approach to flow through a region bounded by two ellipses of the same ellipticity

    NASA Astrophysics Data System (ADS)

    Lal, K.; Chorlton, F.

    1981-05-01

    A new approach is presented to calculate steady flow of a laminar viscous incompressible fluid through a channel whose cross section is bounded by two ellipses with the same ellipticity. The Milne-Thomas approach avoids the stream function and is similar to the Rayleigh-Ritz approximation process of the calculus of variations in its first satisfying boundary conditions and then adjusting constants or multiplying functions to fit the differential equation.

  14. Effect of substrate on optical bound states in the continuum in 1D photonic structures

    NASA Astrophysics Data System (ADS)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.; Iorsh, I. V.; Koshelev, K. L.; Takayama, O.; Malureanu, R.; Lavrinenko, A. V.; Bogdanov, A. A.

    2017-09-01

    Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties of BIC in CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer at telecommunication wavelengths, where the absorption of silicon is negligible. We reveal that a high-index substrate could destroy both off-Γ BIC and in-plane symmetry protected at-Γ BIC turning them into resonant states due to leakage into the diffraction channels opening in the substrate.

  15. Bound-state formation for thermal relic dark matter and unitarity

    SciTech Connect

    Harling, Benedict von; Petraki, Kalliopi E-mail: kpetraki@nikhef.nl

    2014-12-01

    We show that the relic abundance of thermal dark matter annihilating via a long-range interaction, is significantly affected by the formation and decay of dark matter bound states in the early universe, if the dark matter mass is above a few TeV . We determine the coupling required to obtain the observed dark matter density, taking into account both the direct 2-to-2 annihilations and the formation of bound states, and provide an analytical fit. We argue that the unitarity limit on the inelastic cross-section is realized only if dark matter annihilates via a long-range interaction, and we determine the upper bound on the mass of thermal-relic dark matter to be about 197 (139) TeV for (non)-self-conjugate dark matter.

  16. Renewable energy consumption and economic growth in nine OECD countries: bounds test approach and causality analysis.

    PubMed

    Hung-Pin, Lin

    2014-01-01

    The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries-United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain.

  17. Renewable Energy Consumption and Economic Growth in Nine OECD Countries: Bounds Test Approach and Causality Analysis

    PubMed Central

    Hung-Pin, Lin

    2014-01-01

    The purpose of this paper is to investigate the short-run and long-run causality between renewable energy (RE) consumption and economic growth (EG) in nine OECD countries from the period between 1982 and 2011. To examine the linkage, this paper uses the autoregressive distributed lag (ARDL) bounds testing approach of cointegration test and vector error-correction models to test the causal relationship between variables. The co-integration and causal relationships are found in five countries—United States of America (USA), Japan, Germany, Italy, and United Kingdom (UK). The overall results indicate that (1) a short-run unidirectional causality runs from EG to RE in Italy and UK; (2) long-run unidirectional causalities run from RE to EG for Germany, Italy, and UK; (3) a long-run unidirectional causality runs from EG to RE in USA, and Japan; (4) both long-run and strong unidirectional causalities run from RE to EG for Germany and UK; and (5) Finally, both long-run and strong unidirectional causalities run from EG to RE in only USA. Further evidence reveals that policies for renewable energy conservation may have no impact on economic growth in France, Denmark, Portugal, and Spain. PMID:24558343

  18. A Lagrangian Relax-and-Cut Approach for the Bounded Diameter Minimum Spanning Tree Problem

    NASA Astrophysics Data System (ADS)

    Raidl, Günther R.; Gruber, Martin

    2008-09-01

    We consider the problem of finding for a given weighted graph a minimum cost spanning tree whose diameter does not exceed a specified upper bound. This problem is NP-hard and has several applications, e.g. when designing communication networks and quality of service is of concern. We model the problem as an integer linear program (ILP) using so-called jump inequalities. Since the number of these constraints grows exponentially with the problem size, solving this ILP directly is not feasible. Instead, we relax the jump constraints in a Lagrangian fashion and apply a cutting plane algorithm to separate violated inequalities. This relax-and-cut approach yields relatively tight lower bounds especially for larger problem instances on which exact techniques are not applicable. High quality feasible solutions, i.e. upper bounds, are obtained by a repair heuristic in combination with a powerful variable neighborhood descent strategy.

  19. Bound-state dynamics in one-dimensional multispecies fermionic systems

    NASA Astrophysics Data System (ADS)

    Azaria, P.

    2017-03-01

    In this work we provide for a description of the low-energy physics of interacting multispecies fermions in terms of the bound states that are stabilized in these systems when a spin gap opens. We argue that at energies much smaller than the spin gap, these systems are described by a Luttinger liquid of bound states that depends, on top of the charge stiffness ν and the charge velocity u , on a "Fermi" momentum PF satisfying q PF=N kF where q is the charge of the bound state, N is the number of species, and kF is the Fermi momentum in the noninteracting limit. We further argue that for generic interactions, generic bound states are likely to be stabilized. They are associated with emergent, in general nonlocal, symmetries and are in the number of five. The first two consist of either a charge q =N local SU (N ) singlet or a charge q =N bound state made of two local SU (p ) and SU (N -p ) singlets. In this case the Fermi momentum PF=kF is preserved. The three others have an enhanced Fermi vector PF. The latter are either charge q =2 bosonic p -wave and s -wave pairs with SO (N ) and SP (N ) symmetry and PF=N kF/2 or a composite fermion of charge q =1 with PF=N kF . The instabilities of these Luttinger liquid states towards incompressible phases and their possible topological nature are also discussed.

  20. Detection of Individual Proteins Bound along DNA Using Solid-State Nanopores.

    PubMed

    Plesa, Calin; Ruitenberg, Justus W; Witteveen, Menno J; Dekker, Cees

    2015-05-13

    DNA in cells is heavily covered with all types of proteins that regulate its genetic activity. Detection of DNA-bound proteins is a challenge that is well suited to solid-state nanopores as they provide a linear readout of the DNA and DNA-protein volume in the pore constriction along the entire length of a molecule. Here, we demonstrate that we can realize the detection of even individual DNA-bound proteins at the single-DNA-molecule level using solid-state nanopores. We introduce and use a new model system of anti-DNA antibodies bound to lambda phage DNA. This system provides several advantages since the antibodies bind individually, tolerate high salt concentrations, and will, because of their positive charge, not translocate through the pore unless bound to the DNA. Translocation of DNA-antibody samples reveals the presence of short 12 μs current spikes within the DNA traces, with amplitudes that are about 4.5 times larger than that of dsDNA, which are associated with individual antibodies. We conclude that transient interactions between the pore and the antibodies are the primary mechanism by which bound antibodies are observed. This work provides a proof-of-concept for how nanopores could be used for future sensing applications.

  1. On the existence of sign changing bound state solutions of a quasilinear equation

    NASA Astrophysics Data System (ADS)

    Cortázar, Carmen; García-Huidobro, Marta; Yarur, Cecilia S.

    In this paper we establish the existence of bound state solutions having a prescribed number of sign changes for (P) Δmu+f(u)=0, x∈RN, N⩾m>1, where Δmu=∇ṡ(|∇u). Our result is new even for the case of the Laplacian (m=2).

  2. Relativistic bounds states for a neutral particle confined to a parabolic potential induced by noninertial effects

    NASA Astrophysics Data System (ADS)

    Bakke, K.

    2010-10-01

    We obtain the solutions of the Dirac equation when the noninertial effects of the Fermi-Walker reference frame break the relativistic Landau-Aharonov-Casher quantization, but they provide bound states in an analogous way to a Dirac neutral particle subject to Tan-Inkson quantum dot potential [W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11 (1996) 1635].

  3. F(750), we miss you as bound state of 6 top and 6 antitop

    NASA Astrophysics Data System (ADS)

    Nielsen, H. B.

    2016-12-01

    We collect and estimate support for our long speculated “multiple point principle”11,12,14-16,18-30,36-39 saying that there should be several vacua all having (compared to the scales of high energy physics) very low energy densities. In pure Standard Model, we suggest there being three “multiple point principle” low energy density vacua, “present,” “condensate” and “high field” vacuum. We fit the mass in our picture of a long speculated bound state8,67-80 of 6 top and 6 antitop quarks in three quite independent ways and get remarkably within our crude accuracy the same mass in all three fits! The new point of the present paper is to estimate the bound state mass in what we could call a bag-model estimation. The two other fits, which we review, obtain the mass of the bound state by fitting to the multiple point principle prediction of degenerate vacua. Our remarkable agreement of our three mass-fits can be interpreted to mean that we have calculated at the end the energy densities of the two extra speculated vacua and found that they are indeed very small. Unfortunately, the recently much discussed statistical fluctuation peak F(750)2-5 that has now been revealed to be just a fluctuation, very accidentally matches our fitted mass of the bound state remarkably well with the mass of this fluctuation 750 GeV.

  4. Solid-state 87Rb NMR signatures for rubidium cations bound to a G-quadruplex.

    PubMed

    Ida, Ramsey; Wu, Gang

    2005-09-14

    We report the first solid-state 87Rb NMR characterization for rubidium cations bound to G-quartet structures formed by self-association of guanosine 5'-monophosphate and 5'-tert-butyl-dimethylsilyl-2', 3'-O-isopropylidene guanosine.

  5. Resonances from QCD bound states and the 750 GeV diphoton excess

    NASA Astrophysics Data System (ADS)

    Kats, Yevgeny; Strassler, Matthew J.

    2016-05-01

    Pair production of colored particles is in general accompanied by production of QCD bound states (onia) slightly below the pair-production threshold. Bound state annihilation leads to resonant signals, which in some cases are easier to see than the decays of the pair-produced constituents. In a previous paper ( arXiv:1204.1119 ) we estimated the bound state signals, at leading order and in the Coulomb approximation, for particles with various spins, color representations and electric charges, and used 7 TeV ATLAS and CMS resonance searches to set rough limits. Here we update our results to include 8 and 13 TeV data. We find that the recently reported diphoton excesses near 750 GeV could indeed be due to a bound state of this kind. A narrow resonance of the correct size could be obtained for a color-triplet scalar with electric charge -4/3 and mass near 375GeV, if (as a recent lattice computation suggests) the wave function at the origin is somewhat larger than anticipated. Pair production of this particle could have evaded detection up to now. Other candidates may include a triplet scalar of charge 5/3, a triplet fermion of charge -4/3, and perhaps a sextet scalar of charge -2/3.

  6. ηN interactions in the nuclear medium. η-nuclear bound states

    NASA Astrophysics Data System (ADS)

    Mareš, J.; Barnea, N.; Cieplý, A.; Friedman, E.; Gal, A.

    2016-11-01

    We report on our recent study of in-medium ηN interactions and η-nuclear quasi-bound states. The ηN scattering amplitudes considered in the calculations are constructed within coupled-channel models that incorporate the S11 N*(1535) resonance. The implications of self-consistent treatment and the role played by subthreshold dynamics are discussed.

  7. Surface Specific Heat of {sup 3}He and Andreev Bound States

    SciTech Connect

    Choi, H.; Davis, J. P.; Pollanen, J.; Halperin, W.P.

    2006-03-31

    High resolution measurements of the specific heat of liquid {sup 3}He in the presence of a silver surface have been performed at temperatures near the superfluid transition in the pressure range of 1-29 bar. The surface contribution to the heat capacity is identified with Andreev bound states of {sup 3}He quasiparticles that have a range of half a coherence length.

  8. Andreev bound states in superconductor/ferromagnet point contact Andreev reflection spectra

    NASA Astrophysics Data System (ADS)

    Yates, K. A.; Olde Olthof, L. A. B.; Vickers, M. E.; Prabhakaran, D.; Egilmez, M.; Robinson, J. W. A.; Cohen, L. F.

    2017-03-01

    As charge carriers traverse a single superconductor ferromagnet interface, they experience an additional spin-dependent phase angle that results in spin mixing and the formation of a bound state called the Andreev bound state. Here we explore whether point contact Andreev reflection can be used to detect the Andreev bound state and, within the limits of our experiment, we extract the resulting spin mixing angle. By examining spectra taken from L a1.15S r1.85M n2O7-Pb junctions, together with a compilation of literature data on highly spin polarized systems, we suggest that the existence of the Andreev bound state would resolve a number of long standing controversies in the literature of Andreev reflection, as well as defining a route to quantify the strength of spin mixing at superconductor-ferromagnet interfaces. Intriguingly, we find that for high transparency junctions, the spin mixing angle appears to take a relatively narrow range of values across all the samples studied. The ferromagnets we have chosen to study share a common property in terms of their spin arrangement, and our observations may point to the importance of this property in determining the spin mixing angle under these circumstances.

  9. Skyrmion-induced bound states on the surface of 3D Topological Insulators

    NASA Astrophysics Data System (ADS)

    Andrikopoulos, Dimitrios; Soree, Bart

    In this work, we study the interaction between the surface state of a 3D Topological Insulator and a skyrmion magnetic texture. The skyrmion texture couples to the spin of the surface state electron with strength ΔS. Vortex and hedgehog skyrmion and anti-skyrmion structures are considered and their interaction is compared. Due to the vortex structure, the interaction of the in-plane components can be neglected and a step function is used to describe the skyrmion magnetization profile. In the hedgehog case, it is shown that the in-plane components cannot be disregarded and thus a realistic description for the skyrmion is required. Working in the micromagnetic framework, we derive a macrospin description for the skyrmion using the variational principle and then numerically solve for the bound states. It is shown that the existense and properties of these states as a function of skyrmion size, strongly depend on the skyrmion type. Both vortex and hedgehog skyrmions or anti-skyrmions can induce bound states with energies | E | < ΔS . For the hedgehog skyrmion case however, bound state appearance depends on the chirality. Finally, the probability densities in these states are computed and it is demonstrated that the electrons are localized throughout the skyrmion region. Also affiliated with imec, Belgium.

  10. Shiba Bound States across the Mobility Edge in Doped InAs Nanowires

    NASA Astrophysics Data System (ADS)

    Assouline, Alexandre; Feuillet-Palma, Cheryl; Zimmers, Alexandre; Aubin, Hervé; Aprili, Marco; Harmand, Jean-Christophe

    2017-09-01

    We present a study of Andreev quantum dots fabricated with small-diameter (30 nm) Si-doped InAs nanowires where the Fermi level can be tuned across a mobility edge separating localized states from delocalized states. The transition to the insulating phase is identified by a drop in the amplitude and width of the excited levels and is found to have remarkable consequences on the spectrum of superconducting subgap resonances. While at deeply localized levels only quasiparticle cotunneling is observed, for slightly delocalized levels Shiba bound states form and a parity-changing quantum phase transition is identified by a crossing of the bound states at zero energy. Finally, in the metallic regime, single Andreev resonances are observed.

  11. Effects of local periodic driving on transport and generation of bound states

    NASA Astrophysics Data System (ADS)

    Agarwala, Adhip; Sen, Diptiman

    2017-09-01

    We periodically kick a local region in a one-dimensional lattice and demonstrate, by studying wave packet dynamics, that the strength and the time period of the kicking can be used as tuning parameters to control the transmission probability across the region. Interestingly, we can tune the transmission to zero which is otherwise impossible to do in a time-independent system. We adapt the nonequilibrium Green's function method to take into account the effects of periodic driving; the results obtained by this method agree with those found by wave packet dynamics if the time period is small. We discover that Floquet bound states can exist in certain ranges of parameters; when the driving frequency is decreased, these states get delocalized and turn into resonances by mixing with the Floquet bulk states. We extend these results to incorporate the effects of local interactions at the driven site, and we find some interesting features in the transmission and the bound states.

  12. Quasiparticle parity lifetime of bound states in a hybrid superconductor-semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Higginbotham, Andrew; Albrecht, Sven; Kirsanskas, Gediminas; Chang, Willy; Kuemmeth, Ferdinand; Krogstrup, Peter; Jespersen, Thomas; Nygård, Jesper; Flensberg, Karsten; Marcus, Charles

    2015-03-01

    We measure quasiparticle transport in an InAs nanowire that is half-covered with epitaxial superconducting aluminum, then locally gated to form a quantum dot. We observe negative differential conductance at finite source-drain bias, and temperature dependent even-odd alternations in the Coulomb blockade peak spacings at zero bias. These observations can be understood in terms of a mid-gap semiconductor discrete state and a continuum of BCS quasiparticle states. Comparing with simple models, we bound the discrete state's parity lifetime and the quasiparticle temperature. These results indicate that parity fluctuations are slow, and imply Majorana qubit poisoning times on the order of a millisecond. Additional results indicate that the bound states move to zero energy in a magnetic field, qualitatively consistent with expectations for Majorana fermions in a finite system. Research supported by Microsoft Station Q, Danish National Research Foundation, Villum Foundation, Lundbeck Foundation, and the European Commission.

  13. Impurity-induced bound states inside the superconducting gap of FeSe

    NASA Astrophysics Data System (ADS)

    Jiao, Lin; Rößler, Sahana; Koz, Cevriye; Schwarz, Ulrich; Kasinathan, Deepa; Rößler, Ulrich K.; Wirth, Steffen

    2017-09-01

    We investigate the local density of states in the vicinity of a native dumbbell defect arising from an Fe vacancy in FeSe single crystals. The tunneling spectra close to the impurity display two bound states inside the superconducting gap, equally spaced with respect to zero energy but asymmetric in amplitude. Using spin-polarized density functional theory calculations on realistic slab models with an Fe vacancy, we show that such a defect does not induce a local magnetic moment. Therefore, the dumbbell defect is considered as nonmagnetic. Thus, the in-gap bound states emerging from a nonmagnetic defect-induced pair breaking suggest a sign-changing pairing state in this material.

  14. Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling

    SciTech Connect

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco

    2005-08-01

    We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold {approx}-4ln{kappa}). The corresponding meson masses are equal up to and including O({kappa}{sup 3}) and are asymptotically of order -2ln{kappa}-{kappa}{sup 2}. Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order b{kappa}{sup 2}{approx_equal}0.02359{kappa}{sup 2}. In the context of the strong coupling expansion in {kappa}, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger.

  15. Delayed birth of distillable entanglement in the evolution of bound entangled states

    SciTech Connect

    Derkacz, Lukasz; Jakobczyk, Lech

    2010-08-15

    The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is investigated. For the class of bound entangled initial states, we show that the dynamics of closely separated atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the radiation wavelength.

  16. Aharonov-Bohm effect in bound states: Theoretical and experimental status

    NASA Astrophysics Data System (ADS)

    Peshkin, Murray

    1981-01-01

    The Aharonov-Bohm effect has recently been questioned on theoretical and experimental grounds. Such discussions have suffered from ambiguities which resulted from their focusing on scattering states. It is noted here that the bound-state problem is much simpler. To avoid the Aharonov-Bohm effect in theory requires us to abandon the most fundamental ideas of quantum mechanics. The quantization of flux in superconducting rings and Josephson junctions is a powerful experimental confirmation.

  17. L-Enantiomers of Transition State Analogue Inhibitors Bound to Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Rinaldo-Matthis,A.; Murkin, A.; Ramagopal, U.; Clinch, K.; Mee, S.; Evans, G.; Tyler, P.; Furneaux, R.; Almo, S.; Schramm, v.

    2008-01-01

    Human purine nucleoside phosphorylase (PNP) was crystallized with transition-state analogue inhibitors Immucillin-H and DADMe-Immucillin-H synthesized with ribosyl mimics of l-stereochemistry. The inhibitors demonstrate that major driving forces for tight binding of these analogues are the leaving group interaction and the cationic mimicry of the transition state, even though large geometric changes occur with d-Immucillins and l-Immucillins bound to human PNP.

  18. Phase diagram of the electron-doped La2-xCexCuO4 cuprate superconductor from Andreev bound states at grain boundary junctions.

    PubMed

    Wagenknecht, M; Koelle, D; Kleiner, R; Graser, S; Schopohl, N; Chesca, B; Tsukada, A; Goennenwein, S T B; Gross, R

    2008-06-06

    We use quasiparticle tunneling across La2-xCexCuO4 grain boundary junctions to probe the superconducting state and its disappearance with increasing temperature and magnetic field. A zero bias conductance peak due to zero energy surface Andreev bound states is a clear signature of the phase coherence of the superconducting state. Hence, such a peak must disappear at or below the upper critical field Bc2(T). For La2-xCexCuO4 this approach sets a lower bound for Bc2(0) approximately 25 T which is substantially higher than reported previously. The method of probing the superconducting state via Andreev bound states should also be applicable to other cuprate superconductors.

  19. Absence of bound states for waveguides in two-dimensional periodic structures

    SciTech Connect

    Hoang, Vu E-mail: hoang@math.wisc.edu; Radosz, Maria

    2014-03-15

    We study a Helmholtz-type spectral problem in a two-dimensional medium consisting of a fully periodic background structure and a perturbation in form of a line defect. The defect is aligned along one of the coordinate axes, periodic in that direction (with the same periodicity as the background), and bounded in the other direction. This setting models a so-called “soft-wall” waveguide problem. We show that there are no bound states, i.e., the spectrum of the operator under study contains no point spectrum.

  20. Weakly bound states of the He-He-Ca triatomic system

    NASA Astrophysics Data System (ADS)

    Gou, Qingdong; Li, Yong

    2012-01-01

    We investigate for the existence of the weakly bound He-He-Ca molecules. By employing the best empirical interaction between each pair of particles, the Schrödinger equation for the triatomic system is solved using hyperspherical coordinates in the adiabatic approximation. The bound states are found for each of the 3He-3He-40Ca, 3He-4He-40Ca, and 4He-4He-40Ca trimers, respectively. The binding energies of such molecules are estimated. We discuss the features of the channel functions associated with the hyperspherical potential curves of each system to obtain insight into the geometry of the molecules.

  1. Structure of vortex-bound states in spin-singlet chiral superconductors

    NASA Astrophysics Data System (ADS)

    Lee, Darrick; Schnyder, Andreas P.

    2016-02-01

    We investigate the structure of vortex-bound states in spin-singlet chiral superconductors with (dx2-y2±i dx y )-wave and (dx z±i dy z )-wave pairing symmetries. It is found that vortices in the (dx z±i dy z )-wave state bind zero-energy states, which are dispersionless along the vortex line, forming a doubly degenerate Majorana flat band. Vortex-bound states of (dx2-y2±i dx y )-wave superconductors, on the other hand, exist only at finite energy. Using exact diagonalization and analytical solutions of tight-binding Bogoliubov-de Gennes Hamiltonians, we compute the energy spectrum of the vortex-bound states and the local density of states around the vortex and antivortex cores. We find that the tunneling conductance peak of the vortex is considerably broader than that of the antivortex. This difference can be used as a direct signature of the chiral order parameter symmetry.

  2. Molecular Andreev bound states and Majorana modes in a double dot system

    NASA Astrophysics Data System (ADS)

    Vernek, Edson; Silva, Joelson F.

    Nanostructured systems such as quantum dots (QD) connected to superconductors has attracted a lot of attention in the recent years. One of the well known phenomena in such a system is the formation of a pair of bound called Andreev bound states (ABS). Recently, it have been shown that when a QD is coupled to a topological superconductor wire, a Majorana bound state (MBS) leaks from the end of the wire into the dot. The character of these bound states is much reacher in structures like molecules and is far from being completely understood. In this work we study a system composed by a two inter-connected QDs in which one of then is coupled to a normal superconductor and to a normal lead while the other is coupled to a topological superconductor and to a distinct normal metallic lead. We show that in the atomic limit (for small interdot coupling), one of the dot has a pair of ABS whereas the other has a single a MBS. More interestingly, in the molecular regime (large inter-dot coupling) we observe a localized Majorana mode coexisting with a delocalized molecular ABS. We would like to thank financial support from the Brazilian agencies CNPq, CAPES and FAPEMIG.

  3. Revised magnitude-bound relation for the Wabash Valley seismic zone of the central United States

    USGS Publications Warehouse

    Olson, S.M.; Green, R.A.; Obermeier, S.F.

    2005-01-01

    Seismic hazard assessment in the central United States, and in particular the Wabash Valley seismic zone of Indiana-Illinois, frequently relies on empirical estimates of paleoearthquake magnitudes (M). In large part these estimates have been made using the magnitude-bound method. Existing region-specific magnitude-bound relations rely heavily on only a few historical earthquakes in the central United States and eastern Canada that induced reported liquefaction features. Recent seismological studies have suggested smaller magnitudes than previously presumed for some of these earthquakes, however, and other studies have reinterpreted site-to-source distances to liquefaction features associated with some of these earthquakes. In this paper, we re-examine historical earthquakes (M > ???5) that occurred in the central and eastern United States and eastern Canada; some of these earthquakes triggered liquefaction and others did not. Based on our findings, we reinterpret the region-specific magnitude-bound relation for the Wabash Valley. Using this revised magnitude-bound relation, we present magnitude estimates for four prehistoric earthquakes that occurred in the Wabash Valley seismic zone during Holocene time.

  4. Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices

    PubMed

    Curado; Nobre

    2000-12-01

    The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the ground-state degeneracy, at a given hierarchy level n, in terms of contributions due to all hierarchy levels. Such a method may yield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approximation yields lower-bound estimates for the ground-state degeneracies.

  5. Bound exciton and free exciton states in GaSe thin slab

    PubMed Central

    Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng

    2016-01-01

    The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission. PMID:27654064

  6. Bound exciton and free exciton states in GaSe thin slab

    NASA Astrophysics Data System (ADS)

    Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng

    2016-09-01

    The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission.

  7. Majorana vortex-bound states in three-dimensional nodal noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Chang, Po-Yao; Matsuura, Shunji; Schnyder, Andreas P.; Ryu, Shinsei

    2014-11-01

    Noncentrosymmetric superconductors (NCSs), characterized by antisymmetric spin-orbit coupling and a mixture of spin-singlet and spin-triplet pairing components, are promising candidate materials for topological superconductivity. An important hallmark of topological superconductors is the existence of protected zero-energy states at surfaces or in vortex cores. Here we investigate Majorana vortex-bound states in three-dimensional nodal and fully gapped NCSs by combining analytical solutions of Bogoliubov-de Gennes (BdG) equations in the continuum with exact diagonalization of BdG Hamiltonians. We show that depending on the crystal point-group symmetries and the topological properties of the bulk Bogoliubov-quasiparticle wave functions, different types of zero-energy Majorana modes can appear inside the vortex core. We find that for nodal NCSs with tetragonal point group C4 v the vortex states are dispersionless along the vortex line, forming one-dimensional Majorana flat bands, while for NCSs with D4 point-group symmetry the vortex modes are helical Majorana states with a linear dispersion along the vortex line. NCSs with monoclinic point group C2, on the other hand, do not exhibit any zero-energy vortex-bound states. We show that in the case of the C4 v (D4) point group the stability of these Majorana zero modes is guaranteed by a combination of reflection (π rotation), time-reversal, and particle-hole symmetry. Considering continuous deformations of the quasiparticle spectrum in the presence of vortices, we show that the flat-band vortex-bound states of C4 v point-group NCSs can be adiabatically connected to the dispersionless vortex-bound states of time-reversal symmetric Weyl superconductors. Experimental implications of our results for thermal transport and tunneling measurements are discussed.

  8. Bound States of (Anti-)Scalar-Quarks in SU(3)c Lattice QCD

    SciTech Connect

    Iida, H.; Takahashi, T. T.; Suganuma, H.

    2007-06-13

    Light scalar-quarks {phi} (colored scalar particles or idealized diquarks) and their color-singlet hadronic states are studied with quenched SU(3)c lattice QCD in terms of mass generation. We investigate 'scalar-quark mesons' {phi}{dagger}{phi} and 'scalar-quark baryons' {phi}{phi}{phi} as the bound states of scalar-quarks {phi}. We also investigate the bound states of scalar-quarks {phi} and quarks {psi}, i.e., {phi}{dagger}{psi}, {psi}{psi}{phi} and {phi}{phi}{psi}, which we name 'chimera hadrons'. All the new-type hadrons including {phi} are found to have a large mass due to large quantum corrections by gluons, even for zero bare scalar-quark mass m{phi} = 0 at a-1 {approx} 1GeV. We conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects.

  9. Skyrmion-induced bound states on the surface of three-dimensional topological insulators

    SciTech Connect

    Andrikopoulos, Dimitrios De Boeck, Jo; Sorée, Bart

    2016-05-21

    The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Néel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number N{sub Sk}. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region.

  10. Scattering and bound states of spinless particles in a mixed vector-scalar smooth step potential

    SciTech Connect

    Garcia, M.G.; Castro, A.S. de

    2009-11-15

    Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schroedinger-like equation with an effective Rosen-Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and more efficient problem of solving an irrational algebraic equation.

  11. A singular one-dimensional bound state problem and its degeneracies

    NASA Astrophysics Data System (ADS)

    Erman, Fatih; Gadella, Manuel; Tunalı, Seçil; Uncu, Haydar

    2017-08-01

    We give a brief exposition of the formulation of the bound state problem for the one-dimensional system of N attractive Dirac delta potentials, as an N × N matrix eigenvalue problem (Φ A =ω A). The main aim of this paper is to illustrate that the non-degeneracy theorem in one dimension breaks down for the equidistantly distributed Dirac delta potential, where the matrix Φ becomes a special form of the circulant matrix. We then give elementary proof that the ground state is always non-degenerate and the associated wave function may be chosen to be positive by using the Perron-Frobenius theorem. We also prove that removing a single center from the system of N delta centers shifts all the bound state energy levels upward as a simple consequence of the Cauchy interlacing theorem.

  12. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    NASA Astrophysics Data System (ADS)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  13. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    NASA Astrophysics Data System (ADS)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-03-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  14. Topological repulsion between domain walls in magnetic nanowires leading to the formation of bound states.

    PubMed

    Thomas, Luc; Hayashi, Masamitsu; Moriya, Rai; Rettner, Charles; Parkin, Stuart

    2012-05-01

    Head-to-head and tail-to-tail magnetic domain walls in nanowires behave as free magnetic monopoles carrying a single magnetic charge. Since adjacent walls always carry opposite charges, they attract one another. In most cases this long-range attractive interaction leads to annihilation of the two domain walls. Here, we show that, in some cases, a short-range repulsive interaction suppresses annihilation of the walls, even though the lowest energy state is without any domain walls. This repulsive interaction is a consequence of topological edge defects that have the same winding number. We show that the competition between the attractive and repulsive interactions leads to the formation of metastable bound states made up of two or more domain walls. We have created bound states formed from up to eight domain walls, corresponding to the magnetization winding up over four complete 360° rotations.

  15. Skyrmion-induced bound states on the surface of three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Andrikopoulos, Dimitrios; Sorée, Bart; De Boeck, Jo

    2016-05-01

    The interaction between the surface of a 3D topological insulator and a skyrmion/anti-skyrmion structure is studied in order to investigate the possibility of electron confinement due to the skyrmion presence. Both hedgehog (Néel) and vortex (Bloch) skyrmions are considered. For the hedgehog skyrmion, the in-plane components cannot be disregarded and their interaction with the surface state of the topological insulator (TI) has to be taken into account. A semi-classical description of the skyrmion chiral angle is obtained using the variational principle. It is shown that both the hedgehog and the vortex skyrmion can induce bound states on the surface of the TI. However, the number and the properties of these states depend strongly on the skyrmion type and the skyrmion topological number NSk. The probability densities of the bound electrons are also derived where it is shown that they are localized within the skyrmion region.

  16. Two-body bound and edge states in the extended SSH Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Di Liberto, M.; Recati, A.; Carusotto, I.; Menotti, C.

    2017-07-01

    We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized chain with on-site and nearest-neighbor interactions. We find two classes of bound states. The first, similar to the one induced by on-site interactions, has its center of mass on the strong link, whereas the second, existing only thanks to nearest-neighbor interactions, is centered on the weak link. We identify energy crossings between these states and analyse them using exact diagonalization and perturbation theory. In the presence of open boundary conditions, novel strongly-localized edge-bound states appear in the spectrum as a consequence of the interplay between lattice geometry, on-site and nearest-neighbor interactions. Contrary to the case of purely on-site interactions, such EBS persist even in the strongly interacting regime.

  17. Bound states in two-dimensional spin systems near the Ising limit: A quantum finite-lattice study

    SciTech Connect

    Dusuel, Sebastien; Kamfor, Michael; Schmidt, Kai Phillip; Thomale, Ronny; Vidal, Julien

    2010-02-01

    We analyze the properties of low-energy bound states in the transverse-field Ising model and in the XXZ model on the square lattice. To this end, we develop an optimized implementation of perturbative continuous unitary transformations. The Ising model is studied in the small-field limit which is found to be a special case of the toric code model in a magnetic field. To analyze the XXZ model, we perform a perturbative expansion about the Ising limit in order to discuss the fate of the elementary magnon excitations when approaching the Heisenberg point.

  18. A margin based approach to determining sample sizes via tolerance bounds.

    SciTech Connect

    Newcomer, Justin T.; Freeland, Katherine Elizabeth

    2013-09-01

    This paper proposes a tolerance bound approach for determining sample sizes. With this new methodology we begin to think of sample size in the context of uncertainty exceeding margin. As the sample size decreases the uncertainty in the estimate of margin increases. This can be problematic when the margin is small and only a few units are available for testing. In this case there may be a true underlying positive margin to requirements but the uncertainty may be too large to conclude we have sufficient margin to those requirements with a high level of statistical confidence. Therefore, we provide a methodology for choosing a sample size large enough such that an estimated QMU uncertainty based on the tolerance bound approach will be smaller than the estimated margin (assuming there is positive margin). This ensures that the estimated tolerance bound will be within performance requirements and the tolerance ratio will be greater than one, supporting a conclusion that we have sufficient margin to the performance requirements. In addition, this paper explores the relationship between margin, uncertainty, and sample size and provides an approach and recommendations for quantifying risk when sample sizes are limited.

  19. A restricted branch and bound approach for setting the left turn phase sequences in signalized networks

    SciTech Connect

    Pillai, R.S.; Rathi, A.K.; Cohen, S.

    1994-07-01

    The main objective of synchronized signal timing is to keep traffic moving along arterial in platoons throughout the signal system by proper setting of left turn phase sequence at signals along the arterials/networks. The synchronization of traffic signals located along the urban/suburban arterials in metropolitan areas is perhaps one of the most cost-effective method for improving traffic flow along these streets. The popular technique for solving this problem formulates it as a mixed integer linear program and used Land and Powell branch and bound search to arrive at the optimal solution. The computation time tends to be excessive for realistic multiarterial network problems due to the exhaustive nature of the branch and bound search technique. Furthermore, the Land and Powell branch and bound code is known to be numerically unstable, which results in suboptimal solutions for network problems with a range on the cycle time variable. This paper presents the development of a fast and numerically stable heuristic, developed using MINOS linear programming solver. The new heuristic can generate optimal/near-optimal solutions in a fraction of the time needed to compute the optimal solution by Land and Powell code. The solution technique is based on restricted search using branch and bound technique. The efficiency of the heuristic approach is demonstrated by numerical results for a set of test problems.

  20. Culture-bound syndrome and a culturally sensitive approach: from a viewpoint of medical anthropology.

    PubMed

    Shimoji, A; Miyakawa, T

    2000-08-01

    Some aspects of the culture-bound syndrome are presented for discussion. From the psychiatric and medical anthropological viewpoints, kamidaari is described as an initiatory illness for seeing a shaman, and focus on clinical realities developing between different therapeutic subcultures in the same culture and the complementary practices of two epistemological ones, namely, the shamanistic and modern psychiatric system in the shamanistic climate. It is suggested that the culture-bound syndrome that reflects cultural influences on disease patterns and renders them difficult to place in a universal classificatory system should be seen as a vernacular bricolage or as tactics used by people within the web of their own local culture of origin. Therapists who treat patients in a cross-epistemological milieu should be aware of the subcultural-epistemological issues that may affect the clinical process. It should be recognized that, depending on the nature of a particular psychiatric crisis, the clinical encounter is straddling the boundaries of multiple clinical realities. At every stage in the clinical field, there is an intersection, consonance, or interruption of rejoinders in the open dialog by all those engaged in the clinical time. Aspects of climatic, culturally sensitive psychotherapy will be described, and the concept of the culture-bound syndrome will be reconsidered. Our approach could be seen as 'situation- and fudo-bound'.

  1. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    SciTech Connect

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    2016-02-01

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improves upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.

  2. New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints

    DOE PAGES

    Munoz, F. D.; Hobbs, B. F.; Watson, J. -P.

    2016-02-01

    A novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems is proposed and it considers a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen’s inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improvesmore » upon the standard Benders’ algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen’s inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. But, the decomposition phase is required to attain optimality gaps. Moreover, use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately.« less

  3. Study of bound states in 10Be by one neutron removal reactions of 11Be

    NASA Astrophysics Data System (ADS)

    Johansen, Jacob G.; Bildstein, V.; Borge, M. J. G.; Cubero, M.; Diriken, J.; Elseviers, J.; Fraile, L. M.; Fynbo, H. O. U.; Gaffney, L. P.; Gernhäuser, R.; Jonson, B.; Koldste, G. T.; Konki, J.; Kröll, T.; Krücken, R.; Mücher, D.; Nilsson, T.; Nowak, K.; Pakarinen, J.; Pesudo, V.; Raabe, R.; Riisager, K.; Seidlitz, M.; Tengblad, O.; Törnqvist, H.; Voulot, D.; Warr, N.; Wimmer, K.; De Witte, H.

    2017-04-01

    The bound states of 10Be have been studied by removing single neutrons from 11Be nuclei. A 2.8 MeV u–1 beam of 11Be was produced at ISOLDE, CERN and directed on to both proton and deuteron targets inducing one-neutron removal reactions. Charged particles were detected to identify the two reaction channels (d, t) and (p, d), and the individual states in 10Be were identified by gamma detection. All bound states but one were populated and identified in the (d, t) reaction. The combination of REX-ISOLDE and MINIBALL allowed for a clean separation of the high-lying states in 10Be. This is the first time these states have been separated in a reaction experiment. Differential cross sections have been calculated for all the reaction channels and compared to DWBA calculations. Spectroscopic factors are derived and compared to values from the litterature. While the overall agreement between the spectrocopic factors is poor, the ratio between the ground state and the first excited state is in agreement with the previous measured ones. Furthermore, a significant population of the {2}2+ state is observed, which which may indicate the presence of multi-step processes at our beam energy.

  4. Bound states in the continuum in spin-orbit-coupled atomic systems

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Konotop, Vladimir V.; Torner, Lluis

    2017-09-01

    We show that the interplay between spin-orbit coupling and Zeeman splitting in atomic systems can lead to the existence of bound states in the continuum (BICs) supported by trapping potentials. Such states have energies falling well within the continuum spectrum, but nevertheless they are localized and fully radiationless. We report the existence of BICs, in some cases in exact analytical form, in systems with tunable spin-orbit coupling and show that the phenomenon is physically robust. We also found that BIC states may be excited in spin-orbit-coupled Bose-Einstein condensates, where under suitable conditions they may be metastable with remarkably long lifetimes.

  5. Two qubits of a W state violate Bell's inequality beyond Cirel'son's bound

    NASA Astrophysics Data System (ADS)

    Cabello, Adán

    2002-10-01

    It is shown that the correlations between two qubits selected from a trio prepared in a W state violate the Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state. Such a violation beyond Cirel'son's bound is smaller than the one achieved by two qubits selected from a trio in a Greenberger-Horne-Zeilinger state [A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. However, it has the advantage that all local observers can know from their own measurements whether or not their qubits belong to the selected pair.

  6. Bound states in the transfer matrix spectrum for general lattice ferromagnetic spin systems at high temperature

    PubMed

    Schor; O'Carroll

    2000-08-01

    We obtain different properties of general d dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region (beta<1). Each model is characterized by a single site a priori spin distribution, taken to be even. We state our results in terms of the parameter alpha=-3(2) where denotes the kth moment of the a priori distribution. Associated with the model is a lattice quantum field theory that is known to contain particles. We show that for alpha>0, beta small, there exists a bound state with mass below the two-particle threshold. For alpha<0, bound states do not exist. The existence of the bound state has implications on the decay of correlations, i.e., the four-point function decays at a slower rate than twice that of the two-point function. These results are obtained using a lattice version of the Bethe-Salpeter equation in the ladder approximation. The existence and nonexistence results generalize to N-component models with rotationally invariant a priori spin distributions.

  7. Transport through a quantum dot coupled to two Majorana bound states

    NASA Astrophysics Data System (ADS)

    Zeng, Qi-Bo; Chen, Shu; You, L.; Lü, Rong

    2017-08-01

    We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2 π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4 π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD-Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum.

  8. Gauge invariant formulation of 3 γ decay of particle-antiparticle bound states

    NASA Astrophysics Data System (ADS)

    Blankleider, B.; Kvinikhidze, A. N.; Silagadze, Z. K.

    2015-08-01

    We construct the gauge invariant three-photon decay amplitude of particle-antiparticle bound states modeled by the Dyson-Schwinger and Bethe-Salpeter equations. Application to the quark-antiquark (q q ¯ ) bound states is emphasized. An essential aspect of our formulation is that it applies to any underlying quantum field theoretic model of the q q ¯ system, and not just to models, like exact QCD, where the quark self-energy Σ couples to the electromagnetic field solely via dressed quark propagators. In this way, applications to effective field theories and other QCD motivated models are envisioned. The three-photon decay amplitude is constructed by attaching currents to all possible places in the Feynman diagrams contributing to the dressed quark propagator. The gauge invariance of our construction is thus a direct consequence of respecting the underlying structure of the quantum field theory determining the dynamics. In the resultant expression for the three-photon decay amplitude, all the basic ingredients consisting of the bound-state wave function, the final-state interaction q q ¯ t matrix, the dressed quark propagator, and dressed quark currents, are determined by a universal Bethe-Salpeter kernel.

  9. Andreev reflection and bound states in topological insulator based planar and step Josephson junctions

    NASA Astrophysics Data System (ADS)

    Choudhari, Tarun; Deo, Nivedita

    2017-01-01

    A superconductor-topological insulator-superconductor (S/TI/S) junction having normal region at angle θ is studied theoretically to investigate the junction angle dependency of the Andreev reflection and the formation of the Andreev bound states in the step and planar S/TI/S structures. It is found that the Andreev reflection becomes θ dependent only in the presence of the potential barrier at the TI/S interface. In particular, the step and planar TI/S junction have totally different conductive behavior with bias voltage and potential barrier in the regime of retro and specular Andreev reflection. Interestingly, we find that the elliptical cross section of Dirac cone, an important feature of topological insulator with step surface defect, affects the Fabry-Perot resonance of the Andreev reflection induced Andreev bound states (which become Majorana zero energy states at low chemical potential) in the step S/TI/S structure. Unlike the usual planar S/TI/S structures, we find these ellipticity affected Andreev bound states lead to non-monotonic Josephson super-current in the step S/TI/S structure whose non-monotonicity can be controlled with the use of the potential barrier, which may find applications in nanoelectronics.

  10. Energy spectrum of the two-magnon bound states in the Heisenberg-Ising antiferromagnet on the square lattice

    NASA Astrophysics Data System (ADS)

    Hamer, C. J.

    2009-06-01

    The energy spectra of the two-magnon bound states in the Heisenberg-Ising antiferromagnet on the square lattice are calculated using series expansion methods. The results confirm an earlier spin-wave prediction of Oguchi and Ishikawa that the bound states vanish into the continuum before the isotropic Heisenberg limit is reached.

  11. Optical bound states in the continuum in a single slab with zero refractive index

    NASA Astrophysics Data System (ADS)

    Li, LiangSheng; Zhang, Jing; Wang, Chong; Zheng, Ning; Yin, Hongcheng

    2017-07-01

    We have investigated theoretically the reflectivity, quality factor, and eigenfrequency for a single slab with zero refractive index. We demonstrate that optical bound states in the continuum can be achieved by the various zero-refractive-index slabs made of epsilon-near-zero, impedance-machted zero-index, or mu-near-zero materials. Moreover, by analytically investigating the frequency of the resonant reflection and resonant transmission, when the quality factor becomes infinity, these two frequencies are precisely equal. For the mu-near-zero slab, the bound states in the continuum are observed at arbitrary incident angles by analyzing the behaviors of complex eigenfrequencies. Our findings may lead to unprecedented high-quality resonators in metamaterials.

  12. Ultrasensitive optical absorption in graphene based on bound states in the continuum

    PubMed Central

    Zhang, Mingda; Zhang, Xiangdong

    2015-01-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes. Based on such a bound state, we have realized strong optical absorption in the monolayer graphene. Such a strong optical absorption exhibits many advantages. It is ultrasensitive to the wavelength because the Q factor of the absorption peak can be more than 2000. By taking suitable BICs, the selective absorption for S and P waves has not only been realized, but also all-angle absorption for the S and P waves at the same time has been demonstrated. We have also found that ultrasensitive strong absorptions can appear at any wavelength from mid-infrared to far-infrared band. These phenomena are very beneficial to biosensing, perfect filters and waveguides. PMID:25652437

  13. Ground-state properties of weakly bound helium-alkali trimers.

    PubMed

    Stipanović, P; Vranješ Markić, L; Zarić, D; Boronat, J

    2017-01-07

    Weakly bound triatomic molecules consisting of two helium atoms and one alkali metal atom are studied by means of the diffusion Monte Carlo method. We determined the stability of (4)He2A, (4)He(3)HeA, and (3)He2A, where A is one of the alkali atoms Li, Na, K, Rb, or Cs. Some of the trimers with (3)He are predicted to be self-bound for the first time, but this is observed to be dependent on the He-A interaction potential model. In addition to the ground-state energy of the trimers, we determined their density, radial, and angular distributions. Many of them are spatially very extended, which qualifies them as quantum halo states.

  14. Ground-state properties of weakly bound helium-alkali trimers

    NASA Astrophysics Data System (ADS)

    Stipanović, P.; Vranješ Markić, L.; Zarić, D.; Boronat, J.

    2017-01-01

    Weakly bound triatomic molecules consisting of two helium atoms and one alkali metal atom are studied by means of the diffusion Monte Carlo method. We determined the stability of 4He2A, 4He3HeA, and 3He2A, where A is one of the alkali atoms Li, Na, K, Rb, or Cs. Some of the trimers with 3He are predicted to be self-bound for the first time, but this is observed to be dependent on the He-A interaction potential model. In addition to the ground-state energy of the trimers, we determined their density, radial, and angular distributions. Many of them are spatially very extended, which qualifies them as quantum halo states.

  15. Bound States Energies of a Harmonic Oscillator Perturbed by Point Interactions

    NASA Astrophysics Data System (ADS)

    Ferkous, N.; Boudjedaa, T.

    2017-03-01

    We determine explicitly the exact transcendental bound states energies equation for a one-dimensional harmonic oscillator perturbed by a single and a double point interactions via Green’s function techniques using both momentum and position space representations. The even and odd solutions of the problem are discussed. The corresponding limiting cases are recovered. For the harmonic oscillator with a point interaction in more than one dimension, divergent series appear. We use to remove this divergence an exponential regulator and we obtain a transcendental equation for the energy bound states. The results obtained here are consistent with other investigations using different methods. Supported by the Algerian Ministry of Higher Education and Scientific Research under the CNEPRU project No. D01720140001

  16. Robustness of Majorana bound states in the short-junction limit

    NASA Astrophysics Data System (ADS)

    Sticlet, Doru; Nijholt, Bas; Akhmerov, Anton

    2017-03-01

    We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is relevant for the recent experiments using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of the magnetic field is controlled by the material parameters only: g factor, effective electron mass, and the semiconductor-superconductor interface transparency.

  17. Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions

    NASA Astrophysics Data System (ADS)

    Deacon, R. S.; Wiedenmann, J.; Bocquillon, E.; Domínguez, F.; Klapwijk, T. M.; Leubner, P.; Brüne, C.; Hankiewicz, E. M.; Tarucha, S.; Ishibashi, K.; Buhmann, H.; Molenkamp, L. W.

    2017-04-01

    Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency fJ rather than conventional emission at fJ. Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency fJ/2 . The linewidths of emission lines indicate a coherence time of 0.3-4 ns for the fJ/2 line, much shorter than for the fJ line (3-4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.

  18. Large-scale maximal entanglement and Majorana bound states in coupled circuit quantum electrodynamic systems

    NASA Astrophysics Data System (ADS)

    Hwang, Myung-Joong; Choi, Mahn-Soo

    2013-03-01

    We study the effect of ultrastrong cavity-qubit coupling on the low-lying excitations of a chain of coupled circuit quantum electrodynamic (QED) systems. We show that, in the presence of the onsite ultrastrong coupling, the photon hopping between cavities can be mapped to the Ising interaction between the lowest two levels of individual circuit QED of the chain. Based on our mapping, we predict two nearly degenerate ground states whose wave functions involve maximal entanglement between the macroscopic quantum states of the cavities and the states of qubits and identify that they are mathematically equivalent to Majorana bound states. Further, we devise a scheme for the dispersive measurement of the ground states using an additional resonator attached to one end of the circuit QED chain. Finally, we discuss the effects of disorders and local noises on the coherence of the ground states.

  19. Differential dynamics of RAS isoforms in GDP- and GTP-bound states.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2015-06-01

    RAS subfamily proteins regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Different RAS isoforms, though structurally similar, exhibit functional specificity and are associated with different types of cancers and developmental disorders. Understanding the dynamical differences between the isoforms is crucial for the design of inhibitors that can selectively target a particular malfunctioning isoform. In this study, we provide a comprehensive comparison of the dynamics of all the three RAS isoforms (HRAS, KRAS, and NRAS) using extensive molecular dynamics simulations in both the GDP- (total of 3.06 μs) and GTP-bound (total of 2.4 μs) states. We observed significant differences in the dynamics of the isoforms, which rather interestingly, varied depending on the type of the nucleotide bound and the simulation temperature. Both SwitchI (Residues 25-40) and SwitchII (Residues 59-75) differ significantly in their flexibility in the three isoforms. Furthermore, Principal Component Analysis showed that there are differences in the conformational space sampled by the GTP-bound RAS isoforms. We also identified a previously unreported pocket, which opens transiently during MD simulations, and can be targeted to regulate nucleotide exchange reaction or possibly interfere with membrane localization. Further, we present the first simulation study showing GDP destabilization in the wild-type RAS protein. The destabilization of GDP/GTP occurred only in 1/50 simulations, emphasizing the need of guanine nucleotide exchange factors (GEFs) to accelerate such an extremely unfavorable process. This observation along with the other results presented in this article further support our previously hypothesized mechanism of GEF-assisted nucleotide exchange.

  20. Approaching the Cramér–Rao Bound in Weak Lensing with PDF Symmetrization

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Pengjie; Luo, Wentao

    2017-01-01

    Weak lensing statistics is typically measured as the weighted sum of shear estimators or their products (shear–shear correlation). The weighting schemes are designed with a view to minimizing the statistical error without introducing systematic errors. It would be ideal to approach the Cramér–Rao bound (the lower bound of the statistical uncertainty) in shear statistics, though it is generally difficult to do so in practice. The reasons may include difficulties in galaxy shape measurement, inaccurate knowledge of the probability distribution function (PDF) of the shear estimator, misidentification of point sources as galaxies, etc. Using the shear estimators defined by Zhang et al., we show that one can overcome these problems, and allow shear measurement accuracy to approach the Cramér–Rao bound. This can be achieved by symmetrizing the PDF of the shear estimator, or the joint PDF of shear estimator pairs (for shear–shear correlation), without any prior knowledge of the PDF. Using simulated galaxy images, we demonstrate that under general observing conditions, this idea works as expected: it minimizes the statistical uncertainty without introducing systematic error.

  1. Vertical D4-D2-D0 Bound States on K3 Fibrations and Modularity

    NASA Astrophysics Data System (ADS)

    Bouchard, Vincent; Creutzig, Thomas; Diaconescu, Duiliu-Emanuel; Doran, Charles; Quigley, Callum; Sheshmani, Artan

    2017-03-01

    An explicit formula is derived for the generating function of vertical D4-D2-D0 bound states on smooth K3 fibered Calabi-Yau threefolds, generalizing previous results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong modularity properties, as predicted by string theory. This leads to a new construction of vector valued modular forms which exhibit some of the features of a generalized Hecke transform.

  2. Electroproduction of strangeness on (Lambda)H-3,4 bound states on helium

    SciTech Connect

    F. Dohrmann; D. Abbott; A. Ahmidouch; P. Ambrozewicz; C. S. Armstrong; J. Arrington; R. Asaturyan; K. Assamagan; S. Avery; K. Bailey; S. Beedoe; H. Bitao; H. Breuer; D. S. Brown; R. Carlini; J. Cha; N. Chant; E. Christy; A. Cochran; L. Cole; G. Collins; C. Cothran; J. Crowder; W. J. Cummings; S. Danagoulian; F. Duncan; J. Dunne; D. Dutta; T. Eden; M. Elaasar; R. Ent; L. Ewell; H. Fenker; H. T. Fortune; Y. Fujii; L. Gan; H. Gao; K. Garrow; D. F. Geesaman; P. Gueye; K. Gustafsson; K. Hafidi; J. O. Hansen; W. Hinton; H. E. Jackson; H. Juengst; C. Keppel; A. Klein; D. Koltenuk; Y. Liang; J. H. Liu; A. Lung; D. Mack; R. Madey; P. Markowitz; C. J. Martoff; D. Meekins; J. Mitchell; T. Miyoshi; H. Mkrtchyan; R. Mohring; S. K. Mtingwa; B. Mueller; T. G. O'Neill; G. Niculescu; I. Niculescu; D. Potterveld; J. W. Price; B. A. Raue; P. E. Reimer; J. Reinhold; J. Roche; P. Roos; M. Sarsour; Y. Sato; G. Savage; R. Sawafta; R. E. Segel; A. Yu. Semenov; S. Stepanyan; V. Tadevosian; S. Tajima; L. Tang; B. Terburg; A. Uzzle; S. Wood; H. Yamaguchi; C. Yan; C. Yan; L. Yuan; M. Zeier; B. Zeidman; B. Zihlmann

    2005-05-01

    The A(e,eK+)X reaction has been investigated at Jefferson Laboratory. Data were taken for Q{sup 2} approx. 0.35 GeV{sup 2} at a beam energy of 3.245 GeV for 1H,3He and 4He targets. Evidence for Lambda-hypernuclear bound states is seen for 3,4He targets. This is the first time that the electroproduction of these hypernuclei has been observed.

  3. Scalar vertex operator for bound-state QED in the Coulomb gauge

    SciTech Connect

    Holmberg, Johan

    2011-12-15

    Adkins's result [Phys. Rev. D 34, 2489 (1986)] for the time component of the renormalized vertex operator in Coulomb-gauge QED is separated according to its tensor structure and some of the Feynman parameter integrals are carried out analytically, yielding a form suited for numerical bound-state QED calculations. This modified form is applied to the evaluation of the self-energy shift to the binding energy in hydrogenic ions of high nuclear charge.

  4. Bound state, phase separation and superconductivity in presence of Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kapri, Priyadarshini; Basu, Saurabh

    2017-06-01

    We have investigated the phase diagram for the t - J model at low electronic densities in presence of Rashba spin-orbit coupling (RSOC). We have rigorously derived a bound state criterion which arises out of a competition between the kinetic energy of the electrons and the exchange coupling between them. Further, we have obtained that the phase diagram consists of three phases, namely, a gas of electrons, a gas of bound pairs, and a fully phase separated state. Subsequently an extension of the pairing scenario is done at finite densities by solving a BCS gap equation. Finite superconducting correlations are observed for J values much lower than that required for the formation of a single bound pair, thereby indicating that pairing in a many particle environment requires weaker interaction strengths than that in the dilute case. We have further obtained that the RSOC increases the transition temperature for a p-wave pairing state, while it diminishes the same for an s-wave pairing correlations.

  5. Coherent-structure theory and bound-state formation in electrified falling films

    NASA Astrophysics Data System (ADS)

    Lin, Te-Sheng; Tseluiko, Dmitri; Blyth, Mark; Kalliadasis, Serafim

    2015-11-01

    We consider a perfectly conducting viscous liquid film flowing down an inclined wall and subjected to a normal electric filed. The electric field introduces a destabilizing non-local term in the long-wave evolution equation and the solutions may evolve into arrays of interacting pulses. We develop a weak-interaction theory for these pulses using elements from previous coherent-structure interaction theories we have developed. We show that the standard first-neighbor approximation is no longer valid and it is essential to take into account long-range interactions. We also develop numerical continuation techniques to explore bifurcation diagrams in systems possessing translational symmetry, including traveling waves and spatially varying time-periodic solutions. We find that each bound state bifurcates from the primary branch when continuing with respect to the domain size, and we then construct full bifurcation diagrams taking into account all the bound states. Finally, we compare the bound states for the long-wave evolution equation with the ones found in Stokes calculations and find excellent agreement.

  6. Conformation-Selective Resonant Photoelectron Spectroscopy via Dipole-Bound States of Cold Anions.

    PubMed

    Huang, Dao-Ling; Liu, Hong-Tao; Ning, Chuan-Gang; Wang, Lai-Sheng

    2015-06-18

    Molecular conformation is important in chemistry and biochemistry. Conformers connected by low energy barriers can only be observed at low temperatures and are difficult to be separated. Here we report a new method to obtain conformation-selective spectroscopic information about dipolar molecular radicals via dipole-bound excited states of the corresponding anions cooled in a cryogenic ion trap. We observed two conformers of cold 3-hydroxyphenoxide anions [m-HO(C6H4)O(-)] in high-resolution photoelectron spectroscopy and measured different electron affinities, 18,850(8) and 18,917(5) cm(-1), for the syn and anti 3-hydroxyphenoxy radicals, respectively. We also observed dipole-bound excited states for m-HO(C6H4)O(-) with different binding energies for the two conformers due to the different dipole moments of the corresponding 3-hydroxyphenoxy radicals. Excitations to selected vibrational levels of the dipole-bound states result in conformation-selective photoelectron spectra. This method should be applicable to conformation-selective spectroscopic studies of any anions with dipolar neutral cores.

  7. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng

    2017-07-01

    We report a photoelectron imaging and photodetachment study of cryogenically cooled 3-hydroxyphenoxide (3HOP) anions, m-HO(C6H4)O-. In a previous preliminary study, two conformations of the cold 3HOP anions with different dipole bound states were observed [D. L. Huang et al., J. Phys. Chem. Lett. 6, 2153 (2015)]. Five near-threshold vibrational resonances were revealed in the photodetachment spectrum from the dipole-bound excited states of the two conformations. Here, we report a more extensive investigation of the two conformers with observation of thirty above-threshold vibrational resonances in a wide spectral range between 18 850 and 19 920 cm-1 (˜1000 cm-1 above the detachment thresholds). By tuning the detachment laser to the vibrational resonances in the photodetachment spectrum, high-resolution conformation-selective resonant photoelectron images are obtained. Using information of the autodetachment channels and theoretical vibrational frequencies, we are able to assign the resonant peaks in the photodetachment spectrum: seventeen are assigned to vibrational levels of anti-3HOP, eight to syn-3HOP, and five to overlapping vibrational levels of both conformers. From the photodetachment spectrum and the conformation-selective resonant photoelectron spectra, we have obtained fourteen fundamental vibrational frequencies for the neutral syn- and anti-m-HO(C6H4)Oṡ radicals. The possibility to produce conformation-selected neutral beams using resonant photodetachment via dipole-bound excited states of anions is discussed.

  8. Manifestations of Efimov states in three-body bound levels and continua

    NASA Astrophysics Data System (ADS)

    Greene, Chris H.

    2007-04-01

    In 1969, Vitaly Efimov stunned nuclear physicists with a paper that made a bizarre prediction: that a system of 3 uncharged particles can possess an infinite number of weakly bound states, even when none of its 2-particle subsystems are sufficiently attracted to one another to form even one bound state. This counterintuitive effect was initially controversial, but subsequent theoretical studies of 3-body nuclear states as well as analogous states for atoms and molecules confirmed Efimov's universal prediction. Until last year, these states had little or no experimental evidence, but their first confirmation has now been reported.[1] In the meantime theoretical understanding of Efimov states and their implications for seemingly unrelated observables like 3-body recombination has been making exciting advances.[2] This invited talk will summarize our present understanding and recent generalizations, describe an intuitive way of visualizing the Efimov effect, and review its implications for modern day experiments in ultracold quantum gases that manipulate Fano-Feshbach resonances. [1] T. Kraemer et al., Nature 440, 315 (2006). [2] B. D. Esry and C. H. Greene, Nature 440, 289 (2006).

  9. Supersymmetrical bounding of asymmetric states and quantum phase transitions by anti-crossing of symmetric states

    PubMed Central

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    Von Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices. The lattices consisted of inhomogeneous strain-like phases of triangular solitons. The resonance created two-dimensional, inhomogeneously deformed photonic graphene. All parent eigenstates were annihilated. Eigenstates of mildly strained solitons were annihilated at similar rates through one tail and generated Hermitian bounded eigenstates. The strongly strained solitons with positive phase defects were annihilated at exponential rates through one tail, which bounded eigenstates through non-Hermitianally generated exceptional points. Supersymmetry was evident, with preservation of the shapes and relative phase differences of the parent solitons. Localizations of energies generated from annihilations of mildly and strongly strained soliton eigenstates were responsible for geometrical (Berry) and topological phase transitions, respectively. Both contributed to generating a quantum Zeno phase, whereas only strong twists generated topological (Anderson) localization. Anti-bunching-like condensation was also observed. PMID:27966596

  10. Supersymmetrical bounding of asymmetric states and quantum phase transitions by anti-crossing of symmetric states

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-12-01

    Von Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices. The lattices consisted of inhomogeneous strain-like phases of triangular solitons. The resonance created two-dimensional, inhomogeneously deformed photonic graphene. All parent eigenstates were annihilated. Eigenstates of mildly strained solitons were annihilated at similar rates through one tail and generated Hermitian bounded eigenstates. The strongly strained solitons with positive phase defects were annihilated at exponential rates through one tail, which bounded eigenstates through non-Hermitianally generated exceptional points. Supersymmetry was evident, with preservation of the shapes and relative phase differences of the parent solitons. Localizations of energies generated from annihilations of mildly and strongly strained soliton eigenstates were responsible for geometrical (Berry) and topological phase transitions, respectively. Both contributed to generating a quantum Zeno phase, whereas only strong twists generated topological (Anderson) localization. Anti-bunching-like condensation was also observed.

  11. Effects of an intense, high-frequency laser field on bound states in Ga1 - xInxNyAs1 - y/GaAs double quantum well.

    PubMed

    Ungan, Fatih; Yesilgul, Unal; Sakiroğlu, Serpil; Kasapoglu, Esin; Erol, Ayse; Arikan, Mehmet Cetin; Sarı, Huseyin; Sökmen, Ismail

    2012-10-31

    Within the envelope function approach and the effective-mass approximation, we have investigated theoretically the effect of an intense, high-frequency laser field on the bound states in a GaxIn1 - xNyAs1 - y/GaAs double quantum well for different nitrogen and indium mole concentrations. The laser-dressed potential, bound states, and squared wave functions related to these bound states in Ga1 - xInxNyAs1 - y/GaAs double quantum well are investigated as a function of the position and laser-dressing parameter. Our numerical results show that both intense laser field and nitrogen (indium) incorporation into the GaInNAs have strong influences on carrier localization.

  12. Bound states in the continuum in open quantum billiards with a variable shape

    SciTech Connect

    Sadreev, Almas F.; Bulgakov, Evgeny N.; Rotter, Ingrid

    2006-06-15

    We show the existence of bound states in the continuum (BICs) in quantum billiards (QBs) that are opened by attaching single-channel leads to them. They may be observed by varying an external parameter continuously, e.g., the shape of the QB. At some values of the parameter, resonance states with vanishing decay width (the BICs) occur. They are localized almost completely in the interior of the closed system. The phenomenon is shown analytically to exist in the simplest case of a two level QB and is complemented by numerical calculations for a real QB.

  13. Quartified leptonic color, bound states, and future electron-positron collider

    NASA Astrophysics Data System (ADS)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2017-06-01

    The [ SU (3) ] 4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU (2) gauge symmetry, which becomes strong at the keV scale. It also predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). However, just as J / ψ and ϒ appeared as sharp resonances in e-e+ colliders of the 20th century, the corresponding 'hemionium' states are expected at a future e-e+ collider of the 21st century.

  14. Revisiting Quantum Discord for Two-Qubit X States: The Error Bound to an Analytical Formula

    NASA Astrophysics Data System (ADS)

    Namkung, Min; Chang, Jinho; Shin, Jaehee; Kwon, Younghun

    2015-09-01

    In this article, we investigate the error bound of quantum discord, obtained from the analytic formula of Ali et al. (Phys. Rev. A 81, 042105, 2010) for the case of general X states and from the analytic formula of Fanchini et al. (Phys. Rev. A 81, 052107, 2010) for the case of symmetric X states. For this purpose we consider 3-element POVM. We find that the results of Ali et al. and Fanchini et al. may have the worst-case errors of 0.004565 and 0.0009, respectively.

  15. Observation of Surface Andreev Bound States of Superfluid {sup 3}He by Transverse Acoustic Impedance Measurements

    SciTech Connect

    Aoki, Y.; Wada, Y.; Saitoh, M.; Nomura, R.; Okuda, Y.; Nagato, Y.; Yamamoto, M.; Higashitani, S.; Nagai, K.

    2005-08-12

    Complex transverse acoustic impedance of the superfluid {sup 3}He-B was measured at the frequencies of 10 to 80 MHz at 17.0 bar by a cw bridge method. The observed temperature dependence was well explained by the quasiclassical theory with random S-matrix model for a diffusive surface. The temperature dependence was influenced by pair breaking and by quasiparticle density of states at the surface, which was drastically modified from the bulk one by the presence of surface Andreev bound states.

  16. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng

    2017-01-01

    The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.

  17. Repulsively bound exciton-biexciton states in high-spin fermions in optical lattices

    SciTech Connect

    Argueelles, A.; Santos, L.

    2011-03-15

    We show that the interplay between spin-changing collisions and quadratic Zeeman coupling provides a mechanism for the formation of repulsively bound composites in high-spin fermions, which we illustrate by considering spin flips in an initially polarized hard-core one-dimensional Mott insulator of spin-3/2 fermions. We show that after the flips the dynamics is characterized by the creation of two types of exciton-biexciton composites. We analyze the conditions for the existence of these bound states and discuss their intriguing properties. In particular we show that the effective mass and stability of the composites depends nontrivially on spin-changing collisions, on the quadratic Zeeman effect, and on the initial exciton localization. Finally, we show that the composites may remain stable against inelastic collisions, opening the possibility of interesting quantum composite phases.

  18. Classification of two-dimensional topological crystalline superconductors and Majorana bound states at disclinations

    NASA Astrophysics Data System (ADS)

    Benalcazar, Wladimir A.; Teo, Jeffrey C. Y.; Hughes, Taylor L.

    2014-06-01

    We classify discrete-rotation symmetric topological crystalline superconductors (TCS) in two dimensions and provide the criteria for a zero-energy Majorana bound state (MBS) to be present at composite defects made from magnetic flux, dislocations, and disclinations. In addition to the Chern number that encodes chirality, discrete rotation symmetry further divides TCS into distinct stable topological classes according to the rotation eigenspectrum of Bogoliubov-de Gennes quasiparticles. Conical crystalline defects are shown to be able to accommodate robust MBS when a certain combination of these bulk topological invariants is nontrivial as dictated by the index theorems proved within. The number parity of MBS is counted by a Z2-valued index that solely depends on the disclination and the topological class of the TCS. We also discuss the implications for corner-bound Majorana modes on the boundary of topological crystalline superconductors.

  19. Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states.

    PubMed

    Kuppuraj, Gopi; Kruise, Dennis; Yura, Kei

    2014-11-26

    Metabolic enzymes utilize the cofactor flavin adenine dinucleotide (FAD) to catalyze essential biochemical reactions. Because these enzymes have been implicated in disease pathways, it will be necessary to target them via FAD-based structural analogues that can either activate/inhibit the enzymatic activity. To achieve this, it is important to explore the conformational space of FAD in the enzyme-bound and free states. Herein, we analyze X-ray crystallographic data of the enzyme-bound FAD conformations and sample conformations of the molecule in explicit water by molecular dynamics (MD) simulations. Enzyme-bound FAD conformations segregate into five distinct groups based on dihedral angle principal component analysis (PCA). A notable feature in the bound FADs is that the adenine base and isoalloxazine ring are oppositely oriented relative to the pyrophosphate axis characterized by near trans hypothetical dihedral angle "δV" values. Not surprisingly, MD simulations in water show final compact but not perfectly stacked ring structures in FAD. Simulation data did not reveal noticeable changes in overall conformational dynamics of the dinucleotide in reduced and oxidized forms and in the presence and/or absence of ions. During unfolding-folding dynamics, the riboflavin moiety is more flexible than the adenosine monophosphate group in the molecule. Conversely, the isoalloxazine ring is more stable than the variable adenine base. The pyrophosphate group depicts an unusually highly organized fluctuation illustrated by its dihedral angle distribution. Conformations sampled from enzymes and MD are quantified. The extent to which the protein shifts the distribution from the unbound state is discussed in terms of prevalent FAD shapes and dihedral angle population.

  20. Lower bounds on the size of general Schrödinger-cat states from experimental data

    NASA Astrophysics Data System (ADS)

    Fröwis, Florian

    2017-03-01

    Experimental progress with meso- and macroscopic quantum states (i.e. general Schrödinger-cat states) was recently accompanied by theoretical proposals on how to measure the merit of these efforts. So far, experiment and theory have been disconnected as theoretical analysis of actual experimental data was missing. Here, we consider a proposal for macroscopic quantum states that measures the extent of quantum coherence present in the system. For this, the quantum Fisher information is used. We calculate lower bounds from real experimental data. The results are expressed as an ‘effective size’, that is, relative to ‘classical’ reference states. We find remarkable numbers of up to 70 in photonic and atomic systems.

  1. Exponential variational expansion in relative coordinates for highly accurate bound state calculations in four-body systems

    NASA Astrophysics Data System (ADS)

    Harris, Frank E.; Frolov, Alexei M.; Smith, Vedene H.

    2003-11-01

    Exponential variational expansions in relative coordinates are considered for four-body systems. All matrix elements needed for bound-state calculations are expressed as linear combinations of fifth- and sixth-order derivatives of a basic four-body integral. Computation of the basic four-body integral and its derivatives is performed directly, i.e., without any use of the branch tracking in the complex plane that is required in the Fromm/Hill approach, and by methods that take into account the termwise singularities of the formulas. The final computational procedure is relatively simple, physically transparent, and numerically stable. The methods are illustrated with sample data that show the importance of a singularity-canceling approach and that the increased precision thereby made possible permits more accurate wave function optimization than heretofore.

  2. Theoretical study of the low-lying bound states of O2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1991-01-01

    It is demonstrated that a complete-active-space self-consistent-field (CASSCF) (2p)/MRCI + Q (multireference configuration interaction with a Davidson correction) description in a (13s8p6d 4f2g)/((5s4p3d 2f1g) atomic natural orbits (ANO) basis set supplemented with diffuse functions provides a quantitative description of the six lowest states of O2. The calculated potentials are within 0.05 eV (1.2 kilocal/mol) of accurate experimental results. The importance of substantially expanding the primitive basis set has been investigated, and it is demonstrated that such expansions yield insignificant improvement in the spectroscopic constants. Potential energy curves have also been reported for the weakly bound states of O2. The 5Pi(g) state is estimated to have a D(e) of 0.16 +/- 0.03 eV. The upper bound of D(e) is found to be sufficiently large that the importance of this state as a precursor for the formation of O2 (b 1Sigma(t)(+)) and O(1S) should be reconsidered.

  3. Melting behavior and different bound states in three-stranded DNA models.

    PubMed

    Maji, Jaya; Bhattacharjee, Somendra M; Seno, Flavio; Trovato, Antonio

    2014-01-01

    Thermal denaturation of DNA is often studied with coarse-grained models in which native sequential base pairing is mimicked by the existence of attractive interactions only between monomers at the same position along strands (Poland and Scheraga models). Within this framework, the existence of a three-stranded DNA bound state in conditions where a duplex DNA would be in the denaturated state was recently predicted from a study of three directed polymer models on simplified hierarchical lattices (d>2) and in 1+1 dimensions. Such a phenomenon which is similar to the Efimov effect in nuclear physics was named Efimov-DNA. In this paper we study the melting of the three-stranded DNA on a Sierpinski gasket of dimensions d<2 by assigning extra weight factors to fork openings and closings, to induce a two-strand DNA melting. In such a context we can find again the existence of the Efimov-DNA-like state but quite surprisingly we discover also the presence of a different phase, to be called a mixed state, where the strands are pair-wise bound but without three chain contacts. Whereas the Efimov DNA turns out to be a crossover near melting, the mixed phase is a thermodynamic phase.

  4. Kinesin Processivity Is Determined by a Kinetic Race from a Vulnerable One-Head-Bound State.

    PubMed

    Mickolajczyk, Keith J; Hancock, William O

    2017-06-20

    Kinesin processivity, defined as the average number of steps that occur per interaction with a microtubule, is an important biophysical determinant of the motor's intracellular capabilities. Despite its fundamental importance to the diversity of tasks that kinesins carry out in cells, no existing quantitative model fully explains how structural differences between kinesins alter kinetic rates in the ATPase cycle to produce functional changes in processivity. Here we use high-resolution single-molecule microscopy to directly observe the stepping behavior of kinesin-1 and -2 family motors with different length neck-linker domains. We characterize a one-head-bound posthydrolysis vulnerable state where a kinetic race occurs between attachment of the tethered head to its next binding site and detachment of the bound head from the microtubule. We find that greater processivity is correlated with faster attachment of the tethered head from this vulnerable state. In compliment, we show that slowing detachment from this vulnerable state by strengthening motor-microtubule electrostatic interactions also increases processivity. Furthermore, we provide evidence that attachment of the tethered head is irreversible, suggesting a first passage model for exit from the vulnerable state. Overall, our results provide a kinetic framework for explaining kinesin processivity and for mapping structural differences to functional differences in diverse kinesin isoforms. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Melting behavior and different bound states in three-stranded DNA models

    NASA Astrophysics Data System (ADS)

    Maji, Jaya; Bhattacharjee, Somendra M.; Seno, Flavio; Trovato, Antonio

    2014-01-01

    Thermal denaturation of DNA is often studied with coarse-grained models in which native sequential base pairing is mimicked by the existence of attractive interactions only between monomers at the same position along strands (Poland and Scheraga models). Within this framework, the existence of a three-stranded DNA bound state in conditions where a duplex DNA would be in the denaturated state was recently predicted from a study of three directed polymer models on simplified hierarchical lattices (d >2) and in 1+1 dimensions. Such a phenomenon which is similar to the Efimov effect in nuclear physics was named Efimov-DNA. In this paper we study the melting of the three-stranded DNA on a Sierpinski gasket of dimensions d <2 by assigning extra weight factors to fork openings and closings, to induce a two-strand DNA melting. In such a context we can find again the existence of the Efimov-DNA-like state but quite surprisingly we discover also the presence of a different phase, to be called a mixed state, where the strands are pair-wise bound but without three chain contacts. Whereas the Efimov DNA turns out to be a crossover near melting, the mixed phase is a thermodynamic phase.

  6. Bound states of the spin-orbit coupled ultracold atom in a one-dimensional short-range potential

    SciTech Connect

    Jursenas, Rytis; Ruseckas, Julius

    2013-05-15

    We solve the bound state problem for the Hamiltonian with the spin-orbit and the Raman coupling included. The Hamiltonian is perturbed by a one-dimensional short-range potential V which describes the impurity scattering. In addition to the bound states obtained by considering weak solutions through the Fourier transform or by solving the eigenvalue equation on a suitable domain directly, it is shown that ordinary point-interaction representations of V lead to spin-orbit induced extra states.

  7. Relativistic Two and Three-Particle Bound States in Scalar Quantum Field Theory.

    NASA Astrophysics Data System (ADS)

    di Leo, Leo

    This thesis is concerned with the application of the variational method, within the Hamiltonian formalism of quantum field theory (QFT), to describe relativistic two and three particle states in scalar field theories. Two models are considered: scalar particles interacting through the exchange of scalar quanta, and the Higgs sector of the Minimal Standard Model. We derive relativistic particle-antiparticle wave equations for scalar particles, phi and |phi, interacting via a massive or massless scalar field, chi (the Wick-Cutkosky model), using simple Fock space ansatze. The variational method, within the Hamiltonian formalism of QFT, is used to derive equations with and without coupling of this quasi-bound phi|phi system to the chichi decay channel. The equations are then approximately decoupled to yield a relativistic momentum-space (Schrodinger-like) wave equation from which we determine bound-state energies numerically, perturbatively or variationally for various strengths of the coupling. Bound-state energies in the massless case are compared to the known ladder Bethe-Salpeter and light-cone solutions of this model. In the case of coupling to the decay channel, which is easily accomplished in the present formalism by expanding our Fock-space ansatz, the quasi-bound phi|phi states are seen to arise as resonances in the chichi scattering cross section. Numerical results are presented for the massive and massless chi case for various coupling strengths. The same variational method can be easily extended to derive relativistic three-particle wave equations for scalar particles phi,phi and |phi, interacting via a massive or massless scalar field, chi. In this case, the equations are obtained using a simple |phiphi|phi > +| phiphi|{phi}chi > ansatz. Approximate variational solutions (using product-type hydrogenic wave functions) of these equations are presented for various strengths of the coupling. The magnitude of the relativistic effects in the three

  8. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  9. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  10. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  11. Ground-state entropy of Potts antiferromagnets: Bounds, series, and Monte Carlo measurements

    NASA Astrophysics Data System (ADS)

    Shrock, Robert; Tsai, Shan-Ho

    1997-09-01

    We report several results concerning W(Λ,q)=exp(S0/kB), the exponent of the ground-state entropy of the Potts antiferromagnet on a lattice Λ. First, we improve our previous rigorous lower bound on W(hc,q) for the honeycomb (hc) lattice and find that it is extremely accurate; it agrees to the first 11 terms with the large-q series for W(hc,q). Second, we investigate the heteropolygonal Archimedean 4.82 lattice, derive a rigorous lower bound, on W(4.82,q), and calculate the large-q series for this function to O(y12) where y=1/(q-1). Remarkably, these agree exactly to all 13 terms calculated. We also report Monte Carlo measurements, and find that these are very close to our lower bound and series. Third, we study the effect of non-nearest-neighbor couplings, focusing on the square lattice with next-nearest-neighbor bonds.

  12. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  13. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  14. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  15. Controlling Directionality and Dimensionality of Radiation by Perturbing Separable Bound States in the Continuum

    PubMed Central

    Rivera, Nicholas; Hsu, Chia Wei; Zhen, Bo; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin

    2016-01-01

    A bound state in the continuum (BIC) is an unusual localized state that is embedded in a continuum of extended states. Here, we present the general condition for BICs to arise from wave equation separability. Then we show that by exploiting perturbations of certain symmetry such BICs can be turned into resonances that radiate with a tailorable directionality and dimensionality. Using this general framework, we construct new examples of separable BICs and resonances that can exist in optical potentials for ultracold atoms, photonic systems, and systems described by tight binding. Such resonances with easily reconfigurable radiation allow for applications such as the storage and release of waves at a controllable rate and direction, as well systems that switch between different dimensions of confinement. PMID:27641540

  16. In-medium ηN interactions and η nuclear bound states

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2014-05-01

    The in-medium ηN interaction near and below threshold is constructed from a free-space chirally-inspired meson-baryon coupled-channel model that captures the physics of the N*(1535) baryon resonance. Nucleon Pauli blocking and hadron self-energies are accounted for. The resulting energy-dependent in-medium interaction is used in self-consistent dynamical calculations of η nuclear bound states. Narrow states of width Γη≲2 MeV are found across the periodic table, beginning with A⩾10, for this in-medium coupled-channel interaction model. The binding energy of the 1sη state increases with A, reaching a value of B1s(η)≈15 MeV. The implications of our self-consistency procedure are discussed with respect to procedures used in other works.

  17. Properties of the zero-energy Andreev bound state in a two-sublattice SNS junction

    NASA Astrophysics Data System (ADS)

    Setty, Chandan; Hu, Jiangping

    2016-05-01

    We study properties of the zero energy Andreev bound state in a superconductor-normal metal-superconductor (SNS) junction consisting of two intrinsic degrees of freedom. The superconductors on either sides of the normal metal are assumed to have two sublattices with an intra-sublattice pairing with a phase equal to zero or π between the two sublattices. In addition, we add a uniform inter-sublattice pairing and study its effect on the local density of states (LDOS). In particular, we find that as the inter-sublattice pairing is turned on, the zero-bias peak (ZBP) is unstable (robust) when the phase difference across the sublattices is π (zero). We discuss the relevance of our results to the recently proposed odd-parity η pairing ground states in iron-based superconductors (FeSCs).

  18. Mie-type potential from a class of multiparameter exponential-type potential: Bound state solutions in D dimensions

    NASA Astrophysics Data System (ADS)

    Peña, J. J.; Menéndez, A.; García-Ravelo, J.; Morales, J.

    2015-09-01

    The Mie potential is a model of molecular interaction, very useful in the study of diatomic molecules because allows one to describe the softness/hardness of the repulsive interactions as well as the range of attraction. As a consequence, the Mie potential and one of their particular cases, the Lennard-Jones potential, have been extensively used in many branches of physics and chemistry. In this work, the exact bound state solutions of the D-dimensional Schrödinger equation with the Mie-type potential are presented. These eigen-functions/values are obtained as a particular case of the exactly solvable Schrödinger equation for a class of multiparameter exponential-type potential. Furthermore our approach does not need any approximation to the centrifugal term. As an example of the usefulness of our proposition, we show how the bound state solutions of the Kratzer-Fues and Coulomb potentials in D-dimensions are particular cases from the proposal.

  19. A model of charmed baryon-nucleon potential and two- and three-body bound states with charmed baryon

    NASA Astrophysics Data System (ADS)

    Maeda, Saori; Oka, Makoto; Yokota, Akira; Hiyama, Emiko; Liu, Yan-Rui

    2016-02-01

    A potential model for the interaction between a charmed baryon (Λ _c, Σ _c, and Σ _c^*) and the nucleon (N) is constructed. The model contains a long-range meson (π and σ ) exchange part and a short-distance quark exchange part. The quark cluster model is used to evaluate the short-range repulsion and a monopole type form factor is introduced to the long-range potential to reflect the extended structure of hadrons. We determine the cutoff parameters in the form factors by fitting the NN scattering data with the same approach and we obtain four sets of parameters (a)-(d). The most attractive potential (d) leads to bound Λ _c N states with J^π = 0^+ and 1^+ once the channel couplings among Λ _c, Σ _c, and Σ _c^* are taken into account. One can also investigate many-body problems with the model. Here, we construct an effective Λ _c N one-channel potential with the parameter set (d) and apply it to the three-body Λ _c NN system. The bound states with J=1/2 and 3/2 are predicted.

  20. Universal three-body bound states in mixed dimensions beyond the Efimov paradigm

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Yu, Zhenhua

    2017-09-01

    The Efimov effect was first predicted for three particles interacting at an s -wave resonance in three dimensions. A subsequent study showed that the same effect can be realized by considering two-body and three-body interactions in mixed dimensions. In this work, we consider the three-body problem of two bosonic A atoms interacting with another single B atom in mixed dimensions: The A atoms are confined in a space of dimension dA and the B atom in a space of dimension dB, and there is an interspecies s -wave interaction in a dint-codimensional space accessible to both species. We find that when the s -wave interaction is tuned on resonance, there emerge an infinite series of universal three-body bound states for {dA,dB,dint} ={2 ,2 ,0 } and {2 ,3 ,1 } . Going beyond the Efimov paradigm, the binding energies of these states follow the scaling ln| En|˜-s(n π -θ ) 2/4 , with the scaling factor s being unity for the former case and √{mB(2 mA+mB) }/(mA+mB) for the latter. We discuss the possibility of realizing our mixed-dimensional systems in a cold-atom experiment and how the effects of these universal three-body bound states may be detected.

  1. Attainability of the quantum information bound in pure-state models

    NASA Astrophysics Data System (ADS)

    Toscano, Fabricio; Bastos, Wellison P.; de Matos Filho, Ruynet L.

    2017-04-01

    The attainability of the quantum Cramér-Rao bound (QCR), the ultimate limit in the precision of the estimation of a physical parameter, requires the saturation of the quantum information bound (QIB). This occurs when the Fisher information associated to a given measurement on the quantum state of a system which encodes the information about the parameter coincides with the quantum Fisher information associated to that quantum state. Braunstein and Caves [Phys. Rev. Lett. 72, 3439 (1994), 10.1103/PhysRevLett.72.3439] have shown that the QIB can always be achieved via a projective measurement in the eigenvectors basis of an observable called the symmetric logarithmic derivative. However, such projective measurement depends, in general, on the value of the parameter to be estimated, therefore requiring previous knowledge of the quantity one is trying to estimate. For this reason, it is important to investigate under which situation it is possible to saturate the QCR without previous information about the parameter to be estimated. Here, we show the complete solution to the problem of which are the initial pure states and which projective measurements allow the global saturation of the QIB, without the knowledge of the true value of the parameter, when the information about the parameter is encoded in the system by a unitary process.

  2. Coulomb-blockade-induced bound quasiparticle states in a double-island structure.

    PubMed

    Pesin, D A; Andreev, A V

    2004-11-05

    We determine the low temperature shape of the Coulomb-blockade staircase in a superconducting double-island device. For an odd number of electrons, in the ground state the intrinsic quasiparticle is bound to the tunneling contact. For a single channel contact the gap between the ground state and the continuum of excited states is of the order of the Josephson energy E(J). The temperature dependence of the Coulomb-blockade step width is nonmonotonic, with the minimal width occurring at T(i) approximately E(J)/ln(square root DeltaE(J)/delta), where Delta and delta are, respectively, the superconducting gap and mean level spacing in the island. For an even number of electrons, the Coulomb enhancement of the Josephson energy is shown to be significantly stronger than that for a single grain coupled to a lead. If the electrostatic energy favors a single broken Cooper pair, the resulting quasiparticles are bound to the contact at T=0.

  3. Microwave spectroscopy of spinful Andreev bound states in ballistic semiconductor Josephson junctions

    NASA Astrophysics Data System (ADS)

    van Woerkom, David J.; Proutski, Alex; van Heck, Bernard; Bouman, Daniël; Väyrynen, Jukka I.; Glazman, Leonid I.; Krogstrup, Peter; Nygård, Jesper; Kouwenhoven, Leo P.; Geresdi, Attila

    2017-09-01

    The superconducting proximity effect in semiconductor nanowires has recently enabled the study of new superconducting architectures, such as gate-tunable superconducting qubits and multiterminal Josephson junctions. As opposed to their metallic counterparts, the electron density in semiconductor nanosystems is tunable by external electrostatic gates, providing a highly scalable and in situ variation of the device properties. In addition, semiconductors with large g-factor and spin-orbit coupling have been shown to give rise to exotic phenomena in superconductivity, such as φ0 Josephson junctions and the emergence of Majorana bound states. Here, we report microwave spectroscopy measurements that directly reveal the presence of Andreev bound states (ABS) in ballistic semiconductor channels. We show that the measured ABS spectra are the result of transport channels with gate-tunable, high transmission probabilities up to 0.9, which is required for gate-tunable Andreev qubits and beneficial for braiding schemes of Majorana states. For the first time, we detect excitations of a spin-split pair of ABS and observe symmetry-broken ABS, a direct consequence of the spin-orbit coupling in the semiconductor.

  4. Multiplicity results for sign changing bound state solutions of a semilinear equation

    NASA Astrophysics Data System (ADS)

    Cortázar, Carmen; García-Huidobro, Marta; Herreros, Pilar

    2015-12-01

    In this paper we give conditions on $f$ so that problem $$ \\Delta u +f(u)=0,\\quad x\\in \\mathbb{R}^N, N\\ge 2, $$ has at least two radial bound state solutions with any prescribed number of zeros, and such that $u(0)$ belongs to a specific subinterval of $(0,\\infty)$. This property will allow us to give conditions on $f$ so that this problem has at least any given number of radial solutions having a prescribed number of zeros.

  5. On the uniqueness of sign changing bound state solutions of a semilinear equation

    NASA Astrophysics Data System (ADS)

    Cortázar, Carmen; García-Huidobro, Marta; Yarur, Cecilia S.

    2011-07-01

    We establish the uniqueness of the higher radial bound state solutions of $$ \\Delta u +f(u)=0,\\quad x\\in \\RR^n. \\leqno(P) $$ We assume that the nonlinearity $f\\in C(-\\infty,\\infty)$ is an odd function satisfying some convexity and growth conditions, and either has one zero at $b>0$, is non positive and not identically 0 in $(0,b)$, and is differentiable and positive $[b,\\infty)$, or is positive and differentiable in $[0,\\infty)$.

  6. Bounded energy states in homogeneous turbulent shear flow - An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, P. S.; Speziale, C. G.

    1992-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.

  7. Bound states and quantization of screening in the Wannier-Mott excitons

    SciTech Connect

    Makowski, Adam J.

    2011-02-15

    The problem of validity of the simple relation {lambda}=(n+2l)(n+2l+1) between the screening length {lambda} and the number of bound states in the Stern-Howard potential is discussed and the results are compared with those obtained for some potential with the same limiting behavior as the former one. The main conclusion of the present study is that the above relation does not hold for the Stern-Howard potential but most likely it is very close to an unknown relation to be discovered for the potential.

  8. Disorder robustness and protection of Majorana bound states in ferromagnetic chains on conventional superconductors

    NASA Astrophysics Data System (ADS)

    Awoga, Oladunjoye A.; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-05-01

    Majorana bound states (MBSs) are well established in the clean limit in chains of ferromagnetically aligned impurities deposited on conventional superconductors with finite spin-orbit coupling. Here we show that these MBSs are very robust against disorder. By performing self-consistent calculations we find that the MBSs are protected as long as the surrounding superconductor show no large signs of inhomogeneity. We also find that longer chains offer more stability against disorder for the MBSs, albeit the minigap decreases, as do increasing strengths of spin-orbit coupling and superconductivity.

  9. Comment on 'Bound-state eigenenergy outside and inside the continuum for unstable multilevel systems'

    SciTech Connect

    Bulgakov, E. N.; Sadreev, A. F.; Rotter, I.

    2007-06-15

    We discuss the solution of the basic equations of the N-level Friedrichs model by using the Feshbach projection operator (FPO) technique and consider the relation between bound states in the continuum (BICs) and form factors. In the FPO formalism, the BICs are eigenstates of a non-Hermitian Hamilton operator with vanishing decay width. The wave function of a BIC is localized inside the system. On the basis of the FPO solutions we discuss the mechanism to yield a BIC at every coupling strength between system and environment. We relate our results to those given by Miyamoto [Phys. Rev. A 72, 063405 (2005)].

  10. On hydrogen-like bound states in N = 4 super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Sakata, Yusuke; Schneider, Robin; Tachikawa, Yuji; Yamaura, Takemasa

    2017-09-01

    Using relativistic quantum mechanics, we study the spectrum of a non-BPS two-particle bound state in the massive phase of N = 4 super Yang-Mills, in the limit when one of the particles is infinitely heavier than the other. We find that the spectrum shows the exact n 2 degeneracy for each principal quantum number n, just as in the strict non-relativistic limit. This is in line with the findings of Caron-Huot and Henn, who studied the same system in the large N limit with the technique of integrability and the dual conformal symmetry.

  11. Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media

    PubMed Central

    Shen, Ming; Gao, Jinsong; Ge, Lijuan

    2015-01-01

    We investigate the spatially optical solitons shedding from Airy beams and anomalous interactions of Airy beams in nonlocal nonlinear media by means of direct numerical simulations. Numerical results show that nonlocality has profound effects on the propagation dynamics of the solitons shedding from the Airy beam. It is also shown that the strong nonlocality can support periodic intensity distribution of Airy beams with opposite bending directions. Nonlocality also provides a long-range attractive force between Airy beams, leading to the formation of stable bound states of both in-phase and out-of-phase breathing Airy solitons which always repel in local media. PMID:25900878

  12. The beauty of impurities: Two revivals of Friedel's virtual bound-state concept

    NASA Astrophysics Data System (ADS)

    Georges, Antoine

    2016-03-01

    Jacques Friedel pioneered the theoretical study of impurities and magnetic impurities in metals. He discovered Friedel oscillations, introduced the concept of virtual bound-state, and demonstrated that the charge on the impurity is related to the scattering phase-shift at the Fermi level (Friedel sum-rule). After a brief review of some of these concepts, I describe how they proved useful in two new contexts. The first one concerns the Coulomb blockade in quantum dots, and its suppression by the Kondo effect. The second one is the dynamical mean-field theory of strong electronic correlations.

  13. Critical Velocity in the Presence of Surface Bound States in Superfluid 3He -B

    NASA Astrophysics Data System (ADS)

    Zheng, P.; Jiang, W. G.; Barquist, C. S.; Lee, Y.; Chan, H. B.

    2017-02-01

    A microelectromechanical oscillator with a gap of 1.25 μ m was immersed in superfluid 3He -B and cooled below 250 μ K at various pressures. Mechanical resonances of its shear motion were measured at various levels of driving force. The oscillator enters into a nonlinear regime above a certain threshold velocity. The damping increases rapidly in the nonlinear region and eventually prevents the velocity of the oscillator from increasing beyond the critical velocity which is much lower than the Landau critical velocity. We propose that this peculiar nonlinear behavior stems from the escape of quasiparticles from the surface bound states into the bulk fluid.

  14. A search for deeply bound kaonic nuclear states at J-PARC

    SciTech Connect

    Hiraiwa, T.; Fujioka, H.; Nagae, T.; Sada, Y.; Ajimura, S.; Noumi, H.; Beer, G.; Bhang, H.; Choi, S.; Yim, H.; Bragadirenn, M.; Sirghi, D.; Sirghi, F.; Buehler, P.; Cargnelli, M.; Ishiwatari, T.; Marton, J.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2010-08-05

    J-PARC E15 experiment aims to search for the lightest kaonic nuclei, namely K{sup -}pp bound states, using in-flight (K{sup -}, n) reactions. The advantage of this experiment is to perform exclusive measurement by missing mass study using the primary neutrons and invariant mass spectroscopy via such decay as K{sup -}pp{yields}{Lambda}p{yields}p{pi}{sup -}p, simultaneously. In this report, an overview of this experiment and the current status are presented.

  15. Thermoelectric transport through Majorana bound states and violation of Wiedemann-Franz law

    NASA Astrophysics Data System (ADS)

    Ramos-Andrade, J. P.; Ávalos-Ovando, O.; Orellana, P. A.; Ulloa, S. E.

    2016-10-01

    We study features of thermoelectric transport through a one-dimensional topological system model hosting Majorana bound states (MBSs) at its ends. We describe the behavior of the Seebeck coefficient and the Z T figure of merit for two configurations between the MBS and normal current leads. We find an important violation of the Wiedemann-Franz law in one of these geometries, leading to sizable values of the thermoelectric efficiency over a narrow window in chemical potential away from neutrality. These findings could lead to interesting thermoelectric-based MBS detection devices, via measurements of the Seebeck coefficient and figure of merit.

  16. Observation of Excitonic N-Body Bound States: Polyexcitons in Diamond

    NASA Astrophysics Data System (ADS)

    Omachi, J.; Suzuki, T.; Kato, K.; Naka, N.; Yoshioka, K.; Kuwata-Gonokami, M.

    2013-07-01

    We have found a series of resonances associated with the bound state (polyexcitons, PENs) of N excitons up to N=6 in the emission spectra of diamond under two-photon excitation at around 10 K. Time-resolved spectra show a stepwise formation of PENs with smaller to larger N, as well as a successive decay from larger to smaller N. At higher excitation levels, the transformation of PENs into a condensed phase of electron-hole droplets occurs. The binding energies of the PENs, normalized to the exciton Rydberg energy, agree well with those of silicon, suggesting the universality of the phenomena.

  17. Applying the relativistic quantization condition to a three-particle bound state in a periodic box

    NASA Astrophysics Data System (ADS)

    Hansen, Maxwell T.; Sharpe, Stephen R.

    2017-02-01

    Using our recently developed relativistic three-particle quantization condition [Phys. Rev. D 90, 116003 (2014), 10.1103/PhysRevD.90.116003; Phys. Rev. D 92, 114509 (2015), 10.1103/PhysRevD.92.114509], we study the finite-volume energy shift of a spin-zero three-particle bound state. We reproduce the result obtained using nonrelativistic quantum mechanics by Meißner et al. in [Phys. Rev. Lett. 114, 091602 (2015), 10.1103/PhysRevLett.114.091602] and generalize the result to a moving frame.

  18. Theory for supersolid 4He: Vacancy condensation facilitated by a low-energy bound state

    NASA Astrophysics Data System (ADS)

    Dai, Xi

    2006-03-01

    Although both vacancies and interstitials have relatively high activation energies in the normal solid, we propose that a lower energy bound state of a vacancy and an interstitial may facilitate vacancy condensation to give supersolidity in 4He. We use a phenomenological two-band boson lattice model to demonstrate this new mechanism and discuss the possible relevance to the recently observed superfluidlike, nonclassical rotational inertial experiments of Kim and Chan in solid 4He. Some of our results may also be applicable to trapped bosons in optical lattices.

  19. Higgs Boson Decay and Quasi-Bound States in the Higgs Model

    NASA Astrophysics Data System (ADS)

    di Leo, Leo; Darewych, Jurij W.

    We calculate two-Higgs bound states (Higgsonium) as resonances in Z0-Z0 scattering using a |Z0Z0>+|h>+|hh>+|hhh>+|hhhhh> Fock-space ansatz in a Hamiltonian formalism of the Higgs model. The variational method is used to obtain coupled integral equations connecting the various channels. Reduced forms of these equations are solved analytically in the case of the Z0Z0-h channels, and numerically for the Z0Z0-hh channels for particular choices of the coupling parameters.

  20. Quantum localization and bound-state formation in Bose-Einstein condensates

    SciTech Connect

    Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2010-12-15

    We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.

  1. Observation of bound state solitons in tunable all-polarization-maintaining Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Lu, Baole; Wang, Yang; Qi, Xinyuan; Chen, Haowei; Jiang, Man; Hou, Lei; Huang, Kexun; Kang, Jin; Bai, Jintao

    2017-07-01

    We report on the experimental observation of various bound states of solitons (BSs) in a tunable all-polarization-maintaining (PM) Yb-doped fiber laser. The results show that the BSs can be obtained when a slightly mechanical perturbation is introduced into the mode-locked fiber laser. When the coupling ratio of backward light into the cavity is increased, the separation of the BSs is also increased and the capacity of the spectral modulation is weakened. The tightly BSs degrade into loosely BSs when the coupling ratio achieves its maximum and a mode-locked soliton-like spectrum appears.

  2. Andreev reflection properties in a parallel mesoscopic circuit with Majorana bound states

    NASA Astrophysics Data System (ADS)

    Mu, Jin-Tao; Han, Yu; Gong, Wei-Jiang

    2017-03-01

    We investigate the Andreev reflection in a parallel mesoscopic circuit with Majorana bound states (MBSs). It is found that in such a structure, the Andreev current can be manipulated in a highly efficient way, by the adjustment of bias voltage, dot levels, inter-MBS coupling, and the applied magnetic flux. Besides, the dot-MBS coupling manner is an important factor to modulate the Andreev current, because it influences the period of the conductance oscillation. By discussing the underlying quantum interference mechanism, the Andreev-reflection property is explained in detail. We believe that all the results can assist to understand the nontrivial role of the MBSs in driving the Andreev reflection.

  3. Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples.

    PubMed

    Heyder, Tina; Kohler, Maxie; Tarasova, Nataliya K; Haag, Sabrina; Rutishauser, Dorothea; Rivera, Natalia V; Sandin, Charlotta; Mia, Sohel; Malmström, Vivianne; Wheelock, Åsa M; Wahlström, Jan; Holmdahl, Rikard; Eklund, Anders; Zubarev, Roman A; Grunewald, Johan; Ytterberg, A Jimmy

    2016-09-01

    Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides.Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 10(6) bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10-15 × 10(6) cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls.In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 10(6) cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients

  4. Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples *

    PubMed Central

    Heyder, Tina; Kohler, Maxie; Tarasova, Nataliya K.; Haag, Sabrina; Rutishauser, Dorothea; Rivera, Natalia V.; Sandin, Charlotta; Mia, Sohel; Malmström, Vivianne; Wheelock, Åsa M.; Wahlström, Jan; Holmdahl, Rikard; Eklund, Anders; Zubarev, Roman A.; Grunewald, Johan; Ytterberg, A. Jimmy

    2016-01-01

    Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides. Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 106 bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10–15 × 106 cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls. In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 106 cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients and

  5. Energetics and structure of the bound states in a lithium complex: The (LiH 2) + electronic ground state

    NASA Astrophysics Data System (ADS)

    Sanz, Cristina; Bodo, Enrico; Gianturco, Franco A.

    2005-07-01

    The ionic complex formed by the lithium cation and the hydrogen molecule is analyzed in its electronic ground state and the region of the interaction potential that leads to an asymptotic fragmentation with the H 2 molecule in its v = 0 level is described. The corresponding potential energy surface is employed to obtain the J = 0 bound states of the complex. The computed wavefunctions are analyzed in terms of local modes of the full system and qualitative correspondence is found between their spatial shapes and the locally active vibrational coordinates up to the highest excited states near dissociation threshold, where mode-mixing effects defy such a simple analysis. The case of vibrationally excited H 2, and some of the corresponding resonances, are also presented and the resonant states discussed.

  6. Toxicity-dependent feasibility bounds for the escalation with overdose control approach in phase I cancer trials.

    PubMed

    Wheeler, Graham M; Sweeting, Michael J; Mander, Adrian P

    2017-03-15

    Phase I trials of anti-cancer therapies aim to identify a maximum tolerated dose (MTD), defined as the dose that causes unacceptable toxicity in a target proportion of patients. Both rule-based and model-based methods have been proposed for MTD recommendation. The escalation with overdose control (EWOC) approach is a model-based design where the dose assigned to the next patient is one that, given all available data, has a posterior probability of exceeding the MTD equal to a pre-specified value known as the feasibility bound. The aim is to conservatively dose-escalate and approach the MTD, avoiding severe overdosing early on in a trial. The EWOC approach has been applied in practice with the feasibility bound either fixed or varying throughout a trial, yet some of the methods may recommend incoherent dose-escalation, that is, an increase in dose after observing severe toxicity at the current dose. We present examples where varying feasibility bounds have been used in practice, and propose a toxicity-dependent feasibility bound approach that guarantees coherent dose-escalation and incorporates the desirable features of other EWOC approaches. We show via detailed simulation studies that the toxicity-dependent feasibility bound approach provides improved MTD recommendation properties to the original EWOC approach for both discrete and continuous doses across most dose-toxicity scenarios, with comparable performance to other approaches without recommending incoherent dose escalation. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  7. Strictly-complete measurements for bounded-rank quantum-state tomography

    NASA Astrophysics Data System (ADS)

    Baldwin, Charles H.; Deutsch, Ivan H.; Kalev, Amir

    2016-05-01

    We consider the problem of quantum-state tomography under the assumption that the state is pure, and more generally that its rank is bounded by a given value r . In this scenario two notions of informationally complete measurements emerge: rank-r -complete measurements and rank-r strictly-complete measurements. Whereas in the first notion, a rank-r state is uniquely identified from within the set of rank-r states, in the second notion the same state is uniquely identified from within the set of all physical states, of any rank. We argue, therefore, that strictly-complete measurements are compatible with convex optimization, and we prove that they allow robust quantum-state estimation in the presence of experimental noise. We also show that rank-r strictly-complete measurements are as efficient as rank-r -complete measurements. We construct examples of strictly-complete measurements and give a complete description of their structure in the context of matrix completion. Moreover, we numerically show that a few random bases form such measurements. We demonstrate the efficiency-robustness property for different strictly-complete measurements with numerical experiments. We thus conclude that only strictly-complete measurements are useful for practical tomography.

  8. Analytic continuation of scattering data to the region of negative energies for systems that have one and two bound states

    SciTech Connect

    Blokhintsev, L. D. Savin, D. A.

    2016-05-15

    An exactly solvable potential model is used to study the possibility of deducing information about the features of bound states for the system under consideration (binding energies and asymptotic normalization coefficients) on the basis of data on continuum states. The present analysis is based on an analytic approximation and on the subsequent continuation of a partial-wave scattering function from the region of positive energies to the region of negative energies. Cases where the system has one or two bound states are studied. The α+d and α+{sup 12}C systems are taken as physical examples. In the case of one bound state, the scattering function is a smooth function of energy, and the procedure of its analytic continuation for different polynomial approximations leads to close results, which are nearly coincident with exact values. In the case of two bound states, the scattering function has two poles—one in the region of positive energies and the other in the region of negative energies between the energies corresponding to the two bound states in question. Padéapproximants are used to reproduce these poles. The inclusion of these poles proves to be necessary for correctly describing the properties of the bound states.

  9. Majorana fermions and exotic surface Andreev bound states in topological superconductors: application to Cu(x)Bi2Se3.

    PubMed

    Hsieh, Timothy H; Fu, Liang

    2012-03-09

    The recently discovered superconductor Cu(x)Bi2Se3 is a candidate for three-dimensional time-reversal-invariant topological superconductors, which are predicted to have robust surface Andreev bound states hosting massless Majorana fermions. In this work, we analytically and numerically find the linearly dispersing Majorana fermions at k=0, which smoothly evolve into a new branch of gapless surface Andreev bound states near the Fermi momentum. The latter is a new type of Andreev bound states resulting from both the nontrivial band structure and the odd-parity pairing symmetry. The tunneling spectra of these surface Andreev bound states agree well with a recent point-contact spectroscopy experiment [S. Sasaki et al., Phys. Rev. Lett. 107, 217001 (2011)] and yield additional predictions for low temperature tunneling and photoemission experiments.

  10. Note: Parameter-independent bounding of the stochastic Michaelis-Menten steady-state intrinsic noise variance.

    PubMed

    Widmer, L A; Stelling, J; Doyle, F J

    2013-10-28

    Using the (slow-scale) linear noise approximation, we give parameter-independent bounds to the substrate and product intrinsic noise variance for the stochastic Michaelis-Menten approximation at steady state.

  11. Note: Parameter-independent bounding of the stochastic Michaelis-Menten steady-state intrinsic noise variance

    PubMed Central

    Widmer, L. A.; Stelling, J.; Doyle, F. J.

    2013-01-01

    Using the (slow-scale) linear noise approximation, we give parameter-independent bounds to the substrate and product intrinsic noise variance for the stochastic Michaelis-Menten approximation at steady state. PMID:24182089

  12. Spin-pairing correlations and spin polarization of Majorana bound states in two-dimensional topological-insulator systems

    NASA Astrophysics Data System (ADS)

    Zhang, Kunhua; Zeng, Junjie; Ren, Yafei; Qiao, Zhenhua

    2017-08-01

    We demonstrate that a zero-energy Majorana bound state in a ferromagnetic insulator (FI)-superconductor (SC) junction formed on the edge of a two-dimensional topological insulator exhibits three types of spin-triplet pairing correlations, its spin-polarization direction is position independent in a ferromagnetic insulator, and demonstrates a spin-helix structure in a superconductor. These spin properties of Majorana bound states lead to anomalous selective equal-spin Andreev reflection. Similar behavior is found when the coupling between two Majorana bound states in a FI-SC-FI junction is invoked, though an additional weak spin-singlet pairing correlation is generated. These signatures can readily facilitate the experimental detection of spin-triplet correlations and spin polarization of Majorana bound states.

  13. Role of the bound-state wave function in capture-loss rates: Slow proton in an electron gas

    SciTech Connect

    Alducin, M.; Nagy, I.

    2003-07-01

    Capture and loss rates for protons moving in an electron gas are calculated using many-body perturbation theory. The role of the form of the bound-state wave function for weakly bound states around the proton is analyzed. We find significant differences (up to a factor of 2 higher) in the values of Auger capture and loss rates when using Hulthen-type instead of hydrogenic wave functions. Its relevance in stopping power is briefly discussed.

  14. Bounded energy states in homogeneous turbulent shear flow: An alternative view

    NASA Technical Reports Server (NTRS)

    Bernard, Peter S.; Speziale, Charles G.

    1990-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.

  15. Solving the two-body, bound-state Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Mainland, G. B.

    2003-11-01

    By expanding the solution of the the two-body, bound-state Bethe-Salpeter equation in terms of basis functions that obey the boundary conditions, solutions can be obtained to some, if not many, equations that have heretofore proved intractable. The utility of choosing such basis functions is demonstrated by calculating the zero-energy, bound-state solutions of a spin-0 boson and a spin-1/2 fermion with unequal masses that interact via scalar electrodynamics and are described by the Bethe-Salpeter equation in the ladder approximation. The equation is solved by first making a Wick rotation and then projecting four-dimensional Euclidean space onto the surface of a unit, five-dimensional sphere. Solutions are expanded in terms of basis functions, each of which obeys the boundary conditions and can be expressed in terms of hyperspherical harmonics in five-dimensional space. The Bethe-Salpeter equation is discretized by requiring that the coefficient of each hyperspherical harmonic vanish. All integrations are performed analytically, yielding a generalized matrix eigenvalue equation that is solved numerically. Although the Bethe-Salpeter equation is separable in the zero-energy limit, the feature of Bethe-Salpeter equations that often prevents solutions from being obtained numerically is still present in the equation that is solved.

  16. Isospin and particle representations for quasi-bound state of kaonic clusters

    NASA Astrophysics Data System (ADS)

    Filikhin, Igor; Kezerashvili, Roman; Vlahovic, Branislav

    2017-01-01

    In the framework of the method of the Faddeev equations in configuration space, the NNK (I = 0) (and KK) kaonic cluster system including two identical particles is considered. We use the formalism of isospin and particle representations to describe the systems. The treatment of I = 1 and I = 0 isospin KN channels is discussed. The presence of the Coulomb force in ppK- channel violates the isospin symmetry of the NNK (I = 0) system. According to the particle representation, NNK is a two-level system of coupled ppK- and ppnl channels with and without the Coulomb energy, respectively. The results of calculations for the bound states with the phenomenological and chiral motivated KN potentials are given for different representations. In particular, new single channel calculations for the ppK- (and K-K- p) cluster are presented. It is shown that the exchange of identical particles plays an important role in the formation of a bound state of the systems. The relation of the exchange and the three-body mass rearrangement effects is discussed. This work is supported by the National Science Foundation grant Supplement to the NSF grant HRD-1345219 and NASA (NNX09AV07A).

  17. Three-Nucleon Bound States and the Wigner-SU(4) Limit

    NASA Astrophysics Data System (ADS)

    Vanasse, Jared; Phillips, Daniel R.

    2017-03-01

    We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/ a, with R the range of the nuclear force and a the nucleon-nucleon (N N) scattering lengths. In the Wigner-SU(4) limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the N N scattering lengths gives a ^3{H} point charge radius of 1.58 fm, which is remarkably close to the experimental number, 1.5978± 0.040 fm (Angeli and Marinova in At Data Nucl Data Tables 99:69-95, 2013). For the ^3{He} point charge radius we find 1.70 fm, about 4% away from the experimental value of 1.77527± 0.0054 fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigner's SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.

  18. Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules.

    PubMed

    White, Alec F; Head-Gordon, Martin; McCurdy, C William

    2017-01-28

    The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. We critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the Πg2 shape resonance of N2(-) which has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.

  19. Parity qubits and poor man's Majorana bound states in double quantum dots

    NASA Astrophysics Data System (ADS)

    Leijnse, Martin; Flensberg, Karsten

    2012-10-01

    We study a double quantum dot connected via a common superconducting lead and show that this system can be tuned to host one Majorana bound state (MBS) on each dot. We call them “poor man's Majorana bound states” since they are not topologically protected, but otherwise share the properties of MBS formed in topological superconductors. We describe the conditions for the existence of the two spatially separated MBS, which include breaking of spin degeneracy in the two dots, with the spins polarized in different directions. Therefore, we propose to use a magnetic field configuration where the field directions on the two dots form an angle. By control of this angle the cross Andreev reflection and the tunnel amplitudes can be tuned to be approximately equal, which is a requirement for the formation of the MBS. We show that the fermionic state encoded in the two Majoranas constitutes a parity qubit, which is nonlocal and can only be measured by probing both dots simultaneously. Using a many-particle basis for the MBS, we discuss the role of interactions and show that interactions between electrons on different dots always shift the condition for degeneracy. We also show how the MBS can be probed by transport measurements and discuss how the combination of several such double dot systems allows for entanglement of parity qubits and measurement of their dephasing times.

  20. Shot noise in a quantum dot system coupled with Majorana bound states.

    PubMed

    Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang

    2014-08-06

    We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green's function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ϵ(M) increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.

  1. Shot noise in a quantum dot system coupled with Majorana bound states

    NASA Astrophysics Data System (ADS)

    Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang

    2014-08-01

    We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green’s function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ɛM increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.

  2. Stationary bound-state scalar configurations supported by rapidly-spinning exotic compact objects

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-07-01

    Some quantum-gravity theories suggest that the absorbing horizon of a classical black hole should be replaced by a reflective surface which is located a microscopic distance above the would-be classical horizon. Instead of an absorbing black hole, the resulting horizonless spacetime describes a reflective exotic compact object. Motivated by this intriguing prediction, in the present paper we explore the physical properties of exotic compact objects which are linearly coupled to stationary bound-state massive scalar field configurations. In particular, solving the Klein-Gordon wave equation for a stationary scalar field of proper mass μ and spheroidal harmonic indices (l , m) in the background of a rapidly-rotating exotic compact object of mass M and angular momentum J = Ma, we derive a compact analytical formula for the discrete radii {rc (μ , l , m , M , a ; n) } of the exotic compact objects which can support the stationary bound-state massive scalar field configurations. We confirm our analytical results by direct numerical computations.

  3. Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules

    DOE PAGES

    White, Alec F.; Head-Gordon, Martin; McCurdy, C. William

    2017-01-30

    The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. Here, we critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the 2Πg shape resonance of N 2 - which hasmore » been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We then conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.« less

  4. Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules

    NASA Astrophysics Data System (ADS)

    White, Alec F.; Head-Gordon, Martin; McCurdy, C. William

    2017-01-01

    The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. We critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the Π2g shape resonance of N2- which has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.

  5. Deeply quasi-bound state in single- and double-bar{K} nuclear clusters

    NASA Astrophysics Data System (ADS)

    Marri, S.; Kalantari, S. Z.; Esmaili, J.

    2016-12-01

    New calculations of the quasi-bound state positions in K-K-pp kaonic nuclear cluster are performed using non-relativistic four-body Faddeev-type equations in AGS form. The corresponding separable approximation for the integral kernels in the three- and four-body kaonic clusters is obtained by using the Hilbert-Schmidt expansion procedure. Different phenomenological models of bar{K}N-πΣ potentials with one- and two-pole structure of Λ (1405) resonance and separable potential models for bar{K}-bar{K} and nucleon-nucleon interactions, are used. The dependence of the resulting four-body binding energy on models of bar{K}N-πΣ interaction is investigated. We obtained the binding energy of the K-K-pp quasi-bound state ˜ 80-94 MeV with the phenomenological bar{K}N potentials. The width is about ˜ 5-8 MeV for the two-pole models of the interaction, while the one-pole potentials give ˜ 24-31 MeV width.

  6. Accurate quantum calculation of the bound and resonant rovibrational states of Li-(H2)

    NASA Astrophysics Data System (ADS)

    Xiao, Yingsheng; Poirier, Bill

    2005-03-01

    In a recent paper [B. Poirier, Chem. Phys. 308, 305 (2005)] a full-dimensional quantum method for computing the rovibrational dynamics of triatomic systems was presented, incorporating three key features: (1) exact analytical treatment of Coriolis coupling, (2) three-body "effective potential," and (3) a single bend angle basis for all rotational states. In this paper, these ideas are applied to the Li-(H2) electrostatic complex, to compute all of the rovibrational bound state energies, and a number of resonance energies and widths, to very high accuracy (thousandths of a wave number). This application is very challenging, owing to the long-range nature of the interaction and to narrow level spacings near dissociation. Nevertheless, by combining the present method with a G4 symmetry-adapted phase-space-optimized representation, only modest basis sizes are required for which the matrices are amenable to direct diagonalization. Several new bound levels are reported, as compared with a previous calculation [D. T. Chang, G. Surratt, G. Ristroff, and G. I. Gellene, J. Chem. Phys. 116, 9188 (2002)]. The resonances exhibit a clear-cut separation into shape and Feshbach varieties, with the latter characterized by extremely long lifetimes (microseconds or longer).

  7. Fano resonances in Majorana bound states-quantum dot hybrid systems

    NASA Astrophysics Data System (ADS)

    Schuray, Alexander; Weithofer, Luzie; Recher, Patrik

    2017-08-01

    We consider a quantum wire containing two Majorana bound states (MBS) at its ends that are tunnel-coupled to a current lead on one side and to a quantum dot (QD) on the other side. Using the method of full counting statistics we calculate the conductance and the zero-frequency noise. Using an effective low-energy model, we analyze in detail the Andreev reflection probability as a function of the various system parameters and show that it exhibits a Fano resonance (FR) line shape in the case of a weakly coupled QD as a function of the QD energy level when the two MBS overlap. The asymmetry parameter changes sign as the bias voltage is tuned through the MBS overlap energy. The FR is mirrored as a function of the QD level energy as long as tunneling from the dot to the more distant MBS is negligible. However, if both MBS are coupled to the lead and the QD, the height as well as the asymmetry of the line shapes cease to respect this symmetry. These two exclusive cases uniquely distinguish the coupling to a MBS from the coupling to a fermionic bound state that is shared between the two MBS. We complement the analysis by employing a discretized one-dimensional p -wave superconductor (Kitaev chain) for the quantum wire and show that the features of the effective low-energy model are robust towards a more complete Hamiltonian and also persist at finite temperature.

  8. Observation of the spatial distribution of gravitationally bound quantum states of ultracold neutrons and its derivation using the Wigner function.

    PubMed

    Ichikawa, G; Komamiya, S; Kamiya, Y; Minami, Y; Tani, M; Geltenbort, P; Yamamura, K; Nagano, M; Sanuki, T; Kawasaki, S; Hino, M; Kitaguchi, M

    2014-02-21

    Ultracold neutrons (UCNs) can be bound by the potential of terrestrial gravity and a reflecting mirror. The wave function of the bound state has characteristic modulations. We carried out an experiment to observe the vertical distribution of the UCNs above such a mirror at the Institut Laue-Langevin in 2011. The observed modulation is in good agreement with that prediction by quantum mechanics using the Wigner function. The spatial resolution of the detector system is estimated to be 0.7  μm. This is the first observation of gravitationally bound states of UCNs with submicron spatial resolution.

  9. Examination of experimental evidence of chaos in the bound states of 208Pb

    NASA Astrophysics Data System (ADS)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.; Heusler, A.

    2017-01-01

    We study the spectral fluctuations of the 208Pb nucleus using the complete experimental spectrum of 151 states up to excitation energies of 6.20 MeV recently identified at the Maier-Leibnitz Laboratorium at Garching, Germany. For natural parity states the results are very close to the predictions of random matrix theory (RMT) for the nearest-neighbor spacing distribution. A quantitative estimate of the agreement is given by the Brody parameter ω , which takes the value ω =0 for regular systems and ω ≃1 for chaotic systems. We obtain ω =0.85 which is, to our knowledge, the closest value to chaos ever observed in experimental bound states of nuclei. By contrast, the results for unnatural parity states are far from RMT behavior. We interpret these results as a consequence of the strength of the residual interaction in 208Pb, which, according to experimental data, is much stronger for natural than for unnatural parity states. In addition, our results show that chaotic and nonchaotic nuclear states coexist in the same energy region of the spectrum.

  10. A collective neurodynamic optimization approach to bound-constrained nonconvex optimization.

    PubMed

    Yan, Zheng; Wang, Jun; Li, Guocheng

    2014-07-01

    This paper presents a novel collective neurodynamic optimization method for solving nonconvex optimization problems with bound constraints. First, it is proved that a one-layer projection neural network has a property that its equilibria are in one-to-one correspondence with the Karush-Kuhn-Tucker points of the constrained optimization problem. Next, a collective neurodynamic optimization approach is developed by utilizing a group of recurrent neural networks in framework of particle swarm optimization by emulating the paradigm of brainstorming. Each recurrent neural network carries out precise constrained local search according to its own neurodynamic equations. By iteratively improving the solution quality of each recurrent neural network using the information of locally best known solution and globally best known solution, the group can obtain the global optimal solution to a nonconvex optimization problem. The advantages of the proposed collective neurodynamic optimization approach over evolutionary approaches lie in its constraint handling ability and real-time computational efficiency. The effectiveness and characteristics of the proposed approach are illustrated by using many multimodal benchmark functions.

  11. Hunt for the 1/sup 1/P/sub 1/ bound state of charmonium

    SciTech Connect

    Porter, F.C.

    1982-02-01

    Using the Crystal Ball detector at SPEAR, we have looked for evidence of the isospin-violating decay psi' ..-->.. ..pi../sup 01/P/sub 1/, where /sup 1/P/sub 1/ is the predicted spin-singlet p-wave bound state of charmonium. For a /sup 1/P/sub 1/ state at the predicted mass (approx. 3520 MeV), we obtain the 95% confidence level limits: BR(psi' ..-->.. ..pi../sup 01/P/sub 1/) < 0.55%, BR(psi' ..-->.. ..pi../sup 01/P/sub 1/)BR(/sup 1/P/sub 1/ ..-->.. ..gamma..n/sub c/ < 0.14%. These limits are compared with simple theoretical predictions.

  12. Kinesin-8 Is a Low-Force Motor Protein with a Weakly Bound Slip State

    PubMed Central

    Jannasch, Anita; Bormuth, Volker; Storch, Marko; Howard, Jonathon; Schäffer, Erik

    2013-01-01

    During the cell cycle, kinesin-8s control the length of microtubules by interacting with their plus ends. To reach these ends, the motors have to be able to take many steps without dissociating. However, the underlying mechanism for this high processivity and how stepping is affected by force are unclear. Here, we tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads using optical tweezers. Surprisingly, both kinesin-8 motors were much weaker compared with other kinesins. Furthermore, we discovered a force-induced stick-slip motion: the motor frequently slipped, recovered from this state, and then resumed normal stepping motility without detaching from the microtubule. The low forces are consistent with kinesin-8s being regulators of microtubule dynamics rather than cargo transporters. The weakly bound slip state, reminiscent of a molecular safety leash, may be an adaptation for high processivity. PMID:23746518

  13. A tabulation of the bound-state energies of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Hessels, E. A.; Horbatsch, M.

    2016-05-01

    We present tables for the bound-state energies for atomic hydrogen which include the hyperfine structure, and thus this work extends the work of. The tabulation includes corrections of the hyperfine structure due to the anomalous moment of the electron, due to the finite mass of the proton, and due to off-diagonal matrix elements of the hyperfine Hamiltonian. Simple formulas valid for all quantum numbers (not found previously in the literature) are presented for the hyperfine corrections. The tabulated energies have uncertainties of less than 1 kHz for all states. This accuracy is possible because of the recent precision measurement of the proton radius. The effect of this new radius on the energy levels is also tabulated, and the energies are compared to precision measurements of atomic hydrogen energy intervals. NSERC Canada, Canada Research Chair Program.

  14. Quartified leptonic color, bound states, and future electron–positron collider

    DOE PAGES

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; ...

    2017-04-04

    The [SU(3)]4 quartification model of Babu, Ma, and Willenbrock (BMW), proposed in 2003, predicts a confining leptonic color SU(2)gauge symmetry, which becomes strong at the keV scale. Also, it predicts the existence of three families of half-charged leptons (hemions) below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC). But, just as J/ψand Υ appeared as sharp resonances in e-e+colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e-e+collider of the 21st century.

  15. Bound states of a negative test charge due to many-body effects in the two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Gold, A.

    1995-12-01

    Bound states of a negative test electron in the low-density regime of the two-dimensional electron gas are obtained when many-body effects (exchange and correlation) are incorporated in the screening function via the local-field correction. Using the Green's-function method and a variational method we determine the energies and the wave functions of the ground state and the excited states as functions of the electron density. For high electron density no bound state is found. Below a critical density the number and the energy of bound states increase with decreasing electron density. The ground state is described by the wave function ψ2s~r exp(-r/α).

  16. Are hormones from the neuropeptide Y family recognized by their receptors from the membrane-bound state?

    PubMed

    Bader, Reto; Zerbe, Oliver

    2005-09-01

    Hormones and many other neurotransmitters, growth factors, odorant molecules, and light all present stimuli for a class of membrane-anchored receptors called G protein-coupled receptors (GPCRs). The GPCRs are the largest family of cell-surface receptors involved in signal transduction. About 1% of all known genes of Drosophila and more than 5% of the genes of Caenorhabditis elegans encode GPCRs. In addition, more than 50% of current therapeutic agents on the market target these receptors. When the enormous biological and pharmaceutical importance of these receptors is considered, it is surprising how little is known about the mechanism with which these receptors recognize their natural ligands. In this review we present a structural approach, utilizing techniques of high-resolution NMR spectroscopy, to address the question of whether peptides from the neuropeptide Y family of neurohormones are recognized directly from solution or from the membrane-bound state. In our studies we discovered that the structures of the membrane-bound species are better correlated to the pharmacological properties of these peptides than the solution structures are. These findings are supported by the observation that many biophysical properties of these peptides seem to be optimized for membrane binding. We finally present a scenario of possible events during receptor recognition.

  17. An upper bound on the second order asymptotic expansion for the quantum communication cost of state redistribution

    SciTech Connect

    Datta, Nilanjana; Hsieh, Min-Hsiu; Oppenheim, Jonathan

    2016-05-15

    State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.

  18. In-situ measurement of bound states in the continuum in photonic crystal slabs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko

    2016-04-01

    Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential

  19. Classification of Two Dimensional Topological Crystalline Superconductors and Majorana Bound States at Disclinations

    NASA Astrophysics Data System (ADS)

    Benalcazar, Wladimir; Teo, Jeffrey; Hughes, Taylor; InstituteCondensed Matter Physics Team

    2014-03-01

    We classify discrete-rotation symmetric topological crystalline superconductors (TCS) in two dimensions and provide the criteria for a zero energy Majorana bound state (MBS) to be present at composite defects made from magnetic flux, dislocations, and disclinations. In addition to the Chern number that encodes chirality, discrete rotation symmetry further divides TCS into distinct stable topological classes according to the rotation eigenspectrum of Bogoliubov-de Gennes quasi-particles. Conical crystalline defects are shown to be able to accommodate robust MBS when a certain combination of these bulk topological invariants is non-trivial as dictated by the index theorems proved within. The number parity of MBS is counted by a Z2-valued index that solely depends on the disclination and the topological class of the TCS. We also discuss the implications for corner-bound Majorana modes on the boundary of topological crystalline superconductors J.C.Y.T. acknowledges support from the Simons Foundation Fellowship. T.L.H. was supported by ONR Grant No. N0014-12-1-0935. We also thanks the support of the UIUC ICMT.

  20. A new simple exotic atom, H-+: e+ bound to H- in an atomic state

    NASA Astrophysics Data System (ADS)

    Guevara, I.; Weel, M.; George, M. C.; Hessels, E. A.; Storry, C. H.

    2014-05-01

    A beam of H- ions is directed along the axis of a solenoidal magnet winding. Within this magnet, cylindrical electrodes with applied potentials slow the ions to an energy of ~ 50 eV in a magnetic field of ~ 0.13 Tesla. This apparatus also acts as a charged particle trap. e+ from a radioactive source are slowed in frozen neon, guided by magnetic fields and captured in this Surko-style accumulator with ~107 e+ trapped and cooled for experiments. H- ions are directed through these e+ producing long-lived H-+ atoms. H-+ is not bound in the charged particle trap and continues with the initial momentum of the H- ion into a metal plate. Upon impact the e+ quickly annihilates into back-to-back gammas. Detection of these coincident gammas indicates H-+ that traveled the 2 meter to the detector and indicates a survival time of ~ 5 μs . Typically systems with antimatter bound to matter particles have short lifetimes (and hence wide transition widths) due annihilation. Rydberg states of H-+, however, have the long radiative lifetimes of normal matter atoms because there is little overlap of the e+ wavefunction with the core. The detected rates or H-+ are consistent with those expected for radiative recombination. NSERC, CFI, ORF.

  1. Neutron scattering from elemental indium, the optical model, and the bound-state potential

    SciTech Connect

    Chiba, S. ); Guenther, P.T.; Lawson, R.D.; Smith, A.B. )

    1990-06-01

    Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.

  2. Dynamics of thermodynamically stable, kinetically trapped, and inhibitor-bound states of pepsin.

    PubMed

    Dee, Derek R; Myers, Brenna; Yada, Rickey Y

    2011-10-05

    The pepsin folding mechanism involves a prosegment (PS) domain that catalyzes folding, which is then removed, resulting in a kinetically trapped native state. Although native pepsin (Np) is kinetically stable, it is irreversibly denatured due to a large folding barrier, and in the absence of the PS it folds to a more thermodynamically stable denatured state, termed refolded pepsin (Rp). This system serves as a model to understand the nature of kinetic barriers and folding transitions between compact states. Quasielastic neutron scattering (QENS) was used to characterize and compare the flexibility of Np, as a kinetically trapped state, with that of Rp, as a thermodynamically stable fold. Additionally, the dynamics of Np were compared with those of a partially unfolded form and a thermally stabilized, inhibitor-bound form. QENS revealed length-scale-dependent differences between Np and Rp on a picosecond timescale and indicated greater flexibility in Np, leading to the conclusion that kinetic stabilization likely does not correspond to reduced internal dynamics. Furthermore, large differences were observed upon inhibition, indicating that QENS of proteins in solution may prove useful for examining the role of conformational entropy changes in ligand binding.

  3. Steady-state and femtosecond photoinduced processes of blepharismins bound to alpha-crystallin.

    PubMed

    Youssef, T; Brazard, J; Ley, C; Lacombat, F; Plaza, P; Martin, M M; Sgarbossa, A; Checcucci, G; Lenci, F

    2008-07-01

    The interaction of blepharismin (BP) and oxyblepharismin (OxyBP) with bovine alpha-crystallin (BAC) has been studied both by steady-state and femtosecond spectroscopy, with the aim of assessing the possible phototoxicity of these compounds toward the eye tissues. We showed that these pigments form with BAC potentially harmful ground-state complexes, the dissociation constants of which have been estimated to be 6 +/- 2 micromol L(-1) for OxyBP and 9 +/- 4 micromol L(-1) for BP. Irradiation with steady-state visible light of solutions of blepharismins in the presence of BAC proved to induce a quenching of both the pigment and the intrinsic protein fluorescences. These effects were tentatively rationalized in terms of structural changes of alpha-crystallin. On the other hand, femtosecond transient absorption spectroscopy was used to check the occurrence of any type I photoactivity of oxyblepharismin bound to alpha-crystallin. The existence of a particular type of fast photoinduced reaction, not observed in former studies with human serum albumin but present in the natural oxyblepharismin-binding protein, could here be evidenced but no specific reaction was observed during the first few nanoseconds after excitation. Partial denaturation of alpha-crystallin was however found to alter the excited-state behaviour of its complex with oxyblepharismin, making it partly resemble that of free oxyblepharismin in solution.

  4. Attosecond transient absorption probing of electronic superpositions of bound states in neon. Detection of quantum beats

    DOE PAGES

    Beck, Annelise R; Bernhardt, Birgitta; Warrick, Erika R.; ...

    2014-11-07

    Electronic wavepackets composed of multiple bound excited states of atomic neon lying between 19.6 and 21.5 eV are launched using an isolated attosecond pulse. Individual quantum beats of the wavepacket are detected by perturbing the induced polarization of the medium with a time-delayed few-femtosecond near-infrared (NIR) pulse via coupling the individual states to multiple neighboring levels. All of the initially excited states are monitored simultaneously in the attosecond transient absorption spectrum, revealing Lorentzian to Fano lineshape spectral changes as well as quantum beats. The most prominent beating of the several that were observed was in the spin–orbit split 3d absorptionmore » features, which has a 40 femtosecond period that corresponds to the spin–orbit splitting of 0.1 eV. The few-level models and multilevel calculations confirm that the observed magnitude of oscillation depends strongly on the spectral bandwidth and tuning of the NIR pulse and on the location of possible coupling states.« less

  5. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    PubMed Central

    Wang, Jie; Eldo, Joby; Kantrowitz, Evan R.

    2009-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analogue phosphonactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-L-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 Å away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism. PMID:17603076

  6. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    SciTech Connect

    Wang,J.; Eldo, J.; Kantrowitz, E.

    2007-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 {angstrom} away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.

  7. Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators

    PubMed Central

    Marsh, Joseph A.; Dancheck, Barbara; Ragusa, Michael J.; Allaire, Marc; Forman-Kay, Julie D.; Peti, Wolfgang

    2010-01-01

    Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three non-homologous, intrinsically disordered proteins: I-2, spinophilin and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, pre-formed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered I-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex. PMID:20826336

  8. Interaction assisted tunneling of a Bose-Einstein condensate out of a quasi bound state

    NASA Astrophysics Data System (ADS)

    Potnis, Shreyas; Ramos, Ramon; Maeda, Kenji; Carr, Lincoln D.; Steinberg, Aephraim

    2015-05-01

    We experimentally measure the tunneling rate of a 87Rb Bose-Einstein condensate prepared in a quasi-bound state. Using the combination of a magnetic quadrupole trap and a thin 1.1 μm barrier created using a blue-detuned sheet of light, we can create traps with controllable depth and lifetime. The thin tunnel barrier allows for a tunable tunneling rate from 30 s-1 to 1 s-1 . The escape dynamics strongly depend on the mean-field energy, which gives rise to three distinct regimes-- classical over the barrier spilling, quantum tunneling, and decay dominated by background losses. We show that the tunneling rate goes down exponentially with decreasing chemical potential. Our results show good agreement with numerical solutions of the 3D Gross-Pitaevskii equation and WKB calculations.

  9. Remarkable coincidence for the top Yukawa coupling and an approximately massless bound state

    SciTech Connect

    Froggatt, C. D.; Nielsen, H. B.

    2009-08-01

    We calculate, with several corrections, the nonrelativistic binding by Higgs exchange and gluon exchange between six top and six antitop quarks (actually replaced by left-handed b quarks from time to time). The remarkable result is that, within our calculational accuracy of the order of 14% in the top-quark Yukawa coupling g{sub t}, the experimental running top-quark Yukawa coupling g{sub t}=0.935 happens to have just that value which gives a perfect cancellation of the unbound mass=12 top-quark masses by this binding energy. In other words the bound state is massless to the accuracy of our calculation. Our calculation is in disagreement with a similar calculation by Kuchiev et al., but this deviation may be explained by a phase transition. We and Kuchiev et al. compute on different sides of this phase transition.

  10. Potential energy surface and bound states of the NH3-Ar and ND3-Ar complexes.

    PubMed

    Loreau, J; Liévin, J; Scribano, Y; van der Avoird, A

    2014-12-14

    A new, four-dimensional potential energy surface for the interaction of NH3 and ND3 with Ar is computed using the coupled-cluster method with single, double, and perturbative triple excitations and large basis sets. The umbrella motion of the ammonia molecule is explicitly taken into account. The bound states of both NH3-Ar and ND3-Ar are calculated on this potential for total angular momentum values from J = 0 to 10, with the inclusion of Coriolis interactions. The energies and splittings of the rovibrational levels are in excellent agreement with the extensive high-resolution spectroscopic data accumulated over the years in the infrared and microwave regions for both complexes, which demonstrates the quality of the potential energy surface.

  11. Quasi bound states in the continuum with few unit cells of photonic crystal slab

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-07-01

    Bound states in the continuum (BICs) in photonic crystal slabs represent the resonances with an infinite quality (Q)-factor, occurring above the light line for an infinitely periodic structure. We show that a set of BICs can turn into quasi-BICs with a very high Q-factor even for two or three unit cell structures. They are explained by a viewpoint of BICs originating from the tight-binding of individual resonances of each unit cell as in semiconductors. Combined with a reciprocal-space matching technique, the microcavities based on quasi-BICs can achieve a Q-factor as high as defect-based PhC microcavities. These results may enable the experimental studies of BICs in a compact platform as well as realizing high-Q mirrorless microcavities.

  12. Neutrino masses and the dark energy equation of state: relaxing the cosmological neutrino mass bound.

    PubMed

    Hannestad, Steen

    2005-11-25

    At present, cosmology provides the nominally strongest constraint on the masses of standard model neutrinos. However, this constraint is extremely dependent on the nature of the dark energy component of the Universe. When the dark energy equation of state parameter is taken as a free (but constant) parameter, the neutrino mass bound is sigma m(v) < or = 1.48 eV (95% C.L.), compared with sigma m(v) < or = 0.65 eV (95% C.L.) in the standard model where the dark energy is in the form of a cosmological constant. This has important consequences for future experiments aimed at the direct measurement of neutrino masses. We also discuss prospects for future cosmological measurements of neutrino masses.

  13. Structural Diversity in Free and Bound States of Intrinsically Disordered Protein Phosphatase 1 Regulators

    SciTech Connect

    Marsh, J.A.; Allaire, M.; Dancheck, B.; Ragusa, M.J.; Forman-Kay, J.D.; Peti, Wolfgang

    2010-09-08

    Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three nonhomologous, intrinsically disordered proteins: I-2, spinophilin, and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, preformed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered I-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex.

  14. Bound state properties of ABC-stacked trilayer graphene quantum dots.

    PubMed

    Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming

    2017-04-03

    The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts [Y. Song et al., Nano Lett. 16, 6245 (2016)], we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to the other group, which can be understood analytically through perturbation theory. Our results provide insight to the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.

  15. Bound state structure and electromagnetic form factor beyond the ladder approximation

    NASA Astrophysics Data System (ADS)

    Gigante, V.; Nogueira, J. H. Alvarenga; Ydrefors, E.; Gutierrez, C.; Karmanov, V. A.; Frederico, T.

    2017-03-01

    We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.

  16. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  17. Appearance of bound states in random potentials with applications to soliton theory

    SciTech Connect

    Derevyanko, S. A.

    2011-07-15

    We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schroedinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg-de-Vries and the nonlinear Schroedinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.

  18. Universality classes of order parameters composed of many-body bound states

    SciTech Connect

    Tsvelik, A. M.

    2016-11-28

    This theoretical paper discusses microscopic models giving rise to special types of order in which conduction electrons are bound together with localized spins to create composite order parameters. It is shown that composite order is related to the formation of a spin liquid with gapped excitations carrying quantum numbers which are a fraction of those of electron. These spin liquids are special in the sense that their formation necessarily involves spin degrees of freedom of both the conduction and the localized electrons and can be characterized by nonlocal order parameters. A detailed description of such spin liquid states is presented with a special care given to a demonstration of their robustness against local perturbations preserving the Lie group symmetry and the translational invariance.

  19. Transport properties of paired Majorana bound states in a parallel junction

    NASA Astrophysics Data System (ADS)

    Jiang, Cui; Gong, W. J.; Zheng, Yi-Song

    2013-12-01

    The transport properties of a paired Majorana bound states (MBSs) in a parallel junction are theoretically investigated, by considering the influence of different MBS-lead coupling manners, i.e., left-right asymmetric coupling, upper-down asymmetric coupling, and left-right upper-down asymmetric coupling. The calculation results show that the MBS-lead coupling manners affect the transport properties in a substantial way. For the former two configurations, the shot noise Fano factor in the zero-bias limit is related to the value of the conductance maximum with F0=1+1/2Tmax (conductance G =e/2hT). When both the left-right and upper-down symmetries are broken, such a relation is modified into F0=1-12/T0. These results will be helpful for describing the transport characteristics of the junction with MBSs.

  20. Detecting the Exchange Phase of Majorana Bound States in a Corbino Geometry Topological Josephson Junction

    NASA Astrophysics Data System (ADS)

    Park, Sunghun; Recher, Patrik

    2015-12-01

    A phase from an adiabatic exchange of Majorana bound states (MBS) reveals their exotic anyonic nature. For detecting this exchange phase, we propose an experimental setup consisting of a Corbino geometry Josephson junction on the surface of a topological insulator, in which two MBS at zero energy can be created and rotated. We find that if a metallic tip is weakly coupled to a point on the junction, the time-averaged differential conductance of the tip-Majorana coupling shows peaks at the tip voltages e V =±(α -2 π l )ℏ/TJ, where α =π /2 is the exchange phase of the two circulating MBS, TJ is the half rotation time of MBS, and l an integer. This result constitutes a clear experimental signature of Majorana fermion exchange.