Sample records for boundary condition procedures

  1. Numerical boundary condition procedures and multigrid methods; Proceedings of the Symposium, NASA Ames Research Center, Moffett Field, CA, October 19-22, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.

  2. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  3. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  4. Boundary condition computational procedures for inviscid, supersonic steady flow field calculations

    NASA Technical Reports Server (NTRS)

    Abbett, M. J.

    1971-01-01

    Results are given of a comparative study of numerical procedures for computing solid wall boundary points in supersonic inviscid flow calculatons. Twenty five different calculation procedures were tested on two sample problems: a simple expansion wave and a simple compression (two-dimensional steady flow). A simple calculation procedure was developed. The merits and shortcomings of the various procedures are discussed, along with complications for three-dimensional and time-dependent flows.

  5. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  6. Theoretical aspect of suitable spatial boundary condition specified for adjoint model on limited area

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Wu, Rongsheng

    2001-12-01

    Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers.

  7. Algebraic grid generation with corner singularities

    NASA Technical Reports Server (NTRS)

    Vinokur, M.; Lombard, C. K.

    1983-01-01

    A simple noniterative algebraic procedure is presented for generating smooth computational meshes on a quadrilateral topology. Coordinate distribution and normal derivative are provided on all boundaries, one of which may include a slope discontinuity. The boundary conditions are sufficient to guarantee continuity of global meshes formed of joined patches generated by the procedure. The method extends to 3-D. The procedure involves a synthesis of prior techniques stretching functions, cubic blending functions, and transfinite interpolation - to which is added the functional form of the corner solution. The procedure introduces the concept of generalized blending, which is implemented as an automatic scaling of the boundary derivatives for effective interpolation. Some implications of the treatment at boundaries for techniques solving elliptic PDE's are discussed in an Appendix.

  8. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    NASA Astrophysics Data System (ADS)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  9. Improvement of structural models using covariance analysis and nonlinear generalized least squares

    NASA Technical Reports Server (NTRS)

    Glaser, R. J.; Kuo, C. P.; Wada, B. K.

    1992-01-01

    The next generation of large, flexible space structures will be too light to support their own weight, requiring a system of structural supports for ground testing. The authors have proposed multiple boundary-condition testing (MBCT), using more than one support condition to reduce uncertainties associated with the supports. MBCT would revise the mass and stiffness matrix, analytically qualifying the structure for operation in space. The same procedure is applicable to other common test conditions, such as empty/loaded tanks and subsystem/system level tests. This paper examines three techniques for constructing the covariance matrix required by nonlinear generalized least squares (NGLS) to update structural models based on modal test data. The methods range from a complicated approach used to generate the simulation data (i.e., the correct answer) to a diagonal matrix based on only two constants. The results show that NGLS is very insensitive to assumptions about the covariance matrix, suggesting that a workable NGLS procedure is possible. The examples also indicate that the multiple boundary condition procedure more accurately reduces errors than individual boundary condition tests alone.

  10. Transport synthetic acceleration with opposing reflecting boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zika, M.R.; Adams, M.L.

    2000-02-01

    The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iteratingmore » on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.« less

  11. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  12. Inverse boundary-layer theory and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Carter, J. E.

    1978-01-01

    Inverse boundary layer computational procedures, which permit nonsingular solutions at separation and reattachment, are presented. In the first technique, which is for incompressible flow, the displacement thickness is prescribed; in the second technique, for compressible flow, a perturbation mass flow is the prescribed condition. The pressure is deduced implicitly along with the solution in each of these techniques. Laminar and turbulent computations, which are typical of separated flow, are presented and comparisons are made with experimental data. In both inverse procedures, finite difference techniques are used along with Newton iteration. The resulting procedure is no more complicated than conventional boundary layer computations. These separated boundary layer techniques appear to be well suited for complete viscous-inviscid interaction computations.

  13. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  14. Derivation and application of a class of generalized boundary conditions

    NASA Technical Reports Server (NTRS)

    Senior, Thomas B. A.; Volakis, John L.

    1989-01-01

    Boundary conditions involving higher order derivatives are presented for simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to nonplanar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for uniform coating at least a quarter of a wavelength in thickness.

  15. A stable penalty method for the compressible Navier-Stokes equations. 1: Open boundary conditions

    NASA Technical Reports Server (NTRS)

    Hesthaven, J. S.; Gottlieb, D.

    1994-01-01

    The purpose of this paper is to present asymptotically stable open boundary conditions for the numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment uses the conservation form of the Navier-Stokes equations and utilizes linearization and localization at the boundaries based on these variables. The proposed boundary conditions are applied through a penalty procedure, thus ensuring correct behavior of the scheme as the Reynolds number tends to infinity. The versatility of this method is demonstrated for the problem of a compressible flow past a circular cylinder.

  16. Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser-GMA Welds Using Solidification-Boundary Constraints

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2017-08-01

    An inverse thermal analysis of Alloy 690 laser and hybrid laser-GMA welds is presented that uses numerical-analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.

  17. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.

  18. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.

  19. Straight velocity boundaries in the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Latt, Jonas; Chopard, Bastien; Malaspinas, Orestis; Deville, Michel; Michler, Andreas

    2008-05-01

    Various ways of implementing boundary conditions for the numerical solution of the Navier-Stokes equations by a lattice Boltzmann method are discussed. Five commonly adopted approaches are reviewed, analyzed, and compared, including local and nonlocal methods. The discussion is restricted to velocity Dirichlet boundary conditions, and to straight on-lattice boundaries which are aligned with the horizontal and vertical lattice directions. The boundary conditions are first inspected analytically by applying systematically the results of a multiscale analysis to boundary nodes. This procedure makes it possible to compare boundary conditions on an equal footing, although they were originally derived from very different principles. It is concluded that all five boundary conditions exhibit second-order accuracy, consistent with the accuracy of the lattice Boltzmann method. The five methods are then compared numerically for accuracy and stability through benchmarks of two-dimensional and three-dimensional flows. None of the methods is found to be throughout superior to the others. Instead, the choice of a best boundary condition depends on the flow geometry, and on the desired trade-off between accuracy and stability. From the findings of the benchmarks, the boundary conditions can be classified into two major groups. The first group comprehends boundary conditions that preserve the information streaming from the bulk into boundary nodes and complete the missing information through closure relations. Boundary conditions in this group are found to be exceptionally accurate at low Reynolds number. Boundary conditions of the second group replace all variables on boundary nodes by new values. They exhibit generally much better numerical stability and are therefore dedicated for use in high Reynolds number flows.

  20. Guidance law development for aeroassisted transfer vehicles using matched asymptotic expansions

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Melamed, Nahum

    1993-01-01

    This report addresses and clarifies a number of issues related to the Matched Asymptotic Expansion (MAE) analysis of skip trajectories, or any class of problems that give rise to inner layers that are not associated directly with satisfying boundary conditions. The procedure for matching inner and outer solutions, and using the composite solution to satisfy boundary conditions is developed and rigorously followed to obtain a set of algebraic equations for the problem of inclination change with minimum energy loss. A detailed evaluation of the zeroth order guidance algorithm for aeroassisted orbit transfer is performed. It is shown that by exploiting the structure of the MAE solution procedure, the original problem, which requires the solution of a set of 20 implicit algebraic equations, can be reduced to a problem of 6 implicit equations in 6 unknowns. A solution that is near optimal, requires a minimum of computation, and thus can be implemented in real time and on-board the vehicle, has been obtained. Guidance law implementation entails treating the current state as a new initial state and repetitively solving the zeroth order MAE problem to obtain the feedback controls. Finally, a general procedure is developed for constructing a MAE solution up to first order, of the Hamilton-Jacobi-Bellman equation based on the method of characteristics. The development is valid for a class of perturbation problems whose solution exhibits two-time-scale behavior. A regular expansion for problems of this type is shown to be inappropriate since it is not valid over a narrow range of the independent variable. That is, it is not uniformly valid. Of particular interest here is the manner in which matching and boundary conditions are enforced when the expansion is carried out to first order. Two cases are distinguished-one where the left boundary condition coincides with, or lies to the right of, the singular region, and another one where the left boundary condition lies to the left of the singular region. A simple example is used to illustrate the procedure where the obtained solution is uniformly valid to O(Epsilon(exp 2)). The potential application of this procedure to aeroassisted plane change is also described and partially evaluated.

  1. Solution of the surface Euler equations for accurate three-dimensional boundary-layer analysis of aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Harris, J. E.

    1987-01-01

    The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.

  2. Iterative methods for plasma sheath calculations: Application to spherical probe

    NASA Technical Reports Server (NTRS)

    Parker, L. W.; Sullivan, E. C.

    1973-01-01

    The computer cost of a Poisson-Vlasov iteration procedure for the numerical solution of a steady-state collisionless plasma-sheath problem depends on: (1) the nature of the chosen iterative algorithm, (2) the position of the outer boundary of the grid, and (3) the nature of the boundary condition applied to simulate a condition at infinity (as in three-dimensional probe or satellite-wake problems). Two iterative algorithms, in conjunction with three types of boundary conditions, are analyzed theoretically and applied to the computation of current-voltage characteristics of a spherical electrostatic probe. The first algorithm was commonly used by physicists, and its computer costs depend primarily on the boundary conditions and are only slightly affected by the mesh interval. The second algorithm is not commonly used, and its costs depend primarily on the mesh interval and slightly on the boundary conditions.

  3. Matched asymptotic expansion of the Hamilton-Jacobi-Bellman equation for aeroassisted plane-change maneuvers

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Melamed, Nahum

    1993-01-01

    In this paper we develop a general procedure for constructing a matched asymptotic expansion of the Hamilton-Jacobi-Bellman equation based on the method of characteristics. The development is for a class of perturbation problems whose solution exhibits two-time-scale behavior. A regular expansion for problems of this type is inappropriate since it is not uniformly valid over a narrow range of the independent variable. Of particular interest here is the manner in which matching and boundary conditions are enforced when the expansion is carried out to first order. Two cases are distinguished - one where the left boundary condition coincides with or lies to the right of the singular region and one where the left boundary condition lies to the left of the singular region. A simple example is used to illustrate the procedure, and its potential application to aeroassisted plane change is described.

  4. An interactive multi-block grid generation system

    NASA Technical Reports Server (NTRS)

    Kao, T. J.; Su, T. Y.; Appleby, Ruth

    1992-01-01

    A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.

  5. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  6. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  7. Maxwell boundary condition and velocity dependent accommodation coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struchtrup, Henning, E-mail: struchtr@uvic.ca

    2013-11-15

    A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.

  8. Derivation and application of a class of generalized impedance boundary conditions, part 2

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Senior, T. B. A.; Jin, J.-M.

    1989-01-01

    Boundary conditions involving higher order derivatives are presented by simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to non-planar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for the uniform coating at least a quarter of a wavelength in thickness. Provided, though, some compromise in accuracy is acceptable, it is also shown that a third order condition may be sufficient for practical purposes when simulating uniform coatings.

  9. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  10. A recurrence matrix method for the analysis of longitudinal and torsional vibrations in non-uniform multibranch beams with variable boundary conditions

    NASA Technical Reports Server (NTRS)

    Davis, R. B.; Stephens, M. V.

    1974-01-01

    An approximate method for calculating the longitudinal and torsional natural frequencies and associated modal data of a beamlike, variable cross section multibranch structure is presented. The procedure described is the numerical integration of the first order differential equations that characterize the beam element in longitudinal motion and that satisfy the appropriate boundary conditions.

  11. Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.

    1980-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.

  12. Laminar supersonic flow over a backstep - A numerical solution at higher Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Kronzon, Y.; Rom, J.; Seginer, A.

    1976-01-01

    The Allen-Cheng solution of the flow over a backward facing step is extended to Reynolds numbers up to 16,000 and to inflow boundary-layer height ratios as low as 0.1 by moving the downstream boundary into the recompression region and by smoothing the resulting errors. The boundary conditions in the supersonic outer flow and the downstream boundary conditions in the wake are determined by an extrapolation procedure. Computational results are compared with relevant experimental data. Fair agreement is found between the calculated base pressures and the experimental values, whereas agreement between heat transfer rates appears to be qualitative only.

  13. Minimization of vibration in elastic beams with time-variant boundary conditions

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Xie, Mingjun

    1992-01-01

    This paper presents an innovative method for minimizing the vibration of structures with time-variant boundary conditions (supports). The elastic body is modeled in two ways: (1) the first model is a letter seven type beam with a movable mass not to exceed the lower tip; (2) the second model has an arm that is a hollow beam with an inside mass with adjustable position. The complete solutions to both problems are carried out where the body is undergoing large rotation. The quasi-static procedure is used for the time-variant boundary conditions. The method developed employs partial differential equations governing the motion of the beam, including the effects of rigid-body motion, time-variant boundary conditions, and calculus of variations. The analytical solution is developed using Laplace and Fourier transforms. Examples of elastic robotic arms are given to illustrate the effectiveness of the methods developed.

  14. Unstructured grid methods for the simulation of 3D transient flows

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.; Peiro, J.

    1994-01-01

    A description of the research work undertaken under NASA Research Grant NAGW-2962 has been given. Basic algorithmic development work, undertaken for the simulation of steady three dimensional inviscid flow, has been used as the basis for the construction of a procedure for the simulation of truly transient flows in three dimensions. To produce a viable procedure for implementation on the current generation of computers, moving boundary components are simulated by fixed boundaries plus a suitably modified boundary condition. Computational efficiency is increased by the use of an implicit time stepping scheme in which the equation system is solved by explicit multistage time stepping with multigrid acceleration. The viability of the proposed approach has been demonstrated by considering the application of the procedure to simulation of a transonic flow over an oscillating ONERA M6 wing.

  15. An efficient numerical procedure for thermohydrodynamic analysis of cavitating bearings

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.

    1995-01-01

    An efficient and accurate numerical procedure to determine the thermo-hydrodynamic performance of cavitating bearings is described. This procedure is based on the earlier development of Elrod for lubricating films, in which the properties across the film thickness are determined at Lobatto points and their distributions are expressed by collocated polynomials. The cavitated regions and their boundaries are rigorously treated. Thermal boundary conditions at the surfaces, including heat dissipation through the metal to the ambient, are incorporated. Numerical examples are presented comparing the predictions using this procedure with earlier theoretical predictions and experimental data. With a few points across the film thickness and across the journal and the bearing in the radial direction, the temperature profile is very well predicted.

  16. A procedure for automating CFD simulations of an inlet-bleed problem

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1995-01-01

    A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.

  17. Wall Interference in Two-Dimensional Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1986-01-01

    Viscosity and tunnel-wall constraints introduced via boundary conditions. TWINTN4 computer program developed to implement method of posttest assessment of wall interference in two-dimensional wind tunnels. Offers two methods for combining sidewall boundary-layer effects with upper and lower wall interference. In sequential procedure, Sewall method used to define flow free of sidewall effects, then assessed for upper and lower wall effects. In unified procedure, wind-tunnel flow equations altered to incorporate effects from all four walls at once. Program written in FORTRAN IV for batch execution.

  18. Thermo-viscoelastic analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Lin, Kuen Y.; Hwang, I. H.

    1989-01-01

    The thermo-viscoelastic boundary value problem for anisotropic materials is formulated and a numerical procedure is developed for the efficient analysis of stress and deformation histories in composites. The procedure is based on the finite element method and therefore it is applicable to composite laminates containing geometric discontinuities and complicated boundary conditions. Using the present formulation, the time-dependent stress and strain distributions in both notched and unnotched graphite/epoxy composites have been obtained. The effect of temperature and ply orientation on the creep and relaxation response is also studied.

  19. Boundary layer integral matrix procedure: Verification of models

    NASA Technical Reports Server (NTRS)

    Bonnett, W. S.; Evans, R. M.

    1977-01-01

    The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.

  20. Small amplitude, transverse vibrations of circular plates with an eccentric rectangular perforation elastically restrained against rotation and translation on both edges

    NASA Astrophysics Data System (ADS)

    Laura, P. A. A.; Avalos, D. R.

    2008-05-01

    The Rayleigh-Ritz variational method is applied to the determination of the first four frequency coefficients for small amplitude, transverse vibrations of circular plates with an eccentric, rectangular perforation that is elastically restrained against rotation and translation on both edges. Coordinate functions are used which identically satisfy the boundary conditions at the outer circular edge, while the restraining boundary conditions at the inner edge of the cutout are dealt with directly through the energetic terms in the functional expressions. The procedure seems to show very good numerical stability and convergence properties. As an added bonus, the method allows for increased flexibility in dealing with boundary conditions at the edge of the cutout.

  1. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em

    2011-01-01

    We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548

  2. Implementation of a Blowing Boundary Condition in the LAURA Code

    NASA Technical Reports Server (NTRS)

    Thompson, Richard a.; Gnoffo, Peter A.

    2008-01-01

    Preliminary steps toward modeling a coupled ablation problem using a finite-volume Navier-Stokes code (LAURA) are presented in this paper. Implementation of a surface boundary condition with mass transfer (blowing) is described followed by verification and validation through comparisons with analytic results and experimental data. Application of the code to a carbon-nosetip ablation problem is demonstrated and the results are compared with previously published data. It is concluded that the code and coupled procedure are suitable to support further ablation analyses and studies.

  3. A conjugate heat transfer procedure for gas turbine blades.

    PubMed

    Croce, G

    2001-05-01

    A conjugate heat transfer procedure, allowing for the use of different solvers on the solid and fluid domain(s), is presented. Information exchange between solid and fluid solution is limited to boundary condition values, and this exchange is carried out at any pseudo-time step. Global convergence rate of the procedure is, thus, of the same order of magnitude of stand-alone computations.

  4. Computation of three-dimensional compressible boundary layers to fourth-order accuracy on wings and fuselages

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1990-01-01

    A solution method, fourth-order accurate in the body-normal direction and second-order accurate in the stream surface directions, to solve the compressible 3-D boundary layer equations is presented. The transformation used, the discretization details, and the solution procedure are described. Ten validation cases of varying complexity are presented and results of calculation given. The results range from subsonic flow to supersonic flow and involve 2-D or 3-D geometries. Applications to laminar flow past wing and fuselage-type bodies are discussed. An interface procedure is used to solve the surface Euler equations with the inviscid flow pressure field as the input to assure accurate boundary conditions at the boundary layer edge. Complete details of the computer program used and information necessary to run each of the test cases are given in the Appendix.

  5. Interim user's manual for boundary layer integral matrix procedure, version J

    NASA Technical Reports Server (NTRS)

    Evans, R. M.; Morse, H. L.

    1974-01-01

    A computer program for analyzing two dimensional and axisymmetric nozzle performance with a variety of wall boundary conditions is described. The program has been developed for application to rocket nozzle problems. Several aids to usage of the program and two auxiliary subroutines are provided. Some features of the output are described and three sample cases are included.

  6. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  7. Use of Green's functions in the numerical solution of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  8. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip

    NASA Technical Reports Server (NTRS)

    Chen, Y. K.; Henline, W. D.

    1993-01-01

    The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.

  9. An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2018-06-01

    Darcy-Forchheimer three dimensional flow of Carreau nanoliquid induced by a linearly stretchable surface with convective boundary condition has been analyzed. Buongiorno model has been employed to elaborate thermophoresis and Brownian diffusion effects. Zero nanoparticles mass flux and convective surface conditions are implemented at the boundary. The governing problems are nonlinear. Optimal homotopic procedure has been used to tackle the governing mathematical system. Graphical results clearly depict the outcome of temperature and concentration fields. Surface drag coefficients and local Nusselt number are also plotted and discussed.

  10. Tests and applications of nonlinear force-free field extrapolations in spherical geometry

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.

    2013-07-01

    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry with an analytical solution from Low and Lou. The potential field source surface (PFSS) model is served as the initial and boundary conditions where observed data are not available. The analytical solution can be well recovered if the boundary and initial conditions are properly handled. Next, we discuss the preprocessing procedure for the noisy bottom boundary data, and find that preprocessing is necessary for NLFFF extrapolations when we use the observed photospheric magnetic field as bottom boundaries. Finally, we apply the NLFFF model to a solar area where four active regions interacting with each other. An M8.7 flare occurred in one active region. NLFFF modeling in spherical geometry simultaneously constructs the small and large scale magnetic field configurations better than the PFSS model does.

  11. Two-layer convective heating prediction procedures and sensitivities for blunt body reentry vehicles

    NASA Technical Reports Server (NTRS)

    Bouslog, Stanley A.; An, Michael Y.; Wang, K. C.; Tam, Luen T.; Caram, Jose M.

    1993-01-01

    This paper provides a description of procedures typically used to predict convective heating rates to hypersonic reentry vehicles using the two-layer method. These procedures were used to compute the pitch-plane heating distributions to the Apollo geometry for a wind tunnel test case and for three flight cases. Both simple engineering methods and coupled inviscid/boundary layer solutions were used to predict the heating rates. The sensitivity of the heating results in the choice of metrics, pressure distributions, boundary layer edge conditions, and wall catalycity used in the heating analysis were evaluated. Streamline metrics, pressure distributions, and boundary layer edge properties were defined from perfect gas (wind tunnel case) and chemical equilibrium and nonequilibrium (flight cases) inviscid flow-field solutions. The results of this study indicated that the use of CFD-derived metrics and pressures provided better predictions of heating when compared to wind tunnel test data. The study also showed that modeling entropy layer swallowing and ionization had little effect on the heating predictions.

  12. On flows of viscoelastic fluids under threshold-slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Baranovskii, E. S.

    2018-03-01

    We investigate a boundary-value problem for the steady isothermal flow of an incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove an existence theorem for the corresponding slip problem in the framework of weak solutions. The proof uses methods for solving variational inequalities with pseudo-monotone operators and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and compactness arguments. Also, some properties and estimates of weak solutions are established.

  13. External Boundary Conditions for Three-Dimensional Problems of Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon V.

    1997-01-01

    We consider an unbounded steady-state flow of viscous fluid over a three-dimensional finite body or configuration of bodies. For the purpose of solving this flow problem numerically, we discretize the governing equations (Navier-Stokes) on a finite-difference grid. The grid obviously cannot stretch from the body up to infinity, because the number of the discrete variables in that case would not be finite. Therefore, prior to the discretization we truncate the original unbounded flow domain by introducing some artificial computational boundary at a finite distance of the body. Typically, the artificial boundary is introduced in a natural way as the external boundary of the domain covered by the grid. The flow problem formulated only on the finite computational domain rather than on the original infinite domain is clearly subdefinite unless some artificial boundary conditions (ABC's) are specified at the external computational boundary. Similarly, the discretized flow problem is subdefinite (i.e., lacks equations with respect to unknowns) unless a special closing procedure is implemented at this artificial boundary. The closing procedure in the discrete case is called the ABC's as well. In this paper, we present an innovative approach to constructing highly accurate ABC's for three-dimensional flow computations. The approach extends our previous technique developed for the two-dimensional case; it employs the finite-difference counterparts to Calderon's pseudodifferential boundary projections calculated in the framework of the difference potentials method (DPM) by Ryaben'kii. The resulting ABC's appear spatially nonlocal but particularly easy to implement along with the existing solvers. The new boundary conditions have been successfully combined with the NASA-developed production code TLNS3D and used for the analysis of wing-shaped configurations in subsonic (including incompressible limit) and transonic flow regimes. As demonstrated by the computational experiments and comparisons with the standard (local) methods, the DPM-based ABC's allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable increase of the convergence rate of multigrid iterations.

  14. Ecological quality boundary-setting procedures: the Gulf of Riga case study.

    PubMed

    Aigars, Juris; Müller-Karulis, Bärbel; Martin, Georg; Jermakovs, Vadims

    2008-03-01

    Two approaches for setting ecological class boundaries, response curves and a simplified mathematical boundary-setting protocol, were tested for coastal, transitional and open waters in the Gulf of Riga, Baltic Sea. The simplified mathematical boundary-setting protocol defines acceptable ecological status based on expert judgment by a uniform relative deviation from reference conditions. In contrast, response curves derive class boundary definitions from observed changes in biological quality elements along environmental pressure gradients for class boundary definitions. Identification of relevant environmental pressures for the construction of response curves was based on a conceptual model of eutrophication in the Gulf of Riga. Response curves were successfully established for summer chlorophyll a and transparency, as well as for macrozoobenthos abundance in the Central Gulf, macrozoobenthos biotic coefficient in the Southern Gulf, and maximum depth of phytobenthos in the Northern Gulf. In the Gulf of Riga response curves almost always permitted a larger deviation from reference conditions than the 50% deviation applied for the simplified mathematical boundary-setting protocol. The case study clearly demonstrated that class boundary definitions should take into account the sensitivity of the target water body. Also, the class boundaries for different ecological quality elements were internally more consistent than those derived by the simplified mathematical boundary-setting protocol.

  15. Einstein-Gauss-Bonnet theory of gravity: The Gauss-Bonnet-Katz boundary term

    NASA Astrophysics Data System (ADS)

    Deruelle, Nathalie; Merino, Nelson; Olea, Rodrigo

    2018-05-01

    We propose a boundary term to the Einstein-Gauss-Bonnet action for gravity, which uses the Chern-Weil theorem plus a dimensional continuation process, such that the extremization of the full action yields the equations of motion when Dirichlet boundary conditions are imposed. When translated into tensorial language, this boundary term is the generalization to this theory of the Katz boundary term and vector for general relativity. The boundary term constructed in this paper allows to deal with a general background and is not equivalent to the Gibbons-Hawking-Myers boundary term. However, we show that they coincide if one replaces the background of the Katz procedure by a product manifold. As a first application we show that this Einstein Gauss-Bonnet Katz action yields, without any extra ingredients, the expected mass of the Boulware-Deser black hole.

  16. HEATING 7. 1 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1991-07-01

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  17. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  18. Graph Theory-Based Technique for Isolating Corrupted Boundary Conditions in Continental-Scale River Network Hydrodynamic Simulation

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Hodges, B. R.; Liu, F.

    2017-12-01

    Development of continental-scale river network models creates challenges where the massive amount of boundary condition data encounters the sensitivity of a dynamic nu- merical model. The topographic data sets used to define the river channel characteristics may include either corrupt data or complex configurations that cause instabilities in a numerical solution of the Saint-Venant equations. For local-scale river models (e.g. HEC- RAS), modelers typically rely on past experience to make ad hoc boundary condition adjustments that ensure a stable solution - the proof of the adjustment is merely the sta- bility of the solution. To date, there do not exist any formal methodologies or automated procedures for a priori detecting/fixing boundary conditions that cause instabilities in a dynamic model. Formal methodologies for data screening and adjustment are a critical need for simulations with a large number of river reaches that draw their boundary con- dition data from a wide variety of sources. At the continental scale, we simply cannot assume that we will have access to river-channel cross-section data that has been ade- quately analyzed and processed. Herein, we argue that problematic boundary condition data for unsteady dynamic modeling can be identified through numerical modeling with the steady-state Saint-Venant equations. The fragility of numerical stability increases with the complexity of branching in river network system and instabilities (even in an unsteady solution) are typically triggered by the nonlinear advection term in Saint-Venant equations. It follows that the behavior of the simpler steady-state equations (which retain the nonlin- ear term) can be used to screen the boundary condition data for problematic regions. In this research, we propose a graph-theory based method to isolate the location of corrupted boundary condition data in a continental-scale river network and demonstrate its utility with a network of O(10^4) elements. Acknowledgement: This research is supported by the National Science Foundation un- der grant number CCF-1331610.

  19. Numerical analysis of hypersonic turbulent film cooling flows

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  20. Parameter Estimation for a Pulsating Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason; Wimer, Nicholas; Lapointe, Caelan; Hayden, Torrey; Grooms, Ian; Rieker, Greg; Hamlington, Peter

    2017-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other ``truth'' data to be used for the prediction of unknown parameters, such as flow properties and boundary conditions, in numerical simulations of real-world engineering systems. Here we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a direct numerical simulation (DNS) with known boundary conditions and problem parameters, while the ABC procedure utilizes lower fidelity large eddy simulations. Using spatially-sparse statistics from the 2D buoyant jet DNS, we show that the ABC method provides accurate predictions of true jet inflow parameters. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for predicting flow information, such as boundary conditions, that can be difficult to determine experimentally.

  1. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat

    2009-10-20

    In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.

  2. A theoretical method for the analysis and design of axisymmetric bodies. [flow distribution and incompressible fluids

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.

    1975-01-01

    A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.

  3. Summation by parts, projections, and stability

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle

    1993-01-01

    We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well.

  4. Steady-state wear and friction in boundary lubrication studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1980-01-01

    A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.

  5. Wall interference and boundary simulation in a transonic wind tunnel with a discretely slotted test section

    NASA Technical Reports Server (NTRS)

    Al-Saadi, Jassim A.

    1993-01-01

    A computational simulation of a transonic wind tunnel test section with longitudinally slotted walls is developed and described herein. The nonlinear slot model includes dynamic pressure effects and a plenum pressure constraint, and each slot is treated individually. The solution is performed using a finite-difference method that solves an extended transonic small disturbance equation. The walls serve as the outer boundary conditions in the relaxation technique, and an interaction procedure is used at the slotted walls. Measured boundary pressures are not required to establish the wall conditions but are currently used to assess the accuracy of the simulation. This method can also calculate a free-air solution as well as solutions that employ the classical homogeneous wall conditions. The simulation is used to examine two commercial transport aircraft models at a supercritical Mach number for zero-lift and cruise conditions. Good agreement between measured and calculated wall pressures is obtained for the model geometries and flow conditions examined herein. Some localized disagreement is noted, which is attributed to improper simulation of viscous effects in the slots.

  6. Numerical analysis of thermal creep flow in curved channels for designing a prototype of Knudsen micropump

    NASA Astrophysics Data System (ADS)

    Leontidis, V.; Brandner, J. J.; Baldas, L.; Colin, S.

    2012-05-01

    The possibility to generate a gas flow inside a channel just by imposing a tangential temperature gradient along the walls without the existence of an initial pressure difference is well known. The gas must be under rarefied conditions, meaning that the system must operate between the slip and the free molecular flow regimes, either at low pressure or/and at micro/nano-scale dimensions. This phenomenon is at the basis of the operation principle of Knudsen pumps, which are actually compressors without any moving parts. Nowadays, gas flows in the slip flow regime through microchannels can be modeled using commercial Computational Fluid Dynamics softwares, because in this regime the compressible Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to the axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. The developed simulation tool is used for the preliminary design of Knudsen micropumps consisting of a sequence of curved and straight channels.

  7. Natural sampling strategy

    NASA Technical Reports Server (NTRS)

    Hallum, C. R.; Basu, J. P. (Principal Investigator)

    1979-01-01

    A natural stratum-based sampling scheme and the aggregation procedures for estimating wheat area, yield, and production and their associated prediction error estimates are described. The methodology utilizes LANDSAT imagery and agrophysical data to permit an improved stratification in foreign areas by ignoring political boundaries and restratifying along boundaries that are more homogeneous with respect to the distribution of agricultural density, soil characteristics, and average climatic conditions. A summary of test results is given including a discussion of the various problems encountered.

  8. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for two- or three-dimensional contractions installed on small, low-speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a three-dimensional numerical panel method. The pressure or velocity distributions are then fed into two-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low-speed contractions it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs if justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a fifth-order polynomial was selected for installation on a newly designed mixing layer wind tunnel.

  9. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.

  10. Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions

    NASA Astrophysics Data System (ADS)

    Valchev, T. I.

    2016-02-01

    We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.

  11. Success of spiral wave unpinning from heterogeneity in a cardiac tissue depends on its boundary conditions

    NASA Astrophysics Data System (ADS)

    Kachalov, V. N.; Tsvelaya, V. A.; Kudryashova, N. N.; Agladze, K. I.

    2017-11-01

    The mechanism of the low voltage defibrillation is based on the drift of the spiral wave induced by a high frequency wave train. In the process, it is first necessary to unpin the wave from the stabilizing obstacle. We study the conditions of unpinning of a rotating wave anchored to the defect by posing the main accent on the boundary conditions of it. The computer simulations performed using the Korhonen model showed that the fluxes through the border of the defect in the cardiac tissue can significantly modify the excitation pattern, and the working frequency gap for the unpinning of reentry waves could be substantially reduced, making overdrive pacing procedure less effective or practically inapplicable.

  12. A semi-direct procedure using a local relaxation factor and its application to an internal flow problem

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1984-01-01

    Generally, fast direct solvers are not directly applicable to a nonseparable elliptic partial differential equation. This limitation, however, is circumvented by a semi-direct procedure, i.e., an iterative procedure using fast direct solvers. An efficient semi-direct procedure which is easy to implement and applicable to a variety of boundary conditions is presented. The current procedure also possesses other highly desirable properties, i.e.: (1) the convergence rate does not decrease with an increase of grid cell aspect ratio, and (2) the convergence rate is estimated using the coefficients of the partial differential equation being solved.

  13. Limitations of holography

    NASA Astrophysics Data System (ADS)

    Chowdhury, Borun D.

    2015-11-01

    By studying global AdS using different foliations, global and Rindler-AdS, we show that there are two different asymptotic Fefferman-Graham expansions possible and thus two different definitions of "boundaries". We demonstrate that imposing boundary conditions on the two boundaries is not mutually compatible even when these boundaries are pushed to infinity. Thus, these two procedures define two genuinely distinct theories that we call global-CFT and Rindler-CFT. We show that the Rindler-CFT is not the same as the theory one gets by "Rindlerizing the global-CFT" described in hep-th/9804085. We conjecture that the Rindler theory is incapable of capturing the dynamics inside the horizon and discuss its implications for the BTZ-CFT duality proposed in hep-th/0106112.

  14. Modelling the Centers of Galaxies

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The key to studying central regions by means of nobody numerical experiments is to concentrate on the central few parsecs of a galaxy, replacing the remainder of the galaxy by a suitable boundary condition, rather after the manner in which stellar interiors can be studied without a detailed stellar atmosphere by replacing the atmosphere with a boundary condition. Replacements must be carefully designed because the long range gravitational force means that the core region is sensitive to mass outside that region and because particles can exchange between the outer galaxy and the core region. We use periodic boundary conditions, coupled with an iterative procedure to generate initial particle loads in isothermal equilibrium. Angular momentum conservation is ensured for problems including systematic rotation by a circular reflecting boundary and by integrating in a frame that rotates with the mean flow. Mass beyond the boundary contributes to the gravitational potential, but does not participate in the dynamics. A symplectic integration scheme has been developed for rotating coordinate systems. This combination works well, leading to robust configurations. Some preliminary results with this combination show that: (1) Rotating systems are extremely sensitive to non-axisymmetric external potentials, and (2) that a second core, orbiting near the main core (like the M31 second core system), shows extremely rapid orbital decay. The experimental setups will be discussed, along with preliminary results.

  15. Plane wave diffraction by a finite plate with impedance boundary conditions.

    PubMed

    Nawaz, Rab; Ayub, Muhammad; Javaid, Akmal

    2014-01-01

    In this study we have examined a plane wave diffraction problem by a finite plate having different impedance boundaries. The Fourier transforms were used to reduce the governing problem into simultaneous Wiener-Hopf equations which are then solved using the standard Wiener-Hopf procedure. Afterwards the separated and interacted fields were developed asymptotically by using inverse Fourier transform and the modified stationary phase method. Detailed graphical analysis was also made for various physical parameters we were interested in.

  16. Pre and post processing using the IBM 3277 display station graphics attachment (RPQ7H0284)

    NASA Technical Reports Server (NTRS)

    Burroughs, S. H.; Lawlor, M. B.; Miller, I. M.

    1978-01-01

    A graphical interactive procedure operating under TSO and utilizing two CRT display terminals is shown to be an effective means of accomplishing mesh generation, establishing boundary conditions, and reviewing graphic output for finite element analysis activity.

  17. Procedures for offline grid nesting in regional ocean models

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo

    One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.

  18. Performance Improvements to the Naval Postgraduate School Turbopropulsion Labs Transonic Axially Splittered Rotor

    DTIC Science & Technology

    2013-12-01

    Implementation of current NPS TPL design procedure that uses COTS software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and...procedure that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and analysis was modified and... CFX The CFD simulation program in ANSYS Workbench. CFX -Pre CFX boundary conditions and solver settings module. CFX -Solver CFX solver program. CFX

  19. A family of position- and orientation-independent embedded boundary methods for viscous flow and fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Huang, Daniel Z.; De Santis, Dante; Farhat, Charbel

    2018-07-01

    The Finite Volume method with Exact two-material Riemann Problems (FIVER) is both a computational framework for multi-material flows characterized by large density jumps, and an Embedded Boundary Method (EBM) for computational fluid dynamics and highly nonlinear Fluid-Structure Interaction (FSI) problems. This paper deals with the EBM aspect of FIVER. For FSI problems, this EBM has already demonstrated the ability to address viscous effects along wall boundaries, and large deformations and topological changes of such boundaries. However, like for most EBMs - also known as immersed boundary methods - the performance of FIVER in the vicinity of a wall boundary can be sensitive with respect to the position and orientation of this boundary relative to the embedding mesh. This is mainly due to ill-conditioning issues that arise when an embedded interface becomes too close to a node of the embedding mesh, which may lead to spurious oscillations in the computed solution gradients at the wall boundary. This paper resolves these issues by introducing an alternative definition of the active/inactive status of a mesh node that leads to the removal of all sources of potential ill-conditioning from all spatial approximations performed by FIVER in the vicinity of a fluid-structure interface. It also makes two additional contributions. The first one is a new procedure for constructing the fluid-structure half Riemann problem underlying the semi-discretization by FIVER of the convective fluxes. This procedure eliminates one extrapolation from the conventional treatment of the wall boundary conditions and replaces it by an interpolation, which improves robustness. The second contribution is a post-processing algorithm for computing quantities of interest at the wall that achieves smoothness in the computed solution and its gradients. Lessons learned from these enhancements and contributions that are triggered by the new definition of the status of a mesh node are then generalized and exploited to eliminate from the original version of the FIVER method its sensitivities with respect to both of the position and orientation of the wall boundary relative to the embedding mesh, while maintaining the original definition of the status of a mesh node. This leads to a family of second-generation FIVER methods whose performance is illustrated in this paper for several flow and FSI problems. These include a challenging flow problem over a bird wing characterized by a feather-induced surface roughness, and a complex flexible flapping wing problem for which experimental data is available.

  20. Tangle-Free Finite Element Mesh Motion for Ablation Problems

    NASA Technical Reports Server (NTRS)

    Droba, Justin

    2016-01-01

    In numerical simulations involving boundaries that evolve in time, the primary challenge is updating the computational mesh to reflect the physical changes in the domain. In particular, the fundamental objective for any such \\mesh motion" scheme is to maintain mesh quality and suppress unphysical geometric anamolies and artifacts. External to a physical process of interest, mesh motion is an added component that determines the specifics of how to move the mesh given certain limited information from the main system. This paper develops a set of boundary conditions designed to eliminate tangling and internal collision within the context of PDE-based mesh motion (linear elasticity). These boundary conditions are developed for two- and three-dimensional meshes. The paper presents detailed algorithms for commonly occuring topological scenarios and explains how to apply them appropriately. Notably, the techniques discussed herein make use of none of the specifics of any particular formulation of mesh motion and thus are more broadly applicable. The two-dimensional algorithms are validated by an extensive verification procedure. Finally, many examples of diverse geometries in both two- and three-dimensions are shown to showcase the capabilities of the tangle-free boundary conditions.

  1. Pressure driven laminar flow of a power-law fluid in a T-channel

    NASA Astrophysics Data System (ADS)

    Dyakova, O. A.; Frolov, O. Yu

    2017-10-01

    Planar flow of a non-Newtonian fluid in a T-channel is investigated. The viscosity is determined by the Ostwald-de Waele power law. Motion of the fluid is caused by pressure drop given in boundary sections of the T-channel. On the solid walls, the no slip boundary condition is used. The problem is numerically solved with using a finite difference method based on the SIMPLE procedure. As a result of this study, characteristic flow regimes have been found. Influence of main parameters on the flow pattern has been demonstrated. Criteria dependences describing basic characteristics of the flow under conditions of the present work have been shown.

  2. Radial rescaling approach for the eigenvalue problem of a particle in an arbitrarily shaped box.

    PubMed

    Lijnen, Erwin; Chibotaru, Liviu F; Ceulemans, Arnout

    2008-01-01

    In the present work we introduce a methodology for solving a quantum billiard with Dirichlet boundary conditions. The procedure starts from the exactly known solutions for the particle in a circular disk, which are subsequently radially rescaled in such a way that they obey the new boundary conditions. In this way one constructs a complete basis set which can be used to obtain the eigenstates and eigenenergies of the corresponding quantum billiard to a high level of precision. Test calculations for several regular polygons show the efficiency of the method which often requires one or two basis functions to describe the lowest eigenstates with high accuracy.

  3. Evaluation of boundary lubricants using steady-state wear and friction

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1981-01-01

    A friction and wear study was made at 20 C to establish operating limits and procedures for obtaining improved reproducibility and reliability in boundary lubrication testing. Ester base and C-other base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a pin-on-disk apparatus. Results of a parametric study with varying loads and speeds slowed that satisfactory test conditions for studying the direction and wear characteristics in the boundary lubrication regime with this test device were found to be 1 kilogram load; 7 to 9 meters-per-minute (50 rpm) surface speed; dry air test atmosphere (less than 100 ppm H2O); and use of a time stepwise procedure for measuring wear. Highly reproducible steady-state wear rates resulted from the two fluid studies which had a linearity of about 99 percent after initially higher wear rates and friction coefficients during run-in periods of 20 to 40 minutes.

  4. Least-squares/parabolized Navier-Stokes procedure for optimizing hypersonic wind tunnel nozzles

    NASA Technical Reports Server (NTRS)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; Grossman, B.

    1991-01-01

    A new procedure is demonstrated for optimizing hypersonic wind-tunnel-nozzle contours. The procedure couples a CFD computer code to an optimization algorithm, and is applied to both conical and contoured hypersonic nozzles for the purpose of determining an optimal set of parameters to describe the surface geometry. A design-objective function is specified based on the deviation from the desired test-section flow-field conditions. The objective function is minimized by optimizing the parameters used to describe the nozzle contour based on the solution to a nonlinear least-squares problem. The effect of the changes in the nozzle wall parameters are evaluated by computing the nozzle flow using the parabolized Navier-Stokes equations. The advantage of the new procedure is that it directly takes into account the displacement effect of the boundary layer on the wall contour. The new procedure provides a method for optimizing hypersonic nozzles of high Mach numbers which have been designed by classical procedures, but are shown to produce poor flow quality due to the large boundary layers present in the test section. The procedure is demonstrated by finding the optimum design parameters for a Mach 10 conical nozzle and a Mach 6 and a Mach 15 contoured nozzle.

  5. Shrinkage vectors of a flowable composite in artificial cavity models with different boundary conditions: Ceramic and Teflon.

    PubMed

    Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz

    2018-01-01

    Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Parabolized Navier-Stokes solutions of separation and trailing-edge flows

    NASA Technical Reports Server (NTRS)

    Brown, J. L.

    1983-01-01

    A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.

  7. Interferogram conditioning for improved Fourier analysis and application to X-ray phase imaging by grating interferometry.

    PubMed

    Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme

    2015-11-02

    An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.

  8. Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Kumar, A; Reddy, S.; Handschuh, R.

    1995-01-01

    A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.

  9. Optimal Artificial Boundary Condition Configurations for Sensitivity-Based Model Updating and Damage Detection

    DTIC Science & Technology

    2010-09-01

    matrix is used in many methods, like Jacobi or Gauss Seidel , for solving linear systems. Also, no partial pivoting is necessary for a strictly column...problems that arise during the procedure, which in general, converges to the solving of a linear system. The most common issue with the solution is the... iterative procedure to find an appropriate subset of parameters that produce an optimal solution commonly known as forward selection. Then, the

  10. Wind tunnel-sidewall-boundary-layer effects in transonic airfoil testing-some correctable, but some not

    NASA Technical Reports Server (NTRS)

    Lynch, F. T.; Johnson, C. B.

    1988-01-01

    The need to correct transonic airfoil wind tunnel test data for the influence of the tunnel sidewall boundary layers, in addition to the wall accepted corrections for the analytical investigation was carried out in order to evaluate sidewall boundary layer effects on transonic airfoil characteristics, and to validate proposed correction and the limit to their applications. This investigation involved testing of modern airfoil configurations in two different transonic airfoil test facilities, the 15 x 60 inch two-dimensional insert of the National Aeronautical Establishment (NAE) 5 foot tunnel in Ottawa, Canada, and the two-dimensional test section of the NASA Langley 0.3 m Transonic Cryogenic Tunnel (TCT). Results presented included effects of variations in sidewall-boundary layer bleed in both facilities, different sidewall boundary layer correction procedures, tunnel-to tunnel comparisons of correcte results, and flow conditions with and without separation.

  11. Rock riprap design for protection of stream channels near highway structures; Volume 2, Evaluation of Riprap design procedures

    USGS Publications Warehouse

    Blodgett, J.C.; McConaughy, C.E.

    1986-01-01

    In volume 2, seven procedures now being used for design of rock riprap installations were evaluated using data from 26 field sites. Four basic types of riprap failures were identified: Particle erosion, translational slide, modified slump, and slump. Factors associated with riprap failure include stone size , bank side slope, size gradation, thickness, insufficient toe or endwall, failure of the bank material, overtopping during floods, and geomorphic changes in the channel. A review of field data and the design procedures suggests that estimates of hydraulic forces acting on the boundary based on flow velocity rather than shear stress are more reliable. Several adjustments for local conditions, such as channel curvature, superelevation, or boundary roughness, may be unwarranted in view of the difficulty in estimating critical hydraulic forces for which the riprap is to be designed. Success of the riprap is related not only to the appropriate procedure for selecting stone size, but also to the reliability of estimated hydraulic and channel factors applicable to the site. (See also W89-04910) (Author 's abstract)

  12. A gatekeeping procedure to test a primary and a secondary endpoint in a group sequential design with multiple interim looks.

    PubMed

    Tamhane, Ajit C; Gou, Jiangtao; Jennison, Christopher; Mehta, Cyrus R; Curto, Teresa

    2018-03-01

    Glimm et al. (2010) and Tamhane et al. (2010) studied the problem of testing a primary and a secondary endpoint, subject to a gatekeeping constraint, using a group sequential design (GSD) with K=2 looks. In this article, we greatly extend the previous results to multiple (K>2) looks. If the familywise error rate (FWER) is to be controlled at a preassigned α level then it is clear that the primary boundary must be of level α. We show under what conditions one α-level primary boundary is uniformly more powerful than another. Based on this result, we recommend the choice of the O'Brien and Fleming (1979) boundary over the Pocock (1977) boundary for the primary endpoint. For the secondary endpoint the choice of the boundary is more complicated since under certain conditions the secondary boundary can be refined to have a nominal level α'>α, while still controlling the FWER at level α, thus boosting the secondary power. We carry out secondary power comparisons via simulation between different choices of primary-secondary boundary combinations. The methodology is applied to the data from the RALES study (Pitt et al., 1999; Wittes et al., 2001). An R library package gsrsb to implement the proposed methodology is made available on CRAN. © 2017, The International Biometric Society.

  13. Embedding methods for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, S. H.; Johnson, G. M.

    1983-01-01

    An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.

  14. Contact stress analysis of spiral bevel gears using nonlinear finite element static analysis

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Kumar, A.; Reddy, S.; Handschuh, R.

    1993-01-01

    A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.

  15. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. The governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models are described in detail.

  16. Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  17. Effects of Synchronicity and Belongingness on Face-to-Face and Computer-Mediated Constructive Controversy

    ERIC Educational Resources Information Center

    Saltarelli, Andy J.; Roseth, Cary J.

    2014-01-01

    Adapting face-to-face (FTF) pedagogies to online settings raises boundary questions about the contextual conditions in which the same instructional method stimulates different outcomes. We address this issue by examining FTF and computer-mediated communication (CMC) versions of constructive controversy, a cooperative learning procedure involving…

  18. A spectral-finite difference solution of the Navier-Stokes equations in three dimensions

    NASA Astrophysics Data System (ADS)

    Alfonsi, Giancarlo; Passoni, Giuseppe; Pancaldo, Lea; Zampaglione, Domenico

    1998-07-01

    A new computational code for the numerical integration of the three-dimensional Navier-Stokes equations in their non-dimensional velocity-pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral-finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank-Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge-Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain.Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors.

  19. Assessment of Cracks in Stress Concentration Regions with Localized Plastic Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, E.

    1998-11-25

    Marty brittle fracture evaluation procedures include plasticity corrections to elastically computed stress intensity factors. These corrections, which are based on the existence of a plastic zone in the vicinity of the crack tip, can overestimate the plasticity effect for a crack embedded in a stress concentration region in which the elastically computed stress exceeds the yield strength of the material in a localized zone. The interactions between the crack, which acts to relieve the high stresses driving the crack, plasticity effects in the stress concentration region, and the nature and source of the loading are examined by formulating explicit flawmore » finite element models for a crack emanating from the root of a notch located in a panel subject to an applied tensile stress. The results of these calculations provide conditions under which a crack-tip plasticity correction based on the Irwin plastic zone size overestimates the plasticity effect. A failure assessment diagram (FAD) curve is used to characterize the effect of plasticity on the crack driving force and to define a less restrictive plasticity correction for cracks at notch roots when load-controlled boundary conditions are imposed. The explicit flaw finite element results also demonstrate that stress intensity factors associated with load-controlled boundary conditions, such as those inherent in the ASME Boiler and Pressure Vessel Code as well as in most handbooks of stress intensity factors, can be much higher than those associated with displacement-controlled conditions, such as those that produce residual or thermal stresses. Under certain conditions, the inclusion of plasticity effects for cracks loaded by displacement-controlled boundary conditions reduces the crack driving force thus justifying the elimination of a plasticity correction for such loadings. The results of this study form the basis for removing unnecessary conservatism from flaw evaluation procedures that utilize plasticity corrections.« less

  20. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  1. Weather Research and Forecasting Model with Vertical Nesting Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improves WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundarymore » conditions to be provided through the nesting procedure.« less

  2. Impact of cabin environment on thermal protection system of crew hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao Wei; Zhao, Jing Quan; Zhu, Lei; Yu, Xi Kui

    2016-05-01

    Hypersonic crew vehicles need reliable thermal protection systems (TPS) to ensure their safety. Since there exists relative large temperature difference between cabin airflow and TPS structure, the TPS shield that covers the cabin is always subjected to a non-adiabatic inner boundary condition, which may influence the heat transfer characteristic of the TPS. However, previous literatures always neglected the influence of the inner boundary by assuming that it was perfectly adiabatic. The present work focuses on studying the impact of cabin environment on the thermal performance. A modified TPS model is created with a mixed thermal boundary condition to connect the cabin environment with the TPS. This helps make the simulation closer to the real situation. The results stress that cabin environment greatly influences the temperature profile inside the TPS, which should not be neglected in practice. Moreover, the TPS size can be optimized during the design procedure if taking the effect of cabin environment into account.

  3. [Kinetic theory and boundary conditions for highly inelastic spheres]. Quarterly progress report, April 1, 1993--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richman, M.

    1993-12-31

    In this quarter, a kinetic theory was employed to set up the boundary value problem for steady, fully developed, gravity-driven flows of identical, smooth, highly inelastic spheres down bumpy inclines. The solid fraction, mean velocity, and components of the full second moment of fluctuation velocity were treated as mean fields. In addition to the balance equations for mass and momentum, the balance of the full second moment of fluctuation velocity was treated as an equation that must be satisfied by the mean fields. However, in order to simplify the resulting boundary value problem, fluxes of second moments in its isotropicmore » piece only were retained. The constitutive relations for the stresses and collisional source of second moment depend explicitly on the second moment of fluctuation velocity, and the constitutive relation for the energy flux depends on gradients of granular temperature, solid fraction, and components of the second moment. The boundary conditions require that the flows are free of stress and energy flux at their tops, and that momentum and energy are balanced at the bumpy base. The details of the boundary value problem are provided. In the next quarter, a solution procedure will be developed, and it will be employed to obtain sample numerical solutions to the boundary value problem described here.« less

  4. Heating 7.2 user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  5. Heating 7. 2 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  6. A full potential inverse method based on a density linearization scheme for wing design

    NASA Technical Reports Server (NTRS)

    Shankar, V.

    1982-01-01

    A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.

  7. HADY-I, a FORTRAN program for the compressible stability analysis of three-dimensional boundary layers. [on swept and tapered wings

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.

    1981-01-01

    A computer program HADY-I for calculating the linear incompressible or compressible stability characteristics of the laminar boundary layer on swept and tapered wings is described. The eigenvalue problem and its adjoint arising from the linearized disturbance equations with the appropriate boundary conditions are solved numerically using a combination of Newton-Raphson interative scheme and a variable step size integrator based on the Runge-Kutta-Fehlburh fifth-order formulas. The integrator is used in conjunction with a modified Gram-Schmidt orthonormalization procedure. The computer program HADY-I calculates the growth rates of crossflow or streamwise Tollmien-Schlichting instabilities. It also calculates the group velocities of these disturbances. It is restricted to parallel stability calculations, where the boundary layer (meanflow) is assumed to be parallel. The meanflow solution is an input to the program.

  8. Analytical method for predicting the pressure distribution about a nacelle at transonic speeds

    NASA Technical Reports Server (NTRS)

    Keith, J. S.; Ferguson, D. R.; Merkle, C. L.; Heck, P. H.; Lahti, D. J.

    1973-01-01

    The formulation and development of a computer analysis for the calculation of streamlines and pressure distributions around two-dimensional (planar and axisymmetric) isolated nacelles at transonic speeds are described. The computerized flow field analysis is designed to predict the transonic flow around long and short high-bypass-ratio fan duct nacelles with inlet flows and with exhaust flows having appropriate aerothermodynamic properties. The flow field boundaries are located as far upstream and downstream as necessary to obtain minimum disturbances at the boundary. The far-field lateral flow field boundary is analytically defined to exactly represent free-flight conditions or solid wind tunnel wall effects. The inviscid solution technique is based on a Streamtube Curvature Analysis. The computer program utilizes an automatic grid refinement procedure and solves the flow field equations with a matrix relaxation technique. The boundary layer displacement effects and the onset of turbulent separation are included, based on the compressible turbulent boundary layer solution method of Stratford and Beavers and on the turbulent separation prediction method of Stratford.

  9. BLSTA: A boundary layer code for stability analysis

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1992-01-01

    A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.

  10. Interactive boundary delineation of agricultural lands using graphics workstations

    NASA Technical Reports Server (NTRS)

    Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt

    1992-01-01

    A review is presented of the computer-assisted stratification and sampling (CASS) system developed to delineate the boundaries of sample units for survey procedures. CASS stratifies the sampling units by land-cover and land-use type, employing image-processing software and hardware. This procedure generates coverage areas and the boundaries of stratified sampling units that are utilized for subsequent sampling procedures from which agricultural statistics are developed.

  11. Three-dimensional transformation optics for arbitrary coordinate systems: transforming conductive materials and boundaries.

    PubMed

    Kazemzadeh, Mohammad-Rahim; Alighanbari, Abbas

    2018-04-16

    A three-dimensional transformation optics method, leading to homogeneous materials, applicable to any non-Cartesian coordinate systems or waveguides/objects of arbitrary cross-sections is presented. Both the conductive boundary and internal material of the desired device is determined by the proposed formulation. The method is applicable to a wide range of waveguide, radiation, and cloaking problems, and is demonstrated for circular waveguide couplers and an external cloak. An advantage of the present method is that the material properties are simplified by appropriately selecting the conductive boundaries. For instance, a right-angle circular waveguide bend is presented which uses only one homogenous material. Also, transformation of conductive materials and boundaries are studied. The conditions in which the transformed boundaries remain conductive are discussed. In addition, it is demonstrated that negative infinite conductivity can be replaced with positive conductivity, without affecting the field outside the conductive boundary. It is also observed that a negative finite conductivity can be replaced with a positive one, by accepting some small errors. The general mathematical procedure and formulation for calculating the parametric surface equations of the conductive peripheries are presented.

  12. Rocket injector anomalies study. Volume 1: Description of the mathematical model and solution procedure

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.

  13. Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions

    NASA Astrophysics Data System (ADS)

    Schäfer, K.; Grant, R. H.; Emeis, S.; Raabe, A.; von der Heide, C.; Schmid, H. P.

    2012-07-01

    Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2) are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s-1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.

  14. Thermoelectric DC conductivities in hyperscaling violating Lifshitz theories

    NASA Astrophysics Data System (ADS)

    Cremonini, Sera; Cvetič, Mirjam; Papadimitriou, Ioannis

    2018-04-01

    We analytically compute the thermoelectric conductivities at zero frequency (DC) in the holographic dual of a four dimensional Einstein-Maxwell-Axion-Dilaton theory that admits a class of asymptotically hyperscaling violating Lifshitz backgrounds with a dynamical exponent z and hyperscaling violating parameter θ. We show that the heat current in the dual Lifshitz theory involves the energy flux, which is an irrelevant operator for z > 1. The linearized fluctuations relevant for computing the thermoelectric conductivities turn on a source for this irrelevant operator, leading to several novel and non-trivial aspects in the holographic renormalization procedure and the identification of the physical observables in the dual theory. Moreover, imposing Dirichlet or Neumann boundary conditions on the spatial components of one of the two Maxwell fields present leads to different thermoelectric conductivities. Dirichlet boundary conditions reproduce the thermoelectric DC conductivities obtained from the near horizon analysis of Donos and Gauntlett, while Neumann boundary conditions result in a new set of DC conductivities. We make preliminary analytical estimates for the temperature behavior of the thermoelectric matrix in appropriate regions of parameter space. In particular, at large temperatures we find that the only case which could lead to a linear resistivity ρ ˜ T corresponds to z = 4 /3.

  15. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements

    NASA Astrophysics Data System (ADS)

    Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona

    2018-01-01

    Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.

  16. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries

    NASA Astrophysics Data System (ADS)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.

  17. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.

    PubMed

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.

  18. Inverse Thermal Analysis of Titanium GTA Welds Using Multiple Constraints

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Shabaev, A.; Huang, L.

    2015-06-01

    Inverse thermal analysis of titanium gas-tungsten-arc welds using multiple constraint conditions is presented. This analysis employs a methodology that is in terms of numerical-analytical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of this type of analysis provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that provides for the inclusion of constraint conditions associated with both solidification and phase transformation boundaries.

  19. Approximate convective heating equations for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.; Sutton, K.

    1979-01-01

    Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.

  20. Analytic methods for design of wave cycles for wave rotor core engines

    NASA Technical Reports Server (NTRS)

    Resler, Edwin L., Jr.; Mocsari, Jeffrey C.; Nalim, M. R.

    1993-01-01

    A procedure to design a preliminary wave rotor cycle for any application is presented. To complete a cycle with heat addition there are two separate but related design steps that must be followed. The 'wave' boundary conditions determine the allowable amount of heat added in any case and the ensuing wave pattern requires certain pressure discharge conditions to allow the process to be made cyclic. This procedure, when applied, gives a first estimate of the cycle performance and the necessary information for the next step in the design process, namely the application of a characteristic based or other appropriate detailed one dimensional wave calculation that locates the proper porting around the periphery of the wave rotor. Four examples of the design procedure are given to demonstrate its utility and generality. These examples also illustrate the large gains in performance that could be realized with the use of wave rotor enhanced propulsion cycles.

  1. Preconditioned conjugate residual methods for the solution of spectral equations

    NASA Technical Reports Server (NTRS)

    Wong, Y. S.; Zang, T. A.; Hussaini, M. Y.

    1986-01-01

    Conjugate residual methods for the solution of spectral equations are described. An inexact finite-difference operator is introduced as a preconditioner in the iterative procedures. Application of these techniques is limited to problems for which the symmetric part of the coefficient matrix is positive definite. Although the spectral equation is a very ill-conditioned and full matrix problem, the computational effort of the present iterative methods for solving such a system is comparable to that for the sparse matrix equations obtained from the application of either finite-difference or finite-element methods to the same problems. Numerical experiments are shown for a self-adjoint elliptic partial differential equation with Dirichlet boundary conditions, and comparison with other solution procedures for spectral equations is presented.

  2. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 1 is the Analysis Description, and describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  3. Microstructure Evolution and the Resulted Influence on Localized Corrosion in Al-Zn-Mg-Cu Alloy during Non-Isothermal Ageing

    PubMed Central

    Chen, Jun-Zhou; Li, Guo-Ai; Cai, Xin; Jiang, Jian-Tang; Shao, Wen-Zhu; Yang, Li; Zhen, Liang

    2018-01-01

    A non-isothermal ageing process was proposed for an Al-Zn-Mg-Cu alloy aiming to accommodate the slow heating/cooling procedure during the ageing of large components. The evolution of microstructure and microchemistry was analyzed by using transmission electron microscopy, high-angle annular dark field imaging, and energy dispersive spectrometry. The age-hardening of the alloy was examined to evaluate the strengthening behavior during the non-isothermal process. The corrosion behavior was investigated via observing the specimens immersed in EXCO solution (solution for Exfoliation Corrosion Susceptibility test in 2xxx and 7xxx series aluminum alloys, referring ASTM G34-01). Secondary precipitation was observed during the cooling stage, leading to increased precipitate number density. The distribution of grain boundary precipitates transits from discontinuous to continuous at the cooling stage, due to the secondary precipitation’s linking-up effect. The solutes’ enrichment on grain boundary precipitates and the depletion in precipitate-free zones develops during the heating procedure, but remains invariable during the cooling procedure. The corrosion in NIA (Non-isothermal Ageing) treated specimens initiates from pitting and then transits to intergranular corrosion and exfoliation corrosion. The transition from pitting to intergranular corrosion is very slow for specimens heated to 190 °C, but accelerates slightly as the cooling procedure proceeds. The transition to exfoliation corrosion is observed to be quite slow in all specimens in non-isothermal aged to over-aged condition, suggesting a corrosion resistance comparable to that of RRA condition. PMID:29751493

  4. Microstructure Evolution and the Resulted Influence on Localized Corrosion in Al-Zn-Mg-Cu Alloy during Non-Isothermal Ageing.

    PubMed

    Chen, Jun-Zhou; Li, Guo-Ai; Cai, Xin; Jiang, Jian-Tang; Shao, Wen-Zhu; Yang, Li; Zhen, Liang

    2018-05-03

    A non-isothermal ageing process was proposed for an Al-Zn-Mg-Cu alloy aiming to accommodate the slow heating/cooling procedure during the ageing of large components. The evolution of microstructure and microchemistry was analyzed by using transmission electron microscopy, high-angle annular dark field imaging, and energy dispersive spectrometry. The age-hardening of the alloy was examined to evaluate the strengthening behavior during the non-isothermal process. The corrosion behavior was investigated via observing the specimens immersed in EXCO solution (solution for Exfoliation Corrosion Susceptibility test in 2xxx and 7xxx series aluminum alloys, referring ASTM G34-01). Secondary precipitation was observed during the cooling stage, leading to increased precipitate number density. The distribution of grain boundary precipitates transits from discontinuous to continuous at the cooling stage, due to the secondary precipitation’s linking-up effect. The solutes’ enrichment on grain boundary precipitates and the depletion in precipitate-free zones develops during the heating procedure, but remains invariable during the cooling procedure. The corrosion in NIA (Non-isothermal Ageing) treated specimens initiates from pitting and then transits to intergranular corrosion and exfoliation corrosion. The transition from pitting to intergranular corrosion is very slow for specimens heated to 190 °C, but accelerates slightly as the cooling procedure proceeds. The transition to exfoliation corrosion is observed to be quite slow in all specimens in non-isothermal aged to over-aged condition, suggesting a corrosion resistance comparable to that of RRA condition.

  5. A procedure of landscape services assessment based on mosaics of patches and boundaries.

    PubMed

    Martín de Agar, Pilar; Ortega, Marta; de Pablo, Carlos L

    2016-09-15

    We develop a procedure for assessing the environmental value of landscape mosaics that simultaneously considers the values of land use patches and the values of the boundaries between them. These boundaries indicate the ecological interactions between the patches. A landscape mosaic is defined as a set of patches and the boundaries between them and corresponds to a spatial pattern of ecological interactions. The procedure is performed in two steps: (i) an environmental assessment of land use patches by means of a function that integrates values based on the goods and services the patches provide, and (ii) an environmental valuation of mosaics using a function that integrates the environmental values of their patches and the types and frequencies of the boundaries between them. This procedure allows us to measure how changes in land uses or in their spatial arrangement cause variations in the environmental value of landscape mosaics and therefore in that of the whole landscape. The procedure was tested in the Sierra Norte of Madrid (central Spain). The results show that the environmental values of the landscape depend not only on the land use patches but also on the values associated with the pattern of the boundaries within the mosaics. The results also highlight the importance of the boundaries between land use patches as determinants of the goods and services provided by the landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. NASTRAN/FLEXSTAB procedure for static aeroelastic analysis

    NASA Technical Reports Server (NTRS)

    Schuster, L. S.

    1984-01-01

    Presented is a procedure for using the FLEXSTAB External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the FLEXSTAB Stability Derivatives and Static Stability (SD&SS) program. The SD&SS program computes trim state, stability derivatives, and pressure and deflection data for a flexible airplane having a plane of symmetry. The procedure used a NASTRAN finite-element structural model as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are boundary conditions and the NASTRAN substructuring technique.

  7. Attitudes about race predict individual differences in face adaptation aftereffects.

    PubMed

    Elliott, Sarah L; Chu, Kelly; Coleman, Jill

    2017-12-01

    This study examined whether category boundaries between Black and White faces relate to individual attitudes about race. Fifty-seven (20 Black, 37 White) participants completed measures of explicit racism, implicit racism, collective self-esteem (CSE), and racial centrality. Category boundaries between Black and White faces were measured in three separate conditions: following adaptation to (1) a neutral gray background, a sequence of (2) Black or (3) White faces. Two additional conditions measured category boundaries for facial distortion to investigate whether attitudes relate to mechanisms of racial identity alone, or to more global mechanisms of face perception. Using a two-alternative forced-choice staircase procedure, participants indicated whether a test image appeared to be Black or White (or contracted or expanded). Following neutral adaptation, participants with higher CSE showed category boundaries shifted toward faces with a higher percentage of Black features. In addition, the strength of short-term sensitivity shifts following adaptation to Black and White faces was related to explicit and implicit attitudes about race. Sensitivity shifts were weaker when participants scored higher on explicit racism, but were stronger when participants scored higher on implicit but lower on explicit racism. The results of this study indicate that attitudes about race account for some individual differences in natural category boundaries between races as well as the strength of identity aftereffects following face adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Interaction of wave with a body submerged below an ice sheet with multiple arbitrarily spaced cracks

    NASA Astrophysics Data System (ADS)

    Li, Z. F.; Wu, G. X.; Ji, C. Y.

    2018-05-01

    The problem of wave interaction with a body submerged below an ice sheet with multiple arbitrarily spaced cracks is considered, based on the linearized velocity potential theory together with the boundary element method. The ice sheet is modeled as a thin elastic plate with uniform properties, and zero bending moment and shear force conditions are enforced at the cracks. The Green function satisfying all the boundary conditions including those at cracks, apart from that on the body surface, is derived and is expressed in an explicit integral form. The boundary integral equation for the velocity potential is constructed with an unknown source distribution over the body surface only. The wave/crack interaction problem without the body is first solved directly without the need for source. The convergence and comparison studies are undertaken to show the accuracy and reliability of the solution procedure. Detailed numerical results through the hydrodynamic coefficients and wave exciting forces are provided for a body submerged below double cracks and an array of cracks. Some unique features are observed, and their mechanisms are analyzed.

  9. Quadratic Convective Flow of a Micropolar Fluid along an Inclined Plate in a Non-Darcy Porous Medium with Convective Boundary Condition

    NASA Astrophysics Data System (ADS)

    RamReddy, Ch.; Naveen, P.; Srinivasacharya, D.

    2017-06-01

    The objective of the present study is to investigate the effect of nonlinear variation of density with temperature and concentration on the mixed convective flow of a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of the convective boundary condition. In order to analyze all the essential features, the governing non-dimensional partial differential equations are transformed into a system of ordinary differential equations using a local non-similarity procedure and then the resulting boundary value problem is solved using a successive linearisation method (SLM). By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the micropolar parameter and non-Darcy parameter tend to increase the skin friction and the reverse change is observed in wall couple stress, mass and heat transfer rates. The influence of the nonlinear concentration parameter is more prominent on all the physical characteristics of the present model, compared with that of nonlinear temperature parameter.

  10. Solution of elliptic PDEs by fast Poisson solvers using a local relaxation factor

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1986-01-01

    A large class of two- and three-dimensional, nonseparable elliptic partial differential equations (PDEs) is presently solved by means of novel one-step (D'Yakanov-Gunn) and two-step (accelerated one-step) iterative procedures, using a local, discrete Fourier analysis. In addition to being easily implemented and applicable to a variety of boundary conditions, these procedures are found to be computationally efficient on the basis of the results of numerical comparison with other established methods, which lack the present one's: (1) insensitivity to grid cell size and aspect ratio, and (2) ease of convergence rate estimation by means of the coefficient of the PDE being solved. The two-step procedure is numerically demonstrated to outperform the one-step procedure in the case of PDEs with variable coefficients.

  11. Vacuum energy in Einstein-Gauss-Bonnet anti-de Sitter gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofinas, Georgios; Olea, Rodrigo

    2006-10-15

    A finite action principle for Einstein-Gauss-Bonnet anti-de Sitter gravity is achieved by supplementing the bulk Lagrangian by a suitable boundary term, whose form substantially differs in odd and even dimensions. For even dimensions, this term is given by the boundary contribution in the Euler theorem with a coupling constant fixed, demanding the spacetime to have constant (negative) curvature in the asymptotic region. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. A well-posed variational principle leads to an appropriate definition of energy and other conserved quantities using the Noether theorem, andmore » to a correct description of black hole thermodynamics. In particular, this procedure assigns a nonzero energy to anti-de Sitter spacetime in all odd dimensions.« less

  12. Analytical solutions for sequentially coupled one-dimensional reactive transport problems Part I: Mathematical derivations

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Clement, T. P.

    2008-02-01

    Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.

  13. BODYFIT-1FE: a computer code for three-dimensional steady-state/transient single-phase rod-bundle thermal-hydraulic analysis. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.C.J.; Sha, W.T.; Doria, M.L.

    1980-11-01

    The governing equations, i.e., conservation equations for mass, momentum, and energy, are solved as a boundary-value problem in space and an initial-value problem in time. BODYFIT-1FE code uses the technique of boundary-fitted coordinate systems where all the physical boundaries are transformed to be coincident with constant coordinate lines in the transformed space. By using this technique, one can prescribe boundary conditions accurately without interpolation. The transformed governing equations in terms of the boundary-fitted coordinates are then solved by using implicit cell-by-cell procedure with a choice of either central or upwind convective derivatives. It is a true benchmark rod-bundle code withoutmore » invoking any assumptions in the case of laminar flow. However, for turbulent flow, some empiricism must be employed due to the closure problem of turbulence modeling. The detailed velocity and temperature distributions calculated from the code can be used to benchmark and calibrate empirical coefficients employed in subchannel codes and porous-medium analyses.« less

  14. Smoothed Particle Hydrodynamics Continuous Boundary Force method for Navier-Stokes equations subject to Robin boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.

    2014-02-15

    Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to variousmore » forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.« less

  15. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M.-S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations, the steady Euler equations, using Newton's linearization procedure is presented. A theorem indicating quadratic convergence for the case of differential equations is demonstrated. A condition for the domain of quadratic convergence Omega(2) is obtained which indicates that whether an approximation lies in Omega(2) depends on the rate of change and the smoothness of the flow vectors, and hence is problem-dependent. The choice of spatial differencing, of particular importance for the present method, is discussed. The treatment of boundary conditions is addressed, and the system of equations resulting from the foregoing analysis is summarized and solution strategies are discussed. The convergence of calculated solutions is demonstrated by comparing them with exact solutions to one and two-dimensional problems.

  16. A Statistical Approach for the Concurrent Coupling of Molecular Dynamics and Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Saether, E.; Yamakov, V.; Glaessgen, E.

    2007-01-01

    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, increasing the size of the MD domain quickly presents intractable computational demands. A robust approach to surmount this computational limitation has been to unite continuum modeling procedures such as the finite element method (FEM) with MD analyses thereby reducing the region of atomic scale refinement. The challenging problem is to seamlessly connect the two inherently different simulation techniques at their interface. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the typical boundary value problem used to define a coupled domain. The method uses statistical averaging of the atomistic MD domain to provide displacement interface boundary conditions to the surrounding continuum FEM region, which, in return, generates interface reaction forces applied as piecewise constant traction boundary conditions to the MD domain. The two systems are computationally disconnected and communicate only through a continuous update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM) as opposed to a direct coupling method where interface atoms and FEM nodes are individually related. The methodology is inherently applicable to three-dimensional domains, avoids discretization of the continuum model down to atomic scales, and permits arbitrary temperatures to be applied.

  17. Quality controls for wind measurement of a 1290-MHz boundary layer profiler under strong wind conditions.

    PubMed

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2017-09-01

    Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.

  18. Importance of inlet boundary conditions for numerical simulation of combustor flows

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.

    1983-01-01

    Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.

  19. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  20. Determination of the Pressure Drag of Airfoils by Integration of Surface Pressures

    NASA Technical Reports Server (NTRS)

    Phillips, William H.

    1990-01-01

    A study was conducted of the causes of pressure drag of subsonic airfoils. In a previous paper by the author, the pressure drag is obtained by calculating the total drag from the momentum defect in the boundary layer at the trailing edge and subtracting the friction drag obtained from integration of surface friction along the chord. Herein, the pressure drag is obtained by integrating the streamwise components of surface pressure around the airfoil. Studies were made to verify the accuracy of the integration procedure. The values of pressure drag were much smaller than those obtained by the previous method. This lack of agreement is attributed to the difficulty of calculating boundary layer conditions in the vicinity of the trailing edge and to the extreme sensitivity of the circulation and lift to the trailing edge conditions. The results of these studies are compared with those of previous investigations.

  1. Thermodynamic properties of small aggregates of rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Kaelberer, J.

    1975-01-01

    The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.

  2. Inflow/Outflow Boundary Conditions with Application to FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2011-01-01

    Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.

  3. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  4. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  5. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    NASA Astrophysics Data System (ADS)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  6. Phase separation in the six-vertex model with a variety of boundary conditions

    NASA Astrophysics Data System (ADS)

    Lyberg, I.; Korepin, V.; Ribeiro, G. A. P.; Viti, J.

    2018-05-01

    We present numerical results for the six-vertex model with a variety of boundary conditions. Adapting an algorithm for domain wall boundary conditions, proposed in the work of Allison and Reshetikhin [Ann. Inst. Fourier 55(6), 1847-1869 (2005)], we examine some modifications of these boundary conditions. To be precise, we discuss partial domain wall boundary conditions, reflecting ends, and half turn boundary conditions (domain wall boundary conditions with half turn symmetry). Dedicated to the memory of Ludwig Faddeev

  7. Locality-preserving logical operators in topological stabilizer codes

    NASA Astrophysics Data System (ADS)

    Webster, Paul; Bartlett, Stephen D.

    2018-01-01

    Locality-preserving logical operators in topological codes are naturally fault tolerant, since they preserve the correctability of local errors. Using a correspondence between such operators and gapped domain walls, we describe a procedure for finding all locality-preserving logical operators admitted by a large and important class of topological stabilizer codes. In particular, we focus on those equivalent to a stack of a finite number of surface codes of any spatial dimension, where our procedure fully specifies the group of locality-preserving logical operators. We also present examples of how our procedure applies to codes with different boundary conditions, including color codes and toric codes, as well as more general codes such as Abelian quantum double models and codes with fermionic excitations in more than two dimensions.

  8. Convergence of an iterative procedure for large-scale static analysis of structural components

    NASA Technical Reports Server (NTRS)

    Austin, F.; Ojalvo, I. U.

    1976-01-01

    The paper proves convergence of an iterative procedure for calculating the deflections of built-up component structures which can be represented as consisting of a dominant, relatively stiff primary structure and a less stiff secondary structure, which may be composed of one or more substructures that are not connected to one another but are all connected to the primary structure. The iteration consists in estimating the deformation of the primary structure in the absence of the secondary structure on the assumption that all mechanical loads are applied directly to the primary structure. The j-th iterate primary structure deflections at the interface are imposed on the secondary structure, and the boundary loads required to produce these deflections are computed. The cycle is completed by applying the interface reaction to the primary structure and computing its updated deflections. It is shown that the mathematical condition for convergence of this procedure is that the maximum eigenvalue of the equation relating primary-structure deflection to imposed secondary-structure deflection be less than unity, which is shown to correspond with the physical requirement that the secondary structure be more flexible at the interface boundary.

  9. Settlements around pumping wells: Analysis of influential factors and a simple calculation procedure

    NASA Astrophysics Data System (ADS)

    Pujades, Estanislao; De Simone, Silvia; Carrera, Jesus; Vázquez-Suñé, Enric; Jurado, Anna

    2017-05-01

    Estimated and measured settlements caused by pumping rarely agree. Several reasons could explain this mismatch, including the influence of layering, the mechanical parameters used in the predictions, or the relationship between settlements and drawdown. We analyze the influence of the above issues by investigating the mechanical response of pumped elastic porous media under different conditions. A radially symmetric conceptual model is considered and several hydro-mechanical simulations are performed varying the boundary conditions, the size of the modeled domain and the presence or not of an overlying layer. The simplicity of the considered problem allows us to compare our results with existing analytical solutions, to identify the role of each variable on pumping settlements and to generalize the results. The most relevant results are as follows: (1) settlements are proportional to drawdown only outside a circle of radius equal to 0.7 times the thickness of the pumped porous medium; inside, they are virtually constant, which leads to two simple procedures for computing pumping settlements. (2) Poorly conductive layers located above (or below) a pumped porous medium (with higher hydraulic conductivity) reduce and smooth settlements. (3) Boundary constraints affect the local specific storage coefficient and the displacements occurred. (4) The specific storage coefficient evaluated by interpreting pumping tests with the Cooper and Jacob method (1946) leads to overestimation of the actual Young's Modulus of the soil. The main conclusion is that settlements are less differential than expected near pumping wells. Still, they must always be evaluated acknowledging the nature of layering, the boundary constraints and carefully selecting the mechanical parameters of the soil.

  10. Continuous modeling of a grain boundary in MgO and its disclination induced grain-boundary migration mechanism

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Sun, X.; Taupin, V.; Fressengeas, C.

    2016-12-01

    Grain boundaries (GBs) are thin material layers where the lattice rotates from one orientation to the next one within a few nanometers. Because they treat these layers as infinitely thin interfaces, large-scale polycrystalline representations fail to describe their structure. Conversely, atomistic representations provide a detailed description of the GBs, but their character remains discrete and not prone to coarse-graining procedures. Continuum descriptions based on kinematic and crystal defect fields defined at interatomic scale are appealing because they can provide smooth and thorough descriptions of GBs, recovering in some sense the atomistic description and potentially serving as a basis for coarse-grained polycrystalline representations. In this work, a crossover between atomistic description and continuous representation of a MgO tilt boundary in polycrystals is set-up to model the periodic arrays of structural units by using dislocation and disclination dipole arrays along GBs. The strain, rotation, curvature, disclination and dislocation density fields are determined in the boundary area by using the discrete atomic positions generated by molecular dynamics simulations. Then, this continuous disclination/dislocation model is used as part of the initial conditions in elasto-plastic continuum mechanics simulations to investigate the shear-coupled boundary migration of tilt boundaries. The present study leads to better understanding of the structure and mechanical architecture of grain boundaries.

  11. PIES free boundary stellarator equilibria with improved initial conditions

    NASA Astrophysics Data System (ADS)

    Drevlak, M.; Monticello, D.; Reiman, A.

    2005-07-01

    The MFBE procedure developed by Strumberger (1997 Nucl. Fusion 37 19) is used to provide an improved starting point for free boundary equilibrium computations in the case of W7-X (Nührenberg and Zille 1986 Phys. Lett. A 114 129) using the Princeton iterative equilibrium solver (PIES) code (Reiman and Greenside 1986 Comput. Phys. Commun. 43 157). Transferring the consistent field found by the variational moments equilibrium code (VMEC) (Hirshmann and Whitson 1983 Phys. Fluids 26 3553) to an extended coordinate system using the VMORPH code, a safe margin between plasma boundary and PIES domain is established. The new EXTENDER_P code implements a generalization of the virtual casing principle, which allows field extension both for VMEC and PIES equilibria. This facilitates analysis of the 5/5 islands of the W7-X standard case without including them in the original PIES computation.

  12. Time-dependent boundary conditions for hyperbolic systems. II

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1990-01-01

    A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.

  13. Time-dependent boundary conditions for hyperbolic systems. II

    NASA Astrophysics Data System (ADS)

    Thompson, Kevin W.

    1990-08-01

    A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.

  14. Elementary Kaluza-Klein towers revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grard, Fernand; Nuyts, Jean

    2006-12-15

    Considering that the momentum squared in the extra dimensions is the physically relevant quantity for the generation of the Kaluza-Klein mass states, we have reanalyzed mathematically the procedure for five dimensional scalar fields within the Arkhani-Ahmed, Dimopoulos and Dvali scenario. We find new sets of physically allowed boundary conditions. Beside the usual results, they lead to new towers with non regular mass spacing, to lonely mass states and to tachyons.

  15. Progressive Damage and Fracture in Composites Under Dynamic Loading

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    1994-01-01

    A computational simulation tool is used to evaluate the various stages of damage progression in composite materials during losipescu shear testing. Unidirectional composite specimens with either the major or minor material axis in the load direction are considered. Damage progression characteristics are described for each specimen using two types of boundary conditions. A procedure is outlined regarding the use of computational simulation in the testing of composite materials.

  16. Finitized conformal spectrum of the Ising model on the cylinder and torus

    NASA Astrophysics Data System (ADS)

    O'Brien, David L.; Pearce, Paul A.; Ole Warnaar, S.

    1996-02-01

    The spectrum of the critical Ising model on a lattice with cylindrical and toroidal boundary conditions is calculated by commuting transfer matrix methods. Using a simple truncation procedure, we obtain the natural finitizations of the conformal spectra recently proposed by Melzer. These finitizations imply polynomial identities which in the large lattice limit give rise to the Rogers-Ramanujan identities for the c = {1}/{2} Virasoro characters.

  17. General Boundary Conditions for a Majorana Single-Particle in a Box in (1 + 1) Dimensions

    NASA Astrophysics Data System (ADS)

    De Vincenzo, Salvatore; Sánchez, Carlet

    2018-05-01

    We consider the problem of a Majorana single-particle in a box in (1 + 1) dimensions. We show that the most general set of boundary conditions for the equation that models this particle is composed of two families of boundary conditions, each one with a real parameter. Within this set, we only have four confining boundary conditions—but infinite not confining boundary conditions. Our results are also valid when we include a Lorentz scalar potential in this equation. No other Lorentz potential can be added. We also show that the four confining boundary conditions for the Majorana particle are precisely the four boundary conditions that mathematically can arise from the general linear boundary condition used in the MIT bag model. Certainly, the four boundary conditions for the Majorana particle are also subject to the Majorana condition.

  18. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  19. Numerical and experimental analysis of inhomogeneities in SMA wires induced by thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Furst, Stephen J.; Crews, John H.; Seelecke, Stefan

    2012-11-01

    Published data on NiTi wire tensile tests display a surprising variety of results even though the same material has been studied. Hysteresis shapes can be observed that range from box- to cigar-like. In some cases, the variation may be the result of different post-fabrication treatment, such as annealing or cold working procedures. However, oftentimes local data are generated from average stress/strain concepts on the basis of global force and end displacement measurements. It is well known among experimentalists that this has a smoothening effect on data, but there is an additional, less well-known mechanism at work as well. This effect is due to thermomechanical coupling and the thermal boundary condition at the ends of the wires, and it manifests itself in a strong data dependence on the length of the employed specimen. This paper illustrates the effects of a thermal boundary layer in a 1D wire by means of an experimental study combined with a simulation based on the fully coupled momentum and energy balance equations. The system is modeled using COMSOL FEA software to simulate the distribution of strain, temperature, resistivity, and phase fractions. The local behavior is then integrated over the length of the wire to predict the expected behavior of the bulk wire as observed at its endpoints. Then, simulations are compared with results from a tensile test of a 100 mum diameter Dynalloy Flexinol wire between two large, steel clamps. Each step of the tensile test experiment is carefully controlled and then simulated via the boundary and initial conditions of the model. The simulated and experimental results show how the thermal boundary layer affects different length SMA wires and how the inhomogeneity prevents transition to austenite at the wire endpoints. Accordingly, shorter wires tend to be softer (more martensitic) than longer wires and exhibit a large reduction in recoverable strain because a larger percentage of their total length is impacted by the thermal boundary.

  20. Electrokinetic transport of rigid macroions in the thin double layer limit: a boundary element approach.

    PubMed

    Allison, Stuart A; Xin, Yao

    2005-08-15

    A boundary element (BE) procedure is developed to numerically calculate the electrophoretic mobility of highly charged, rigid model macroions in the thin double layer regime based on the continuum primitive model. The procedure is based on that of O'Brien (R.W. O'Brien, J. Colloid Interface Sci. 92 (1983) 204). The advantage of the present procedure over existing BE methodologies that are applicable to rigid model macroions in general (S. Allison, Macromolecules 29 (1996) 7391) is that computationally time consuming integrations over a large number of volume elements that surround the model particle are completely avoided. The procedure is tested by comparing the mobilities derived from it with independent theory of the mobility of spheres of radius a in a salt solution with Debye-Huckel screening parameter, kappa. The procedure is shown to yield accurate mobilities provided (kappa)a exceeds approximately 50. The methodology is most relevant to model macroions of mean linear dimension, L, with 1000>(kappa)L>100 and reduced absolute zeta potential (q|zeta|/k(B)T) greater than 1.0. The procedure is then applied to the compact form of high molecular weight, duplex DNA that is formed in the presence of the trivalent counterion, spermidine, under low salt conditions. For T4 DNA (166,000 base pairs), the compact form is modeled as a sphere (diameter=600 nm) and as a toroid (largest linear dimension=600 nm). In order to reconcile experimental and model mobilities, approximately 95% of the DNA phosphates must be neutralized by bound counterions. This interpretation, based on electrokinetics, is consistent with independent studies.

  1. Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flathers, M.B.; Bache, G.E.

    1999-10-01

    Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute weremore » analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.« less

  2. Cubic spline anchored grid pattern algorithm for high-resolution detection of subsurface cavities by the IR-CAT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassab, A.J.; Pollard, J.E.

    An algorithm is presented for the high-resolution detection of irregular-shaped subsurface cavities within irregular-shaped bodies by the IR-CAT method. The theoretical basis of the algorithm is rooted in the solution of an inverse geometric steady-state heat conduction problem. A Cauchy boundary condition is prescribed at the exposed surface, and the inverse geometric heat conduction problem is formulated by specifying the thermal condition at the inner cavities walls, whose unknown geometries are to be detected. The location of the inner cavities is initially estimated, and the domain boundaries are discretized. Linear boundary elements are used in conjunction with cubic splines formore » high resolution of the cavity walls. An anchored grid pattern (AGP) is established to constrain the cubic spline knots that control the inner cavity geometry to evolve along the AGP at each iterative step. A residual is defined measuring the difference between imposed and computed boundary conditions. A Newton-Raphson method with a Broyden update is used to automate the detection of inner cavity walls. During the iterative procedure, the movement of the inner cavity walls is restricted to physically realistic intermediate solutions. Numerical simulation demonstrates the superior resolution of the cubic spline AGP algorithm over the linear spline-based AGP in the detection of an irregular-shaped cavity. Numerical simulation is also used to test the sensitivity of the linear and cubic spline AGP algorithms by simulating bias and random error in measured surface temperature. The proposed AGP algorithm is shown to satisfactorily detect cavities with these simulated data.« less

  3. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  4. A generalised approach to reconstructing geographical boundary conditions for palaeoclimate modelling

    NASA Astrophysics Data System (ADS)

    Baatsen, M.; van Hinsbergen, D. J. J.; von der Heydt, A. S.; Dijkstra, H. A.; Sluijs, A.; Abels, H. A.; Bijl, P. K.

    2015-10-01

    Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art of plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate global geographical reconstructions that are suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth-age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicates that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping the reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain geographical features as newly generated boundary conditions can be easily incorporated in different model simulations. An example is presented, covering a late Eocene reconstruction (38 Ma), a MatLab script used to perform the procedure is provided in the Supplement.

  5. Color naming: color scientists do it between Munsell sheets of color

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano B.; Moroney, Nathan M.

    2010-01-01

    With the advent of high dynamic range imaging and wide gamut color spaces, gamut mapping algorithms have to nudge image colors much more drastically to constrain them within a rendering device's gamut. Classical colorimetry is concerned with color matching and the developed color difference metrics are for small distances. For larger distances, categorization becomes a more useful concept. In the gamut mapping case, lexical distance induced by color names is a more useful metric, which translates to the condition that a nudged color may not cross a name boundary. The new problem is to find these color name boundaries. We compare the experimental procedures used for color naming by linguists, ethnologists, and color scientists and propose a methodology that leads to robust repeatable experiments.

  6. The numerical calculation of laminar boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.; Steger, J. L.

    1974-01-01

    Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.

  7. Numerical solution of supersonic three-dimensional free-mixing flows using the parabolic-elliptic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hirsh, R. S.

    1976-01-01

    A numerical method is presented for solving the parabolic-elliptic Navier-Stokes equations. The solution procedure is applied to three-dimensional supersonic laminar jet flow issuing parallel with a supersonic free stream. A coordinate transformation is introduced which maps the boundaries at infinity into a finite computational domain in order to eliminate difficulties associated with the imposition of free-stream boundary conditions. Results are presented for an approximate circular jet, a square jet, varying aspect ratio rectangular jets, and interacting square jets. The solution behavior varies from axisymmetric to nearly two-dimensional in character. For cases where comparisons of the present results with those obtained from shear layer calculations could be made, agreement was good.

  8. Flow study in the cross sectional planes of a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A numerical study of the nonviscous flow characteristics in the cross-sectional planes of a radial inflow turbine scroll is presented. The velocity potential is used in the formulation to determine the flow velocity in these planes resulting from the continuous mass discharge. The effect of the through flow velocity is simulated by a continuous distribution of source/sink in the cross-section. A special iterative procedure is devised to handle the solution of the resulting Poisson's differential equation with Neumann boundary conditions in a domain with generally curved boundaries. The analysis is used to determine the effects of the radius of curvature, the location of the scroll section and its geometry on the flow characteristics in the turbine scroll.

  9. TEMPERATURE DISTRIBUTION IN A DIFFUSION CLOUD CHAMBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavic, I.; Szymakowski, J.; Stachorska, D.

    1961-03-01

    A diffusion cloud chamber with working conditions within a pressure range from 10 mm Hg to 2 atmospheres and at variable boundary surface temperatures in a wide interval is described. A simple procedure is described for cooling and thermoregulating the bottom of the chamber by means of vapor flow of liquid air which makes possible the achievement of temperature up to -120 deg C with stability better that plus or minus 1 deg C. A method for the measurement of temperature distribution by means of a thermistor is described, and a number of curves of the observed temperature gradient, dependentmore » on the boundary surface temperature is given. Analysis of other factors influencing the stable work of the diffusion cloud chamber was made. (auth)« less

  10. The interactive role of subsynoptic scale jet sreak and planetary boundary layer adjustments in organizing an apparently isolated convective complex

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.; Coats, G. D.

    1982-01-01

    A mesoscale atmospheric simulation system is described that is being developed in order to improve the simulation of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development, and significant atmospheric transport processes. Present emphasis in model development is in the parameterization of physical processes, time-dependent boundary conditions, sophisticated initialization and analysis procedures, nested grid solutions, and applications software development. Basic characteristics of the system as of March 1982 are listed. In a case study, the Grand Island tornado outbreak of 3 June 1980 is considered in substantial detail. Results of simulations with a mesoscale atmospheric simulation system indicate that over the high plains subtle interactions between existing jet streaks and deep well mixed boundary layers can lead to well organized patterns of mesoscale divergence and pressure falls. The amplitude and positioning of these mesoscale features is a function of the subtle nonlinear interaction between the pre-existing jet-streak and deep well mixed boundary layers. Model results for the case study indicate that the model has the potential for forecasting the precursor mesoscale convective environment.

  11. Forward marching procedure for separated boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Carter, J. E.; Wornom, S. F.

    1975-01-01

    A forward-marching procedure for separated boundary-layer flows which permits the rapid and accurate solution of flows of limited extent is presented. The streamwise convection of vorticity in the reversed flow region is neglected, and this approximation is incorporated into a previously developed (Carter, 1974) inverse boundary-layer procedure. The equations are solved by the Crank-Nicolson finite-difference scheme in which column iteration is carried out at each streamwise station. Instabilities encountered in the column iterations are removed by introducing timelike terms in the finite-difference equations. This provides both unconditional diagonal dominance and a column iterative scheme, found to be stable using the von Neumann stability analysis.

  12. Numerical methods for stiff systems of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  13. Calculation of the angular radiance distribution for a coupled atmosphere and canopy

    NASA Technical Reports Server (NTRS)

    Liang, Shunlin; Strahler, Alan H.

    1993-01-01

    The radiative transfer equations for a coupled atmosphere and canopy are solved numerically by an improved Gauss-Seidel iteration algorithm. The radiation field is decomposed into three components: unscattered sunlight, single scattering, and multiple scattering radiance for which the corresponding equations and boundary conditions are set up and their analytical or iterational solutions are explicitly derived. The classic Gauss-Seidel algorithm has been widely applied in atmospheric research. This is its first application for calculating the multiple scattering radiance of a coupled atmosphere and canopy. This algorithm enables us to obtain the internal radiation field as well as radiances at boundaries. Any form of bidirectional reflectance distribution function (BRDF) as a boundary condition can be easily incorporated into the iteration procedure. The hotspot effect of the canopy is accommodated by means of the modification of the extinction coefficients of upward single scattering radiation and unscattered sunlight using the formulation of Nilson and Kuusk. To reduce the computation for the case of large optical thickness, an improved iteration formula is derived to speed convergence. The upwelling radiances have been evaluated for different atmospheric conditions, leaf area index (LAI), leaf angle distribution (LAD), leaf size and so on. The formulation presented in this paper is also well suited to analyze the relative magnitude of multiple scattering radiance and single scattering radiance in both the visible and near infrared regions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and themore » sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.« less

  15. Quantum "violation" of Dirichlet boundary condition

    NASA Astrophysics Data System (ADS)

    Park, I. Y.

    2017-02-01

    Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a tension between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum-corrected black hole solution of the 1PI action no longer obeys, in the naive manner one may expect, the Dirichlet boundary conditions imposed at the classical level. We attribute the 'violation' of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.

  16. A non-local computational boundary condition for duct acoustics

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.

    1994-01-01

    A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.

  17. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  18. Stability of hyperbolic-parabolic mixed type equations with partial boundary condition

    NASA Astrophysics Data System (ADS)

    Zhan, Huashui; Feng, Zhaosheng

    2018-06-01

    In this paper, we are concerned with the hyperbolic-parabolic mixed type equations with the non-homogeneous boundary condition. If it is degenerate on the boundary, the part of the boundary whose boundary value should be imposed, is determined by the entropy condition from the convection term. If there is no convection term in the equation, we show that the stability of solutions can be proved without any boundary condition. If the equation is completely degenerate, we show that the stability of solutions can be established just based on the partial boundary condition.

  19. Boundary Condition for Modeling Semiconductor Nanostructures

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard

    2006-01-01

    A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.

  20. Particle Creation at a Point Source by Means of Interior-Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Lampart, Jonas; Schmidt, Julian; Teufel, Stefan; Tumulka, Roderich

    2018-06-01

    We consider a way of defining quantum Hamiltonians involving particle creation and annihilation based on an interior-boundary condition (IBC) on the wave function, where the wave function is the particle-position representation of a vector in Fock space, and the IBC relates (essentially) the values of the wave function at any two configurations that differ only by the creation of a particle. Here we prove, for a model of particle creation at one or more point sources using the Laplace operator as the free Hamiltonian, that a Hamiltonian can indeed be rigorously defined in this way without the need for any ultraviolet regularization, and that it is self-adjoint. We prove further that introducing an ultraviolet cut-off (thus smearing out particles over a positive radius) and applying a certain known renormalization procedure (taking the limit of removing the cut-off while subtracting a constant that tends to infinity) yields, up to addition of a finite constant, the Hamiltonian defined by the IBC.

  1. Dynamic biogeochemical provinces in the global ocean

    NASA Astrophysics Data System (ADS)

    Reygondeau, Gabriel; Longhurst, Alan; Martinez, Elodie; Beaugrand, Gregory; Antoine, David; Maury, Olivier

    2013-12-01

    In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997-2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.

  2. Determination of the temperature distribution in a minichannel using ANSYS CFX and a procedure based on the Trefftz functions

    NASA Astrophysics Data System (ADS)

    Maciejewska, Beata; Błasiak, Sławomir; Piasecka, Magdalena

    This work discusses the mathematical model for laminar-flow heat transfer in a minichannel. The boundary conditions in the form of temperature distributions on the outer sides of the channel walls were determined from experimental data. The data were collected from the experimental stand the essential part of which is a vertical minichannel 1.7 mm deep, 16 mm wide and 180 mm long, asymmetrically heated by a Haynes-230 alloy plate. Infrared thermography allowed determining temperature changes on the outer side of the minichannel walls. The problem was analysed numerically through either ANSYS CFX software or special calculation procedures based on the Finite Element Method and Trefftz functions in the thermal boundary layer. The Trefftz functions were used to construct the basis functions. Solutions to the governing differential equations were approximated with a linear combination of Trefftz-type basis functions. Unknown coefficients of the linear combination were calculated by minimising the functional. The results of the comparative analysis were represented in a graphical form and discussed.

  3. A Discrete Analysis of Non-reflecting Boundary Conditions for Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Atkins, Harold L.

    2003-01-01

    We present a discrete analysis of non-reflecting boundary conditions for the discontinuous Galerkin method. The boundary conditions considered in this paper include the recently proposed Perfectly Matched Layer absorbing boundary condition for the linearized Euler equation and two non-reflecting boundary conditions based on the characteristic decomposition of the flux on the boundary. The analyses for the three boundary conditions are carried out in a unifled way. In each case, eigensolutions of the discrete system are obtained and applied to compute the numerical reflection coefficients of a specified out-going wave. The dependencies of the reflections at the boundary on the out-going wave angle and frequency as well as the mesh sizes arc? studied. Comparisons with direct numerical simulation results are also presented.

  4. Effect of Boundary Conditions on Numerically Simulated Tornado-like Vortices.

    NASA Astrophysics Data System (ADS)

    Smith, David R.

    1987-02-01

    The boundary conditions for Rotunno's numerical model which simulates tornado-like vortices are examined. In particular, the lateral boundary condition for tangential velocity and the upper boundary condition for radial and tangential velocities are considered to determine if they have any significant impact on vortex development.The choice of the lateral boundary condition did not appear to have any real effect on the development of the vortex over the range of swirl ratios studied (0.87-2.61).The upper boundary conditions attempt to simulate both the presence and absence of the flow-straightening baffle. The boundary condition corresponding to the baffle in place produced a distinct boundary layer in the u and v field and very strong upflow and downflow within the vortex core. When this condition is removed, there is both radial and tangential motion throughout the domain and a reduction of the vertical velocity. At small swirl ratio (S = 0.87) this boundary condition has a profound impact on the narrow vortex, producing changes in the pressure field that intensifies the vortex. At higher swirl ratio the vortex is apparently broad enough to better adjust to the changes of the upper boundary condition and, thus, experiences little change in the development of the vortex.

  5. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE PAGES

    Kohno, H.; Myra, J. R.

    2017-07-24

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  6. The possible equilibrium shapes of static pendant drops

    NASA Astrophysics Data System (ADS)

    Sumesh, P. T.; Govindarajan, Rama

    2010-10-01

    Analytical and numerical studies are carried out on the shapes of two-dimensional and axisymmetric pendant drops hanging under gravity from a solid surface. Drop shapes with both pinned and equilibrium contact angles are obtained naturally from a single boundary condition in the analytical energy optimization procedure. The numerical procedure also yields optimum energy shapes, satisfying Young's equation without the explicit imposition of a boundary condition at the plate. It is shown analytically that a static pendant two-dimensional drop can never be longer than 3.42 times the capillary length. A related finding is that a range of existing solutions for long two-dimensional drops correspond to unphysical drop shapes. Therefore, two-dimensional drops of small volume display only one static solution. In contrast, it is known that axisymmetric drops can display multiple solutions for a given volume. We demonstrate numerically that there is no limit to the height of multiple-lobed Kelvin drops, but the total volume is finite, with the volume of successive lobes forming a convergent series. The stability of such drops is in question, though. Drops of small volume can attain large heights. A bifurcation is found within the one-parameter space of Laplacian shapes, with a range of longer drops displaying a minimum in energy in the investigated space. Axisymmetric Kelvin drops exhibit an infinite number of bifurcations.

  7. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, H.; Myra, J. R.

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  8. Absorbing boundary conditions for second-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Jiang, Hong; Wong, Yau Shu

    1989-01-01

    A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.

  9. Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2012-01-01

    A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.

  10. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  11. Fermionic edge states and new physics

    NASA Astrophysics Data System (ADS)

    Govindarajan, T. R.; Tibrewala, Rakesh

    2015-08-01

    We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.

  12. Advanced Small Perturbation Potential Flow Theory for Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2005-01-01

    An advanced small perturbation (ASP) potential flow theory has been developed to improve upon the classical transonic small perturbation (TSP) theories that have been used in various computer codes. These computer codes are typically used for unsteady aerodynamic and aeroelastic analyses in the nonlinear transonic flight regime. The codes exploit the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP theory was developed methodically by first determining the essential elements required to produce full-potential-like solutions with a small perturbation approach on the requisite Cartesian grid. This level of accuracy required a higher-order streamwise mass flux and a mass conserving surface boundary condition. The ASP theory was further developed by determining the essential elements required to produce results that agreed well with Euler solutions. This level of accuracy required mass conserving entropy and vorticity effects, and second-order terms in the trailing wake boundary condition. Finally, an integral boundary layer procedure, applicable to both attached and shock-induced separated flows, was incorporated for viscous effects. The resulting ASP potential flow theory, including entropy, vorticity, and viscous effects, is shown to be mathematically more appropriate and computationally more accurate than the classical TSP theories. The formulaic details of the ASP theory are described fully and the improvements are demonstrated through careful comparisons with accepted alternative results and experimental data. The new theory has been used as the basis for a new computer code called ASP3D (Advanced Small Perturbation - 3D), which also is briefly described with representative results.

  13. The method of lines in analyzing solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.

    1990-01-01

    A semi-numerical method is reviewed for solving a set of coupled partial differential equations subject to mixed and possibly coupled boundary conditions. The line method of analysis is applied to the Navier-Cauchy equations of elastic and elastoplastic equilibrium to calculate the displacement distributions in various, simple geometry bodies containing cracks. The application of this method to the appropriate field equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. When decoupling of the equations and their boundary conditions is not possible, the use of a successive approximation procedure permits the analytical solution of the resulting ordinary differential equations. The use of this method is illustrated by reviewing and presenting selected solutions of mixed boundary value problems in three dimensional fracture mechanics. These solutions are of great importance in fracture toughness testing, where accurate stress and displacement distributions are required for the calculation of certain fracture parameters. Computations obtained for typical flawed specimens include that for elastic as well as elastoplastic response. Problems in both Cartesian and cylindrical coordinate systems are included. Results are summarized for a finite geometry rectangular bar with a central through-the-thickness or rectangular surface crack under remote uniaxial tension. In addition, stress and displacement distributions are reviewed for finite circular bars with embedded penny-shaped cracks, and rods with external annular or ring cracks under opening mode tension. The results obtained show that the method of lines presents a systematic approach to the solution of some three-dimensional mechanics problems with arbitrary boundary conditions. The advantage of this method over other numerical solutions is that good results are obtained even from the use of a relatively coarse grid.

  14. From video to computation of biological fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Dillard, Seth I.; Buchholz, James H. J.; Udaykumar, H. S.

    2016-04-01

    This work deals with the techniques necessary to obtain a purely Eulerian procedure to conduct CFD simulations of biological systems with moving boundary flow phenomena. Eulerian approaches obviate difficulties associated with mesh generation to describe or fit flow meshes to body surfaces. The challenges associated with constructing embedded boundary information, body motions and applying boundary conditions on the moving bodies for flow computation are addressed in the work. The overall approach is applied to the study of a fluid-structure interaction problem, i.e., the hydrodynamics of swimming of an American eel, where the motion of the eel is derived from video imaging. It is shown that some first-blush approaches do not work, and therefore, careful consideration of appropriate techniques to connect moving images to flow simulations is necessary and forms the main contribution of the paper. A combination of level set-based active contour segmentation with optical flow and image morphing is shown to enable the image-to-computation process.

  15. Some observations on boundary conditions for numerical conservation laws

    NASA Technical Reports Server (NTRS)

    Kamowitz, David

    1988-01-01

    Four choices of outflow boundary conditions are considered for numerical conservation laws. All four methods are stable for linear problems, for which examples are presented where either a boundary layer forms or the numerical scheme, together with the boundary condition, is unstable due to the formation of a reflected shock. A simple heuristic argument is presented for determining the suitability of the boundary condition.

  16. A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Brown-Dymkoski, Eric; Kasimov, Nurlybek; Vasilyev, Oleg V.

    2014-04-01

    In order to introduce solid obstacles into flows, several different methods are used, including volume penalization methods which prescribe appropriate boundary conditions by applying local forcing to the constitutive equations. One well known method is Brinkman penalization, which models solid obstacles as porous media. While it has been adapted for compressible, incompressible, viscous and inviscid flows, it is limited in the types of boundary conditions that it imposes, as are most volume penalization methods. Typically, approaches are limited to Dirichlet boundary conditions. In this paper, Brinkman penalization is extended for generalized Neumann and Robin boundary conditions by introducing hyperbolic penalization terms with characteristics pointing inward on solid obstacles. This Characteristic-Based Volume Penalization (CBVP) method is a comprehensive approach to conditions on immersed boundaries, providing for homogeneous and inhomogeneous Dirichlet, Neumann, and Robin boundary conditions on hyperbolic and parabolic equations. This CBVP method can be used to impose boundary conditions for both integrated and non-integrated variables in a systematic manner that parallels the prescription of exact boundary conditions. Furthermore, the method does not depend upon a physical model, as with porous media approach for Brinkman penalization, and is therefore flexible for various physical regimes and general evolutionary equations. Here, the method is applied to scalar diffusion and to direct numerical simulation of compressible, viscous flows. With the Navier-Stokes equations, both homogeneous and inhomogeneous Neumann boundary conditions are demonstrated through external flow around an adiabatic and heated cylinder. Theoretical and numerical examination shows that the error from penalized Neumann and Robin boundary conditions can be rigorously controlled through an a priori penalization parameter η. The error on a transient boundary is found to converge as O(η), which is more favorable than the error convergence of the already established Dirichlet boundary condition.

  17. Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.

    1996-01-01

    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.

  18. A physical approach to the numerical treatment of boundaries in gas dynamics

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1981-01-01

    Two types of boundaries are considered: rigid walls, and artificial (open) boundaries which were arbitrarily drawn somewhere across a wider flow field. A set of partial differential equations (typically, the Euler equations) has an infinite number of solutions, each one defined by a set of initial and boundary conditions. The initial conditions remaining the same, any change in the boundary conditions will produce a new solution. To pose the problem well, a necessary and sufficient number of boundary conditions are prescribed.

  19. On the Boussinesq-Burgers equations driven by dynamic boundary conditions

    NASA Astrophysics Data System (ADS)

    Zhu, Neng; Liu, Zhengrong; Zhao, Kun

    2018-02-01

    We study the qualitative behavior of the Boussinesq-Burgers equations on a finite interval subject to the Dirichlet type dynamic boundary conditions. Assuming H1 ×H2 initial data which are compatible with boundary conditions and utilizing energy methods, we show that under appropriate conditions on the dynamic boundary data, there exist unique global-in-time solutions to the initial-boundary value problem, and the solutions converge to the boundary data as time goes to infinity, regardless of the magnitude of the initial data.

  20. Evolution of solar magnetic fields - A new approach to MHD initial-boundary value problems by the method of nearcharacteristics

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.

    1980-01-01

    A method of analysis for the MHD initial-boundary problem is presented in which the model's formulation is based on the method of nearcharacteristics developed by Werner (1968) and modified by Shin and Kot (1978). With this method, the physical causality relationship can be traced from the perturbation to the response as in the method of characteristics, while achieving the advantage of a considerable reduction in mathematical procedures. The method offers the advantage of examining not only the evolution of nonforce free fields, but also the changes of physical conditions in the atmosphere accompanying the evolution of magnetic fields. The physical validity of the method is demonstrated with examples, and their significance in interpreting observations is discussed.

  1. (2,2) and (0,4) supersymmetric boundary conditions in 3d N =4 theories and type IIB branes

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Okazaki, Tadashi

    2017-10-01

    The half-BPS boundary conditions preserving N =(2 ,2 ) and N =(0 ,4 ) supersymmetry in 3d N =4 supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Nahm-like equations arise in the vector multiplet BPS boundary condition preserving N =(0 ,4 ) supersymmetry, and Robin-type boundary conditions appear for the hypermultiplet coupled to the vector multiplet when N =(2 ,2 ) supersymmetry is preserved. The half-BPS boundary conditions are realized in the brane configurations of type IIB string theory.

  2. Investigation of dispersion-relation-preserving scheme and spectral analysis methods for acoustic waves

    NASA Technical Reports Server (NTRS)

    Vanel, Florence O.; Baysal, Oktay

    1995-01-01

    Important characteristics of the aeroacoustic wave propagation are mostly encoded in their dispersion relations. Hence, a computational aeroacoustic (CAA) algorithm, which reasonably preserves these relations, was investigated. It was derived using an optimization procedure to ensure, that the numerical derivatives preserved the wave number and angular frequency of the differential terms in the linearized, 2-D Euler equations. Then, simulations were performed to validate the scheme and a compatible set of discretized boundary conditions. The computational results were found to agree favorably with the exact solutions. The boundary conditions were transparent to the outgoing waves, except when the disturbance source was close to a boundary. The time-domain data generated by such CAA solutions were often intractable until their spectra was analyzed. Therefore, the relative merits of three different methods were included in the study. For simple, periodic waves, the periodogram method produced better estimates of the steep-sloped spectra than the Blackman-Tukey method. Also, for this problem, the Hanning window was more effective when used with the weighted-overlapped-segment-averaging and Blackman-Tukey methods gave better results than the periodogram method. Finally, it was demonstrated that the representation of time domain-data was significantly dependent on the particular spectral analysis method employed.

  3. Numerical solution of acoustic scattering by finite perforated elastic plates

    PubMed Central

    2016-01-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. PMID:27274685

  4. Numerical solution of acoustic scattering by finite perforated elastic plates.

    PubMed

    Cavalieri, A V G; Wolf, W R; Jaworski, J W

    2016-04-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.

  5. Robust boundary treatment for open-channel flows in divergence-free incompressible SPH

    NASA Astrophysics Data System (ADS)

    Pahar, Gourabananda; Dhar, Anirban

    2017-03-01

    A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.

  6. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  7. Ocean regional circulation model sensitizes to resolution of the lateral boundary conditions

    NASA Astrophysics Data System (ADS)

    Pham, Van Sy; Hwang, Jin Hwan

    2017-04-01

    Dynamical downscaling with nested regional oceanographic models is an effective approach for forecasting operationally coastal weather and projecting long term climate on the ocean. Nesting procedures deliver the unwanted in dynamic downscaling due to the differences of numerical grid sizes and updating steps. Therefore, such unavoidable errors restrict the application of the Ocean Regional Circulation Model (ORCMs) in both short-term forecasts and long-term projections. The current work identifies the effects of errors induced by computational limitations during nesting procedures on the downscaled results of the ORCMs. The errors are quantitatively evaluated for each error source and its characteristics by the Big-Brother Experiments (BBE). The BBE separates identified errors from each other and quantitatively assess the amount of uncertainties employing the same model to simulate for both nesting and nested model. Here, we focus on discussing errors resulting from two main matters associated with nesting procedures. They should be the spatial grids' differences and the temporal updating steps. After the diverse cases from separately running of the BBE, a Taylor diagram was adopted to analyze the results and suggest an optimization intern of grid size and updating period and domain sizes. Key words: lateral boundary condition, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.

  8. Evaluation of general non-reflecting boundary conditions for industrial CFD applications

    NASA Astrophysics Data System (ADS)

    Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir

    2007-11-01

    The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.

  9. Variations on holography from modifications of gravity in anti-de sitter

    NASA Astrophysics Data System (ADS)

    Apolo Velez, Luis Alberto

    In this thesis we study aspects of the AdS/CFT correspondence that result from modifications of gravity in the bulk and lead to novel features in the dual theories at the boundary. The variations on the holographic theme studied in this thesis are model-independent since we have not assumed a particular UV-completion of gravity. Our results can be applied to a wide class of models that include higher-spin theories and compactifications of string theory on AdS backgrounds. The modifications of the bulk physics studied in this thesis include massive gravitons, higher-derivative terms in the Einstein-Hilbert action, and new boundary conditions for gravity. We begin by showing that it is possible to construct duals with a massive graviton in the bulk by deforming the dual theory at the boundary. This procedure does not break the translation invariance of the dual theory and might be useful in the study of certain condensed matter systems. We then construct the most general class of parity-even tricritical gravities in three and four dimensions. These higher-derivative theories are not unitary and characterized by the logarithmic fall-off of their linearized perturbations. They are conjectured to be dual to rank-3 logarithmic conformal field theories. We will show that, at linear order in the equations of motion, it is possible to truncate the theory to a unitary subsector. We also show that tricritical gravities in three and four dimensions suffer from a linearization instability that forbids unitary truncations beyond linear order. Finally we consider the role of boundary conditions in the AdS3/CFT2 correspondence. We show that free boundary conditions that lead to enhanced asymptotic symmetry groups are dual to 2D theories of quantum gravity in either the conformal or lightcone gauges. In particular we match the generators of symmetries in the bulk and boundary theories and show that a proper identification of the generator of Virasoro transformations in the bulk leads to a vanishing total central charge. We also show that this identification is consistent with the constraint equations of 2D gravity.

  10. Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models

    NASA Astrophysics Data System (ADS)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2018-05-01

    In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.

  11. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    NASA Astrophysics Data System (ADS)

    Hejranfar, Kazem; Parseh, Kaveh

    2017-09-01

    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.

  12. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  13. A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map

    PubMed Central

    Callegari, S.; Lake, G. R.; Tkachenko, N.; Weissmann, J. D.; Zollikofer, Ch. P. E.

    2017-01-01

    We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas. PMID:28085882

  14. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Gao, Yixian; Li, Yong

    2015-05-01

    Consider the one dimensional nonlinear beam equation utt + uxxxx + mu + u3 = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form.

  15. A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map.

    PubMed

    Petersen, W P; Callegari, S; Lake, G R; Tkachenko, N; Weissmann, J D; Zollikofer, Ch P E

    2017-01-01

    We describe a general Godunov-type splitting for numerical simulations of the Fisher-Kolmogorov-Petrovski-Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas.

  16. NASA Ames three-dimensional potential flow analyses system (POTFAN) boundary condition code (BCDN), version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Medan, R. T.

    1977-01-01

    This segment of the POTFAN system is used to generate right hand sides (boundary conditions) of the system of equations associated with the flow field under consideration. These specified flow boundary conditions are encountered in the oblique derivative boundary value problem (boundary value problem of the third kind) and contain the Neumann boundary condition as a special case. Arbitrary angle of attack and/or sideslip and/or rotation rates may be specified, as well as an arbitrary, nonuniform external flow field and the influence of prescribed singularity distributions.

  17. Massless rotating fermions inside a cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambruş, Victor E., E-mail: victor.ambrus@gmail.com; Winstanley, Elizabeth

    2015-12-07

    We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, whilemore » the spectral boundary condition is nonlocal.« less

  18. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  19. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation

    PubMed Central

    Ma, Xianghong

    2016-01-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions. PMID:27118914

  20. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation.

    PubMed

    Wu, Zhangming; Ma, Xianghong

    2016-03-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.

  1. Ground test program for a full-size solar dynamic heat receiver

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  2. Ground test program for a full-size solar dynamic heat receiver

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  3. Ground test program for a full-size solar dynamic heat receiver

    NASA Astrophysics Data System (ADS)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  4. The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tweed, J.; Farassat, F.

    1999-01-01

    The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.

  5. Quantum Gravitational Effects on the Boundary

    NASA Astrophysics Data System (ADS)

    James, F.; Park, I. Y.

    2018-04-01

    Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.

  6. Mode solutions for a Klein-Gordon field in anti-de Sitter spacetime with dynamical boundary conditions of Wentzell type

    NASA Astrophysics Data System (ADS)

    Dappiaggi, Claudio; Ferreira, Hugo R. C.; Juárez-Aubry, Benito A.

    2018-04-01

    We study a real, massive Klein-Gordon field in the Poincaré fundamental domain of the (d +1 )-dimensional anti-de Sitter (AdS) spacetime, subject to a particular choice of dynamical boundary conditions of generalized Wentzell type, whereby the boundary data solves a nonhomogeneous, boundary Klein-Gordon equation, with the source term fixed by the normal derivative of the scalar field at the boundary. This naturally defines a field in the conformal boundary of the Poincaré fundamental domain of AdS. We completely solve the equations for the bulk and boundary fields and investigate the existence of bound state solutions, motivated by the analogous problem with Robin boundary conditions, which are recovered as a limiting case. Finally, we argue that both Robin and generalized Wentzell boundary conditions are distinguished in the sense that they are invariant under the action of the isometry group of the AdS conformal boundary, a condition which ensures in addition that the total flux of energy across the boundary vanishes.

  7. Towards real-time flood forecasting in hydraulics: merits of in situ discharge and water level data assimilation for the modeling of the Marne catchment in France

    NASA Astrophysics Data System (ADS)

    Ricci, S. M.; Habert, J.; Le Pape, E.; Piacentini, A.; Jonville, G.; Thual, O.; Zaoui, F.

    2011-12-01

    The present study describes the assimilation of river flow and water level observations and the resulting improvement in flood forecasting. The Kalman Filter algorithm was built on top of the one-dimensional hydraulic model, MASCARET, [1] which describes the Saint-Venant equations. The assimilation algorithm folds in two steps: the first one was based on the assumption that the upstream flow can be adjusted using a three-parameter correction; the second one consisted of directly correcting the hydraulic state. This procedure was previously applied on the Adour Maritime Catchment using water level observations [2]. On average, it was shown that the data assimilation procedure enables an improvement of 80% in the simulated water level over the reanalysis period, 60 % in the forecast water level at a one-hour lead time, and 25% at a twelve-hour lead time. The procedure was then applied on the Marne Catchment, which includes karstic tributaries, located East of the Paris basin, characterized by long flooding periods and strong sensitivity to local precipitations. The objective was to geographically extend and improve the existing model used by the flood forecasting service located in Chalons-en-Champagne. A hydrological study first enabled the specification of boundary conditions (upstream flow or lateral inflow), then the hydraulic model was calibrated using in situ discharge data (adjustment of Strickler coefficients or cross sectional geometry). The assimilation of water level data enabled the reduction of the uncertainty in the hydrological boundary conditions and led to significant improvement of the simulated water level in re-analysis and forecast modes. Still, because of errors in the Strickler coefficients or cross section geometry, the improvement of the simulated water level sometimes resulted in a degradation of discharge values. This problem was overcome by controlling the correction of the hydrological boundary conditions by directly assimilating discharge observations rather than water level observations. As this approach leads to a satisfying simulation of flood events in the Marne catchment in re-analysis and forecast mode, ongoing work aims at controlling Strickler coefficients through data assimilation procedures in order to simultaneously improve the water level and discharge state. [1] N. Goutal, F. Maurel: A finite volume solver for 1D shallow water equations applied to an actual river, Int. J. Numer. Meth. Fluids, 38(2), 1--19, 2002. [2] S. Ricci, A. Piacentini, O. Thual, E. Le Pape, G. Jonville, 2011: Correction of upstream flow and hydraulic state with data assimilation on the context of flood forecasting. Submitted to Hydrol. Earth Syst. Sci, In review.

  8. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces

    NASA Astrophysics Data System (ADS)

    Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.

    2014-07-01

    The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.

  9. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

    PubMed

    Richardson, Megan; Lambers, James V

    2016-01-01

    This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

  10. Structural acoustic control of plates with variable boundary conditions: design methodology.

    PubMed

    Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L

    2007-07-01

    A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.

  11. Review of edgematchimg procedures for digital cartographic data used in Geographic Information Systems (GIS)

    USGS Publications Warehouse

    Nebert, D.D.

    1989-01-01

    In the process of developing a continuous hydrographic data layer for water resources applications in the Pacific Northwest, map-edge discontinuities in the U.S. Geological Survey 1:100 ,000-scale digital data that required application of computer-assisted edgematching procedures were identified. The spatial data sets required by the project must have line features that match closely enough across map boundaries to ensure full line topology when adjacent files are joined by the computer. Automated edgematching techniques are evaluated as to their effects on positional accuracy. Interactive methods such as selective node-matching and on-screen editing are also reviewed. Interactive procedures complement automated methods by allowing supervision of edgematching in a cartographic and hydrologic context. Common edge conditions encountered in the preparation of the Northwest Rivers data base are described, as are recommended processing solutions. Suggested edgematching procedures for 1:100,000-scale hydrography data are included in an appendix to encourage consistent processing of this theme on a national scale. (USGS)

  12. Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian

    2018-01-01

    Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets.

  13. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw.

    PubMed

    Baas, P; van de Wiel, B J H; van der Linden, S J A; Bosveld, F C

    2018-01-01

    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a [Formula: see text] bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than [Formula: see text]. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  14. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw

    NASA Astrophysics Data System (ADS)

    Baas, P.; van de Wiel, B. J. H.; van der Linden, S. J. A.; Bosveld, F. C.

    2018-02-01

    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a 1 m s^{-1} bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than - 30 W m^{-2}. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  15. Computational procedures for mixed equations with shock waves

    NASA Technical Reports Server (NTRS)

    Yu, N. J.; Seebass, R.

    1974-01-01

    This paper discusses the procedures we have developed to treat a canonical problem involving a mixed nonlinear equation with boundary data that imply a discontinuous solution. This equation arises in various physical contexts and is basic to the description of the nonlinear acoustic behavior of a shock wave near a caustic. The numerical scheme developed is of second order, treats discontinuities as such by applying the appropriate jump conditions across them, and eliminates the numerical dissipation and dispersion associated with large gradients. Our results are compared with the results of a first-order scheme and with those of a second-order scheme we have developed. The algorithm used here can easily be generalized to more complicated problems, including transonic flows with imbedded shocks.

  16. A cubic spline approximation for problems in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Rubin, S. G.; Graves, R. A., Jr.

    1975-01-01

    A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.

  17. Coupling of Multiple Coulomb Scattering with Energy Loss and Straggling in HZETRN

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Wilson, John W.; Walker, Steven A.; Tweed, John

    2007-01-01

    The new version of the HZETRN deterministic transport code based on Green's function methods, and the incorporation of ground-based laboratory boundary conditions, has lead to the development of analytical and numerical procedures to include off-axis dispersion of primary ion beams due to small-angle multiple Coulomb scattering. In this paper we present the theoretical formulation and computational procedures to compute ion beam broadening and a methodology towards achieving a self-consistent approach to coupling multiple scattering interactions with ionization energy loss and straggling. Our initial benchmark case is a 60 MeV proton beam on muscle tissue, for which we can compare various attributes of beam broadening with Monte Carlo simulations reported in the open literature.

  18. A Novel Method for Modeling Neumann and Robin Boundary Conditions in Smoothed Particle Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Amon, Cristina

    2010-08-26

    In this paper we present an improved method for handling Neumann or Robin boundary conditions in smoothed particle hydrodynamics. The Neumann and Robin boundary conditions are common to many physical problems (such as heat/mass transfer), and can prove challenging to model in volumetric modeling techniques such as smoothed particle hydrodynamics (SPH). A new SPH method for diffusion type equations subject to Neumann or Robin boundary conditions is proposed. The new method is based on the continuum surface force model [1] and allows an efficient implementation of the Neumann and Robin boundary conditions in the SPH method for geometrically complex boundaries.more » The paper discusses the details of the method and the criteria needed to apply the model. The model is used to simulate diffusion and surface reactions and its accuracy is demonstrated through test cases for boundary conditions describing different surface reactions.« less

  19. Diffusive growth of a single droplet with three different boundary conditions

    NASA Astrophysics Data System (ADS)

    Tavassoli, Z.; Rodgers, G. J.

    2000-02-01

    We study a single, motionless three-dimensional droplet growing by adsorption of diffusing monomers on a 2D substrate. The diffusing monomers are adsorbed at the aggregate perimeter of the droplet with different boundary conditions. Models with both an adsorption boundary condition and a radiation boundary condition, as well as a phenomenological model, are considered and solved in a quasistatic approximation. The latter two models allow particle detachment. In the short time limit, the droplet radius grows as a power of the time with exponents of 1/4, 1/2 and 3/4 for the models with adsorption, radiation and phenomenological boundary conditions, respectively. In the long time limit a universal growth rate as $[t/\\ln(t)]^{1/3}$ is observed for the radius of the droplet for all models independent of the boundary conditions. This asymptotic behaviour was obtained by Krapivsky \\cite{krapquasi} where a similarity variable approach was used to treat the growth of a droplet with an adsorption boundary condition based on a quasistatic approximation. Another boundary condition with a constant flux of monomers at the aggregate perimeter is also examined. The results exhibit a power law growth rate with an exponent of 1/3 for all times.

  20. Compiling and editing agricultural strata boundaries with remotely sensed imagery and map attribute data using graphics workstations

    NASA Technical Reports Server (NTRS)

    Cheng, Thomas D.; Angelici, Gary L.; Slye, Robert E.; Ma, Matt

    1991-01-01

    The USDA presently uses labor-intensive photographic interpretation procedures to delineate large geographical areas into manageable size sampling units for the estimation of domestic crop and livestock production. Computer software to automate the boundary delineation procedure, called the computer-assisted stratification and sampling (CASS) system, was developed using a Hewlett Packard color-graphics workstation. The CASS procedures display Thematic Mapper (TM) satellite digital imagery on a graphics display workstation as the backdrop for the onscreen delineation of sampling units. USGS Digital Line Graph (DLG) data for roads and waterways are displayed over the TM imagery to aid in identifying potential sample unit boundaries. Initial analysis conducted with three Missouri counties indicated that CASS was six times faster than the manual techniques in delineating sampling units.

  1. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu

    2014-02-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less

  2. Symmetries and Boundary Conditions with a Twist

    NASA Astrophysics Data System (ADS)

    Zawadzki, Krissia; D'Amico, Irene; Oliveira, Luiz N.

    2017-10-01

    Interest in finite-size systems has risen in the last decades, due to the focus on nanotechnological applications and because they are convenient for numerical treatment that can subsequently be extrapolated to infinite lattices. Independently of the envisioned application, special attention must be given to boundary condition, which may or may not preserve the symmetry of the infinite lattice. Here, we present a detailed study of the compatibility between boundary conditions and conservation laws. The conflict between open boundary conditions and momentum conservation is well understood, but we examine other symmetries, as well: we discuss gauge invariance, inversion, spin, and particle-hole symmetry and their compatibility with open, periodic, and twisted boundary conditions. In the interest of clarity, we develop the reasoning in the framework of the one-dimensional half-filled Hubbard model, whose Hamiltonian displays a variety of symmetries. Our discussion includes analytical and numerical results. Our analytical survey shows that, as a rule, boundary conditions break one or more symmetries of the infinite-lattice Hamiltonian. The exception is twisted boundary condition with the special torsion Θ = πL/2, where L is the lattice size. Our numerical results for the ground-state energy at half-filling and the energy gap for L = 2-7 show how the breaking of symmetry affects the convergence to the L → ∞ limit. We compare the computed energies and gaps with the exact results for the infinite lattice drawn from the Bethe-Ansatz solution. The deviations are boundary-condition dependent. The special torsion yields more rapid convergence than open or periodic boundary conditions. For sizes as small as L = 7, the numerical results for twisted condition are very close to the L → ∞ limit. We also discuss the ground-state electronic density and magnetization at half filling under the three boundary conditions.

  3. Automatic Generation of Boundary Conditions Using Demons Nonrigid Image Registration for Use in 3-D Modality-Independent Elastography

    PubMed Central

    Ou, Jao J.; Ong, Rowena E.; Miga, Michael I.

    2013-01-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method. PMID:21690002

  4. Automatic generation of boundary conditions using demons nonrigid image registration for use in 3-D modality-independent elastography.

    PubMed

    Pheiffer, Thomas S; Ou, Jao J; Ong, Rowena E; Miga, Michael I

    2011-09-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user input. This study presents a novel method of automatically generating boundary conditions by nonrigidly registering two image sets with a demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray-computed tomography image data with known boundary conditions. These preliminary results produced boundary conditions with an accuracy of up to 80% compared to the known conditions. Demons-based boundary conditions were utilized within a 3-D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Two phantom experiments were then conducted to further test the accuracy of the demons boundary conditions and the MIE reconstruction arising from the use of these conditions. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.

  5. Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic

    NASA Astrophysics Data System (ADS)

    Baatsen, Michiel; van Hinsbergen, Douwe J. J.; von der Heydt, Anna S.; Dijkstra, Henk A.; Sluijs, Appy; Abels, Hemmo A.; Bijl, Peter K.

    2016-08-01

    Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate a global geographical reconstruction for the middle-late Eocene. The generalised procedure is also reusable to create reconstructions for other time slices within the Cenozoic, suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth-age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicate that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain geographical features as newly generated boundary conditions can more easily be incorporated in different model simulations. The workflow is presented covering a middle-late Eocene reconstruction (38 Ma), using a MatLab script and a complete set of source files that are provided in the supplementary material.

  6. Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios

    2016-04-01

    Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long-term trends of the hydrological properties have been investigated at sub-basin scale and have been interpreted in terms of response to forcing and boundary conditions, detectable differences resulting mainly due either to the different initialization and spin up procedure or to the different prescription of Atlantic boundary conditions.

  7. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  8. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  9. Experimental verification of free-space singular boundary conditions in an invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile

    2016-04-01

    A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.

  10. Multiwaveband simulation-based signature analysis of camouflaged human dismounts in cluttered environments with TAIThermIR and MuSES

    NASA Astrophysics Data System (ADS)

    Packard, Corey D.; Klein, Mark D.; Viola, Timothy S.; Hepokoski, Mark A.

    2016-10-01

    The ability to predict electro-optical (EO) signatures of diverse targets against cluttered backgrounds is paramount for signature evaluation and/or management. Knowledge of target and background signatures is essential for a variety of defense-related applications. While there is no substitute for measured target and background signatures to determine contrast and detection probability, the capability to simulate any mission scenario with desired environmental conditions is a tremendous asset for defense agencies. In this paper, a systematic process for the thermal and visible-through-infrared simulation of camouflaged human dismounts in cluttered outdoor environments is presented. This process, utilizing the thermal and EO/IR radiance simulation tool TAIThermIR (and MuSES), provides a repeatable and accurate approach for analyzing contrast, signature and detectability of humans in multiple wavebands. The engineering workflow required to combine natural weather boundary conditions and the human thermoregulatory module developed by ThermoAnalytics is summarized. The procedure includes human geometry creation, human segmental physiology description and transient physical temperature prediction using environmental boundary conditions and active thermoregulation. Radiance renderings, which use Sandford-Robertson BRDF optical surface property descriptions and are coupled with MODTRAN for the calculation of atmospheric effects, are demonstrated. Sensor effects such as optical blurring and photon noise can be optionally included, increasing the accuracy of detection probability outputs that accompany each rendering. This virtual evaluation procedure has been extensively validated and provides a flexible evaluation process that minimizes the difficulties inherent in human-subject field testing. Defense applications such as detection probability assessment, camouflage pattern evaluation, conspicuity tests and automatic target recognition are discussed.

  11. Aquifer test interpretation using derivative analysis and diagnostic plots

    NASA Astrophysics Data System (ADS)

    Hernández-Espriú, Antonio; Real-Rangel, Roberto; Cortés-Salazar, Iván; Castro-Herrera, Israel; Luna-Izazaga, Gabriela; Sánchez-León, Emilio

    2017-04-01

    Pumping tests remain a method of choice to deduce fundamental aquifer properties and to assess well condition. In the oil and gas (O&G) industry, well testing has been the core technique in examining reservoir behavior over the last 50 years. The pressure derivative by Bourdet, it is perhaps, the most significant single development in the history of well test analysis. Recently, the so-called diagnostics plots (e.g. drawdown and drawdown derivative in a log-log plot) have been successfully tested in aquifers. However, this procedure is still underutilized by groundwater professionals. This research illustrates the applicability range, advantages and drawbacks (e.g. smoothing procedures) of diagnostic plots using field examples from a wide spectrum of tests (short/long tests, constant/variable flow rates, drawdown/buildup stages, pumping well/observation well) in dissimilar geological conditions. We analyze new and pre-existent aquifer tests in Mexico, USA, Canada, Germany, France and Saudi Arabia. In constant flow rate tests, our results show that derivative analysis is an easy, robust and powerful tool to assess near-borehole damage effects, formation heterogeneity, boundaries, flow regimes, infinite-acting radial stages, i.e., valid Theisian framework, and fracture-driven flow. In step tests, the effectiveness relies on high-frequency drawdown measurements. Moreover, we adapt O&G analytical solutions to cater for the conditions in groundwater systems. In this context, further parameters can be computed analytically from the plots, such as skin factor, head losses, wellbore storage, distance to the boundary, channel-aquifer and/or fracture zone width, among others. Therefore, diagnostic plots should be considered a mandatory tool for pumping tests analysis among hydrogeologists. This project has been supported by DGAPA (UNAM) under the research project PAPIIT IN-112815.

  12. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  13. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  14. Discharge characteristics of embankment-shaped weirs

    USGS Publications Warehouse

    Kindsvater, Carl E.

    1964-01-01

    An embankment-shaped weir is an embankment overtopped by flood waters. Among the engineering problems frequently resulting from. this occurrence is the need to compute the peak discharge from postflood yield observations. The research described in this. report was concerned with the theoretical and experimental bases for the computation procedure. The research had two main objectives. One was to determine the relationship between embankment form and roughness and some of the more important discharge characteristics. The second was to define, theoretically and experimentally, the relationship between free-flow discharge and the boundary layer on the roadway. The first objective was accomplished with the experimental determination of coefficients of discharge and other significant flow characteristics for a variety of boundary and flow conditions. The second objective was accomplished with the development and experimental verification of a discharge equation which involved the boundary layer displacement thickness. This phase of the research included a general investigation of boundary layer growth on the roadway. It is included that both free- and submerged-flow discharge are virtually independent of the influence of embankment shape and relative height. The influence of boundary resistance is appreciable only for smaller heads. The most practical solution for discharge is one which is based on. the simple weir equation and experimentally determined coefficients. A completely analytical equation of discharge is impractical. The report contains the results of 936 experiments on the discharge characteristics of 17 different models; plus 106 boundary-layer velocity traverses on 4 different models. The data are summarized in both graphical and tabular form.

  15. Numerical Determination of Critical Conditions for Thermal Ignition

    NASA Technical Reports Server (NTRS)

    Luo, W.; Wake, G. C.; Hawk, C. W.; Litchford, R. J.

    2008-01-01

    The determination of ignition or thermal explosion in an oxidizing porous body of material, as described by a dimensionless reaction-diffusion equation of the form .tu = .2u + .e-1/u over the bounded region O, is critically reexamined from a modern perspective using numerical methodologies. First, the classic stationary model is revisited to establish the proper reference frame for the steady-state solution space, and it is demonstrated how the resulting nonlinear two-point boundary value problem can be reexpressed as an initial value problem for a system of first-order differential equations, which may be readily solved using standard algorithms. Then, the numerical procedure is implemented and thoroughly validated against previous computational results based on sophisticated path-following techniques. Next, the transient nonstationary model is attacked, and the full nonlinear form of the reaction-diffusion equation, including a generalized convective boundary condition, is discretized and expressed as a system of linear algebraic equations. The numerical methodology is implemented as a computer algorithm, and validation computations are carried out as a prelude to a broad-ranging evaluation of the assembly problem and identification of the watershed critical initial temperature conditions for thermal ignition. This numerical methodology is then used as the basis for studying the relationship between the shape of the critical initial temperature distribution and the corresponding spatial moments of its energy content integral and an attempt to forge a fundamental conjecture governing this relation. Finally, the effects of dynamic boundary conditions on the classic storage problem are investigated and the groundwork is laid for the development of an approximate solution methodology based on adaptation of the standard stationary model.

  16. QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling

    PubMed Central

    Rossman, Timothy; Kushvaha, Vinod; Dragomir-Daescu, Dan

    2015-01-01

    Quantitative computed tomography-based finite element models of proximal femora must be validated with cadaveric experiments before using them to assess fracture risk in osteoporotic patients. During validation it is essential to carefully assess whether the boundary condition modeling matches the experimental conditions. This study evaluated proximal femur stiffness results predicted by six different boundary condition methods on a sample of 30 cadaveric femora and compared the predictions with experimental data. The average stiffness varied by 280% among the six boundary conditions. Compared with experimental data the predictions ranged from overestimating the average stiffness by 65% to underestimating it by 41%. In addition we found that the boundary condition that distributed the load to the contact surfaces similar to the expected contact mechanics predictions had the best agreement with experimental stiffness. We concluded that boundary conditions modeling introduced large variations in proximal femora stiffness predictions. PMID:25804260

  17. Virtual hybrid test control of sinuous crack

    NASA Astrophysics Data System (ADS)

    Jailin, Clément; Carpiuc, Andreea; Kazymyrenko, Kyrylo; Poncelet, Martin; Leclerc, Hugo; Hild, François; Roux, Stéphane

    2017-05-01

    The present study aims at proposing a new generation of experimental protocol for analysing crack propagation in quasi brittle materials. The boundary conditions are controlled in real-time to conform to a predefined crack path. Servo-control is achieved through a full-field measurement technique to determine the pre-set fracture path and a simple predictor model based on linear elastic fracture mechanics to prescribe the boundary conditions on the fly so that the actual crack path follows at best the predefined trajectory. The final goal is to identify, for instance, non-local damage models involving internal lengths. The validation of this novel procedure is performed via a virtual test-case based on an enriched damage model with an internal length scale, a prior chosen sinusoidal crack path and a concrete sample. Notwithstanding the fact that the predictor model selected for monitoring the test is a highly simplified picture of the targeted constitutive law, the proposed protocol exhibits a much improved sensitivity to the sought parameters such as internal lengths as assessed from the comparison with other available experimental tests.

  18. Counterflow diffusion flames: effects of thermal expansion and non-unity Lewis numbers

    NASA Astrophysics Data System (ADS)

    Koundinyan, Sushilkumar P.; Matalon, Moshe; Stewart, D. Scott

    2018-05-01

    In this work we re-examine the counterflow diffusion flame problem focusing in particular on the flame-flow interactions due to thermal expansion and its influence on various flame properties such as flame location, flame temperature, reactant leakage and extinction conditions. The analysis follows two different procedures: an asymptotic approximation for large activation energy chemical reactions, and a direct numerical approach. The asymptotic treatment follows the general theory of Cheatham and Matalon, which consists of a free-boundary problem with jump conditions across the surface representing the reaction sheet, and is well suited for variable-density flows and for mixtures with non-unity and distinct Lewis numbers for the fuel and oxidiser. Due to density variations, the species and energy transport equations are coupled to the Navier-Stokes equations and the problem does not possess an analytical solution. We thus propose and implement a methodology for solving the free-boundary problem numerically. Results based on the asymptotic approximation are then verified against those obtained from the 'exact' numerical integration of the governing equations, comparing predictions of the various flame properties.

  19. An analysis for high Reynolds number inviscid/viscid interactions in cascades

    NASA Technical Reports Server (NTRS)

    Barnett, Mark; Verdon, Joseph M.; Ayer, Timothy C.

    1993-01-01

    An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena such as viscous-layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction in turbomachinery blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis is described. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid region is assumed to be potential, and that in the inner or viscous-layer region is governed by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares, finite-difference approximation, the viscous-layer solution using an inverse, finite-difference, space-marching method which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer separation and other strong-interaction phenomena. Results are presented for three cascades, with a range of inlet flow conditions considered for one of them, including conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions and experimental data are also given.

  20. Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz

    NASA Astrophysics Data System (ADS)

    Vanicat, Matthieu

    2018-04-01

    We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.

  1. Completed Beltrami-Michell Formulation in Polar Coordinates

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2005-01-01

    A set of conditions had not been formulated on the boundary of an elastic continuum since the time of Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity for a continuum with a displacement boundary condition. The missed condition, referred to as the boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation that includes equilibrium equations and a compatibility condition in the field as well as the traction and boundary compatibility condition is derived from the stationary condition of the variational functional of the integrated force method. The new method is illustrated by solving an example of a mixed boundary value problem for mechanical as well as thermal loads.

  2. Oblique radiation lateral open boundary conditions for a regional climate atmospheric model

    NASA Astrophysics Data System (ADS)

    Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry

    2013-04-01

    The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.

  3. Solution strategies and heat transfer calculations for three-dimensional configurations at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Gnoffo, Peter A.

    1992-01-01

    A procedure which reduces the memory requirements for computing the viscous flow over a modified Orbiter geometry at a hypersonic flight condition is presented. The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code which incorporates a thermochemical nonequilibrium chemistry model, a finite rate catalytic wall boundary condition and wall temperature distribution based on radiation equilibrium is used in this study. In addition, the effect of choice of 'min mod' function, eigenvalue limiter and grid density on surface heating is investigated. The surface heating from a flowfield calculation at Mach number 22, altitude of 230,000 ft and 40 deg angle of attack is compared with flight data from three Orbiter flights.

  4. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems - An introduction

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.; Bennett, Gordon D.

    1987-01-01

    Accurate definition of boundary and initial conditions is an essential part of conceptualizing and modeling ground-water flow systems. This report describes the properties of the seven most common boundary conditions encountered in ground-water systems and discusses major aspects of their application. It also discusses the significance and specification of initial conditions and evaluates some common errors in applying this concept to ground-water-system models. An appendix is included that discusses what the solution of a differential equation represents and how the solution relates to the boundary conditions defining the specific problem. This report considers only boundary conditions that apply to saturated ground-water systems.

  5. Thermo-viscoelastic analysis of composite materials, volume 1

    NASA Technical Reports Server (NTRS)

    Lin, K. Y.; Hwang, I. H.

    1988-01-01

    Advanced composite materials, especially graphite/epoxy, are being applied to aircraft structures in order to improve performance and save weight. An important consideration in composite design is the residual strength of a structure containing holes, delaminations, or interlaminar damage when subjected to compressive loads. Recent studies have revealed the importance of viscoelastic effects in polymer-based composites. The viscoelastic effect is particularly significant at elevated temperature/moisture conditions since the matrix material is strongly affected by the environment. The solution of viscoelastic problems in composites was limited to special cases which can be solved by classical lamination theory. A finite element procedure is presented for calculating time-dependent stresses and strains in composite structures with general configurations and complicated boundary conditions. Using this procedure the in-plane and interlaminar stress distributions and histories in notched and unnotched composites were obtained for mechanical and thermal loads. Both two-dimensional and three-dimensional viscoelastic problems are analyzed. The effects of layup orientation and load spectrum on creep response and stress relaxation were also studied.

  6. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.

  7. Inverse Thermal Analysis of Ti-6Al-4V Friction Stir Welds Using Numerical-Analytical Basis Functions with Pseudo-Advection

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2018-04-01

    Inverse thermal analysis of Ti-6Al-4V friction stir welds is presented that demonstrates application of a methodology using numerical-analytical basis functions and temperature-field constraint conditions. This analysis provides parametric representation of friction-stir-weld temperature histories that can be adopted as input data to computational procedures for prediction of solid-state phase transformations and mechanical response. These parameterized temperature histories can be used for inverse thermal analysis of friction stir welds having process conditions similar those considered here. Case studies are presented for inverse thermal analysis of friction stir welds that use three-dimensional constraint conditions on calculated temperature fields, which are associated with experimentally measured transformation boundaries and weld-stir-zone cross sections.

  8. The Impact of Model Uncertainty on Spatial Compensation in Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.; Sprofera, Joseph D.; Clark, Robert L.

    2004-01-01

    Turbulent boundary layer (TBL) noise is considered a primary factor in the interior noise experienced by passengers aboard commercial airliners. There have been numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a challenge since the physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions have been assumed; however, realistic panels likely display a range of varying boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of actuators and sensors required to achieve the desired control. The impact of model uncertainties, uncertain boundary conditions in particular, on the selection of actuator and sensor locations for structural acoustic control are considered herein. Results from this research effort indicate that it is possible to optimize the design of actuator and sensor location and aperture, which minimizes the impact of boundary conditions on the desired structural acoustic control.

  9. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  10. Geomechanical Anisotropy and Rock Fabric in Shales

    NASA Astrophysics Data System (ADS)

    Huffman, K. A.; Connolly, P.; Thornton, D. A.

    2017-12-01

    Digital rock physics (DRP) is an emerging area of qualitative and quantitative scientific analysis that has been employed on a variety of rock types at various scales to characterize petrophysical, mechanical, and hydraulic rock properties. This contribution presents a generic geomechanically focused DRP workflow involving image segmentation by geomechanical constituents, generation of finite element (FE) meshes, and application of various boundary conditions (i.e. at the edge of the domain and at boundaries of various components such as edges of individual grains). The generic workflow enables use of constituent geological objects and relationships in a computational based approach to address specific questions in a variety of rock types at various scales. Two examples are 1) modeling stress dependent permeability, where it occurs and why it occurs at the grain scale; 2) simulating the path and complexity of primary fractures and matrix damage in materials with minerals or intervals of different mechanical behavior. Geomechanical properties and fabric characterization obtained from 100 micron shale SEM images using the generic DRP workflow are presented. Image segmentation and development of FE simulation composed of relatively simple components (elastic materials, frictional contacts) and boundary conditions enable the determination of bulk static elastic properties. The procedure is repeated for co-located images at pertinent orientations to determine mechanical anisotropy. The static moduli obtained are benchmarked against lab derived measurements since material properties (esp. frictional ones) are poorly constrained at the scale of investigation. Once confidence in the input material parameters is gained, the procedure can be used to characterize more samples (i.e. images) than is possible from rock samples alone. Integration of static elastic properties with grain statistics and geologic (facies) conceptual models derived from core and geophysical logs enables quantification of the impact that variations in rock fabric and grain interactions have on bulk mechanical rock behavior. When considered in terms of the stratigraphic framework of two different shale reservoirs it is found that silica distribution, clay content and orientation play a first order role in mechanical anisotropy.

  11. Dirac perturbations on Schwarzschild-anti-de Sitter spacetimes: Generic boundary conditions and new quasinormal modes

    NASA Astrophysics Data System (ADS)

    Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang

    2017-11-01

    We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.

  12. Effect of splitting a mixed-model line on shortening the line length under open- and closed-boundary working area settings

    NASA Astrophysics Data System (ADS)

    Zhang, Donghao; Matsuura, Haruki; Asada, Akiko

    2017-04-01

    Some automobile factories have segmented mixed-model production lines into shorter sub-lines according to part group, such as engine, trim, and powertrain. The effects of splitting a line into sub-lines have been reported from the standpoints of worker motivation, productivity improvement, and autonomy based on risk spreading. There has been no mention of the possibility of shortening the line length by altering the product sequence using sub-lines. The purpose of the present paper is to determine the conditions under which sub-lines reduce the line length and the degree to which the line length may be shortened. The line lengths for a non-split line and a line that has been split into sub-lines are compared using three methods for determining the working area, the standard closed boundary, the optimized open boundary, and real-life constant-length stations. The results are discussed by analyzing the upper and lower bounds of the line length. Based on these results, a procedure for deciding whether or not to split a production line is proposed.

  13. Numerical Studies of Boundary-Layer Receptivity

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1995-01-01

    Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.

  14. Artificial Boundary Conditions Based on the Difference Potentials Method

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon V.

    1996-01-01

    While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears to be most significant in many areas of scientific computing, for example, in problems originating from acoustics, electrodynamics, solid mechanics, and fluid dynamics. In particular, in computational fluid dynamics (where external problems present a wide class of practically important formulations) the proper treatment of external boundaries may have a profound impact on the overall quality and performance of numerical algorithms. Most of the currently used techniques for setting the ABC's can basically be classified into two groups. The methods from the first group (global ABC's) usually provide high accuracy and robustness of the numerical procedure but often appear to be fairly cumbersome and (computationally) expensive. The methods from the second group (local ABC's) are, as a rule, algorithmically simple, numerically cheap, and geometrically universal; however, they usually lack accuracy of computations. In this paper we first present a survey and provide a comparative assessment of different existing methods for constructing the ABC's. Then, we describe a relatively new ABC's technique of ours and review the corresponding results. This new technique, in our opinion, is currently one of the most promising in the field. It enables one to construct such ABC's that combine the advantages relevant to the two aforementioned classes of existing methods. Our approach is based on application of the difference potentials method attributable to V. S. Ryaben'kii. This approach allows us to obtain highly accurate ABC's in the form of certain (nonlocal) boundary operator equations. The operators involved are analogous to the pseudodifferential boundary projections first introduced by A. P. Calderon and then also studied by R. T. Seeley. The apparatus of the boundary pseudodifferential equations, which has formerly been used mostly in the qualitative theory of integral equations and PDE'S, is now effectively employed for developing numerical methods in the different fields of scientific computing.

  15. On the accurate long-time solution of the wave equation in exterior domains: Asymptotic expansions and corrected boundary conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.; Maccamy, R. C.

    1993-01-01

    We consider the solution of scattering problems for the wave equation using approximate boundary conditions at artificial boundaries. These conditions are explicitly viewed as approximations to an exact boundary condition satisfied by the solution on the unbounded domain. We study the short and long term behavior of the error. It is provided that, in two space dimensions, no local in time, constant coefficient boundary operator can lead to accurate results uniformly in time for the class of problems we consider. A variable coefficient operator is developed which attains better accuracy (uniformly in time) than is possible with constant coefficient approximations. The theory is illustrated by numerical examples. We also analyze the proposed boundary conditions using energy methods, leading to asymptotically correct error bounds.

  16. On solvability of boundary value problems for hyperbolic fourth-order equations with nonlocal boundary conditions of integral type

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay S.

    2017-11-01

    Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.

  17. Variational data assimilation for limited-area models: solution of the open boundary control problem and its application for the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Sheloput, Tatiana; Agoshkov, Valery

    2017-04-01

    The problem of modeling water areas with `liquid' (open) lateral boundaries is discussed. There are different known methods dealing with open boundaries in limited-area models, and one of the most efficient is data assimilation. Although this method is popular, there are not so many articles concerning its implementation for recovering boundary functions. However, the problem of specifying boundary conditions at the open boundary of a limited area is still actual and important. The mathematical model of the Baltic Sea circulation, developed in INM RAS, is considered. It is based on the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations. The splitting method that is used for time approximation in the model allows to consider the data assimilation problem as a sequence of linear problems. One of such `simple' temperature (salinity) assimilation problem is investigated in the study. Using well known techniques of study and solution of inverse problems and optimal control problems [1], we propose an iterative solution algorithm and we obtain conditions for existence of the solution, for unique and dense solvability of the problem and for convergence of the iterative algorithm. The investigation shows that if observations satisfy certain conditions, the proposed algorithm converges to the solution of the boundary control problem. Particularly, it converges when observational data are given on the `liquid' boundary [2]. Theoretical results are confirmed by the results of numerical experiments. The numerical algorithm was implemented to water area of the Baltic Sea. Two numerical experiments were carried out in the Gulf of Finland: one with the application of the assimilation procedure and the other without. The analyses have shown that the surface temperature field in the first experiment is close to the observed one, while the result of the second experiment misfits. Number of iterations depends on the regularisation parameter, but generally the algorithm converges after 10 iterations. The results of the numerical experiments show that the usage of the proposed method makes sense. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments) and by the Russian Foundation for Basic Research (project 16-01-00548, the formulation of the problem and its study). [1] Agoshkov V. I. Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian). [2] Agoshkov V.I., Sheloput T.O. The study and numerical solution of the problem of heat and salinity transfer assuming 'liquid' boundaries // Russ. J. Numer. Anal. Math. Modelling. 2016. Vol. 31, No. 2. P. 71-80.

  18. Boundary condition for Ginzburg-Landau theory of superconducting layers

    NASA Astrophysics Data System (ADS)

    Koláček, Jan; Lipavský, Pavel; Morawetz, Klaus; Brandt, Ernst Helmut

    2009-05-01

    Electrostatic charging changes the critical temperature of superconducting thin layers. To understand the basic mechanism, it is possible to use the Ginzburg-Landau theory with the boundary condition derived by de Gennes from the BCS theory. Here we show that a similar boundary condition can be obtained from the principle of minimum free energy. We compare the two boundary conditions and use the Budd-Vannimenus theorem as a test of approximations.

  19. Perfluoropolyalkylether Oil Degradation: Inference of FeF3 Formation on Steel Surfaces under Boundary Conditions

    DTIC Science & Technology

    1985-08-01

    REPORT SD-TR-85-37 O,-) Lfl Perfluoropolyalkylether Oil Degradation: Inference of FeF 3 Formation on Steel Surfaces I under Boundary Conditions DAVID...S. TYPE OF REPORT & PERIOD COVERED PERFLUOROPOLYALKYLETHER OIL DEGRADATION: INFERENCE OF FeF3 FORMATION ON STEELSURFACES UNDER BOUNDARY CONDITIONS 0...number) Boundary conditions Oil Degradation Perfluoropolyalkylether FeF3 Wear test Lubrication .... 440C 20. ABSTRACT (Contlnue o 0 ,systes sI . I

  20. Numerical scheme approximating solution and parameters in a beam equation

    NASA Astrophysics Data System (ADS)

    Ferdinand, Robert R.

    2003-12-01

    We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.

  1. Volumetric formulation for a class of kinetic models with energy conservation.

    PubMed

    Sbragaglia, M; Sugiyama, K

    2010-10-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum, and energy. Issues related to boundary condition problems and improvements based on grid refinement are also investigated.

  2. Guidance and control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Hibey, Joseph L.

    1988-01-01

    The optimal control problem arising in coplanar, orbital transfer employing aeroassist technology is addressed. The maneuver involves the transfer from high Earth orbit to low Earth orbit. A performance index is chosen the minimize the fuel consumpltion for the transfer. Simulations are carried out for establishing a corridor of entry conditions which are suitable for flying the spacecraft through the atmosphere. A highlight of the paper is the application of an efficient multiple shooting method for taming the notorious nonlinear, two-point, boundary value problem resulting from optimization procedure.

  3. Exclusion Process with Slow Boundary

    NASA Astrophysics Data System (ADS)

    Baldasso, Rangel; Menezes, Otávio; Neumann, Adriana; Souza, Rafael R.

    2017-06-01

    We study the hydrodynamic and the hydrostatic behavior of the simple symmetric exclusion process with slow boundary. The term slow boundary means that particles can be born or die at the boundary sites, at a rate proportional to N^{-θ }, where θ > 0 and N is the scaling parameter. In the bulk, the particles exchange rate is equal to 1. In the hydrostatic scenario, we obtain three different linear profiles, depending on the value of the parameter θ ; in the hydrodynamic scenario, we obtain that the time evolution of the spatial density of particles, in the diffusive scaling, is given by the weak solution of the heat equation, with boundary conditions that depend on θ . If θ \\in (0,1), we get Dirichlet boundary conditions, (which is the same behavior if θ =0, see Farfán in Hydrostatics, statical and dynamical large deviations of boundary driven gradient symmetric exclusion processes, 2008); if θ =1, we get Robin boundary conditions; and, if θ \\in (1,∞), we get Neumann boundary conditions.

  4. Slip Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Baranger, Céline; Hattori, Masanari; Kosuge, Shingo; Martalò, Giorgio; Mathiaud, Julien; Mieussens, Luc

    2017-11-01

    The slip boundary conditions for the compressible Navier-Stokes equations are derived systematically from the Boltzmann equation on the basis of the Chapman-Enskog solution of the Boltzmann equation and the analysis of the Knudsen layer adjacent to the boundary. The resulting formulas of the slip boundary conditions are summarized with explicit values of the slip coefficients for hard-sphere molecules as well as the Bhatnagar-Gross-Krook model. These formulas, which can be applied to specific problems immediately, help to prevent the use of often used slip boundary conditions that are either incorrect or without theoretical basis.

  5. State space approach to mixed boundary value problems.

    NASA Technical Reports Server (NTRS)

    Chen, C. F.; Chen, M. M.

    1973-01-01

    A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.

  6. Effective Field Theory on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  7. 10 CFR 205.309 - Filing procedures and fees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Application for Authorization to Transmit Electric Energy... Facilities for Transmission of Electric Energy at International Boundaries ...

  8. Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Fuentes, A.; Litvin, F. L.; Mullins, B. R.; Woods, R.; Handschuh, R. F.; Lewicki, David G.

    2002-01-01

    An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact is proposed. The procedure of computations is an iterative process that requires four separate procedures and provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment on noise and vibration, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis enables us to determine the contact and bending stresses and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require intermediate CAD computer programs for application of general purpose computer program for finite element analysis.

  9. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    NASA Technical Reports Server (NTRS)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  10. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, B.I.

    1978-09-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimentalmore » hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.« less

  11. Numerical calculations of velocity and pressure distribution around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.; Kobiske, M.

    1974-01-01

    An analytical procedure based on the Navier-Stokes equations was developed for analyzing and representing properties of unsteady viscous flow around oscillating obstacles. A variational formulation of the vorticity transport equation was discretized in finite element form and integrated numerically. At each time step of the numerical integration, the velocity field around the obstacle was determined for the instantaneous vorticity distribution from the finite element solution of Poisson's equation. The time-dependent boundary conditions around the oscillating obstacle were introduced as external constraints, using the Lagrangian Multiplier Technique, at each time step of the numerical integration. The procedure was then applied for determining pressures around obstacles oscillating in unsteady flow. The obtained results for a cylinder and an airfoil were illustrated in the form of streamlines and vorticity and pressure distributions.

  12. Boundary Conditions for Scalar (Co)Variances over Heterogeneous Surfaces

    NASA Astrophysics Data System (ADS)

    Machulskaya, Ekaterina; Mironov, Dmitrii

    2018-05-01

    The problem of boundary conditions for the variances and covariances of scalar quantities (e.g., temperature and humidity) at the underlying surface is considered. If the surface is treated as horizontally homogeneous, Monin-Obukhov similarity suggests the Neumann boundary conditions that set the surface fluxes of scalar variances and covariances to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice since the spatial variability of various surface and soil characteristics, such as the ground fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary conditions are developed that are consistent with the tile approach used to compute scalar (and momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms (fluxes of variances) are examined analytically using a triple decomposition of fluctuating velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the grid-box mean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column numerical experiment. The proposed boundary conditions should be applied in atmospheric models that utilize turbulence parametrization schemes with transport equations for scalar variances and covariances including the third-order turbulent transport (diffusion) terms.

  13. Experimental Validation of Model Updating and Damage Detection via Eigenvalue Sensitivity Methods with Artificial Boundary Conditions

    DTIC Science & Technology

    2017-09-01

    VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS by Matthew D. Bouwense...VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS 5. FUNDING NUMBERS 6. AUTHOR...unlimited. EXPERIMENTAL VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY

  14. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  15. Application of mean wall shear stress boundary condition to complex turbulent flows using a wall-modeled large eddy simulation

    NASA Astrophysics Data System (ADS)

    Cho, Minjeong; Lee, Jungil; Choi, Haecheon

    2012-11-01

    The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.

  16. Flowing partially penetrating well: solution to a mixed-type boundary value problem

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Kabala, Z. J.; Medina, M. A.

    A new semi-analytic solution to the mixed-type boundary value problem for a flowing partially penetrating well with infinitesimal skin situated in an anisotropic aquifer is developed. The solution is suited to aquifers having a semi-infinite vertical extent or to packer tests with aquifer horizontal boundaries far enough from the tested area. The problem reduces to a system of dual integral equations (DE) and further to a deconvolution problem. Unlike the analogous Dagan's steady-state solution [Water Resour. Res. 1978; 14:929-34], our DE solution does not suffer from numerical oscillations. The new solution is validated by matching the corresponding finite-difference solution and is computationally much more efficient. An automated (Newton-Raphson) parameter identification algorithm is proposed for field test inversion, utilizing the DE solution for the forward model. The procedure is computationally efficient and converges to correct parameter values. A solution for the partially penetrating flowing well with no skin and a drawdown-drawdown discontinuous boundary condition, analogous to that by Novakowski [Can. Geotech. J. 1993; 30:600-6], is compared to the DE solution. The D-D solution leads to physically inconsistent infinite total flow rate to the well, when no skin effect is considered. The DE solution, on the other hand, produces accurate results.

  17. Optimal boundary conditions for ORCA-2 model

    NASA Astrophysics Data System (ADS)

    Kazantsev, Eugene

    2013-08-01

    A 4D-Var data assimilation technique is applied to ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of boundary conditions on the solution is analyzed both within and beyond the assimilation window. It is shown that the optimal bottom and surface boundary conditions allow us to better represent the jet streams, such as Gulf Stream and Kuroshio. Analyzing the reasons of the jets reinforcement, we notice that data assimilation has a major impact on parametrization of the bottom boundary conditions for u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.

  18. An implicit-iterative solution of the heat conduction equation with a radiation boundary condition

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, D. M.

    1977-01-01

    For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.

  19. Boundary streaming with Navier boundary condition.

    PubMed

    Xie, Jin-Han; Vanneste, Jacques

    2014-06-01

    In microfluidic applications involving high-frequency acoustic waves over a solid boundary, the Stokes boundary-layer thickness δ is so small that some non-negligible slip may occur at the fluid-solid interface. This paper assesses the impact of this slip by revisiting the classical problem of steady acoustic streaming over a flat boundary, replacing the no-slip boundary condition with the Navier condition u|_{y=0}=L_{s}∂_{y}u|_{y=0}, where u is the velocity tangent to the boundary y=0, and the parameter L_{s} is the slip length. A general expression is obtained for the streaming velocity across the boundary layer as a function of the dimensionless parameter L_{s}/δ. The limit outside the boundary layer provides an effective slip velocity satisfied by the interior mean flow. Particularizing to traveling and standing waves shows that the boundary slip respectively increases and decreases the streaming velocity.

  20. 25 CFR 700.337 - Establishment of boundaries of life estate leases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Establishment of boundaries of life estate leases. 700... RELOCATION PROCEDURES Life Estate Leases § 700.337 Establishment of boundaries of life estate leases. (a) Prior to the issuance of a life estate lease, the Commission shall, after consultation with the Tribe...

  1. 25 CFR 700.337 - Establishment of boundaries of life estate leases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Establishment of boundaries of life estate leases. 700... RELOCATION PROCEDURES Life Estate Leases § 700.337 Establishment of boundaries of life estate leases. (a) Prior to the issuance of a life estate lease, the Commission shall, after consultation with the Tribe...

  2. Assessing housing growth when census boundaries change

    Treesearch

    Alexandra D. Syphard; Susan I. Stewart; Jason McKeefry; Roger B. Hammer; Jeremy S. Fried; Sherry Holcomb; Volker C. Radeloff

    2009-01-01

    The US Census provides the primary source of spatially explicit social data, but changing block boundaries complicate analyses of housing growth over time. We compared procedures for reconciling housing density data between 1990 and 2000 census block boundaries in order to assess the sensitivity of analytical methods to estimates of housing growth in Oregon. Estimates...

  3. 25 CFR 700.337 - Establishment of boundaries of life estate leases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Establishment of boundaries of life estate leases. 700... RELOCATION PROCEDURES Life Estate Leases § 700.337 Establishment of boundaries of life estate leases. (a) Prior to the issuance of a life estate lease, the Commission shall, after consultation with the Tribe...

  4. 25 CFR 700.337 - Establishment of boundaries of life estate leases.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Establishment of boundaries of life estate leases. 700... RELOCATION PROCEDURES Life Estate Leases § 700.337 Establishment of boundaries of life estate leases. (a) Prior to the issuance of a life estate lease, the Commission shall, after consultation with the Tribe...

  5. Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints

    NASA Technical Reports Server (NTRS)

    Kangro, Urve; Nicolaides, Roy

    1997-01-01

    The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.

  6. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions

    NASA Technical Reports Server (NTRS)

    Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.

    1995-01-01

    The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.

  7. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  8. Large Eddy Simulation in a Channel with Exit Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.

    1996-01-01

    The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.

  9. Ultrasound tissue analysis and characterization

    NASA Astrophysics Data System (ADS)

    Kaufhold, John; Chan, Ray C.; Karl, William C.; Castanon, David A.

    1999-07-01

    On the battlefield of the future, it may become feasible for medics to perform, via application of new biomedical technologies, more sophisticated diagnoses and surgery than is currently practiced. Emerging biomedical technology may enable the medic to perform laparoscopic surgical procedures to remove, for example, shrapnel from injured soldiers. Battlefield conditions constrain the types of medical image acquisition and interpretation which can be performed. Ultrasound is the only viable biomedical imaging modality appropriate for deployment on the battlefield -- which leads to image interpretation issues because of the poor quality of ultrasound imagery. To help overcome these issues, we develop and implement a method of image enhancement which could aid non-experts in the rapid interpretation and use of ultrasound imagery. We describe an energy minimization approach to finding boundaries in medical images and show how prior information on edge orientation can be incorporated into this framework to detect tissue boundaries oriented at a known angle.

  10. The generation of simple compliance boundaries for mobile communication base station antennas using formulae for SAR estimation.

    PubMed

    Thors, B; Hansson, B; Törnevik, C

    2009-07-07

    In this paper, a procedure is proposed for generating simple and practical compliance boundaries for mobile communication base station antennas. The procedure is based on a set of formulae for estimating the specific absorption rate (SAR) in certain directions around a class of common base station antennas. The formulae, given for both whole-body and localized SAR, require as input the frequency, the transmitted power and knowledge of antenna-related parameters such as dimensions, directivity and half-power beamwidths. With knowledge of the SAR in three key directions it is demonstrated how simple and practical compliance boundaries can be generated outside of which the exposure levels do not exceed certain limit values. The conservativeness of the proposed procedure is discussed based on results from numerical radio frequency (RF) exposure simulations with human body phantoms from the recently developed Virtual Family.

  11. An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver

    NASA Astrophysics Data System (ADS)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2014-11-01

    While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.

  12. Numerical Boundary Conditions for Computational Aeroacoustics Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Tam, Chritsopher K. W.; Kurbatskii, Konstantin A.; Fang, Jun

    1997-01-01

    Category 1, Problems 1 and 2, Category 2, Problem 2, and Category 3, Problem 2 are solved computationally using the Dispersion-Relation-Preserving (DRP) scheme. All these problems are governed by the linearized Euler equations. The resolution requirements of the DRP scheme for maintaining low numerical dispersion and dissipation as well as accurate wave speeds in solving the linearized Euler equations are now well understood. As long as 8 or more mesh points per wavelength is employed in the numerical computation, high quality results are assured. For the first three categories of benchmark problems, therefore, the real challenge is to develop high quality numerical boundary conditions. For Category 1, Problems 1 and 2, it is the curved wall boundary conditions. For Category 2, Problem 2, it is the internal radiation boundary conditions inside the duct. For Category 3, Problem 2, they are the inflow and outflow boundary conditions upstream and downstream of the blade row. These are the foci of the present investigation. Special nonhomogeneous radiation boundary conditions that generate the incoming disturbances and at the same time allow the outgoing reflected or scattered acoustic disturbances to leave the computation domain without significant reflection are developed. Numerical results based on these boundary conditions are provided.

  13. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  14. A new method of imposing boundary conditions for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Funaro, D.; ative.

    1987-01-01

    A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.

  15. Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method.

    PubMed

    Verschaeve, Joris C G

    2011-06-13

    By means of the continuity equation of the incompressible Navier-Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.

  16. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  17. 75 FR 22695 - Establishment of Class E Airspace; Bonners Ferry, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Positioning System (GPS) Standard Instrument Approach Procedure (SIAP) at Boundary County Airport. This will... Boundary County Airport, to accommodate IFR aircraft executing new RNAV GPS SIAPs at the airport. This...

  18. Fully Automated Single-Zone Elliptic Grid Generation for Mars Science Laboratory (MSL) Aeroshell and Canopy Geometries

    NASA Technical Reports Server (NTRS)

    kaul, Upender K.

    2008-01-01

    A procedure for generating smooth uniformly clustered single-zone grids using enhanced elliptic grid generation has been demonstrated here for the Mars Science Laboratory (MSL) geometries such as aeroshell and canopy. The procedure obviates the need for generating multizone grids for such geometries, as reported in the literature. This has been possible because the enhanced elliptic grid generator automatically generates clustered grids without manual prescription of decay parameters needed with the conventional approach. In fact, these decay parameters are calculated as decay functions as part of the solution, and they are not constant over a given boundary. Since these decay functions vary over a given boundary, orthogonal grids near any arbitrary boundary can be clustered automatically without having to break up the boundaries and the corresponding interior domains into various zones for grid generation.

  19. The boundary conditions for simulations of a shake-table experiment on the seismic response of 3D slope

    NASA Astrophysics Data System (ADS)

    Tang, Liang; Cong, Shengyi; Ling, Xianzhang; Ju, Nengpan

    2017-01-01

    Boundary conditions can significantly affect a slope's behavior under strong earthquakes. To evaluate the importance of boundary conditions for finite element (FE) simulations of a shake-table experiment on the slope response, a validated three-dimensional (3D) nonlinear FE model is presented, and the numerical and experimental results are compared. For that purpose, the robust graphical user-interface "SlopeSAR", based on the open-source computational platform OpenSees, is employed, which simplifies the effort-intensive pre- and post-processing phases. The mesh resolution effect is also addressed. A parametric study is performed to evaluate the influence of boundary conditions on the FE model involving the boundary extent and three types of boundary conditions at the end faces. Generally, variations in the boundary extent produce inconsistent slope deformations. For the two end faces, fixing the y-direction displacement is not appropriate to simulate the shake-table experiment, in which the end walls are rigid and rough. In addition, the influence of the length of the 3D slope's top face and the width of the slope play an important role in the difference between two types of boundary conditions at the end faces (fixing the y-direction displacement and fixing the ( y, z) direction displacement). Overall, this study highlights that the assessment of a comparison between a simulation and an experimental result should be performed with due consideration to the effect of the boundary conditions.

  20. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M. S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.

  1. The Multiscale Robin Coupled Method for flows in porous media

    NASA Astrophysics Data System (ADS)

    Guiraldello, Rafael T.; Ausas, Roberto F.; Sousa, Fabricio S.; Pereira, Felipe; Buscaglia, Gustavo C.

    2018-02-01

    A multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed. The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The domain decomposition procedure is defined in terms of two independent spaces on the skeleton of the decomposition, corresponding to interface pressures and fluxes, that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. The well-posedness of the new domain decomposition procedure is established and its connection with the method of Douglas et al. (1993) [12], is identified, also allowing us to reinterpret the known procedure as an optimized Schwarz (or Two-Lagrange-Multiplier) method. The multiscale property of the new domain decomposition method is indicated, and its relation with the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method is discussed. Numerical simulations are presented aiming at illustrating several features of the new method. Initially we illustrate the possibility of switching from MMMFEM to MHM by suitably varying the Robin condition parameter in the new multiscale method. Then we turn our attention to realistic flows in high-contrast, channelized porous formations. We show that for a range of values of the Robin condition parameter our method provides better approximations for pressure and velocity than those computed with either the MMMFEM and the MHM. This is an indication that our method has the potential to produce more accurate velocity fields in the presence of rough, realistic permeability fields of petroleum reservoirs.

  2. Considerations on the moving contact-line singularity, with application to frictional drag on a slender drop

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1988-01-01

    It has previously been shown that the no-slip boundary conditions leads to a singularity at a moving contact line and that this presumes some form of slip. Present considerations on the energetics of slip due to shear stress lead to a yield stress boundary condition. A model for the distortion of the liquid state near solid boundaries gives a physical basis for this boundary condition. The yield stress condition is illustrated by an analysis of a slender drop rolling down an incline. That analysis provides a formula for the frictional drag resisting the drop movement. With the present boundary condition, the length of the slip region becomes a property of the fluid flow.

  3. Crystallization in a model glass: Influence of the boundary conditions

    NASA Astrophysics Data System (ADS)

    Jund, P.; Jullien, R.

    1998-06-01

    Using molecular dynamics calculations and the Voronoï tessellation, we study the evolution of the local structure of a soft-sphere glass vs. temperature starting from the liquid phase at different quenching rates. This study is done for different sizes and for two different boundary conditions, namely the usual cubic periodic boundary conditions and the isotropic hyperspherical boundary conditions for which the particles evolve on the surface of a hypersphere in four dimensions. Our results show that for small system sizes, crystallization can indeed be induced by the cubic boundary conditions. On the other hand, we show that finite-size effects are more pronounced on the hypersphere and that crystallization is artificially inhibited even for large system sizes.

  4. On the symmetry of the boundary conditions of the volume potential

    NASA Astrophysics Data System (ADS)

    Kal'menov, Tynysbek Sh.; Arepova, Gaukhar; Suragan, Durvudkhan

    2017-09-01

    It is well known that the volume potential determines the mass or the charge distributed over the domain with density f. The volume potential is extensively used in function theory and embedding theorems. It is also well known that the volume potential gives a solution to an inhomogeneous equation. And it generates a linear self-adjoint operator. It is known that self-adjoint differential operators are generated by boundary conditions. In our previous papers for an arbitrary domain a boundary condition on the volume potential is given. In the past, it was not possible to prove the self-adjointness of these obtained boundary conditions. In the present paper, we prove the symmetry of boundary condition for the volume potential.

  5. DREAM-3D and the importance of model inputs and boundary conditions

    NASA Astrophysics Data System (ADS)

    Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue

    2015-04-01

    Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.

  6. Impacts of Lateral Boundary Conditions on U.S. Ozone Modeling Analyses

    EPA Science Inventory

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, we perform annual simulations over North America with chemical boundary conditions prepared from two global models (GEOS-CHEM and Hemispheric CMAQ). Results indicate that the impac...

  7. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients

    NASA Astrophysics Data System (ADS)

    van Horssen, Wim T.; Wang, Yandong; Cao, Guohua

    2018-06-01

    In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.

  8. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  9. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a 2-D demonstration. Extensions to 3-D should be straightforward.

  10. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Werner, Wendelin

    2018-06-01

    We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

  11. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

    2018-06-01

    This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

  12. Application of differential similarity to finding nondimensional groups important in tests of cooled engine components

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1977-01-01

    The method of differential similarity is applied to the partial differential equations and boundary conditions which govern the temperature, velocity, and pressure fields in the flowing gases and the solid stationary components in air-cooled engines. This procedure yields the nondimensional groups which must have the same value in both the test rig and the engine to produce similarity between the test results and the engine performance. These results guide the experimentalist in the design and selection of test equipment that properly scales quantities to actual engine conditions. They also provide a firm fundamental foundation for substantiation of previous similarity analyses which employed heuristic, physical reasoning arguments to arrive at the nondimensional groups.

  13. Numerical implementation of isolated horizon boundary conditions

    NASA Astrophysics Data System (ADS)

    Jaramillo, José Luis; Ansorg, Marcus; Limousin, François

    2007-01-01

    We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasiequilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the conformal thin sandwich equations. As main results, we first establish the consistency of including in the set of boundary conditions a constant surface gravity prescription, interpretable as a lapse boundary condition, and second we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the conformal transverse traceless equations with quasiequilibrium horizon conditions extend to the conformal thin sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon.

  14. Numerical analysis of ion temperature effects to the plasma wall transition using a one-dimensional two-fluid model. I. Finite Debye to ionization length ratio

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Kovačič, J.

    2017-06-01

    A one-dimensional, two-fluid, steady state model is used for the analysis of ion temperature effects to the plasma-wall transition. In this paper, the model is solved for a finite ratio ɛ between the Debye and the ionization length, while in Part II [T. Gyergyek and J. Kovačič, Phys Plasmas 24, 063506 (2017)], the solutions for ɛ = 0 are presented. Ion temperature is treated as a given, independent parameter and it is included in the model as a boundary condition. It is shown that when the ion temperature larger than zero is selected, the ion flow velocity and the electric field at the boundary must be consistent with the selected ion temperature. A numerical procedure, how to determine such "consistent boundary conditions," is proposed, and a simple relation between the ion temperature and ion velocity at the boundary of the system is found. The effects of the ion temperature to the pre-sheath length, potential, ion temperature, and ion density drops in the pre-sheath and in the sheath are investigated. It is concluded that larger ion temperature results in a better shielding of the plasma from the wall. An attempt is made to include the ion heat flux qi into the model in its simplest form q i = - K ' /d T i d x , where K ' is a constant heat conduction coefficient. It is shown that inclusion of such a term into the energy transfer equation introduces an additional ion heating mechanism into the system and the ion flow then becomes isothermal instead of adiabatic even in the sheath.

  15. Numerical analysis of ion temperature effects to the plasma wall transition using a one-dimensional two-fluid model. I. Finite Debye to ionization length ratio.

    PubMed

    Gyergyek, T; Kovačič, J

    2017-06-01

    A one-dimensional, two-fluid, steady state model is used for the analysis of ion temperature effects to the plasma-wall transition. In this paper, the model is solved for a finite ratio ε between the Debye and the ionization length, while in Part II [T. Gyergyek and J. Kovačič, Phys Plasmas 24, 063506 (2017)], the solutions for [Formula: see text] are presented. Ion temperature is treated as a given, independent parameter and it is included in the model as a boundary condition. It is shown that when the ion temperature larger than zero is selected, the ion flow velocity and the electric field at the boundary must be consistent with the selected ion temperature. A numerical procedure, how to determine such "consistent boundary conditions," is proposed, and a simple relation between the ion temperature and ion velocity at the boundary of the system is found. The effects of the ion temperature to the pre-sheath length, potential, ion temperature, and ion density drops in the pre-sheath and in the sheath are investigated. It is concluded that larger ion temperature results in a better shielding of the plasma from the wall. An attempt is made to include the ion heat flux q i into the model in its simplest form [Formula: see text], where [Formula: see text] is a constant heat conduction coefficient. It is shown that inclusion of such a term into the energy transfer equation introduces an additional ion heating mechanism into the system and the ion flow then becomes isothermal instead of adiabatic even in the sheath.

  16. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  17. Integral Method of Boundary Characteristics: Neumann Condition

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2018-05-01

    A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.

  18. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  19. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  20. Use of an Accurate DNS Particulate Flow Method to Supply and Validate Boundary Conditions for the MFIX Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi-Gang Feng

    2012-05-31

    The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. Themore » no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.« less

  1. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  2. Evaluation of Far-Field Boundary Conditions for the Gust Response Problem

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Kreider, Kevin L.; Heminger, John A.

    2002-01-01

    This paper presents a detailed situ dy of four far-field boundary conditions used in solving the single airfoil gust response problem. The boundary conditions, examined are the partial Sommerfeld radiation condition with only radial derivatives, the full Sommerfeld radiation condition with both radial and tangential derivatives, the Bayliss-Turkel condition of order one, and the Hagstrom-Hariharan condition of order one. The main objectives of the study were to determine which far-field boundary condition was most accurate, which condition was least sensitive to changes in grid. and which condition was best overall in terms of both accuracy and efficiency. Through a systematic study of the flat plate gust response problem, it was determined that the Hagstrom-Hariharan condition was most accurate, the Bayliss-Turkel condition was least sensitive to changes in grid, and Bayliss-Turkel was best in terms of both accuracy and efficiency.

  3. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  4. Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space

    NASA Astrophysics Data System (ADS)

    Detournay, Stéphane; Riegler, Max

    2017-02-01

    In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.

  5. Discrete transparent boundary conditions for the mixed KDV-BBM equation

    NASA Astrophysics Data System (ADS)

    Besse, Christophe; Noble, Pascal; Sanchez, David

    2017-09-01

    In this paper, we consider artificial boundary conditions for the linearized mixed Korteweg-de Vries (KDV) and Benjamin-Bona-Mahoney (BBM) equation which models water waves in the small amplitude, large wavelength regime. Continuous (respectively discrete) artificial boundary conditions involve non local operators in time which in turn requires to compute time convolutions and invert the Laplace transform of an analytic function (respectively the Z-transform of an holomorphic function). In this paper, we propose a new, stable and fairly general strategy to carry out this crucial step in the design of transparent boundary conditions. For large time simulations, we also introduce a methodology based on the asymptotic expansion of coefficients involved in exact direct transparent boundary conditions. We illustrate the accuracy of our methods for Gaussian and wave packets initial data.

  6. A far-field non-reflecting boundary condition for two-dimensional wake flows

    NASA Technical Reports Server (NTRS)

    Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli

    1995-01-01

    Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.

  7. Transducer placement for robustness to variations in boundary conditions for active structural acoustic control

    NASA Astrophysics Data System (ADS)

    Sprofera, Joseph D.; Clark, Robert L.; Cabell, Randolph H.; Gibbs, Gary P.

    2005-05-01

    Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.

  8. Numerical simulation of the vortical flow around a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Li, Gaohua; Wang, Fuxin

    2017-04-01

    In order to study the dynamic behaviors of the flapping wing, the vortical flow around a pitching NACA0012 airfoil is investigated. The unsteady flow field is obtained by a very efficient zonal procedure based on the velocity-vorticity formulation and the Reynolds number based on the chord length of the airfoil is set to 1 million. The zonal procedure divides up the whole computation domain in to three zones: potential flow zone, boundary layer zone and Navier-Stokes zone. Since the vorticity is absent in the potential flow zone, the vorticity transport equation needs only to be solved in the boundary layer zone and Navier-Stokes zone. Moreover, the boundary layer equations are solved in the boundary layer zone. This arrangement drastically reduces the computation time against the traditional numerical method. After the flow field computation, the evolution of the vortices around the airfoil is analyzed in detail.

  9. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  10. Numerical implementation of isolated horizon boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaramillo, Jose Luis; Ansorg, Marcus; Limousin, Francois

    2007-01-15

    We study the numerical implementation of a set of boundary conditions derived from the isolated horizon formalism, and which characterize a black hole whose horizon is in quasiequilibrium. More precisely, we enforce these geometrical prescriptions as inner boundary conditions on an excised sphere, in the numerical resolution of the conformal thin sandwich equations. As main results, we first establish the consistency of including in the set of boundary conditions a constant surface gravity prescription, interpretable as a lapse boundary condition, and second we assess how the prescriptions presented recently by Dain et al. for guaranteeing the well-posedness of the conformalmore » transverse traceless equations with quasiequilibrium horizon conditions extend to the conformal thin sandwich elliptic system. As a consequence of the latter analysis, we discuss the freedom of prescribing the expansion associated with the ingoing null normal at the horizon.« less

  11. Point-particle effective field theory I: classical renormalization and the inverse-square potential

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Hayman, Peter; Williams, M.; Zalavári, László

    2017-04-01

    Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential's singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original prob-lem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

  12. Assimilation of satellite altimeter data into an open ocean model

    NASA Astrophysics Data System (ADS)

    Vogeler, Armin; SchröTer, Jens

    1995-08-01

    Geosat sea surface height data are assimilated into an eddy-resolving quasi-geostrophic open ocean model using the adjoint technique. The method adjusts the initial conditions for all layers and is successful on the timescale of a few weeks. Time-varying values for the open boundaries are prescribed by a much larger quasi-geostrophic model of the Antarctic Circumpolar Current (ACC). Both models have the same resolution of approximately 20×20 km (1/3°×1/6°), have three layers, and include realistic bottom topography and coastlines. The open model box is embedded in the African sector of the ACC. For continuous assimilation of satellite data into the larger model the nudging technique is applied. These results are used for the adjoint optimization procedure as boundary conditions and as a first guess for the initial condition. For the open model box the difference between model and satellite sea surface height that remains after the nudging experiment amounts to a 19-cm root-mean-square error (rmse). By assimilation into the regional model this value can be reduced to a 6-cm rmse for an assimilation period of 20 days. Several experiments which attempt to improve the convergence of the iterative optimization method are reported. Scaling and regularization by smoothing have to be applied carefully. Especially during the first 10 iterations, the convergence can be improved considerably by low-pass filtering of the cost function gradient. The result of a perturbation experiment shows that for longer assimilation periods the influence of the boundary values becomes dominant and they should be determined inversely by data assimilation into the open ocean model.

  13. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    NASA Technical Reports Server (NTRS)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  14. Applying the method of fundamental solutions to harmonic problems with singular boundary conditions

    NASA Astrophysics Data System (ADS)

    Valtchev, Svilen S.; Alves, Carlos J. S.

    2017-07-01

    The method of fundamental solutions (MFS) is known to produce highly accurate numerical results for elliptic boundary value problems (BVP) with smooth boundary conditions, posed in analytic domains. However, due to the analyticity of the shape functions in its approximation basis, the MFS is usually disregarded when the boundary functions possess singularities. In this work we present a modification of the classical MFS which can be applied for the numerical solution of the Laplace BVP with Dirichlet boundary conditions exhibiting jump discontinuities. In particular, a set of harmonic functions with discontinuous boundary traces is added to the MFS basis. The accuracy of the proposed method is compared with the results form the classical MFS.

  15. An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1983-01-01

    An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.

  16. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    NASA Astrophysics Data System (ADS)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  17. The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS

    NASA Astrophysics Data System (ADS)

    Liu, Zhongxian; Liang, Jianwen; Wu, Chengqing

    2016-06-01

    Two dimensional diffraction of Rayleigh waves by a fluid-saturated poroelastic alluvial valley of arbitrary shape in a poroelastic half-space is investigated using the method of fundamental solutions (MFS). To satisfy the free surface boundary conditions exactly, Green's functions of compressional (PI and PII) and shear (SV) wave sources buried in a fluid-saturated poroelastic half-space are adopted. Next, the procedure for solving the scattering wave field is presented. It is verified that the MFS is of excellent accuracy and numerical stability. Numerical results illustrate that the dynamic response strongly depends on such factors as the incident frequency, the porosity of alluvium, the boundary drainage condition, and the valley shape. There is a significant difference between the diffraction of Rayleigh waves for the saturated soil case and for the corresponding dry soil case. The wave focusing effect both on the displacement and pore pressure can be observed inside the alluvial valley and the amplification effect seems most obvious in the case of higher porosity and lower frequency. Additionally, special attention should also be paid to the concentration of pore pressure, which is closely related to the site liquefaction in earthquakes.

  18. Fixating picture boundaries does not eliminate boundary extension: Implications for scene representation

    PubMed Central

    Gagnier, Kristin Michod; Dickinson, Christopher A.; Intraub, Helene

    2015-01-01

    Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14–15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2–4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception. PMID:23547787

  19. Fixating picture boundaries does not eliminate boundary extension: implications for scene representation.

    PubMed

    Michod Gagnier, Kristin; Dickinson, Christopher A; Intraub, Helene

    2013-01-01

    Observers frequently remember seeing more of a scene than was shown (boundary extension). Does this reflect a lack of eye fixations to the boundary region? Single-object photographs were presented for 14-15 s each. Main objects were either whole or slightly cropped by one boundary, creating a salient marker of boundary placement. All participants expected a memory test, but only half were informed that boundary memory would be tested. Participants in both conditions made multiple fixations to the boundary region and the cropped region during study. Demonstrating the importance of these regions, test-informed participants fixated them sooner, longer, and more frequently. Boundary ratings (Experiment 1) and border adjustment tasks (Experiments 2-4) revealed boundary extension in both conditions. The error was reduced, but not eliminated, in the test-informed condition. Surprisingly, test knowledge and multiple fixations to the salient cropped region, during study and at test, were insufficient to overcome boundary extension on the cropped side. Results are discussed within a traditional visual-centric framework versus a multisource model of scene perception.

  20. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  1. Accurate boundary conditions for exterior problems in gas dynamics

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.

    1988-01-01

    The numerical solution of exterior problems is typically accomplished by introducing an artificial, far-field boundary and solving the equations on a truncated domain. For hyperbolic systems, boundary conditions at this boundary are often derived by imposing a principle of no reflection. However, waves with spherical symmetry in gas dynamics satisfy equations where incoming and outgoing Riemann variables are coupled. This suggests that natural reflections may be important. A reflecting boundary condition is proposed based on an asymptotic solution of the far-field equations. Nonlinear energy estimates are obtained for the truncated problem and numerical experiments presented to validate the theory.

  2. Study of boundary-layer transition using transonic cone Preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Abu-Mostafa, A.

    1982-01-01

    Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.

  3. High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions

    NASA Astrophysics Data System (ADS)

    Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake

    2017-03-01

    We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.

  4. The Effects of Selected Modelling Parameters on the Computed Optical Frequency Signatures of Naval Platforms

    DTIC Science & Technology

    2009-04-01

    Contrast signature plots for the simple wireframe model with user-defined thermal boundary conditions and an exhaust plume ...boundary conditions but no exhaust plume ................................................................................. 25 A.3. Contrast signature...plots for the simple wireframe model with no user-defined thermal boundary conditions or exhaust plume

  5. Edge states at phase boundaries and their stability

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Balachandran, A. P.; Pérez-Pardo, J. M.

    2016-10-01

    We analyze the effects of Robin-like boundary conditions on different quantum field theories of spin 0, 1/2 and 1 on manifolds with boundaries. In particular, we show that these conditions often lead to the appearance of edge states. These states play a significant role in physical phenomena like quantum Hall effect and topological insulators. We prove in a rigorous way the existence of spectral lower bounds on the kinetic term of different Hamiltonians, even in the case of Abelian gauge fields where it is a non-elliptic differential operator. This guarantees the stability and consistency of massive field theories with masses larger than the lower bound of the kinetic term. Moreover, we find an upper bound for the deepest edge state. In the case of Abelian gauge theories, we analyze a generalization of Robin boundary conditions. For Dirac fermions, we analyze the cases of Atiyah-Patodi-Singer and chiral bag boundary conditions. The explicit dependence of the bounds on the boundary conditions and the size of the system is derived under general assumptions.

  6. Nonreflective Conditions for Perfectly Matched Layer in Computational Aeroacoustics

    NASA Astrophysics Data System (ADS)

    Choung, Hanahchim; Jang, Seokjong; Lee, Soogab

    2018-05-01

    In computational aeroacoustics, boundary conditions such as radiation, outflow, or absorbing boundary conditions are critical issues in that they can affect the entire solution of the computation. Among these types of boundary conditions, the perfectly matched layer boundary condition, which has been widely used in computational fluid dynamics and computational aeroacoustics, is developed by augmenting the additional term in the original governing equations by an absorption function so as to stably absorb the outgoing waves. Even if the perfectly matched layer is analytically a perfectly nonreflective boundary condition, spurious waves occur at the interface, since the analysis is performed in discretized space. Hence, this study is focused on factors that affect numerical errors from perfectly matched layer to find the optimum conditions for nonreflective PML. Through a mathematical approach, a minimum width of perfectly matched layer and an optimum absorption coefficient are suggested. To validate the prediction of the analysis, numerical simulations are performed in a generalized coordinate system, as well as in a Cartesian coordinate system.

  7. Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries

    NASA Astrophysics Data System (ADS)

    Morales Escalante, José A.; Gamba, Irene M.

    2018-06-01

    We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.

  8. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  9. Computation of high Reynolds number internal/external flows

    NASA Technical Reports Server (NTRS)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, has been developed to calculate high Reynolds number, internal/external flows. VNAP2 solves the two-dimensional, time-dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, and internal/external flow calculations are presented.

  10. Computation of high Reynolds number internal/external flows

    NASA Technical Reports Server (NTRS)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAP2, was developed to calculate high Reynolds number, internal/ external flows. The VNAP2 program solves the two dimensional, time dependent Navier-Stokes equations. The turbulence is modeled with either a mixing-length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack Scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.

  11. Computation of high Reynolds number internal/external flows

    NASA Technical Reports Server (NTRS)

    Cline, M. C.; Wilmoth, R. G.

    1981-01-01

    A general, user oriented computer program, called VNAF2, developed to calculate high Reynolds number internal/external flows is described. The program solves the two dimensional, time dependent Navier-Stokes equations. Turbulence is modeled with either a mixing length, a one transport equation, or a two transport equation model. Interior grid points are computed using the explicit MacCormack scheme with special procedures to speed up the calculation in the fine grid. All boundary conditions are calculated using a reference plane characteristic scheme with the viscous terms treated as source terms. Several internal, external, and internal/external flow calculations are presented.

  12. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    The atmospheric radiative transfer calculation program (ATARD) and its supporting programs (setting up atmospheric profile, making Mie tables and an exponential-sum-fitting table) were completed. More sophisticated treatment of aerosol scattering (including angular phase function or asymmetric factor) and multichannel analysis of results from ATRAD are being developed. Some progress was made on a Monte Carlo program for examining two dimensional effects, specifically a surface boundary condition that varies across a scene. The MONTE program combines ATRAD and the Monte Carlo method together to produce an atmospheric point spread function. Currently the procedure passes monochromatic tests and the results are reasonable.

  13. Improvement of analytical dynamic models using modal test data

    NASA Technical Reports Server (NTRS)

    Berman, A.; Wei, F. S.; Rao, K. V.

    1980-01-01

    A method developed to determine maximum changes in analytical mass and stiffness matrices to make them consistent with a set of measured normal modes and natural frequencies is presented. The corrected model will be an improved base for studies of physical changes, boundary condition changes, and for prediction of forced responses. The method features efficient procedures not requiring solutions of the eigenvalue problem, and the ability to have more degrees of freedom than the test data. In addition, modal displacements are obtained for all analytical degrees of freedom, and the frequency dependence of the coordinate transformations is properly treated.

  14. Analytical procedures for estimating structural response to acoustic fields generated by advanced launch systems, phase 2

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaac; Lin, Y. K.; Zhu, Li-Ping; Fang, Jian-Jie; Cai, G. Q.

    1994-01-01

    This report supplements a previous report of the same title submitted in June, 1992. It summarizes additional analytical techniques which have been developed for predicting the response of linear and nonlinear structures to noise excitations generated by large propulsion power plants. The report is divided into nine chapters. The first two deal with incomplete knowledge of boundary conditions of engineering structures. The incomplete knowledge is characterized by a convex set, and its diagnosis is formulated as a multi-hypothesis discrete decision-making algorithm with attendant criteria of adaptive termination.

  15. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  16. Development and Testing of DAVID: A Close-in EMP Coupling Code for Arbitrarily Shaped Objects

    DTIC Science & Technology

    1975-11-07

    5.OE-9 sec. (Ambient boundary condition, 0 = 0, Y - YAMAX ). 65 13 b. Approximate contours of constant Ex at T -5.8E-9 sec. (Ambient boundary...condition, 0 =0 Y -YMAX). 65 13 c. Appro<imate contours of constant Ex at T = 9.8E-9 sec. (Ambient boundary condition, 0 = 0 °, Y = YAMAX ). 66 13 d...Approximate contours of constant Ex at T 2.9E-8 sec. (Ambient boundary condition, 0% Y = YAMAX ). 66 - 14 a. Approximate contours of constant Ex at T = 9.8E-9

  17. The PPP model of alternant cyclic polyenes with modified boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendazzoli, G.L.; Evangelisti, S.

    1995-08-15

    The extension of the PPP Hamiltonian for alternant cyclic polyenes to noninteger values of the pseudomomentum by imposing modified boundary conditions is discussed in detail. It is shown that a computer program for periodic boundary conditions can be easily adapted to the new boundary conditions. Full CI computations are carried out for some low-lying states of the PPP model of alternant cyclic polyenes (CH){sub N} (N even) at half-filling. The energy values obtained by using periodic (Bloch) and antiperiodic (Moebius) orbitals are used to perform energy extrapolations for N {yields} {infinity}. 38 refs., 2 figs., 5 tabs.

  18. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Shu, C.; Tan, D.

    2018-05-01

    An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.

  19. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  20. Well-posedness of the free boundary problem in compressible elastodynamics

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    2018-02-01

    We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.

  1. Quantitative analysis of defects in silicon. Silicon sheet growth development for the large are silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Bruce, T.; Oidwai, H. A.

    1980-01-01

    One hundred and seventy four silicon sheet samples were analyzed for twin boundary density, dislocation pit density, and grain boundary length. Procedures were developed for the quantitative analysis of the twin boundary and dislocation pit densities using a QTM-720 Quantitative Image Analyzing system. The QTM-720 system was upgraded with the addition of a PDP 11/03 mini-computer with dual floppy disc drive, a digital equipment writer high speed printer, and a field-image feature interface module. Three versions of a computer program that controls the data acquisition and analysis on the QTM-720 were written. Procedures for the chemical polishing and etching were also developed.

  2. Comparison of artificial absorbing boundaries for acoustic wave equation modelling

    NASA Astrophysics Data System (ADS)

    Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing

    2017-12-01

    Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.

  3. Studies of the phase gradient at the boundary of the phase diffusion equation, motivated by peculiar wave patterns of rhythmic contraction in the amoeboid movement of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Iima, Makoto; Kori, Hiroshi; Nakagaki, Toshiyuki

    2017-04-01

    The boundary of a cell is the interface with its surroundings and plays a key role in controlling the cell movement adaptations to different environments. We propose a study of the boundary effects on the patterns and waves of the rhythmic contractions in plasmodia of Physarum polycephalum, a tractable model organism of the amoeboid type. Boundary effects are defined as the effects of both the boundary conditions and the boundary shape. The rhythmicity of contraction can be modulated by local stimulation of temperature, light and chemicals, and by local deformation of cell shape via mechanosensitive ion channels as well. First, we examined the effects of boundary cell shapes in the case of a special shape resembling a tadpole, while requiring that the natural frequency in the proximity of the boundary is slightly higher and uniform. The simulation model reproduced the approximate propagated wave, from the tail to the head, while the inward waves were observed only near the periphery of the head section of the tadpole-shape. A key finding was that the frequency of the rhythmic contractions depended on the local shape of cell boundary. This implies that the boundary conditions of the phase were not always homogeneous. To understand the dependency, we reduced the two-dimensional model into a one-dimensional continuum model with Neumann boundary conditions. Here, the boundary conditions reflect the frequency distribution at the boundary. We described the analytic solutions and calculated the relationship between the boundary conditions and the wave propagation for a one-dimensional model of the continuous oscillatory field and a discrete coupled oscillator system. The results obtained may not be limited to cell movement of Physarum, but may be applicable to the other physical systems since the analysis used a generic phase diffusion equation.

  4. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell

    PubMed Central

    Livermore, Philip W.; Bailey, Lewis M.; Hollerbach, Rainer

    2016-01-01

    We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E1/2, where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1 m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E−1/2 or E−1). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth’s core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤ 10−5. PMID:26980289

  5. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    PubMed

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  6. Understanding the impact of insulating and conducting endplate boundary conditions on turbulence in CSDX through nonlocal simulations

    DOE PAGES

    Vaezi, P.; Holland, C.; Thakur, S. C.; ...

    2017-04-01

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  7. A new approach to implement absorbing boundary condition in biomolecular electrostatics.

    PubMed

    Goni, Md Osman

    2013-01-01

    This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.

  8. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    PubMed

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  9. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary

    PubMed Central

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232

  10. Computational strategies in the dynamic simulation of constrained flexible MBS

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Xie, M.

    1993-01-01

    This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.

  11. Transient analysis of bodies with moving boundaries using NASTRAN

    NASA Technical Reports Server (NTRS)

    Frye, J. W.

    1975-01-01

    A scheme is presented which allows the modeling of a moving boundary with NASTRAN NOLIN cards. Various aspects and limitations of the approach are explained. Recommendations are given as to the procedure to be used in implementing the method.

  12. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  13. A two-pronged approach to detecting ICB Stoneley modes

    NASA Astrophysics Data System (ADS)

    Jasperson, H. A.; Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    Stoneley modes are special kinds of normal modes that are confined to the boundary between a fluid layer and a solid layer inside the Earth. Thus, these modes theoretically occur at the core-mantle boundary (CMB) and inner core boundary (ICB). CMB Stoneley modes were identified in observational data by Koelemeijer, et al. in 2013, but ICB Stoneley modes have remained relatively unexplored. Here we use a joint numerical and data-driven approach to identify ICB Stoneley modes from the deep 2013 Mw 8.3 Sea of Okhotsk earthquake. For the data-driven portion, we use 50 stacked traces from the USArray to identify potential occurrences of ICB Stoneley modes. Next, we verify each occurrence by comparing the spectrum to its equivalent from the shallow 2011 Mw 9.1 Tohoku earthquake. We also develop a novel computational approach to compute normal modes in a spherically symmetric non-rotating Earth building on the work of Wiggins (1976) and Buland and Gilbert (1984). We successfully resolve the clustering eigenvalue problem with non-orthogonal eigenfunctions from which Mineos suffers. By choosing the displacement/pressure formulation in the fluid outer core and handling boundary conditions properly, we remarkably project out the essential spectrum and provide the correct point spectrum. The utilization of weak variational form to perform the Rayleigh-Ritz procedure contributes to preserving the high accuracy across the solid-fluid boundary, which makes it possible to capture Stoneley modes' exponentially decaying behavior across the solid-fluid boundary, leading to more accurate and reliable eigenvalues and eigenfunctions. This allows us to compare the observation data and numerical computations. With this approach, we eliminate false signals from consideration, leaving only true ICB Stoneley mode peaks. In the future, information from these modes can be used to study the properties of the ICB and inner core.

  14. Finite-Rate Ablation Boundary Conditions for Carbon-Phenolic Heat-Shield

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, Frank S.

    2003-01-01

    A formulation of finite-rate ablation surface boundary conditions, including oxidation, nitridation, and sublimation of carbonaceous material with pyrolysis gas injection, has been developed based on surface species mass conservation. These surface boundary conditions are discretized and integrated with a Navier-Stokes solver. This numerical procedure can predict aerothermal heating, chemical species concentration, and carbonaceous material ablation rate over the heatshield surface of re-entry space vehicles. In this study, the gas-gas and gas-surface interactions are established for air flow over a carbon-phenolic heatshield. Two finite-rate gas-surface interaction models are considered in the present study. The first model is based on the work of Park, and the second model includes the kinetics suggested by Zhluktov and Abe. Nineteen gas phase chemical reactions and four gas-surface interactions are considered in the present model. There is a total of fourteen gas phase chemical species, including five species for air and nine species for ablation products. Three test cases are studied in this paper. The first case is a graphite test model in the arc-jet stream; the second is a light weight Phenolic Impregnated Carbon Ablator at the Stardust re-entry peak heating conditions, and the third is a fully dense carbon-phenolic heatshield at the peak heating point of a proposed Mars Sample Return Earth Entry Vehicle. Predictions based on both finite-rate gas- surface interaction models are compared with those obtained using B' tables, which were created based on the chemical equilibrium assumption. Stagnation point convective heat fluxes predicted using Park's finite-rate model are far below those obtained from chemical equilibrium B' tables and Zhluktov's model. Recession predictions from Zhluktov's model are generally lower than those obtained from Park's model and chemical equilibrium B' tables. The effect of species mass diffusion on predicted ablation rate is also examined.

  15. Bifurcation approach to a logistic elliptic equation with a homogeneous incoming flux boundary condition

    NASA Astrophysics Data System (ADS)

    Umezu, Kenichiro

    In this paper, we consider a semilinear elliptic boundary value problem in a smooth bounded domain, having the so-called logistic nonlinearity that originates from population dynamics, with a nonlinear boundary condition. Although the logistic nonlinearity has an absorption effect in the problem, the nonlinear boundary condition is induced by the homogeneous incoming flux on the boundary. The objective of our study is to analyze the existence of a bifurcation component of positive solutions from trivial solutions and its asymptotic behavior and stability. We perform this analysis using the method developed by Lyapunov and Schmidt, based on a scaling argument.

  16. Simulations of the 2.5D inviscid primitive equations in a limited domain

    NASA Astrophysics Data System (ADS)

    Chen, Qingshan; Temam, Roger; Tribbia, Joseph J.

    2008-12-01

    The primitive equations (PEs) of the atmosphere and the oceans without viscosity are considered. These equations are not well-posed for any set of local boundary conditions. In space dimension 2.5 a set of nonlocal boundary conditions has been proposed in Chen et al. [Q. Chen, J. Laminie, A. Rousseau, R. Temam, J. Tribbia, A 2.5D Model for the equations of the ocean and the atmosphere, Anal. Appl. 5(3) (2007) 199-229]. The present article is aimed at testing the validity of these boundary conditions with physically relevant data. The issues tested are the well-posedness in the nonlinear case and the computational efficiency of the boundary conditions for limited area models [T.T. Warner, R.A. Peterson, R.E. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Amer. Meteor. Soc. 78(11) (1997) 2599-2617].

  17. Boundary Conditions for Jet Flow Computations

    NASA Technical Reports Server (NTRS)

    Hayder, M. E.; Turkel, E.

    1994-01-01

    Ongoing activities are focused on capturing the sound source in a supersonic jet through careful large eddy simulation (LES). One issue that is addressed is the effect of the boundary conditions, both inflow and outflow, on the predicted flow fluctuations, which represent the sound source. In this study, we examine the accuracy of several boundary conditions to determine their suitability for computations of time-dependent flows. Various boundary conditions are used to compute the flow field of a laminar axisymmetric jet excited at the inflow by a disturbance given by the corresponding eigenfunction of the linearized stability equations. We solve the full time dependent Navier-Stokes equations by a high order numerical scheme. For very small excitations, the computed growth of the modes closely corresponds to that predicted by the linear theory. We then vary the excitation level to see the effect of the boundary conditions in the nonlinear flow regime.

  18. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)

    NASA Astrophysics Data System (ADS)

    Frigola, Amanda; Prange, Matthias; Schulz, Michael

    2018-04-01

    The Middle Miocene Climate Transition was characterized by major Antarctic ice sheet expansion and global cooling during the interval ˜ 15-13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry, and vegetation. Additionally, Antarctic ice volume and geometry, sea level, and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The MMCO and MMG boundary conditions have been successfully applied to the Community Climate System Model version 3 (CCSM3) to provide evidence of their suitability for global climate modeling. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.

  19. Tweaking one-loop determinants in AdS3

    NASA Astrophysics Data System (ADS)

    Castro, Alejandra; Keeler, Cynthia; Szepietowski, Phillip

    2017-10-01

    We revisit the subject of one-loop determinants in AdS3 gravity via the quasi-normal mode method. Our goal is to evaluate a one-loop determinant with chiral boundary conditions for the metric field; chirality is achieved by imposing Dirichlet boundary conditions on certain components while others satisfy Neumann. Along the way, we give a generalization of the quasinormal mode method for stationary (non-static) thermal backgrounds, and propose a treatment for Neumann boundary conditions in this framework. We evaluate the graviton one-loop determinant on the Euclidean BTZ background with parity-violating boundary conditions (CSS), and find excellent agreement with the dual warped CFT. We also discuss a more general falloff in AdS3 that is related to two dimensional quantum gravity in lightcone gauge. The behavior of the ghost fields under both sets of boundary conditions is novel and we discuss potential interpretations.

  20. Identification of failure type in corroded pipelines: a bayesian probabilistic approach.

    PubMed

    Breton, T; Sanchez-Gheno, J C; Alamilla, J L; Alvarez-Ramirez, J

    2010-07-15

    Spillover of hazardous materials from transport pipelines can lead to catastrophic events with serious and dangerous environmental impact, potential fire events and human fatalities. The problem is more serious for large pipelines when the construction material is under environmental corrosion conditions, as in the petroleum and gas industries. In this way, predictive models can provide a suitable framework for risk evaluation, maintenance policies and substitution procedure design that should be oriented to reduce increased hazards. This work proposes a bayesian probabilistic approach to identify and predict the type of failure (leakage or rupture) for steel pipelines under realistic corroding conditions. In the first step of the modeling process, the mechanical performance of the pipe is considered for establishing conditions under which either leakage or rupture failure can occur. In the second step, experimental burst tests are used to introduce a mean probabilistic boundary defining a region where the type of failure is uncertain. In the boundary vicinity, the failure discrimination is carried out with a probabilistic model where the events are considered as random variables. In turn, the model parameters are estimated with available experimental data and contrasted with a real catastrophic event, showing good discrimination capacity. The results are discussed in terms of policies oriented to inspection and maintenance of large-size pipelines in the oil and gas industry. 2010 Elsevier B.V. All rights reserved.

  1. Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes

    NASA Astrophysics Data System (ADS)

    Bianco, Vincenzo; Nardini, Sergio; Manca, Oronzio

    2011-12-01

    In this article, developing turbulent forced convection flow of a water-Al2O3 nanofluid in a square tube, subjected to constant and uniform wall heat flux, is numerically investigated. The mixture model is employed to simulate the nanofluid flow and the investigation is accomplished for particles size equal to 38 nm. An entropy generation analysis is also proposed in order to find the optimal working condition for the given geometry under given boundary conditions. A simple analytical procedure is proposed to evaluate the entropy generation and its results are compared with the numerical calculations, showing a very good agreement. A comparison of the resulting Nusselt numbers with experimental correlations available in literature is accomplished. To minimize entropy generation, the optimal Reynolds number is determined.

  2. An influence of extremal edges on boundary extension.

    PubMed

    Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P

    2015-08-01

    Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.

  3. Two Legendre-Dual-Petrov-Galerkin Algorithms for Solving the Integrated Forms of High Odd-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.

    2014-01-01

    Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620

  4. Off-wall boundary conditions for turbulent flows obtained from buffer-layer minimal flow units

    NASA Astrophysics Data System (ADS)

    Garcia-Mayoral, Ricardo; Pierce, Brian; Wallace, James

    2012-11-01

    There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ = 400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J . FluidMech .) . Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows. 2012 CTR Summer Program.

  5. The Impact of Model Uncertainty on Spatial Compensation in Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Clark, Robert L.

    2005-01-01

    Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.

  6. Air Force Academy Aeronautics Digest - Spring/Summer 1981.

    DTIC Science & Technology

    1981-12-01

    real fluids with friction or viscosity we know that this boundary condition is specified by requiring the velocity to be zero at the surface). This is...interest to be zero . This is the velocity surface boundary condition (VBC). For the second boundary condition far away from the body it is reasonable to...remains unchanged). Finally, the analytic solution, in terms of the surface velocity distribution at a zero -lift condition, will be presented for selected

  7. When the dissolution of perceived body boundaries elicits happiness: The effect of selflessness induced by a body scan meditation.

    PubMed

    Dambrun, Michaël

    2016-11-01

    Drawing on the Self-centeredness/Selflessness Happiness Model (SSHM), we hypothesized that a reduction in the salience of perceived body boundaries would lead to increase optimal emotional experience. These constructs were assessed by means of self-report measures. Participants (n=53) were randomly assigned to either the selflessness (induced by a body scan meditation) condition or the control condition. As expected, the reduction in perceived body salience was greater in the body scan meditation condition than in the control condition. The change in perceived body salience was accompanied by a change in happiness and anxiety. Participants in the body-scan meditation condition reported greater happiness and less anxiety than participants in the control condition. Happiness increased when the salience of body boundaries decreased. Mediation analyses reveal that the change in happiness was mediated by the change in perceived body boundaries, which suggests that selflessness elicits happiness via dissolution of perceived body boundaries. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Progressive wave expansions and open boundary problems

    NASA Technical Reports Server (NTRS)

    Hagstrom, T.; Hariharan, S. I.

    1995-01-01

    In this paper we construct progressive wave expansions and asymptotic boundary conditions for wave-like equations in exterior domains, including applications to electromagnetics, compressible flows and aero-acoustics. The development of the conditions will be discussed in two parts. The first part will include derivations of asymptotic conditions based on the well-known progressive wave expansions for the two-dimensional wave equations. A key feature in the derivations is that the resulting family of boundary conditions involves a single derivative in the direction normal to the open boundary. These conditions are easy to implement and an application in electromagnetics will be presented. The second part of the paper will discuss the theory for hyperbolic systems in two dimensions. Here, the focus will be to obtain the expansions in a general way and to use them to derive a class of boundary conditions that involve only time derivatives or time and tangential derivatives. Maxwell's equations and the compressible Euler equations are used as examples. Simulations with the linearized Euler equations are presented to validate the theory.

  9. Non-CMC Solutions of the Einstein Constraint Equations on Compact Manifolds with Apparent Horizon Boundaries

    NASA Astrophysics Data System (ADS)

    Holst, Michael; Meier, Caleb; Tsogtgerel, G.

    2018-01-01

    In this article we continue our effort to do a systematic development of the solution theory for conformal formulations of the Einstein constraint equations on compact manifolds with boundary. By building in a natural way on our recent work in Holst and Tsogtgerel (Class Quantum Gravity 30:205011, 2013), and Holst et al. (Phys Rev Lett 100(16):161101, 2008, Commun Math Phys 288(2):547-613, 2009), and also on the work of Maxwell (J Hyperbolic Differ Eqs 2(2):521-546, 2005a, Commun Math Phys 253(3):561-583, 2005b, Math Res Lett 16(4):627-645, 2009) and Dain (Class Quantum Gravity 21(2):555-573, 2004), under reasonable assumptions on the data we prove existence of both near- and far-from-constant mean curvature (CMC) solutions for a class of Robin boundary conditions commonly used in the literature for modeling black holes, with a third existence result for CMC appearing as a special case. Dain and Maxwell addressed initial data engineering for space-times that evolve to contain black holes, determining solutions to the conformal formulation on an asymptotically Euclidean manifold in the CMC setting, with interior boundary conditions representing excised interior black hole regions. Holst and Tsogtgerel compiled the interior boundary results covered by Dain and Maxwell, and then developed general interior conditions to model the apparent horizon boundary conditions of Dainand Maxwell for compact manifolds with boundary, and subsequently proved existence of solutions to the Lichnerowicz equation on compact manifolds with such boundary conditions. This paper picks up where Holst and Tsogtgerel left off, addressing the general non-CMC case for compact manifolds with boundary. As in our previous articles, our focus here is again on low regularity data and on the interaction between different types of boundary conditions. While our work here serves primarily to extend the solution theory for the compact with boundary case, we also develop several technical tools that have potential for use for other cases.

  10. Implementation of the SPH Procedure Within the MOOSE Finite Element Framework

    NASA Astrophysics Data System (ADS)

    Laurier, Alexandre

    The goal of this thesis was to implement the SPH homogenization procedure within the MOOSE finite element framework at INL. Before this project, INL relied on DRAGON to do their SPH homogenization which was not flexible enough for their needs. As such, the SPH procedure was implemented for the neutron diffusion equation with the traditional, Selengut and true Selengut normalizations. Another aspect of this research was to derive the SPH corrected neutron transport equations and implement them in the same framework. Following in the footsteps of other articles, this feature was implemented and tested successfully with both the PN and S N transport calculation schemes. Although the results obtained for the power distribution in PWR assemblies show no advantages over the use of the SPH diffusion equation, we believe the inclusion of this transport correction will allow for better results in cases where either P N or SN are required. An additional aspect of this research was the implementation of a novel way of solving the non-linear SPH problem. Traditionally, this was done through a Picard, fixed-point iterative process whereas the new implementation relies on MOOSE's Preconditioned Jacobian-Free Newton Krylov (PJFNK) method to allow for a direct solution to the non-linear problem. This novel implementation showed a decrease in calculation time by a factor reaching 50 and generated SPH factors that correspond to those obtained through a fixed-point iterative process with a very tight convergence criteria: epsilon < 10-8. The use of the PJFNK SPH procedure also allows to reach convergence in problems containing important reflector regions and void boundary conditions, something that the traditional SPH method has never been able to achieve. At times when the PJFNK method cannot reach convergence to the SPH problem, a hybrid method is used where by the traditional SPH iteration forces the initial condition to be within the radius of convergence of the Newton method. This new method was tested on a simplified model of INL's TREAT reactor, a problem that includes very important graphite reflector regions as well as vacuum boundary conditions with great success. To demonstrate the power of PJFNK SPH on a more common case, the correction was applied to a simplified PWR reactor core from the BEAVRS benchmark that included 15 assemblies and the water reflector to obtain very good results. This opens up the possibility to apply the SPH correction to full reactor cores in order to reduce homogenization errors for use in transient or multi-physics calculations.

  11. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  12. Repulsive Casimir force in Bose–Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Biswas, Shovon

    2018-04-01

    We study the Casimir effect for a three dimensional system of ideal free massive Bose gas in a slab geometry with Zaremba and anti-periodic boundary conditions. It is found that for these type of boundary conditions the resulting Casimir force is repulsive in nature, in contrast with usual periodic, Dirichlet or Neumann boundary condition where the Casimir force is attractive (Martin and Zagrebnov 2006 Europhys. Lett. 73 15). Casimir forces in these boundary conditions also maintain a power law decay function below condensation temperature and exponential decay function above the condensation temperature albeit with a positive sign, identifying the repulsive nature of the force.

  13. Improved Boundary Conditions for Cell-centered Difference Schemes

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.

  14. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  15. Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Arend, David J.; Wolter, John D.

    2017-01-01

    The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.

  16. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, E.; Odintsov, S. D.; Institucio Catalana de Recerca i Estudis Avanccats

    2009-03-15

    We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robinmore » boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.« less

  17. 22 CFR 1103.170 - Compliance procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES... INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION § 1103.170... Mexico, United States Section, The Commons, Building C, Suite 310, 4171 North Mesa, El Paso, Texas 79902...

  18. Boundary enhanced effects on the existence of quadratic solitons

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Zhang, Ting; Li, Wenjie; Lu, Daquan; Guo, Qi; Hu, Wei

    2018-05-01

    We investigate, both analytically and numerically, the boundary enhanced effects exerted on the quadratic solitons consisting of fundamental waves and oscillatory second harmonics in the presence of boundary conditions. The nonlocal analogy predicts that the soliton for fundamental wave is supported by the balance between equivalent nonlinear confinement and diffraction (or dispersion). Under Snyder and Mitchell's strongly nonlocal approximation, we obtain the analytical soliton solutions both with and without the boundary conditions to show the impact of boundary conditions. We can distinguish explicitly the nonlinear confinement between the second harmonic mutual interaction and the enhanced effects caused by remote boundaries. Those boundary enhanced effects on the existence of solitons can be positive or negative, which depend on both sample size and nonlocal parameter. The piecewise existence regime of solitons can be explained analytically. The analytical soliton solutions are verified by the numerical ones and the discrepancy between them is also discussed.

  19. Cylindrical Couette flow of a rarefied gas: Effect of a boundary condition on the inverted velocity profile.

    PubMed

    Kosuge, Shingo

    2015-07-01

    The cylindrical Couette flow of a rarefied gas between a rotating inner cylinder and a stationary outer cylinder is investigated under the following two kinds of kinetic boundary conditions. One is the modified Maxwell-type boundary condition proposed by Dadzie and Méolans [J. Math. Phys. 45, 1804 (2004)] and the other is the Cercignani-Lampis condition, both of which have separate accommodation coefficients associated with the molecular velocity component normal to the boundary and with the tangential component. An asymptotic analysis of the Boltzmann equation for small Knudsen numbers and a numerical analysis of the Bhatnagar-Gross-Krook model equation for a wide range of the Knudsen number are performed to clarify the effect of each accommodation coefficient as well as of the boundary condition itself on the behavior of the gas, especially on the flow-velocity profile. As a result, the velocity-slip and temperature-jump conditions corresponding to the above kinetic boundary conditions are derived, which are necessary for the fluid-dynamic description of the problem for small Knudsen numbers. The parameter range for the onset of the velocity inversion phenomenon, which is related mainly to the decrease in the tangential momentum accommodation, is also obtained.

  20. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: Stationary modes

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1988-01-01

    Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.

  1. The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A careful study of the boundary error

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun

    1993-01-01

    The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.

  2. Stress-intensity factor calculations using the boundary force method

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Newman, J. C., Jr.

    1987-01-01

    The Boundary Force Method (BFM) was formulated for the three fundamental problems of elasticity: the stress boundary value problem, the displacement boundary value problem, and the mixed boundary value problem. Because the BFM is a form of an indirect boundary element method, only the boundaries of the region of interest are modeled. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate is used as the fundamental solution. Thus, unlike other boundary element methods, here the crack face need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing a center-cracked specimen subjected to mixed boundary conditions and a three-hole cracked configuration subjected to traction boundary conditions. The results obtained are in good agreement with accepted numerical solutions. The method is then used to generate stress-intensity solutions for two common cracked configurations: an edge crack emanating from a semi-elliptical notch, and an edge crack emanating from a V-notch. The BFM is a versatile technique that can be used to obtain very accurate stress intensity factors for complex crack configurations subjected to stress, displacement, or mixed boundary conditions. The method requires a minimal amount of modeling effort.

  3. A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers

    NASA Technical Reports Server (NTRS)

    Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.

    1987-01-01

    A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.

  4. An outflow boundary condition for aeroacoustic computations

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Hagstrom, Thomas

    1995-01-01

    A formulation of boundary condition for flows with small disturbances is presented. The authors test their methodology in an axisymmetric jet flow calculation, using both the Navier-Stokes and Euler equations. Solutions in the far field are assumed to be oscillatory. If the oscillatory disturbances are small, the growth of the solution variables can be predicted by linear theory. Eigenfunctions of the linear theory are used explicitly in the formulation of the boundary conditions. This guarantees correct solutions at the boundary in the limit where the predictions of linear theory are valid.

  5. Watershed boundaries and digital elevation model of Oklahoma derived from 1:100,000-scale digital topographic maps

    USGS Publications Warehouse

    Cederstrand, J.R.; Rea, A.H.

    1995-01-01

    This document provides a general description of the procedures used to develop the data sets included on this compact disc. This compact disc contains watershed boundaries for Oklahoma, a digital elevation model, and other data sets derived from the digital elevation model. The digital elevation model was produced using the ANUDEM software package, written by Michael Hutchinson and licensed from the Centre for Resource and Environmental Studies at The Australian National University. Elevation data (hypsography) and streams (hydrography) from digital versions of the U.S. Geological Survey 1:100,000-scale topographic maps were used by the ANUDEM package to produce a hydrologically conditioned digital elevation model with a 60-meter cell size. This digital elevation model is well suited for drainage-basin delineation using automated techniques. Additional data sets include flow-direction, flow-accumulation, and shaded-relief grids, all derived from the digital elevation model, and the hydrography data set used in producing the digital elevation model. The watershed boundaries derived from the digital elevation model have been edited to be consistent with contours and streams from the U.S. Geological Survey 1:100,000-scale topographic maps. The watershed data set includes boundaries for 11-digit Hydrologic Unit Codes (watersheds) within Oklahoma, and 8-digit Hydrologic Unit Codes (cataloging units) outside Oklahoma. Cataloging-unit boundaries based on 1:250,000-scale maps outside Oklahoma for the Arkansas, Red, and White River basins are included. The other data sets cover Oklahoma, and where available, portions of 1:100,000-scale quadrangles adjoining Oklahoma.

  6. An evaluation of models of bare soil evaporation formulated with different land surface boundary conditions and assumptions

    NASA Astrophysics Data System (ADS)

    Smits, Kathleen M.; Ngo, Viet V.; Cihan, Abdullah; Sakaki, Toshihiro; Illangasekare, Tissa H.

    2012-12-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance. However, there is no agreement on the best modeling methodology to determine evaporation under different atmospheric boundary conditions. Also, there is a lack of directly measured soil evaporation data for model validation to compare these methods to establish the validity of their mathematical formulations. Thus, a need exists to systematically compare evaporation estimates using existing methods to experimental observations. The goal of this work is to test different conceptual and mathematical formulations that are used to estimate evaporation from bare soils to critically investigate various formulations and surface boundary conditions. Such a comparison required the development of a numerical model that has the ability to incorporate these boundary conditions. For this model, we modified a previously developed theory that allows nonequilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. Precision data under well-controlled transient heat and wind boundary conditions were generated, and results from numerical simulations were compared with experimental data. Results demonstrate that the approaches based on different boundary conditions varied in their ability to capture different stages of evaporation. All approaches have benefits and limitations, and no one approach can be deemed most appropriate for every scenario. Comparisons of different formulations of the surface boundary condition validate the need for further research on heat and vapor transport processes in soil for better modeling accuracy.

  7. Polynomial decay rate of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-02-01

    In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.

  8. Whole-Genome Screening of Newborns? The Constitutional Boundaries of State Newborn Screening Programs

    PubMed Central

    King, Jaime S.; Smith, Monica E.

    2016-01-01

    State newborn screening (NBS) programs routinely screen nearly all of the 4 million newborns in the United States each year for ~30 primary conditions and a number of secondary conditions. NBS could be on the cusp of an unprecedented expansion as a result of advances in whole-genome sequencing (WGS). As WGS becomes cheaper and easier and as our knowledge and understanding of human genetics expand, the question of whether WGS has a role to play in state NBS programs becomes increasingly relevant and complex. As geneticists and state public health officials begin to contemplate the technical and procedural details of whether WGS could benefit existing NBS programs, this is an opportune time to revisit the legal framework of state NBS programs. In this article, we examine the constitutional underpinnings of state-mandated NBS and explore the range of current state statutes and regulations that govern the programs. We consider the legal refinements that will be needed to keep state NBS programs within constitutional bounds, focusing on 2 areas of concern: consent procedures and the criteria used to select new conditions for NBS panels. We conclude by providing options for states to consider when contemplating the use of WGS for NBS. PMID:26729704

  9. Convergence results for pseudospectral approximations of hyperbolic systems by a penalty type boundary treatment

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele; Gottlieb, David

    1989-01-01

    A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.

  10. Scalar discrete nonlinear multipoint boundary value problems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jesus; Taylor, Padraic

    2007-06-01

    In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].

  11. Towards developing an analytical procedure of defining the equatorial electrojet for correcting satellite magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay; Hinze, William J.

    1991-01-01

    Analysis of the total magnetic intensity MAGSAT data has identified and characterized the variability of ionospheric current effects as reflected in the geomagnetic field as a function of longitude, elevation, and time (daily as well as monthly variations). This analysis verifies previous observations in POGO data and provides important boundary conditions for theoretical studies of ionospheric currents. Furthermore, the observations have led to a procedure to remove these temporal perturbations from lithospheric MAGSAT magnetic anomaly data based on 'along-the-dip-latitude' averages from dawn and dusk data sets grouped according to longitudes, time (months), and elevation. Using this method, high-resolution lithospheric magnetic anomaly maps have been prepared of the earth over a plus or minus 50 deg latitude band. These maps have proven useful in the study of the structures, nature, and processes of the lithosphere.

  12. Diffraction of a shock wave by a compression corner; regular and single Mach reflection

    NASA Technical Reports Server (NTRS)

    Vijayashankar, V. S.; Kutler, P.; Anderson, D.

    1976-01-01

    The two dimensional, time dependent Euler equations which govern the flow field resulting from the injection of a planar shock with a compression corner are solved with initial conditions that result in either regular reflection or single Mach reflection of the incident planar shock. The Euler equations which are hyperbolic are transformed to include the self similarity of the problem. A normalization procedure is employed to align the reflected shock and the Mach stem as computational boundaries to implement the shock fitting procedure. A special floating fitting scheme is developed in conjunction with the method of characteristics to fit the slip surface. The reflected shock, the Mach stem, and the slip surface are all treated as harp discontinuities, thus, resulting in a more accurate description of the inviscid flow field. The resulting numerical solutions are compared with available experimental data and existing first-order, shock-capturing numerical solutions.

  13. Topological regularization and self-duality in four-dimensional anti-de Sitter gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskovic, Olivera; Olea, Rodrigo; Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso

    2009-06-15

    It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter gravity action in four dimensions recovers the standard regularization given by the holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows one to find the dual point of the theory where the holographic stress tensor is related to the boundary Cotton tensor as T{sub j}{sup i}={+-}(l{sup 2}/8{pi}G)C{sub j}{sup i}, which has been observed in recent literature in solitonicmore » solutions and hydrodynamic models. A general procedure to generate the counterterm series for anti-de Sitter gravity in any even dimension from the corresponding Euler term is also briefly discussed.« less

  14. Development of a Hybrid RANS/LES Method for Compressible Mixing Layer Simulations

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modem day aircraft and also those of hypersonic vehicles currently under development. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS/LES method on stretched, non-Cartesian grids. The hybrid RANS/LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two-dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Actual LES calculations, performed in three spatial directions, indicated an initial vortex shedding followed by rapid transition to turbulence, which is in agreement with experimental observations.

  15. Variance reduction through robust design of boundary conditions for stochastic hyperbolic systems of equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordström, Jan, E-mail: jan.nordstrom@liu.se; Wahlsten, Markus, E-mail: markus.wahlsten@liu.se

    We consider a hyperbolic system with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions give different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analytical and numerical estimates of the variance of the solution are presented. As an application, we study the effect of this technique on Maxwell's equations as well as on a subsonic outflow boundary for themore » Euler equations.« less

  16. Asymptotic boundary conditions for dissipative waves: General theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  17. On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains

    NASA Astrophysics Data System (ADS)

    Cantrell, Robert Stephen; Cosner, Chris

    We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends on the population density. Specifically, the rate at which the population crosses the boundary is assumed to decrease as the density of the population increases. The model is motivated by empirical work on the Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to eigenvalue problems with nonstandard boundary conditions.

  18. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems; results and implications of numerical experiments

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.

    1987-01-01

    The most critical and difficult aspect of defining a groundwater system or problem for conceptual analysis or numerical simulation is the selection of boundary conditions . This report demonstrates the effects of different boundary conditions on the steady-state response of otherwise similar ground-water systems to a pumping stress. Three series of numerical experiments illustrate the behavior of three hypothetical groundwater systems that are rectangular sand prisms with the same dimensions but with different combinations of constant-head, specified-head, no-flow, and constant-flux boundary conditions. In the first series of numerical experiments, the heads and flows in all three systems are identical, as are the hydraulic conductivity and system geometry . However, when the systems are subjected to an equal stress by a pumping well in the third series, each differs significantly in its response . The highest heads (smallest drawdowns) and flows occur in the systems most constrained by constant- or specified-head boundaries. These and other observations described herein are important in steady-state calibration, which is an integral part of simulating many ground-water systems. Because the effects of boundary conditions on model response often become evident only when the system is stressed, a close match between the potential distribution in the model and that in the unstressed natural system does not guarantee that the model boundary conditions correctly represent those in the natural system . In conclusion, the boundary conditions that are selected for simulation of a ground-water system are fundamentally important to groundwater systems analysis and warrant continual reevaluation and modification as investigation proceeds and new information and understanding are acquired.

  19. Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Frota, Cícero Lopes; Vicente, André

    2018-06-01

    In this paper, we deal with the uniform stabilization to the mixed problem for a nonlinear wave equation and acoustic boundary conditions on a non-locally reacting boundary. The main purpose is to study the stability when the internal damping acts only over a subset ω of the domain Ω and the boundary damping is of the viscoelastic type.

  20. An improved viscid/inviscid interaction procedure for transonic flow over airfoils

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.

    1985-01-01

    A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.

  1. Automated Approach to Very High-Order Aeroacoustic Computations. Revision

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Goodrich, John W.

    2001-01-01

    Computational aeroacoustics requires efficient, high-resolution simulation tools. For smooth problems, this is best accomplished with very high-order in space and time methods on small stencils. However, the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewski recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that am located near wall boundaries. These procedures are used to develop automatically and to implement very high-order methods (> 15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

  2. A numerical method for computing unsteady 2-D boundary layer flows

    NASA Technical Reports Server (NTRS)

    Krainer, Andreas

    1988-01-01

    A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.

  3. An Automated Approach to Very High Order Aeroacoustic Computations in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Goodrich, John W.

    2000-01-01

    Computational aeroacoustics requires efficient, high-resolution simulation tools. And for smooth problems, this is best accomplished with very high order in space and time methods on small stencils. But the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewslci recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that are located near wall boundaries. These procedures are used to automatically develop and implement very high order methods (>15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

  4. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  5. A boundary condition for layer to level ocean model interaction

    NASA Astrophysics Data System (ADS)

    Mask, A.; O'Brien, J.; Preller, R.

    2003-04-01

    A radiation boundary condition based on vertical normal modes is introduced to allow a physical transition between nested/coupled ocean models that are of differing vertical structure and/or differing physics. In this particular study, a fine resolution regional/coastal sigma-coordinate Naval Coastal Ocean Model (NCOM) has been successfully nested to a coarse resolution (in the horizontal and vertical) basin scale NCOM and a coarse resolution basin scale Navy Layered Ocean Model (NLOM). Both of these models were developed at the Naval Research Laboratory (NRL) at Stennis Space Center, Mississippi, USA. This new method, which decomposes the vertical structure of the models into barotropic and baroclinic modes, gives improved results in the coastal domain over Orlanski radiation boundary conditions for the test cases. The principle reason for the improvement is that each mode has the radiation boundary condition applied individually; therefore, the packet of information passing through the boundary is allowed to have multiple phase speeds instead of a single-phase speed. Allowing multiple phase speeds reduces boundary reflections, thus improving results.

  6. On the Effective Construction of Compactly Supported Wavelets Satisfying Homogenous Boundary Conditions on the Interval

    NASA Technical Reports Server (NTRS)

    Chiavassa, G.; Liandrat, J.

    1996-01-01

    We construct compactly supported wavelet bases satisfying homogeneous boundary conditions on the interval (0,1). The maximum features of multiresolution analysis on the line are retained, including polynomial approximation and tree algorithms. The case of H(sub 0)(sup 1)(0, 1)is detailed, and numerical values, required for the implementation, are provided for the Neumann and Dirichlet boundary conditions.

  7. Finite element techniques for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation

    NASA Technical Reports Server (NTRS)

    Glaisner, F.; Tezduyar, T. E.

    1987-01-01

    Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.

  8. Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity

    NASA Astrophysics Data System (ADS)

    Jayachandra Babu, M.; Sandeep, N.; Ali, M. E.; Nuhait, Abdullah O.

    The boundary layer flow across a slendering stretching sheet has gotten awesome consideration due to its inexhaustible pragmatic applications in nuclear reactor technology, acoustical components, chemical and manufacturing procedures, for example, polymer extrusion, and machine design. By keeping this in view, we analyzed the two-dimensional MHD flow across a slendering stretching sheet within the sight of variable viscosity and viscous dissipation. The sheet is thought to be convectively warmed. Convective boundary conditions through heat and mass are employed. Similarity transformations used to change over the administering nonlinear partial differential equations as a group of nonlinear ordinary differential equations. Runge-Kutta based shooting technique is utilized to solve the converted equations. Numerical estimations of the physical parameters involved in the problem are calculated for the friction factor, local Nusselt and Sherwood numbers. Viscosity variation parameter and chemical reaction parameter shows the opposite impact to each other on the concentration profile. Heat and mass transfer Biot numbers are helpful to enhance the temperature and concentration respectively.

  9. Definition and means of maintaining the supply ventilation system seismic shutdown portion of the PFP safety envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, R.D.

    1997-01-21

    The purpose of this document is to record the technical evaluation of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements, WHC-SD-CP-OSR- 010, Rev. 0. Kay 1994, Section 3.2.3, `Supply Ventilation System Seismic Shutdown.` This document, with its appendices, provides the following: 1. The system functional requirements for determining system operability (Section 3). 2. Evaluations of equipment to determine the safety boundary for the system (Section 4). 3. A list of annotated drawings which show the safety envelope boundaries (Appendix C). 4. A list of the safety envelope equipment (Appendix B). 5. Functionalmore » requirements for the individual safety envelope equipment, including appropriate setpoints and process parameters (Section 4.1). 6. A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the system equipment within the safety envelope (Sections 5 and 6 and Appendix A).« less

  10. A numerical solution method for acoustic radiation from axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Caruthers, John E.; Raviprakash, G. K.

    1995-01-01

    A new and very efficient numerical method for solving equations of the Helmholtz type is specialized for problems having axisymmetric geometry. It is then demonstrated by application to the classical problem of acoustic radiation from a vibrating piston set in a stationary infinite plane. The method utilizes 'Green's Function Discretization', to obtain an accurate resolution of the waves using only 2-3 points per wave. Locally valid free space Green's functions, used in the discretization step, are obtained by quadrature. Results are computed for a range of grid spacing/piston radius ratios at a frequency parameter, omega R/c(sub 0), of 2 pi. In this case, the minimum required grid resolution appears to be fixed by the need to resolve a step boundary condition at the piston edge rather than by the length scale imposed by the wave length of the acoustic radiation. It is also demonstrated that a local near-field radiation boundary procedure allows the domain to be truncated very near the radiating source with little effect on the solution.

  11. Evaluation of several non-reflecting computational boundary conditions for duct acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.; Hodge, Steve L.

    1994-01-01

    Several non-reflecting computational boundary conditions that meet certain criteria and have potential applications to duct acoustics are evaluated for their effectiveness. The same interior solution scheme, grid, and order of approximation are used to evaluate each condition. Sparse matrix solution techniques are applied to solve the matrix equation resulting from the discretization. Modal series solutions for the sound attenuation in an infinite duct are used to evaluate the accuracy of each non-reflecting boundary conditions. The evaluations are performed for sound propagation in a softwall duct, for several sources, sound frequencies, and duct lengths. It is shown that a recently developed nonlocal boundary condition leads to sound attenuation predictions considerably more accurate for short ducts. This leads to a substantial reduction in the number of grid points when compared to other non-reflecting conditions.

  12. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  13. Navier-Stokes and viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.; Vandalsem, William R.

    1989-01-01

    Some considerations toward developing numerical procedures for simulating viscous compressible flows are discussed. Both Navier-Stokes and boundary layer field methods are considered. Because efficient viscous-inviscid interaction methods have been difficult to extend to complex 3-D flow simulations, Navier-Stokes procedures are more frequently being utilized even though they require considerably more work per grid point. It would seem a mistake, however, not to make use of the more efficient approximate methods in those regions in which they are clearly valid. Ideally, a general purpose compressible flow solver that can optionally take advantage of approximate solution methods would suffice, both to improve accuracy and efficiency. Some potentially useful steps toward this goal are described: a generalized 3-D boundary layer formulation and the fortified Navier-Stokes procedure.

  14. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yousong, E-mail: yousong.luo@rmit.edu.au

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  16. Sea ice melting in the marginal ice zone.

    USGS Publications Warehouse

    Josberger, E.G.

    1983-01-01

    The heat and salt flux boundary conditions together with the freezing curve relationship are a necessary component of any ice- sea water thermodynamic model. A neutral two-layer oceanic planetary boundary layer model that incorporates these boundary conditions is used. The results are discussed. -from Author

  17. Scalar Casimir densities and forces for parallel plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.

    2018-04-01

    We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.

  18. Comparison of two procedures for predicting rocket engine nozzle performance

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    Two nozzle performance prediction procedures which are based on the standardized JANNAF methodology are presented and compared for four rocket engine nozzles. The first procedure required operator intercedence to transfer data between the individual performance programs. The second procedure is more automated in that all necessary programs are collected into a single computer code, thereby eliminating the need for data reformatting. Results from both procedures show similar trends but quantitative differences. Agreement was best in the predictions of specific impulse and local skin friction coefficient. Other compared quantities include characteristic velocity, thrust coefficient, thrust decrement, boundary layer displacement thickness, momentum thickness, and heat loss rate to the wall. Effects of wall temperature profile used as an input to the programs was investigated by running three wall temperature profiles. It was found that this change greatly affected the boundary layer displacement thickness and heat loss to the wall. The other quantities, however, were not drastically affected by the wall temperature profile change.

  19. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 5: Propagation of propeller tone noise through a fuselage boundary layer

    NASA Technical Reports Server (NTRS)

    Magliozzi, B.; Hanson, D. B.

    1991-01-01

    An analysis of tone noise propagation through a boundary layer and fuselage scattering effects was derived. This analysis is a three dimensional and the complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The outer wave field is constructed analytically from an incident wave appropriate to the source and a scattered wave in the standard Hankel function form. For the incident wave, an existing function - domain propeller noise radiation theory is used. In the boundary layer region, the wave equation is solved by numerical methods. The theoretical analysis is embodied in a computer program which allows the calculation of correction factors for the fuselage scattering and boundary layer refraction effects. The effects are dependent on boundary layer profile, flight speed, and frequency. Corrections can be derived for any point on the fuselage, including those on the opposite side from the source. The theory was verified using limited cases and by comparing calculations with available measurements from JetStar tests of model prop-fans. For the JetStar model scale, the boundary layer refraction effects produce moderate fuselage pressure reinforcements aft of and near the plane of rotation and significant attenuation forward of the plane of rotation at high flight speeds. At lower flight speeds, the calculated boundary layer effects result in moderate amplification over the fuselage area of interest. Apparent amplification forward of the plane of rotation is a result of effective changes in the source directivity due to boundary layer refraction effects. Full scale effects are calculated to be moderate, providing fuselage pressure amplification of about 5 dB at the peak noise location. Evaluation using available noise measurements was made under high-speed, high-altitude flight conditions. Comparisons of calculations made of free field noise, using a current frequency-domain propeller noise prediction method, and fuselage effects using this new procedure show good agreement with fuselage measurements over a wide range of flight speeds and frequencies. Correction factors for the JetStar measurements made on the fuselage are provided in an Appendix.

  20. Impact of bias-corrected reanalysis-derived lateral boundary conditions on WRF simulations

    NASA Astrophysics Data System (ADS)

    Moalafhi, Ditiro Benson; Sharma, Ashish; Evans, Jason Peter; Mehrotra, Rajeshwar; Rocheta, Eytan

    2017-08-01

    Lateral and lower boundary conditions derived from a suitable global reanalysis data set form the basis for deriving a dynamically consistent finer resolution downscaled product for climate and hydrological assessment studies. A problem with this, however, is that systematic biases have been noted to be present in the global reanalysis data sets that form these boundaries, biases which can be carried into the downscaled simulations thereby reducing their accuracy or efficacy. In this work, three Weather Research and Forecasting (WRF) model downscaling experiments are undertaken to investigate the impact of bias correcting European Centre for Medium range Weather Forecasting Reanalysis ERA-Interim (ERA-I) atmospheric temperature and relative humidity using Atmospheric Infrared Sounder (AIRS) satellite data. The downscaling is performed over a domain centered over southern Africa between the years 2003 and 2012. The sample mean and the mean as well as standard deviation at each grid cell for each variable are used for bias correction. The resultant WRF simulations of near-surface temperature and precipitation are evaluated seasonally and annually against global gridded observational data sets and compared with ERA-I reanalysis driving field. The study reveals inconsistencies between the impact of the bias correction prior to downscaling and the resultant model simulations after downscaling. Mean and standard deviation bias-corrected WRF simulations are, however, found to be marginally better than mean only bias-corrected WRF simulations and raw ERA-I reanalysis-driven WRF simulations. Performances, however, differ when assessing different attributes in the downscaled field. This raises questions about the efficacy of the correction procedures adopted.

  1. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  2. Effective surface and boundary conditions for heterogeneous surfaces with mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Guo, Jianwei; Veran-Tissoires, Stéphanie; Quintard, Michel

    2016-01-01

    To deal with multi-scale problems involving transport from a heterogeneous and rough surface characterized by a mixed boundary condition, an effective surface theory is developed, which replaces the original surface by a homogeneous and smooth surface with specific boundary conditions. A typical example corresponds to a laminar flow over a soluble salt medium which contains insoluble material. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework, velocity and concentration at micro-scale are estimated with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the related boundary conditions. The evolution of some effective properties and the impact of surface geometry, Péclet, Schmidt and Damköhler numbers are investigated. Finally, comparisons are made between the numerical results obtained with the effective models and those from direct numerical simulations with the original rough surface, for two kinds of configurations.

  3. Principal Eigenvalue Minimization for an Elliptic Problem with Indefinite Weight and Robin Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintermueller, M., E-mail: hint@math.hu-berlin.de; Kao, C.-Y., E-mail: Ckao@claremontmckenna.edu; Laurain, A., E-mail: laurain@math.hu-berlin.de

    2012-02-15

    This paper focuses on the study of a linear eigenvalue problem with indefinite weight and Robin type boundary conditions. We investigate the minimization of the positive principal eigenvalue under the constraint that the absolute value of the weight is bounded and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. For rectangular domains with Neumann boundary condition, it is known that there exists a threshold value such that if the total weight is below this thresholdmore » value then the optimal favorable region is like a section of a disk at one of the four corners; otherwise, the optimal favorable region is a strip attached to the shorter side of the rectangle. Here, we investigate the same problem with mixed Robin-Neumann type boundary conditions and study how this boundary condition affects the optimal spatial arrangement.« less

  4. Coulomb gauge ghost Dyson-Schwinger equation

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2010-12-01

    A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum), which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until forced to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery picture of confinement is explored.

  5. Complexity of the AdS soliton

    NASA Astrophysics Data System (ADS)

    Reynolds, Alan P.; Ross, Simon F.

    2018-05-01

    We consider the holographic complexity conjectures in the context of the AdS soliton, which is the holographic dual of the ground state of a field theory on a torus with antiperiodic boundary conditions for fermions on one cycle. The complexity is a non-trivial function of the size of the circle with antiperiodic boundary conditions, which sets an IR scale in the dual geometry. We find qualitative differences between the calculations of complexity from spatial volume and action (CV and CA). In the CV calculation, the complexity for antiperiodic boundary conditions is smaller than for periodic, and decreases monotonically with increasing IR scale. In the CA calculation, the complexity for antiperiodic boundary conditions is larger than for periodic, and initially increases with increasing IR scale, eventually decreasing to zero as the IR scale becomes of order the UV cutoff. We compare these results to a simple calculation for free fermions on a lattice, where we find the complexity for antiperiodic boundary conditions is larger than for periodic.

  6. A New Parallel Boundary Condition for Turbulence Simulations in Stellarators

    NASA Astrophysics Data System (ADS)

    Martin, Mike F.; Landreman, Matt; Dorland, William; Xanthopoulos, Pavlos

    2017-10-01

    For gyrokinetic simulations of core turbulence, the ``twist-and-shift'' parallel boundary condition (Beer et al., PoP, 1995), which involves a shift in radial wavenumber proportional to the global shear and a quantization of the simulation domain's aspect ratio, is the standard choice. But as this condition was derived under the assumption of axisymmetry, ``twist-and-shift'' as it stands is formally incorrect for turbulence simulations in stellarators. Moreover, for low-shear stellarators like W7X and HSX, the use of a global shear in the traditional boundary condition places an inflexible constraint on the aspect ratio of the domain, requiring more grid points to fully resolve its extent. Here, we present a parallel boundary condition for ``stellarator-symmetric'' simulations that relies on the local shear along a field line. This boundary condition is similar to ``twist-and-shift'', but has an added flexibility in choosing the parallel length of the domain based on local shear consideration in order to optimize certain parameters such as the aspect ratio of the simulation domain.

  7. 22 CFR 1102.3 - Procedures for requesting access to records or information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Procedures for requesting access to records or information. 1102.3 Section 1102.3 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION FREEDOM OF INFORMATION ACT § 1102.3 Procedures for requesting...

  8. Artificial Boundary Conditions for Finite Element Model Update and Damage Detection

    DTIC Science & Technology

    2017-03-01

    BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Emmanouil Damanakis March 2017 Thesis Advisor: Joshua H. Gordis...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ARTIFICIAL BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION...release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In structural engineering, a finite element model is often

  9. Characterization and Modeling of Thoraco-Abdominal Response to Blast Waves. Volume 4. Biomechanical Model of Thorax Response to Blast Loading

    DTIC Science & Technology

    1985-05-01

    non- zero Dirichlet boundary conditions and/or general mixed type boundary conditions. Note that Neumann type boundary condi- tion enters the problem by...Background ................................. ................... I 1.3 General Description ..... ............ ........... . ....... ...... 2 2. ANATOMICAL...human and varions loading conditions for the definition of a generalized safety guideline of blast exposure. To model the response of a sheep torso

  10. Influence of electrical boundary conditions on molecular dynamics simulations of ionic liquid electrosprays.

    PubMed

    Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A

    2014-12-01

    Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.

  11. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    NASA Astrophysics Data System (ADS)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  12. Influence of electrical boundary conditions on molecular dynamics simulations of ionic liquid electrosprays

    NASA Astrophysics Data System (ADS)

    Borner, Arnaud; Wang, Pengxiang; Levin, Deborah A.

    2014-12-01

    Molecular dynamics (MD) simulations are coupled to solutions of Poisson's equation to study the effects of the electrical boundary conditions on the emission modes of an electrospray thruster fed with an ionic liquid. A comparison of a new tip boundary condition with an analytical model based on a semihyperboloidal shape offers good agreement, although the analytical model overestimates the maximum value of the tangential electric field since it does not take into account the space charge that reduces the field at the liquid surface. It is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with droplet formation. Furthermore, the MD simulations show that ion emission sites differ based on the boundary condition and snapshots offer an explanation as to why some boundary condition models will predict emission in a purely ionic mode, whereas others suggest a mixed ion-droplet regime. Finally, specific impulses and thrusts are compared for the different models and are found to vary up to 30% due to differences in the average charge to mass ratio.

  13. Influence of Boundary Conditions on Regional Air Quality Simulations—Analysis of AQMEII Phase 3 Results

    EPA Science Inventory

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary con...

  14. Effects of Uncertainties in Electric Field Boundary Conditions for Ring Current Simulations

    NASA Astrophysics Data System (ADS)

    Chen, Margaret W.; O'Brien, T. Paul; Lemon, Colby L.; Guild, Timothy B.

    2018-01-01

    Physics-based simulation results can vary widely depending on the applied boundary conditions. As a first step toward assessing the effect of boundary conditions on ring current simulations, we analyze the uncertainty of cross-polar cap potentials (CPCP) on electric field boundary conditions applied to the Rice Convection Model-Equilibrium (RCM-E). The empirical Weimer model of CPCP is chosen as the reference model and Defense Meteorological Satellite Program CPCP measurements as the reference data. Using temporal correlations from a statistical analysis of the "errors" between the reference model and data, we construct a Monte Carlo CPCP discrete time series model that can be generalized to other model boundary conditions. RCM-E simulations using electric field boundary conditions from the reference model and from 20 randomly generated Monte Carlo discrete time series of CPCP are performed for two large storms. During the 10 August 2000 storm main phase, the proton density at 10 RE at midnight was observed to be low (< 1.4 cm-3) and the observed disturbance Dst index is bounded by the simulated Dst values. In contrast, the simulated Dst values during the recovery phases of the 10 August 2000 and 31 August 2005 storms tend to underestimate systematically the observed late Dst recovery. This suggests a need to improve the accuracy of particle loss calculations in the RCM-E model. Application of this technique can aid modelers to make efficient choices on either investing more effort on improving specification of boundary conditions or on improving descriptions of physical processes.

  15. Boundary conditions and unitarity in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Andrade, Tomas

    This thesis investigates various issues regarding unitarity in the context of Anti-de Sitter/Conformal Field theory (AdS/CFT) dualities. When the boundary duals are conformal, unitarity implies that there are lower bounds on the dimension of primary operators. Now, the AdS/CFT dictionary relates insertions of boundary operators to different choices of boundary conditions on the gravity side. Therefore, we expect the possible choices of boundary conditions in AdS to be restricted accordingly. Our first main goal will be to identify what are the pathologies that occur in the gravitational side of the duality when the boundary operators violate the pertinent unitarity bounds. In all the studied cases, we find that such bulk theories are ill-defined as expected, although unitarity is not nec- essarily violated. As our first example we consider a Klein-Gordon field in AdS, and extend the analysis to bosonic fields of spin 1 and 2 later on, with analogous results. Interestingly, it turns our that the bulk settings are pathological even in the absence of strict conformal invariance. Secondly, we argue that introducing a geometrical cut-off in spacetime along with the appropriate modifications of the boundary conditions yields the resulting (IR) theories well-defined. By study- ing in detail a Klein-Gordon field with boundary conditions that correspond to double-trace deformations, we are able to explicitly verify this claim. Finally, we discuss future research directions which include generalizations of AdS/CFT-like dualities and potential applications for condensed matter theory.

  16. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions

    NASA Astrophysics Data System (ADS)

    Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru

    2018-02-01

    A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.

  17. High-order finite-volume solutions of the steady-state advection-diffusion equation with nonlinear Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Zhang, Qinghai

    2017-09-01

    We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.

  18. Dual Identity and Prejudice: The Moderating Role of Group Boundary Permeability

    PubMed Central

    Shi, Yuanyuan; Dang, Jianning; Zheng, Wenwen; Liu, Li

    2017-01-01

    Past work suggested that dual identity was effective to reduce prejudice. This study extended research on dual identity and prejudice by identifying a boundary condition in this relationship, that is, group permeability. In Study 1, we replicated previous studies with Chinese individuals and found that inducing dual identity (emphasizing subgroup differences and a common nation identity), compared to the control condition, decreased the urban residents’ prejudice against rural-to-urban migrants. In Study 2, we manipulated the group boundary permeability using the Hukou system reform, and found that when the group boundary was permeable, dual identity was effective in reducing prejudice against rural-to-urban migrants. However, this effect vanished in the condition where the group boundary was impermeable. These results point to the importance of inducing dual identity under specific conditions for research on decreasing prejudice. Some practical implications of the findings for urbanization and immigration are discussed. PMID:28261130

  19. Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1994-01-01

    In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.

  20. Verification and Validation: High Charge and Energy (HZE) Transport Codes and Future Development

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Mertens, Christopher J.; Blattnig, Steve R.; Clowdsley, Martha S.; Cucinotta, Francis A.; Tweed, John; Heinbockel, John H.; Walker, Steven A.; Nealy, John E.

    2005-01-01

    In the present paper, we give the formalism for further developing a fully three-dimensional HZETRN code using marching procedures but also development of a new Green's function code is discussed. The final Green's function code is capable of not only validation in the space environment but also in ground based laboratories with directed beams of ions of specific energy and characterized with detailed diagnostic particle spectrometer devices. Special emphasis is given to verification of the computational procedures and validation of the resultant computational model using laboratory and spaceflight measurements. Due to historical requirements, two parallel development paths for computational model implementation using marching procedures and Green s function techniques are followed. A new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is under development. Validation of computational models at this time is particularly important for President Bush s Initiative to develop infrastructure for human exploration with first target demonstration of the Crew Exploration Vehicle (CEV) in low Earth orbit in 2008.

  1. Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces

    NASA Technical Reports Server (NTRS)

    Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John

    2011-01-01

    Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.

  2. Some examples of exact and approximate solutions in small particle scattering - A progress report

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1974-01-01

    The formulation of basic equations from which the scattering of radiation by a localized variation in a medium is discussed. These equations are developed in both the differential and the integral form. Primary interest is in the scattering of electromagnetic waves for which the solution of the vector wave equation with appropriate boundary conditions must be considered. Scalar scattering by an infinite homogeneous isotropic circular cylinder, and scattering of electromagnetic waves by infinite circular cylinders are treated, and the case of the finite circular cylinder is considered. A procedure is given for obtaining angular scattering distributions from spheroids.

  3. Creating unconventional geometric beams with large depth of field using double freeform-surface optics.

    PubMed

    Feng, Zexin; Froese, Brittany D; Huang, Chih-Yu; Ma, Donglin; Liang, Rongguang

    2015-07-10

    We consider here creation of an unconventional flattop beam with a large depth of field by employing double freeform optical surfaces. The output beam is designed with continuous variations from the flattop to almost zero near the edges to resist the influence of diffraction on its propagation. We solve this challenging problem by naturally incorporating an optimal transport map computation scheme for unconventional boundary conditions with a simultaneous point-by-point double surface construction procedure. We demonstrate experimentally the generation of a long-range propagated triangular beam through a plano-freeform lens pair fabricated by a diamond-tuning machine.

  4. Twenty-five years of aerodynamic research with IR imaging: A survey

    NASA Technical Reports Server (NTRS)

    Gartenberg, Ehud; Roberts, A. Sidney, Jr.

    1991-01-01

    Infrared imaging used in aerodynamic research evolved during the last 25 years into a rewarding experimental technique for investigation of body-flow viscous interactions, such as heat flux determination and boundary layer transition. The technique of infrared imaging matched well its capability to produce useful results, with the expansion of testing conditions in the entire spectrum of wind tunnels, from hypersonic high-enthalpy facilities to cryogenic transonic wind tunnels. With unique achievements credited to its past, the current trend suggests a change in attitude towards this technique: from the perception as an exotic, project-oriented tool, to the status of a routine experimental procedure.

  5. Viscous and thermal modelling of thermoplastic composites forming process

    NASA Astrophysics Data System (ADS)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaezi, P.; Holland, C.; Thakur, S. C.

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  7. Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.

    1994-01-01

    A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.

  8. Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data.

    PubMed

    van Maanen, Leendert; Couto, Joaquina; Lebreton, Mael

    2016-01-01

    The notion of "mixtures" has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied-for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes.

  9. Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data

    PubMed Central

    Couto, Joaquina; Lebreton, Mael

    2016-01-01

    The notion of “mixtures” has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied–for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes. PMID:27893868

  10. Numerical Study of Outlet Boundary Conditions for Unsteady Turbulent Internal Flows Using the NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Shih, Tsan-Hsing

    2009-01-01

    This paper presents the results of studies on the outlet boundary conditions for turbulent internal flow simulations. Several outlet boundary conditions have been investigated by applying the National Combustion Code (NCC) to the configuration of a LM6000 single injector flame tube. First of all, very large eddy simulations (VLES) have been performed using the partially resolved numerical simulation (PRNS) approach, in which both the nonlinear and linear dynamic subscale models were employed. Secondly, unsteady Reynolds averaged Navier- Stokes (URANS) simulations have also been performed for the same configuration to investigate the effects of different outlet boundary conditions in the context of URANS. Thirdly, the possible role of the initial condition is inspected by using three different initial flow fields for both the PRNS/VLES simulation and the URANS simulation. The same grid is used for all the simulations and the number of mesh element is about 0.5 million. The main purpose of this study is to examine the long-time behavior of the solution as determined by the imposed outlet boundary conditions. For a particular simulation to be considered as successful under the given initial and boundary conditions, the solution must be sustainable in a physically meaningful manner over a sufficiently long period of time. The commonly used outlet boundary condition for steady Reynolds averaged Navier-Stokes (RANS) simulation is a fixed pressure at the outlet with all the other dependent variables being extrapolated from the interior. The results of the present study suggest that this is also workable for the URANS simulation of the LM6000 injector flame tube. However, it does not work for the PRNS/VLES simulation due to the unphysical reflections of the pressure disturbances at the outlet boundary. This undesirable situation can be practically alleviated by applying a simple unsteady convection equation for the pressure disturbances at the outlet boundary. The numerical results presented in this paper suggest that this unsteady convection of pressure disturbances at the outlet works very well for all the unsteady simulations (both PRNS/VLES and URANS) of the LM6000 single injector flame tube.

  11. Positivity and Almost Positivity of Biharmonic Green's Functions under Dirichlet Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Grunau, Hans-Christoph; Robert, Frédéric

    2010-03-01

    In general, for higher order elliptic equations and boundary value problems like the biharmonic equation and the linear clamped plate boundary value problem, neither a maximum principle nor a comparison principle or—equivalently—a positivity preserving property is available. The problem is rather involved since the clamped boundary conditions prevent the boundary value problem from being reasonably written as a system of second order boundary value problems. It is shown that, on the other hand, for bounded smooth domains {Ω subsetmathbb{R}^n} , the negative part of the corresponding Green’s function is “small” when compared with its singular positive part, provided {n≥q 3} . Moreover, the biharmonic Green’s function in balls {Bsubsetmathbb{R}^n} under Dirichlet (that is, clamped) boundary conditions is known explicitly and is positive. It has been known for some time that positivity is preserved under small regular perturbations of the domain, if n = 2. In the present paper, such a stability result is proved for {n≥q 3}.

  12. Measuring the viscosity of whole bovine lens using a fiber optic oxygen sensing system

    PubMed Central

    Thao, Mai T.; Perez, Daniel; Dillon, James

    2014-01-01

    Purpose To obtain a better understanding of oxygen and nutrient transport within the lens, the viscosity of whole lenses was investigated using a fiber optic oxygen sensor (optode). The diffusion coefficient of oxygen was calculated using the Stokes-Einstein equation at the slip boundary condition. Methods The optode was used to measure the oxygen decay signal in samples consisting of different glycerol/water solutions with known viscosities. The oxygen decay signal was fitted to a double exponential decay rate equation, and the lifetimes (tau) were calculated. It was determined that the tau-viscosity relationship is linear, which served as the standard curve. The same procedure was applied to fresh bovine lenses, and the unknown viscosity of the bovine lens was calculated from the tau-viscosity relationship. Results The average viscosity in a whole bovine lens was determined to be 5.74±0.88 cP by our method. Using the Stokes-Einstein equation at the slip boundary condition, the diffusion coefficient for oxygen was calculated to be 8.2 × 10−6 cm2/s. Conclusions These data indicate a higher resistance to flow for oxygen and nutrients in the lens than what is currently assumed in the literature. Overall, this study allows a better understanding of oxygen transport within the lens. PMID:24505211

  13. A Numerical Combination of Extended Boundary Condition Method and Invariant Imbedding Method Applied to Light Scattering by Large Spheroids and Cylinders

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.

    2013-01-01

    The extended boundary condition method (EBCM) and invariant imbedding method (IIM) are two fundamentally different T-matrix methods for the solution of light scattering by nonspherical particles. The standard EBCM is very efficient but encounters a loss of precision when the particle size is large, the maximum size being sensitive to the particle aspect ratio. The IIM can be applied to particles in a relatively large size parameter range but requires extensive computational time due to the number of spherical layers in the particle volume discretization. A numerical combination of the EBCM and the IIM (hereafter, the EBCM+IIM) is proposed to overcome the aforementioned disadvantages of each method. Even though the EBCM can fail to obtain the T-matrix of a considered particle, it is valuable for decreasing the computational domain (i.e., the number of spherical layers) of the IIM by providing the initial T-matrix associated with an iterative procedure in the IIM. The EBCM+IIM is demonstrated to be more efficient than the IIM in obtaining the optical properties of large size parameter particles beyond the convergence limit of the EBCM. The numerical performance of the EBCM+IIM is illustrated through representative calculations in spheroidal and cylindrical particle cases.

  14. Simulation of Flow Through Breach in Leading Edge at Mach 24

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Alter, Stephen J.

    2004-01-01

    A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of holes through the leading edge into a vented cavity. The simulations were generated relatively quickly and early in the investigation by making simplifications to the leading edge cavity geometry. These simplifications in the breach simulations enabled: 1) A very quick grid generation procedure; 2) High fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a 2 inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the 6 inch diameter breach the boundary layer is fully ingested.

  15. Confronting unknown planetary boundary threats from chemical pollution.

    PubMed

    Persson, Linn M; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; MacLeod, Matthew; McLachlan, Michael S

    2013-11-19

    Rockström et al. proposed a set of planetary boundaries that delimitate a "safe operating space for humanity". One of the planetary boundaries is determined by "chemical pollution", however no clear definition was provided. Here, we propose that there is no single chemical pollution planetary boundary, but rather that many planetary boundary issues governed by chemical pollution exist. We identify three conditions that must be simultaneously met for chemical pollution to pose a planetary boundary threat. We then discuss approaches to identify chemicals that could fulfill those conditions, and outline a proactive hazard identification strategy that considers long-range transport and the reversibility of chemical pollution.

  16. A new method for designing shock-free transonic configurations

    NASA Technical Reports Server (NTRS)

    Sobieczky, H.; Fung, K. Y.; Seebass, A. R.; Yu, N. J.

    1978-01-01

    A method for the design of shock free supercritical airfoils, wings, and three dimensional configurations is described. Results illustrating the procedure in two and three dimensions are given. They include modifications to part of the upper surface of an NACA 64A410 airfoil that will maintain shock free flow over a range of Mach numbers for a fixed lift coefficient, and the modifications required on part of the upper surface of a swept wing with an NACA 64A410 root section to achieve shock free flow. While the results are given for inviscid flow, the same procedures can be employed iteratively with a boundary layer calculation in order to achieve shock free viscous designs. With a shock free pressure field the boundary layer calculation will be reliable and not complicated by the difficulties of shock wave boundary layer interaction.

  17. Boundary Conditions for Infinite Conservation Laws

    NASA Astrophysics Data System (ADS)

    Rosenhaus, V.; Bruzón, M. S.; Gandarias, M. L.

    2016-12-01

    Regular soliton equations (KdV, sine-Gordon, NLS) are known to possess infinite sets of local conservation laws. Some other classes of nonlinear PDE possess infinite-dimensional symmetries parametrized by arbitrary functions of independent or dependent variables; among them are Zabolotskaya-Khokhlov, Kadomtsev-Petviashvili, Davey-Stewartson equations and Born-Infeld equation. Boundary conditions were shown to play an important role for the existence of local conservation laws associated with infinite-dimensional symmetries. In this paper, we analyze boundary conditions for the infinite conserved densities of regular soliton equations: KdV, potential KdV, Sine-Gordon equation, and nonlinear Schrödinger equation, and compare them with boundary conditions for the conserved densities obtained from infinite-dimensional symmetries with arbitrary functions of independent and dependent variables.

  18. On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions

    PubMed

    Niklasson; Datta; Dunn

    2000-09-01

    In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.

  19. Simulations of QCD and QED with C* boundary conditions

    NASA Astrophysics Data System (ADS)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  20. Implementation of Slater Boundary Condition into OVERFLOW

    NASA Astrophysics Data System (ADS)

    Duncan, Sean

    Bleed is one of the primary methods of controlling the flow within a mixed compression inlet. In this work the Slater boundary condition, first applied in WindUS, is implemented in OVERFLOW. Further, a simulation using discrete holes is run in order to show the differences between use of the boundary condition and use of the bleed hole geometry. Recent tests at Wright Patterson Air Force Base seek to provide a baseline for study of mixed compression inlets. The inlet used by the Air Force Research Laboratory is simulated in the modified OVERFLOW. The results from the experiment are compared to the CFD to qualitatively assess the accuracy of the simulations. The boundary condition is shown to be robust and viable in studying bleed.

Top