Sample records for boundary condition capturing

  1. Robust boundary treatment for open-channel flows in divergence-free incompressible SPH

    NASA Astrophysics Data System (ADS)

    Pahar, Gourabananda; Dhar, Anirban

    2017-03-01

    A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.

  2. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    PubMed

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  3. Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.; Cluggish, B.; Kim, J. S.

    2010-02-15

    A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recentmore » charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed.« less

  4. In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.

  5. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE PAGES

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.; ...

    2017-10-31

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  6. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  7. Boundary Conditions for Jet Flow Computations

    NASA Technical Reports Server (NTRS)

    Hayder, M. E.; Turkel, E.

    1994-01-01

    Ongoing activities are focused on capturing the sound source in a supersonic jet through careful large eddy simulation (LES). One issue that is addressed is the effect of the boundary conditions, both inflow and outflow, on the predicted flow fluctuations, which represent the sound source. In this study, we examine the accuracy of several boundary conditions to determine their suitability for computations of time-dependent flows. Various boundary conditions are used to compute the flow field of a laminar axisymmetric jet excited at the inflow by a disturbance given by the corresponding eigenfunction of the linearized stability equations. We solve the full time dependent Navier-Stokes equations by a high order numerical scheme. For very small excitations, the computed growth of the modes closely corresponds to that predicted by the linear theory. We then vary the excitation level to see the effect of the boundary conditions in the nonlinear flow regime.

  8. Minimum required capture radius in a coplanar model of the aerial combat problem

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.; Merz, A. W.

    1977-01-01

    Coplanar aerial combat is modeled with constant speeds and specified turn rates. The minimum capture radius which will always permit capture, regardless of the initial conditions, is calculated. This 'critical' capture radius is also the maximum range which the evader can guarantee indefinitely if the initial range, for example, is large. A composite barrier is constructed which gives the boundary, at any heading, of relative positions for which the capture radius is less than critical.

  9. Optimal ballistically captured Earth-Moon transfers

    NASA Astrophysics Data System (ADS)

    Ricord Griesemer, Paul; Ocampo, Cesar; Cooley, D. S.

    2012-07-01

    The optimality of a low-energy Earth-Moon transfer terminating in ballistic capture is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the problem is then modified to fix the time of transfer, allowing for optimal multi-impulse transfers. The tradeoff between transfer time and fuel cost is shown for Earth-Moon ballistic lunar capture transfers.

  10. Assessment of applications of transport models on regional scale solute transport

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  11. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  12. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  13. Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram

    2015-11-01

    Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.

  14. Unsteady-flow-field predictions for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1991-01-01

    The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.

  15. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  16. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  17. Computer simulations of rapid granular flows of spheres interacting with a flat, frictional boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louge, M.Y.

    This paper employs computer simulations to test the theory of Jenkins [J. Applied Mech. [bold 59], 120 (1992)] for the interaction between a rapid granular flow of spheres and a flat, frictional wall. This paper examines the boundary conditions that relate the shear stress and energy flux at the wall to the normal stress, slip velocity, and fluctuation energy, and to the parameters that characterize a collision. It is found that while the theory captures the trends of the boundary conditions at low friction, it does not anticipate their behavior at large friction. A critical evaluation of Jenkins' assumptions suggestsmore » where his theory may be improved.« less

  18. Experimental and computation study of liquid droplets impinging on an afterburner

    NASA Astrophysics Data System (ADS)

    Lavergne, G.; Hebrard, P.; Donnadille, Ph.

    The actual development of three-dimensional computation codes of internal reactive flows in combustion chambers needs, for the liquid phase, accurate boundary conditions. A series of experiments was undertaken to identify and then to analyze physical phenomena occurring during spray transport and spray boundary interaction. The purpose of this paper is to investigate drop wall interaction, drop impingement, the liquid film, and the liquid flow rate captured by a flameholder. The experimental approach is divided in two parts: a parametric study on the captured fuel flow rate by a flameholder in an isothermal two-dimensional square facility, and a fundamental study of monosized droplet impingement on a hot plate to determine rebound criteria.

  19. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edlund, E. M.; Ji, H.

    2015-10-06

    Here, we present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  20. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows.

    PubMed

    Edlund, E M; Ji, H

    2015-10-01

    We present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  1. Structure of high and low shear-stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  2. An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions

    NASA Astrophysics Data System (ADS)

    Smits, Kathleen M.; Ngo, Viet V.; Cihan, Abdullah; Sakaki, Toshihiro; Illangasekare, Tissa H.

    2012-12-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance. However, there is no agreement on the best modeling methodology to determine evaporation under different atmospheric boundary conditions. Also, there is a lack of directly measured soil evaporation data for model validation to compare these methods to establish the validity of their mathematical formulations. Thus, a need exists to systematically compare evaporation estimates using existing methods to experimental observations. The goal of this work is to test different conceptual and mathematical formulations that are used to estimate evaporation from bare soils to critically investigate various formulations and surface boundary conditions. Such a comparison required the development of a numerical model that has the ability to incorporate these boundary conditions. For this model, we modified a previously developed theory that allows nonequilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. Precision data under well-controlled transient heat and wind boundary conditions were generated, and results from numerical simulations were compared with experimental data. Results demonstrate that the approaches based on different boundary conditions varied in their ability to capture different stages of evaporation. All approaches have benefits and limitations, and no one approach can be deemed most appropriate for every scenario. Comparisons of different formulations of the surface boundary condition validate the need for further research on heat and vapor transport processes in soil for better modeling accuracy.

  3. Effect of the boundary conditions and influence of the rotational inertia on the vibrational modes of an elastic ring

    PubMed Central

    Clauvelin, Nicolas; Olson, Wilma K.; Tobias, Irwin

    2013-01-01

    We present the small-amplitude vibrations of a circular elastic ring with periodic and clamped boundary conditions. We model the rod as an inextensible, isotropic, naturally straight Kirchhoff elastic rod and obtain the vibrational modes of the ring analytically for periodic boundary conditions and numerically for clamped boundary conditions. Of particular interest are the dependence of the vibrational modes on the torsional stress in the ring and the influence of the rotational inertia of the rod on the mode frequencies and amplitudes. In rescaling the Kirchhoff equations, we introduce a parameter inversely proportional to the aspect ratio of the rod. This parameter makes it possible to capture the influence of the rotational inertia of the rod. We find that the rotational inertia has a minor influence on the vibrational modes with the exception of a specific category of modes corresponding to high-frequency twisting deformations in the ring. Moreover, some of the vibrational modes over or undertwist the elastic rod depending on the imposed torsional stress in the ring. PMID:24795495

  4. Evaluation of WRF physical parameterizations against ARM/ASR Observations in the post-cold-frontal region to improve low-level clouds representation in CAM5

    NASA Astrophysics Data System (ADS)

    Lamraoui, F.; Booth, J. F.; Naud, C. M.

    2017-12-01

    The representation of subgrid-scale processes of low-level marine clouds located in the post-cold-frontal region poses a serious challenge for climate models. More precisely, the boundary layer parameterizations are predominantly designed for individual regimes that can evolve gradually over time and does not accommodate the cold front passage that can overly modify the boundary layer rapidly. Also, the microphysics schemes respond differently to the quick development of the boundary layer schemes, especially under unstable conditions. To improve the understanding of cloud physics in the post-cold frontal region, the present study focuses on exploring the relationship between cloud properties, the local processes and large-scale conditions. In order to address these questions, we explore the WRF sensitivity to the interaction between various combinations of the boundary layer and microphysics parameterizations, including the Community Atmospheric Model version 5 (CAM5) physical package in a perturbed physics ensemble. Then, we evaluate these simulations against ground-based ARM observations over the Azores. The WRF-based simulations demonstrate particular sensitivities of the marine cold front passage and the associated post-cold frontal clouds to the domain size, the resolution and the physical parameterizations. First, it is found that in multiple different case studies the model cannot generate the cold front passage when the domain size is larger than 3000 km2. Instead, the modeled cold front stalls, which shows the importance of properly capturing the synoptic scale conditions. The simulation reveals persistent delay in capturing the cold front passage and also an underestimated duration of the post-cold-frontal conditions. Analysis of the perturbed physics ensemble shows that changing the microphysics scheme leads to larger differences in the modeled clouds than changing the boundary layer scheme. The in-cloud heating tendencies are analyzed to explain this sensitivity.

  5. Optimal Low Energy Earth-Moon Transfers

    NASA Technical Reports Server (NTRS)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  6. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts

    PubMed Central

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-01-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions. PMID:27051871

  7. Large Eddy Simulations of Continental Boundary Layer Clouds Observed during the RACORO Field Campaign

    NASA Astrophysics Data System (ADS)

    Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.

    2013-12-01

    Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.

  8. Limitations of holography

    NASA Astrophysics Data System (ADS)

    Chowdhury, Borun D.

    2015-11-01

    By studying global AdS using different foliations, global and Rindler-AdS, we show that there are two different asymptotic Fefferman-Graham expansions possible and thus two different definitions of "boundaries". We demonstrate that imposing boundary conditions on the two boundaries is not mutually compatible even when these boundaries are pushed to infinity. Thus, these two procedures define two genuinely distinct theories that we call global-CFT and Rindler-CFT. We show that the Rindler-CFT is not the same as the theory one gets by "Rindlerizing the global-CFT" described in hep-th/9804085. We conjecture that the Rindler theory is incapable of capturing the dynamics inside the horizon and discuss its implications for the BTZ-CFT duality proposed in hep-th/0106112.

  9. Fast words boundaries localization in text fields for low quality document images

    NASA Astrophysics Data System (ADS)

    Ilin, Dmitry; Novikov, Dmitriy; Polevoy, Dmitry; Nikolaev, Dmitry

    2018-04-01

    The paper examines the problem of word boundaries precise localization in document text zones. Document processing on a mobile device consists of document localization, perspective correction, localization of individual fields, finding words in separate zones, segmentation and recognition. While capturing an image with a mobile digital camera under uncontrolled capturing conditions, digital noise, perspective distortions or glares may occur. Further document processing gets complicated because of its specifics: layout elements, complex background, static text, document security elements, variety of text fonts. However, the problem of word boundaries localization has to be solved at runtime on mobile CPU with limited computing capabilities under specified restrictions. At the moment, there are several groups of methods optimized for different conditions. Methods for the scanned printed text are quick but limited only for images of high quality. Methods for text in the wild have an excessively high computational complexity, thus, are hardly suitable for running on mobile devices as part of the mobile document recognition system. The method presented in this paper solves a more specialized problem than the task of finding text on natural images. It uses local features, a sliding window and a lightweight neural network in order to achieve an optimal algorithm speed-precision ratio. The duration of the algorithm is 12 ms per field running on an ARM processor of a mobile device. The error rate for boundaries localization on a test sample of 8000 fields is 0.3

  10. Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique

    NASA Technical Reports Server (NTRS)

    Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.

    1986-01-01

    The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.

  11. Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition: Critical points

    NASA Astrophysics Data System (ADS)

    Dhanai, Ruchika; Rana, Puneet; Kumar, Lokendra

    2016-05-01

    The motivation behind the present analysis is to focus on magneto-hydrodynamic flow and heat transfer characteristics of non-Newtonian fluid (Sisko fluid) past a permeable nonlinear shrinking sheet utilizing nanoparticles involving convective boundary condition. The non-homogenous nanofluid transport model considering the effect of Brownian motion, thermophoresis, suction/injection and no nanoparticle flux at the sheet with convective boundary condition has been solved numerically by the RKF45 method with shooting technique. Critical points for various pertinent parameters are evaluated in this study. The dual solutions (both first and second solutions) are captured in certain range of material constant (nc< n < ∞) , mass transfer parameter (sc < s < ∞) and shrinking parameter (χc < χ < 0) . For both the branches (upper and lower branch), the rate of heat transfer is an increasing function of the power-law index, Prandtl number and Biot number, whereas it is a decreasing function of the material constant and thermophoresis parameter.

  12. A consistent spatial differencing scheme for the transonic full-potential equation in three dimensions

    NASA Technical Reports Server (NTRS)

    Thomas, S. D.; Holst, T. L.

    1985-01-01

    A full-potential steady transonic wing flow solver has been modified so that freestream density and residual are captured in regions of constant velocity. This numerically precise freestream consistency is obtained by slightly altering the differencing scheme without affecting the implicit solution algorithm. The changes chiefly affect the fifteen metrics per grid point, which are computed once and stored. With this new method, the outer boundary condition is captured accurately, and the smoothness of the solution is especially improved near regions of grid discontinuity.

  13. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  14. In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.

  15. Nested large-eddy simulations of nighttime shear-instability waves and transient warming in a steep valley

    NASA Astrophysics Data System (ADS)

    Zhou, Bowen; Chow, Fotini

    2012-11-01

    This numerical study investigates the nighttime flow dynamics in a steep valley. The Owens Valley in California is highly complex, and represents a challenging terrain for large-eddy simulations (LES). To ensure a faithful representation of the nighttime atmospheric boundary layer (ABL), realistic external boundary conditions are provided through grid nesting. The model obtains initial and lateral boundary conditions from reanalysis data, and bottom boundary conditions from a land-surface model. We demonstrate the ability to extend a mesoscale model to LES resolutions through a systematic grid-nesting framework, achieving accurate simulations of the stable ABL over complex terrain. Nighttime cold-air flow was channeled through a gap on the valley sidewall. The resulting katabatic current induced a cross-valley flow. Directional shear against the down-valley flow in the lower layers of the valley led to breaking Kelvin-Helmholtz waves at the interface, which is captured only on the LES grid. Later that night, the flow transitioned from down-slope to down-valley near the western sidewall, leading to a transient warming episode. Simulation results are verified against field observations and reveal good spatial and temporal precision. Supported by NSF grant ATM-0645784.

  16. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    NASA Astrophysics Data System (ADS)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  17. Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain

    PubMed Central

    Li, Longfei; Braun, R. J.; Maki, K. L.; Henshaw, W. D.; King-Smith, P. E.

    2014-01-01

    We study tear film dynamics with evaporation on a wettable eye-shaped ocular surface using a lubrication model. The mathematical model has a time-dependent flux boundary condition that models the cycles of tear fluid supply and drainage; it mimics blinks on a stationary eye-shaped domain. We generate computational grids and solve the nonlinear governing equations using the OVERTURE computational framework. In vivo experimental results using fluorescent imaging are used to visualize the influx and redistribution of tears for an open eye. Results from the numerical simulations are compared with the experiment. The model captures the flow around the meniscus and other dynamic features of human tear film observed in vivo. PMID:24926191

  18. Implementation of Radiation, Ablation, and Free Energy Minimization Modules for Coupled Simulations of Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Thompson, Richard A.

    2009-01-01

    A description of models and boundary conditions required for coupling radiation and ablation physics to a hypersonic flow simulation is provided. Chemical equilibrium routines for varying elemental mass fraction are required in the flow solver to integrate with the equilibrium chemistry assumption employed in the ablation models. The capability also enables an equilibrium catalytic wall boundary condition in the non-ablating case. The paper focuses on numerical implementation issues using FIRE II, Mars return, and Apollo 4 applications to provide context for discussion. Variable relaxation factors applied to the Jacobian elements of partial equilibrium relations required for convergence are defined. Challenges of strong radiation coupling in a shock capturing algorithm are addressed. Results are presented to show how the current suite of models responds to a wide variety of conditions involving coupled radiation and ablation.

  19. The modulation of perceptual selection by working memory is dependent on the focus of spatial attention.

    PubMed

    Pan, Yi; Soto, David

    2010-07-09

    Recent research suggests that visual selection can be automatically biased to those stimuli matching the contents of working memory (WM). However, a complete functional account of the interplay between WM and attention remains to be established. In particular, the boundary conditions of the WM effect on selection are unclear. Here, the authors investigate the influence of the focus of spatial attention (i.e., diffused vs. focused) by assessing the effect of spatial precues on attentional capture by WM. Experiments 1 and 2 showed that relative to a neutral condition without memory-matching stimuli, the presence of a memory distractor can trigger attentional capture despite being entirely irrelevant for the attention task but this happened only when the item was actively maintained in WM and not when it was merely repeated. Experiments 3a, 3b and 3c showed that attentional capture by WM can be modulated by endogenous spatial pre-cueing of the incoming target of selection. The authors conclude that WM-driven capture of visual selection is dependent on the focus of spatial attention. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. A physical-based gas-surface interaction model for rarefied gas flow simulation

    NASA Astrophysics Data System (ADS)

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2018-01-01

    Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.

  1. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  2. A supersonic, three-dimensional code for flow over blunt bodies: User's manual

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.; Mcmillan, O. J.

    1980-01-01

    A computer code is described which may be used to calculate the steady, supersonic, three-dimensional, inviscid flow over blunt bodies. The theoretical and numerical formulation of the problem is given (shock-capturing, downstream marching), including exposition of the boundary and initial conditions. The overall flow logic of the program, its usage, accuracy, and limitations are discussed.

  3. Selection, Evaluation, and Rating of Compact Heat Exchangers v. 1.006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Matthew D.

    2016-11-09

    SEARCH determines and optimizes the design of a compact heat exchanger for specified process conditions. The user specifies process boundary conditions including the fluid state and flow rate and SEARCH will determine the optimum flow arrangement, channel geometry, and mechanical design for the unit. Fluids are modeled using NIST Refprop or tabulated values. A variety of thermal-hydraulic correlations are available including user-defined equations to accurately capture the heat transfer and pressure drop behavior of the process flows.

  4. Parallel methodology to capture cyclic variability in motored engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameen, Muhsin M.; Yang, Xiaofeng; Kuo, Tang-Wei

    2016-07-28

    Numerical prediction of of cycle-to-cycle variability (CCV) in SI engines is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are require to accurately capture the in-cylinder turbulent flowfield, and (ii) CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. In this study, a new methodology is proposed to dissociate this long time-scale problem into several shorter time-scale problems, which can considerably reduce the computational time without sacrificing the fidelity of the simulations. The strategy is to perform multiple single-cycle simulations in parallel bymore » effectively perturbing the simulation parameters such as the initial and boundary conditions. It is shown that by perturbing the initial velocity field effectively based on the intensity of the in-cylinder turbulence, the mean and variance of the in-cylinder flowfield is captured reasonably well. Adding perturbations in the initial pressure field and the boundary pressure improves the predictions. It is shown that this new approach is able to give accurate predictions of the flowfield statistics in less than one-tenth of time required for the conventional approach of simulating consecutive engine cycles.« less

  5. Constraining the inferred paleohydrologic evolution of a deep unsaturated zone in the Amargosa Desert

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Stonestrom, David A.; Andraski, Brian J.; Striegl, Robert G.

    2004-01-01

    Natural flow regimes in deep unsaturated zones of arid interfluvial environments are rarely in hydraulic equilibrium with near-surface boundary conditions imposed by present-day plant–soil–atmosphere dynamics. Nevertheless, assessments of water resources and contaminant transport require realistic estimates of gas, water, and solute fluxes under past, present, and projected conditions. Multimillennial transients that are captured in current hydraulic, chemical, and isotopic profiles can be interpreted to constrain alternative scenarios of paleohydrologic evolution following climatic and vegetational shifts from pluvial to arid conditions. However, interpreting profile data with numerical models presents formidable challenges in that boundary conditions must be prescribed throughout the entire Holocene, when we have at most a few decades of actual records. Models of profile development at the Amargosa Desert Research Site include substantial uncertainties from imperfectly known initial and boundary conditions when simulating flow and solute transport over millennial timescales. We show how multiple types of profile data, including matric potentials and porewater concentrations of Cl−, δD, δ18O, can be used in multiphase heat, flow, and transport models to expose and reduce uncertainty in paleohydrologic reconstructions. Results indicate that a dramatic shift in the near-surface water balance occurred approximately 16000 yr ago, but that transitions in precipitation, temperature, and vegetation were not necessarily synchronous. The timing of the hydraulic transition imparts the largest uncertainty to model-predicted contemporary fluxes. In contrast, the uncertainties associated with initial (late Pleistocene) conditions and boundary conditions during the Holocene impart only small uncertainties to model-predicted contemporaneous fluxes.

  6. Application of dynamic slip wall modeling to a turbine nozzle guide vane

    NASA Astrophysics Data System (ADS)

    Bose, Sanjeeb; Talnikar, Chaitanya; Blonigan, Patrick; Wang, Qiqi

    2015-11-01

    Resolution of near-wall turbulent structures is computational prohibitive necessitating the need for wall-modeled large-eddy simulation approaches. Standard wall models are often based on assumptions of equilibrium boundary layers, which do not necessarily account for the dissimilarity of the momentum and thermal boundary layers. We investigate the use of the dynamic slip wall boundary condition (Bose and Moin, 2014) for the prediction of surface heat transfer on a turbine nozzle guide vane (Arts and de Rouvroit, 1992). The heat transfer coefficient is well predicted by the slip wall model, including capturing the transition to turbulence. The sensitivity of the heat transfer coefficient to the incident turbulence intensity will additionally be discussed. Lastly, the behavior of the thermal and momentum slip lengths will be contrasted between regions where the strong Reynolds analogy is invalid (near transition on the suction side) and an isothermal, zero pressure gradient flat plate boundary layer (Wu and Moin, 2010).

  7. Towards industrial-strength Navier-Stokes codes

    NASA Technical Reports Server (NTRS)

    Jou, Wen-Huei; Wigton, Laurence B.; Allmaras, Steven R.

    1992-01-01

    In this paper we discuss our experiences with Navier-Stokes (NS) codes using central differencing (CD) and scalar artificial dissipation (SAD). The NS-CDSAD codes have been developed by several researchers. Our results confirm that for typical commercial transport wing and wing/body configurations flying at transonic conditions with all turbulent boundary layers, NS-CDSAD codes, when used with the Johnson-King turbulence model, are capable of computing pressure distributions in excellent agreement with experimental data. However, results are not as good when laminar boundary layers are present. Exhaustive 2-D grid refinement studies supported by detailed analysis suggest that the numerical errors associated with SAD severely contaminate the solution in the laminar portion of the boundary layer. It is left as a challenge to the CFD community to find and fix the problems with Navier-Stokes codes and to produce a NS code which converges reliably and properly captures the laminar portion of the boundary layer on a reasonable grid.

  8. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    NASA Astrophysics Data System (ADS)

    Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.

    2013-10-01

    a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.

  9. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  10. Effects of the bottom boundary condition in numerical investigations of dense water cascading on a slope

    NASA Astrophysics Data System (ADS)

    Berntsen, Jarle; Alendal, Guttorm; Avlesen, Helge; Thiem, Øyvind

    2018-05-01

    The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a substantial artificial blocking effect when using no-slip.

  11. Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Landmeyer, J.E.

    1994-01-01

    Ground-water capture zone boundaries for individual pumped wells in a confined aquffer were delineated by using groundwater models. Both analytical and numerical (semi-analytical) models that more accurately represent the $round-water-flow system were used. All models delineated 2-dimensional boundaries (capture zones) that represent the areal extent of groundwater contribution to a pumped well. The resultant capture zones were evaluated on the basis of the ability of each model to realistically rapresent the part of the ground-water-flow system that contributed water to the pumped wells. Analytical models used were based on a fixed radius approach, and induded; an arbitrary radius model, a calculated fixed radius model based on the volumetric-flow equation with a time-of-travel criterion, and a calculated fixed radius model derived from modification of the Theis model with a drawdown criterion. Numerical models used induded the 2-dimensional, finite-difference models RESSQC and MWCAP. The arbitrary radius and Theis analytical models delineated capture zone boundaries that compared least favorably with capture zones delineated using the volumetric-flow analytical model and both numerical models. The numerical models produced more hydrologically reasonable capture zones (that were oriented parallel to the regional flow direction) than the volumetric-flow equation. The RESSQC numerical model computed more hydrologically realistic capture zones than the MWCAP numerical model by accounting for changes in the shape of capture zones caused by multiple-well interference. The capture zone boundaries generated by using both analytical and numerical models indicated that the curnmtly used 100-foot radius of protection around a wellhead in South Carolina is an underestimate of the extent of ground-water capture for pumped wetis in this particular wellfield in the Upper Floridan aquifer. The arbitrary fixed radius of 100 feet was shown to underestimate the upgradient contribution of ground-water flow to a pumped well.

  12. Jumping Mechanism of Self-Propelled Droplet

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng; Chen, Yan

    2017-11-01

    The self-propelled behavior of coalesced droplets can be utilized to enhance heat transfer performance of dropwise condensation. It has been recognized that the droplet self-propelling is the combined result of the conversion of surface energy to kinetic energy and the unsymmetrical boundary conditions imposed on the droplets. However, the roles of boundary conditions, which largely determine the conversion ratio of surface energy to the effective jumping kinetic energy, are not well understood. In this paper we use a numerical approach to investigate the boundary condition effect on the self-propelling behavior. A Navier-Stokes equation solver for multiphase flows is used to describe the flow field. The moment of fluid interface reconstruction technique is applied to resolute the interfaces. A direction splitting method is applied to advect the interface. And an approximate projection method is used to decouple the calculation of velocity and pressure. Comparisons are made with experimental results and show the simulation can accurately capture self-propelling behavior. Our simulation show the vertical flow velocity inside the coalesced droplet can increase the normalized jumping velocity but the contact area between droplets and substrate can decrease jumping velocity. High viscous dissipation is observed at the beginning of the coalescence which reduces jumping velocity.

  13. Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua

    2018-01-01

    The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002

  14. Pore-scale lattice Boltzmann simulation of micro-gaseous flow considering surface diffusion effect

    DOE PAGES

    Wang, Junjian; Kang, Qinjun; Chen, Li; ...

    2016-11-21

    Some recent studies have shown that adsorbed gas and its surface diffusion have profound influence on micro-gaseous flow through organic pores in shale gas reservoirs. Here, a multiple-relaxation-time (MRT) LB model is adopted to estimate the apparent permeability of organic shale and a new boundary condition, which combines Langmuir adsorption theory with Maxwellian diffusive reflection boundary condition, is proposed to capture gas slip and surface diffusion of adsorbed gas. The simulation results match well with previous studies carried out using Molecular Dynamics (MD) and show that Maxwell slip boundary condition fails to characterize gas transport in the near wall regionmore » under the influence of the adsorbed gas. The total molar flux can be either enhanced or reduced depending on variations in adsorbed gas coverage and surface diffusion velocity. The effects of pore width, pressure as well as Langmuir properties on apparent permeability of methane transport in organic pores are further studied. It is found that the surface transport plays a significant role in determining the apparent permeability, and the variation of apparent permeability with pore size and pressure is affected by the adsorption and surface diffusion.« less

  15. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    NASA Astrophysics Data System (ADS)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  16. Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂

    DOE PAGES

    Andersson, David A.; Tonks, Michael R.; Casillas, Luis; ...

    2015-07-01

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less

  17. Non-chemistry coupled PM10 modeling in Chiang Mai City, Northern Thailand: A fast operational approach for aerosol forecasts

    NASA Astrophysics Data System (ADS)

    Macatangay, Ronald; Bagtasa, Gerry; Sonkaew, Thiranan

    2017-09-01

    The Weather Research and Forecasting (WRF v. 3.7) model was applied to model PM10 data in Chiang Mai city for 10-days during a high haze event utilizing updated land use categories from the Moderate Resolution Imaging Spectroradiometer (MODIS). A higher resolution meteorological lateral boundary condition (from 1 degree to 0.25 degree) was also used from the NCEP GDAS/FNL Global Tropospheric Analyses and Forecast Grid system. A 3-category urban canopy model was also added and the Thompson aerosol-aware microphysics parameterization scheme was used to model the aerosol number concentrations that were later converted to PM10 concentrations. Aerosol number concentration monthly climatology was firstly used as initial and lateral boundary conditions to model PM10 concentrations. These were compared to surface data obtained from two stations of the Pollution Control Department (PCD) of Thailand. The results from the modeled PM10 concentrations could not capture the variability (r = 0.29; 0.27 for each site) and underestimated a high PM10 spike during the period studied. The authors then added satellite data to the aerosol climatology that improved the comparison with observations (r = 0.45; 43). However, both model runs still were not able to capture the high PM10 concentration event. This requires further investigation.

  18. A well-posed and stable stochastic Galerkin formulation of the incompressible Navier–Stokes equations with random data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersson, Per, E-mail: per.pettersson@uib.no; Nordström, Jan, E-mail: jan.nordstrom@liu.se; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2016-02-01

    We present a well-posed stochastic Galerkin formulation of the incompressible Navier–Stokes equations with uncertainty in model parameters or the initial and boundary conditions. The stochastic Galerkin method involves representation of the solution through generalized polynomial chaos expansion and projection of the governing equations onto stochastic basis functions, resulting in an extended system of equations. A relatively low-order generalized polynomial chaos expansion is sufficient to capture the stochastic solution for the problem considered. We derive boundary conditions for the continuous form of the stochastic Galerkin formulation of the velocity and pressure equations. The resulting problem formulation leads to an energy estimatemore » for the divergence. With suitable boundary data on the pressure and velocity, the energy estimate implies zero divergence of the velocity field. Based on the analysis of the continuous equations, we present a semi-discretized system where the spatial derivatives are approximated using finite difference operators with a summation-by-parts property. With a suitable choice of dissipative boundary conditions imposed weakly through penalty terms, the semi-discrete scheme is shown to be stable. Numerical experiments in the laminar flow regime corroborate the theoretical results and we obtain high-order accurate results for the solution variables and the velocity divergence converges to zero as the mesh is refined.« less

  19. Attentional Capture by Superimposed Symbology: Boundary Conditions

    NASA Technical Reports Server (NTRS)

    McCann, Robert S.; Foyle, David C.; Johnston, James C.; Sridhar, Banavar (Technical Monitor)

    1995-01-01

    We report new results from an ongoing set of experiments in which subjects view a computer-generated display consisting of a set of stationary symbols (e.g., a "HUD") superimposed on a dynamic view of a runway as it appears to the pilot during final approach. Previous work (McCann, Foyle, & Johnston, 1993) has shown that when subjects process a cueing stimulus and then identify a geometric target, performance is slower when the cue appears on the HUD and the target appears on the runway surface, compared to a control condition where the cue and target are both on the runway surface. This "shift cost" was taken as evidence that the HUD captures attention, which then has to be shifted to the "out-the-world" scene before the target can be identified. New experiments show that the shift cost is eliminated when the cue occupies a known, fixed location on the HUD. Implications for the conditions that produce attentional tunneling are discussed.

  20. Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.

    2017-05-01

    The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.

  1. Transient flow analysis linked to fast pressure disturbance monitored in pipe systems

    NASA Astrophysics Data System (ADS)

    Kueny, J. L.; Lourenco, M.; Ballester, J. L.

    2012-11-01

    EDF Hydro Division has launched the RENOUVEAU program in order to increase performance and improve plant availability through anticipation. Due to this program, a large penstocks fleet is equipped with pressure transducers linked to a special monitoring system. Any significant disturbance of the pressure is captured in a snapshot and the waveform of the signal is stored and analyzed. During these transient states, variations in flow are unknown. In order to determine the structural impact of such overpressure occurring during complex transients conditions over the entire circuit, EDF DTG has asked ENSE3 GRENOBLE to develop a code called ACHYL CF*. The input data of ACHYL CF are circuit topology and pressure boundaries conditions. This article provide a description of the computer code developed for modeling the transient flow in a pipe network using the signals from pressure transducers as boundary conditions. Different test cases will be presented, simulating real hydro power plants for which measured pressure signals are available.

  2. The effect of boundary constraints on finite element modelling of the human pelvis.

    PubMed

    Watson, Peter J; Dostanpor, Ali; Fagan, Michael J; Dobson, Catherine A

    2017-05-01

    The use of finite element analysis (FEA) to investigate the biomechanics of anatomical systems critically relies on the specification of physiologically representative boundary conditions. The biomechanics of the pelvis has been the specific focus of a number of FEA studies previously, but it is also a key aspect in other investigations of, for example, the hip joint or new design of hip prostheses. In those studies, the pelvis has been modelled in a number of ways with a variety of boundary conditions, ranging from a model of the whole pelvic girdle including soft tissue attachments to a model of an isolated hemi-pelvis. The current study constructed a series of FEA models of the same human pelvis to investigate the sensitivity of the predicted stress distributions to the type of boundary conditions applied, in particular to represent the sacro-iliac joint and pubic symphysis. Varying the method of modelling the sacro-iliac joint did not produce significant variations in the stress distribution, however changes to the modelling of the pubic symphysis were observed to have a greater effect on the results. Over-constraint of the symphysis prevented the bending of the pelvis about the greater sciatic notch, and underestimated high stresses within the ilium. However, permitting medio-lateral translation to mimic widening of the pelvis addressed this problem. These findings underline the importance of applying the appropriate boundary conditions to FEA models, and provide guidance on suitable methods of constraining the pelvis when, for example, scan data has not captured the full pelvic girdle. The results also suggest a valid method for performing hemi-pelvic modelling of cadaveric or archaeological remains which are either damaged or incomplete. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Finite element computation of compressible flows with the SUPG formulation

    NASA Technical Reports Server (NTRS)

    Le Beau, G. J.; Tezduyar, T. E.

    1991-01-01

    Finite element computation of compressible Euler equations is presented in the context of the streamline-upwind/Petrov-Galerkin (SUPG) formulation. The SUPG formulation, which is based on adding stabilizing terms to the Galerkin formulation, is further supplemented with a shock capturing operator which addresses the difficulty in maintaining a satisfactory solution near discontinuities in the solution field. The shock capturing operator, which has been derived from work done in entropy variables for a similar operator, is shown to lead to an appropriate level of additional stabilization near shocks, without resulting in excessive numerical diffusion. An implicit treatment of the impermeable wall boundary condition is also presented. This treatment of the no-penetration condition offers increased stability for large Courant numbers, and accelerated convergence of the computations for both implicit and explicit applications. Several examples are presented to demonstrate the ability of this method to solve the equations governing compressible fluid flow.

  4. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Kettenis, Chris; van Hecke, Martin

    2018-01-01

    The architecture of mechanical metamaterials is designed to harness geometry, nonlinearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. Although a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape changers or topological insulators; a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations--relevant for small systems--and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials.

  5. Development and initial evaluation of an enhanced measure of boundary flexibility for the work and family domains.

    PubMed

    Matthews, Russell A; Barnes-Farrell, Janet L

    2010-07-01

    This manuscript reports the development of a measure of work and family domain boundary flexibility. Building on previous research, we propose an expanded definition of boundary flexibility that includes two components-flexibility-ability and flexibility-willingness-and we develop a measure designed to capture this more comprehensive definition of boundary flexibility. Flexibility-ability is conceptualized as an individual's perception of personal and situational constraints that affect boundary management, and flexibility-willingness is conceptualized as an individual difference variable that captures the motivation to engage in boundary flexing. An additional feature of domain boundaries, permeability, is also examined. Data are presented from two studies. Study 1 (N = 244) describes the development of a multiscale measure that extends current conceptual definitions of boundary flexibility. Study 2 (N = 225) describes the refinement and evaluation of this measure. Confirmatory factor analysis, reliability evidence, interscale correlations, and correlations with important work-family constructs (e.g., domain centrality, work-family conflict) provide initial construct validity evidence for the measure.

  6. Army Science & Technology: Problems and Challenges

    DTIC Science & Technology

    2012-03-01

    Boundary Conditions: Who: Small Units is COIN/Stability Operations What: Provide affordable real-time translations and d t di f b h i f l i th t i...Soldiers, Leaders and Units in complex tactical operations exceeds the Army’s current capability for home-station Challenge: Formulate a S& T program...Formulate a S& T program to capture, process and electronically a vance rauma managemen . disseminate near-real-time medical information on Soldier

  7. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  8. Depletion and capture: revisiting “The source of water derived from wells"

    USGS Publications Warehouse

    Konikow, Leonard F.; Leake, Stanley A.

    2014-01-01

    A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion and capture relative to groundwater withdrawals (extraction or pumpage) have not previously been well characterized. This study assesses the partitioning of long-term cumulative withdrawal volumes into fractions derived from storage depletion and capture, where capture includes both increases in recharge and decreases in discharge. Numerical simulation of a hypothetical groundwater basin is used to further illustrate some of Theis' (1940) principles, particularly when capture is constrained by insufficient available water. Most prior studies of depletion and capture have assumed that capture is unconstrained through boundary conditions that yield linear responses. Examination of real systems indicates that capture and depletion fractions are highly variable in time and space. For a large sample of long-developed groundwater systems, the depletion fraction averages about 0.15 and the capture fraction averages about 0.85 based on cumulative volumes. Higher depletion fractions tend to occur in more arid regions, but the variation is high and the correlation coefficient between average annual precipitation and depletion fraction for individual systems is only 0.40. Because 85% of long-term pumpage is derived from capture in these real systems, capture must be recognized as a critical factor in assessing water budgets, groundwater storage depletion, and sustainability of groundwater development. Most capture translates into streamflow depletion, so it can detrimentally impact ecosystems.

  9. A new technique for observationally derived boundary conditions for space weather

    NASA Astrophysics Data System (ADS)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a number of technical and scientific challenges that still need to be addressed. Nevertheless, we illustrate that coupling quasi-static and MHD simulations in this way can significantly reduce the computational time required to produce realistic space weather boundary conditions.

  10. Estimation of capture zones and drawdown at the Northwest and West Well Fields, Miami-Dade County, Florida, using an unconstrained Monte Carlo analysis: recent (2004) and proposed conditions

    USGS Publications Warehouse

    Brakefield, Linzy K.; Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin

    2013-01-01

    Travel-time capture zones and drawdown for two production well fields, used for drinking-water supply in Miami-Dade County, southeastern Florida, were delineated by the U.S Geological Survey using an unconstrained Monte Carlo analysis. The well fields, designed to supply a combined total of approximately 250 million gallons of water per day, pump from the highly transmissive Biscayne aquifer in the urban corridor between the Everglades and Biscayne Bay. A transient groundwater flow model was developed and calibrated to field data to ensure an acceptable match between simulated and observed values for aquifer heads and net exchange of water between the aquifer and canals. Steady-state conditions were imposed on the transient model and a post-processing backward particle-tracking approach was implemented. Multiple stochastic realizations of horizontal hydraulic conductivity, conductance of canals, and effective porosity were simulated for steady-state conditions representative of dry, average and wet hydrologic conditions to calculate travel-time capture zones of potential source areas of the well fields. Quarry lakes, formed as a product of rock-mining activities, whose effects have previously not been considered in estimation of capture zones, were represented using high hydraulic-conductivity, high-porosity cells, with the bulk hydraulic conductivity of each cell calculated based on estimates of aquifer hydraulic conductivity, lake depths and aquifer thicknesses. A post-processing adjustment, based on calculated residence times using lake outflows and known lake volumes, was utilized to adjust particle endpoints to account for an estimate of residence-time-based mixing of lakes. Drawdown contours of 0.1 and 0.25 foot were delineated for the dry, average, and wet hydrologic conditions as well. In addition, 95-percent confidence intervals (CIs) were calculated for the capture zones and drawdown contours to delineate a zone of uncertainty about the median estimates. Results of the Monte Carlo simulations indicate particle travel distances at the Northwest Well Field (NWWF) and West Well Field (WWF) are greatest to the west, towards the Everglades. The man-made quarry lakes substantially affect particle travel distances. In general near the NWWF, the capture zones in areas with lakes were smaller in areal extent than capture zones in areas without lakes. It is possible that contamination could reach the well fields quickly, within 10 days in some cases, if it were introduced into lakes nearest to supply wells, with one of the lakes being only approximately 650 feet from the nearest supply well. In addition to estimating drawdown and travel-time capture zones of 10, 30, 100, and 210 days for the NWWF and the WWF under more recent conditions, two proposed scenarios were evaluated with Monte Carlo simulations: the potential hydrologic effects of proposed Everglades groundwater seepage mitigation and quarry-lake expansion. The seepage mitigation scenario included the addition of two proposed anthropogenic features to the model: (1) an impermeable horizontal flow barrier east of the L-31N canal along the western model boundary between the Everglades and the urban areas of Miami-Dade County, and (2) a recharge canal along the Dade-Broward Levee near the NWWF. Capture zones and drawdown for the WWF were substantially affected by the addition of the barrier, which eliminates flow from the western boundary into the active model domain, shifting the predominant capture zone source area from the west more to the north and south. The 95-percent CI for the 210-day capture zone moved slightly in the NWWF as a result of the recharge canal. The lake-expansion scenario incorporated a proposed increase in the number and surface area of lakes by an additional 25 square miles. This scenario represents a 150-percent increase from the 2004 lake surface area near both well fields, but with the majority of increase proposed near the NWWF. The lake-expansion scenario substantially decreased the extent of the 210-day capture zone of the NWWF, which is limited to the lakes nearest the well field under proposed conditions.

  11. Analytical model of the effect of misfit dislocation character on the bubble-to-void transition in metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Schwen, Daniel; Hetherly, Jeffrey

    Here, this paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-voidmore » transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. In conclusion, these results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling.« less

  12. Analytical model of the effect of misfit dislocation character on the bubble-to-void transition in metals

    DOE PAGES

    Martínez, Enrique; Schwen, Daniel; Hetherly, Jeffrey; ...

    2015-11-30

    Here, this paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-voidmore » transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. In conclusion, these results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling.« less

  13. Sensitivity of shock boundary-layer interactions to weak geometric perturbations

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Eaton, John K.

    2016-11-01

    Shock-boundary layer interactions can be sensitive to small changes in the inlet flow and boundary conditions. Robust computational models must capture this sensitivity, and validation of such models requires a suitable experimental database with well-defined inlet and boundary conditions. To that end, the purpose of this experiment is to systematically document the effects of small geometric perturbations on a SBLI flow to investigate the flow physics and establish an experimental dataset tailored for CFD validation. The facility used is a Mach 2.1, continuous operation wind tunnel. The SBLI is generated using a compression wedge; the region of interest is the resulting reflected shock SBLI. The geometric perturbations, which are small spanwise rectangular prisms, are introduced ahead of the compression ramp on the opposite wall. PIV is used to study the SBLI for 40 different perturbation geometries. Results show that the dominant effect of the perturbations is a global shift of the SBLI itself. In addition, the bumps introduce weaker shocks of varying strength and angles, depending on the bump height and location. Various scalar validation metrics, including a measure of shock unsteadiness, and their uncertainties are also computed to better facilitate CFD validation. Ji Hoon Kim is supported by an OTR Stanford Graduate Fellowship.

  14. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in windmore » plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.« less

  15. Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models

    USGS Publications Warehouse

    Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin

    2018-01-01

    The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.

  16. Large-eddy simulations of a Salt Lake Valley cold-air pool

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2017-09-01

    Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.

  17. Assessing the usefulness of the photogrammetric method in the process of capturing data on parcel boundaries

    NASA Astrophysics Data System (ADS)

    Benduch, Piotr; Pęska-Siwik, Agnieszka

    2017-06-01

    A parcel is the most important object of real estate cadastre. Its primary spatial attribute are boundaries, determining the extent of property rights. Capturing the data on boundaries should be performed in the way ensuring sufficiently high accuracy and reliability. In recent years, as part of the project "ZSIN - Construction of Integrated Real Estate Information System - Stage I", in the territories of the participating districts, actions were taken aimed at the modernization of the register of land and buildings. In many cases, this process was carried out basing on photogrammetric materials. Applicable regulations allow such a possibility. This paper, basing on the documentation from the National Geodetic and Cartographic Documentation Center and on the authors' own surveys attempts to assess the applicability of the photogrammetric method to capture data on the boundaries of cadastral parcels. The scope of the research, most importantly, included the problem of accuracy with which it was possible to determine the position of a boundary point using photogrammetric surveys carried out on the terrain model created from processed aerial photographs. The article demonstrates the manner of recording this information in the cadastral database, as well as the resulting legal consequences. Moreover, the level of reliability of the entered values of the selected attributes of boundary points was assessed.

  18. Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape

    NASA Astrophysics Data System (ADS)

    Lemieux, J.-M.; Sudicky, E. A.; Peltier, W. R.; Tarasov, L.

    2008-09-01

    A 3-D groundwater flow and brine transport numerical model of the entire Canadian landscape up to a depth of 10 km is constructed in order to capture the impacts of the Wisconsinian glaciation on the continental groundwater flow system. The numerical development of the model is presented in the companion paper of Lemieux et al. (2008b). Although the scale of the model prevents the use of a detailed geological model, commonly occurring geological materials that exhibit relatively consistent hydrogeological properties over the continent justify the simplifications while still allowing the capture of large-scale flow system trends. The model includes key processes pertaining to coupled groundwater flow and glaciation modeling, such a density-dependent (i.e., brine) flow, hydromechanical loading, subglacial infiltration, isostasy, and permafrost development. The surface boundary conditions are specified with the results of a glacial system model. The significant impact of the ice sheet on groundwater flow is evident by increases in the hydraulic head values below the ice sheet by as much as 3000 m down to a depth of 1.5 km into the subsurface. Results also indicate that the groundwater flow system after glaciation did not fully revert to its initial condition and that it is still recovering from the glaciation perturbation. This suggests that the current groundwater flow system cannot be interpreted solely on the basis of present-day boundary conditions and it is likely that several thousands of years of additional equilibration time will be necessary for the system to reach a new quasi-steady state. Finally, we find permafrost to have a large impact on the rate of dissipation of high hydraulic heads that build at depth and capturing its accurate distribution is important to explain the current hydraulic head distribution across the Canadian landscape.

  19. A penalty-based nodal discontinuous Galerkin method for spontaneous rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ye, R.; De Hoop, M. V.; Kumar, K.

    2017-12-01

    Numerical simulation of the dynamic rupture processes with slip is critical to understand the earthquake source process and the generation of ground motions. However, it can be challenging due to the nonlinear friction laws interacting with seismicity, coupled with the discontinuous boundary conditions across the rupture plane. In practice, the inhomogeneities in topography, fault geometry, elastic parameters and permiability add extra complexity. We develop a nodal discontinuous Galerkin method to simulate seismic wave phenomenon with slipping boundary conditions, including the fluid-solid boundaries and ruptures. By introducing a novel penalty flux, we avoid solving Riemann problems on interfaces, which makes our method capable for general anisotropic and poro-elastic materials. Based on unstructured tetrahedral meshes in 3D, the code can capture various geometries in geological model, and use polynomial expansion to achieve high-order accuracy. We consider the rate and state friction law, in the spontaneous rupture dynamics, as part of a nonlinear transmitting boundary condition, which is weakly enforced across the fault surface as numerical flux. An iterative coupling scheme is developed based on implicit time stepping, containing a constrained optimization process that accounts for the nonlinear part. To validate the method, we proof the convergence of the coupled system with error estimates. We test our algorithm on a well-established numerical example (TPV102) of the SCEC/USGS Spontaneous Rupture Code Verification Project, and benchmark with the simulation of PyLith and SPECFEM3D with agreeable results.

  20. Improving Fidelity of Launch Vehicle Liftoff Acoustic Simulations

    NASA Technical Reports Server (NTRS)

    Liever, Peter; West, Jeff

    2016-01-01

    Launch vehicles experience high acoustic loads during ignition and liftoff affected by the interaction of rocket plume generated acoustic waves with launch pad structures. Application of highly parallelized Computational Fluid Dynamics (CFD) analysis tools optimized for application on the NAS computer systems such as the Loci/CHEM program now enable simulation of time-accurate, turbulent, multi-species plume formation and interaction with launch pad geometry and capture the generation of acoustic noise at the source regions in the plume shear layers and impingement regions. These CFD solvers are robust in capturing the acoustic fluctuations, but they are too dissipative to accurately resolve the propagation of the acoustic waves throughout the launch environment domain along the vehicle. A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed to improve such liftoff acoustic environment predictions. The framework combines the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate discontinuous Galerkin (DG) solver, Loci/THRUST, developed in the same computational framework. Loci/THRUST employs a low dissipation, high-order, unstructured DG method to accurately propagate acoustic waves away from the source regions across large distances. The DG solver is currently capable of solving up to 4th order solutions for non-linear, conservative acoustic field propagation. Higher order boundary conditions are implemented to accurately model the reflection and refraction of acoustic waves on launch pad components. The DG solver accepts generalized unstructured meshes, enabling efficient application of common mesh generation tools for CHEM and THRUST simulations. The DG solution is coupled with the CFD solution at interface boundaries placed near the CFD acoustic source regions. Both simulations are executed simultaneously with coordinated boundary condition data exchange.

  1. A spectral-Tchebychev solution for three-dimensional dynamics of curved beams under mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Aksoy, Serdar

    2018-01-01

    This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of curved beams/structures having variable and arbitrary cross-section under mixed boundary conditions. To accurately capture the vibrational behavior of curved structures, a three-dimensional (3D) solution approach is required since these structures generally exhibit coupled motions. In this study, the integral boundary value problem (IBVP) governing the dynamics of the curved structures is found using extended Hamilton's principle where the strain energy is expressed using 3D linear elasticity equation. To solve the IBVP numerically, the 3D spectral Tchebychev (3D-ST) approach is used. To evaluate the integral and derivative operations defined by the IBVP and to render the complex geometry into an equivalent straight beam with rectangular cross-section, a series of coordinate transformations are applied. To validate and assess the performance of the presented solution approach, two case studies are performed: (i) curved beam with rectangular cross-section, (ii) curved and pretwisted beam with airfoil cross-section. In both cases, the results (natural frequencies and mode shapes) are also found using a finite element (FE) solution approach. It is shown that the difference in predicted natural frequencies are less than 1%, and the mode shapes are in excellent agreement based on the modal assurance criteria (MAC) analyses; however, the presented spectral-Tchebychev solution approach significantly reduces the computational burden. Therefore, it can be concluded that the presented solution approach can capture the 3D vibrational behavior of curved beams as accurately as an FE solution, but for a fraction of the computational cost.

  2. A computational study on oblique shock wave-turbulent boundary layer interaction

    NASA Astrophysics Data System (ADS)

    Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.

    2016-07-01

    A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.

  3. Evaporation from soils subjected to natural boundary conditions at the land-atmospheric interface

    NASA Astrophysics Data System (ADS)

    Smits, K.; Illngasekare, T.; Ngo, V.; Cihan, A.

    2012-04-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions at the land surface. This becomes critical in developing models that couples land to the atmosphere. Because it is difficult to measure evaporation from soil, with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for the soil surface boundary conditions to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory by Smits et al. [2011] that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. The model did not implement fitting parameters such as a vapor enhancement factor that is commonly introduced into the vapor diffusion coefficient as an arbitrary multiplication factor. In order to experimentally test the numerical formulations/code, we performed a two-dimensional physical model experiment under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. Precision data under well-controlled transient heat and wind boundary conditions was generated and results from numerical simulations were compared with experimental data. Results demonstrate that the boundary condition approaches varied in their ability to capture stage 1- and stage 2- evaporation. Results also demonstrated the importance of properly characterizing soil thermal properties and accounting for dry soil conditions. The contribution of film flow to hydraulic conductivity for the layer above the drying front is dominant compared to that of capillary flow, demonstrating the importance of including film flow in modeling efforts for dry soils, especially for fine grained soils. Comparisons of different formulations of the surface boundary condition validate the need for joint evaluation of heat and mass transfer for better modeling accuracy. This knowledge is applicable to many current hydrologic and environmental problems to include climate modeling and the simulation of contaminant transport and volatilization in the shallow subsurface. Smits, K. M., A. Cihan, T. Sakaki, and T. H. Illangasekare (2011). Evaporation from soils under thermal boundary conditions: Experimental and modeling investigation to compare equilibrium- and nonequilibrium-based approaches, Water Resour. Res., 47, W05540, doi:10.1029/2010WR009533.

  4. Transient flow conditions in probabilistic wellhead protection: importance and ways to manage spatial and temporal uncertainty in capture zone delineation

    NASA Astrophysics Data System (ADS)

    Enzenhoefer, R.; Rodriguez-Pretelin, A.; Nowak, W.

    2012-12-01

    "From an engineering standpoint, the quantification of uncertainty is extremely important not only because it allows estimating risk but mostly because it allows taking optimal decisions in an uncertain framework" (Renard, 2007). The most common way to account for uncertainty in the field of subsurface hydrology and wellhead protection is to randomize spatial parameters, e.g. the log-hydraulic conductivity or porosity. This enables water managers to take robust decisions in delineating wellhead protection zones with rationally chosen safety margins in the spirit of probabilistic risk management. Probabilistic wellhead protection zones are commonly based on steady-state flow fields. However, several past studies showed that transient flow conditions may substantially influence the shape and extent of catchments. Therefore, we believe they should be accounted for in the probabilistic assessment and in the delineation process. The aim of our work is to show the significance of flow transients and to investigate the interplay between spatial uncertainty and flow transients in wellhead protection zone delineation. To this end, we advance our concept of probabilistic capture zone delineation (Enzenhoefer et al., 2012) that works with capture probabilities and other probabilistic criteria for delineation. The extended framework is able to evaluate the time fraction that any point on a map falls within a capture zone. In short, we separate capture probabilities into spatial/statistical and time-related frequencies. This will provide water managers additional information on how to manage a well catchment in the light of possible hazard conditions close to the capture boundary under uncertain and time-variable flow conditions. In order to save computational costs, we take advantage of super-positioned flow components with time-variable coefficients. We assume an instantaneous development of steady-state flow conditions after each temporal change in driving forces, following an idea by Festger and Walter, 2002. These quasi steady-state flow fields are cast into a geostatistical Monte Carlo framework to admit and evaluate the influence of parameter uncertainty on the delineation process. Furthermore, this framework enables conditioning on observed data with any conditioning scheme, such as rejection sampling, Ensemble Kalman Filters, etc. To further reduce the computational load, we use the reverse formulation of advective-dispersive transport. We simulate the reverse transport by particle tracking random walk in order to avoid numerical dispersion to account for well arrival times.

  5. Sensitivity of a Simulated Derecho Event to Model Initial Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2014-05-01

    Since 2003, the MMM division at NCAR has been experimenting cloud-permitting scale weather forecasting using Weather Research and Forecasting (WRF) model. Over the years, we've tested different model physics, and tried different initial and boundary conditions. Not surprisingly, we found that the model's forecasts are more sensitive to the initial conditions than model physics. In 2012 real-time experiment, WRF-DART (Data Assimilation Research Testbed) at 15 km was employed to produce initial conditions for twice-a-day forecast at 3 km. On June 29, this forecast system captured one of the most destructive derecho event on record. In this presentation, we will examine forecast sensitivity to different model initial conditions, and try to understand the important features that may contribute to the success of the forecast.

  6. Depletion and capture: revisiting "the source of water derived from wells".

    PubMed

    Konikow, L F; Leake, S A

    2014-09-01

    A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion and capture relative to groundwater withdrawals (extraction or pumpage) have not previously been well characterized. This study assesses the partitioning of long-term cumulative withdrawal volumes into fractions derived from storage depletion and capture, where capture includes both increases in recharge and decreases in discharge. Numerical simulation of a hypothetical groundwater basin is used to further illustrate some of Theis' (1940) principles, particularly when capture is constrained by insufficient available water. Most prior studies of depletion and capture have assumed that capture is unconstrained through boundary conditions that yield linear responses. Examination of real systems indicates that capture and depletion fractions are highly variable in time and space. For a large sample of long-developed groundwater systems, the depletion fraction averages about 0.15 and the capture fraction averages about 0.85 based on cumulative volumes. Higher depletion fractions tend to occur in more arid regions, but the variation is high and the correlation coefficient between average annual precipitation and depletion fraction for individual systems is only 0.40. Because 85% of long-term pumpage is derived from capture in these real systems, capture must be recognized as a critical factor in assessing water budgets, groundwater storage depletion, and sustainability of groundwater development. Most capture translates into streamflow depletion, so it can detrimentally impact ecosystems. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  7. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    PubMed

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  8. New and Topologically Massive Gravity, from the Outside In

    NASA Astrophysics Data System (ADS)

    Cunliff, Colin

    This thesis examines the asymptotically anti-de Sitter solutions of higher-derivative gravity in 2+1 dimensions, using a Fefferman-Graham-like approach that expands solutions from the boundary (at infinity) into the interior. First, solutions of topologically massive gravity (TMG) are analyzed for values of the mass parameter in the range mu ≥ 1. The traditional Fefferman-Graham expansion fails to capture the dynamics of TMG, and new terms in the asymptotic expansion are needed to include the massive graviton modes. The linearized modes of Carlip, Deser, Waldron and Wise map onto the non-Einstein solutions for all μ, with nonlinear corrections appearing at higher order in the expansion. A similar result is found for new massive gravity (NMG), where the asymptotic behavior of massive gravitons is found to depend on the coupling parameter m2. Additionally, new boundary conditions are discovered for a range of values -1 < 2m2 l2 < 1 at which non-Einstein modes decay more slowly than the rate required for Brown-Henneaux boundary conditions. The holographically renormalized stress tensor is computed for these modes, and the relevant counterterms are identified up to unphysical ambiguities.

  9. A new family of high-order compact upwind difference schemes with good spectral resolution

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Yao, Zhaohui; He, Feng; Shen, M. Y.

    2007-12-01

    This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.

  10. On the generality of the displaywide contingent orienting hypothesis: can a visual onset capture attention without top-down control settings for displaywide onset?

    PubMed

    Yeh, Su-Ling; Liao, Hsin-I

    2010-10-01

    The contingent orienting hypothesis (Folk, Remington, & Johnston, 1992) states that attentional capture is contingent on top-down control settings induced by task demands. Past studies supporting this hypothesis have identified three kinds of top-down control settings: for target-specific features, for the strategy to search for a singleton, and for visual features in the target display as a whole. Previously, we have found stimulus-driven capture by onset that was not contingent on the first two kinds of settings (Yeh & Liao, 2008). The current study aims to test the third kind: the displaywide contingent orienting hypothesis (Gibson & Kelsey, 1998). Specifically, we ask whether an onset stimulus can still capture attention in the spatial cueing paradigm when attentional control settings for the displaywide onset of the target are excluded by making all letters in the target display emerge from placeholders. Results show that a preceding uninformative onset cue still captured attention to its location in a stimulus-driven fashion, whereas a color cue captured attention only when it was contingent on the setting for displaywide color. These results raise doubts as to the generality of the displaywide contingent orienting hypothesis and help delineate the boundary conditions on this hypothesis. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Automatic classification of singular elements for the electrostatic analysis of microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Su, Y.; Ong, E. T.; Lee, K. H.

    2002-05-01

    The past decade has seen an accelerated growth of technology in the field of microelectromechanical systems (MEMS). The development of MEMS products has generated the need for efficient analytical and simulation methods for minimizing the requirement for actual prototyping. The boundary element method is widely used in the electrostatic analysis for MEMS devices. However, singular elements are needed to accurately capture the behavior at singular regions, such as sharp corners and edges, where standard elements fail to give an accurate result. The manual classification of boundary elements based on their singularity conditions is an immensely laborious task, especially when the boundary element model is large. This process can be automated by querying the geometric model of the MEMS device for convex edges based on geometric information of the model. The associated nodes of the boundary elements on these edges can then be retrieved. The whole process is implemented in the MSC/PATRAN platform using the Patran Command Language (the source code is available as supplementary data in the electronic version of this journal issue).

  12. Influence of Radial Stress Gradient on Strainbursts: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Su, Guoshao; Zhai, Shaobin; Jiang, Jianqing; Zhang, Gangliang; Yan, Liubin

    2017-10-01

    Strainbursts, which are violent disasters that are accompanied by the ejection failure of rocks, usually occur in hard brittle rocks around highly stressed underground openings. The release of the radial stress at excavation boundaries is one of the major inducing factors for strainbursts in tunnels. After excavation, the radial stress usually exhibits different but apparent gradient variations along the radial direction near the boundary within a certain depth under different in situ stress conditions. In this study, the influence of the radial stress gradient on strainbursts of granite was investigated using an improved true-triaxial rockburst testing system, which was equipped with an acoustic emission monitoring system. The stress state and boundary conditions (i.e., one face free, other faces loaded and increasing tangential stress) of the representative rock element in the vicinity of the excavation boundary were simulated. High-speed cameras were used to capture the ejection failure processes during strainbursts, and the kinetic energy of ejected fragments was quantitatively estimated by analyzing the recorded videos. The experimental results indicate that with an increasing radial stress gradient, the strength increases, the apparent yield platform prior to the peak stress on the stress-strain curves decreases, the failure mode changes from strainburst characterized by tensile splitting to strainburst characterized by shear rupture, and the kinetic energy of ejected fragments during strainbursts significantly increases.

  13. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung, E-mail: yamcy@yangtze.hku.hk, E-mail: ghc@everest.hku.hk

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 1190–1199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate themore » information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.« less

  14. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-02-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  15. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-06-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  16. Analysis of a high speed civil transport configuration at subsonic flow conditions using a Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Lessard, Victor R.

    1993-01-01

    Computations of three dimensional vortical flows over a generic High Speed Civil Transport (HSCT) configuration with an aspect ratio of 3.04 are performed using a thin-layer Navier-Stokes solver. The HSCT cruise configuration is modeled without leading or trailing edge flap deflections and without engine nacelles. The flow conditions, which correspond to tests done in the NASA Langley 8-Foot Transonic Pressure Tunnel (TPT), are a subsonic Mach number of 0.3 and Reynolds number of 4.4 million for a range-of-attack (-.23 deg to 17.78 deg). The effects of the farfield boundary location with respect to the body are investigated. The boundary layer is assumed turbulent and simulated using an algebraic turbulence model. The key features of the vortices and their interactions are captured. Grid distribution in the vortex regions is critical for predicting the correct induced lift. Computed forces and surface pressures compare reasonably well with the experimental TPT data.

  17. Dynamic biogeochemical provinces in the global ocean

    NASA Astrophysics Data System (ADS)

    Reygondeau, Gabriel; Longhurst, Alan; Martinez, Elodie; Beaugrand, Gregory; Antoine, David; Maury, Olivier

    2013-12-01

    In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997-2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.

  18. Eulerian adaptive finite-difference method for high-velocity impact and penetration problems

    NASA Astrophysics Data System (ADS)

    Barton, P. T.; Deiterding, R.; Meiron, D.; Pullin, D.

    2013-05-01

    Owing to the complex processes involved, faithful prediction of high-velocity impact events demands a simulation method delivering efficient calculations based on comprehensively formulated constitutive models. Such an approach is presented herein, employing a weighted essentially non-oscillatory (WENO) method within an adaptive mesh refinement (AMR) framework for the numerical solution of hyperbolic partial differential equations. Applied widely in computational fluid dynamics, these methods are well suited to the involved locally non-smooth finite deformations, circumventing any requirement for artificial viscosity functions for shock capturing. Application of the methods is facilitated through using a model of solid dynamics based upon hyper-elastic theory comprising kinematic evolution equations for the elastic distortion tensor. The model for finite inelastic deformations is phenomenologically equivalent to Maxwell's model of tangential stress relaxation. Closure relations tailored to the expected high-pressure states are proposed and calibrated for the materials of interest. Sharp interface resolution is achieved by employing level-set functions to track boundary motion, along with a ghost material method to capture the necessary internal boundary conditions for material interactions and stress-free surfaces. The approach is demonstrated for the simulation of high velocity impacts of steel projectiles on aluminium target plates in two and three dimensions.

  19. Basins of attraction in human balance

    NASA Astrophysics Data System (ADS)

    Smith, Victoria A.; Lockhart, Thurmon E.; Spano, Mark L.

    2017-12-01

    Falls are a recognized risk factor for unintentional injuries among older adults, accounting for a large proportion of fractures, emergency department visits, and urgent hospitalizations. Human balance and gait research traditionally uses linear or qualitative tests to assess and describe human motion; however, human motion is neither a simple nor a linear process. The objective of this research is to identify and to learn more about what factors affect balance using nonlinear dynamical techniques, such as basin boundaries. Human balance data was collected using dual force plates for leans using only ankle movements as well as for unrestricted leans. Algorithms to describe the basin boundary were created and compared based on how well each method encloses the experimental data points as well as captures the differences between the two leaning conditions.

  20. Influence of reanalysis datasets on dynamically downscaling the recent past

    NASA Astrophysics Data System (ADS)

    Moalafhi, Ditiro B.; Evans, Jason P.; Sharma, Ashish

    2017-08-01

    Multiple reanalysis datasets currently exist that can provide boundary conditions for dynamic downscaling and simulating local hydro-climatic processes at finer spatial and temporal resolutions. Previous work has suggested that there are two reanalyses alternatives that provide the best lateral boundary conditions for downscaling over southern Africa. This study dynamically downscales these reanalyses (ERA-I and MERRA) over southern Africa to a high resolution (10 km) grid using the WRF model. Simulations cover the period 1981-2010. Multiple observation datasets were used for both surface temperature and precipitation to account for observational uncertainty when assessing results. Generally, temperature is simulated quite well, except over the Namibian coastal plain where the simulations show anomalous warm temperature related to the failure to propagate the influence of the cold Benguela current inland. Precipitation tends to be overestimated in high altitude areas, and most of southern Mozambique. This could be attributed to challenges in handling complex topography and capturing large-scale circulation patterns. While MERRA driven WRF exhibits slightly less bias in temperature especially for La Nina years, ERA-I driven simulations are on average superior in terms of RMSE. When considering multiple variables and metrics, ERA-I is found to produce the best simulation of the climate over the domain. The influence of the regional model appears to be large enough to overcome the small difference in relative errors present in the lateral boundary conditions derived from these two reanalyses.

  1. Spontaneous Imbibition Process in Micro-Nano Fractal Capillaries Considering Slip Flow

    NASA Astrophysics Data System (ADS)

    Shen, Yinghao; Li, Caoxiong; Ge, Hongkui; Guo, Xuejing; Wang, Shaojun

    An imbibition process of water into a matrix is required to investigate the influences of large-volume fracturing fluids on gas production of unconventional formations. Slip flow has been recognized by recent studies as a major mechanism of fluid transport in nanotubes. For nanopores in shale, a slip boundary is nonnegligible in the imbibition process. In this study, we established an analytic equation of spontaneous imbibition considering slip effects in capillaries. A spontaneous imbibition model that couples the analytic equation considering the slip effect was constructed based on fractal theory. We then used a model for various conditions, such as slip boundary, pore structure, and fractal dimension of pore tortuosity, to capture the imbibition characteristics considering the slip effect. A dynamic contact angle was integrated into the modeling. Results of our study verify that the slip boundary influences water imbibition significantly. The imbibition speed is significantly improved when slip length reaches the equivalent diameter of a tube. Therefore, disregarding the slip effect will underestimate the imbibition speed in shale samples.

  2. Assessing the detail needed to capture rainfall-runoff dynamics with physics-based hydrologic response simulation

    USGS Publications Warehouse

    Mirus, B.B.; Ebel, B.A.; Heppner, C.S.; Loague, K.

    2011-01-01

    Concept development simulation with distributed, physics-based models provides a quantitative approach for investigating runoff generation processes across environmental conditions. Disparities within data sets employed to design and parameterize boundary value problems used in heuristic simulation inevitably introduce various levels of bias. The objective was to evaluate the impact of boundary value problem complexity on process representation for different runoff generation mechanisms. The comprehensive physics-based hydrologic response model InHM has been employed to generate base case simulations for four well-characterized catchments. The C3 and CB catchments are located within steep, forested environments dominated by subsurface stormflow; the TW and R5 catchments are located in gently sloping rangeland environments dominated by Dunne and Horton overland flows. Observational details are well captured within all four of the base case simulations, but the characterization of soil depth, permeability, rainfall intensity, and evapotranspiration differs for each. These differences are investigated through the conversion of each base case into a reduced case scenario, all sharing the same level of complexity. Evaluation of how individual boundary value problem characteristics impact simulated runoff generation processes is facilitated by quantitative analysis of integrated and distributed responses at high spatial and temporal resolution. Generally, the base case reduction causes moderate changes in discharge and runoff patterns, with the dominant process remaining unchanged. Moderate differences between the base and reduced cases highlight the importance of detailed field observations for parameterizing and evaluating physics-based models. Overall, similarities between the base and reduced cases indicate that the simpler boundary value problems may be useful for concept development simulation to investigate fundamental controls on the spectrum of runoff generation mechanisms. Copyright 2011 by the American Geophysical Union.

  3. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  4. Groundwater capture processes under a seasonal variation in natural recharge and discharge

    NASA Astrophysics Data System (ADS)

    Maddock, Thomas, III.; Vionnet, Leticia Beatriz

    "Capture" is the increase in recharge and the decrease in discharge that occurs when pumping is imposed on an aquifer system that was in a previous state of approximate dynamic equilibrium. Regional groundwater models are usually used to calculate capture in a two-step procedure. A steady-state solution provides an initial-head configuration, a set of flows through the boundaries for the modeled region, and the initial basis for the capture calculation. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions renders the capture calculation. When seasonality is a modeling issue, the use of a single initial hydraulic head and a single set of boundary flows leads to miscalculations of capture. Instead, an initial condition for each season should be used. This approach may be accomplished by determining steady oscillatory solutions, which vary through the seasons but repeat from year to year. A regional groundwater model previously developed for a portion of the San Pedro River basin, Arizona, USA, is modified to illustrate the effect that different initial conditions have on transient solutions and on capture calculations. Résumé Les "prélèvements" sont constitués par l'augmentation de la recharge et par la diminution de l'écoulement qui se produit lorsqu'un pompage est imposéà un système aquifère qui était auparavant dans un état proche de l'équilibre dynamique. Les modèles régionaux de nappe sont en général utilisés pour calculer les prélèvements dans une procédure à deux étapes. Une solution en régime permanent donne la configuration piézométrique initiale, un jeu de conditions aux limites pour la région modélisée et les données de base pour le calcul des prélèvements. Les solutions transitoires donnent les modifications globales des conditions aux limites. Lorsque des variations saisonnières sont produites en sortie du modèle, le recours à une piézométrie initiale unique et à un seul jeu de données de conditions aux limites conduit à un mauvais calcul des prélèvements. Il faut alors utiliser une condition de recharge initiale pour chaque saison. Cette approche peut être réalisée en déterminant des solutions permanentes périodiques, variantes au cours des saisons, mais se répétant d'année en année. Un modèle de nappe régional, précédemment mis au point pour une partie du bassin de la rivière San Pedro (Arizona, États-Unis), a été modifié pour illustrer l'effet de conditions initiales différentes sur des solutions transitoires et sur le calcul des prélèvements. Resumen Se define como "captura" al aumento de recarga y descenso de descarga que tiene lugar cuando se impone un bombeo en un acuífero en estado de equilibrio dinámico. Se suelen utilizar modelos regionales de agua subterránea para calcular la captura en un procedimiento que consta de dos etapas. Una solución en régimen estacionario proporciona la distribución inicial de niveles piezométricos, los flujos a través de los contornos de la región modelada y el punto de partida para el cálculo de la captura. Las soluciones transitorias proporcionan los cambios en los flujos a través de los contornos. La diferencia entre las soluciones estacionaria y transitoria da el valor de la captura. Cuando los cambios estacionales son importantes, la utilización de un único estado inicial de niveles y de flujos en los contornos da lugar a errores en el cálculo de la captura. En este caso debe usarse una condición inicial para cada una de las estaciones. Esto se puede conseguir obteniendo soluciones periódicas estacionarias, que varíen a lo largo de las estaciones, pero que se repitan año a año. Un modelo regional desarrollado previamente para el estudio de una parte de la cuenca del Río San Pedro, en Arizona (EE.UU.) se modificó para ilustrar el efecto que las distintas condiciones iniciales tienen en el cálculo de la captura.

  5. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  6. Computational studies of an impulsively started viscous flow

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    1988-01-01

    Progress in validating incompressible Navier-Stokes codes is described using a predictor/corrector scheme. The flow field under study is the impulsive start of a circular cylinder and the unsteady evolution of the separation bubble. In the current code, a uniform asymptotic expansion is used as an initial condition in order to correctly capture the initial growth of the vortex sheet. Volocity fields at selected instants of time are decomposed into vectorial representations of Navier-Stokes equations which are then used to analyze dominant contributions in the boundary-layer region.

  7. Immersed boundary method for Boltzmann model kinetic equations

    NASA Astrophysics Data System (ADS)

    Pekardan, Cem; Chigullapalli, Sruti; Sun, Lin; Alexeenko, Alina

    2012-11-01

    Three different immersed boundary method formulations are presented for Boltzmann model kinetic equations such as Bhatnagar-Gross-Krook (BGK) and Ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model equations. 1D unsteady IBM solution for a moving piston is compared with the DSMC results and 2D quasi-steady microscale gas damping solutions are verified by a conformal finite volume method solver. Transient analysis for a sinusoidally moving beam is also carried out for the different pressure conditions (1 atm, 0.1 atm and 0.01 atm) corresponding to Kn=0.05,0.5 and 5. Interrelaxation method (Method 2) is shown to provide a faster convergence as compared to the traditional interpolation scheme used in continuum IBM formulations. Unsteady damping in rarefied regime is characterized by a significant phase-lag which is not captured by quasi-steady approximations.

  8. Direct numerical simulation of transitional and turbulent flow over a heated flat plate using finite-difference schemes

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    1995-01-01

    This report deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux, were shown to compare well with experiment. The results indicate that the essential features of the transition process have been captured. The numerical method used here can be applied to complex geometries in a straightforward manner.

  9. An implicit time-marching method for the three-dimensional Navier-Stokes equations of contravariant velocity components

    NASA Astrophysics Data System (ADS)

    Daiguji, Hisaaki; Yamamoto, Satoru

    1988-12-01

    The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.

  10. Capture Versus Capture Zones: Clarifying Terminology Related to Sources of Water to Wells.

    PubMed

    Barlow, Paul M; Leake, Stanley A; Fienen, Michael N

    2018-03-15

    The term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water-budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head-dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three-dimensional, volumetric portion of a groundwater flow field that discharges to a well. A closely related issue that has become associated with the source of water to wells is streamflow depletion, which refers to the reduction in streamflow caused by pumping, and is a type of capture. Rates of capture and streamflow depletion are calculated by use of water-budget analyses, most often with groundwater-flow models. Transport models, particularly particle-tracking methods, are used to determine capture zones to wells. In general, however, transport methods are not useful for quantifying actual or potential streamflow depletion or other types of capture along aquifer boundaries. To clarify the sometimes subtle differences among these terms, we describe the processes and relations among capture, capture zones, and streamflow depletion, and provide proposed terminology to distinguish among them. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  11. A continuum treatment of sliding in Eulerian simulations of solid-solid and solid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Subramaniam, Akshay; Ghaisas, Niranjan; Lele, Sanjiva

    2017-11-01

    A novel treatment of sliding is developed for use in an Eulerian framework for simulating elastic-plastic deformations of solids coupled with fluids. In this method, embedded interfacial boundary conditions for perfect sliding are imposed by enforcing the interface normal to be a principal direction of the Cauchy stress and appropriate consistency conditions ensure correct transmission and reflection of waves at the interface. This sliding treatment may be used either to simulate a solid-solid sliding interface or to incorporate an internal slip boundary condition at a solid-fluid interface. Sliding laws like the Coulomb friction law can also be incorporated with relative ease into this framework. Simulations of sliding interfaces are conducted using a 10th order compact finite difference scheme and a Localized Artificial Diffusivity (LAD) scheme for shock and interface capturing. 1D and 2D simulations are used to assess the accuracy of the sliding treatment. The Richmyer-Meshkov instability between copper and aluminum is simulated with this sliding treatment as a demonstration test case. Support for this work was provided through Grant B612155 from the Lawrence Livermore National Laboratory, US Department of Energy.

  12. Numerical investigation of nonlinear fluid-structure interaction dynamic behaviors under a general Immersed Boundary-Lattice Boltzmann-Finite Element method

    NASA Astrophysics Data System (ADS)

    Gong, Chun-Lin; Fang, Zhe; Chen, Gang

    A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid-structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.

  13. A discrete twin-boundary approach for simulating the magneto-mechanical response of Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Faran, Eilon; Shilo, Doron

    2016-09-01

    The design and optimization of ferromagnetic shape memory alloys (FSMA)-based devices require quantitative understanding of the dynamics of twin boundaries within these materials. Here, we present a discrete twin boundary modeling approach for simulating the behavior of an FSMA Ni-Mn-Ga crystal under combined magneto-mechanical loading conditions. The model is based on experimentally measured kinetic relations that describe the motion of individual twin boundaries over a wide range of velocities. The resulting calculations capture the dynamic response of Ni-Mn-Ga and reveal the relations between fundamental material parameters and actuation performance at different frequencies of the magnetic field. In particular, we show that at high field rates, the magnitude of the lattice barrier that resists twin boundary motion is the important property that determines the level of actuation strain, while the contribution of twinning stress property is minor. Consequently, type II twin boundaries, whose lattice barrier is smaller compared to type I, are expected to show better actuation performance at high rates, irrespective of the differences in the twinning stress property between the two boundary types. In addition, the simulation enables optimization of the actuation strain of a Ni-Mn-Ga crystal by adjusting the magnitude of the bias mechanical stress, thus providing direct guidelines for the design of actuating devices. Finally, we show that the use of a linear kinetic law for simulating the twinning-based response is inadequate and results in incorrect predictions.

  14. Influence of Spanwise Boundary Conditions on Slat Noise Simulations

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.

    2015-01-01

    The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.

  15. Convection induced by radiative cooling of a layer of participating medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanna, Swaminathan, E-mail: prasannaswam@gmail.com; Venkateshan, S. P., E-mail: spv@iitm.ac.in

    2014-05-15

    Simulations and experiments have been conducted to study the effect of radiative cooling on natural convection in a horizontal layer of a participating medium enclosed between isothermal opaque wall and radiatively transparent wall and exposed to a cold background. The study is of relevance to a nocturnal boundary layer under clear and calm conditions. The focus of the study is to capture the onset of convection caused by radiative cooling. The experiments have been designed to mimic the atmospheric radiative boundary conditions, and hence decoupling convection and radiation boundary conditions. Planck number Pl and optical thickness of the layer τ{submore » H} are the two important parameters that govern the interaction between radiation and convection. The radiation-convection coupling is a strong function of length scale. Convection sets up within first few seconds for all the experiments. Strong plume like convection is observed for the experimental conditions used in the present study. Both simulations and experiments confirm that radiative cooling increases substantially with decrease in emissivity of the bottom wall. Radiative cooling is strongly influenced by the nongray nature of the participating medium, especially when strong emission from the medium escapes to space, in the window region of the atmosphere. Accurate representation of radiative properties is critical. Linear stability analysis of onset of convection indicates that radiation stabilizes convection as Pl decreases. The observations are similar to the case of Rayleigh Bénard convection in a radiating gas. However, for both experimental and numerical conditions, the observed Rayleigh numbers are much greater than the critical Rayleigh number. To conclude, the role of radiation is to drive and sustain convection in the unstable layer.« less

  16. Stochastic Generation of Spatiotemporal Rainfall Events for Flood Risk Assessment

    NASA Astrophysics Data System (ADS)

    Diederen, D.; Liu, Y.; Gouldby, B.; Diermanse, F.

    2017-12-01

    Current flood risk analyses that only consider peaks of hydrometeorological forcing variables have limitations regarding their representation of reality. Simplistic assumptions regarding antecedent conditions are required, often different sources of flooding are considered in isolation, and the complex temporal and spatial evolution of the events is not considered. Mid-latitude storms, governed by large scale climatic conditions, often exhibit a high degree of temporal dependency, for example. For sustainable flood risk management, that accounts appropriately for climate change, it is desirable for flood risk analyses to reflect reality more appropriately. Analysis of risk mitigation measures and comparison of their relative performance is therefore likely to be more robust and lead to improved solutions. We provide a new framework for the provision of boundary conditions to flood risk analyses that more appropriately reflects reality. The boundary conditions capture the temporal dependencies of complex storms whilst preserving the extreme values and associated spatial dependencies. We demonstrate the application of this framework to generate a synthetic rainfall events time series boundary condition set from reanalysis rainfall data (CFSR) on the continental scale. We define spatiotemporal clusters of rainfall as events, extract hydrological parameters for each event, generate synthetic parameter sets with a multivariate distribution with a focus on the joint tail probability [Heffernan and Tawn, 2004], and finally create synthetic events from the generated synthetic parameters. We highlight the stochastic integration of (a) spatiotemporal features, e.g. event occurrence intensity over space-time, or time to previous event, which we use for the spatial placement and sequencing of the synthetic events, and (b) value-specific parameters, e.g. peak intensity and event extent. We contrast this to more traditional approaches to highlight the significant improvements in terms of representing the reality of extreme flood events.

  17. Numerical study of radiative heat transfer and effects of thermal boundary conditions on CLC fuel reactor

    NASA Astrophysics Data System (ADS)

    Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.

    2018-02-01

    Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.

  18. Weak annihilation cusp inside the dark matter spike about a black hole.

    PubMed

    Shapiro, Stuart L; Shelton, Jessie

    2016-06-15

    We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as r -1/2 for s -wave annihilation, where r is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for s -wave and the other for p -wave DM annihilation, adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density profile for p -wave annihilation is weaker, varying like ~ r -0.34 , but is still not a flat plateau.

  19. Thermal transport processes in stable boundary layers

    NASA Astrophysics Data System (ADS)

    Gutierrez, Walter; Araya, Guillermo; Kiliyanpilakkil, Praju; Basu, Sukanta; Ruiz-Columbie, Arquimedes; Castillo, Luciano

    2014-11-01

    Using the 200-m tower data (Reese, Texas), profiler and Mesonet data, and WRF runs, a 4-dim model is introduced which summarizes the main features of the Low Level Jet (LLJ) in stable boundary conditions over the aforementioned region and shows its patterns along the year. We also demonstrate the importance of LLJs for wind energy production. It has been observed that during a LLJ event the level of turbulence intensities and TKE are significantly much lower than those during unstable conditions. The major salient results from this study include: the vertical shears in the LLJ are very large at the current wind turbine heights, causing higher static and cyclical aerodynamic loads. The WRF model has accurately captured the beginning and end of the LLJ event; however, the local maximum wind speed at the LLJ ``nose'' has been under-predicted by approximately 15%, which highlights the difficulties WRF still faces in predicting this phenomenon. Furthermore, power spectra and time-autocorrelations of thermal fluctuations will help us in the understanding of the thermal coherent structures involved in moderate and strong LLJ.

  20. Large scale motions of multiple limit-cycle high Reynolds number annular and toroidal rotor/stator cavities

    NASA Astrophysics Data System (ADS)

    Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.

    2017-06-01

    Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.

  1. Damage evaluation by a guided wave-hidden Markov model based method

    NASA Astrophysics Data System (ADS)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  2. Vortex lattices and defect-mediated viscosity reduction in active liquids

    NASA Astrophysics Data System (ADS)

    Slomka, Jonasz; Dunkel, Jorn

    2016-11-01

    Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.

  3. Geometry-dependent viscosity reduction in sheared active fluids

    NASA Astrophysics Data System (ADS)

    Słomka, Jonasz; Dunkel, Jörn

    2017-04-01

    We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.

  4. Stochastic capture zone analysis of an arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology

    NASA Astrophysics Data System (ADS)

    Morse, Brad S.; Pohll, Greg; Huntington, Justin; Rodriguez Castillo, Ramiro

    2003-06-01

    In 1992, Mexican researchers discovered concentrations of arsenic in excess of World Heath Organization (WHO) standards in several municipal wells in the Zimapan Valley of Mexico. This study describes a method to delineate a capture zone for one of the most highly contaminated wells to aid in future well siting. A stochastic approach was used to model the capture zone because of the high level of uncertainty in several input parameters. Two stochastic techniques were performed and compared: "standard" Monte Carlo analysis and the generalized likelihood uncertainty estimator (GLUE) methodology. The GLUE procedure differs from standard Monte Carlo analysis in that it incorporates a goodness of fit (termed a likelihood measure) in evaluating the model. This allows for more information (in this case, head data) to be used in the uncertainty analysis, resulting in smaller prediction uncertainty. Two likelihood measures are tested in this study to determine which are in better agreement with the observed heads. While the standard Monte Carlo approach does not aid in parameter estimation, the GLUE methodology indicates best fit models when hydraulic conductivity is approximately 10-6.5 m/s, with vertically isotropic conditions and large quantities of interbasin flow entering the basin. Probabilistic isochrones (capture zone boundaries) are then presented, and as predicted, the GLUE-derived capture zones are significantly smaller in area than those from the standard Monte Carlo approach.

  5. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Lenschow, D. H.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jiménez, M. A.; Jonassen, M.; van den Kroonenberg, A.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.

    2014-10-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.

  6. Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model

    NASA Astrophysics Data System (ADS)

    Solman, Silvina A.; Pessacg, Natalia L.

    2012-01-01

    In this study the capability of the MM5 model in simulating the main mode of intraseasonal variability during the warm season over South America is evaluated through a series of sensitivity experiments. Several 3-month simulations nested into ERA40 reanalysis were carried out using different cumulus schemes and planetary boundary layer schemes in an attempt to define the optimal combination of physical parameterizations for simulating alternating wet and dry conditions over La Plata Basin (LPB) and the South Atlantic Convergence Zone regions, respectively. The results were compared with different observational datasets and model evaluation was performed taking into account the spatial distribution of monthly precipitation and daily statistics of precipitation over the target regions. Though every experiment was able to capture the contrasting behavior of the precipitation during the simulated period, precipitation was largely underestimated particularly over the LPB region, mainly due to a misrepresentation in the moisture flux convergence. Experiments using grid nudging of the winds above the planetary boundary layer showed a better performance compared with those in which no constrains were imposed to the regional circulation within the model domain. Overall, no single experiment was found to perform the best over the entire domain and during the two contrasting months. The experiment that outperforms depends on the area of interest, being the simulation using the Grell (Kain-Fritsch) cumulus scheme in combination with the MRF planetary boundary layer scheme more adequate for subtropical (tropical) latitudes. The ensemble of the sensitivity experiments showed a better performance compared with any individual experiment.

  7. Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.

    2011-01-01

    This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.

  8. Direct numerical simulation of particulate flows with an overset grid method

    NASA Astrophysics Data System (ADS)

    Koblitz, A. R.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D.

    2017-08-01

    We evaluate an efficient overset grid method for two-dimensional and three-dimensional particulate flows for small numbers of particles at finite Reynolds number. The rigid particles are discretised using moving overset grids overlaid on a Cartesian background grid. This allows for strongly-enforced boundary conditions and local grid refinement at particle surfaces, thereby accurately capturing the viscous boundary layer at modest computational cost. The incompressible Navier-Stokes equations are solved with a fractional-step scheme which is second-order-accurate in space and time, while the fluid-solid coupling is achieved with a partitioned approach including multiple sub-iterations to increase stability for light, rigid bodies. Through a series of benchmark studies we demonstrate the accuracy and efficiency of this approach compared to other boundary conformal and static grid methods in the literature. In particular, we find that fully resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many common test cases. With our approach we are able to compute accurate solutions using as little as one third the number of grid points as uniform grid computations in the literature. A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid test case whilst maintaining comparable solution accuracy.

  9. Boundary acquisition for setup of numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diegert, C.

    1997-12-31

    The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discoveredmore » in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.« less

  10. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  11. Exact solution of corner-modified banded block-Toeplitz eigensystems

    NASA Astrophysics Data System (ADS)

    Cobanera, Emilio; Alase, Abhijeet; Ortiz, Gerardo; Viola, Lorenza

    2017-05-01

    Motivated by the challenge of seeking a rigorous foundation for the bulk-boundary correspondence for free fermions, we introduce an algorithm for determining exactly the spectrum and a generalized-eigenvector basis of a class of banded block quasi-Toeplitz matrices that we call corner-modified. Corner modifications of otherwise arbitrary banded block-Toeplitz matrices capture the effect of boundary conditions and the associated breakdown of translational invariance. Our algorithm leverages the interplay between a non-standard, projector-based method of kernel determination (physically, a bulk-boundary separation) and families of linear representations of the algebra of matrix Laurent polynomials. Thanks to the fact that these representations act on infinite-dimensional carrier spaces in which translation symmetry is restored, it becomes possible to determine the eigensystem of an auxiliary projected block-Laurent matrix. This results in an analytic eigenvector Ansatz, independent of the system size, which we prove is guaranteed to contain the full solution of the original finite-dimensional problem. The actual solution is then obtained by imposing compatibility with a boundary matrix, whose shape is also independent of system size. As an application, we show analytically that eigenvectors of short-ranged fermionic tight-binding models may display power-law corrections to exponential behavior, and demonstrate the phenomenon for the paradigmatic Majorana chain of Kitaev.

  12. A note on libration point orbits, temporary capture and low-energy transfers

    NASA Astrophysics Data System (ADS)

    Fantino, E.; Gómez, G.; Masdemont, J. J.; Ren, Y.

    2010-11-01

    In the circular restricted three-body problem (CR3BP) the weak stability boundary (WSB) is defined as a boundary set in the phase space between stable and unstable motion relative to the second primary. At a given energy level, the boundaries of such region are provided by the stable manifolds of the central objects of the L1 and L2 libration points, i.e., the two planar Lyapunov orbits. Besides, the unstable manifolds of libration point orbits (LPOs) around L1 and L2 have been identified as responsible for the weak or temporary capture around the second primary of the system. These two issues suggest the existence of natural dynamical channels between the Earth's vicinity and the Sun-Earth libration points L1 and L2. Furthermore, it has been shown that the Sun-Earth L2 central unstable manifolds can be linked, through an heteroclinic connection, to the central stable manifolds of the L2 point in the Earth-Moon three-body problem. This concept has been applied to the design of low energy transfers (LETs) from the Earth to the Moon. In this contribution we consider all the above three issues, i.e., weak stability boundaries, temporary capture and low energy transfers, and we discuss the role played by the invariant manifolds of LPOs in each of them. The study is made in the planar approximation.

  13. Pilot plant studies of the CO{sub 2} capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO{sub 2} capture technology development plant and the Boundary Dam CO{sub 2} capture demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idem, R.; Wilson, M.; Tontiwachwuthikul, P.

    2006-04-12

    Evaluations of the benefits of using a mixed MEA/MDEA solvent for CO{sub 2} capture in terms of the heat requirement for solvent regeneration, lean and rich loadings, CO{sub 2} production, and solvent stability were performed by comparing the performance of aqueous 5 kmol/m{sup 3} MEA with that of an aqueous 4:1 molar ratio MEA/MDEA blend of 5 kmol/ml total amine concentration as a function of the operating time. The tests were performed using two pilot CO{sub 2} capture plants of the International Test Centre for CO{sub 2} Capture (ITC), which provided two different sources and compositions of flue gas. Themore » University of Regina CO{sub 2} plant (UR unit) processes flue gas from the combustion of natural gas while the Boundary Dam CO{sub 2} plant (BD unit) processes flue gas from a coal-fired electric power station. The results show that a huge heat-duty reduction can be achieved by using a mixed MEA/MDEA solution instead of a single MEA solution in an industrial environment of a CO{sub 2} capture plant. However, this benefit is dependent on whether the chemical stability of the solvent can be maintained.« less

  14. Investigation of prescribed movement in fluid–structure interaction simulation for the human phonation process☆

    PubMed Central

    Zörner, S.; Kaltenbacher, M.; Döllinger, M.

    2013-01-01

    In a partitioned approach for computational fluid–structure interaction (FSI) the coupling between fluid and structure causes substantial computational resources. Therefore, a convenient alternative is to reduce the problem to a pure flow simulation with preset movement and applying appropriate boundary conditions. This work investigates the impact of replacing the fully-coupled interface condition with a one-way coupling. To continue to capture structural movement and its effect onto the flow field, prescribed wall movements from separate simulations and/or measurements are used. As an appropriate test case, we apply the different coupling strategies to the human phonation process, which is a highly complex interaction of airflow through the larynx and structural vibration of the vocal folds (VF). We obtain vocal fold vibrations from a fully-coupled simulation and use them as input data for the simplified simulation, i.e. just solving the fluid flow. All computations are performed with our research code CFS++, which is based on the finite element (FE) method. The presented results show that a pure fluid simulation with prescribed structural movement can substitute the fully-coupled approach. However, caution must be used to ensure accurate boundary conditions on the interface, and we found that only a pressure driven flow correctly responds to the physical effects when using specified motion. PMID:24204083

  15. Phase synchronization of baroclinic waves in a differentially heated rotating annulus experiment subject to periodic forcing with a variable duty cycle

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Morice-Atkinson, X.; Allen, E. J.; Castrejón-Pita, A. A.

    2017-12-01

    A series of laboratory experiments in a thermally driven, rotating fluid annulus are presented that investigate the onset and characteristics of phase synchronization and frequency entrainment between the intrinsic, chaotic, oscillatory amplitude modulation of travelling baroclinic waves and a periodic modulation of the (axisymmetric) thermal boundary conditions, subject to time-dependent coupling. The time-dependence is in the form of a prescribed duty cycle in which the periodic forcing of the boundary conditions is applied for only a fraction δ of each oscillation. For the rest of the oscillation, the boundary conditions are held fixed. Two profiles of forcing were investigated that capture different parts of the sinusoidal variation and δ was varied over the range 0.1 ≤δ≤1 . Reducing δ was found to act in a similar way to a reduction in a constant coupling coefficient in reducing the width of the interval in forcing frequency or period over which complete synchronization was observed (the "Arnol'd tongue") with respect to the detuning, although for the strongest pulse-like forcing profile some degree of synchronization was discernible even at δ=0.1 . Complete phase synchronization was obtained within the Arnol'd tongue itself, although the strength of the amplitude modulation of the baroclinic wave was not significantly affected. These experiments demonstrate a possible mechanism for intraseasonal and/or interannual "teleconnections" within the climate system of the Earth and other planets that does not rely on Rossby wave propagation across the planet along great circles.

  16. Modelling Near-Surface Metallic Clutter Without the Excruciating Pain

    NASA Astrophysics Data System (ADS)

    Downs, C. M.; Weiss, C. J.; Bach, J.; Williams, J. T.

    2016-12-01

    An ongoing problem in modeling electromagnetic (EM) interactions with the near-surface and related anthropogenic metal clutter is the large difference in length scale between the clutter dimensions and their resulting EM response. For example, observational evidence shows that cables, pipes and rail lines can have a strong influence far from where they are located, even in situations where these artefacts are volumetrically insignificant over the scale of the model. This poses a significant modeling problem for understanding geohazards in urban environments, for example, because of the very fine numerical discretization required for accurate representation of an artefact embedded in a larger computational domain. We adopt a sub-grid approximation and impose a boundary condition along grid edges to capture the vanishing fields of a perfect conductor. We work in a Cartesian system where the EM fields are solved via finite volumes in the frequency domain in terms of the Lorenz gauged magnetic vector (A) and electric scalar (Phi) potentials. The electric fied is given simply by A-grad(Phi), and set identically to zero along edges of the mesh that coincide with the center of long, slender metallic conductors. A simple extension to bulky artefacts like blocks or slabs involves endowing all such edges in their interior with the same "internal" boundary condition. In essence, we apply the "perfect electric conductor" boundary condition to select edges interior to the modeling domain. We note a few minor numerical consequences of this approach, namely: the zero-E field internal boundary condition destroys the symmetry of the finite volume coefficient matrix; and, the accuracy of the representation of the conducting artefact is restricted by the relatively coarse discretization mesh. The former is overcome with the use of preconditioned bi-conjugate gradient methods instead of the quasi-minimal-residual method. Both are matrix-free iterative solvers - thus avoiding unnecessary storage- and both exhibit generally good convergence for well-posed problems. The latter is more difficult to overcome without either modifying the mesh (potentially degrading the condition number of the coefficient matrix) or with novel mesh sub-gridding. Initial results show qualitative agreement with the expected physics.

  17. An Energetic Concept of Habitability for the Deep Subsurface

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.

    2006-01-01

    Universally, life must be characterized by a characteristic level of order and complexity. In the most general sense, habitability could then be defined as the set of factors required to allow the creation and maintenance of molecular complexity. These factors are: chemical raw materials; energy with which to assemble those materials into complex molecules and sustain the resultant state of complexity; a solvent that allows the interaction of complex molecules, promotes tertiary structure, and permits compartmentalization; and environmental conditions that permit the assembly and maintenance of complex molecules. On Earth, these general requirements correspond to the major biogenic elements C, H, O, N, P, S; chemical or light energy; the solvent water; and specific ranges of temperature, pH, radiation, ionic strength, and so forth, which have thus far been determined on and exclusively empirical basis. Importantly, while the complete absence of any of these factors ensures uninhabitable conditions, the mere presence of all four does not guarantee habitability. In each case - even that of water - it is a question of degree. This question can be couched in quantitative terms by considering the impact of each of these factors on cellular energy balance. More "extreme" conditions (e.g., high temperature, high or low pH, etc.), lower water activity, and low concentrations of nutrients incur or have potential to be addressed by increased investment of energy on the part of the cell. This must be balanced by energy conservation in the cell, noting that biochemical, mass transport, and abiotic chemical limitations intervene between environmental energy availability and biological energy capture. Similarly, lower boundary conditions are emplaced on useful environmental energy yields by the "quantized" nature of biological energy conservation, and upper boundary conditions are emplaced by energy levels or fluxes that are destructive with respect to complexity. This energetic framework, with boundary conditions supplied by the specifics of the biochemistry in question, offers a generalized, yet quantitative means of assessing the habitability of any system with respect to complex life.

  18. Smoothed Particle Hydrodynamics Continuous Boundary Force method for Navier-Stokes equations subject to Robin boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.

    2014-02-15

    Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to variousmore » forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.« less

  19. The role of boundary layer momentum advection in the mean location of the ITCZ

    NASA Astrophysics Data System (ADS)

    Dixit, Vishal; Srinivasan, J.

    2017-08-01

    The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.

  20. Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.

    2016-09-01

    Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.

  1. Large-eddy simulations of mechanical and thermal processes within boundary layer of the Graciosa Island

    NASA Astrophysics Data System (ADS)

    Sever, G.; Collis, S. M.; Ghate, V. P.

    2017-12-01

    Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ < 100 meter) simulations. Ideal configurations include model initializations with ideal dry and moist temperature and wind profiles to capture flow features over an island-like topography. Real configurations will use observations from different climatological background states over the Eastern Northern Atlantic, Atmospheric Radiation Measurement (ENA-ARM) site on Graciosa Island. Initial small-domain large-eddy simulations (LES) of dry airflow produce cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.

  2. Inflow/Outflow Boundary Conditions with Application to FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2011-01-01

    Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.

  3. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    PubMed

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  4. Use of models to map potential capture of surface water

    USGS Publications Warehouse

    Leake, Stanley A.

    2006-01-01

    The effects of ground-water withdrawals on surface-water resources and riparian vegetation have become important considerations in water-availability studies. Ground water withdrawn by a well initially comes from storage around the well, but with time can eventually increase inflow to the aquifer and (or) decrease natural outflow from the aquifer. This increased inflow and decreased outflow is referred to as “capture.” For a given time, capture can be expressed as a fraction of withdrawal rate that is accounted for as increased rates of inflow and decreased rates of outflow. The time frames over which capture might occur at different locations commonly are not well understood by resource managers. A ground-water model, however, can be used to map potential capture for areas and times of interest. The maps can help managers visualize the possible timing of capture over large regions. The first step in the procedure to map potential capture is to run a ground-water model in steady-state mode without withdrawals to establish baseline total flow rates at all sources and sinks. The next step is to select a time frame and appropriate withdrawal rate for computing capture. For regional aquifers, time frames of decades to centuries may be appropriate. The model is then run repeatedly in transient mode, each run with one well in a different model cell in an area of interest. Differences in inflow and outflow rates from the baseline conditions for each model run are computed and saved. The differences in individual components are summed and divided by the withdrawal rate to obtain a single capture fraction for each cell. Values are contoured to depict capture fractions for the time of interest. Considerations in carrying out the analysis include use of realistic physical boundaries in the model, understanding the degree of linearity of the model, selection of an appropriate time frame and withdrawal rate, and minimizing error in the global mass balance of the model.

  5. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  6. Modelling of discrete TDS-spectrum of hydrogen desorption

    NASA Astrophysics Data System (ADS)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  7. Phase separation in the six-vertex model with a variety of boundary conditions

    NASA Astrophysics Data System (ADS)

    Lyberg, I.; Korepin, V.; Ribeiro, G. A. P.; Viti, J.

    2018-05-01

    We present numerical results for the six-vertex model with a variety of boundary conditions. Adapting an algorithm for domain wall boundary conditions, proposed in the work of Allison and Reshetikhin [Ann. Inst. Fourier 55(6), 1847-1869 (2005)], we examine some modifications of these boundary conditions. To be precise, we discuss partial domain wall boundary conditions, reflecting ends, and half turn boundary conditions (domain wall boundary conditions with half turn symmetry). Dedicated to the memory of Ludwig Faddeev

  8. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jimenez Cortes, M. A.; Jonassen, M.; van den Kroonenberg, A.; Lenschow, D. H.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.

    2014-04-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective to the night-time stable boundary layer, still raises several scientific issues. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective regime, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of integrated instrument platforms including full-size aircraft, remotely piloted aircraft systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observations from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, like new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the residual layer of the previous day, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and evidenced the evolution of the turbulence characteristic lengthscales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.

  9. Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach

    NASA Astrophysics Data System (ADS)

    Upadhyay, M. V.; Capek, J.; Van Petegem, S.; Lebensohn, R. A.; Van Swygenhoven, H.

    2017-05-01

    Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.

  10. Level set formulation of two-dimensional Lagrangian vortex detection methods

    NASA Astrophysics Data System (ADS)

    Hadjighasem, Alireza; Haller, George

    2016-10-01

    We propose here the use of the variational level set methodology to capture Lagrangian vortex boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek material vortex boundaries as extremum solutions of variational problems. We demonstrate the performance of this technique for two different variational formulations built upon different notions of coherence. The first formulation uses an energy functional that penalizes the deviation of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech. 731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formulation captures an a priori unknown number of vortices simultaneously at relatively low computational cost. We illustrate the approach by identifying vortices from different coherence principles in several examples.

  11. Dynamical phase separation using a microfluidic device: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  12. Boundary conditions for gas flow problems from anisotropic scattering kernels

    NASA Astrophysics Data System (ADS)

    To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline

    2015-10-01

    The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.

  13. Conservative supra-characteristics method for splitting the hyperbolic systems of gasdynamics for real and perfect gases

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.

    1982-01-01

    A conservative flux difference splitting is presented for the hyperbolic systems of gasdynamics. The stable robust method is suitable for wide application in a variety of schemes, explicit or implicit, iterative or direct, for marching in either time or space. The splitting is modeled on the local quasi one dimensional characteristics system for multi-dimensional flow similar to Chakravarthy's nonconservative split coefficient matrix method; but, as the result of maintaining global conservation, the method is able to capture sharp shocks correctly. The embedded characteristics formulation is cast in a primitive variable the volumetric internal energy (rather than the pressure) that is effective for treating real as well as perfect gases. Finally the relationship of the splitting to characteristics boundary conditions is discussed and the associated conservative matrix formulation for a computed blown wall boundary condition is developed as an example. The theoretical development employs and extends the notion of Roe of constructing stable upwind difference formulae by sending split simple one sided flux difference pieces to appropriate mesh sites. The developments are also believed to have the potential for aiding in the analysis of both existing and new conservative difference schemes.

  14. Naturalistic drive cycle synthesis for pickup trucks.

    PubMed

    Liu, Zifan; Ivanco, Andrej; Filipi, Zoran

    2015-09-01

    Future pick-up trucks are meeting much stricter fuel economy and exhaust emission standards. Design tradeoffs will have to be carefully evaluated to satisfy consumer expectations within the regulatory and cost constraints. Boundary conditions will obviously be critical for decision making: thus, the understanding of how customers are driving in naturalistic settings is indispensable. Federal driving schedules, while critical for certification, do not capture the richness of naturalistic cycles, particularly the aggressive maneuvers that often shape consumer perception of performance. While there are databases with large number of drive cycles, applying all of them directly in the design process is impractical. Therefore, representative drive cycles that capture the essence of the naturalistic driving should be synthesized from naturalistic driving data. Naturalistic drive cycles are firstly categorized by investigating their micro-trip components, defined as driving activities between successive stops. Micro-trips are expected to characterize underlying local traffic conditions, and separate different driving patterns. Next, the transitions from one vehicle state to another vehicle state in each cycle category are captured with Transition Probability Matrix (TPM). Candidate drive cycles can subsequently be synthesized using Markov Chain based on TPMs for each category. Finally, representative synthetic drive cycles are selected through assessment of significant cycle metrics to identify the ones with smallest errors. This paper provides a framework for synthesis of representative drive cycles from naturalistic driving data, which can subsequently be used for efficient optimization of design or control of pick-up truck powertrains. Manufacturers will benefit from representative drive cycles in several aspects, including quick assessments of vehicle performance and energy consumption in simulations, component sizing and design, optimization of control strategies, and vehicle testing under real-world conditions. This is in contrast to using federal certification test cycles, which were never intended to capture pickup truck segment. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  15. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2008-01-01

    The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.

  16. Morning view, contextual view showing the role of the brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Morning view, contextual view showing the role of the brick walls along the boundary of the cemetery; interior view taken from midway down the paved west road with the camera facing west to capture the morning light on the west wall. - Beaufort National Cemetery, Wall, 1601 Boundary Street, Beaufort, Beaufort County, SC

  17. The Role of Syntactic Obligatoriness in the Production of Intonational Boundaries

    ERIC Educational Resources Information Center

    Watson, Duane; Breen, Mara; Gibson, Edward

    2006-01-01

    Researchers have hypothesized that words that are highly related semantically are more likely to occur within the same intonational phrase (F. zzaq;, 1988; E. O. Selkirk, 1984). D. Watson and E. Gibson (2004) proposed that semantic closeness can be captured by using the argument/adjunct distinction, such that intonational boundaries are more…

  18. Time-dependent boundary conditions for hyperbolic systems. II

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1990-01-01

    A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.

  19. Time-dependent boundary conditions for hyperbolic systems. II

    NASA Astrophysics Data System (ADS)

    Thompson, Kevin W.

    1990-08-01

    A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.

  20. General Boundary Conditions for a Majorana Single-Particle in a Box in (1 + 1) Dimensions

    NASA Astrophysics Data System (ADS)

    De Vincenzo, Salvatore; Sánchez, Carlet

    2018-05-01

    We consider the problem of a Majorana single-particle in a box in (1 + 1) dimensions. We show that the most general set of boundary conditions for the equation that models this particle is composed of two families of boundary conditions, each one with a real parameter. Within this set, we only have four confining boundary conditions—but infinite not confining boundary conditions. Our results are also valid when we include a Lorentz scalar potential in this equation. No other Lorentz potential can be added. We also show that the four confining boundary conditions for the Majorana particle are precisely the four boundary conditions that mathematically can arise from the general linear boundary condition used in the MIT bag model. Certainly, the four boundary conditions for the Majorana particle are also subject to the Majorana condition.

  1. A smartphone application for psoriasis segmentation and classification (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas B.; Horita, Timothy; Shi, Kevin; Khan Munia, Tamanna Tabassum; Tavakolian, Kouhyar; Alhashim, Minhal; Fazel-Rezai, Reza

    2017-02-01

    Psoriasis is a chronic skin disease affecting approximately 125 million people worldwide. Currently, dermatologists monitor changes of psoriasis by clinical evaluation or by measuring psoriasis severity scores over time which lead to Subjective management of this condition. The goal of this paper is to develop a reliable assessment system to quantitatively assess the changes of erythema and intensity of scaling of psoriatic lesions. A smartphone deployable mobile application is presented that uses the smartphone camera and cloud-based image processing to analyze physiological characteristics of psoriasis lesions, identify the type and stage of the scaling and erythema. The application targets to automatically evaluate Psoriasis Area Severity Index (PASI) by measuring the severity and extent of psoriasis. The mobile application performs the following core functions: 1) it captures text information from user input to create a profile in a HIPAA compliant database. 2) It captures an image of the skin with psoriasis as well as image-related information entered by the user. 3) The application color correct the image based on environmental lighting condition using calibration process including calibration procedure by capturing Macbeth ColorChecker image. 4) The color-corrected image will be transmitted to a cloud-based engine for image processing. In cloud, first, the algorithm removes the non-skin background to ensure the psoriasis segmentation is only applied to the skin regions. Then, the psoriasis segmentation algorithm estimates the erythema and scaling boundary regions of lesion. We analyzed 10 images of psoriasis images captured by cellphone, determined PASI score for each subject during our pilot study, and correlated it with changes in severity scores given by dermatologists. The success of this work allows smartphone application for psoriasis severity assessment in a long-term treatment.

  2. Time-evolution of uniform momentum zones in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Laskari, Angeliki; Hearst, R. Jason; de Kat, Roeland; Ganapathisubramani, Bharathram

    2016-11-01

    Time-resolved planar particle image velocimetry (PIV) is used to analyse the organisation and evolution of uniform momentum zones (UMZs) in a turbulent boundary layer. Experiments were performed in a recirculating water tunnel on a streamwise-wall-normal plane extending approximately 0 . 5 δ × 1 . 8 δ , in x and y, respectively. In total 400,000 images were captured and for each of the resulting velocity fields, local peaks in the probability density distribution of the streamwise velocity were detected, indicating the instantaneous presence of UMZs throughout the boundary layer. The main characteristics of these zones are outlined and more specifically their velocity range and wall-normal extent. The variation of these characteristics with wall normal distance and total number of zones are also discussed. Exploiting the time information available, time-scales of zones that have a substantial coherence in time are analysed and results show that the zones' lifetime is dependent on both their momentum deficit level and the total number of zones present. Conditional averaging of the flow statistics seems to further indicate that a large number of zones is the result of a wall-dominant mechanism, while the opposite implies an outer-layer dominance.

  3. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  4. An Experimental Study of Vortex Flow Formation and Dynamics in Confined Microcavities

    NASA Astrophysics Data System (ADS)

    Khojah, Reem; di Carlo, Dino

    2017-11-01

    New engineering solutions for bioparticle separation invites revisiting classic fluid dynamics problems. Previous studies investigated cavity vortical flow that occurs in 2D with the formation of a material flux boundary or separatrix between the main flow and cavity flow. We demonstrate the concept of separatrix breakdown, in which the cavity flow becomes connected to the main flow, occurs as the cavity is confined in 3D, and is implicated in particle capture and rapid mass exchange in cavities. Understanding the convective flux between the channel and a side cavity provides insight into size-dependent particle capture and release from the cavity flow. The process of vortex formation and separatrix breakdown between the main channel to the side cavity is Reynolds number dependent and can be described by dissecting the flow streamlines from the main channel that enter and spiral out of the cavity. Laminar streamlines from incremented initial locations in the main flow are observed inside the cavity under different flow conditions. Experimentally, we provide the Reynolds number threshold to generate certain flow geometry. We found the optimal flow conditions that enable rapid convective transfer through the cavity flow and exposure and interaction between soluble factors with captured cells. By tuning which fraction of the main flow has solute, we can create a dynamic gate between the cavity and channel flow that potentially serves as a time-dependent fluid exchange approach for objects within the cavity.

  5. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves

    USGS Publications Warehouse

    Harris, C.K.; Wiberg, P.L.

    2001-01-01

    A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.

  6. Numerical simulation of damage and progressive failures in composite laminates using the layerwise plate theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Y.S.

    1992-01-01

    The failure behavior of composite laminates is modeled numerically using the Generalized Layerwise Plate Theory (GLPT) of Reddy and a progressive failure algorithm. The Layerwise Theory of Reddy assumes a piecewise continuous displacement field through the thickness of the laminate and therefore has the ability to capture the interlaminar stress fields near the free edges and cut outs more accurately. The progressive failure algorithm is based on the assumption that the material behaves like a stable progressively fracturing solid. A three-dimensional stiffness reduction scheme is developed and implemented to study progressive failures in composite laminates. The effect of various parametersmore » such as out-of-plane material properties, boundary conditions, and stiffness reduction methods on the failure stresses and strains of a quasi-isotropic composite laminate with free edges subjected to tensile loading is studied. The ultimate stresses and strains predicted by the Generalized Layerwise Plate Theory (GLPT) and the more widely used First Order Shear Deformation Theory (FSDT) are compared with experimental results. The predictions of the GLPT are found to be in good agreement with the experimental results both qualitatively and quantitatively, while the predictions of FSDT are found to be different from experimental results both qualitatively and quantitatively. The predictive ability of various phenomenological failure criteria is evaluated with reference to the experimental results available in the literature. The effect of geometry of the test specimen and the displacement boundary conditions at the grips on the ultimate stresses and strains of a composite laminate under compressive loading is studied. The ultimate stresses and strains are found to be quite sensitive to the geometry of the test specimen and the displacement boundary conditions at the grips. The degree of sensitivity is observed to depend strongly on the lamination sequence.« less

  7. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wheeler, F.J.

    1981-01-01

    The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less

  8. Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships

    PubMed Central

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-01-01

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715

  9. Grain boundary plane orientation fundamental zones and structure-property relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less

  10. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Shi, Ruchao; Batra, Romesh C.

    2018-02-01

    We present a robust sharp-interface immersed boundary method for numerically studying high speed flows of compressible and viscous fluids interacting with arbitrarily shaped either stationary or moving rigid solids. The Navier-Stokes equations are discretized on a rectangular Cartesian grid based on a low-diffusion flux splitting method for inviscid fluxes and conservative high-order central-difference schemes for the viscous components. Discontinuities such as those introduced by shock waves and contact surfaces are captured by using a high-resolution weighted essentially non-oscillatory (WENO) scheme. Ghost cells in the vicinity of the fluid-solid interface are introduced to satisfy boundary conditions on the interface. Values of variables in the ghost cells are found by using a constrained moving least squares method (CMLS) that eliminates numerical instabilities encountered in the conventional MLS formulation. The solution of the fluid flow and the solid motion equations is advanced in time by using the third-order Runge-Kutta and the implicit Newmark integration schemes, respectively. The performance of the proposed method has been assessed by computing results for the following four problems: shock-boundary layer interaction, supersonic viscous flows past a rigid cylinder, moving piston in a shock tube and lifting off from a flat surface of circular, rectangular and elliptic cylinders triggered by shock waves, and comparing computed results with those available in the literature.

  11. Promoting Collaborative Practice and Reciprocity in Initial Teacher Education: Realising a "Dialogic Space" through Video Capture Analysis

    ERIC Educational Resources Information Center

    Youens, Bernadette; Smethem, Lindsey; Sullivan, Stefanie

    2014-01-01

    This paper explores the potential of video capture to generate a collaborative space for teacher preparation; a space in which traditional hierarchies and boundaries between actors (student teacher, school mentor and university tutor) and knowledge (academic, professional and practical) are disrupted. The study, based in a teacher education…

  12. Non-resonant energy harvester with elastic constraints for low rotating frequencies

    NASA Astrophysics Data System (ADS)

    Machado, Sebastián P.; Febbo, Mariano; Gatti, Claudio D.; Ramirez, José M.

    2017-11-01

    This paper presents a non-resonant piezoelectric energy harvester (PEH) which is designed to capture energy from low frequency rotational vibration. The proposed device works out of the plane of rotation where the motion of a mass-spring system is transferred to a piezoelectric layer with the intention to generate energy to power wireless structural monitoring systems or sensors. The mechanical structure is formed by two beams with rigid and elastic boundary conditions at the clamped end. On the free boundaries, heavy masses connected by a spring are placed in order to increase voltage generation and diminish the natural frequency. A mathematical framework and the equations governing the energy-harvesting system are presented. Numerical simulations and experimental verifications are performed for different rotation speeds ranging from 0.7 to 2.5 Hz. An output power of 125 μW is obtained for maximum rotating frequency demonstrating that the proposed design can collect enough energy for the suggested application.

  13. Application of LANDSAT-2 to the Management of Delaware's Marine and Wetland Resources

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Bartlett, D.; Philpot, W.; Davis, G.

    1975-01-01

    The author has identified the following significant results. The duPont waste disposal plume was observed in 12 NASA/LANDSAT satellite images during dump up to 54 hours after dump. The circulation processes at the acid waste disposal site are highly event-dominated, with the majority of the water transport occurring strong northeasters. There is a mean flow to the south alongshore. During the warm months, the ocean stratifies with warm water over cold water. During stratified conditions, the near-bottom drogues showed very little movement. LANDSAT, aircraft, and boats were used successfully to study estuarine and coastal fronts or boundaries. By capturing and holding oil slicks, frontal systems significantly influence the movement and dispersion of oil slicks in Delaware Bay. Recent oil slick tracking experiments conducted to verify a predictive oil dispersion and movement model have shown that during certain parts of the tidal cycle the oil slicks tend to line up along boundaries.

  14. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  15. Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.

    PubMed

    Pal, Barnana

    2017-01-01

    The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.

  17. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  18. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  19. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  20. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE PAGES

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...

    2016-11-05

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  1. Straight velocity boundaries in the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Latt, Jonas; Chopard, Bastien; Malaspinas, Orestis; Deville, Michel; Michler, Andreas

    2008-05-01

    Various ways of implementing boundary conditions for the numerical solution of the Navier-Stokes equations by a lattice Boltzmann method are discussed. Five commonly adopted approaches are reviewed, analyzed, and compared, including local and nonlocal methods. The discussion is restricted to velocity Dirichlet boundary conditions, and to straight on-lattice boundaries which are aligned with the horizontal and vertical lattice directions. The boundary conditions are first inspected analytically by applying systematically the results of a multiscale analysis to boundary nodes. This procedure makes it possible to compare boundary conditions on an equal footing, although they were originally derived from very different principles. It is concluded that all five boundary conditions exhibit second-order accuracy, consistent with the accuracy of the lattice Boltzmann method. The five methods are then compared numerically for accuracy and stability through benchmarks of two-dimensional and three-dimensional flows. None of the methods is found to be throughout superior to the others. Instead, the choice of a best boundary condition depends on the flow geometry, and on the desired trade-off between accuracy and stability. From the findings of the benchmarks, the boundary conditions can be classified into two major groups. The first group comprehends boundary conditions that preserve the information streaming from the bulk into boundary nodes and complete the missing information through closure relations. Boundary conditions in this group are found to be exceptionally accurate at low Reynolds number. Boundary conditions of the second group replace all variables on boundary nodes by new values. They exhibit generally much better numerical stability and are therefore dedicated for use in high Reynolds number flows.

  2. The Role of Boundary-Layer and Cumulus Convection on Dust Emission, Mixing, and Transport Over Desert Regions

    NASA Astrophysics Data System (ADS)

    Takemi, T.; Yasui, M.

    2005-12-01

    Recent studies on dust emission and transport have been concerning the small-scale atmospheric processes in order to incorporate them as a subgrid-scale effect in large-scale numerical prediction models. In the present study, we investigated the dynamical processes and mechanisms of dust emission, mixing, and transport induced by boundary-layer and cumulus convection under a fair-weather condition over a Chinese desert. We performed a set of sensitivity experiments as well as a control simulation in order to examine the effects of vertical wind shear, upper-level wind speed, and moist convection by using a simplified and idealized modeling framework. The results of the control experiment showed that surface dust emission was at first caused before the noon time by intense convective motion which not only developed in the boundary layer but also penetrated into the free troposphere. In the afternoon hours, boundary-layer dry convection actively mixed and transported dust within the boundary layer. Some of the convective cells penetrated above the boundary layer, which led to the generation of cumulus clouds and hence gradually increased the dust content in the free troposphere. Coupled effects of the dry and moist convection played an important role in inducing surface dust emission and transporting dust vertically. This was clearly demonstrated through the comparison of the results between the control and the sensitivity experiments. The results of the control simulation were compared with lidar measurements. The simulation well captured the observed diurnal features of the upward transport of dust. We also examined the dependence of the simulated results on grid resolution: the grid size was changed from 250 m up to 4 km. It was found that there was a significant difference between the 2-km and 4-km grids. If a cumulus parameterization was added to the 4-km grid run, the column content was comparable to the other cases. This result suggests that subgrid parameterizations are required if the grid size is larger than the order of 1 km in a fair-weather condition.

  3. Quantum "violation" of Dirichlet boundary condition

    NASA Astrophysics Data System (ADS)

    Park, I. Y.

    2017-02-01

    Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a tension between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum-corrected black hole solution of the 1PI action no longer obeys, in the naive manner one may expect, the Dirichlet boundary conditions imposed at the classical level. We attribute the 'violation' of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.

  4. A two-pronged approach to detecting ICB Stoneley modes

    NASA Astrophysics Data System (ADS)

    Jasperson, H. A.; Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    Stoneley modes are special kinds of normal modes that are confined to the boundary between a fluid layer and a solid layer inside the Earth. Thus, these modes theoretically occur at the core-mantle boundary (CMB) and inner core boundary (ICB). CMB Stoneley modes were identified in observational data by Koelemeijer, et al. in 2013, but ICB Stoneley modes have remained relatively unexplored. Here we use a joint numerical and data-driven approach to identify ICB Stoneley modes from the deep 2013 Mw 8.3 Sea of Okhotsk earthquake. For the data-driven portion, we use 50 stacked traces from the USArray to identify potential occurrences of ICB Stoneley modes. Next, we verify each occurrence by comparing the spectrum to its equivalent from the shallow 2011 Mw 9.1 Tohoku earthquake. We also develop a novel computational approach to compute normal modes in a spherically symmetric non-rotating Earth building on the work of Wiggins (1976) and Buland and Gilbert (1984). We successfully resolve the clustering eigenvalue problem with non-orthogonal eigenfunctions from which Mineos suffers. By choosing the displacement/pressure formulation in the fluid outer core and handling boundary conditions properly, we remarkably project out the essential spectrum and provide the correct point spectrum. The utilization of weak variational form to perform the Rayleigh-Ritz procedure contributes to preserving the high accuracy across the solid-fluid boundary, which makes it possible to capture Stoneley modes' exponentially decaying behavior across the solid-fluid boundary, leading to more accurate and reliable eigenvalues and eigenfunctions. This allows us to compare the observation data and numerical computations. With this approach, we eliminate false signals from consideration, leaving only true ICB Stoneley mode peaks. In the future, information from these modes can be used to study the properties of the ICB and inner core.

  5. Satellite Monitoring of Long Term Changes in Intertidal Thermal Conditions

    NASA Astrophysics Data System (ADS)

    Purvis, C. L.; Lakshmi, V.; Helmuth, B.

    2006-12-01

    Documented trends of global climate change have implications for species dynamics, range boundaries and mortality rates. A generalized assumption about global warming is that species will shift poleward in response to the increased temperatures, thereby displacing pre-existing species at higher latitudes. However, studies such as those conducted along the rocky shorelines of the U.S. have shown that such a simplified ecosystem response is unrealistic. Habitat alterations due to climate change are greatly influenced by local conditions, resulting in a patchwork of varying responses to temperature changes all along the intertidal. In order to capture these spatially- and temporally-dependent dynamics, satellite observations of land and sea surface temperatures (LST and SST) have been assimilated for the Pacific coast from Vancouver Island to southern California. Images from three satellite sensors were included in the study: MODIS/Terra, MODIS/Aqua and ASTER/Terra. MODIS has a spatial resolution of 1km (LST) and 4km (SST), daily coverage and overpass times of 10:30am and 1:30pm. ASTER has a spatial resolution of 90m (LST), sporadic temporal coverage due to an on-demand status and a 10:30am crossing time. The remotely sensed data were statistically compared to nearly 10 years of in situ measurements of body temperature of the California mussel along the Pacific coast. This species is prevalent among the rocky intertidal areas, physiologically well studied in terms of heat response and situated in a thermally harsh environment which demonstrates strong responses to climate change. A regression was performed to account for noise such as tidal signals, changes in latitude among sites as well as seasonal fluctuations in body temperature. Comparisons show that while the satellite data are unable to capture many of the daily maximum body temperatures (due to overpass times), they do offer a fairly accurate method of capturing high temporal resolution temperatures over large areas. In addition, satellite measurements were utilized to investigate the spatial distribution of intertidal mussels in Humboldt Bay, CA. In situ measurements are not prevalent enough to explain the potentially heat-driven range of mussels in this critical habitat, and therefore remotely sensed data will be used to gather new insight into thermally-regulated range boundaries of this species. By incorporating satellite measurements into in-depth habitat studies, long term thermal variations due to climate change can be monitored over large regions and aid in capturing larger-scale impacts which cannot be accomplished by tedious, site-specific in situ studies.

  6. A non-local computational boundary condition for duct acoustics

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.

    1994-01-01

    A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.

  7. Movement patterns and study area boundaries: Influences on survival estimation in capture-mark-recapture studies

    USGS Publications Warehouse

    Horton, G.E.; Letcher, B.H.

    2008-01-01

    The inability to account for the availability of individuals in the study area during capture-mark-recapture (CMR) studies and the resultant confounding of parameter estimates can make correct interpretation of CMR model parameter estimates difficult. Although important advances based on the Cormack-Jolly-Seber (CJS) model have resulted in estimators of true survival that work by unconfounding either death or recapture probability from availability for capture in the study area, these methods rely on the researcher's ability to select a method that is correctly matched to emigration patterns in the population. If incorrect assumptions regarding site fidelity (non-movement) are made, it may be difficult or impossible as well as costly to change the study design once the incorrect assumption is discovered. Subtleties in characteristics of movement (e.g. life history-dependent emigration, nomads vs territory holders) can lead to mixtures in the probability of being available for capture among members of the same population. The result of these mixtures may be only a partial unconfounding of emigration from other CMR model parameters. Biologically-based differences in individual movement can combine with constraints on study design to further complicate the problem. Because of the intricacies of movement and its interaction with other parameters in CMR models, quantification of and solutions to these problems are needed. Based on our work with stream-dwelling populations of Atlantic salmon Salmo salar, we used a simulation approach to evaluate existing CMR models under various mixtures of movement probabilities. The Barker joint data model provided unbiased estimates of true survival under all conditions tested. The CJS and robust design models provided similarly unbiased estimates of true survival but only when emigration information could be incorporated directly into individual encounter histories. For the robust design model, Markovian emigration (future availability for capture depends on an individual's current location) was a difficult emigration pattern to detect unless survival and especially recapture probability were high. Additionally, when local movement was high relative to study area boundaries and movement became more diffuse (e.g. a random walk), local movement and permanent emigration were difficult to distinguish and had consequences for correctly interpreting the survival parameter being estimated (apparent survival vs true survival). ?? 2008 The Authors.

  8. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  9. Capture zone of a multi-well system in bounded peninsula-shaped aquifers.

    PubMed

    Zarei-Doudeji, Somayeh; Samani, Nozar

    2014-08-01

    In this paper we present the equation of capture zone for multi-well system in peninsula-shaped confined and unconfined aquifers. The aquifer is rectangular in plan view, bounded along three sides, and extends to infinity at the fourth side. The bounding boundaries are either no-flow (impervious) or in-flow (constant head) so that aquifers with six possible boundary configurations are formed. The well system is consisted of any number of extraction or injection wells or combination of both with any flow rates. The complex velocity potential equations for such a well-aquifer system are derived to delineate the capture envelop. Solutions are provided for the aquifers with and without a uniform regional flow of any directions. The presented equations are of general character and have no limitations in terms of well numbers, positions and types, extraction/injection rate, and regional flow rate and direction. These solutions are presented in form of capture type curves which are useful tools in hands of practitioners to design in-situ groundwater remediation systems, to contain contaminant plumes, to evaluate the surface-subsurface water interaction and to verify numerical models. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Stability of hyperbolic-parabolic mixed type equations with partial boundary condition

    NASA Astrophysics Data System (ADS)

    Zhan, Huashui; Feng, Zhaosheng

    2018-06-01

    In this paper, we are concerned with the hyperbolic-parabolic mixed type equations with the non-homogeneous boundary condition. If it is degenerate on the boundary, the part of the boundary whose boundary value should be imposed, is determined by the entropy condition from the convection term. If there is no convection term in the equation, we show that the stability of solutions can be proved without any boundary condition. If the equation is completely degenerate, we show that the stability of solutions can be established just based on the partial boundary condition.

  11. Boundary Condition for Modeling Semiconductor Nanostructures

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard

    2006-01-01

    A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.

  12. Impact of Stress on Anomalous Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2016-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the large heterogeneity of fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transport through fractured rock remains largely unexplored. The link between anomalous (non-Fickian) transport and confining stress has been shown only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of confining stress on flow and transport through discrete fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM), which can capture the deformation of matrix blocks, reactivation and propagation of cracks. We implement a joint constitutive model within the FEMDEM framework to simulate the effect of fracture roughness. We apply the model to a fracture network extracted from the geological map of an actual outcrop to obtain the aperture field at different stress conditions (Figure 1). We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture networks, and show that this anomalous behavior can be linked to the stress state of the rock. Finally, we develop an effective transport model that captures the anomalous transport through stressed fractures. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in discrete fractured networks. [1] P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Letters, to appear (2016). Figure (a) Map of maximum principal stress with a vertical normal compressive stress of 3 MPa at top and bottom boundaries, and 1MPa at left and right boundaries. (b) Normal compressive stress of 15 MPa at top and bottom boundaries, and 5MPa at left and right boundaries.

  13. Paleoclimatic and paleoceanographic records through Marine Isotope Stage 19 at the Chiba composite section, central Japan: A key reference for the Early-Middle Pleistocene Subseries boundary

    NASA Astrophysics Data System (ADS)

    Suganuma, Yusuke; Haneda, Yuki; Kameo, Koji; Kubota, Yoshimi; Hayashi, Hiroki; Itaki, Takuya; Okuda, Masaaki; Head, Martin, J.; Sugaya, Manami; Nakazato, Hiroomi; Igarashi, Atsuo; Shikoku, Kizuku; Hongo, Misao; Watanabe, Masami; Satoguchi, Yasufumi; Takeshita, Yoshihiro; Nishida, Naohisa; Izumi, Kentaro; Kawamura, Kenji; Kawamata, Moto; Okuno, Jun'ichi; Yoshida, Takeshi; Ogitsu, Itaru; Yabusaki, Hisashi; Okada, Makoto

    2018-07-01

    Marine Isotope Stage (MIS) 19 is an important analogue for the present interglacial because of its similar orbital configuration, especially the phasing of the obliquity maximum to precession minimum. However, sedimentary records suitable for capturing both terrestrial and marine environmental changes are limited, and thus the climatic forcing mechanisms for MIS 19 are still largely unknown. The Chiba composite section, east-central Japanese archipelago, is a continuous and expanded marine sedimentary succession well suited to capture terrestrial and marine environmental changes through MIS 19. In this study, a detailed oxygen isotope chronology is established from late MIS 20 to early MIS 18, supported by a U-Pb zircon age and the presence of the Matuyama-Brunhes boundary. New pollen, marine microfossil, and planktonic foraminiferal δ18O and Mg/Ca paleotemperature records reveal the complex interplay of climatic influences. Our pollen data suggest that the duration of full interglacial conditions during MIS 19 extends from 785.0 to 775.1 ka (9.9 kyr), which offers an important natural baseline in predicting the duration of the present interglacial. A Younger Dryas-type cooling event is present during Termination IX, suggesting that such events are linked to this orbital configuration. Millennial- to multi-millennial-scale variations in our δ18O and Mg/Ca records imply that the Subarctic Front fluctuated in the northwestern Pacific Ocean during late MIS 19, probably in response to East Asian winter monsoon variability. The climatic setting at this time appears to be related to less severe summer insolation minima at 65˚N and/or high winter insolation at 50˚N. Our records do not support a recently hypothesized direct coupling between variations in the geomagnetic field intensity and global/regional climate change. Our highly resolved paleoclimatic and paleoceanographic records, coupled with a well-defined Matuyama-Brunhes boundary (772.9 ka; duration 1.9 kyr), establish the Chiba composite section as an exceptional climatic and chronological reference section for the Early-Middle Pleistocene boundary.

  14. A Discrete Analysis of Non-reflecting Boundary Conditions for Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Atkins, Harold L.

    2003-01-01

    We present a discrete analysis of non-reflecting boundary conditions for the discontinuous Galerkin method. The boundary conditions considered in this paper include the recently proposed Perfectly Matched Layer absorbing boundary condition for the linearized Euler equation and two non-reflecting boundary conditions based on the characteristic decomposition of the flux on the boundary. The analyses for the three boundary conditions are carried out in a unifled way. In each case, eigensolutions of the discrete system are obtained and applied to compute the numerical reflection coefficients of a specified out-going wave. The dependencies of the reflections at the boundary on the out-going wave angle and frequency as well as the mesh sizes arc? studied. Comparisons with direct numerical simulation results are also presented.

  15. Effect of Boundary Conditions on Numerically Simulated Tornado-like Vortices.

    NASA Astrophysics Data System (ADS)

    Smith, David R.

    1987-02-01

    The boundary conditions for Rotunno's numerical model which simulates tornado-like vortices are examined. In particular, the lateral boundary condition for tangential velocity and the upper boundary condition for radial and tangential velocities are considered to determine if they have any significant impact on vortex development.The choice of the lateral boundary condition did not appear to have any real effect on the development of the vortex over the range of swirl ratios studied (0.87-2.61).The upper boundary conditions attempt to simulate both the presence and absence of the flow-straightening baffle. The boundary condition corresponding to the baffle in place produced a distinct boundary layer in the u and v field and very strong upflow and downflow within the vortex core. When this condition is removed, there is both radial and tangential motion throughout the domain and a reduction of the vertical velocity. At small swirl ratio (S = 0.87) this boundary condition has a profound impact on the narrow vortex, producing changes in the pressure field that intensifies the vortex. At higher swirl ratio the vortex is apparently broad enough to better adjust to the changes of the upper boundary condition and, thus, experiences little change in the development of the vortex.

  16. Absorbing boundary conditions for second-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Jiang, Hong; Wong, Yau Shu

    1989-01-01

    A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.

  17. On the theoretical description of weakly charged surfaces.

    PubMed

    Wang, Rui; Wang, Zhen-Gang

    2015-03-14

    It is widely accepted that the Poisson-Boltzmann (PB) theory provides a valid description for charged surfaces in the so-called weak coupling limit. Here, we show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. In the presence of dielectric discontinuity, there is no limiting condition for which the PB theory is valid.

  18. The early evolution of Jupiter in the absence of solar tidal forces

    NASA Astrophysics Data System (ADS)

    Schofield, N.; Woolfson, M. M.

    1982-03-01

    The early evolution of a Jupiter-like protoplanet is simulated by constructing a physically detailed computer-based model which solves the equations of hydrodynamics and radiative energy transfer for the spherically symmetric case. The model is specifically developed to study the initial and boundary conditions relevant to the capture theory for the origin of the solar system. It is found that the absence of an external medium promotes the rapid expansion of surface material which is enhanced by solar irradiation. Only when the Jeans criterion is less than 0.8 does a spontaneous hydrodynamic collapse of the interior allow a substantial proportion of the protoplanet to condense to planetary densities.

  19. Some recent developments of the immersed interface method for flow simulation

    NASA Astrophysics Data System (ADS)

    Xu, Sheng

    2017-11-01

    The immersed interface method is a general methodology for solving PDEs subject to interfaces. In this talk, I will give an overview of some recent developments of the method toward the enhancement of its robustness for flow simulation. In particular, I will present with numerical results how to capture boundary conditions on immersed rigid objects, how to adopt interface triangulation in the method, and how to parallelize the method for flow with moving objects. With these developments, the immersed interface method can achieve accurate and efficient simulation of a flow involving multiple moving complex objects. Thanks to NSF for the support of this work under Grant NSF DMS 1320317.

  20. Size-dependent bending modulus of nanotubes induced by the imperfect boundary conditions

    PubMed Central

    Zhang, Jin

    2016-01-01

    The size-dependent bending modulus of nanotubes, which was widely observed in most existing three-point bending experiments [e.g., J. Phys. Chem. B 117, 4618–4625 (2013)], has been tacitly assumed to originate from the shear effect. In this paper, taking boron nitride nanotubes as an example, we directly measured the shear effect by molecular dynamics (MD) simulations and found that the shear effect is not the major factor responsible for the observed size-dependent bending modulus of nanotubes. To further explain the size-dependence phenomenon, we abandoned the assumption of perfect boundary conditions (BCs) utilized in the aforementioned experiments and studied the influence of the BCs on the bending modulus of nanotubes based on MD simulations. The results show that the imperfect BCs also make the bending modulus of nanotubes size-dependent. Moreover, the size-dependence phenomenon induced by the imperfect BCs is much more significant than that induced by the shear effect, which suggests that the imperfect BC is a possible physical origin that leads to the strong size-dependence of the bending modulus found in the aforementioned experiments. To capture the physics behind the MD simulation results, a beam model with the general BCs is proposed and found to fit the experimental data very well. PMID:27941866

  1. Prediction of charge mobility in organic semiconductors with consideration of the grain-size effect

    NASA Astrophysics Data System (ADS)

    Park, Jin Woo; Lee, Kyu Il; Choi, Youn-Suk; Kim, Jung-Hwa; Jeong, Daun; Kwon, Young-Nam; Park, Jong-Bong; Ahn, Ho Young; Park, Jeong-Il; Lee, Hyo Sug; Shin, Jaikwang

    2016-09-01

    A new computational model to predict the hole mobility of poly-crystalline organic semiconductors in thin film was developed (refer to Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/C6CP02993K). Site energy differences and transfer integrals in crystalline morphologies of organic molecules were obtained from quantum chemical calculation, in which the periodic boundary condition was efficiently applied to capture the interactions with the surrounding molecules in the crystalline organic layer. Then the parameters were employed in kinetic Monte Carlo (kMC) simulations to estimate the carrier mobility. Carrier transport in multiple directions has been considered in the kMC simulation to mimic polycrystalline characteristic in thin-film condition. Furthermore, the calculated mobility was corrected with a calibration equation based on the microscopic images of thin films to take the effect of grain boundary into account. As a result, good agreement was observed between the predicted and measured hole mobility values for 21 molecular species: the coefficient of determination (R2) was estimated to be 0.83 and the mean absolute error was 1.32 cm2 V-1 s-1. This numerical approach can be applied to any molecules for which crystal structures are available and will provide a rapid and precise way of predicting the device performance.

  2. Hydroelastic behaviour of a structure exposed to an underwater explosion

    PubMed Central

    Colicchio, G.; Greco, M.; Brocchini, M.; Faltinsen, O. M.

    2015-01-01

    The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid–structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151–168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid–structure interaction is examined, highlighting the need of the fluid–structure coupling to capture correctly the possible inception of cavitation. PMID:25512585

  3. Fermionic edge states and new physics

    NASA Astrophysics Data System (ADS)

    Govindarajan, T. R.; Tibrewala, Rakesh

    2015-08-01

    We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.

  4. Theoretical aspect of suitable spatial boundary condition specified for adjoint model on limited area

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Wu, Rongsheng

    2001-12-01

    Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers.

  5. Experiments on aerosol-induced cooling in the nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Sreenivas, K.; Singh, D. K.; Vk, P.; Mukund, V.; Subramanian, G.

    2012-12-01

    In the nocturnal boundary layer (NBL), under calm & clear-sky conditions, radiation is the principal mode of heat transfer & it determines the temperature distribution close to the ground. Radiative processes thus influence the surface energy budget, & play a decisive role in many micro-meteorological processes including the formation of radiation-fog & inversion layer. Here, we report hyper-cooling of air layers close to the ground that has a radiative origin. Resulting vertical temperature distribution has an anomalous profile with an elevated minimum few decimetres above the ground (known as Lifted Temperature Minimum; LTM). Even though the first observation of this type of profile dates back to 1930s, its origin has not been explained till recently. We report field experiments to elucidate effects of emissivity and other physical properties of the ground on the LTM profile. Field observations clearly indicate that LTM-profiles are observed as a rule in the lowest meter of the NBL. We also demonstrate that the air-layer near the ground, rather than the ground itself, leads the post sunset cooling. This fact changes the very nature of the sensible heat-flux boundary condition. A laboratory experimental setup has been developed that can reproduce LTM. Lab-experiments demonstrate that the high cooling rates observed in the field experiments arise from the presence of aerosols & the intensity of cooling is proportional to aerosol concentration (Fig-1). We have also captured penetrative convection cells in the field experiments (Fig-2). Results presented here thus help in parameterizing transport processes in the NBL.

  6. Hybrid Multiscale Finite Volume Method for Advection-Diffusion Equations Subject to Heterogeneous Reactive Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, A. M.

    2016-10-13

    We present a hybrid scheme for the coupling of macro and microscale continuum models for reactive contaminant transport in fractured and porous media. The transport model considered is the advection-dispersion equation, subject to linear heterogeneous reactive boundary conditions. The Multiscale Finite Volume method (MsFV) is employed to define an approximation to the microscale concentration field defined in terms of macroscopic or \\emph{global} degrees of freedom, together with local interpolator and corrector functions capturing microscopic spatial variability. The macroscopic mass balance relations for the MsFV global degrees of freedom are coupled with the macroscopic model, resulting in a global problem for the simultaneous time-stepping of all macroscopic degrees of freedom throughout the domain. In order to perform the hybrid coupling, the micro and macroscale models are applied over overlapping subdomains of the simulation domain, with the overlap denoted as the handshake subdomainmore » $$\\Omega^{hs}$$, over which continuity of concentration and transport fluxes between models is enforced. Continuity of concentration is enforced by posing a restriction relation between models over $$\\Omega^{hs}$$. Continuity of fluxes is enforced by prolongating the macroscopic model fluxes across the boundary of $$\\Omega^{hs}$$ to microscopic resolution. The microscopic interpolator and corrector functions are solutions to local microscopic advection-diffusion problems decoupled from the global degrees of freedom and from each other by virtue of the MsFV decoupling ansatz. The error introduced by the decoupling ansatz is reduced iteratively by the preconditioned GMRES algorithm, with the hybrid MsFV operator serving as the preconditioner.« less

  7. A method for modeling contact dynamics for automated capture mechanisms

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.

    1991-01-01

    Logicon Control Dynamics develops contact dynamics models for space-based docking and berthing vehicles. The models compute contact forces for the physical contact between mating capture mechanism surfaces. Realistic simulation requires proportionality constants, for calculating contact forces, to approximate surface stiffness of contacting bodies. Proportionality for rigid metallic bodies becomes quite large. Small penetrations of surface boundaries can produce large contact forces.

  8. Aerodynamic heating effects on wall-modeled large-eddy simulations of high-speed flows

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Urzay, Javier; Moin, Parviz

    2017-11-01

    Aerospace vehicles flying at high speeds are subject to increased wall-heating rates because of strong aerodynamic heating in the near-wall region. In wall-modeled large-eddy simulations (WMLES), this near-wall region is typically not resolved by the computational grid. As a result, the effects of aerodynamic heating need to be modeled using an LES wall model. In this investigation, WMLES of transitional and fully turbulent high-speed flows are conducted to address this issue. In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different combinations of thermal boundary conditions and grid sizes, and in transitional hypersonic boundary layers interacting with incident shock waves. Specifically, the WMLES of the Couette-flow configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and generates a sharp temperature peak there. In the WMLES of shock-induced transition in boundary layers, the wall model is tested against DNS and experiments, and it is shown to capture the post-transition aerodynamic heating and the overall heat transfer rate around the shock-impingement zone. This work is supported by AFOSR.

  9. Laser Displacement Measurements of Fan Blades in Resonance and Flutter During the Boundary Layer Ingesting Inlet and Distortion-Tolerant Fan Test

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Bakhle, Milind A.; Min, James B.; Abdul-Aziz, Ali

    2018-01-01

    NASA's Advanced Air Transport Technology Project is investigating boundary layer ingesting propulsors for future subsonic commercial aircraft to improve aircraft efficiency, thereby reducing fuel burn. To that end, a boundary layer ingesting inlet and distortion-tolerant fan stage was designed, fabricated, and tested within the 8' x 6' Supersonic Wind Tunnel at NASA Glenn Research Center. Because of the distortion in the air flow over the fan, the blades were designed to withstand a much higher aerodynamic forcing than for a typical clean flow. The blade response for several resonance modes were measured during start-up and shutdown, as well as at near 85% design speed. Flutter in the first bending mode was also observed in the fan at the design speed, at an off-design condition, although instabilities were difficult to instigate with this fan in general. Blade vibrations were monitored through twelve laser displacement probes that were placed around the inner circumference of the casing, at the blade leading and trailing edges. These probes captured the movement of all the blades during the entire test. Results are presented for various resonance mode amplitudes, frequencies and damping, as well as flutter amplitudes and frequency. Benefits and disadvantages of laser displacement probe measurements versus strain gage measurements are discussed.

  10. Wall-layer model for LES with massive separation

    NASA Astrophysics Data System (ADS)

    Fakhari, Ahmad; Armenio, Vincenzo; Roman, Federico

    2016-11-01

    Currently, Wall Functions (WF) work well under specific conditions, mostly exhibit drawbacks specially in flows with separation beyond curvatures. In this work, we propose a more general WF which works well in attached and detached flows, in presence and absence of Immersed Boundaries (IB). First we modified an equilibrium stress WF for boundary-fitted geometry making dynamic the computation of the k (von Karman constant) of the log-law; the model was first applied to a periodic open channel flow, and then to the flow over a 2D single hill using uniform coarse grids; the model captured separation with reasonable accuracy. Thereafter IB Method by Roman et al. was improved to avoid momentum loss at the interface between the fluid-solid regions. This required calibration of interfacial eddy viscosity; also a random stochastic forcing was used in wall-normal direction to increase Reynolds stresses and improve mean velocity profile. Finally, to reproduce flow separation, a simplified boundary layer equation was applied to construct velocity at near wall computational nodes. The new scheme was tested on the 2D single hill and periodic hills applying Cartesian and curvilinear grids; good agreement with references was obtained with reduction in cost and complexity. Financial support from project COSMO "CFD open source per opera morta" PAR FSC 2007-2013, Friuli Venezia Giulia.

  11. Simulating Roll Clouds associated with Low-Level Convergence.

    NASA Astrophysics Data System (ADS)

    Prasad, A. A.; Sherwood, S. C.

    2015-12-01

    Convective initiation often takes place when features such as fronts and/or rolls collide, merge or otherwise meet. Rolls indicate boundary layer convergence and may initiate thunderstorms. These are often seen in satellite and radar imagery prior to the onset of deep convection. However, links between convergence driven rolls and convection are poor in global models. The poor representation of convection is the source of many model biases, especially over the Maritime Continent in the Tropics. We simulate low-level convergence lines over north-eastern Australia using the Weather Research and Forecasting (WRF) Model (version 3.7). The simulations are events from September-October 2002 driven by sea breeze circulations. Cloud lines associated with bore-waves that form along the low-level convergence lines are thoroughly investigated in this study with comparisons from satellite and surface observations. Initial simulations for a series of cloud lines observed on 4th October, 2002 over the Gulf of Carpentaria showed greater agreement in the timing and propagation of the disturbance and the low-level convergence, however the cloud lines or streets of roll clouds were not properly captured by the model. Results from a number of WRF simulations with different microphysics, cumulus and planetary boundary layer schemes, resolution and boundary conditions will also be discussed.

  12. Some observations on boundary conditions for numerical conservation laws

    NASA Technical Reports Server (NTRS)

    Kamowitz, David

    1988-01-01

    Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.

  13. A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Brown-Dymkoski, Eric; Kasimov, Nurlybek; Vasilyev, Oleg V.

    2014-04-01

    In order to introduce solid obstacles into flows, several different methods are used, including volume penalization methods which prescribe appropriate boundary conditions by applying local forcing to the constitutive equations. One well known method is Brinkman penalization, which models solid obstacles as porous media. While it has been adapted for compressible, incompressible, viscous and inviscid flows, it is limited in the types of boundary conditions that it imposes, as are most volume penalization methods. Typically, approaches are limited to Dirichlet boundary conditions. In this paper, Brinkman penalization is extended for generalized Neumann and Robin boundary conditions by introducing hyperbolic penalization terms with characteristics pointing inward on solid obstacles. This Characteristic-Based Volume Penalization (CBVP) method is a comprehensive approach to conditions on immersed boundaries, providing for homogeneous and inhomogeneous Dirichlet, Neumann, and Robin boundary conditions on hyperbolic and parabolic equations. This CBVP method can be used to impose boundary conditions for both integrated and non-integrated variables in a systematic manner that parallels the prescription of exact boundary conditions. Furthermore, the method does not depend upon a physical model, as with porous media approach for Brinkman penalization, and is therefore flexible for various physical regimes and general evolutionary equations. Here, the method is applied to scalar diffusion and to direct numerical simulation of compressible, viscous flows. With the Navier-Stokes equations, both homogeneous and inhomogeneous Neumann boundary conditions are demonstrated through external flow around an adiabatic and heated cylinder. Theoretical and numerical examination shows that the error from penalized Neumann and Robin boundary conditions can be rigorously controlled through an a priori penalization parameter η. The error on a transient boundary is found to converge as O(η), which is more favorable than the error convergence of the already established Dirichlet boundary condition.

  14. Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.

    1996-01-01

    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.

  15. A physical approach to the numerical treatment of boundaries in gas dynamics

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1981-01-01

    Two types of boundaries are considered: rigid walls, and artificial (open) boundaries which were arbitrarily drawn somewhere across a wider flow field. A set of partial differential equations (typically, the Euler equations) has an infinite number of solutions, each one defined by a set of initial and boundary conditions. The initial conditions remaining the same, any change in the boundary conditions will produce a new solution. To pose the problem well, a necessary and sufficient number of boundary conditions are prescribed.

  16. On the Boussinesq-Burgers equations driven by dynamic boundary conditions

    NASA Astrophysics Data System (ADS)

    Zhu, Neng; Liu, Zhengrong; Zhao, Kun

    2018-02-01

    We study the qualitative behavior of the Boussinesq-Burgers equations on a finite interval subject to the Dirichlet type dynamic boundary conditions. Assuming H1 ×H2 initial data which are compatible with boundary conditions and utilizing energy methods, we show that under appropriate conditions on the dynamic boundary data, there exist unique global-in-time solutions to the initial-boundary value problem, and the solutions converge to the boundary data as time goes to infinity, regardless of the magnitude of the initial data.

  17. (2,2) and (0,4) supersymmetric boundary conditions in 3d N =4 theories and type IIB branes

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Okazaki, Tadashi

    2017-10-01

    The half-BPS boundary conditions preserving N =(2 ,2 ) and N =(0 ,4 ) supersymmetry in 3d N =4 supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Nahm-like equations arise in the vector multiplet BPS boundary condition preserving N =(0 ,4 ) supersymmetry, and Robin-type boundary conditions appear for the hypermultiplet coupled to the vector multiplet when N =(2 ,2 ) supersymmetry is preserved. The half-BPS boundary conditions are realized in the brane configurations of type IIB string theory.

  18. Numerical boundary condition procedures and multigrid methods; Proceedings of the Symposium, NASA Ames Research Center, Moffett Field, CA, October 19-22, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.

  19. Investigation of Episodic Flow from Unsaturated Porous Media into a Macropore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. K. Podgorney; J. P. Fairley

    Th e recent literature contains numerous observations of episodic or intermittent fl ow in unsaturated flow systems under both constant fl ux and ponded boundary conditions. Flow systems composed of a heterogeneous porous media, as well as discrete fracture networks, have been cited as examples of systems that can exhibit episodic fl ow. Episodic outfl ow events are significant because relatively large volumes of water can move rapidly through an unsaturated system, carrying water and contaminants to depth greatly ahead of a wetting front predicted by a one-dimensional, gravity-driven diff usive infiltration model. In this study, we model the behaviormore » of water flow through a sand column underlain by an impermeable-walled macropore. Relative permeability and capillary pressure relationships were developed that capture the complex interrelationships between the macropore and the overlying porous media that control fl ow out of the system. The potential for episodic flow is assessed and compared to results of conventional modeling approaches and experimental data from the literature. Model results using coupled matrix–macropore relative permeability and capillary pressure relationships capture the behavior observed in laboratory experiments remarkably well, while simulations using conventional relative permeability and capillary pressure functions fail to capture some of the observed fl ow dynamics. Capturing the rapid downward movement of water suggests that the matrix-macropore capillary pressure and relative permeability functions developed have the potential to improve descriptions of fl ow and transport processes in heterogeneous, variably saturated media.« less

  20. Local Modelling of Groundwater Flow Using Analytic Element Method Three-dimensional Transient Unconfined Groundwater Flow With Partially Penetrating Wells and Ellipsoidal Inhomogeneites

    NASA Astrophysics Data System (ADS)

    Jankovic, I.; Barnes, R. J.; Soule, R.

    2001-12-01

    The analytic element method is used to model local three-dimensional flow in the vicinity of partially penetrating wells. The flow domain is bounded by an impermeable horizontal base, a phreatic surface with recharge and a cylindrical lateral boundary. The analytic element solution for this problem contains (1) a fictitious source technique to satisfy the head and the discharge conditions along the phreatic surface, (2) a fictitious source technique to satisfy specified head conditions along the cylindrical boundary, (3) a method of imaging to satisfy the no-flow condition across the impermeable base, (4) the classical analytic solution for a well and (5) spheroidal harmonics to account for the influence of the inhomogeneities in hydraulic conductivity. Temporal variations of the flow system due to time-dependent recharge and pumping are represented by combining the analytic element method with a finite difference method: analytic element method is used to represent spatial changes in head and discharge, while the finite difference method represents temporal variations. The solution provides a very detailed description of local groundwater flow with an arbitrary number of wells of any orientation and an arbitrary number of ellipsoidal inhomogeneities of any size and conductivity. These inhomogeneities may be used to model local hydrogeologic features (such as gravel packs and clay lenses) that significantly influence the flow in the vicinity of partially penetrating wells. Several options for specifying head values along the lateral domain boundary are available. These options allow for inclusion of the model into steady and transient regional groundwater models. The head values along the lateral domain boundary may be specified directly (as time series). The head values along the lateral boundary may also be assigned by specifying the water-table gradient and a head value at a single point (as time series). A case study is included to demonstrate the application of the model in local modeling of the groundwater flow. Transient three-dimensional capture zones are delineated for a site on Prairie Island, MN. Prairie Island is located on the Mississippi River 40 miles south of the Twin Cities metropolitan area. The case study focuses on a well that has been known to contain viral DNA. The objective of the study was to assess the potential for pathogen migration toward the well.

  1. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

    PubMed Central

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-01-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432

  2. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  3. Evaluation of general non-reflecting boundary conditions for industrial CFD applications

    NASA Astrophysics Data System (ADS)

    Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir

    2007-11-01

    The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.

  4. Explicit and implicit compact high-resolution shock-capturing methods for multidimensional Euler equations 1: Formulation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1995-01-01

    Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.

  5. Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models

    NASA Astrophysics Data System (ADS)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2018-05-01

    In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.

  6. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    NASA Astrophysics Data System (ADS)

    Hejranfar, Kazem; Parseh, Kaveh

    2017-09-01

    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.

  7. An experimental study of the effects of bodyside compression on forward swept sidewall compression inlets ingesting a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Rodi, Patrick E.

    1993-01-01

    Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.

  8. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves

    PubMed Central

    Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A.; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.

    2014-01-01

    In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations. PMID:25541566

  9. Long-term Measurements of Summer-time Ozone at the Walnut Grove Tower - Understanding Trends in the Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Di, P.; Mims, D.; Avise, J.; DaMassa, J.; Kaduwela, A. P.

    2015-12-01

    The California Air Resources Board (CARB) has been monitoring boundary layer ozone at the Walnut Grove Tower (WGT) since 1996 for investigating regional transport and vertical profile. Walnut Grove is located between Sacramento and Stockton, CA in the Sacramento - San Joaquin Delta. Sampling inlets are positioned at 30-ft, 400-ft, 800-ft, 1200-ft and 1600-ft levels of the 2000-ft tower, which is one of the tallest monitoring towers in the Western US. Ozone, ambient temperature, wind speed, and wind direction are simultaneously measured at each level, and reported as hourly averages. The current study included analyses of available ozone and corresponding meteorological data for the months of June - September from 1996 - 2014 with objectives to: 1) explore trends and inter-annual variability of ozone, 2) examine any correlations between ozone and meteorological parameters, 3) understand interactions of ozone measured at various levels, and 4) assess how well a regulatory state-of-the-science air quality model such as the Community Multi-scale Air Quality Model (CMAQ) captures observation. Daily 1-hr maximum ozone has been consistently decreasing during the 1996 - 2014 period at a rate of ~1 ppb per year. This indicates that CARB's measures to control ambient ozone have been effective over the past years. Evolution of the vertical profile throughout the day shows that ozone is fairly homogeneously mixed between 1 - 5 pm, when mixing height typically reaches the maximum. Ozone at 30-ft shows the greatest variability because of its proximity to the ground and emissions sources - rises faster during morning hours (7 - 10 am) and declines more rapidly during evening hours (7 - 10 pm) compared to other levels. Air masses reaching the tower are predominantly southwesterly (247 - 257 deg.) at the bottom, and southwesterly to slightly northwesterly (254 - 302 deg.) at top levels. Daily 1-hr maximum ozone was negatively correlated with wind speed (i.e. ozone was high under low wind condition) and positively correlated with ambient temperature (i.e. ozone was high under high temperature condition) during ~40% and ~50% of the time, respectively. A modeling exercise for Jun - Sep of 2012 shows that CMAQ captures the observed evolution and vertical mixing of ozone throughout the day quite well in the boundary layer.

  10. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlüter, Steffen; Berg, Steffen; Li, Tianyi

    2017-06-01

    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less

  11. NASA Ames three-dimensional potential flow analyses system (POTFAN) boundary condition code (BCDN), version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Medan, R. T.

    1977-01-01

    This segment of the POTFAN system is used to generate right hand sides (boundary conditions) of the system of equations associated with the flow field under consideration. These specified flow boundary conditions are encountered in the oblique derivative boundary value problem (boundary value problem of the third kind) and contain the Neumann boundary condition as a special case. Arbitrary angle of attack and/or sideslip and/or rotation rates may be specified, as well as an arbitrary, nonuniform external flow field and the influence of prescribed singularity distributions.

  12. Massless rotating fermions inside a cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambruş, Victor E., E-mail: victor.ambrus@gmail.com; Winstanley, Elizabeth

    2015-12-07

    We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, whilemore » the spectral boundary condition is nonlocal.« less

  13. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  14. 33 CFR 385.26 - Project Implementation Reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... available science; (iii) Comply with all applicable Federal, State, and Tribal laws; (iv) Contain sufficient... boundary of regional computer models or projects whose effects cannot be captured in regional computer...

  15. 33 CFR 385.26 - Project Implementation Reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... available science; (iii) Comply with all applicable Federal, State, and Tribal laws; (iv) Contain sufficient... boundary of regional computer models or projects whose effects cannot be captured in regional computer...

  16. 33 CFR 385.26 - Project Implementation Reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... available science; (iii) Comply with all applicable Federal, State, and Tribal laws; (iv) Contain sufficient... boundary of regional computer models or projects whose effects cannot be captured in regional computer...

  17. 33 CFR 385.26 - Project Implementation Reports.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... available science; (iii) Comply with all applicable Federal, State, and Tribal laws; (iv) Contain sufficient... boundary of regional computer models or projects whose effects cannot be captured in regional computer...

  18. Quantum Gravitational Effects on the Boundary

    NASA Astrophysics Data System (ADS)

    James, F.; Park, I. Y.

    2018-04-01

    Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.

  19. Mode solutions for a Klein-Gordon field in anti-de Sitter spacetime with dynamical boundary conditions of Wentzell type

    NASA Astrophysics Data System (ADS)

    Dappiaggi, Claudio; Ferreira, Hugo R. C.; Juárez-Aubry, Benito A.

    2018-04-01

    We study a real, massive Klein-Gordon field in the Poincaré fundamental domain of the (d +1 )-dimensional anti-de Sitter (AdS) spacetime, subject to a particular choice of dynamical boundary conditions of generalized Wentzell type, whereby the boundary data solves a nonhomogeneous, boundary Klein-Gordon equation, with the source term fixed by the normal derivative of the scalar field at the boundary. This naturally defines a field in the conformal boundary of the Poincaré fundamental domain of AdS. We completely solve the equations for the bulk and boundary fields and investigate the existence of bound state solutions, motivated by the analogous problem with Robin boundary conditions, which are recovered as a limiting case. Finally, we argue that both Robin and generalized Wentzell boundary conditions are distinguished in the sense that they are invariant under the action of the isometry group of the AdS conformal boundary, a condition which ensures in addition that the total flux of energy across the boundary vanishes.

  20. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

    PubMed Central

    Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.

    2013-01-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  1. An accurate front capturing scheme for tumor growth models with a free boundary limit

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Tang, Min; Wang, Li; Zhou, Zhennan

    2018-07-01

    We consider a class of tumor growth models under the combined effects of density-dependent pressure and cell multiplication, with a free boundary model as its singular limit when the pressure-density relationship becomes highly nonlinear. In particular, the constitutive law connecting pressure p and density ρ is p (ρ) = m/m-1 ρ m - 1, and when m ≫ 1, the cell density ρ may evolve its support according to a pressure-driven geometric motion with sharp interface along its boundary. The nonlinearity and degeneracy in the diffusion bring great challenges in numerical simulations. Prior to the present paper, there is lack of standard mechanism to numerically capture the front propagation speed as m ≫ 1. In this paper, we develop a numerical scheme based on a novel prediction-correction reformulation that can accurately approximate the front propagation even when the nonlinearity is extremely strong. We show that the semi-discrete scheme naturally connects to the free boundary limit equation as m → ∞. With proper spatial discretization, the fully discrete scheme has improved stability, preserves positivity, and can be implemented without nonlinear solvers. Finally, extensive numerical examples in both one and two dimensions are provided to verify the claimed properties in various applications.

  2. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

    PubMed

    Richardson, Megan; Lambers, James V

    2016-01-01

    This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

  3. Structural acoustic control of plates with variable boundary conditions: design methodology.

    PubMed

    Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L

    2007-07-01

    A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.

  4. Regional and global climate for the mid-Pliocene using CCSM4 with PlioMIP2 boundary conditions

    NASA Astrophysics Data System (ADS)

    Chandan, D.; Peltier, W. R.

    2016-12-01

    The mid-Pliocene ( 3 Mya) hothouse continues to intrigue the climate community regarding the nature of the feedback mechanisms that could have amplified the warming that is expected from a modest concentration of atmospheric carbon-dioxide ( 300-400 ppmv). The Pliocene Model Intercomparison Project (PlioMIP) was created to help understand the mid-Pliocene climate through intercomparison between different climate models. The results from the first phase of this program revealed substantial variations between participating models and the pervasive inability of the models to capture the SST anomalies over equatorial upwelling regions and at high-latitude sites in the North Atlantic. The second phase, PlioMIP2 (Haywood et al., 2016), which has only recently begun, considerably revises the boundary conditions that are to be used with coupled-climate models, especially in high-latitude regions. The set of PlioMIP2 experiments which have been proposed will facilitate the attribution of the total warming to that arising from changes in (i) atmospheric CO2, (ii) orography and (iii) sea-ice extent, using the factor analysis methodology of Lunt et al., 2012. We have performed several very long, high-quality climate simulations from the PlioMIP2 set using the fully-coupled CCSM4/CESM1 model. We present our analysis of the mid-Pliocene climate based upon the results of these simulations and draw special attention to the extent of polar-amplification, the temperature pattern in the equatorial pacific and the existence and character of ENSO. In order to assess the regional and global impact of the new boundary conditions, our results are compared to the CCSM4 climate obtained using boundary conditions from the first phase of PlioMIP (Rosenbloom et al., 2013), to the PRISM3 (Dowsett et al., 2010) estimates for mid-Pliocene SST (relevant for the time-interval of study in PlioMIP), and to our own compilation of SST estimates for the time interval which is the focus in PlioMIP2. Dowsett et al., 2010, Stratigraphy (7) 123-129Haywood et al., 2016, CP (12) 663-675Lunt et al., 2012, EPSL (321-322) 128-138Rosenbloom et al., 2013, GMD (6) 549-561

  5. A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Sutherland C.

    In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the cursemore » of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.« less

  6. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maassen, Jesse, E-mail: jmaassen@purdue.edu; Lundstrom, Mark

    2015-04-07

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) thatmore » phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.« less

  7. Numerical study of dam-break induced tsunami-like bore with a hump of different slopes

    NASA Astrophysics Data System (ADS)

    Cheng, Du; Zhao, Xi-zeng; Zhang, Da-ke; Chen, Yong

    2017-12-01

    Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-based model. The model is built on a Cartesian grid system with the Navier Stokes equations using a CIP method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of solid body boundary. A more accurate interface capturing scheme, the Tangent of hyperbola for interface capturing/Slope weighting (THINC/SW) scheme, is adopted as the interface capturing method. Then, the CIP-based model is applied to simulate the dam break flow problem in a bumpy channel. Considerable attention is paid to the spilling type reflected bore, the following spilling type wave breaking, free surface profiles and water level variations over time. Computations are compared with available experimental data and other numerical results quantitatively and qualitatively. Further investigation is conducted to analyze the influence of variable slopes on the flow features of the tsunami-like bore.

  8. Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian

    2018-01-01

    Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets.

  9. Supercritical wing sections 2, volume 108

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Garabedian, P.; Korn, D.; Jameson, A.; Beckmann, M. (Editor); Kuenzi, H. P. (Editor)

    1975-01-01

    A mathematical theory for the design and analysis of supercritical wing sections was previously presented. Examples and computer programs showing how this method works were included. The work on transonics is presented in a more definitive form. For design, a better model of the trailing edge is introduced which should eliminate a loss of fifteen or twenty percent in lift experienced with previous heavily aft loaded models, which is attributed to boundary layer separation. How drag creep can be reduced at off-design conditions is indicated. A rotated finite difference scheme is presented that enables the application of Murman's method of analysis in more or less arbitrary curvilinear coordinate systems. This allows the use of supersonic as well as subsonic free stream Mach numbers and to capture shock waves as far back on an airfoil as desired. Moreover, it leads to an effective three dimensional program for the computation of transonic flow past an oblique wing. In the case of two dimensional flow, the method is extended to take into account the displacement thickness computed by a semi-empirical turbulent boundary layer correction.

  10. Default risk modeling beyond the first-passage approximation: extended Black-Cox model.

    PubMed

    Katz, Yuri A; Shokhirev, Nikolai V

    2010-07-01

    We develop a generalization of the Black-Cox structural model of default risk. The extended model captures uncertainty related to firm's ability to avoid default even if company's liabilities momentarily exceeding its assets. Diffusion in a linear potential with the radiation boundary condition is used to mimic a company's default process. The exact solution of the corresponding Fokker-Planck equation allows for derivation of analytical expressions for the cumulative probability of default and the relevant hazard rate. Obtained closed formulas fit well the historical data on global corporate defaults and demonstrate the split behavior of credit spreads for bonds of companies in different categories of speculative-grade ratings with varying time to maturity. Introduction of the finite rate of default at the boundary improves valuation of credit risk for short time horizons, which is the key advantage of the proposed model. We also consider the influence of uncertainty in the initial distance to the default barrier on the outcome of the model and demonstrate that this additional source of incomplete information may be responsible for nonzero credit spreads for bonds with very short time to maturity.

  11. Simulation of Stagnation Region Heating in Hypersonic Flow on Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2007-01-01

    Hypersonic flow simulations using the node based, unstructured grid code FUN3D are presented. Applications include simple (cylinder) and complex (towed ballute) configurations. Emphasis throughout is on computation of stagnation region heating in hypersonic flow on tetrahedral grids. Hypersonic flow over a cylinder provides a simple test problem for exposing any flaws in a simulation algorithm with regard to its ability to compute accurate heating on such grids. Such flaws predominantly derive from the quality of the captured shock. The importance of pure tetrahedral formulations are discussed. Algorithm adjustments for the baseline Roe / Symmetric, Total-Variation-Diminishing (STVD) formulation to deal with simulation accuracy are presented. Formulations of surface normal gradients to compute heating and diffusion to the surface as needed for a radiative equilibrium wall boundary condition and finite catalytic wall boundary in the node-based unstructured environment are developed. A satisfactory resolution of the heating problem on tetrahedral grids is not realized here; however, a definition of a test problem, and discussion of observed algorithm behaviors to date are presented in order to promote further research on this important problem.

  12. Gurtin-Murdoch surface elasticity theory revisit: An orbital-free density functional theory perspective

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Wei, Yihai; Guo, Xu

    2017-12-01

    In the present paper, the well-established Gurtin-Murdoch theory of surface elasticity (Gurtin and Murdoch, 1975, 1978) is revisited from an orbital-free density functional theory (OFDFT) perspective by taking the boundary layer into consideration. Our analysis indicates that firstly, the quantities introduced in the Gurtin-Murdoch theory of surface elasticity can all find their explicit expressions in the derived OFDFT-based theoretical model. Secondly, the derived expression for surface energy density captures a competition between the surface normal derivatives of the electron density and the electrostatic potential, which well rationalises the onset of signed elastic constants that are observed both experimentally and computationally. Thirdly, the established model naturally yields an inversely linear relationship between the materials surface stiffness and its size, which conforms to relevant findings in literature. Since the proposed OFDFT-based model is established under arbitrarily imposed boundary condition of electron density, electrostatic potential and external load, it also has the potential of being used to investigate the electro-mechanical behaviour of nanoscale materials manifesting surface effect.

  13. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE PAGES

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; ...

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  14. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    NASA Technical Reports Server (NTRS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  15. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    NASA Astrophysics Data System (ADS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  16. Hydroelastic behaviour of a structure exposed to an underwater explosion.

    PubMed

    Colicchio, G; Greco, M; Brocchini, M; Faltinsen, O M

    2015-01-28

    The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid-structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151-168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid-structure interaction is examined, highlighting the need of the fluid-structure coupling to capture correctly the possible inception of cavitation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. A Novel Method for Modeling Neumann and Robin Boundary Conditions in Smoothed Particle Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina

    2010-08-26

    In this paper we present an improved method for handling Neumann or Robin boundary conditions in smoothed particle hydrodynamics. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to model in volumetric modeling techniques such as smoothed particle hydrodynamics (SPH). A new SPH method for diffusion type equations subject to Neumann or Robin boundary conditions is proposed. The new method is based on the continuum surface force model [1] and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method for geometrically complex boundaries.more » The paper discusses the details of the method and the criteria needed to apply the model. The model is used to simulate diffusion and surface reactions and its accuracy is demonstrated through test cases for boundary conditions describing different surface reactions.« less

  18. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    NASA Astrophysics Data System (ADS)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  19. Area Determination of Diabetic Foot Ulcer Images Using a Cascaded Two-Stage SVM-Based Classification.

    PubMed

    Wang, Lei; Pedersen, Peder C; Agu, Emmanuel; Strong, Diane M; Tulu, Bengisu

    2017-09-01

    The standard chronic wound assessment method based on visual examination is potentially inaccurate and also represents a significant clinical workload. Hence, computer-based systems providing quantitative wound assessment may be valuable for accurately monitoring wound healing status, with the wound area the best suited for automated analysis. Here, we present a novel approach, using support vector machines (SVM) to determine the wound boundaries on foot ulcer images captured with an image capture box, which provides controlled lighting and range. After superpixel segmentation, a cascaded two-stage classifier operates as follows: in the first stage, a set of k binary SVM classifiers are trained and applied to different subsets of the entire training images dataset, and incorrectly classified instances are collected. In the second stage, another binary SVM classifier is trained on the incorrectly classified set. We extracted various color and texture descriptors from superpixels that are used as input for each stage in the classifier training. Specifically, color and bag-of-word representations of local dense scale invariant feature transformation features are descriptors for ruling out irrelevant regions, and color and wavelet-based features are descriptors for distinguishing healthy tissue from wound regions. Finally, the detected wound boundary is refined by applying the conditional random field method. We have implemented the wound classification on a Nexus 5 smartphone platform, except for training which was done offline. Results are compared with other classifiers and show that our approach provides high global performance rates (average sensitivity = 73.3%, specificity = 94.6%) and is sufficiently efficient for a smartphone-based image analysis.

  20. Diffusive growth of a single droplet with three different boundary conditions

    NASA Astrophysics Data System (ADS)

    Tavassoli, Z.; Rodgers, G. J.

    2000-02-01

    We study a single, motionless three-dimensional droplet growing by adsorption of diffusing monomers on a 2D substrate. The diffusing monomers are adsorbed at the aggregate perimeter of the droplet with different boundary conditions. Models with both an adsorption boundary condition and a radiation boundary condition, as well as a phenomenological model, are considered and solved in a quasistatic approximation. The latter two models allow particle detachment. In the short time limit, the droplet radius grows as a power of the time with exponents of 1/4, 1/2 and 3/4 for the models with adsorption, radiation and phenomenological boundary conditions, respectively. In the long time limit a universal growth rate as $[t/\\ln(t)]^{1/3}$ is observed for the radius of the droplet for all models independent of the boundary conditions. This asymptotic behaviour was obtained by Krapivsky \\cite{krapquasi} where a similarity variable approach was used to treat the growth of a droplet with an adsorption boundary condition based on a quasistatic approximation. Another boundary condition with a constant flux of monomers at the aggregate perimeter is also examined. The results exhibit a power law growth rate with an exponent of 1/3 for all times.

  1. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu

    2014-02-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less

  2. High Fidelity Aeroelasticity Simulations of Aircraft and Turbomachinery with Fully-Coupled Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Gan, Jiaye

    The purpose of this research is to develop high fidelity numerical methods to investigate the complex aeroelasticity fluid-structural problems of aircraft and aircraft engine turbomachinery. Unsteady 3D compressible Navier-Stokes equations in generalized coordinates are solved to simulate the complex fluid dynamic problems in aeroelasticity. An efficient and low diffusion E-CUSP (LDE) scheme designed to minimize numerical dissipation is used as a Riemann solver to capture shock waves in transonic and supersonic flows. An improved hybrid turbulence modeling, delayed detached eddy simulation (DDES), is implemented to simulate shock induced separation and rotating stall flows. High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. To resolve the nonlinear interaction between flow and vibrating blade structures, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. A rotor/stator sliding interpolation technique is developed to accurately capture the blade rows interaction at the interface with general grid distribution. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are applied to consider the effect of phase difference for a sector of annulus simulation. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI methodology. The accuracy and robustness of RANS, URANS and DDES turbulence models with high order schemes for predicting the lift and drag of the DLR-F6 configuration are verified. The DDES predicts the drag very well whereas the URANS model significantly over predicts the drag. DDES of a finned projectile base flows is conducted to further validate the high fidelity methods with vortical flow. The DDES is demonstrated to be superior to the URANS for the projectile flow prediction. DDES of a 3D transonic wing flutter is validated with AGARD Wing 445.6 aeroelasticity experiment at free stream Mach number varied from subsonic to supersonic. The predicted flutter boundary at different free stream Mach number including the sonic dip achieves very good agreement with the experiment. In particular, the predicted flutter boundaries at the supersonic conditions match the experiment accurately. The mechanism of sonic dip is investigated. Simulation of supersonic fluid-structural interaction of a flat panel is performed by using DDES with high order shock capturing scheme. The panel vibration induced by the shock boundary layer interaction is well resolved by the high fidelity method. The dominant panel response agrees well with the experiment in terms of the mean panel displacement and frequency. The DDES methodology is used to investigate the stall inception of NASA Stage 35 compressor. The process of rotating stall is compared between the results using both URANS and DDES with full annulus. The stall process begins with spike inception and develops to full stall. The numbers of stall cell, and the size and propagating speed of the stall cells are well captured by both URANS and DDES. Two stall cells with 42% rotor rotating speed are resolved by DDES and one stall cell with 90% rotor rotating speed by URANS. It is not conclusive which method is more accurate since there is no experimental data, but the DDES does show more realistic vortical turbulence with more small scale structures. The non-synchronous vibration (NSV) of a high speed 1-1/2 stage axial compressor is investigated by using rigid blade and vibrating blade with fluid-structural interaction. An interpolation sliding boundary condition is used for the rotor-stator interaction. The URANS simulation with rigid blades shows that the leading edge(LE) circumferentially traveling vortices, roughly above 80% rotor span, travel backwards relative to the rotor rotation and cause an excitation with the frequency agreeing with the measured NSV frequency. The predicted excitation frequency of the traveling vortices in the rigid blade simulation is a non-engine order frequency of 2603 Hz, which agrees very well with the rig measured frequency of 2600 Hz. For the FSI simulation, the results show that there exist two dominant frequencies in the spectrum of the blade vibration. The lower dominant frequency is close to the first bending mode. The higher dominant frequency close to the first torsional mode agrees very well with the measured NSV frequency. To investigate whether the NSV is caused by flow excitation or by flow-structure locked-in phenomenon, the rotating speed is varied within a small RPM range, in which the rig test detected the NSV. The unsteady flows with rigid blades are simulated first at several RPMs. A dominant excitation NSV frequency caused by the circumferentially traveling tip vortices are captured. The simulation then switches to fluid structure interaction that allows the blades to vibrate freely. (Abstract shortened by ProQuest.).

  3. Symmetries and Boundary Conditions with a Twist

    NASA Astrophysics Data System (ADS)

    Zawadzki, Krissia; D'Amico, Irene; Oliveira, Luiz N.

    2017-10-01

    Interest in finite-size systems has risen in the last decades, due to the focus on nanotechnological applications and because they are convenient for numerical treatment that can subsequently be extrapolated to infinite lattices. Independently of the envisioned application, special attention must be given to boundary condition, which may or may not preserve the symmetry of the infinite lattice. Here, we present a detailed study of the compatibility between boundary conditions and conservation laws. The conflict between open boundary conditions and momentum conservation is well understood, but we examine other symmetries, as well: we discuss gauge invariance, inversion, spin, and particle-hole symmetry and their compatibility with open, periodic, and twisted boundary conditions. In the interest of clarity, we develop the reasoning in the framework of the one-dimensional half-filled Hubbard model, whose Hamiltonian displays a variety of symmetries. Our discussion includes analytical and numerical results. Our analytical survey shows that, as a rule, boundary conditions break one or more symmetries of the infinite-lattice Hamiltonian. The exception is twisted boundary condition with the special torsion Θ = πL/2, where L is the lattice size. Our numerical results for the ground-state energy at half-filling and the energy gap for L = 2-7 show how the breaking of symmetry affects the convergence to the L → ∞ limit. We compare the computed energies and gaps with the exact results for the infinite lattice drawn from the Bethe-Ansatz solution. The deviations are boundary-condition dependent. The special torsion yields more rapid convergence than open or periodic boundary conditions. For sizes as small as L = 7, the numerical results for twisted condition are very close to the L → ∞ limit. We also discuss the ground-state electronic density and magnetization at half filling under the three boundary conditions.

  4. Flowfield analysis of helicopter rotor in hover and forward flight based on CFD

    NASA Astrophysics Data System (ADS)

    Zhao, Qinghe; Li, Xiaodong

    2018-05-01

    The helicopter rotor field is simulated in hover and forward flight based on Computational Fluid Dynamics(CFD). In hover case only one rotor is simulated with the periodic boundary condition in the rotational coordinate system and the grid is fixed. In the non-lift forward flight case, the total rotor is simulated in inertia coordinate system and the whole grid moves rigidly. The dual-time implicit scheme is applied to simulate the unsteady flowfield on the movement grids. The k – ω turbulence model is employed in order to capture the effects of turbulence. To verify the solver, the flowfield around the Caradonna-Tung rotor is computed. The comparison shows a good agreement between the numerical results and the experimental data.

  5. Comparison of Numerically Simulated and Experimentally Measured Performance of a Rotating Detonation Engine

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Fotia, Matthew L.; Hoke, John; Schauer, Fred

    2015-01-01

    A quasi-two-dimensional, computational fluid dynamic (CFD) simulation of a rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction and other simplifications yield rapidly converging, steady solutions. Viscous effects, and heat transfer effects are modeled using source terms. The effects of potential inlet flow reversals are modeled using boundary conditions. Results from the simulation are compared to measured data from an experimental RDE rig with a converging-diverging nozzle added. The comparison is favorable for the two operating points examined. The utility of the code as a performance optimization tool and a diagnostic tool are discussed.

  6. Automatic Generation of Boundary Conditions Using Demons Nonrigid Image Registration for Use in 3-D Modality-Independent Elastography

    PubMed Central

    Ou, Jao J.; Ong, Rowena E.; Miga, Michael I.

    2013-01-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method. PMID:21690002

  7. Automatic generation of boundary conditions using demons nonrigid image registration for use in 3-D modality-independent elastography.

    PubMed

    Pheiffer, Thomas S; Ou, Jao J; Ong, Rowena E; Miga, Michael I

    2011-09-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.

  8. Requirement Development Process and Tools

    NASA Technical Reports Server (NTRS)

    Bayt, Robert

    2017-01-01

    Requirements capture the system-level capabilities in a set of complete, necessary, clear, attainable, traceable, and verifiable statements of need. Requirements should not be unduly restrictive, but should set limits that eliminate items outside the boundaries drawn, encourage competition (or alternatives), and capture source and reason of requirement. If it is not needed by the customer, it is not a requirement. They establish the verification methods that will lead to product acceptance. These must be reproducible assessment methods.

  9. Numerical model for the evaluation of Earthquake effects on a magmatic system.

    NASA Astrophysics Data System (ADS)

    Garg, Deepak; Longo, Antonella; Papale, Paolo

    2016-04-01

    A finite element numerical model is presented to compute the effect of an Earthquake on the dynamics of magma in reservoirs with deformable walls. The magmatic system is hit by a Mw 7.2 Earthquake (Petrolia/Capo Mendocina 1992) with hypocenter at 15 km diagonal distance. At subsequent times the seismic wave reaches the nearest side of the magmatic system boundary, travels through the magmatic fluid and arrives to the other side of the boundary. The modelled physical system consists in the magmatic reservoir with a thin surrounding layer of rocks. Magma is considered as an homogeneous multicomponent multiphase Newtonian mixture with exsolution and dissolution of volatiles (H2O+CO2). The magmatic reservoir is made of a small shallow magma chamber filled with degassed phonolite, connected by a vertical dike to a larger deeper chamber filled with gas-rich shoshonite, in condition of gravitational instability. The coupling between the Earthquake and the magmatic system is computed by solving the elastostatic equation for the deformation of the magmatic reservoir walls, along with the conservation equations of mass of components and momentum of the magmatic mixture. The characteristic elastic parameters of rocks are assigned to the computational domain at the boundary of magmatic system. Physically consistent Dirichlet and Neumann boundary conditions are assigned according to the evolution of the seismic signal. Seismic forced displacements and velocities are set on the part of the boundary which is hit by wave. On the other part of boundary motion is governed by the action of fluid pressure and deviatoric stress forces due to fluid dynamics. The constitutive equations for the magma are solved in a monolithic way by space-time discontinuous-in-time finite element method. To attain additional stability least square and discontinuity capturing operators are included in the formulation. A partitioned algorithm is used to couple the magma and thin layer of rocks. The magmatic system is highly disturbed during the maximum amplitude of the seismic wave, showing random to oscillatory velocity and pressure, after which it follows the natural dynamic state of gravitational destabilization. The seismic disturbance remarkably triggers propagation of pressure waves at magma sound speed, reflecting from bottom to top, left and right of the magmatic system. A signal analysis of the frequency energy content is reported.

  10. Experimental verification of free-space singular boundary conditions in an invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile

    2016-04-01

    A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.

  11. The diurnal cycle of clouds and precipitation at the ARM SGP site: Cloud radar observations and simulations from the multiscale modeling framework

    DOE PAGES

    Zhao, Wei; Marchand, Roger; Fu, Qiang

    2017-07-08

    Millimeter Wavelength Cloud Radar (MMCR) data from December 1996 to December 2010, collected at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site, are used to examine the diurnal cycle of hydrometeor occurrence. These data are categorized into clouds (-40 dBZ e ≤ reflectivity < -10 dBZ e), drizzle and light precipitation (-10 dBZ e ≤ reflectivity < 10 dBZ e), and heavy precipitation (reflectivity ≥ 10 dBZ e). The same criteria are implemented for the observation-equivalent reflectivity calculated by feeding outputs from a Multiscale Modeling Framework (MMF) climate model into a radar simulator.more » The MMF model consists of the National Center for Atmospheric Research Community Atmosphere Model with conventional cloud parameterizations replaced by a cloud-resolving model. We find that a radar simulator combined with the simple reflectivity categories can be an effective approach for evaluating diurnal variations in model hydrometeor occurrence. It is shown that the MMF only marginally captures observed increases in the occurrence of boundary layer clouds after sunrise in spring and autumn and does not capture diurnal changes in boundary layer clouds during the summer. Above the boundary layer, the MMF captures reasonably well diurnal variations in the vertical structure of clouds and light and heavy precipitation in the summer but not in the spring.« less

  12. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Speeds in Indonesia

    NASA Astrophysics Data System (ADS)

    Orhan, K.; Mayerle, R.

    2016-12-01

    A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.

  13. The impact of the observation nudging and nesting on the simulated meteorology and ozone concentrations from WRF-SMOKE-CMAQ during DISCOVER-AQ 2013 Texas campaign

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Li, X.; Czader, B.

    2014-12-01

    Three WRF simulations for the DISCOVER-AQ 2013 Texas campaign period (30 days in September) are performed to characterize uncertainties in the simulated meteorological and chemical conditions. These simulations differ in domain setup, and in performing observation nudging in WRF runs. There are around 7% index of agreement (IOA) gain in temperature and 9-12% boost in U-WIND and V-WIND when the observational nudging is employed in the simulation. Further performance gain from nested domains over single domain is marginal. The CMAQ simulations based on above WRF setups showed that the ozone performance slightly improved in the simulation for which objective analysis (OA) is carried out. Further IOA gain, though quite limited, is achieved with nested domains. This study shows that the high ozone episodes during the analyzed time periods were associated with the uncertainties of the simulated cold front passage, chemical boundary condition and small-scale temporal wind fields. All runs missed the observed high ozone values which reached above 150 ppb in La Porte on September 25, the only day with hourly ozone over 120 ppb. The failure is likely due to model's inability to catch small-scale wind shifts in the industrial zone, despite better wind directions in the simulations with nudging and nested domains. This study also shows that overestimated background ozone from the southerly chemical boundary is a critical source for the model's general overpredictions of the ozone concentrations from CMAQ during September of 2013. These results of this study shed a light on the necessity of (1) capturing the small-scale winds such as the onsets of bay-breeze or sea-breeze and (2) implementing more accurate chemical boundary conditions to reduce the simulated high-biased ozone concentrations. One promising remedy for (1) is implementing hourly observation nudging instead of the standard one which is done every three hours.

  14. Simulation of zones of contribution to wells at site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York

    USGS Publications Warehouse

    Misut, Paul

    2014-01-01

    A three-dimensional groundwater-flow model is coupled with the particle-tracking program MODPATH to delineate zones of contribution to wells pumping from the Magothy aquifer and supplying water to a chlorinated volatile organic compound removal plant at site GM–38, Naval Weapons Industrial Reserve Plant, Bethpage, New York. By use of driller’s logs, a transitional probability approach generated three alternative realizations of heterogeneity within the Magothy aquifer to assess uncertainty in model representation. Finer-grained sediments with low hydraulic conductivity were realized as laterally discontinuous, thickening towards the south, and comprising about 17 percent of the total aquifer volume. Particle-tracking evaluations of a steady state present conditions model with alternative heterogeneity realizations were used to develop zones of contribution of remedial pumping wells. Because of heterogeneity and high rates of advection within the coarse-grained sediments, transport by dispersion and (or) diffusion was assumed to be negligible. Resulting zones of contribution of existing remedial wells are complex shapes, influenced by heterogeneity of each realization and other nearby hydrologic stresses. The use of two particle tracking techniques helped identify zones of contribution to wells. Backtracking techniques and observations of points of intersection of backward-tracked particles at shells of the GM–38 Hot Spot, as defined by surfaces of equal total volatile organic compound concentration, identified the source of water within the GM–38 Hot Spot to simulated wells. Forward-tracking techniques identified the fate of water within the GM–38 Hot Spot, including well capture and discharge to model constant head and drain boundaries. The percentage of backward-tracked particles, started at GM–38 wells that were sourced from within the Hot Spot, varied from 72.0 to 98.2, depending on the Hot Spot delineation used (present steady state model and Magothy aquifer heterogeneity realization A). The percentage of forward-tracked particles that were captured by GM–38 wells varied from 81.1 to 94.6, depending on the Hot Spot delineation used, with the remainder primarily captured by Bethpage Water District Plant 4 production wells (present steady state model and Magothy aquifer heterogeneity realization A). Less than 1 percent of forward-tracked particles ultimately discharge at model constant head and drain boundaries. The differences between forward- and backward-tracked particle percentage ranges are due to some forward-tracked particles not being captured by GM–38 wells, and some backward-tracked particles not intersecting specific regions of the Hot Spot. During 2013, an aquifer test generated detailed time series of well pumping rates and corresponding water-level responses were recorded at numerous locations. These data were used to verify the present conditions steady state model and demonstrate the sensitivity of model results to transient-state changes.

  15. QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling

    PubMed Central

    Rossman, Timothy; Kushvaha, Vinod; Dragomir-Daescu, Dan

    2015-01-01

    Quantitative computed tomography-based finite element models of proximal femora must be validated with cadaveric experiments before using them to assess fracture risk in osteoporotic patients. During validation it is essential to carefully assess whether the boundary condition modeling matches the experimental conditions. This study evaluated proximal femur stiffness results predicted by six different boundary condition methods on a sample of 30 cadaveric femora and compared the predictions with experimental data. The average stiffness varied by 280% among the six boundary conditions. Compared with experimental data the predictions ranged from overestimating the average stiffness by 65% to underestimating it by 41%. In addition we found that the boundary condition that distributed the load to the contact surfaces similar to the expected contact mechanics predictions had the best agreement with experimental stiffness. We concluded that boundary conditions modeling introduced large variations in proximal femora stiffness predictions. PMID:25804260

  16. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale

    NASA Astrophysics Data System (ADS)

    Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em

    2016-10-01

    We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.

  17. Completed Beltrami-Michell Formulation in Polar Coordinates

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2005-01-01

    A set of conditions had not been formulated on the boundary of an elastic continuum since the time of Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity for a continuum with a displacement boundary condition. The missed condition, referred to as the boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation that includes equilibrium equations and a compatibility condition in the field as well as the traction and boundary compatibility condition is derived from the stationary condition of the variational functional of the integrated force method. The new method is illustrated by solving an example of a mixed boundary value problem for mechanical as well as thermal loads.

  18. Oblique radiation lateral open boundary conditions for a regional climate atmospheric model

    NASA Astrophysics Data System (ADS)

    Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry

    2013-04-01

    The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.

  19. Experimental Evaluation of the Effect of Angle-of-attack on the External Aerodynamics and Mass Capture of a Symmetric Three-engine Air-breathing Launch Vehicle Configuration at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Frate, Franco C.

    2001-01-01

    A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.

  20. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems - An introduction

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.; Bennett, Gordon D.

    1987-01-01

    Accurate definition of boundary and initial conditions is an essential part of conceptualizing and modeling ground-water flow systems. This report describes the properties of the seven most common boundary conditions encountered in ground-water systems and discusses major aspects of their application. It also discusses the significance and specification of initial conditions and evaluates some common errors in applying this concept to ground-water-system models. An appendix is included that discusses what the solution of a differential equation represents and how the solution relates to the boundary conditions defining the specific problem. This report considers only boundary conditions that apply to saturated ground-water systems.

  1. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.

  2. String flash-boiling in gasoline direct injection simulations with transient needle motion

    DOE PAGES

    Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.; ...

    2016-09-06

    A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less

  3. String flash-boiling in gasoline direct injection simulations with transient needle motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.

    A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less

  4. Meteodrones - Meteorological Planetary Boundary Layer Measurements by Vertical Drone Soundings

    NASA Astrophysics Data System (ADS)

    Lauer, Jonas; Fengler, Martin

    2017-04-01

    As of today, there is a gap in the operational data collection of meteorological observations in the Planetary Boundary Layer (PBL). This lack of spatially and temporally reliable knowledge of PBL conditions and energy fluxes with the surface causes shortcomings in the prediction of micro- and mesoscale phenomena such as convection, temperature inversions, local wind systems or fog. The currently used remote sensing instruments share the drawback of only partially covering necessary variables. To fill this data gap, since 2012, Meteomatics has been developing a drone measurement system, the Meteodrone, to measure the parameters wind speed, wind direction, dewpoint, temperature and air pressure of the PBL up to 1.5 km above ground. Both the data quality and the assimilation into a regional numerical weather model could be determined in several pilot studies. Besides, a project in cooperation with the NSSL (National Severe Storms Laboratory) was launched in October 2016 with the goal of capturing pre-convective conditions for improved severe storm forecasts in Oklahoma. Also, related measurements, such as air pollution measurements in the Misox valley to determine LDSP values, were successfully conducted. The main goal of the project is the operational data collection of PBL measurements and the assimilation of this data into regional numerical weather forecast models. Considering the high data quality indicated in all conducted studies as well as the trouble-free execution, this goal is both worthwhile and realistic.

  5. Boundary Conditions for Diffusion-Mediated Processes within Linear Nanopores: Exact Treatment of Coupling to an Equilibrated External Fluid

    DOE PAGES

    Garcia, Andres; Evans, James W.

    2017-04-03

    In this paper, we consider a variety of diffusion-mediated processes occurring within linear nanopores, but which involve coupling to an equilibrated external fluid through adsorption and desorption. By determining adsorption and desorption rates through a set of tailored simulations, and by exploiting a spatial Markov property of the models, we develop a formulation for performing efficient pore-only simulations of these processes. Coupling to the external fluid is described exactly through appropriate nontrivial boundary conditions at the pore openings. This formalism is applied to analyze the following: (i) tracer counter permeation (TCP) where different labeled particles adsorb into opposite ends ofmore » the pore and establish a nonequilibrium steady state; (ii) tracer exchange (TE) with exchange of differently labeled particles within and outside the pore; (iii) catalytic conversion reactions where a reactant in the external fluid adsorbs into the pore and converts to a product which may desorb. The TCP analysis also generates a position-dependent generalized tracer diffusion coefficient, the form of which controls behavior in the TE and catalytic conversion processes. We focus on the regime of single-file diffusion within the pore which produces the strongest correlations and largest deviations from mean-field type behavior. Finally, behavior is quantified precisely via kinetic Monte Carlo simulations but is also captured with appropriate analytic treatments.« less

  6. Running with rugby balls: bulk renormalization of codimension-2 branes

    NASA Astrophysics Data System (ADS)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  7. Dynamics of Droplet Extinction in Slow Convective Flows

    NASA Technical Reports Server (NTRS)

    Nayagam, V.; Haggard, J. B., Jr.; Williams, F. A.

    1999-01-01

    The classical model for droplet combustion predicts that the square of the droplet diameter decreases linearly with time. It also predicts that a droplet of any size will burn to completion over a period of time. However, it has been known for some time that under certain conditions flames surrounding a droplet, in a quiescent environment, could extinguish because of insufficient residence time for the chemistry to proceed to completion. This type of extinction that occurs for smaller droplets has been studied extensively in the past. Large droplets, on the other hand, exhibit a different type of extinction where excessive radiative heat loss from the flame zone leads to extinction. This mode of "radiative extinction" was theoretically predicted for droplet burning by Chao et al. and was observed in recent space experiments in a quiescent environment. Thus far, the fundamental flammability limit prescribed by radiative extinction of liquid droplets has been measured only under quiescent environmental conditions. In many space platforms, however, ventilation systems produce small convective flows and understanding of the influences of this convection on the extinction process will help better define the radiative extinction flammability boundaries. Boundaries defined by experiments and captured using theoretical models could provide enhanced fire safety margin in space explor1999063d investigation of convective effects will help in interpretations of burning-rate data obtained during free-floated droplet combustion experiments with small residual velocities.

  8. The Impact of Model Uncertainty on Spatial Compensation in Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.; Sprofera, Joseph D.; Clark, Robert L.

    2004-01-01

    Turbulent boundary layer (TBL) noise is considered a primary factor in the interior noise experienced by passengers aboard commercial airliners. There have been numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a challenge since the physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions have been assumed; however, realistic panels likely display a range of varying boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of actuators and sensors required to achieve the desired control. The impact of model uncertainties, uncertain boundary conditions in particular, on the selection of actuator and sensor locations for structural acoustic control are considered herein. Results from this research effort indicate that it is possible to optimize the design of actuator and sensor location and aperture, which minimizes the impact of boundary conditions on the desired structural acoustic control.

  9. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  10. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  11. Phase-field study of grain boundary tracking behavior in crack-seal microstructures

    NASA Astrophysics Data System (ADS)

    Ankit, Kumar; Nestler, Britta; Selzer, Michael; Reichardt, Mathias

    2013-12-01

    In order to address the growth of crystals in veins, a multiphase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a detailed understanding of the polycrystal growth phenomena in veins, we investigate the influence of various boundary conditions on crystal growth. In particular, we analyze the formation of vein microstructures resulting from the free growth of crystals as well as crack-sealing processes. We define the crystal symmetry by considering the anisotropy in surface energy to simulate crystals with flat facets and sharp corners. The resulting growth competition of crystals with different orientations is studied to deduce a consistent orientation selection rule in the free-growth regime. Using crack-sealing simulations, we correlate the grain boundary tracking behavior depending on the relative rate of crack opening, opening trajectory, initial grain size, and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. The phase-field simulations of crystals in the free-growth regime (in 2D and 3D) indicate that the growth or consumption of a crystal is dependent on the orientation difference with neighboring crystals. The crack-sealing simulation results (in 2D and 3D) reveal that crystals grow isotropically and grain boundaries track the opening trajectory if the wall roughness is high, opening increments are small, and crystals touch the wall before the next crack increment starts. Further, we find that within the complete crack-seal regime, anisotropy in surface energy results in the formation of curved/oscillating grain boundaries (instead of straight) when the crack-opening velocity is increased and wall roughness is not sufficiently high. Additionally, the overall capability of phase-field method to simulate large-scale polycrystal growth in veins (in 3D) is demonstrated enumerating the main advantages of adopting the novel approach.

  12. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of Mexico, with a special focus on the relationship among measured and modeled energy fluxes and other oceanographic and atmospheric conditions.

  13. Boundary layer height determination from Lidar for improving air pollution episode modelling: development of new algorithm and evaluation

    NASA Astrophysics Data System (ADS)

    Yang, T.; Wang, Z.; Zhang, W.; Gbaguidi, A.; Sugimoto, N.; Matsui, I.; Wang, X.; Yele, S.

    2017-12-01

    Predicting air pollution events in low atmosphere over megacities requires thorough understanding of the tropospheric dynamic and chemical processes, involving notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China), and an exhaustive evaluation existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular over polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to pollutant insufficient vertical mixing in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Subsequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM), is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from Lidar. In comparison with the existing retrieval algorithms, the CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decreases of the root mean square error from 643 m to 142 m). Such newly developed technique is undoubtedly expected to contribute to improve the accuracy of air quality modelling and forecasting systems.

  14. Dirac perturbations on Schwarzschild-anti-de Sitter spacetimes: Generic boundary conditions and new quasinormal modes

    NASA Astrophysics Data System (ADS)

    Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang

    2017-11-01

    We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.

  15. Boundary Layer Transition During the Orion Exploration Flight Test 1 (EFT-1)

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.

    2016-01-01

    Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.

  16. Numerical modeling of an estuary: A comprehensive skill assessment

    USGS Publications Warehouse

    Warner, J.C.; Geyer, W.R.; Lerczak, J.A.

    2005-01-01

    Numerical simulations of the Hudson River estuary using a terrain-following, three-dimensional model (Regional Ocean Modeling System (ROMS)) are compared with an extensive set of time series and spatially resolved measurements over a 43 day period with large variations in tidal forcing and river discharge. The model is particularly effective at reproducing the observed temporal variations in both the salinity and current structure, including tidal, spring neap, and river discharge-induced variability. Large observed variations in stratification between neap and spring tides are captured qualitatively and quantitatively by the model. The observed structure and variations of the longitudinal salinity gradient are also well reproduced. The most notable discrepancy between the model and the data is in the vertical salinity structure. While the surface-to-bottom salinity difference is well reproduced, the stratification in the model tends to extend all the way to the water surface, whereas the observations indicate a distinct pycnocline and a surface mixed layer. Because the southern boundary coindition is located near the mouth the estuary, the salinity within the domain is particularly sensitive to the specification of salinity at the boundary. A boundary condition for the horizontal salinity gradient, based on the local value of salinity, is developed to incorporate physical processes beyond the open boundary not resolved by the model. Model results are sensitive to the specification of the bottom roughness length and vertical stability functions, insofar as they influence the intensity of vertical mixing. The results only varied slightly between different turbulence closure methods of k-??, k-??, and k-kl. Copyright 2005 by the American Geophysical Union.

  17. Defining the public, defining sociology: hybrid science-public relations and boundary-work in early American sociology.

    PubMed

    Evans, Michael S

    2009-01-01

    In this paper, I examine how scientific disciplines define their boundaries by defining the publics with whom they engage. The case study is an episode in the development of early American sociology. In response to the dual challenge of credibility set up by the conflict between religious Baconian science and secular positivist science, key actors engaged in specific strategies of boundary-work to create their desired "sociological public"--a hybrid form of science-public relations that appealed to hostile university scientists while excluding a supportive religious audience from participation in the production of scientific knowledge. Using this case, I offer two specific insights. First I illustrate how, in the pursuit of scientific credibility, actors engage in boundary-work to differentiate audiences, not just practitioners. Such defining of publics is constitutive of scientific disciplines in their formative stage. Second, I demonstrate how audience boundaries can be redefined through the capture of existing boundary objects. Specifically, the removal of informational content in key boundary objects creates durable boundaries that are difficult to overcome.

  18. On the accurate long-time solution of the wave equation in exterior domains: Asymptotic expansions and corrected boundary conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.; Maccamy, R. C.

    1993-01-01

    We consider the solution of scattering problems for the wave equation using approximate boundary conditions at artificial boundaries. These conditions are explicitly viewed as approximations to an exact boundary condition satisfied by the solution on the unbounded domain. We study the short and long term behavior of the error. It is provided that, in two space dimensions, no local in time, constant coefficient boundary operator can lead to accurate results uniformly in time for the class of problems we consider. A variable coefficient operator is developed which attains better accuracy (uniformly in time) than is possible with constant coefficient approximations. The theory is illustrated by numerical examples. We also analyze the proposed boundary conditions using energy methods, leading to asymptotically correct error bounds.

  19. Asymmetric Solar Wind driven substorms from ballooning-interchange and magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Horton, W.

    2013-12-01

    For nonsymmetric currents closing in the northern and southern magnetopause, we find new onset conditions for the ballooning-interchange and magnetic reconnections modes. While these two eigenmodes have opposite symmetries in a classic symmetric geotail geometry as in Prichett-Coroniti-Pellat [GRL1997], this symmetry is broken for real solar winds and a tilted Earth magnetic dipole. Extending earlier work, we show a new model that includes distinct north I_[N] and south I_[S] magnetopause return currents and distinct N-S magnetopause boundary boundary conditions. These conditions drive asymmetric wave functions within the geotail. The wave functions in the high β magnetopause give new onset conditions for substorms. The nonlinear growth rates are estimated and nonlinear FLR-fluid simulations are performed. FLR fluid models with 5 to 7 pde's, are compared qualitatively with the PIC simulations of Prichett-Coroniti [ P-C 2013 and 2011] which used 4 billion particles on a Cray XT5 NSF computer. The P-C 2013 simulations capture some features of the THEMIS data and we look for the corresponding features in the FLR-fluid simulations. The classic reconnection parameter Delta^{'} has a complex generalization for the asymmetric solar wind and IMF on the magnetopause [Horton and Tajima, JGR 1988]. When the mid-tail B_z(x) is such as to give the ballooning-interchange instability we show that in the late stage of the evolutions the nonlinear convective derivatives in the pde-system change the symmetry of the structures producing large magnetic islands of the scale observed by CLUSTER substorm data [ Nakamura et al. 2006]. We conclude that asymmetric models are needed to give reliable forecasting of the onset of subtorms and storms.

  20. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Esparza, Domingo; Lundquist, Julie K.; Sauer, Jeremy A.

    Multiscale modeling of a diurnal cycle of real-world conditions is presented for the first time, validated using data from the CWEX-13 field experiment. Dynamical downscaling from synoptic-scale down to resolved three-dimensional eddies in the atmospheric boundary layer (ABL) was performed, spanning 4 orders of magnitude in horizontal grid resolution: from 111 km down to 8.2 m (30 m) in stable (convective) conditions. Computationally efficient mesoscale-to-microscale transition was made possible by the generalized cell perturbation method with time-varying parameters derived from mesoscale forcing conditions, which substantially reduced the fetch to achieve fully developed turbulence. In addition, careful design of the simulationsmore » was made to inhibit the presence of under-resolved convection at convection-resolving mesoscale resolution and to ensure proper turbulence representation in stably-stratified conditions. Comparison to in situ wind-profiling lidar and near-surface sonic anemometer measurements demonstrated the ability to reproduce the ABL structure throughout the entire diurnal cycle with a high degree of fidelity. The multiscale simulations exhibit realistic atmospheric features such as convective rolls and global intermittency. Also, the diurnal evolution of turbulence was accurately simulated, with probability density functions of resolved turbulent velocity fluctuations nearly identical to the lidar measurements. Explicit representation of turbulence in the stably-stratified ABL was found to provide the right balance with larger scales, resulting in the development of intra-hour variability as observed by the wind lidar; this variability was not captured by the mesoscale model. Furthermore, multiscale simulations improved mean ABL characteristics such as horizontal velocity, vertical wind shear, and turbulence.« less

  1. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies

    DOE PAGES

    Munoz-Esparza, Domingo; Lundquist, Julie K.; Sauer, Jeremy A.; ...

    2017-04-25

    Multiscale modeling of a diurnal cycle of real-world conditions is presented for the first time, validated using data from the CWEX-13 field experiment. Dynamical downscaling from synoptic-scale down to resolved three-dimensional eddies in the atmospheric boundary layer (ABL) was performed, spanning 4 orders of magnitude in horizontal grid resolution: from 111 km down to 8.2 m (30 m) in stable (convective) conditions. Computationally efficient mesoscale-to-microscale transition was made possible by the generalized cell perturbation method with time-varying parameters derived from mesoscale forcing conditions, which substantially reduced the fetch to achieve fully developed turbulence. In addition, careful design of the simulationsmore » was made to inhibit the presence of under-resolved convection at convection-resolving mesoscale resolution and to ensure proper turbulence representation in stably-stratified conditions. Comparison to in situ wind-profiling lidar and near-surface sonic anemometer measurements demonstrated the ability to reproduce the ABL structure throughout the entire diurnal cycle with a high degree of fidelity. The multiscale simulations exhibit realistic atmospheric features such as convective rolls and global intermittency. Also, the diurnal evolution of turbulence was accurately simulated, with probability density functions of resolved turbulent velocity fluctuations nearly identical to the lidar measurements. Explicit representation of turbulence in the stably-stratified ABL was found to provide the right balance with larger scales, resulting in the development of intra-hour variability as observed by the wind lidar; this variability was not captured by the mesoscale model. Furthermore, multiscale simulations improved mean ABL characteristics such as horizontal velocity, vertical wind shear, and turbulence.« less

  2. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.

    PubMed

    Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D

    2014-06-01

    In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0

  3. On solvability of boundary value problems for hyperbolic fourth-order equations with nonlocal boundary conditions of integral type

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay S.

    2017-11-01

    Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.

  4. Boundary condition for Ginzburg-Landau theory of superconducting layers

    NASA Astrophysics Data System (ADS)

    Koláček, Jan; Lipavský, Pavel; Morawetz, Klaus; Brandt, Ernst Helmut

    2009-05-01

    Electrostatic charging changes the critical temperature of superconducting thin layers. To understand the basic mechanism, it is possible to use the Ginzburg-Landau theory with the boundary condition derived by de Gennes from the BCS theory. Here we show that a similar boundary condition can be obtained from the principle of minimum free energy. We compare the two boundary conditions and use the Budd-Vannimenus theorem as a test of approximations.

  5. Perfluoropolyalkylether Oil Degradation: Inference of FeF3 Formation on Steel Surfaces under Boundary Conditions

    DTIC Science & Technology

    1985-08-01

    REPORT SD-TR-85-37 O,-) Lfl Perfluoropolyalkylether Oil Degradation: Inference of FeF 3 Formation on Steel Surfaces I under Boundary Conditions DAVID...S. TYPE OF REPORT & PERIOD COVERED PERFLUOROPOLYALKYLETHER OIL DEGRADATION: INFERENCE OF FeF3 FORMATION ON STEELSURFACES UNDER BOUNDARY CONDITIONS 0...number) Boundary conditions Oil Degradation Perfluoropolyalkylether FeF3 Wear test Lubrication .... 440C 20. ABSTRACT (Contlnue o 0 ,systes sI . I

  6. Landscape factors influencing the spatial distribution and abundance of mosquito vector Culex quinquefasciatus (Diptera: Culicidae) in a mixed residential-agricultural community in Hawai'i

    USGS Publications Warehouse

    Reiter, M.E.; Lapointe, D.A.

    2007-01-01

    Mosquito-borne avian diseases, principally avian malaria (Plasmodium relictum Grassi and Feletti) and avian pox (Avipoxvirus sp.) have been implicated as the key limiting factor associated with recent declines of endemic avifauna in the Hawaiian Island archipelago. We present data on the relative abundance, infection status, and spatial distribution of the primary mosquito vector Culex quinquefasciatus Say (Diptera: Culicidae) across a mixed, residential-agricultural community adjacent to Hawai'i Volcanoes National Park on Hawai'i Island. We modeled the effect of agriculture and forest fragmentation in determining relative abundance of adult Cx. quinquefasciatus in Volcano Village, and we implement our statistical model in a geographic information system to generate a probability of mosquito capture prediction surface for the study area. Our model was based on biweekly captures of adult mosquitoes from 20 locations within Volcano Village from October 2001 to April 2003. We used mixed effects logistic regression to model the probability of capturing a mosquito, and we developed a set of 17 competing models a priori to specifically evaluate the effect of agriculture and fragmentation (i.e., residential landscapes) at two spatial scales. In total, 2,126 mosquitoes were captured in CO 2-baited traps with an average probability of 0.27 (SE = 0.10) of capturing one or more mosquitoes per trap night. Twelve percent of mosquitoes captured were infected with P. relictum. Our data indicate that agricultural lands and forest fragmentation significantly increase the probability of mosquito capture. The prediction surface identified areas along the Hawai'i Volcanoes National Park boundary that may have high relative abundance of the vector. Our data document the potential of avian malaria transmission in residential-agricultural landscapes and support the need for vector management that extends beyond reserve boundaries and considers a reserve's spatial position in a highly heterogeneous landscape.

  7. Exclusion Process with Slow Boundary

    NASA Astrophysics Data System (ADS)

    Baldasso, Rangel; Menezes, Otávio; Neumann, Adriana; Souza, Rafael R.

    2017-06-01

    We study the hydrodynamic and the hydrostatic behavior of the simple symmetric exclusion process with slow boundary. The term slow boundary means that particles can be born or die at the boundary sites, at a rate proportional to N^{-θ }, where θ > 0 and N is the scaling parameter. In the bulk, the particles exchange rate is equal to 1. In the hydrostatic scenario, we obtain three different linear profiles, depending on the value of the parameter θ ; in the hydrodynamic scenario, we obtain that the time evolution of the spatial density of particles, in the diffusive scaling, is given by the weak solution of the heat equation, with boundary conditions that depend on θ . If θ \\in (0,1), we get Dirichlet boundary conditions, (which is the same behavior if θ =0, see Farfán in Hydrostatics, statical and dynamical large deviations of boundary driven gradient symmetric exclusion processes, 2008); if θ =1, we get Robin boundary conditions; and, if θ \\in (1,∞), we get Neumann boundary conditions.

  8. Generalized Reduced Order Modeling of Aeroservoelastic Systems

    NASA Astrophysics Data System (ADS)

    Gariffo, James Michael

    Transonic aeroelastic and aeroservoelastic (ASE) modeling presents a significant technical and computational challenge. Flow fields with a mixture of subsonic and supersonic flow, as well as moving shock waves, can only be captured through high-fidelity CFD analysis. With modern computing power, it is realtively straightforward to determine the flutter boundary for a single structural configuration at a single flight condition, but problems of larger scope remain quite costly. Some such problems include characterizing a vehicle's flutter boundary over its full flight envelope, optimizing its structural weight subject to aeroelastic constraints, and designing control laws for flutter suppression. For all of these applications, reduced-order models (ROMs) offer substantial computational savings. ROM techniques in general have existed for decades, and the methodology presented in this dissertation builds on successful previous techniques to create a powerful new scheme for modeling aeroelastic systems, and predicting and interpolating their transonic flutter boundaries. In this method, linear ASE state-space models are constructed from modal structural and actuator models coupled to state-space models of the linearized aerodynamic forces through feedback loops. Flutter predictions can be made from these models through simple eigenvalue analysis of their state-transition matrices for an appropriate set of dynamic pressures. Moreover, this analysis returns the frequency and damping trend of every aeroelastic branch. In contrast, determining the critical dynamic pressure by direct time-marching CFD requires a separate run for every dynamic pressure being analyzed simply to obtain the trend for the critical branch. The present ROM methodology also includes a new model interpolation technique that greatly enhances the benefits of these ROMs. This enables predictions of the dynamic behavior of the system for flight conditions where CFD analysis has not been explicitly performed, thus making it possible to characterize the overall flutter boundary with far fewer CFD runs. A major challenge of this research is that transonic flutter boundaries can involve multiple unstable modes of different types. Multiple ROM-based studies on the ONERA M6 wing are shown indicating that in addition to classic bending-torsion (BT) flutter modes. which become unstable above a threshold dynamic pressure after two natural modes become aerodynamically coupled, some natural modes are able to extract energy from the air and become unstable by themselves. These single-mode instabilities tend to be weaker than the BT instabilities, but have near-zero flutter boundaries (exactly zero in the absence of structural damping). Examples of hump modes, which behave like natural mode instabilities before stabilizing, are also shown, as are cases where multiple instabilities coexist at a single flight condition. The result of all these instabilities is a highly sensitive flutter boundary, where small changes in Mach number, structural stiffness, and structural damping can substantially alter not only the stability of individual aeroelastic branches, but also which branch is critical. Several studies are shown presenting how the flutter boundary varies with respect to all three of these parameters, as well as the number of structural modes used to construct the ROMs. Finally, an investigation of the effectiveness and limitations of the interpolation scheme is presented. It is found that in regions where the flutter boundary is relatively smooth, the interpolation method produces ROMs that predict the flutter characteristics of the corresponding directly computed models to a high degree of accuracy, even for relatively coarsely spaced data. On the other hand, in the transonic dip region, the interpolated ROMs show significant errors at points where the boundary changes rapidly; however, they still give a good qualitative estimate of where the largest jumps occur.

  9. Slip Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Baranger, Céline; Hattori, Masanari; Kosuge, Shingo; Martalò, Giorgio; Mathiaud, Julien; Mieussens, Luc

    2017-11-01

    The slip boundary conditions for the compressible Navier-Stokes equations are derived systematically from the Boltzmann equation on the basis of the Chapman-Enskog solution of the Boltzmann equation and the analysis of the Knudsen layer adjacent to the boundary. The resulting formulas of the slip boundary conditions are summarized with explicit values of the slip coefficients for hard-sphere molecules as well as the Bhatnagar-Gross-Krook model. These formulas, which can be applied to specific problems immediately, help to prevent the use of often used slip boundary conditions that are either incorrect or without theoretical basis.

  10. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India

    NASA Astrophysics Data System (ADS)

    Madhulatha, A.; Rajeevan, M.

    2018-02-01

    Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.

  11. Boundary Conditions for Scalar (Co)Variances over Heterogeneous Surfaces

    NASA Astrophysics Data System (ADS)

    Machulskaya, Ekaterina; Mironov, Dmitrii

    2018-05-01

    The problem of boundary conditions for the variances and covariances of scalar quantities (e.g., temperature and humidity) at the underlying surface is considered. If the surface is treated as horizontally homogeneous, Monin-Obukhov similarity suggests the Neumann boundary conditions that set the surface fluxes of scalar variances and covariances to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice since the spatial variability of various surface and soil characteristics, such as the ground fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary conditions are developed that are consistent with the tile approach used to compute scalar (and momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms (fluxes of variances) are examined analytically using a triple decomposition of fluctuating velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the grid-box mean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column numerical experiment. The proposed boundary conditions should be applied in atmospheric models that utilize turbulence parametrization schemes with transport equations for scalar variances and covariances including the third-order turbulent transport (diffusion) terms.

  12. Experimental Validation of Model Updating and Damage Detection via Eigenvalue Sensitivity Methods with Artificial Boundary Conditions

    DTIC Science & Technology

    2017-09-01

    VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS by Matthew D. Bouwense...VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS 5. FUNDING NUMBERS 6. AUTHOR...unlimited. EXPERIMENTAL VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY

  13. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  14. On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides

    NASA Astrophysics Data System (ADS)

    Marcillo, Omar; Arrowsmith, Stephen; Blom, Philip; Jones, Kyle

    2015-10-01

    Infrasound from a 60-turbine wind farm was found to propagate to distances up to 90 km under nighttime atmospheric conditions. Four infrasound sensor arrays were deployed in central New Mexico in February 2014; three of these arrays captured infrasound from a large wind farm. The arrays were in a linear configuration oriented southeast with 13, 54, 90, and 126 km radial distances and azimuths of 166°, 119°, 113°, and 111° from the 60 1.6 MW turbine Red Mesa Wind Farm, Laguna Pueblo, New Mexico, USA. Peaks at a fundamental frequency slightly below 0.9 Hz and its harmonics characterize the spectrum of the detected infrasound. The generation of this signal is linked to the interaction of the blades, flow gradients, and the supporting tower. The production of wind-farm sound, its propagation, and detection at long distances can be related to the characteristics of the atmospheric boundary layer. First, under stable conditions, mostly occurring at night, winds are highly stratified, which enhances the production of thickness sound and the modulation of other higher-frequency wind turbine sounds. Second, nocturnal atmospheric conditions can create low-altitude waveguides (with altitudes on the order of hundreds of meters) allowing long-distance propagation. Third, night and early morning hours are characterized by reduced background atmospheric noise that enhances signal detectability. This work describes the characteristics of the infrasound from a quasi-continuous source with the potential for long-range propagation that could be used to monitor the lower part of the atmospheric boundary layer.

  15. Application of mean wall shear stress boundary condition to complex turbulent flows using a wall-modeled large eddy simulation

    NASA Astrophysics Data System (ADS)

    Cho, Minjeong; Lee, Jungil; Choi, Haecheon

    2012-11-01

    The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.

  16. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    NASA Astrophysics Data System (ADS)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  17. Lubricated immersed boundary method in two dimensions

    NASA Astrophysics Data System (ADS)

    Fai, Thomas G.; Rycroft, Chris H.

    2018-03-01

    Many biological examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen and the intracellular trafficking of vesicles into dendritic spines, involve the near-contact of elastic structures separated by thin layers of fluid. Motivated by such problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We demonstrate 2nd-order accurate convergence for simple two-dimensional flows with known exact solutions to showcase the increased accuracy of this method compared to the standard immersed boundary method. Motivated by the phenomenon of wall-induced migration, we apply the lubricated immersed boundary method to simulate an elastic vesicle near a wall in shear flow. We also simulate the dynamics of a vesicle traveling through a narrow channel and observe the ability of the lubricated method to capture the vesicle motion on relatively coarse fluid grids.

  18. Optimal boundary conditions for ORCA-2 model

    NASA Astrophysics Data System (ADS)

    Kazantsev, Eugene

    2013-08-01

    A 4D-Var data assimilation technique is applied to ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of boundary conditions on the solution is analyzed both within and beyond the assimilation window. It is shown that the optimal bottom and surface boundary conditions allow us to better represent the jet streams, such as Gulf Stream and Kuroshio. Analyzing the reasons of the jets reinforcement, we notice that data assimilation has a major impact on parametrization of the bottom boundary conditions for u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.

  19. An implicit-iterative solution of the heat conduction equation with a radiation boundary condition

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, D. M.

    1977-01-01

    For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.

  20. Calculation of Water Entry Problem for Free-falling Bodies Using a Developed Cartesian Cut Cell Mesh

    NASA Astrophysics Data System (ADS)

    Wenhua, Wang; Yanying, Wang

    2010-05-01

    This paper describes the development of free surface capturing method on Cartesian cut cell mesh to water entry problem for free-falling bodies with body-fluid interaction. The incompressible Euler equations for a variable density fluid system are presented as governing equations and the free surface is treated as a contact discontinuity by using free surface capturing method. In order to be convenient for dealing with the problem with moving body boundary, the Cartesian cut cell technique is adopted for generating the boundary-fitted mesh around body edge by cutting solid regions out of a background Cartesian mesh. Based on this mesh system, governing equations are discretized by finite volume method, and at each cell edge inviscid flux is evaluated by means of Roe's approximate Riemann solver. Furthermore, for unsteady calculation in time domain, a time accurate solution is achieved by a dual time-stepping technique with artificial compressibility method. For the body-fluid interaction, the projection method of momentum equations and exact Riemann solution are applied in the calculation of fluid pressure on the solid boundary. Finally, the method is validated by test case of water entry for free-falling bodies.

  1. Boundary streaming with Navier boundary condition.

    PubMed

    Xie, Jin-Han; Vanneste, Jacques

    2014-06-01

    In microfluidic applications involving high-frequency acoustic waves over a solid boundary, the Stokes boundary-layer thickness δ is so small that some non-negligible slip may occur at the fluid-solid interface. This paper assesses the impact of this slip by revisiting the classical problem of steady acoustic streaming over a flat boundary, replacing the no-slip boundary condition with the Navier condition u|_{y=0}=L_{s}∂_{y}u|_{y=0}, where u is the velocity tangent to the boundary y=0, and the parameter L_{s} is the slip length. A general expression is obtained for the streaming velocity across the boundary layer as a function of the dimensionless parameter L_{s}/δ. The limit outside the boundary layer provides an effective slip velocity satisfied by the interior mean flow. Particularizing to traveling and standing waves shows that the boundary slip respectively increases and decreases the streaming velocity.

  2. Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints

    NASA Technical Reports Server (NTRS)

    Kangro, Urve; Nicolaides, Roy

    1997-01-01

    The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.

  3. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions

    NASA Technical Reports Server (NTRS)

    Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.

    1995-01-01

    The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.

  4. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  5. Large Eddy Simulation in a Channel with Exit Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.

    1996-01-01

    The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.

  6. An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver

    NASA Astrophysics Data System (ADS)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2014-11-01

    While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.

  7. Numerical Boundary Conditions for Computational Aeroacoustics Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Tam, Chritsopher K. W.; Kurbatskii, Konstantin A.; Fang, Jun

    1997-01-01

    Category 1, Problems 1 and 2, Category 2, Problem 2, and Category 3, Problem 2 are solved computationally using the Dispersion-Relation-Preserving (DRP) scheme. All these problems are governed by the linearized Euler equations. The resolution requirements of the DRP scheme for maintaining low numerical dispersion and dissipation as well as accurate wave speeds in solving the linearized Euler equations are now well understood. As long as 8 or more mesh points per wavelength is employed in the numerical computation, high quality results are assured. For the first three categories of benchmark problems, therefore, the real challenge is to develop high quality numerical boundary conditions. For Category 1, Problems 1 and 2, it is the curved wall boundary conditions. For Category 2, Problem 2, it is the internal radiation boundary conditions inside the duct. For Category 3, Problem 2, they are the inflow and outflow boundary conditions upstream and downstream of the blade row. These are the foci of the present investigation. Special nonhomogeneous radiation boundary conditions that generate the incoming disturbances and at the same time allow the outgoing reflected or scattered acoustic disturbances to leave the computation domain without significant reflection are developed. Numerical results based on these boundary conditions are provided.

  8. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  9. A new method of imposing boundary conditions for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Funaro, D.; ative.

    1987-01-01

    A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.

  10. Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method.

    PubMed

    Verschaeve, Joris C G

    2011-06-13

    By means of the continuity equation of the incompressible Navier-Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.

  11. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  12. The boundary conditions for simulations of a shake-table experiment on the seismic response of 3D slope

    NASA Astrophysics Data System (ADS)

    Tang, Liang; Cong, Shengyi; Ling, Xianzhang; Ju, Nengpan

    2017-01-01

    Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the ( y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions.

  13. DISPOSITION OF THE INNER RADIATION BELT AND MAGNETIC FIELD OF THE EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GORCHAKOV, IE. V.

    1963-02-01

    A scintillation counter on Sputnik III was used to conduct ionization measurement in a sodium iodide crystal and register the number of events releasing more than 35 kev in the crystal. The boundary of the inner radiation belt shows a strong longitudinal effect. The observed dependence on longitude of the boundary was explained by the fact that the inner belt consists of particles captured by the geomagnetic field and constitutes a noncentral dipole field. (C.E.S.)

  14. Coupling MHD and PIC models in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Daldorff, L.; Toth, G.; Sokolov, I.; Gombosi, T. I.; Lapenta, G.; Brackbill, J. U.; Markidis, S.; Amaya, J.

    2013-12-01

    Even for extended fluid plasma models, like Hall, anisotropic ion pressure and multi fluid MHD, there are still many plasma phenomena that are not well captured. For this reason, we have coupled the Implicit Particle-In-Cell (iPIC3D) code with the BATSRUS global MHD code. The PIC solver is applied in a part of the computational domain, for example, in the vicinity of reconnection sites, and overwrites the MHD solution. On the other hand, the fluid solver provides the boundary conditions for the PIC code. To demonstrate the use of the coupled codes for magnetospheric applications, we perform a 2D magnetosphere simulation, where BATSRUS solves for Hall MHD in the whole domain except for the tail reconnection region, which is handled by iPIC3D.

  15. Physical lumping methods for developing linear reduced models for high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Immel, S. M.; Hartley, Tom T.; Deabreu-Garcia, J. Alex

    1991-01-01

    In gasdynamic systems, information travels in one direction for supersonic flow and in both directions for subsonic flow. A shock occurs at the transition from supersonic to subsonic flow. Thus, to simulate these systems, any simulation method implemented for the quasi-one-dimensional Euler equations must have the ability to capture the shock. In this paper, a technique combining both backward and central differencing is presented. The equations are subsequently linearized about an operating point and formulated into a linear state space model. After proper implementation of the boundary conditions, the model order is reduced from 123 to less than 10 using the Schur method of balancing. Simulations comparing frequency and step response of the reduced order model and the original system models are presented.

  16. Considerations on the moving contact-line singularity, with application to frictional drag on a slender drop

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1988-01-01

    It has previously been shown that the no-slip boundary conditions leads to a singularity at a moving contact line and that this presumes some form of slip. Present considerations on the energetics of slip due to shear stress lead to a yield stress boundary condition. A model for the distortion of the liquid state near solid boundaries gives a physical basis for this boundary condition. The yield stress condition is illustrated by an analysis of a slender drop rolling down an incline. That analysis provides a formula for the frictional drag resisting the drop movement. With the present boundary condition, the length of the slip region becomes a property of the fluid flow.

  17. Crystallization in a model glass: Influence of the boundary conditions

    NASA Astrophysics Data System (ADS)

    Jund, P.; Jullien, R.

    1998-06-01

    Using molecular dynamics calculations and the Voronoï tessellation, we study the evolution of the local structure of a soft-sphere glass vs. temperature starting from the liquid phase at different quenching rates. This study is done for different sizes and for two different boundary conditions, namely the usual cubic periodic boundary conditions and the isotropic hyperspherical boundary conditions for which the particles evolve on the surface of a hypersphere in four dimensions. Our results show that for small system sizes, crystallization can indeed be induced by the cubic boundary conditions. On the other hand, we show that finite-size effects are more pronounced on the hypersphere and that crystallization is artificially inhibited even for large system sizes.

  18. On the symmetry of the boundary conditions of the volume potential

    NASA Astrophysics Data System (ADS)

    Kal'menov, Tynysbek Sh.; Arepova, Gaukhar; Suragan, Durvudkhan

    2017-09-01

    It is well known that the volume potential determines the mass or the charge distributed over the domain with density f. The volume potential is extensively used in function theory and embedding theorems. It is also well known that the volume potential gives a solution to an inhomogeneous equation. And it generates a linear self-adjoint operator. It is known that self-adjoint differential operators are generated by boundary conditions. In our previous papers for an arbitrary domain a boundary condition on the volume potential is given. In the past, it was not possible to prove the self-adjointness of these obtained boundary conditions. In the present paper, we prove the symmetry of boundary condition for the volume potential.

  19. Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng

    2017-06-01

    According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.

  20. Vibration of a spatial elastica constrained inside a straight tube

    NASA Astrophysics Data System (ADS)

    Chen, Jen-San; Fang, Joyce

    2014-04-01

    In this paper we study the dynamic behavior of a clamped-clamped spatial elastica under edge thrust constrained inside a straight cylindrical tube. Attention is focused on the calculation of the natural frequencies and mode shapes of the planar and spatial one-point-contact deformations. The main issue in determining the natural frequencies of a constrained rod is the movement of the contact point during vibration. In order to capture the physical essence of the contact-point movement, an Eulerian description of the equations of motion based on director theory is formulated. After proper linearization of the equations of motion, boundary conditions, and contact conditions, the natural frequencies and mode shapes of the elastica can be obtained by solving a system of eighteen first-order differential equations with shooting method. It is concluded that the planar one-point-contact deformation becomes unstable and evolves to a spatial deformation at a bifurcation point in both displacement and force control procedures.

  1. Implementation of two-phase tritium models for helium bubbles in HCLL breeding blanket modules

    NASA Astrophysics Data System (ADS)

    Fradera, J.; Sedano, L.; Mas de les Valls, E.; Batet, L.

    2011-10-01

    Tritium self-sufficiency requirement of future DT fusion reactors involves large helium production rates in the breeding blankets; this might impact on the conceptual design of diverse fusion power reactor units, such as Liquid Metal (LM) blankets. Low solubility, long residence-times and high production rates create the conditions for Helium nucleation, which could mean effective T sinks in LM channels. A model for helium nano-bubble formation and tritium conjugate transport phenomena in liquid Pb17.5Li and EUROFER is proposed. In a first approximation, it has been considered that He bubbles can be represented as a passive scalar. The nucleation model is based on the classical theory and includes a simplified bubble growth model. The model captures the interaction of tritium with bubbles and tritium diffusion through walls. Results show the influence of helium cavitation on tritium inventory and the importance of simulating the system walls instead of imposing fixed boundary conditions.

  2. Quantitative Reappraisal of the Helmholtz-Guyton Resonance Theory of Frequency Tuning in the Cochlea

    PubMed Central

    Babbs, Charles F.

    2011-01-01

    To explore the fundamental biomechanics of sound frequency transduction in the cochlea, a two-dimensional analytical model of the basilar membrane was constructed from first principles. Quantitative analysis showed that axial forces along the membrane are negligible, condensing the problem to a set of ordered one-dimensional models in the radial dimension, for which all parameters can be specified from experimental data. Solutions of the radial models for asymmetrical boundary conditions produce realistic deformation patterns. The resulting second-order differential equations, based on the original concepts of Helmholtz and Guyton, and including viscoelastic restoring forces, predict a frequency map and amplitudes of deflections that are consistent with classical observations. They also predict the effects of an observation hole drilled in the surrounding bone, the effects of curvature of the cochlear spiral, as well as apparent traveling waves under a variety of experimental conditions. A quantitative rendition of the classical Helmholtz-Guyton model captures the essence of cochlear mechanics and unifies the competing resonance and traveling wave theories. PMID:22028708

  3. DREAM-3D and the importance of model inputs and boundary conditions

    NASA Astrophysics Data System (ADS)

    Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue

    2015-04-01

    Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.

  4. Impacts of Lateral Boundary Conditions on U.S. Ozone Modeling Analyses

    EPA Science Inventory

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, we perform annual simulations over North America with chemical boundary conditions prepared from two global models (GEOS-CHEM and Hemispheric CMAQ). Results indicate that the impac...

  5. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    van Horssen, Wim T.; Wang, Yandong; Cao, Guohua

    2018-06-01

    In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.

  6. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  7. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a 2-D demonstration. Extensions to 3-D should be straightforward.

  8. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Werner, Wendelin

    2018-06-01

    We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

  9. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

    2018-06-01

    This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

  10. Smoothed particle hydrodynamics simulations of black hole accretion: a step to model black hole feedback in galaxies

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, Daniel; Nagamine, Kentaro

    2011-11-01

    We test how accurately the smoothed particle hydrodynamics (SPH) numerical technique can follow spherically symmetric Bondi accretion. Using the 3D SPH code GADGET-3, we perform simulations of gas accretion on to a central supermassive black hole of mass 108 M⊙ within the radial range of 0.1-200 pc. We carry out simulations without and with radiative heating by a central X-ray corona and radiative cooling. For an adiabatic case, the radial profiles of hydrodynamical properties match the Bondi solution, except near the inner and outer radius of the computational domain. The deviation from the Bondi solution close to the inner radius is caused by the combination of numerical resolution, artificial viscosity and our inner boundary condition. Near the outer radius (≤200 pc), we observe either an outflow or development of a non-spherical inflow unless the outer boundary conditions are very stringently implemented. Despite these issues related to the boundary conditions, we find that adiabatic Bondi accretion can be reproduced for durations of a few dynamical times at the Bondi radius, and for longer times if the outer radius is increased. In particular, the mass inflow rate at the inner boundary, which we measure, is within 3-4 per cent of the Bondi accretion rate. With radiative heating and cooling included, the spherically accreting gas takes a longer time to reach a steady state than the adiabatic Bondi accretion runs, and in some cases does not reach a steady state even within several hundred dynamical times. We find that artificial viscosity causes excessive heating near the inner radius, making the thermal properties of the gas inconsistent with a physical solution. This overheating occurs typically only in the supersonic part of the flow, so that it does not affect the mass accretion rate. We see that increasing the X-ray luminosity produces a lower central mass inflow rate, implying that feedback due to radiative heating is operational in our simulations. With a sufficiently high X-ray luminosity, the inflowing gas is radiatively heated up, and an outflow develops. We conclude that the SPH simulations can capture the gas dynamics needed to study radiative feedback, provided artificial viscosity alters only highly supersonic part of the inflow.

  11. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave a higher concentration in the immediate vicinity of the exit boundary than the semi-infinite solution. The applicability of the proposed model was tested with a field herbicide and tracer leaching experiment in an agricultural area of northeastern Greece. The simulation results indicated that the proposed CDE with depth-dependent reaction coefficients was able to capture the evolution of metolachlor concentration at the upper soil depths. However, the simulation results at deep depths were not satisfactory as the proposed model did not account for preferential flow observed in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Numerical implementation of isolated horizon boundary conditions

    NASA Astrophysics Data System (ADS)

    Jaramillo, José Luis; Ansorg, Marcus; Limousin, François

    2007-01-01

    We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasiequilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the conformal thin sandwich equations. As main results, we first establish the consistency of including in the set of boundary conditions a constant surface gravity prescription, interpretable as a lapse boundary condition, and second we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the conformal transverse traceless equations with quasiequilibrium horizon conditions extend to the conformal thin sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon.

  13. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  14. Integral Method of Boundary Characteristics: Neumann Condition

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2018-05-01

    A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.

  15. Variability of O3 and NO2 profile shapes during DISCOVER-AQ: Implications for satellite observations and comparisons to model-simulated profiles

    NASA Astrophysics Data System (ADS)

    Flynn, Clare Marie; Pickering, Kenneth E.; Crawford, James H.; Weinheimer, Andrew J.; Diskin, Glenn; Thornhill, K. Lee; Loughner, Christopher; Lee, Pius; Strode, Sarah A.

    2016-12-01

    To investigate the variability of in situ profile shapes under a variety of meteorological and pollution conditions, results are presented of an agglomerative hierarchical cluster analysis of the in situ O3 and NO2 profiles for each of the four campaigns of the NASA DISCOVER-AQ mission. Understanding the observed profile variability for these trace gases is useful for understanding the accuracy of the assumed profile shapes used in satellite retrieval algorithms as well as for understanding the correlation between satellite column observations and surface concentrations. The four campaigns of the DISCOVER-AQ mission took place in Maryland during July 2011, the San Joaquin Valley of California during January-February 2013, the Houston, Texas, metropolitan region during September 2013, and the Denver-Front Range region of Colorado during July-August 2014. Several distinct profile clusters emerged for the California, Texas, and Colorado campaigns for O3, indicating significant variability of O3 profile shapes, while the Maryland campaign presented only one distinct O3 cluster. In contrast, very few distinct profile clusters emerged for NO2 during any campaign for this particular clustering technique, indicating the NO2 profile behavior was relatively uniform throughout each campaign. However, changes in NO2 profile shape were evident as the boundary layer evolved through the day, but they were apparently not significant enough to yield more clusters. The degree of vertical mixing (as indicated by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O3, as well as impacted the correlations between the associated column and surface data for each cluster for O3. The correlation analyses suggest satellites may have the best chance to relate to surface O3 under the conditions encountered during the Maryland campaign Clusters 1 and 2, which include deep, convective boundary layers and few interruptions to this connection from complex meteorology, chemical environments, or orography. The regional CMAQ model captured the shape factors for O3, and moderately well captured the NO2 shape factors, for the conditions associated with the Maryland campaign, suggesting that a regional air quality model may adequately specify a priori profile shapes for remote sensing retrievals. CMAQ shape factor profiles were not as well represented for the other regions.

  16. Use of an Accurate DNS Particulate Flow Method to Supply and Validate Boundary Conditions for the MFIX Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi-Gang Feng

    2012-05-31

    The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less

  17. Determining the Discharge Rate from a Submerged Oil Leaks using ROV Video and CFD study

    NASA Astrophysics Data System (ADS)

    Saha, Pankaj; Shaffer, Frank; Shahnam, Mehrdad; Savas, Omer; Devites, Dave; Steffeck, Timothy

    2016-11-01

    The current paper reports a technique to measure the discharge rate by analyzing the video from a Remotely Operated Vehicle (ROV). The technique uses instantaneous images from ROV video to measure the velocity of visible features (turbulent eddies) along the boundary of an oil leak jet and subsequently classical theory of turbulent jets is imposed to determine the discharge rate. The Flow Rate Technical Group (FRTG) Plume Team developed this technique that manually tracked the visible features and produced the first accurate government estimates of the oil discharge rate from the Deepwater Horizon (DWH). For practical application this approach needs automated control. Experiments were conducted at UC Berkeley and OHMSETT that recorded high speed, high resolution video of submerged dye-colored water or oil jets and subsequently, measured the velocity data employing LDA and PIV software. Numerical simulation have been carried out using experimental submerged turbulent oil jets flow conditions employing LES turbulence closure and VOF interface capturing technique in OpenFOAM solver. The CFD results captured jet spreading angle and jet structures in close agreement with the experimental observations. The work was funded by NETL and DOI Bureau of Safety and Environmental Enforcement (BSEE).

  18. Analytic Couple Modeling Introducing Device Design Factor, Fin Factor, Thermal Diffusivity Factor, and Inductance Factor

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.

  19. Evaluation of Day and Nighttime Lower Tropospheric Ozone from Air Quality Models using TES and Ozonesondes

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.

    2012-12-01

    At night, ozone can be transported long distances above the surface inversion layer without chemical destruction or deposition. As the boundary layer breaks up in the morning, this nocturnal ozone can be mixed down to the surface and rapidly increase ozone concentrations at a rate that can rival chemical ozone production. Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture nighttime ozone concentrations and transport. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the INTEX Ozonesonde Network Study (IONS), EPA AirNow ground station ozone data, the Community Multi-Scale Air Quality (CMAQ) model, and the National Air Quality Forecast Capability (NAQFC) model to examine air quality events during August 2006. We present both aggregated statistics and case-study analyses that assess the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone both during the day and at night. We perform the comparisons looking at the geospatial dependence in the differences between the measurements and models under different surface ozone conditions.

  20. Feeding currents of the upside down jellyfish in the presence of background flow.

    PubMed

    Hamlet, Christina L; Miller, Laura A

    2012-11-01

    The upside-down jellyfish (Cassiopea spp.) is an ideal organism for examining feeding and exchange currents generated by bell pulsations due to its relatively sessile nature. Previous experiments and numerical simulations have shown that the oral arms play an important role in directing new fluid into the bell from along the substrate. All of this work, however, has considered the jellyfish in the absence of background flow, but the natural environments of Cassiopea and other cnidarians are dynamic. Flow velocities and directions fluctuate on multiple time scales, and mechanisms of particle capture may be fundamentally different in moving fluids. In this paper, the immersed boundary method is used to simulate a simplified jellyfish in flow. The elaborate oral arm structure is modeled as a homogenous porous layer. The results show that the oral arms trap vortices as they form during contraction and expansion of the bell. For constant flow conditions, the vortices are directed gently across the oral arms where particle capture occurs. For variable direction flows, the secondary structures change the overall pattern of the flow around the bell and appear to stabilize regions of mixing around the secondary mouths.

  1. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  2. Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer.

    PubMed

    McMullen, Angus J; Tang, Jay X; Stein, Derek

    2017-11-28

    We report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions. This cannot be explained by Manning-condensed counterions or a number of other proposed models. Instead, we argue that these anomalous findings are consequences of the breakdown of the validity of continuum hydrodynamics at the scale of a few molecular layers. Next to a polyelectrolyte, there exists an extra-viscous, sub-nanometer-thin boundary layer that has a giant influence on the transport characteristics. We show that a stagnant boundary layer captures the essential hydrodynamics and extends the validity of the electrokinetic theory beyond the continuum limit. A stagnant layer with a thickness of about half a nanometer consistently improves predictions of the ionic current change induced by virus translocations and of the translocation velocity for both fd and M13 over a wide range of nanopore dimensions and salt concentrations.

  3. Prediction of an internal boundary layer on a flat plate after a step change in roughness using a near-wall RANS model

    NASA Astrophysics Data System (ADS)

    Chu, Minghan; Meng, Fanxiao; Bergstrom, Donald J.

    2017-11-01

    An in-house computational fluid dynamics code was used to simulate turbulent flow over a flat plate with a step change in roughness, exhibiting a smooth-rough-smooth configuration. An internal boundary layer (IBL) is formed at the transition from the smooth to rough (SR) and then the rough to smooth (RS) surfaces. For an IBL the flow far above the surface has experienced a wall shear stress that is different from the local value. Within a Reynolds-Averaged-Navier-Stokes (RANS) formulation, the two-layer k- ɛ model of Durbin et al. (2001) was implemented to analyze the response of the flow to the change in surface condition. The numerical results are compared to experimental data, including some in-house measurements and the seminal work of Antonia and Luxton (1971,72). This problem captures some aspects of roughness in industrial and environmental applications, such as corrosion and the earth's surface heterogeneity, where the roughness is often encountered as discrete distributions. It illustrates the challenge of incorporating roughness models in RANS that are capable of responding to complex surface roughness profiles.

  4. Default risk modeling beyond the first-passage approximation: Extended Black-Cox model

    NASA Astrophysics Data System (ADS)

    Katz, Yuri A.; Shokhirev, Nikolai V.

    2010-07-01

    We develop a generalization of the Black-Cox structural model of default risk. The extended model captures uncertainty related to firm’s ability to avoid default even if company’s liabilities momentarily exceeding its assets. Diffusion in a linear potential with the radiation boundary condition is used to mimic a company’s default process. The exact solution of the corresponding Fokker-Planck equation allows for derivation of analytical expressions for the cumulative probability of default and the relevant hazard rate. Obtained closed formulas fit well the historical data on global corporate defaults and demonstrate the split behavior of credit spreads for bonds of companies in different categories of speculative-grade ratings with varying time to maturity. Introduction of the finite rate of default at the boundary improves valuation of credit risk for short time horizons, which is the key advantage of the proposed model. We also consider the influence of uncertainty in the initial distance to the default barrier on the outcome of the model and demonstrate that this additional source of incomplete information may be responsible for nonzero credit spreads for bonds with very short time to maturity.

  5. Numerical Study of Winter Diurnal Convection Over the City of Krasnoyarsk: Effects of Non-freezing River, Undulating Fog and Steam Devils

    NASA Astrophysics Data System (ADS)

    Hrebtov, M.; Hanjalić, K.

    2017-06-01

    We performed a numerical simulation of penetrative convection of an inversion-topped weakly stratified atmospheric boundary layer over urban terrain with a strong localized source of heat and moisture. With some simplifications, the case mimics the real environment of the Krasnoyarsk region in Russia where the non-freezing river Yenisei acts as a thermal and humidity source during winter, generating an undulating fog pattern along the river accompanied with scattered `steam devils'. An idealized full diurnal cycle was simulated using an unsteady Reynolds-averaged Navier-Stokes (RANS) three-equation algebraic flux model and the novel buoyancy-accounting functions for treating the ground boundary conditions. The results show a significant effect of the river on the net temperature and moisture distribution. The localized heat and moisture source leads to strong horizontal convection and marked non-uniformity of humidity concentration in the air. An interplay of several distinct large-scale vortex systems leads to a wavy pattern of moisture plumes over the river. The simulations deal with rare natural phenomena and show the capability of the RANS turbulence closure to capture the main features of flow and scalar fields on an affordable, relatively coarse, computational grid.

  6. Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think of a mechanism that activates the split form of the equations only at some parts of the domain. Another issue is how to define good sensors for determining in which parts of the computational domain a certain feature should be filtered by the appropriate numerical dissipation. For the present study we employ a wavelet technique introduced in as sensors. Here, the method is briefly described with selected numerical experiments.

  7. Evaluation of Far-Field Boundary Conditions for the Gust Response Problem

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Kreider, Kevin L.; Heminger, John A.

    2002-01-01

    This paper presents a detailed situ dy of four far-field boundary conditions used in solving the single airfoil gust response problem. The boundary conditions, examined are the partial Sommerfeld radiation condition with only radial derivatives, the full Sommerfeld radiation condition with both radial and tangential derivatives, the Bayliss-Turkel condition of order one, and the Hagstrom-Hariharan condition of order one. The main objectives of the study were to determine which far-field boundary condition was most accurate, which condition was least sensitive to changes in grid. and which condition was best overall in terms of both accuracy and efficiency. Through a systematic study of the flat plate gust response problem, it was determined that the Hagstrom-Hariharan condition was most accurate, the Bayliss-Turkel condition was least sensitive to changes in grid, and Bayliss-Turkel was best in terms of both accuracy and efficiency.

  8. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  9. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  10. Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space

    NASA Astrophysics Data System (ADS)

    Detournay, Stéphane; Riegler, Max

    2017-02-01

    In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.

  11. Discrete transparent boundary conditions for the mixed KDV-BBM equation

    NASA Astrophysics Data System (ADS)

    Besse, Christophe; Noble, Pascal; Sanchez, David

    2017-09-01

    In this paper, we consider artificial boundary conditions for the linearized mixed Korteweg-de Vries (KDV) and Benjamin-Bona-Mahoney (BBM) equation which models water waves in the small amplitude, large wavelength regime. Continuous (respectively discrete) artificial boundary conditions involve non local operators in time which in turn requires to compute time convolutions and invert the Laplace transform of an analytic function (respectively the Z-transform of an holomorphic function). In this paper, we propose a new, stable and fairly general strategy to carry out this crucial step in the design of transparent boundary conditions. For large time simulations, we also introduce a methodology based on the asymptotic expansion of coefficients involved in exact direct transparent boundary conditions. We illustrate the accuracy of our methods for Gaussian and wave packets initial data.

  12. A far-field non-reflecting boundary condition for two-dimensional wake flows

    NASA Technical Reports Server (NTRS)

    Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli

    1995-01-01

    Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.

  13. Transducer placement for robustness to variations in boundary conditions for active structural acoustic control

    NASA Astrophysics Data System (ADS)

    Sprofera, Joseph D.; Clark, Robert L.; Cabell, Randolph H.; Gibbs, Gary P.

    2005-05-01

    Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.

  14. Super-AGB Stars and their Role as Electron Capture Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.

    2017-11-01

    We review the lives, deaths and nucleosynthetic signatures of intermediate-mass stars in the range ≈6-12 M⊙, which form super-AGB stars near the end of their lives. The critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe), and between white dwarfs and supernovae, are examined along with the relative fraction of super-AGB stars that end life either as an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova event. The contribution of the other potential single-star channel to electron-capture supernovae, that of the failed massive stars, is also discussed. The factors that influence these different final fates and mass limits, such as composition, rotation, the efficiency of convection, the nuclear reaction rates, mass-loss rates, and third dredge-up efficiency, are described. We stress the importance of the binary evolution channels for producing electron-capture supernovae. Recent nucleosynthesis calculations and elemental yield results are discussed and a new set of s-process heavy element yields is presented. The contribution of super-AGB star nucleosynthesis is assessed within a Galactic perspective, and the (super-)AGB scenario is considered in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Last, we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.

  15. Wave breaking induced surface wakes and jets observed during a bora event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.

    2005-09-01

    An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.

  16. Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population

    USGS Publications Warehouse

    Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey F.; Atwood, Todd C.; Durner, George M.; Simac, Kristin S.; Amstrup, Steven C.

    2014-01-01

    Context: The potential for research methods to affect wildlife is an increasing concern among both scientists and the public. This topic has a particular urgency for polar bears because additional research is needed to monitor and understand population responses to rapid loss of sea ice habitat.Aims: This study used data collected from polar bears sampled in the Alaska portion of the southern Beaufort Sea to investigate the potential for capture to adversely affect behaviour and vital rates. We evaluated the extent to which capture, collaring and handling may influence activity and movement days to weeks post-capture, and body mass, body condition, reproduction and survival over 6 months or more.Methods: We compared post-capture activity and movement rates, and relationships between prior capture history and body mass, body condition and reproductive success. We also summarised data on capture-related mortality.Key results: Individual-based estimates of activity and movement rates reached near-normal levels within 2–3 days and fully normal levels within 5 days post-capture. Models of activity and movement rates among all bears had poor fit, but suggested potential for prolonged, lower-level rate reductions. Repeated captures was not related to negative effects on body condition, reproduction or cub growth or survival. Capture-related mortality was substantially reduced after 1986, when immobilisation drugs were changed, with only 3 mortalities in 2517 captures from 1987–2013.Conclusions: Polar bears in the southern Beaufort Sea exhibited the greatest reductions in activity and movement rates 3.5 days post-capture. These shorter-term, post-capture effects do not appear to have translated into any long-term effects on body condition, reproduction, or cub survival. Additionally, collaring had no effect on polar bear recovery rates, body condition, reproduction or cub survival.Implications: This study provides empirical evidence that current capture-based research methods do not have long-term implications, and are not contributing to observed changes in body condition, reproduction or survival in the southern Beaufort Sea. Continued refinement of capture protocols, such as the use of low-impact dart rifles and reversible drug combinations, might improve polar bear response to capture and abate short-term reductions in activity and movement post-capture.

  17. Numerical implementation of isolated horizon boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaramillo, Jose Luis; Ansorg, Marcus; Limousin, Francois

    2007-01-15

    We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasiequilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the conformal thin sandwich equations. As main results, we first establish the consistency of including in the set of boundary conditions a constant surface gravity prescription, interpretable as a lapse boundary condition, and second we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the conformalmore » transverse traceless equations with quasiequilibrium horizon conditions extend to the conformal thin sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon.« less

  18. Feature-based attention is functionally distinct from relation-based attention: The double dissociation between color-based capture and color-relation-based capture of attention.

    PubMed

    Du, Feng; Jiao, Jun

    2016-04-01

    The present study used a spatial blink task and a cuing task to examine the boundary between feature-based capture and relation-based capture. Feature-based capture occurs when distractors match the target feature such as target color. The occurrence of relation-based capture is contingent upon the feature relation between target and distractor (e.g., color relation). The results show that color distractors that match the target-nontarget color relation do not consistently capture attention when they appear outside of the attentional window, but distractors appearing outside the attentional window that match the target color consistently capture attention. In contrast, color distractors that best match the target-nontarget color relation but not the target color, are more likely to capture attention when they appear within the attentional window. Consistently, color cues that match the target-nontarget color relation produce a cuing effect when they appear within the attentional window, while target-color matched cues do not. Such a double dissociation between color-based capture and color-relation-based capture indicates functionally distinct mechanisms for these 2 types of attentional selection. This also indicates that the spatial blink task and the uninformative cuing task are measuring distinctive aspects of involuntary attention. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Applying the method of fundamental solutions to harmonic problems with singular boundary conditions

    NASA Astrophysics Data System (ADS)

    Valtchev, Svilen S.; Alves, Carlos J. S.

    2017-07-01

    The method of fundamental solutions (MFS) is known to produce highly accurate numerical results for elliptic boundary value problems (BVP) with smooth boundary conditions, posed in analytic domains. However, due to the analyticity of the shape functions in its approximation basis, the MFS is usually disregarded when the boundary functions possess singularities. In this work we present a modification of the classical MFS which can be applied for the numerical solution of the Laplace BVP with Dirichlet boundary conditions exhibiting jump discontinuities. In particular, a set of harmonic functions with discontinuous boundary traces is added to the MFS basis. The accuracy of the proposed method is compared with the results form the classical MFS.

  20. Fixating picture boundaries does not eliminate boundary extension: Implications for scene representation

    PubMed Central

    Gagnier, Kristin Michod; Dickinson, Christopher A.; Intraub, Helene

    2015-01-01

    Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14–15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2–4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception. PMID:23547787

  1. Fixating picture boundaries does not eliminate boundary extension: implications for scene representation.

    PubMed

    Michod Gagnier, Kristin; Dickinson, Christopher A; Intraub, Helene

    2013-01-01

    Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14-15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2-4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception.

  2. Global MHD modeling of an ICME focused on the physics involved in an ICME interacting with a solar wind

    NASA Astrophysics Data System (ADS)

    An, Jun-Mo; Magara, Tetsuya; Inoue, Satoshi; Hayashi, Keiji; Tanaka, Takashi

    2015-04-01

    We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to investigate the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event occurred on 29 September 2013. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain (50rs < r < 300rs). On the basis of a comparison between the properties of a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  3. Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2005-01-01

    A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  4. Limitations of the background field method applied to Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Nobili, Camilla; Otto, Felix

    2017-09-01

    We consider Rayleigh-Bénard convection as modeled by the Boussinesq equations, in the case of infinite Prandtl numbers and with no-slip boundary condition. There is a broad interest in bounds of the upwards heat flux, as given by the Nusselt number Nu, in terms of the forcing via the imposed temperature difference, as given by the Rayleigh number in the turbulent regime Ra ≫ 1 . In several studies, the background field method applied to the temperature field has been used to provide upper bounds on Nu in terms of Ra. In these applications, the background field method comes in the form of a variational problem where one optimizes a stratified temperature profile subject to a certain stability condition; the method is believed to capture the marginal stability of the boundary layer. The best available upper bound via this method is Nu ≲Ra/1 3 ( ln R a )/1 15 ; it proceeds via the construction of a stable temperature background profile that increases logarithmically in the bulk. In this paper, we show that the background temperature field method cannot provide a tighter upper bound in terms of the power of the logarithm. However, by another method, one does obtain the tighter upper bound Nu ≲ Ra /1 3 ( ln ln Ra ) /1 3 so that the result of this paper implies that the background temperature field method is unphysical in the sense that it cannot provide the optimal bound.

  5. Model simulation of meteorology and air quality during the summer PUMA intensive measurement campaign in the UK West Midlands conurbation.

    PubMed

    Baggott, Sarah; Cai, Xiaoming; McGregor, Glenn; Harrison, Roy M

    2006-05-01

    The Regional Atmospheric Modeling System (RAMS) and Urban Airshed Model (UAM IV) have been implemented for prediction of air pollutant concentrations within the West Midlands conurbation of the United Kingdom. The modelling results for wind speed, direction and temperature are in reasonable agreement with observations for two stations, one in a rural area and the other in an urban area. Predictions of surface temperature are generally good for both stations, but the results suggest that the quality of temperature prediction is sensitive to whether cloud cover is reproduced reliably by the model. Wind direction is captured very well by the model, while wind speed is generally overestimated. The air pollution climate of the UK West Midlands is very different to those for which the UAM model was primarily developed, and the methods used to overcome these limitations are described. The model shows a tendency towards under-prediction of primary pollutant (NOx and CO) concentrations, but with suitable attention to boundary conditions and vertical profiles gives fairly good predictions of ozone concentrations. Hourly updating of chemical concentration boundary conditions yields the best results, with input of vertical profiles desirable. The model seriously underpredicts NO2/NO ratios within the urban area and this appears to relate to inadequate production of peroxy radicals. Overall, the chemical reactivity predicted by the model appears to fall well below that occurring in the atmosphere.

  6. Numerical simulation of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis

    2012-11-01

    We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.

  7. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  8. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  9. 3D Hall MHD-EPIC Simulations of Ganymede's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Toth, G.; Jia, X.

    2017-12-01

    Fully kinetic modeling of a complete 3D magnetosphere is still computationally expensive and not feasible on current computers. While magnetohydrodynamic (MHD) models have been successfully applied to a wide range of plasma simulation, they cannot capture some important kinetic effects. We have recently developed a new modeling tool to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) magnetohydrodynamic model. This results in a kinetic model of the regions where kinetic effects are important. In addition to the MHD-EPIC modeling of the magnetosphere, the improved model presented here is now able to represent the moon as a resistive body. We use a stretched spherical grid with adaptive mesh refinement (AMR) to capture the resistive body and its boundary. A semi-implicit scheme is employed for solving the magnetic induction equation to allow time steps that are not limited by the resistivity. We have applied the model to Ganymede, the only moon in the solar system known to possess a strong intrinsic magnetic field, and included finite resistivity beneath the moon`s surface to model the electrical properties of the interior in a self-consistent manner. The kinetic effects of electrons and ions on the dayside magnetopause and tail current sheet are captured with iPIC3D. Magnetic reconnections under different upstream background conditions of several Galileo flybys are simulated to study the global reconnection rate and the magnetospheric dynamics

  10. A new dawn for industrial photosynthesis.

    PubMed

    Robertson, Dan E; Jacobson, Stuart A; Morgan, Frederick; Berry, David; Church, George M; Afeyan, Noubar B

    2011-03-01

    Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO(2) into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.

  11. High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions

    NASA Astrophysics Data System (ADS)

    Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake

    2017-03-01

    We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.

  12. The Effects of Selected Modelling Parameters on the Computed Optical Frequency Signatures of Naval Platforms

    DTIC Science & Technology

    2009-04-01

    Contrast signature plots for the simple wireframe model with user-defined thermal boundary conditions and an exhaust plume ...boundary conditions but no exhaust plume ................................................................................. 25 A.3. Contrast signature...plots for the simple wireframe model with no user-defined thermal boundary conditions or exhaust plume

  13. Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to a mesoscale model

    NASA Astrophysics Data System (ADS)

    Roberts, T. J.; Dütsch, M.; Hole, L. R.; Voss, P. B.

    2015-10-01

    Observations from CMET (Controlled Meteorological) balloons are analyzed in combination with mesoscale model simulations to provide insights into tropospheric meteorological conditions (temperature, humidity, wind-speed) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard over 5-12 May 2011, and measured vertical atmospheric profiles above Spitsbergen Island and over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer over a period of more than 10 h. The CMET profiles are compared to simulations using the Weather Research and Forecasting (WRF) model using nested grids and three different boundary layer schemes. Variability between the three model schemes was typically smaller than the discrepancies between the model runs and the observations. Over Spitsbergen, the CMET flights identified temperature inversions and low-level jets (LLJ) that were not captured by the model. Nevertheless, the model largely reproduced time-series obtained from the Ny-Ålesund meteorological station, with exception of surface winds during the LLJ. Over sea-ice east of Svalbard the model underestimated potential temperature and overestimated wind-speed compared to the CMET observations. This is most likely due to the full sea-ice coverage assumed by the model, and consequent underestimation of ocean-atmosphere exchange in the presence of leads or fractional coverage. The suite of continuous CMET soundings over a sea-ice free region to the northwest of Svalbard are analysed spatially and temporally, and compared to the model. The observed along-flight daytime increase in relative humidity is interpreted in terms of the diurnal cycle, and in the context of marine and terrestrial air-mass influences. Analysis of the balloon trajectory during the CMET soundings identifies strong wind-shear, with a low-level channeled flow. The study highlights the challenges of modelling the Arctic atmosphere, especially in coastal zones with varying topography, sea-ice and surface conditions. In this context, CMET balloons provide a valuable technology for profiling the free atmosphere and boundary layer in remote regions where few other observations are available for model validation.

  14. Edge states at phase boundaries and their stability

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Balachandran, A. P.; Pérez-Pardo, J. M.

    2016-10-01

    We analyze the effects of Robin-like boundary conditions on different quantum field theories of spin 0, 1/2 and 1 on manifolds with boundaries. In particular, we show that these conditions often lead to the appearance of edge states. These states play a significant role in physical phenomena like quantum Hall effect and topological insulators. We prove in a rigorous way the existence of spectral lower bounds on the kinetic term of different Hamiltonians, even in the case of Abelian gauge fields where it is a non-elliptic differential operator. This guarantees the stability and consistency of massive field theories with masses larger than the lower bound of the kinetic term. Moreover, we find an upper bound for the deepest edge state. In the case of Abelian gauge theories, we analyze a generalization of Robin boundary conditions. For Dirac fermions, we analyze the cases of Atiyah-Patodi-Singer and chiral bag boundary conditions. The explicit dependence of the bounds on the boundary conditions and the size of the system is derived under general assumptions.

  15. Middle and late Badenian palaeoenvironments in the northern Vienna Basin and their potential link to the Badenian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Harzhauser, Mathias; Grunert, Patrick; Mandic, Oleg; Lukeneder, Petra; Gallardo, Ángela García; Neubauer, Thomas A.; Carnevale, Giorgio; Landau, Bernard M.; Sauer, Roman; Strauss, Philipp

    2018-04-01

    Hydrocarbon exploration in the Bernhardsthal and Bernhardsthal-Sued oil fields documents an up to 2000 m thick succession of middle and upper Badenian deposits in this part of the northern Vienna Basin (Austria). Based on palaeontological analyses of core-samples, well-log data and seismic surveys we propose an integrated stratigraphy and describe the depositional environments. As the middle/late Badenian boundary is correlated with the Langhian/Serravallian boundary, the cores capture the crucial phase of the Middle Miocene Climate Transition. The middle Badenian starts with a major transgression leading to outer neritic to upper bathyal conditions in the northern Vienna Basin, indicated by Bathysiphon-assemblages and glass-sponges. A strong palaeo-relief and rapid synsedimentary subsidence accentuated sedimentation during this phase. The middle/late Badenian boundary coincides with a major drop of relative sea level by about 200 m, resulting in a rapid shift from deeper marine depositional environments to coastal and freshwater swamps. In coeval marine settings, a more than 100 m thick unit of anhydrite-bearing clay formed. This is the first evidence of evaporite precipitation during the Badenian Salinity Crisis in the Vienna Basin. Shallow lagoonal environments with diverse and fully marine mollusc and fish assemblages were established during the subsequent late Badenian re-flooding. In composition, the mollusc fauna differs considerably from older ones and is characterized by the sudden appearance of species with eastern Paratethyan affinities.

  16. Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.

    2016-01-01

    Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.

  17. Toward modeling of supercritical CO2 flow using the one-dimensional turbulence model

    NASA Astrophysics Data System (ADS)

    Schulz, F. T.; Glawe, C.; Schmidt, H.; Kerstein, A. R.

    2012-04-01

    Within the CCS (Carbon Capture and Storage) technology the transport of captured CO2 is increasingly regarded as the missing link in research. For industrial applications it is essential to transport CO2 from power plants to geological sites through pipelines and well bores. The effectiveness of such a transport could be increased by keeping CO2 in a supercritical state. This however requires a temperature of at least 31Celsius and a pressure above 73.8 bar. If these conditions are not maintained throughout the whole pipeline, which is challenging and expensive under non-laboratory conditions, density and phase changes and pressure fluctuations may result in harmful vibrations of the pipelines. Typically, simulations of pipeline flow are based on large-eddy simulations (LES) or the Reynolds averaged Navier-Stokes (RANS) equations which both do not resolve the smallest turbulent scales or even phase boundaries. Due to the effect that on pipe diameter scales the flow statistically changes predominantly in the wall normal direction one might consider 1D modeling approaches. The work presented here is part of the GeoEn II activities funded by the Federal Ministry of Education and Research (BMBF) to better understand risks and benefits of CCS technology. Our project goal is to better understand the small scale physics in turbulent CO2 flows and to improve subgrid-scale models used in LES codes. To achieve this we use ODT (One-Dimensional Turbulence), a statistical turbulence modeling strategy, where turbulent flow evolution along a notional 1D line of sight is emulated by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles along the line. The occurrence of an eddy itself is affected by the property profiles, resulting in a self-contained flow evolution that obeys the applicable conservation laws. Using a 1D ansatz permits a higher resolution of boundary and single phase density gradients which is key to understand the local CO2 pipe flow. Additionally, a level set technique can be used to track phase boundaries along the line of sight through a multi phase flow. Thus, artificial numerical smearing of the phase boundaries can be avoided. The ODT process can then move, create, and annihilate such interfaces. On the poster we illustrate some milestones to be reached to contribute to a better understanding of the small scale CO2 pipe flow problem. First ODT is validated and calibrated against a turbulent channel flow DNS at Reτ = 590 from Moser [1]. Second the evolution of turbulence statistics from a liquid jet experiment [2] is compared to ODT results. Concerning the single supercritical phase we give illustrative examples on how expectable temperature (density) changes in the pipe influence the turbulence [3]. Note that the numerical frame work presented here is not restricted to CO2 flows. The milestones and test cases already indicate other technical applications.

  18. Nonreflective Conditions for Perfectly Matched Layer in Computational Aeroacoustics

    NASA Astrophysics Data System (ADS)

    Choung, Hanahchim; Jang, Seokjong; Lee, Soogab

    2018-05-01

    In computational aeroacoustics, boundary conditions such as radiation, outflow, or absorbing boundary conditions are critical issues in that they can affect the entire solution of the computation. Among these types of boundary conditions, the perfectly matched layer boundary condition, which has been widely used in computational fluid dynamics and computational aeroacoustics, is developed by augmenting the additional term in the original governing equations by an absorption function so as to stably absorb the outgoing waves. Even if the perfectly matched layer is analytically a perfectly nonreflective boundary condition, spurious waves occur at the interface, since the analysis is performed in discretized space. Hence, this study is focused on factors that affect numerical errors from perfectly matched layer to find the optimum conditions for nonreflective PML. Through a mathematical approach, a minimum width of perfectly matched layer and an optimum absorption coefficient are suggested. To validate the prediction of the analysis, numerical simulations are performed in a generalized coordinate system, as well as in a Cartesian coordinate system.

  19. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    NASA Astrophysics Data System (ADS)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  20. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  1. Development and Testing of DAVID: A Close-in EMP Coupling Code for Arbitrarily Shaped Objects

    DTIC Science & Technology

    1975-11-07

    5.OE-9 sec. (Ambient boundary condition, 0 = 0, Y - YAMAX ). 65 13 b. Approximate contours of constant Ex at T -5.8E-9 sec. (Ambient boundary...condition, 0 =0 Y -YMAX). 65 13 c. Appro<imate contours of constant Ex at T = 9.8E-9 sec. (Ambient boundary condition, 0 = 0 °, Y = YAMAX ). 66 13 d...Approximate contours of constant Ex at T 2.9E-8 sec. (Ambient boundary condition, 0% Y = YAMAX ). 66 - 14 a. Approximate contours of constant Ex at T = 9.8E-9

  2. The PPP model of alternant cyclic polyenes with modified boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendazzoli, G.L.; Evangelisti, S.

    1995-08-15

    The extension of the PPP Hamiltonian for alternant cyclic polyenes to noninteger values of the pseudomomentum by imposing modified boundary conditions is discussed in detail. It is shown that a computer program for periodic boundary conditions can be easily adapted to the new boundary conditions. Full CI computations are carried out for some low-lying states of the PPP model of alternant cyclic polyenes (CH){sub N} (N even) at half-filling. The energy values obtained by using periodic (Bloch) and antiperiodic (Moebius) orbitals are used to perform energy extrapolations for N {yields} {infinity}. 38 refs., 2 figs., 5 tabs.

  3. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Shu, C.; Tan, D.

    2018-05-01

    An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.

  4. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  5. A new capture fraction method to map how pumpage affects surface water flow.

    PubMed

    Leake, Stanley A; Reeves, Howard W; Dickinson, Jesse E

    2010-01-01

    All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan.

  6. The impact of water vapor assimilation on quantitative precipitation forecast over the Washington, DC metropolitan area

    NASA Astrophysics Data System (ADS)

    Walford, Segayle Cereta

    Forecasting subtle, small-scale convective cases in both winter and summer time is an ongoing challenge in weather forecasting. Recent studies have shown that better structure of moisture within the boundary layer is crucial for improving forecasting skills, particularly quantitative precipitation forecasting (QPF). Lidars, which take high temporal observations of moisture, are able to capture very detailed structures, especially within the boundary layer where convection often begins. This study first investigates the extent to which an aerosol and a water vapor lidar are able to capture key boundary layer processes necessary for the development of convection. The results of this preliminary study show that the water vapor lidar is best able to capture the small scale water vapor variability that is necessary for the development of convection. These results are then used to investigate impacts of assimilating moisture from the Howard University Raman Lidar (HURL) for one mesoscale convective case, July 27-28, 2006. The data for this case is from the Water Vapor Validation Experiment-Satellite and Sondes (WAVES) field campaign located at the Howard University Beltsville Site (HUBS) in Beltsville, MD. Specifically, lidar-based water vapor mixing ratio profiles are assimilated into the Weather Research and Forecasting (WRF) regional model over a 4 km grid resolution over Washington, DC. Model verification is conducted using the Meteorological Evaluation Tool (MET) and the results from the lidar run are then compared to a control (no assimilation) run. The findings indicate that quantitatively conclusions cannot be draw from this one case study. However, qualitatively, the assimilation of the lidar observations improved the equivalent potential temperature, and water vapor distribution of the region. This difference changed location, strength and spatial coverage of the convective system over the HUBS region.

  7. Well-posedness of the free boundary problem in compressible elastodynamics

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    2018-02-01

    We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.

  8. Comparison of artificial absorbing boundaries for acoustic wave equation modelling

    NASA Astrophysics Data System (ADS)

    Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing

    2017-12-01

    Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.

  9. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-04-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.

  10. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell

    PubMed Central

    Livermore, Philip W.; Bailey, Lewis M.; Hollerbach, Rainer

    2016-01-01

    We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E1/2, where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1 m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E−1/2 or E−1). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth’s core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤ 10−5. PMID:26980289

  11. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    PubMed

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  12. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    DOE PAGES

    Jones, Sam; Ritter, Christian; Herwig, Falk; ...

    2015-12-03

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage themore » interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 10 9 (in some cases 10 10) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H- 12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. Here, we also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.« less

  13. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.

    PubMed

    Barutcu, A Rasim; Maass, Philipp G; Lewandowski, Jordan P; Weiner, Catherine L; Rinn, John L

    2018-04-13

    The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.

  14. Understanding the impact of insulating and conducting endplate boundary conditions on turbulence in CSDX through nonlocal simulations

    DOE PAGES

    Vaezi, P.; Holland, C.; Thakur, S. C.; ...

    2017-04-01

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  15. A new approach to implement absorbing boundary condition in biomolecular electrostatics.

    PubMed

    Goni, Md Osman

    2013-01-01

    This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.

  16. Colloidal crystal grain boundary formation and motion

    PubMed Central

    Edwards, Tara D.; Yang, Yuguang; Beltran-Villegas, Daniel J.; Bevan, Michael A.

    2014-01-01

    The ability to assemble nano- and micro- sized colloidal components into highly ordered configurations is often cited as the basis for developing advanced materials. However, the dynamics of stochastic grain boundary formation and motion have not been quantified, which limits the ability to control and anneal polycrystallinity in colloidal based materials. Here we use optical microscopy, Brownian Dynamic simulations, and a new dynamic analysis to study grain boundary motion in quasi-2D colloidal bicrystals formed within inhomogeneous AC electric fields. We introduce “low-dimensional” models using reaction coordinates for condensation and global order that capture first passage times between critical configurations at each applied voltage. The resulting models reveal that equal sized domains at a maximum misorientation angle show relaxation dominated by friction limited grain boundary diffusion; and in contrast, asymmetrically sized domains with less misorientation display much faster grain boundary migration due to significant thermodynamic driving forces. By quantifying such dynamics vs. compression (voltage), kinetic bottlenecks associated with slow grain boundary relaxation are understood, which can be used to guide the temporal assembly of defect-free single domain colloidal crystals. PMID:25139760

  17. An urban approach to planetary boundaries.

    PubMed

    Hoornweg, Daniel; Hosseini, Mehdi; Kennedy, Christopher; Behdadi, Azin

    2016-09-01

    The achievement of global sustainable development goals subject to planetary boundaries will mostly be determined by cities as they drive cultures, economies, material use, and waste generation. Locally relevant, applied and quantitative methodologies are critical to capture the complexity of urban infrastructure systems, global inter-connections, and to monitor local and global progress toward sustainability. An urban monitoring (and communications) tool is presented here illustrating that a city-based approach to sustainable development is possible. Following efforts to define and quantify safe planetary boundaries in areas such as climate change, biosphere integrity, and freshwater use, this paper modifies the methodology to propose boundaries from a city's perspective. Socio-economic boundaries, or targets, largely derived from the Sustainable Development Goals are added to bio-physical boundaries. Issues such as data availability, city priorities, and ease of implementation are considered. The framework is trialed for Toronto, Shanghai, Sao Paulo, Mumbai, and Dakar, as well as aggregated for the world's larger cities. The methodology provides an important tool for cities to play a more fulsome and active role in global sustainable development.

  18. Computation of three-dimensional multiphase flow dynamics by Fully-Coupled Immersed Flow (FCIF) solver

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming

    2017-12-01

    This work presents a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.

  19. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  20. Derivation and application of a class of generalized boundary conditions

    NASA Technical Reports Server (NTRS)

    Senior, Thomas B. A.; Volakis, John L.

    1989-01-01

    Boundary conditions involving higher order derivatives are presented for simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to nonplanar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for uniform coating at least a quarter of a wavelength in thickness.

  1. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  2. Bifurcation approach to a logistic elliptic equation with a homogeneous incoming flux boundary condition

    NASA Astrophysics Data System (ADS)

    Umezu, Kenichiro

    In this paper, we consider a semilinear elliptic boundary value problem in a smooth bounded domain, having the so-called logistic nonlinearity that originates from population dynamics, with a nonlinear boundary condition. Although the logistic nonlinearity has an absorption effect in the problem, the nonlinear boundary condition is induced by the homogeneous incoming flux on the boundary. The objective of our study is to analyze the existence of a bifurcation component of positive solutions from trivial solutions and its asymptotic behavior and stability. We perform this analysis using the method developed by Lyapunov and Schmidt, based on a scaling argument.

  3. Validation of Biomarkers for Prostate Cancer Prognosis

    DTIC Science & Technology

    2014-10-01

    University of collating and shipping TMAs to participating sites, We have found shortcomings with the BLISS system and STMAD for histological image capture...requires pathologists to sketch the boundary for cancer cell region. Though Dr. Tim Randolph will continue collaborating with Dr. Richard Levenson to add

  4. Capturing the Complexity of Additively Manufactured Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan

    2016-05-12

    The underlying mechanisms and kinetics controlling damage nucleation and growth as a function of material microstructure and loading paths are discussed. These experiments indicate that structural features such as grain boundaries, grain size distribution, grain morphology crystallographic texture are all factors that influence mechanical behavior.

  5. Simulations of the 2.5D inviscid primitive equations in a limited domain

    NASA Astrophysics Data System (ADS)

    Chen, Qingshan; Temam, Roger; Tribbia, Joseph J.

    2008-12-01

    The primitive equations (PEs) of the atmosphere and the oceans without viscosity are considered. These equations are not well-posed for any set of local boundary conditions. In space dimension 2.5 a set of nonlocal boundary conditions has been proposed in Chen et al. [Q. Chen, J. Laminie, A. Rousseau, R. Temam, J. Tribbia, A 2.5D Model for the equations of the ocean and the atmosphere, Anal. Appl. 5(3) (2007) 199-229]. The present article is aimed at testing the validity of these boundary conditions with physically relevant data. The issues tested are the well-posedness in the nonlinear case and the computational efficiency of the boundary conditions for limited area models [T.T. Warner, R.A. Peterson, R.E. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Amer. Meteor. Soc. 78(11) (1997) 2599-2617].

  6. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)

    NASA Astrophysics Data System (ADS)

    Frigola, Amanda; Prange, Matthias; Schulz, Michael

    2018-04-01

    The Middle Miocene Climate Transition was characterized by major Antarctic ice sheet expansion and global cooling during the interval ˜ 15-13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry, and vegetation. Additionally, Antarctic ice volume and geometry, sea level, and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The MMCO and MMG boundary conditions have been successfully applied to the Community Climate System Model version 3 (CCSM3) to provide evidence of their suitability for global climate modeling. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.

  7. Iterative methods for plasma sheath calculations: Application to spherical probe

    NASA Technical Reports Server (NTRS)

    Parker, L. W.; Sullivan, E. C.

    1973-01-01

    The computer cost of a Poisson-Vlasov iteration procedure for the numerical solution of a steady-state collisionless plasma-sheath problem depends on: (1) the nature of the chosen iterative algorithm, (2) the position of the outer boundary of the grid, and (3) the nature of the boundary condition applied to simulate a condition at infinity (as in three-dimensional probe or satellite-wake problems). Two iterative algorithms, in conjunction with three types of boundary conditions, are analyzed theoretically and applied to the computation of current-voltage characteristics of a spherical electrostatic probe. The first algorithm was commonly used by physicists, and its computer costs depend primarily on the boundary conditions and are only slightly affected by the mesh interval. The second algorithm is not commonly used, and its costs depend primarily on the mesh interval and slightly on the boundary conditions.

  8. Tweaking one-loop determinants in AdS3

    NASA Astrophysics Data System (ADS)

    Castro, Alejandra; Keeler, Cynthia; Szepietowski, Phillip

    2017-10-01

    We revisit the subject of one-loop determinants in AdS3 gravity via the quasi-normal mode method. Our goal is to evaluate a one-loop determinant with chiral boundary conditions for the metric field; chirality is achieved by imposing Dirichlet boundary conditions on certain components while others satisfy Neumann. Along the way, we give a generalization of the quasinormal mode method for stationary (non-static) thermal backgrounds, and propose a treatment for Neumann boundary conditions in this framework. We evaluate the graviton one-loop determinant on the Euclidean BTZ background with parity-violating boundary conditions (CSS), and find excellent agreement with the dual warped CFT. We also discuss a more general falloff in AdS3 that is related to two dimensional quantum gravity in lightcone gauge. The behavior of the ghost fields under both sets of boundary conditions is novel and we discuss potential interpretations.

  9. Impact assessment of extreme storm events using a Bayesian network

    USGS Publications Warehouse

    den Heijer, C.(Kees); Knipping, Dirk T.J.A.; Plant, Nathaniel G.; van Thiel de Vries, Jaap S. M.; Baart, Fedor; van Gelder, Pieter H. A. J. M.

    2012-01-01

    This paper describes an investigation on the usefulness of Bayesian Networks in the safety assessment of dune coasts. A network has been created that predicts the erosion volume based on hydraulic boundary conditions and a number of cross-shore profile indicators. Field measurement data along a large part of the Dutch coast has been used to train the network. Corresponding storm impact on the dunes was calculated with an empirical dune erosion model named duros+. Comparison between the Bayesian Network predictions and the original duros+ results, here considered as observations, results in a skill up to 0.88, provided that the training data covers the range of predictions. Hence, the predictions from a deterministic model (duros+) can be captured in a probabilistic model (Bayesian Network) such that both the process knowledge and uncertainties can be included in impact and vulnerability assessments.

  10. Modeling variability in porescale multiphase flow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Bowen; Bao, Jie; Oostrom, Mart

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulationsmore » are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.« less

  11. Convective and microphysics parameterization impact on simulating heavy rainfall in Semarang (case study on February 12th, 2015)

    NASA Astrophysics Data System (ADS)

    Faridatussafura, Nurzaka; Wandala, Agie

    2018-05-01

    The meteorological model WRF-ARW version 3.8.1 is used for simulating the heavy rainfall in Semarang that occurred on February 12th, 2015. Two different convective schemes and two different microphysics scheme in a nested configuration were chosen. The sensitivity of those schemes in capturing the extreme weather event has been tested. GFS data were used for the initial and boundary condition. Verification on the twenty-four hours accumulated rainfall using GSMaPsatellite data shows that Kain-Fritsch convective scheme and Lin microphysics scheme is the best combination scheme among the others. The combination also gives the highest success ratio value in placing high intensity rainfall area. Based on the ROC diagram, KF-Lin shows the best performance in detecting high intensity rainfall. However, the combination still has high bias value.

  12. Greenhouse gas measurements from aircraft during CARVE

    NASA Astrophysics Data System (ADS)

    Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.

    2012-12-01

    Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).

  13. How multiple causes combine: independence constraints on causal inference.

    PubMed

    Liljeholm, Mimi

    2015-01-01

    According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.

  14. Direct numerical simulations of mack-mode damping on porous coated cones

    NASA Astrophysics Data System (ADS)

    Lüdeke, H.; Wartemann, V.

    2013-06-01

    The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.

  15. An influence of extremal edges on boundary extension.

    PubMed

    Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P

    2015-08-01

    Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.

  16. Two Legendre-Dual-Petrov-Galerkin Algorithms for Solving the Integrated Forms of High Odd-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.

    2014-01-01

    Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620

  17. Off-wall boundary conditions for turbulent flows obtained from buffer-layer minimal flow units

    NASA Astrophysics Data System (ADS)

    Garcia-Mayoral, Ricardo; Pierce, Brian; Wallace, James

    2012-11-01

    There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ = 400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J . FluidMech .) . Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows. 2012 CTR Summer Program.

  18. The Impact of Model Uncertainty on Spatial Compensation in Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Clark, Robert L.

    2005-01-01

    Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.

  19. Air Force Academy Aeronautics Digest - Spring/Summer 1981.

    DTIC Science & Technology

    1981-12-01

    real fluids with friction or viscosity we know that this boundary condition is specified by requiring the velocity to be zero at the surface). This is...interest to be zero . This is the velocity surface boundary condition (VBC). For the second boundary condition far away from the body it is reasonable to...remains unchanged). Finally, the analytic solution, in terms of the surface velocity distribution at a zero -lift condition, will be presented for selected

  20. When the dissolution of perceived body boundaries elicits happiness: The effect of selflessness induced by a body scan meditation.

    PubMed

    Dambrun, Michaël

    2016-11-01

    Drawing on the Self-centeredness/Selflessness Happiness Model (SSHM), we hypothesized that a reduction in the salience of perceived body boundaries would lead to increase optimal emotional experience. These constructs were assessed by means of self-report measures. Participants (n=53) were randomly assigned to either the selflessness (induced by a body scan meditation) condition or the control condition. As expected, the reduction in perceived body salience was greater in the body scan meditation condition than in the control condition. The change in perceived body salience was accompanied by a change in happiness and anxiety. Participants in the body-scan meditation condition reported greater happiness and less anxiety than participants in the control condition. Happiness increased when the salience of body boundaries decreased. Mediation analyses reveal that the change in happiness was mediated by the change in perceived body boundaries, which suggests that selflessness elicits happiness via dissolution of perceived body boundaries. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Progressive wave expansions and open boundary problems

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Hariharan, S. I.

    1995-01-01

    In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.

  2. Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries

    NASA Astrophysics Data System (ADS)

    Holst, Michael; Meier, Caleb; Tsogtgerel, G.

    2018-01-01

    In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (Class Quantum Gravity 30:205011, 2013), and Holst et al. (Phys Rev Lett 100(16):161101, 2008, Commun Math Phys 288(2):547-613, 2009), and also on the work of Maxwell (J Hyperbolic Differ Eqs 2(2):521-546, 2005a, Commun Math Phys 253(3):561-583, 2005b, Math Res Lett 16(4):627-645, 2009) and Dain (Class Quantum Gravity 21(2):555-573, 2004), under reasonable assumptions on the data we prove existence of both near- and far-from-constant mean curvature (CMC) solutions for a class of Robin boundary conditions commonly used in the literature for modeling black holes, with a third existence result for CMC appearing as a special case. Dain and Maxwell addressed initial data engineering for space-times that evolve to contain black holes, determining solutions to the conformal formulation on an asymptotically Euclidean manifold in the CMC setting, with interior boundary conditions representing excised interior black hole regions. Holst and Tsogtgerel compiled the interior boundary results covered by Dain and Maxwell, and then developed general interior conditions to model the apparent horizon boundary conditions of Dainand Maxwell for compact manifolds with boundary, and subsequently proved existence of solutions to the Lichnerowicz equation on compact manifolds with such boundary conditions. This paper picks up where Holst and Tsogtgerel left off, addressing the general non-CMC case for compact manifolds with boundary. As in our previous articles, our focus here is again on low regularity data and on the interaction between different types of boundary conditions. While our work here serves primarily to extend the solution theory for the compact with boundary case, we also develop several technical tools that have potential for use for other cases.

  3. Immersed Boundary Methods for Optimization of Strongly Coupled Fluid-Structure Systems

    NASA Astrophysics Data System (ADS)

    Jenkins, Nicholas J.

    Conventional methods for design of tightly coupled multidisciplinary systems, such as fluid-structure interaction (FSI) problems, traditionally rely on manual revisions informed by a loosely coupled linearized analysis. These approaches are both inaccurate for a multitude of applications, and they require an intimate understanding of the assumptions and limitations of the procedure in order to soundly optimize the design. Computational optimization, in particular topology optimization, has been shown to yield remarkable results for problems in solid mechanics using density interpolations schemes. In the context of FSI, however, well defined boundaries play a key role in both the design problem and the mechanical model. Density methods neither accurately represent the material boundary, nor provide a suitable platform to apply appropriate interface conditions. This thesis presents a new framework for shape and topology optimization of FSI problems that uses for the design problem the Level Set method (LSM) to describe the geometry evolution in the optimization process. The Extended Finite Element method (XFEM) is combined with a fictitiously deforming fluid domain (stationary arbitrary Lagrangian-Eulerian method) to predict the FSI response. The novelty of the proposed approach lies in the fact that the XFEM explicitly captures the material boundary defined by the level set iso-surface. Moreover, the XFEM provides a means to discretize the governing equations, and weak immersed boundary conditions are applied with Nitsche's Method to couple the fields. The flow is predicted by the incompressible Navier-Stokes equations, and a finite-deformation solid model is developed and tested for both hyperelastic and linear elastic problems. Transient and stationary numerical examples are presented to validate the FSI model and numerical solver approach. Pertaining to the optimization of FSI problems, the parameters of the discretized level set function are defined as explicit functions of the optimization variables, and the parameteric optimization problem is solved by nonlinear programming methods. The gradients of the objective and constrains are computed by the adjoint method for the global monolithic fluid-solid system. Two types of design problems are explored for optimization of the fluid-structure response: 1) the internal structural topology is varied, preserving the fluid-solid interface geometry, and 2) the fluid-solid interface is manipulated directly, which leads to simultaneously configuring both internal structural topology and outer mold shape. The numerical results show that the LSM-XFEM approach is well suited for designing practical applications, while at the same time reducing the requirement on highly refined mesh resolution compared to traditional density methods. However, these results also emphasize the need for a more robust embedded boundary condition framework. Further, the LSM can exhibit greater dependence on initial design seeding, and can impede design convergence. In particular for the strongly coupled FSI analysis developed here, the thinning and eventual removal of structural members can cause jumps in the evolution of the optimization functions.

  4. Capture zones for simple aquifers

    USGS Publications Warehouse

    McElwee, Carl D.

    1991-01-01

    Capture zones showing the area influenced by a well within a certain time are useful for both aquifer protection and cleanup. If hydrodynamic dispersion is neglected, a deterministic curve defines the capture zone. Analytical expressions for the capture zones can be derived for simple aquifers. However, the capture zone equations are transcendental and cannot be explicitly solved for the coordinates of the capture zone boundary. Fortunately, an iterative scheme allows the solution to proceed quickly and efficiently even on a modest personal computer. Three forms of the analytical solution must be used in an iterative scheme to cover the entire region of interest, after the extreme values of the x coordinate are determined by an iterative solution. The resulting solution is a discrete one, and usually 100-1000 intervals along the x-axis are necessary for a smooth definition of the capture zone. The presented program is written in FORTRAN and has been used in a variety of computing environments. No graphics capability is included with the program; it is assumed the user has access to a commercial package. The superposition of capture zones for multiple wells is expected to be satisfactory if the spacing is not too close. Because this program deals with simple aquifers, the results rarely will be the final word in a real application.

  5. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  6. Repulsive Casimir force in Bose–Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Biswas, Shovon

    2018-04-01

    We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.

  7. Improved Boundary Conditions for Cell-centered Difference Schemes

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.

  8. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  9. Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Arend, David J.; Wolter, John D.

    2017-01-01

    The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.

  10. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, E.; Odintsov, S. D.; Institucio Catalana de Recerca i Estudis Avanccats

    2009-03-15

    We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robinmore » boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.« less

  11. Numerical Simulation of Floating Bodies in Extreme Free Surface Waves

    NASA Astrophysics Data System (ADS)

    Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling

    2010-05-01

    A task of the EPSRC funded research project 'Extreme Wave loading on Offshore Wave Energy Devices: a Hierarchical Team Approach' is to investigate the survivability of two wave energy converter (WEC) devices Pelamis and the Manchester Bobber using different CFD approaches. Both devices float on the water surface, generating the electricity from the motion of the waves. In this paper, we describe developments of the AMAZON-SC 3D numerical wave tank (NWT) to study extreme wave loading of a fixed or floating (in Heave motion) structure. The extreme wave formulation as an inlet condition is due to Dalzell (1999) and Ning et. al. (2009) in which a first or second-order Stokes focused wave can be prescribed. The AMAZON-SC 3D code (see e.g. Hu et al. (2009)) uses a cell centred finite volume method of the Godunov-type for the space discretization of the Euler and Navier Stokes equations. The computational domain includes both air and water regions with the air/water boundary captured as a discontinuity in the density field thereby admitting the break up and recombination of the free surface. Temporal discretisation uses the artificial compressibility method and a dual time stepping strategy to maintain a divergence free velocity field. Cartesian cut cells are used to provide a fully boundary-fitted gridding capability on an regular background Cartesian grid. Solid objects are cut out of the background mesh leaving a set of irregularly shaped cells fitted to the boundary. The advantages of the cut cell approach have been outlined previously by Causon et al. (2000, 2001) including its flexibility for dealing with complex geometries whether stationary or in relative motion. The field grid does not need to be recomputed globally or even locally for moving body cases; all that is necessary is to update the local cut cell data at the body contour for as long as the motion continues. The handing of numerical wave paddles and device motion in a NWT is therefore straightforward and efficient. Firstly, extreme design wave conditions are generated in an empty NWT and compared with physical experiments as a precursor to calculations to investigate the survivability of the Bobber device operating in a challenging wave climate. Secondly, we consider a bench-mark test case involving in a first order regular wave maker acting on a fixed cylinder and Pelamis. Finally, a floating Bobber has been simulated under extreme wave conditions. These results will be reported at the meeting. Causon D.M., Ingram D.M., Mingham C.G., Yang G. Pearson R.V. (2000). Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water resources, 23: 545-562. Causon D.M., Ingram D.M., Mingham C.G. (2000). A Cartesian cut cell method for shallow water flows with moving boundaries. Advances in Water resources, 24: 899-911. Dalzell J.F. 1999 A note on finite depth second-order wave-wave interactions. Appl. Ocean Res. 21, 105-111. Ning D.Z., Zang J., Liu S.X. Eatock Taylor R. Teng B. & Taylor P.H. 2009 Free surface and wave kinematics for nonlinear focused wave groups. J. Ocean Engineering. Accepted. Hu Z.Z., Causon D.M., Mingham C.M. and Qian L.(2009). Numerical wave tank study of a wave energy converter in heave. Proceedlings 19th ISOPE conference, Osaka, Japan Qian L., Causon D.M. & Mingham C.G., Ingram D.M. 2006 A free-surface capturing method for two fluid flows with moving bodies. Proc. Roy. Soc. London, Vol. A 462 21-42.

  12. Boundary enhanced effects on the existence of quadratic solitons

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Zhang, Ting; Li, Wenjie; Lu, Daquan; Guo, Qi; Hu, Wei

    2018-05-01

    We investigate, both analytically and numerically, the boundary enhanced effects exerted on the quadratic solitons consisting of fundamental waves and oscillatory second harmonics in the presence of boundary conditions. The nonlocal analogy predicts that the soliton for fundamental wave is supported by the balance between equivalent nonlinear confinement and diffraction (or dispersion). Under Snyder and Mitchell's strongly nonlocal approximation, we obtain the analytical soliton solutions both with and without the boundary conditions to show the impact of boundary conditions. We can distinguish explicitly the nonlinear confinement between the second harmonic mutual interaction and the enhanced effects caused by remote boundaries. Those boundary enhanced effects on the existence of solitons can be positive or negative, which depend on both sample size and nonlocal parameter. The piecewise existence regime of solitons can be explained analytically. The analytical soliton solutions are verified by the numerical ones and the discrepancy between them is also discussed.

  13. Cylindrical Couette flow of a rarefied gas: Effect of a boundary condition on the inverted velocity profile.

    PubMed

    Kosuge, Shingo

    2015-07-01

    The cylindrical Couette flow of a rarefied gas between a rotating inner cylinder and a stationary outer cylinder is investigated under the following two kinds of kinetic boundary conditions. One is the modified Maxwell-type boundary condition proposed by Dadzie and Méolans [J. Math. Phys. 45, 1804 (2004)] and the other is the Cercignani-Lampis condition, both of which have separate accommodation coefficients associated with the molecular velocity component normal to the boundary and with the tangential component. An asymptotic analysis of the Boltzmann equation for small Knudsen numbers and a numerical analysis of the Bhatnagar-Gross-Krook model equation for a wide range of the Knudsen number are performed to clarify the effect of each accommodation coefficient as well as of the boundary condition itself on the behavior of the gas, especially on the flow-velocity profile. As a result, the velocity-slip and temperature-jump conditions corresponding to the above kinetic boundary conditions are derived, which are necessary for the fluid-dynamic description of the problem for small Knudsen numbers. The parameter range for the onset of the velocity inversion phenomenon, which is related mainly to the decrease in the tangential momentum accommodation, is also obtained.

  14. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: Stationary modes

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1988-01-01

    Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.

  15. The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun

    1993-01-01

    The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.

  16. Generation of Turbulent Inflow Conditions for Pipe Flow via an Annular Ribbed Turbulator

    NASA Astrophysics Data System (ADS)

    Moallemi, Nima; Brinkerhoff, Joshua

    2016-11-01

    The generation of turbulent inflow conditions adds significant computational expense to direct numerical simulations (DNS) of turbulent pipe flows. Typical approaches involve introducing boxes of isotropic turbulence to the velocity field at the inlet of the pipe. In the present study, an alternative method is proposed that incurs a lower computational cost and allows the anisotropy observed in pipe turbulence to be physically captured. The method is based on a periodic DNS of a ribbed turbulator upstream of the inlet boundary of the pipe. The Reynolds number based on the bulk velocity and pipe diameter is 5300 and the blockage ratio (BR) is 0.06 based on the rib height and pipe diameter. The pitch ratio is defined as the ratio of rib streamwise spacing to rib height and is varied between 1.7 and 5.0. The generation of turbulent flow structures downstream of the ribbed turbulator are identified and discussed. Suitability of this method for accurate representation of turbulent inflow conditions is assessed through comparison of the turbulent mean properties, fluctuations, Reynolds stress profiles, and spectra with published pipe flow DNS studies. The DNS results achieve excellent agreement with the numerical and experimental data available in the literature.

  17. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    NASA Astrophysics Data System (ADS)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  18. Stress-intensity factor calculations using the boundary force method

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Newman, J. C., Jr.

    1987-01-01

    The Boundary Force Method (BFM) was formulated for the three fundamental problems of elasticity: the stress boundary value problem, the displacement boundary value problem, and the mixed boundary value problem. Because the BFM is a form of an indirect boundary element method, only the boundaries of the region of interest are modeled. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate is used as the fundamental solution. Thus, unlike other boundary element methods, here the crack face need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing a center-cracked specimen subjected to mixed boundary conditions and a three-hole cracked configuration subjected to traction boundary conditions. The results obtained are in good agreement with accepted numerical solutions. The method is then used to generate stress-intensity solutions for two common cracked configurations: an edge crack emanating from a semi-elliptical notch, and an edge crack emanating from a V-notch. The BFM is a versatile technique that can be used to obtain very accurate stress intensity factors for complex crack configurations subjected to stress, displacement, or mixed boundary conditions. The method requires a minimal amount of modeling effort.

  19. Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain)

    NASA Astrophysics Data System (ADS)

    Vacherat, Arnaud; Bonnet, Stéphane; Mouthereau, Frédéric

    2018-05-01

    Intracontinental endorheic basins are key elements of source-to-sink systems as they preserve sediments eroded from the surrounding catchments. Drainage reorganization in such a basin in response to changing boundary conditions has strong implications on the sediment routing system and on landscape evolution. The Ebro and Duero basins represent two foreland basins, which developed in response to the growth of surrounding compressional orogens, the Pyrenees and the Cantabrian mountains to the north, the Iberian Ranges to the south, and the Catalan Coastal Range to the east. They were once connected as endorheic basins in the early Oligocene. By the end of the Miocene, new post-orogenic conditions led to the current setting in which the Ebro and Duero basins are flowing in opposite directions, towards the Mediterranean Sea and the Atlantic Ocean. Although these two hydrographic basins recorded a similar history, they are characterized by very different morphologic features. The Ebro basin is highly excavated, whereas relicts of the endorheic stage are very well preserved in the Duero basin. The contrasting morphological preservation of the endorheic stage represents an ideal natural laboratory to study the drivers (internal and/or external) of post-orogenic drainage divide mobility, drainage network, and landscape evolution. To that aim, we use field and map observations and we apply the χ analysis of river profiles along the divide between the Ebro and Duero drainage basins. We show here that the contrasting excavation of the Ebro and Duero basins drives a reorganization of their drainage network through a series of captures, which resulted in the southwestward migration of their main drainage divide. Fluvial captures have a strong impact on drainage areas, fluxes, and their respective incision capacity. We conclude that drainage reorganization driven by the capture of the Duero basin rivers by the Ebro drainage system explains the first-order preservation of endorheic stage remnants in the Duero basin, due to drainage area loss, independently from tectonics and climate.

  20. An outflow boundary condition for aeroacoustic computations

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Hagstrom, Thomas

    1995-01-01

    A formulation of boundary condition for flows with small disturbances is presented. The authors test their methodology in an axisymmetric jet flow calculation, using both the Navier-Stokes and Euler equations. Solutions in the far field are assumed to be oscillatory. If the oscillatory disturbances are small, the growth of the solution variables can be predicted by linear theory. Eigenfunctions of the linear theory are used explicitly in the formulation of the boundary conditions. This guarantees correct solutions at the boundary in the limit where the predictions of linear theory are valid.

  1. Numerical Modeling of the Propagation Environment in the Atmospheric Boundary Layer over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Atkinson, B. W.; Li, J.-G.; Plant, R. S.

    2001-03-01

    Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land-sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.

  2. Rethinking Combined Departments: An Argument for History and Anthropology

    ERIC Educational Resources Information Center

    Sluis, Ageeth; Edwards, Elise

    2013-01-01

    Many opportunities for more integrated teaching that better capture the interdisciplinary nature of contemporary scholars' work and better achieve the aims of liberal arts education still remain untapped, particularly at smaller schools where combined departments are often necessary. The disciplinary boundaries between history and sociocultural…

  3. Transport coefficient computation based on input/output reduced order models

    NASA Astrophysics Data System (ADS)

    Hurst, Joshua L.

    The guiding purpose of this thesis is to address the optimal material design problem when the material description is a molecular dynamics model. The end goal is to obtain a simplified and fast model that captures the property of interest such that it can be used in controller design and optimization. The approach is to examine model reduction analysis and methods to capture a specific property of interest, in this case viscosity, or more generally complex modulus or complex viscosity. This property and other transport coefficients are defined by a input/output relationship and this motivates model reduction techniques that are tailored to preserve input/output behavior. In particular Singular Value Decomposition (SVD) based methods are investigated. First simulation methods are identified that are amenable to systems theory analysis. For viscosity, these models are of the Gosling and Lees-Edwards type. They are high order nonlinear Ordinary Differential Equations (ODEs) that employ Periodic Boundary Conditions. Properties can be calculated from the state trajectories of these ODEs. In this research local linear approximations are rigorously derived and special attention is given to potentials that are evaluated with Periodic Boundary Conditions (PBC). For the Gosling description LTI models are developed from state trajectories but are found to have limited success in capturing the system property, even though it is shown that full order LTI models can be well approximated by reduced order LTI models. For the Lees-Edwards SLLOD type model nonlinear ODEs will be approximated by a Linear Time Varying (LTV) model about some nominal trajectory and both balanced truncation and Proper Orthogonal Decomposition (POD) will be used to assess the plausibility of reduced order models to this system description. An immediate application of the derived LTV models is Quasilinearization or Waveform Relaxation. Quasilinearization is a Newton's method applied to the ODE operator equation. Its a recursive method that solves nonlinear ODE's by solving a LTV systems at each iteration to obtain a new closer solution. LTV models are derived for both Gosling and Lees-Edwards type models. Particular attention is given to SLLOD Lees-Edwards models because they are in a form most amenable to performing Taylor series expansion, and the most commonly used model to examine viscosity. With linear models developed a method is presented to calculate viscosity based on LTI Gosling models but is shown to have some limitations. To address these issues LTV SLLOD models are analyzed with both Balanced Truncation and POD and both show that significant order reduction is possible. By examining the singular values of both techniques it is shown that Balanced Truncation has a potential to offer greater reduction, which should be expected as it is based on the input/output mapping instead of just the state information as in POD. Obtaining reduced order systems that capture the property of interest is challenging. For Balanced Truncation reduced order models for 1-D LJ and FENE systems are obtained and are shown to capture the output of interest fairly well. However numerical challenges currently limit this analysis to small order systems. Suggestions are presented to extend this method to larger systems. In addition reduced 2nd order systems are obtained from POD. Here the challenge is extending the solution beyond the original period used for the projection, in particular identifying the manifold the solution travels along. The remaining challenges are presented and discussed.

  4. Polynomial decay rate of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-02-01

    In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.

  5. Convergence results for pseudospectral approximations of hyperbolic systems by a penalty type boundary treatment

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele; Gottlieb, David

    1989-01-01

    A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.

  6. Scalar discrete nonlinear multipoint boundary value problems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jesus; Taylor, Padraic

    2007-06-01

    In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].

  7. Variance reduction through robust design of boundary conditions for stochastic hyperbolic systems of equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordström, Jan, E-mail: jan.nordstrom@liu.se; Wahlsten, Markus, E-mail: markus.wahlsten@liu.se

    We consider a hyperbolic system with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions give different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analytical and numerical estimates of the variance of the solution are presented. As an application, we study the effect of this technique on Maxwell's equations as well as on a subsonic outflow boundary for themore » Euler equations.« less

  8. Asymptotic boundary conditions for dissipative waves: General theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  9. On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains

    NASA Astrophysics Data System (ADS)

    Cantrell, Robert Stephen; Cosner, Chris

    We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends on the population density. Specifically, the rate at which the population crosses the boundary is assumed to decrease as the density of the population increases. The model is motivated by empirical work on the Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to eigenvalue problems with nonstandard boundary conditions.

  10. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems; results and implications of numerical experiments

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.

    1987-01-01

    The most critical and difficult aspect of defining a groundwater system or problem for conceptual analysis or numerical simulation is the selection of boundary conditions . This report demonstrates the effects of different boundary conditions on the steady-state response of otherwise similar ground-water systems to a pumping stress. Three series of numerical experiments illustrate the behavior of three hypothetical groundwater systems that are rectangular sand prisms with the same dimensions but with different combinations of constant-head, specified-head, no-flow, and constant-flux boundary conditions. In the first series of numerical experiments, the heads and flows in all three systems are identical, as are the hydraulic conductivity and system geometry . However, when the systems are subjected to an equal stress by a pumping well in the third series, each differs significantly in its response . The highest heads (smallest drawdowns) and flows occur in the systems most constrained by constant- or specified-head boundaries. These and other observations described herein are important in steady-state calibration, which is an integral part of simulating many ground-water systems. Because the effects of boundary conditions on model response often become evident only when the system is stressed, a close match between the potential distribution in the model and that in the unstressed natural system does not guarantee that the model boundary conditions correctly represent those in the natural system . In conclusion, the boundary conditions that are selected for simulation of a ground-water system are fundamentally important to groundwater systems analysis and warrant continual reevaluation and modification as investigation proceeds and new information and understanding are acquired.

  11. Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Frota, Cícero Lopes; Vicente, André

    2018-06-01

    In this paper, we deal with the uniform stabilization to the mixed problem for a nonlinear wave equation and acoustic boundary conditions on a non-locally reacting boundary. The main purpose is to study the stability when the internal damping acts only over a subset ω of the domain Ω and the boundary damping is of the viscoelastic type.

  12. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  13. A boundary condition for layer to level ocean model interaction

    NASA Astrophysics Data System (ADS)

    Mask, A.; O'Brien, J.; Preller, R.

    2003-04-01

    A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.

  14. On the Effective Construction of Compactly Supported Wavelets Satisfying Homogenous Boundary Conditions on the Interval

    NASA Technical Reports Server (NTRS)

    Chiavassa, G.; Liandrat, J.

    1996-01-01

    We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.

  15. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less

  16. Evaluation of several non-reflecting computational boundary conditions for duct acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.; Hodge, Steve L.

    1994-01-01

    Several non-reflecting computational boundary conditions that meet certain criteria and have potential applications to duct acoustics are evaluated for their effectiveness. The same interior solution scheme, grid, and order of approximation are used to evaluate each condition. Sparse matrix solution techniques are applied to solve the matrix equation resulting from the discretization. Modal series solutions for the sound attenuation in an infinite duct are used to evaluate the accuracy of each non-reflecting boundary conditions. The evaluations are performed for sound propagation in a softwall duct, for several sources, sound frequencies, and duct lengths. It is shown that a recently developed nonlocal boundary condition leads to sound attenuation predictions considerably more accurate for short ducts. This leads to a substantial reduction in the number of grid points when compared to other non-reflecting conditions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yousong, E-mail: yousong.luo@rmit.edu.au

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  18. Sea ice melting in the marginal ice zone.

    USGS Publications Warehouse

    Josberger, E.G.

    1983-01-01

    The heat and salt flux boundary conditions together with the freezing curve relationship are a necessary component of any ice- sea water thermodynamic model. A neutral two-layer oceanic planetary boundary layer model that incorporates these boundary conditions is used. The results are discussed. -from Author

  19. Scalar Casimir densities and forces for parallel plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.

    2018-04-01

    We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.

  20. Effects of local film properties on the nucleation and growth of tin whiskers and hillocks

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin

    Whiskers and hillocks grow spontaneously on Pb-free Sn electrodeposited films as a response to thin film stresses. Stress relaxation occurs by atom deposition to specific grain boundaries in the plane of the film, with hillocks being formed when grain boundary migration accompanies growth out of the plane of the film. The implication for whisker formation in electronics is serious: whiskers can grow to be millimeters long, sometimes causing short circuiting between adjacent components and, thereby, posing serious electrical reliability risks. In order to develop more effective whisker mitigation strategies, a predictive physics-based model has been needed. A growth model is developed, based on grain boundary faceting, localized Coble creep, as well as grain boundary sliding for whiskers, and grain boundary sliding with shear induced grain boundary migration for hillocks. In this model of whisker formation, two mechanisms are important: accretion of atoms by Coble creep on grain boundary planes normal to the growth direction inducing a grain boundary shear and grain boundary sliding in the direction of whisker growth. The model accurately captures the importance of the geometry of "surface grains"---shallow grains on film surfaces whose depths are significantly less than their in-plane grain sizes. A critical factor in the analysis is the ratio of the grain boundary sliding coefficient to the in-plane film compressive stress. If the accretion-induced shear stresses are not coupled to grain boundary motion and sliding occurs, a whisker forms. If the shear stress is coupled to grain boundary migration, a hillock forms. Based on this model, long whiskers grow from shallow surface grains with easy grain boundary sliding in the direction of growth. Other observed growth morphologies will be discussed in light of our model. Additional insights into the preferred sites for whisker and hillock growth were developed based on elastic anisotropy, local film microstructure, grain misorientation, and elastic strain energy density (ESED) as the driving force for growth. Local grain orientations and strains measured by synchrotron micro-diffraction in regions containing whiskers or hillocks were compared with elastic finite element analysis simulations, including Sn elastic anisotropy. Whisker and hillock grains were observed to have higher crystallographic misorientations with neighboring grains than generally observed in the microstructure. While elastic simulations predicted higher local out-of-plane elastic strains and ESEDs for whisker and hillock grains, synchrotron measurements of out-of-plane strains of whisker and hillock grains after growth showed relaxation, with correspondingly low ESEDs calculated from measured strains. This suggests that, before whisker or hillock formation, highly misoriented grains with high out-of-plane elastic strains and ESEDs relative to their neighbors determined, at least in part, which grains became whiskers or hillocks. Based on the models and experiments in this thesis, a clearer picture emerges of the necessary and sufficient conditions for tin whisker and hillock formation in thin films.

  1. The Impossible Capture: Towards a Leaping Methodology

    ERIC Educational Resources Information Center

    Zaliwska, Zofia

    2016-01-01

    I offer Klein's "Leap into the void" as an entrée into exploring the complexities of qualitative research in education. In exposing the ways in which performance photography/documentation performs on the boundaries of representation, Klein helps us to think about representation and dissemination differently. Through this article I will…

  2. Reimagining Boundaries: How ePortfolios Enhance Learning for Adult Students

    ERIC Educational Resources Information Center

    Madden, Therese M.

    2015-01-01

    This article examines the importance of co-curricular activities for student success, reviews literature about narrative identity as it relates to adult students, and describes an ePortfolio project that captures contributions that nontraditional students bring to the classroom. The implications reinforce curriculum design practices and explore…

  3. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  4. Effective surface and boundary conditions for heterogeneous surfaces with mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Guo, Jianwei; Veran-Tissoires, Stéphanie; Quintard, Michel

    2016-01-01

    To deal with multi-scale problems involving transport from a heterogeneous and rough surface characterized by a mixed boundary condition, an effective surface theory is developed, which replaces the original surface by a homogeneous and smooth surface with specific boundary conditions. A typical example corresponds to a laminar flow over a soluble salt medium which contains insoluble material. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework, velocity and concentration at micro-scale are estimated with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the related boundary conditions. The evolution of some effective properties and the impact of surface geometry, Péclet, Schmidt and Damköhler numbers are investigated. Finally, comparisons are made between the numerical results obtained with the effective models and those from direct numerical simulations with the original rough surface, for two kinds of configurations.

  5. Principal Eigenvalue Minimization for an Elliptic Problem with Indefinite Weight and Robin Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintermueller, M., E-mail: hint@math.hu-berlin.de; Kao, C.-Y., E-mail: Ckao@claremontmckenna.edu; Laurain, A., E-mail: laurain@math.hu-berlin.de

    2012-02-15

    This paper focuses on the study of a linear eigenvalue problem with indefinite weight and Robin type boundary conditions. We investigate the minimization of the positive principal eigenvalue under the constraint that the absolute value of the weight is bounded and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. For rectangular domains with Neumann boundary condition, it is known that there exists a threshold value such that if the total weight is below this thresholdmore » value then the optimal favorable region is like a section of a disk at one of the four corners; otherwise, the optimal favorable region is a strip attached to the shorter side of the rectangle. Here, we investigate the same problem with mixed Robin-Neumann type boundary conditions and study how this boundary condition affects the optimal spatial arrangement.« less

  6. Coulomb gauge ghost Dyson-Schwinger equation

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2010-12-01

    A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum), which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until forced to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery picture of confinement is explored.

  7. Complexity of the AdS soliton

    NASA Astrophysics Data System (ADS)

    Reynolds, Alan P.; Ross, Simon F.

    2018-05-01

    We consider the holographic complexity conjectures in the context of the AdS soliton, which is the holographic dual of the ground state of a field theory on a torus with antiperiodic boundary conditions for fermions on one cycle. The complexity is a non-trivial function of the size of the circle with antiperiodic boundary conditions, which sets an IR scale in the dual geometry. We find qualitative differences between the calculations of complexity from spatial volume and action (CV and CA). In the CV calculation, the complexity for antiperiodic boundary conditions is smaller than for periodic, and decreases monotonically with increasing IR scale. In the CA calculation, the complexity for antiperiodic boundary conditions is larger than for periodic, and initially increases with increasing IR scale, eventually decreasing to zero as the IR scale becomes of order the UV cutoff. We compare these results to a simple calculation for free fermions on a lattice, where we find the complexity for antiperiodic boundary conditions is larger than for periodic.

  8. Analysis of daylight performance of solar light pipes influenced by size and shape of sunlight captures

    NASA Astrophysics Data System (ADS)

    Wu, Yanpeng; Jin, Rendong; Zhang, Wenming; Liu, Li; Zou, Dachao

    2009-11-01

    Experimental investigations on three different sunlight captures with diameter 150mm, 212mm, 300mm were carried out under different conditions such as sunny conditions, cloudy conditions and overcast conditions and the two different size solar light pipes with diameter 360mm and 160mm under sunny conditions. The illuminance in the middle of the sunlight capture have relationship with its size, but not linear. To improve the efficiency of the solar light pipes, the structure and the performance of the sunlight capture must be enhanced. For example, University of Science and Technology Beijing Gymnasium, Beijing 2008 Olympic events of Judo and Taekwondo, 148 solar light pipes were installed with the diameter 530mm for each light pipe. Two sunlight captures with different shape were installed and tested. From the measuring results of the illuminance on the work plane of the gymnasium, the improvement sunlight captures have better effects with the size of augmenting and the machining of the internal surface at the same time, so that the refraction increased and the efficiency of solar light pipes improved. The better effects of supplementary lighting for the gymnasium have been achieved.

  9. A New Parallel Boundary Condition for Turbulence Simulations in Stellarators

    NASA Astrophysics Data System (ADS)

    Martin, Mike F.; Landreman, Matt; Dorland, William; Xanthopoulos, Pavlos

    2017-10-01

    For gyrokinetic simulations of core turbulence, the ``twist-and-shift'' parallel boundary condition (Beer et al., PoP, 1995), which involves a shift in radial wavenumber proportional to the global shear and a quantization of the simulation domain's aspect ratio, is the standard choice. But as this condition was derived under the assumption of axisymmetry, ``twist-and-shift'' as it stands is formally incorrect for turbulence simulations in stellarators. Moreover, for low-shear stellarators like W7X and HSX, the use of a global shear in the traditional boundary condition places an inflexible constraint on the aspect ratio of the domain, requiring more grid points to fully resolve its extent. Here, we present a parallel boundary condition for ``stellarator-symmetric'' simulations that relies on the local shear along a field line. This boundary condition is similar to ``twist-and-shift'', but has an added flexibility in choosing the parallel length of the domain based on local shear consideration in order to optimize certain parameters such as the aspect ratio of the simulation domain.

  10. Artificial Boundary Conditions for Finite Element Model Update and Damage Detection

    DTIC Science & Technology

    2017-03-01

    BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Emmanouil Damanakis March 2017 Thesis Advisor: Joshua H. Gordis...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ARTIFICIAL BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION...release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In structural engineering, a finite element model is often

  11. Characterization and Modeling of Thoraco-Abdominal Response to Blast Waves. Volume 4. Biomechanical Model of Thorax Response to Blast Loading

    DTIC Science & Technology

    1985-05-01

    non- zero Dirichlet boundary conditions and/or general mixed type boundary conditions. Note that Neumann type boundary condi- tion enters the problem by...Background ................................. ................... I 1.3 General Description ..... ............ ........... . ....... ...... 2 2. ANATOMICAL...human and varions loading conditions for the definition of a generalized safety guideline of blast exposure. To model the response of a sheep torso

  12. Influence of electrical boundary conditions on molecular dynamics simulations of ionic liquid electrosprays.

    PubMed

    Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A

    2014-12-01

    Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.

  13. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    NASA Astrophysics Data System (ADS)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  14. Influence of electrical boundary conditions on molecular dynamics simulations of ionic liquid electrosprays

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A.

    2014-12-01

    Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.

  15. Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors

    NASA Astrophysics Data System (ADS)

    Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar

    2017-04-01

    This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.

  16. Multiscale Approach to Small River Plumes off California

    NASA Astrophysics Data System (ADS)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  17. Probabilistic Approach to Enable Extreme-Scale Simulations under Uncertainty and System Faults. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knio, Omar

    2017-05-05

    The current project develops a novel approach that uses a probabilistic description to capture the current state of knowledge about the computational solution. To effectively spread the computational effort over multiple nodes, the global computational domain is split into many subdomains. Computational uncertainty in the solution translates into uncertain boundary conditions for the equation system to be solved on those subdomains, and many independent, concurrent subdomain simulations are used to account for this bound- ary condition uncertainty. By relying on the fact that solutions on neighboring subdomains must agree with each other, a more accurate estimate for the global solutionmore » can be achieved. Statistical approaches in this update process make it possible to account for the effect of system faults in the probabilistic description of the computational solution, and the associated uncertainty is reduced through successive iterations. By combining all of these elements, the probabilistic reformulation allows splitting the computational work over very many independent tasks for good scalability, while being robust to system faults.« less

  18. VIV analysis of pipelines under complex span conditions

    NASA Astrophysics Data System (ADS)

    Wang, James; Steven Wang, F.; Duan, Gang; Jukes, Paul

    2009-06-01

    Spans occur when a pipeline is laid on a rough undulating seabed or when upheaval buckling occurs due to constrained thermal expansion. This not only results in static and dynamic loads on the flowline at span sections, but also generates vortex induced vibration (VIV), which can lead to fatigue issues. The phenomenon, if not predicted and controlled properly, will negatively affect pipeline integrity, leading to expensive remediation and intervention work. Span analysis can be complicated by: long span lengths, a large number of spans caused by a rough seabed, and multi-span interactions. In addition, the complexity can be more onerous and challenging when soil uncertainty, concrete degradation and unknown residual lay tension are considered in the analysis. This paper describes the latest developments and a ‘state-of-the-art’ finite element analysis program that has been developed to simulate the span response of a flowline under complex boundary and loading conditions. Both VIV and direct wave loading are captured in the analysis and the results are sequentially used for the ultimate limit state (ULS) check and fatigue life calculation.

  19. Cerebral responses to across- and within-category change of vowel durations measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Minagawa-Kawai, Yasuyo; Mori, Koichi; Furuya, Izumi; Hayashi, Ryoko; Sato, Yutaka

    2002-05-01

    The present study examined cerebral responses to phoneme categories, using near-infrared spectroscopy (NIRS) by measuring the concentration and oxygenation of hemoglobin accompanying local brain activities. Targeted phonemes used here are Japanese long and short vowel categories realized only by durational differences. Results of NIRS and behavioral test revealed NIRS could capture phoneme-specific information. The left side of the auditory area showed large hemodynamic changes only for contrasting stimuli between which phonemic boundary was estimated (across-category condition), but not for stimuli differing by an equal duration but belonging to the same phoneme category (within-category condition). Left dominance in phoneme processing was also confirmed for the across-category stimuli. These findings indicate that the Japanese vowel contrast based only on duration is dealt with in the same language-dominant hemisphere as the other phonemic categories as studied with MEG and PET, and that the cortical activities related to its processing can be detected with NIRS. [Work supported by Japan Society for Promotion of Science (No. 8484) and a grant from Ministry of Health and Welfare of Japan.

  20. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications.

    PubMed

    Bergström, Jörgen S; Hayman, Danika

    2016-02-01

    This article provides an overview of the connection between the microstructural state and the mechanical response of various bioresorbable polylactide (PLA) devices for medical applications. PLLA is currently the most commonly used material for bioresorbable stents and sutures, and its use is increasing in many other medical applications. The non-linear mechanical response of PLLA, due in part to its low glass transition temperature (T g ≈ 60 °C), is highly sensitive to the molecular weight and molecular orientation field, the degree of crystallinity, and the physical aging time. These microstructural parameters can be tailored for specific applications using different resin formulations and processing conditions. The stress-strain, deformation, and degradation response of a bioresorbable medical device is also strongly dependent on the time history of applied loads and boundary conditions. All of these factors can be incorporated into a suitable constitutive model that captures the multiple physics that are involved in the device response. Currently developed constitutive models already provide powerful computations simulation tools, and more progress in this area is expected to occur in the coming years.

Top