Science.gov

Sample records for boundary current final

  1. Western boundary currents and climate change

    NASA Astrophysics Data System (ADS)

    Seager, Richard; Simpson, Isla R.

    2016-09-01

    A recent paper in Journal of Geophysical Research-Oceans connects recent changes in atmospheric circulation to poleward movement and intensification of western boundary currents. Causes and characteristics of past and future trends in surface wind stress and western boundary currents are discussed here.

  2. Boundary cartilage lubrication: review of current concepts.

    PubMed

    Daniel, Matej

    2014-03-01

    Effective lubrication of synovial joints is important to prevent cartilage degeneration and to keep the joints healthy. This paper sets out the basics of engineering lubrication with respect to the composition and properties of synovial fluid constituents. Two basic types of boundary lubrication are discussed: the presence of highly hydrophilic proteoglycans that provide a water liquid film, and the existence of multilamellar phospholipids lubricating layers at the surface ofarticular cartilage. Based on current knowledge, we may conclude that no single mechanism of boundary lubrication exists, and that effective boundary lubrication of synovial joints is maintained by the synergic effect of all synovial fluid constituents.

  3. Boundary stability under nonequilibrium conditions. Final report

    SciTech Connect

    Hackney, S.A.; Lee, J.K.; Plichta, M.R.

    1999-08-01

    Summaries of research accomplished are given for the following areas: Morphological (Diffusional) Stability; A New Algorithm for Numerical Modeling of Non-equilibrium Materials Behavior; A Unified Treatment of Single and Microcrystalline Film Edge Instabilities; and Validation of the Structure Based Grain Boundary Diffusion/Migration Model.

  4. A western boundary current eddy characterisation study

    NASA Astrophysics Data System (ADS)

    Ribbe, Joachim; Brieva, Daniel

    2016-12-01

    The analysis of an eddy census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic eddies for the period 1993 to 2015. This was an average of about 23 eddies per year. 41% of the tracked individual cyclonic and anticyclonic eddies were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic eddies. A total of 94 (43%) individual cyclonic eddies or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic eddies were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived eddies. This study found that these cyclonic eddies potentially play an important off-shelf transport process off the central east Australian coast.

  5. Marine Hydrokinetic Energy from Western Boundary Currents.

    PubMed

    Bane, John M; He, Ruoying; Muglia, Michael; Lowcher, Caroline F; Gong, Yanlin; Haines, Sara M

    2017-01-03

    The kinetic energy in ocean currents, or marine hydrokinetic (MHK) energy, is a renewable energy resource that can help meet global energy requirements. An ocean circulation model-based census shows that subtropical surface western boundary currents (WBCs) are the only nearshore, large-scale currents swift enough to drive large electricity-generating ocean turbines envisioned for future use. We review several WBCs in the context of kinetic energy extraction. The power density in the Gulf Stream off North Carolina at times reaches several thousand watts per square meter at 75 m below the surface, and the annual average power is approximately 500-1,000 W m(-2). Significant fluctuations occur with periods of 3-20 days (Gulf Stream meanders) and weeks to months (Gulf Stream path shifts). Interannual variations in annual average power occur because of year-to-year changes in these WBC motions. No large-scale turbines presently exist, and the road to establishing MHK facilities in WBCs will encounter challenges that are similar in many aspects to those associated with the development of offshore wind power.

  6. Marine Hydrokinetic Energy from Western Boundary Currents

    NASA Astrophysics Data System (ADS)

    Bane, John M.; He, Ruoying; Muglia, Michael; Lowcher, Caroline F.; Gong, Yanlin; Haines, Sara M.

    2017-01-01

    The kinetic energy in ocean currents, or marine hydrokinetic (MHK) energy, is a renewable energy resource that can help meet global energy requirements. An ocean circulation model–based census shows that subtropical surface western boundary currents (WBCs) are the only nearshore, large-scale currents swift enough to drive large electricity-generating ocean turbines envisioned for future use. We review several WBCs in the context of kinetic energy extraction. The power density in the Gulf Stream off North Carolina at times reaches several thousand watts per square meter at 75 m below the surface, and the annual average power is approximately 500–1,000 W m‑2. Significant fluctuations occur with periods of 3–20 days (Gulf Stream meanders) and weeks to months (Gulf Stream path shifts). Interannual variations in annual average power occur because of year-to-year changes in these WBC motions. No large-scale turbines presently exist, and the road to establishing MHK facilities in WBCs will encounter challenges that are similar in many aspects to those associated with the development of offshore wind power.

  7. Regional Wave Climates along Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or

  8. Integrating Observations of the Boundary Current Flow around Sri Lanka

    DTIC Science & Technology

    2015-09-30

    GOALS The long-term goal is to investigate the boundary-current and inter-basin ocean circulation which governs the conditions and variability in Bay...deployment tools were shipped to NARA ( National Aquatic Resources Agency) at Sri Lanka. The instruments were designed to record data internally at...where the eastern section boundary current variability is plotted together with two ocean climate indices – the Oceanic Niño Index (ONI) and the

  9. Boundary Waves on the Ice Surface Created by Currents

    NASA Astrophysics Data System (ADS)

    Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.

    2013-12-01

    The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance

  10. The current structure of stratified tidal planetary boundary layer flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1995-12-31

    The paper presents the bottom shear stress and velocity profiles in stratified tidal planetary boundary layer flow by using similarity theory. For a given seabed roughness length, free stream current velocity components, frequency of tidal oscillation, Coriolis parameter and stratification parameter the maximum bottom shear stress is determined for flow conditions in the rough, smooth and transitional smooth-to-rough turbulent regime. Further, the direction of the bottom shear stress and the velocity profiles are given. Comparison is made with data from field measurements of time-independent as well as tidal planetary boundary layer flow for neutral conditions, and the agreement between the predictions and the data is generally good. Further, an example of application for stable stratification is given, and qualitatively the predictions show, as expected, that the bottom shear stress and the thickness of the boundary layer become smaller for stable than for neutral stratification. Other features of the tidal planetary boundary layer flow are also discussed.

  11. Pacific western boundary currents and their roles in climate.

    PubMed

    Hu, Dunxin; Wu, Lixin; Cai, Wenju; Gupta, Alex Sen; Ganachaud, Alexandre; Qiu, Bo; Gordon, Arnold L; Lin, Xiaopei; Chen, Zhaohui; Hu, Shijian; Wang, Guojian; Wang, Qingye; Sprintall, Janet; Qu, Tangdong; Kashino, Yuji; Wang, Fan; Kessler, William S

    2015-06-18

    Pacific Ocean western boundary currents and the interlinked equatorial Pacific circulation system were among the first currents of these types to be explored by pioneering oceanographers. The widely accepted but poorly quantified importance of these currents-in processes such as the El Niño/Southern Oscillation, the Pacific Decadal Oscillation and the Indonesian Throughflow-has triggered renewed interest. Ongoing efforts are seeking to understand the heat and mass balances of the equatorial Pacific, and possible changes associated with greenhouse-gas-induced climate change. Only a concerted international effort will close the observational, theoretical and technical gaps currently limiting a robust answer to these elusive questions.

  12. Plasma Transport at the Magnetospheric Flank Boundary. Final report

    SciTech Connect

    Otto, Antonius

    2012-04-23

    Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves.

  13. A western boundary current east of New Caledonia: Observed characteristics

    NASA Astrophysics Data System (ADS)

    Gasparin, Florent; Ganachaud, Alexandre; Maes, Christophe

    2011-09-01

    Waters from the South Equatorial Current (SEC), the northern branch of the South Pacific subtropical gyre, are a major supply of heat to the equatorial warm pool, and have an important contribution to climate variability and ENSO which motivated the Southwest Pacific Ocean and Climate Experiment (SPICE, CLIVAR/WCRP). Initially a broad westward current extending from the equator to 30°S, the SEC splits upon arriving at the major islands and archipelagoes of Fiji (18°S, 180°E), Vanuatu (16°S, 168°E), and New Caledonia (22°S, 165°E), resulting in a complex system of western boundary currents and zonal jets that feed the Coral and Solomon Seas. We focus here on the formation of one specific jet feeding the Coral Sea, the North Caledonian Jet (NCJ). Using a combination of recent oceanographic cruises, we describe the ocean circulation to the northeast of New Caledonia, where the SEC forms a western boundary current that ultimately becomes the NCJ. This current, which we document for the first time and propose to refer to as the East Caledonian Current (ECC), has its core located 10-100 km off the east coast of New Caledonia, and extends vertically to at least 1000 m depth. Water mass properties show continuous westward transports through the ECC, from the SEC to the NCJ in both the South Pacific Tropical Waters in the thermocline and Antarctic Intermediate Waters near 700 m depth. The ECC extends about 100 km horizontally; its average 0-1000 m transport was estimated at 14.5±3 Sv off the north tip of the New Caledonian reef, with a maximum of 20 Sv in May 2010. South of that the upstream branch of the ECC east of the Loyalty is close to 8 Sv suggesting an important additional contribution from central Pacific waters carried by the SEC at 16°S and diverted to our region through the western boundary current system east of Vanuatu.

  14. 76 FR 57729 - Boundary Hydroelectric Project; Sullivan Creek Project; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Energy Regulatory Commission Boundary Hydroelectric Project; Sullivan Creek Project; Notice of Availability of the Final Environmental Impact Statement for the Relicensing of the Boundary Hydroelectric... reviewed the applications for license for the Boundary Hydroelectric Project (FERC No. 2144-38), and...

  15. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    SciTech Connect

    Turner, David D.

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  16. LES of a Stratified Boundary Layer under an Oscillating Current

    NASA Astrophysics Data System (ADS)

    Gayen, Bishakhdatta; Sarkar, Sutanu; Taylor, John

    2008-11-01

    A numerical study based on large-eddy simulation (LES) is performed in the case of an oscillating tidal flow with a uniform ambient stratification. Here, the Reynolds number Reδ=U0δs/ν=1790 (U0= maximum amplitude of the outer flow, δs= √2 ν/φ is the Stokes layer thickness, ν is the kinematic viscosity of the fluid and φ the angular frequency of the oscillatory current), and N∞^2/2̂= 500 where N∞ is the buoyancy frequency of the overlying stratified layer. Turbulence appears at a tidal phase of approximately π/4 and is sustained throughout the deceleration phase (π/2<φtd<π, 3π/2<φtd<2π). Production of turbulence is confined to the the wall region and, for stratified flow, in the mixed layer between the wall and the thermocline. For both the stratified and unstratified cases, there is a log layer over a significant extent of the tidal cycle. Our unstratified flow results are verified against the numerical simulations of Salon et ; al (2007) %. JFM, 2007, vol 570, 253-296 and experimental data of Jensen et ; al. (1987). %JFM, 1987, vol 206, 256-297. In the presence of stratification, the boundary layer height decreases substantially and the wall shear stress increases slightly with respect to the unstratified case. Stratification effects on boundary layer turbulence and on the thermal field including the formation and collapse of the thermocline will be discussed.

  17. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  18. Production regimes in four eastern boundary current systems

    NASA Technical Reports Server (NTRS)

    Carr, M. E.; Kearns, E. J.

    2003-01-01

    High productivity (maxima 3 g C m(sup -2)day(sup -1)) of the Eastern Boundary Currents (EBCs), i.e. the California, Peru-Humboldt, Canary and Benguela Currents, is driven by a combination of local forcing and large-scale circulation. The characteristics of the deep water brought to the surface by upwelling favorable winds depend on the large-scale circulation patterns. Here we use a new hydrographic and nutrient climatology together with satellite measurements ofthe wind vector, sea-surface temperature (SST), chlorophyll concentration, and primary production modeled from ocean color to quantify the meridional and seasonal patterns of upwelling dynamics and biological response. The unprecedented combination of data sets allows us to describe objectively the variability for small regions within each current and to characterize the governing factors for biological production. The temporal and spatial environmental variability was due in most regions to large-scale circulation, alone or in combination with offshore transport (local forcing). The observed meridional and seasonal patterns of biomass and primary production were most highlycorrelated to components representing large-scale circulation. The biomass sustained by a given nutrient concentration in the Atlantic EBCs was twice as large as that of the Pacific EBCs. This apparent greater efficiency may be due toavailability of iron, physical retention, or differences in planktonic community structure.

  19. On the cooling of a buoyant boundary current

    NASA Astrophysics Data System (ADS)

    Ou, Hsien-Wang

    2005-06-01

    Through a steady-state reduced-gravity model, we examine the downstream evolution of a buoyant boundary current as it is subjected to surface cooling. It is found that the adverse pressure gradient associated with the diminishing buoyancy is countered by falling pressure head, so the overall strength of the current—as measured by the (transport-weighted) mean square velocity—remains unchanged. This constancy also applies to the cross-stream difference of the square velocity because of the vorticity constraint, which leads to the general deduction that the net current shear is enhanced regardless of its upstream sign. As a consequence, if the upstream flow contains near-shore and offshore branches that are comparable in strength, this parity would persist downstream; but if the near-shore branch is weaker to begin with, it may be stagnated by cooling, with the ensuing generation of anti-cyclonic eddies. On account of the geostrophic balance, the buoyant layer narrows as the square root of the buoyancy—the same rate as the falling pressure head, but more rapid than that of the local deformation radius. Some of the model predictions are compared with observations from the Tsushima Current in the Japan/East Sea.

  20. Reversal process of the South China Sea western boundary current in autumn 2011

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Guo, Jingsong; Guo, Binghuo

    2016-05-01

    Using merged sea level anomaly and absolute geostrophic velocity products from satellite altimetry and Argos drifter data, we analyzed the reversal process of the South China Sea (SCS) western boundary current (SCSwbc) from a summer to winter pattern in 2011 and important oceanic phenomena during this process. Results show that the outbreak time of the northeast monsoon over the southern SCS lagged that over the northern SCS by about 1 month. During the SCS monsoon reversal period, the SCSwbc reversed rapidly into the winter pattern at the Guangdong continental slope in late September. Subsequently, the southward Vietnam coastal boundary current strengthened. However, the northward Natuna Current maintained a summer state until mid-October. Thus, the balance between the southward and northward currents was lost when they met, their junction moved gradually southward. However, a loop current formed southeast of Vietnam because the main stream of the Vietnam Offshore Current (VOC) remained near its original latitude. Meanwhile, the VOC and associated dipole circulation system strengthened. After mid-October, the northward Natuna Current began to weaken, the loop current finally shed, becoming a cool ring. The VOC and its associated dipole sub-basin circulation system also weakened gradually until it disappeared.

  1. Downscaling biogeochemistry in the Benguela eastern boundary current

    NASA Astrophysics Data System (ADS)

    Machu, E.; Goubanova, K.; Le Vu, B.; Gutknecht, E.; Garçon, V.

    2015-06-01

    Dynamical downscaling is developed to better predict the regional impact of global changes in the framework of scenarios. As an intermediary step towards this objective we used the Regional Ocean Modeling System (ROMS) to downscale a low resolution coupled atmosphere-ocean global circulation model (AOGCM; IPSL-CM4) for simulating the recent-past dynamics and biogeochemistry of the Benguela eastern boundary current. Both physical and biogeochemical improvements are discussed over the present climate scenario (1980-1999) under the light of downscaling. Despite biases introduced through boundary conditions (atmospheric and oceanic), the physical and biogeochemical processes in the Benguela Upwelling System (BUS) have been improved by the ROMS model, relative to the IPSL-CM4 simulation. Nevertheless, using coarse-resolution AOGCM daily atmospheric forcing interpolated on ROMS grids resulted in a shifted SST seasonality in the southern BUS, a deterioration of the northern Benguela region and a very shallow mixed layer depth over the whole regional domain. We then investigated the effect of wind downscaling on ROMS solution. Together with a finer resolution of dynamical processes and of bathymetric features (continental shelf and Walvis Ridge), wind downscaling allowed correction of the seasonality, the mixed layer depth, and provided a better circulation over the domain and substantial modifications of subsurface biogeochemical properties. It has also changed the structure of the lower trophic levels by shifting large offshore areas from autotrophic to heterotrophic regimes with potential important consequences on ecosystem functioning. The regional downscaling also improved the phytoplankton distribution and the southward extension of low oxygen waters in the Northern Benguela. It allowed simulating low oxygen events in the northern BUS and highlighted a potential upscaling effect related to the nitrogen irrigation from the productive BUS towards the tropical

  2. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Lohrenz, S.E.; Asper, V.L.

    1997-09-01

    The authors objective was to characterize distributions of chloropigment fluorescence in relation to physical processes in the benthic boundary layer in support of the Department of Energy (DOE) Ocean Margins Program`s (OMP) goal of quantifying carbon transport across the continental shelf. Their approach involved participation in the Ocean Margins Program (OMP) field experiment on the continental shelf off Cape Hatteras by conducting multi-sensor fluorescence measurements of photosynthetic pigments. Specific tasks included (1) pre- and post-deployment calibration of multiple fluorescence sensors in conjunction with Woods Hole personnel; (2) collection and analysis of photosynthetic pigment concentrations and total particulate carbon in water column samples to aid in interpretation of the fluorescence time-series during the field experiment; (3) collaboration in the analysis and interpretation of 1994 and 1996 time-series data in support of efforts to quantify pigment and particulate organic carbon transport on the continental shelf off Cape Hatteras. This third component included analysis of data obtained with a multi-sensor fiber-optic fluorometer in the benthic boundary layer of the inner shelf off Cape Hatteras during summer 1994.

  3. Intensified diapycnal mixing in the midlatitude western boundary currents.

    PubMed

    Jing, Zhao; Wu, Lixin

    2014-12-10

    The wind work on oceanic near-inertial motions is suggested to play an important role in furnishing the diapycnal mixing in the deep ocean which affects the uptake of heat and carbon by the ocean as well as climate changes. However, it remains a puzzle where and through which route the near-inertial energy penetrates into the deep ocean. Using the measurements collected in the Kuroshio extension region during January 2005, we demonstrate that the diapycnal mixing in the thermocline and deep ocean is tightly related to the shear variance of wind-generated near-inertial internal waves with the diapycnal diffusivity 6 × 10(-5) m(2)s(-1) almost an order stronger than that observed in the circulation gyre. It is estimated that 45%-62% of the local near-inertial wind work 4.5 × 10(-3) Wm(-2) radiates into the thermocline and deep ocean and accounts for 42%-58% of the energy required to furnish mixing there. The elevated mixing is suggested to be maintained by the energetic near-inertial wind work and strong eddy activities causing enhanced downward near-inertial energy flux than earlier findings. The western boundary current turns out to be a key region for the penetration of near-inertial energy into the deep ocean and a hotspot for the diapycnal mixing in winter.

  4. Intensified Diapycnal Mixing in the Midlatitude Western Boundary Currents

    PubMed Central

    Jing, Zhao; Wu, Lixin

    2014-01-01

    The wind work on oceanic near-inertial motions is suggested to play an important role in furnishing the diapycnal mixing in the deep ocean which affects the uptake of heat and carbon by the ocean as well as climate changes. However, it remains a puzzle where and through which route the near-inertial energy penetrates into the deep ocean. Using the measurements collected in the Kuroshio extension region during January 2005, we demonstrate that the diapycnal mixing in the thermocline and deep ocean is tightly related to the shear variance of wind-generated near-inertial internal waves with the diapycnal diffusivity 6 × 10−5 m2s−1 almost an order stronger than that observed in the circulation gyre. It is estimated that 45%–62% of the local near-inertial wind work 4.5 × 10−3 Wm−2 radiates into the thermocline and deep ocean and accounts for 42%–58% of the energy required to furnish mixing there. The elevated mixing is suggested to be maintained by the energetic near-inertial wind work and strong eddy activities causing enhanced downward near-inertial energy flux than earlier findings. The western boundary current turns out to be a key region for the penetration of near-inertial energy into the deep ocean and a hotspot for the diapycnal mixing in winter. PMID:25491363

  5. 78 FR 56650 - Boundary Description and Final Map for Roaring Wild and Scenic River, Mount Hood National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Forest Service Boundary Description and Final Map for Roaring Wild and Scenic River, Mount Hood National... transmitting the final boundary description and map of the Roaring Wild and Scenic River to Congress. DATES... Stat. 906 as amended; 16 U.S.C. 1274), the detailed boundary descriptions and final maps were...

  6. Mesoscale Coupled Ocean-Atmosphere Feedbacks in Boundary Current Systems

    NASA Astrophysics Data System (ADS)

    Putrasahan, Dian Ariyani

    The focus of this dissertation is on studying ocean-atmosphere (OA) interactions in the Humboldt Current System (HCS) and Kuroshio Extension (KE) region using satellite observations and the Scripps Coupled Ocean-Atmosphere Regional (SCOAR) model. Within SCOAR, a new technique is introduced by implementing an interactive 2-D spatial smoother within the SST-flux coupler to remove the mesoscale SST field felt by the atmosphere. This procedure allows large-scale SST coupling to be preserved while extinguishing the mesoscale eddy impacts on the atmospheric boundary layer (ABL). This technique provides insights to spatial-scale dependence of OA coupling, and the impact of mesoscale features on both the ABL and the surface ocean. For the HCS, the use of downscaled forcing from SCOAR, as compared to NCEP Reanalysis 2, proves to be more appropriate in quantifying wind-driven upwelling indices along the coast of Peru and Chile. The difference in their wind stress distribution has significant impact on the wind-driven upwelling processes and total upwelling transport along the coast. Although upwelling induced by coastal Ekman transport dominates the wind-driven upwelling along coastal areas, Ekman pumping can account for 30% of the wind-driven upwelling in several coastal locations. Control SCOAR shows significant SST-wind stress coupling during fall and winter, while Smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. The SST-wind stress coupling however, did not produce any rectified response on the ocean eddies. Coupling between SST, wind speed and latent heat flux is insignificant on large-scale coupling and full coupling mode. On the other hand, coupling between these three variables are significant on the mesoscale for most of the model run, which suggests that mesoscale SST affects latent heat through direct flux anomalies as well as indirectly through stability changes on the

  7. Combined Wave and Current Bottom Boundary Layers: A Review

    DTIC Science & Technology

    2016-03-01

    acoustical backscatter sensors. These instruments measured current and suspended sediment concentration profiles, particle size spectra, particle settling...of conditions ranging from fair weather to storms. Currents were measured at four heights off the bed using two-component electromagnetic current...instrument package as Wright et al. (1991). Although the OBS sensors provide vertical profiles at five discrete heights, acoustic instruments, like the

  8. Remote sensing of ocean current boundary layer. [Loop Current in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Maul, G. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A time series of the Loop Current in the Gulf of Mexico, covering an annual cycle of growth, spreading, and decay, has been obtained in synchronization with ERTS-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed either by color or sea state effects associated with the cyclonic boundary. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance. These calculations compare favorably with experimental measurements and show that the ratio of channels method gives ambiguous interpretative results. These results are used to discuss features in images where surface measurements were obtained and are extended to tentative explanation in others.

  9. Current-driven domain wall depinning from an anisotropy boundary in nanowires.

    PubMed

    Gerhardt, T; Drews, A; Meier, G

    2014-05-21

    The interaction of a current-driven domain wall with an anisotropy boundary in nanowires with perpendicular magnetic anisotropy is investigated. A local reduction of the anisotropy constant is used to create an artificial boundary where the domain wall gets pinned. Micromagnetic simulations and analytical calculations, based on a one-dimensional model, are employed to describe the interaction of the domain wall and the anisotropy boundary and to determine the depinning current densities. Two different pinning regimes-an intrinsic and an extrinsic-can be identified in dependence with the characteristic of the boundary. A very good agreement between simulated and analytically obtained data is achieved.

  10. 78 FR 56650 - Boundary Description and Final Map for Sandy Wild and Scenic River, Upper Portion, Mount Hood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Forest Service Boundary Description and Final Map for Sandy Wild and Scenic River, Upper Portion, Mount..., is transmitting the final boundary description and map of the Sandy Wild and Scenic River, Upper... descriptions and final maps were forwarded on August 21, 2013. ADDRESSES: Documents may be viewed at...

  11. Current Large Deviations for Asymmetric Exclusion Processes with Open Boundaries

    NASA Astrophysics Data System (ADS)

    Bodineau, T.; Derrida, B.

    2006-04-01

    We study the large deviation functional of the current for the Weakly Asymmetric Simple Exclusion Process in contact with two reservoirs. We compare this functional in the large drift limit to the one of the Totally Asymmetric Simple Exclusion Process, in particular to the Jensen-Varadhan functional. Conjectures for generalizing the Jensen-Varadhan functional to open systems are also stated.

  12. Exact asymptotics of the current in boundary-driven dissipative quantum chains in large external fields

    NASA Astrophysics Data System (ADS)

    Lenarčič, Zala; Prosen, Tomaž

    2015-03-01

    A boundary-driven quantum master equation for a general inhomogeneous (nonintegrable) anisotropic Heisenberg spin-1 /2 chain, or an equivalent nearest neighbor interacting spinless fermion chain, is considered in the presence of a strong external field f . We present an exact closed form expression for large f asymptotics of the current in the presence of a pure incoherent source and sink dissipation at the boundaries. In application, we demonstrate an arbitrary large current rectification in the presence of the interaction.

  13. Evaluation of Current Planetary Boundary Layer Retrieval Capabilities from Space

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Schaefer, Alexander J.; Blaisdell, John; Yorks, John

    2016-01-01

    The PBL over land remains a significant gap in our water and energy cycle understanding from space. This work combines unique NASA satellite and model products to demonstrate the ability of current sensors (advanced IR sounding and lidar) to retrieve PBL properties and in turn their potential to be used globally to evaluate and improve weather and climate prediction models. While incremental progress has been made in recent AIRS retrieval versions, insufficient vertical resolution remains in terms of detecting PBL properties. Lidar shows promise in terms of detecting vertical gradients (and PBLh) in the lower troposphere, but daytime conditions over land remain a challenge due to noise, and their coverage is limited to approximately 2 weeks or longer return times.

  14. A high-latitude, low-latitude boundary layer model of the convection current system

    SciTech Connect

    Siscoe, G.L. ); Lotko, W.; Sonnerup, B.U.O. )

    1991-03-01

    Observations suggest that both the high- and low-latitude boundary layers contribute to magnetospheric convection, and that their contributions are linked. In the interpretation pursued here, the high-latitude boundary layer (HBL) generates the voltage while the low-latitude boundary layer (LBL) generates the current for the part of the convection electric circuit that closes through the ionosphere. This paper gives a model that joins the high- and low-latitude boundary layers consistently with the ionospheric Ohm's law. It describes an electric circuit linking both boundary layers, the region 1 Birkeland currents, and the ionospheric Pedersen closure currents. The model works by using the convection electric field that the ionosphere receives from the HBL to determine two boundary conditions to the equations that govern viscous LBL-ionosphere coupling. The result provides the needed self-consistent coupling between the two boundary layers and fully specifies the solution for the viscous LBL-ionosphere coupling equations. The solution shows that in providing the current required by the ionospheric Ohm's law, the LBL needs only a tenth of the voltage that spans the HBL. The solution also gives the latitude profiles of the ionospheric electric field, parallel currents, and parallel potential. It predicts that the plasma in the inner part of the LBL moves sunward instead of antisunward and that, as the transpolar potential decreases below about 40 kV, reverse polarity (region 0) currents appear at the poleward border of the region 1 currents. A possible problem with the model is its prediction of a thin boundary layer ({approximately}1000 km), whereas thicknesses inferred from satellite data tend to be greater.

  15. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key

  16. Dynamics of turbulent western-boundary currents at low latitude in a shallow-water model

    NASA Astrophysics Data System (ADS)

    Akuetevi, C. Q. C.; Wirth, A.

    2015-06-01

    The dynamics of low latitude turbulent western-boundary currents (WBCs) crossing the Equator are considered using numerical results from integrations of a reduced-gravity shallow-water model. For viscosity values of 1000 m2 s-1 and greater, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in the form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer, VSL) and dipoles appear. Three distinct boundary layers emerge, the VSL, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity; the second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse-resolution numerical models is proposed.

  17. Break-up of the Atlantic deep western boundary current into eddies at 8 degrees S.

    PubMed

    Dengler, M; Schott, F A; Eden, C; Brandt, P; Fischer, J; Zantopp, R J

    2004-12-23

    The existence in the ocean of deep western boundary currents, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean currents have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary current is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar current. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary current breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating eddies, rather than by a continuous flow. Our model simulation indicates that the deep western boundary current breaks up into eddies at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.

  18. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  19. A MATLAB-Based Boundary Data Simulator for Studying the Resistivity Reconstruction Using Neighbouring Current Pattern

    PubMed Central

    Nagaraju, J.

    2013-01-01

    Phantoms are essentially required to generate boundary data for studying the inverse solver performance in electrical impedance tomography (EIT). A MATLAB-based boundary data simulator (BDS) is developed to generate accurate boundary data using neighbouring current pattern for assessing the EIT inverse solvers. Domain diameter, inhomogeneity number, inhomogeneity geometry (shape, size, and position), background conductivity, and inhomogeneity conductivity are all set as BDS input variables. Different sets of boundary data are generated by changing the input variables of the BDS, and resistivity images are reconstructed using electrical impedance tomography and diffuse optical tomography reconstruction software (EIDORS). Results show that the BDS generates accurate boundary data for different types of single or multiple objects which are efficient enough to reconstruct the resistivity images for assessing the inverse solver. It is noticed that for the BDS with 2048 elements, the boundary data for all inhomogeneities with a diameter larger than 13.3% of that of the phantom are accurate enough to reconstruct the resistivity images in EIDORS-2D. By comparing the reconstructed image with an original geometry made in BDS, it would be easier to study the inverse solver performance and the origin of the boundary data error can be identified. PMID:27006909

  20. Diffusion length and grain boundary recombination activity determination by means of induced current methods

    NASA Astrophysics Data System (ADS)

    Shabelnikova, Yana; Yakimov, Eugene

    2016-11-01

    The application of induced current methods for a quantitative description of multicrystalline silicon solar cell properties is demonstrated. For the minority carriers' diffusion length (L) and grain boundary recombination velocity (Vs) determination three types of measurements were used. They included the measurement of EBIC signal dependence on electron beam energy and of EBIC and XBIC grain boundary contrast profiles. The L and Vs values obtained by means of minimization the residual function between measured and model induced current curves are presented. The inaccuracy of obtained parameters is discussed for each of three types of measurements.

  1. Final report: Constructing comprehensive models of grain boundaries using high-throughput experiments

    SciTech Connect

    Demkowicz, Michael; Schuh, Christopher; Marzouk, Youssef

    2016-08-29

    This is the final report on project DE-SC0008926. The goal of this project was to create capabilities for constructing, analyzing, and modeling experimental databases of the crystallographic characters and physical properties of thousands of individual grain boundaries (GBs) in polycrystalline metals. This project focused on gallium permeation through aluminum (Al) GBs and hydrogen uptake into nickel (Ni) GBs as model problems. This report summarizes the work done within the duration of this project (including the original three-year award and the subsequent one-year renewal), i.e. from August 1, 2012 until April 30, 2016.

  2. The Atlantic Water boundary current in the Nansen Basin: Transport and mechanisms of lateral exchange

    NASA Astrophysics Data System (ADS)

    Vâge, Kjetil; Pickart, Robert S.; Pavlov, Vladimir; Lin, Peigen; Torres, Daniel J.; Ingvaldsen, Randi; Sundfjord, Arild; Proshutinsky, Andrey

    2016-09-01

    Data from a shipboard hydrographic survey near 30°E in the Nansen Basin of the Arctic Ocean are used to investigate the structure and transport of the Atlantic Water boundary current. Two high-resolution synoptic crossings of the current indicate that it is roughly 30 km wide and weakly middepth-intensified. Using a previously determined definition of Atlantic Water, the transport of this water mass is calculated to be 1.6 ± 0.3 Sv, which is similar to the transport of Atlantic Water in the inner branch of the West Spitsbergen Current. At the time of the survey a small anticyclonic eddy of Atlantic Water was situated just offshore of the boundary current. The data suggest that the feature was recently detached from the boundary current, and, due to compensating effects of temperature and salinity on the thermal wind shear, the maximum swirl speed was situated below the hydrographic property core. Two other similar features were detected within our study domain, suggesting that these eddies are common and represent an effective means of fluxing warm and salty water from the boundary current into the interior. An atmospheric low-pressure system transiting south of our study area resulted in southeasterly winds prior to and during the field measurements. A comparison to hydrographic data from the Pacific Water boundary current in the Canada Basin under similar atmospheric forcing suggests that upwelling was taking place during the survey. This provides a second mechanism related to cross-stream exchange of heat and salt in this region of the Nansen Basin.

  3. A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization A Final Report

    NASA Technical Reports Server (NTRS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    2000-01-01

    Experimental evidence exists which suggests turbulent boundary layer relaminarization may play an important role in the inverse Reynolds number effect in high-lift systems. An experimental investigation of turbulent boundary layer relaminarization has been undertaken at the University of Notre Dame's Hessert Center for Aerospace Research in cooperation with NASA Dryden Flight Research Center. A wind tunnel facility has been constructed at the Hessert Center and relaminarization achieved. Preliminary evidence suggests the current predictive tools available are inadequate at determining the onset of relaminarization. In addition, an in-flight relaminarization experiment for the NASA Dryden FTF-II has been designed to explore relaminarization at Mach and Reynolds numbers more typical of commercial high-lift systems.

  4. Critical-current diffraction patterns of grain-boundary Josephson weak links

    SciTech Connect

    Peterson, R.L.; Ekin, J.W. )

    1990-11-01

    We discuss the diffraction patterns and other characteristics of the critical current as a function of magnetic field in grain-boundary Josephson barriers. Diffraction patterns occur not just for {ital SIS} junctions but for all types of Josephson links, including {ital SNS} junctions, which may be present at grain boundaries in high-{Tc} superconductors. We discuss the generality of the Airy diffraction pattern, which is expected to characterize grain-boundary barriers in bulk material more accurately than the Fraunhofer pattern. The transport critical-current density in many bulk, granular high-{ital T}{sub {ital c}} superconductors has a power-law dependence on very low magnetic fields, characteristic of averaged diffraction patterns, and cannot be fitted by an exponential magnetic-field dependence, which may result from the material properties of the barriers.

  5. The boundary currents east and north of Madagascar: 2. Direct measurements and model comparisons

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Fieux, MichèLe; Kindle, John; Swallow, John; Zantopp, Rainer

    1988-05-01

    Moored current measurements of 11-month duration were carried out in the boundary currents east of Madagascar, near 12°S at Cape Amber where the mean current flows northwestward and near 23°S where the mean current flows approximately southward. Transports derived from the moored current measurements in the depth range 150-1100 m compare reasonably well with those derived from ship sections by Swallow et al. (this issue). At 12°S, very energetic boundary current transport variations occur in the 40- to 55-day-period band, contributing about 40% to the total transport variance, while at 23°S the 40- to 55-day-period band fluctuations contribute only 15% to the total transport variance. The fluctuations near 12°S do not seem to be caused by local wind forcing, which does not show an energy peak in this period band. A significant annual cycle cannot be detected in the moored current and transport time series despite significant variation of wind forcing over the subtropical Indian Ocean. A comparison of the observations is carried out with two different numerical Indian Ocean models, both forced by the seasonally varying winds of Hellerman and Rosenstein (1983). A reduced-gravity model gives mean boundary current transports which compare well with the observations and also shows a negligible seasonal cycle. The multilayer Geophysical Fluid Dynamics Laboratory model also shows a small seasonal cycle. The observational evidence from the western subtropical Indian Ocean appears to be similar to that from the subtropical North Atlantic east of the Bahamas-Antilles arc where also no significant seasonal boundary current response was detected, despite large annual variation of wind forcing over the ocean. The two observational situations and numerical model results for both oceans are compared.

  6. Observation of chiral currents at the magnetic domain boundary of a topological insulator

    DOE PAGES

    Wang, Y. H.; Kirtley, J. R.; Katmis, F.; ...

    2015-08-28

    A magnetic domain boundary on the surface of a three-dimensional topological insulator is predicted to host a chiral edge state, but direct demonstration is challenging. Here, we used a scanning superconducting quantum interference device to show that current in a magnetized EuS/Bi2Se3 heterostructure flows at the edge when the Fermi level is gate-tuned to the surface band gap. We further induced micron-scale magnetic structures on the heterostructure, and detected a chiral edge current at the magnetic domain boundary. The chirality of the current was determined by magnetization of the surrounding domain and its magnitude by the local chemical potential rathermore » than the applied current. As a result, such magnetic structures, provide a platform for detecting topological magnetoelectric effects and may enable progress in quantum information processing and spintronics.« less

  7. Observation of chiral currents at the magnetic domain boundary of a topological insulator

    SciTech Connect

    Wang, Y. H.; Kirtley, J. R.; Katmis, F.; Jarillo-Herrero, P.; Moodera, J. S.; Moler, K. A.

    2015-08-28

    A magnetic domain boundary on the surface of a three-dimensional topological insulator is predicted to host a chiral edge state, but direct demonstration is challenging. Here, we used a scanning superconducting quantum interference device to show that current in a magnetized EuS/Bi2Se3 heterostructure flows at the edge when the Fermi level is gate-tuned to the surface band gap. We further induced micron-scale magnetic structures on the heterostructure, and detected a chiral edge current at the magnetic domain boundary. The chirality of the current was determined by magnetization of the surrounding domain and its magnitude by the local chemical potential rather than the applied current. As a result, such magnetic structures, provide a platform for detecting topological magnetoelectric effects and may enable progress in quantum information processing and spintronics.

  8. Annual variation of the southern boundary current in the Banda Sea

    NASA Astrophysics Data System (ADS)

    Syamsudin, Fadli; van Aken, Hendrik M.; Kaneko, Arata

    2010-08-01

    ADCP measurements in the southern Banda Sea, obtained with the bulk carrier "MS First Jupiter" from 1997 until 2000, have been analysed. The observations reveal the presence of an eastward flowing southern boundary current, bringing water from the Indonesian throughflow towards the connections with the Indian Ocean in Ombai Strait and the Timor Sea. The mean transport in the upper 300 m is estimated to be about 5 Sv, over 50% of the outflow towards the Indian Ocean in this layer through the eastern passages near Timor. The velocity in the boundary current shows a clear annual variation, more or less in phase with the annually varying inflow through Makassar Strait and the outflow near Timor. The phase of the annual variation cannot be explained by the monsoonal variation of the local winds. Therefore this annual variation of the throughflow is probably generated by large-scale forcing. A considerable reduction of the strength of the boundary current was observed in 1998, following the 1997-1998 El Niño with a delay of about half a year. On shorter time scales, Kelvin waves, entering the Banda Sea from the Indian Ocean, cause flow reversals of the boundary current.

  9. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    SciTech Connect

    Huang, Hsin-Yuan; Hall, Alex

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  10. Interannual variability of South Equatorial Current bifurcation and western boundary currents along the Madagascar coast

    NASA Astrophysics Data System (ADS)

    Yamagami, Y.; Tozuka, T.

    2015-12-01

    The South Equatorial Current (SEC) in the southern Indian Ocean bifurcates at the east coast of Madagascar into the Northeast and Southeast Madagascar Currents (NEMC and SEMC, respectively). In observational and reanalysis data, interannual variations of the NEMC and SEMC transports are strongly correlated with those of the SEC transport, rather than those of the SEC bifurcation latitude (SBL). Their dynamical mechanisms are then examined based on the Time-Dependent Island Rule for the first time. It is shown that interannual anomalies of the SBL as well as the NEMC and SEMC transports are predominantly a response to the anomalous inflow from the ocean interior that is determined by the meridional interior transport. This, in turn, is a result of westward propagating Rossby waves induced by wind stress curl anomalies mainly in 60°E-90°E. The above mechanism is contrasted with that of the seasonal variation, where the local transport driven by wind stress around the island plays a role. Furthermore, the interannual variations of the SBL and the NEMC and SEMC transports are significantly correlated with the Niño 3.4 index with 5-15 months lag. It is suggested that diabatic heating anomalies associated with the El Niño/Southern Oscillation (ENSO) along with a local process in the southeastern Indian Ocean may generate wind stress curl anomalies over the southern Indian Ocean.

  11. Current Transport with and Without Grain-Boundary Recombination for Polycrystalline Copper Indium SELENIUM(2) Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxiang

    The relatively low efficiency of thin-film polycrystalline solar cells compared to the crystalline cells results in part from grain-boundary recombination. This recombination can enhance the forward current of solar cells and can severely limit the photovoltaic parameters. A model of minority-carrier transport mechanism with grain-boundary recombination has been developed and compared with the non-grain boundary situation for polycrystalline thin-film CuInSe_2 solar cells. The model is based on the self-consistent determination of barrier height, effective grain-boundary recombination velocity, and recombination rate. To get a physically reasonable effective grain-boundary recombination velocity, the quasi -Fermi level of the electrons must be allowed to vary with distance in the grain-boundary space-charge region. For typical CuInSe_2 cells, grain-boundary effects are small and can be neglected when grain-boundary trap density is below 5 times 10 ^{11} cm^ {-2}. When trap density is above 10 ^{12} cm^{ -2}, however, the grain-boundary recombination is comparable or even larger than the p-n junction space -charge region recombination. The calculated current-voltage characteristics both with and without grain-boundary recombination are compared with temperature-dependent light and dark experimental results for three CuInSe_2 cells which were fabricated by different groups using different deposition methods. The results show that the calculations without grain-boundary recombination can adequately fit experimental data for cells with relatively small forward -current density. For cells with larger forward-current density, however, inclusion of grain-boundary effects is necessary to match the experimental results. When light forward-current density is extremely high, the calculations both with and without grain-boundary effects fail to fit the experimental I-V curves. In this situation, the grain -boundary effects on current generation may have to be considered.

  12. Lagrangian observations in the Intermediate Western Boundary Current of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Legeais, Jean-François; Ollitrault, Michel; Arhan, Michel

    2013-01-01

    Subsurface float measurements at 800 m depth carried out from 1994 to 2003 in the Brazil Basin are used to characterise the equatorward Intermediate Western Boundary Current (IWBC) and its connections to the ocean interior. Transversally, the boundary flow is less than 100 km wide, and most intense at 10-20 km from the 800 m isobath. Its average velocities range from ˜0.1 ms-1 to 0.3 ms-1 depending on latitude, with individual daily values as high as 0.7 ms-1. The flow meridional extent exhibits 3 contrasted domains: (i) from 27°S to the Vitoria-Trindade Ridge at 20°30'S, the boundary flow intensifies northward along a relatively smooth topography. A counter current adjacent to it on its seaward side feeds it with intermediate water from the northern limb of the subtropical gyre. (ii) At latitudes 20-15°S characterised by a very irregular topography, the IWBC becomes weaker with even no real proof of its presence at 18-15°S. An intense mesoscale variability prevails there, which apparently takes over from the boundary flow to ensure the northward transport of water to 15°S, where the IWBC re-forms. (iii) North of this latitude, the boundary flow increases again to ˜10°S along smooth isobaths, then decreases when encountering a rougher topography and the zonal jets of the equatorial current system. A counter current present from ˜5°S to 14°S, partly fed from the boundary flow, contributes to its drainage. The IWBC shows two main input locations, at 27-23°S and 15-12°S in the southern parts of the two latitudinal domains of smooth topography where the northward current increases. Output locations coincide with major capes in the continental slope geometry, at 20°S and 18°S (the southeastern and northeastern corners of the Abrolhos Bank), at 8°S near the Recife Plateau, and at 5°S near Cape São Roque.

  13. The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors.

    PubMed

    Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie

    2015-12-01

    We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density (J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions.

  14. Simulations of the Arctic Boundary Current in an eddy-resolving global ocean model

    NASA Astrophysics Data System (ADS)

    Aksenov, Y.; Nurser, A. J. G.; Bacon, S.; Coward, A. C.

    2012-04-01

    The Arctic Ocean is shielded from winds by sea ice and is strongly stratified, resulting in extremely low mixing rates. In this quiescent ocean, currents along the continental shelves become the principal dynamical features of the circulation. Observations and model results suggest the existence of a fast oceanic current in the Arctic Ocean, the Arctic Circumpolar Boundary Current (ACBC). The current flows counterclockwise (cyclonically) along the shelf break of the Siberian, Alaskan and Canadian Arctic shelves all way around the Arctic Ocean margins, leaving through western Fram Strait, and taking about two decades to complete the circuit (Aksenov et al., 2011). Simulations with an eddy-resolving global 1/12 degree NEMO model show that the ACBC consists of several jets with the fastest flow occurring at the shelf break. We compare the models results with observations and examine mechanisms driving the ACBC. Through the analysis of the NEMO simulations performed with eddy-resolving, eddy-permitting and non-eddying model configurations we investigate the effect of resolution on the current. Reference Aksenov, Y., V. V. Ivanov, A. J. G. Nurser, S. Bacon, I. V. Polyakov, A. C. Coward, A. C. Naveira-Garabato, and A. Beszczynska-Moeller (2011), The Arctic Circumpolar Boundary Current, J. Geophys. Res., 116, C09017, doi:10.1029/2010JC006637.

  15. Current-Driven Filament Instabilities in Relativistic Plasmas. Final report

    SciTech Connect

    Ren, Chuang

    2013-02-13

    This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.

  16. Atomistic studies of grain boundaries and heterophase interfaces in alloys and compounds. Final report, July 1987-August 1998

    SciTech Connect

    Vitek, Vaclav

    1998-08-01

    The overarching goal of the research supported by this grant was investigation of the structure and properties of interfaces in multicomponent systems by atomistic modeling. Initially, the research was devoted to studies of segregation to grain boundaries in binary disordered alloys. The next step was then studies of the structure and properties of grain boundaries in ordered compounds, specifically Ni3Al and NiAl, and grain boundary segregation in these compounds in the case of off-stoichiometry. Finally, the structure of Nb/sapphire interfaces, in particular the core configurations of the misfit dislocations, was studied.

  17. Southern hemisphere western boundary current variability revealed by GEOS 3 altimeter

    SciTech Connect

    Gordon, A.L.; Horai, K.; Donn, M.

    1983-01-20

    GEOS 3 altimeter data are adjusted to minimize differences at the intersections or crossovers between ascending and descending orbits. This procedure removes noise created by orbital uncertainty and permits study of sea level variations, without knowledge of the geoid. The root mean squares (rms) of the adjusted differences, grouped within 2/sup 0/ latitude by 2/sup 0/ longitude boxes, are mapped for the western boundary current regime and adjacent Antarctic Circumpolar Current segment for each southern hemisphere ocean, as well as for the eastern Indian Ocean, where sufficient crossover data are available. The rms crossover values are compared to surface-based hydrographic data studies of ocean transients for verification of the altimeter results. The altimeter data clearly reveal reasonable patterns of sea level transients associated with the western boundary currents and Antarctic Circumpolar Current. In addition, the rms values reveal regions of locally amplified tidal features adjacent to the Patagonian coast of Argentina and in the region west of New Zealand. The altimeter data verify and expand on the results of limited surface-based data sets, particularly in the case of the circulation transients south of Madagascar, and southwest of New Caledonia. In the eastern Indian Ocean the altimeter data suggest variable sea level conditions near 10/sup 0/-20/sup 0/S, near 20/sup 0/-30/sup 0/S, and near 50/sup 0/S. The last is associated with the Antarctic Circumpolar Current, but the source of the northern variable regions is not clear.

  18. Western boundary currents regulated by interaction between ocean eddies and the atmosphere.

    PubMed

    Ma, Xiaohui; Jing, Zhao; Chang, Ping; Liu, Xue; Montuoro, Raffaele; Small, R Justin; Bryan, Frank O; Greatbatch, Richard J; Brandt, Peter; Wu, Dexing; Lin, Xiaopei; Wu, Lixin

    2016-07-28

    Current climate models systematically underestimate the strength of oceanic fronts associated with strong western boundary currents, such as the Kuroshio and Gulf Stream Extensions, and have difficulty simulating their positions at the mid-latitude ocean's western boundaries. Even with an enhanced grid resolution to resolve ocean mesoscale eddies-energetic circulations with horizontal scales of about a hundred kilometres that strongly interact with the fronts and currents-the bias problem can still persist; to improve climate models we need a better understanding of the dynamics governing these oceanic frontal regimes. Yet prevailing theories about the western boundary fronts are based on ocean internal dynamics without taking into consideration the intense air-sea feedbacks in these oceanic frontal regions. Here, by focusing on the Kuroshio Extension Jet east of Japan as the direct continuation of the Kuroshio, we show that feedback between ocean mesoscale eddies and the atmosphere (OME-A) is fundamental to the dynamics and control of these energetic currents. Suppressing OME-A feedback in eddy-resolving coupled climate model simulations results in a 20-40 per cent weakening in the Kuroshio Extension Jet. This is because OME-A feedback dominates eddy potential energy destruction, which dissipates more than 70 per cent of the eddy potential energy extracted from the Kuroshio Extension Jet. The absence of OME-A feedback inevitably leads to a reduction in eddy potential energy production in order to balance the energy budget, which results in a weakened mean current. The finding has important implications for improving climate models' representation of major oceanic fronts, which are essential components in the simulation and prediction of extratropical storms and other extreme events, as well as in the projection of the effect on these events of climate change.

  19. Anomalous currents in a driven XXZ chain with boundary twisting at weak coupling or weak driving

    NASA Astrophysics Data System (ADS)

    Popkov, Vladislav; Salerno, Mario

    2013-02-01

    The spin 1/2 XXZ chain driven out of equilibrium by coupling with boundary reservoirs targeting perpendicular spin orientations in the XY plane is investigated. The existence of an anomaly in the nonequilibrium steady state (NESS) at the isotropic point Δ = 1 is demonstrated in both the weak coupling and weak driving limits. The nature of the anomaly is studied analytically by calculating exact NESSs for small system sizes, and investigating steady currents. The spin current at the points Δ =± 1 has a singularity which leads to a current discontinuity when either driving or coupling vanishes, and the current of energy develops a twin peak anomaly. The character of the singularity is shown to depend qualitatively on whether the system size is even or odd.

  20. Gliders Measure Western Boundary Current Transport from the South Pacific to the Equator

    NASA Astrophysics Data System (ADS)

    Davis, R. E.; Kessler, W. S.; Sherman, J. T.

    2011-12-01

    Since 2007, the Consortium on the Ocean's Role in Climate (CORC) has used repeated glider transects across the southern Solomon Sea to measure the previously nearly unsampled mass and heat transport from the South Pacific to the equatorial zone. Mean transport is dominated by the New Guinea Coastal Undercurrent (NGCUC). This low-latitude western boundary current is a major element of the shallow meridional overturning circulation, returning water from the subtropical South Pacific to the Equatorial Undercurrent (EUC) where it upwells. We find the mean NGCUC to be a jet less than 100 km wide, centered near 300 m depth, with equatorward velocities reaching 35 cm/s and salinity anomalies on isopycnals up to 0.05. Weaker poleward flow is found near the surface in the eastern basin. Equatorward transport above 700 m is typically 20 Sv, but nearly vanished during two La Niñas and reached 25 Sv during an El Niño. Within these events the seasonal cycle cannot yet be defined. Transport variability is strongest outside the boundary current and appears to consist of two independently moving layers with a boundary near 250 m. ENSO variability is predominantly in the upper layer. The relation of Solomon Sea mass and heat transport with ENSO indicators will be discussed The ability to initiate and maintain measurements that support such quantitative analyses with a small effort in a remote site far from research institutions demonstrates that gliders can be a productive part of the global ocean observing system.

  1. A Final Approach Trajectory Model for Current Operations

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Sadovsky, Alexander

    2010-01-01

    Predicting accurate trajectories with limited intent information is a challenge faced by air traffic management decision support tools in operation today. One such tool is the FAA's Terminal Proximity Alert system which is intended to assist controllers in maintaining safe separation of arrival aircraft during final approach. In an effort to improve the performance of such tools, two final approach trajectory models are proposed; one based on polynomial interpolation, the other on the Fourier transform. These models were tested against actual traffic data and used to study effects of the key final approach trajectory modeling parameters of wind, aircraft type, and weight class, on trajectory prediction accuracy. Using only the limited intent data available to today's ATM system, both the polynomial interpolation and Fourier transform models showed improved trajectory prediction accuracy over a baseline dead reckoning model. Analysis of actual arrival traffic showed that this improved trajectory prediction accuracy leads to improved inter-arrival separation prediction accuracy for longer look ahead times. The difference in mean inter-arrival separation prediction error between the Fourier transform and dead reckoning models was 0.2 nmi for a look ahead time of 120 sec, a 33 percent improvement, with a corresponding 32 percent improvement in standard deviation.

  2. Observation of chiral currents at the magnetic domain boundary of a topological insulator

    NASA Astrophysics Data System (ADS)

    Wang, Yihua

    2015-03-01

    The broken time-reversal symmetry (TRS) states on the surface of a three-dimensional topological insulator (3D-TI) promise many exotic quantum phenomena. Breaking TRS opens a band gap on the surface Dirac cone and transforms the metallic surface into a Chern insulator. The TRS-broken surface states coupled to a superconductor are predicted to lead to Majorana fermions, which are the fundamental ingredients of topological quantum computation. Just as the surface Dirac cone is a signature of the non-trivial topological bulk band structure of a time-reversal invariant 3D-TI, bulk-boundary correspondence dictates that the TRS-broken surface states with a nonzero Chern number is manifested by a gapless chiral edge state (CES) at the domain boundary. In the special case where the domain boundary is the edge of the sample surface, CES along the edge leads to a quantized anomalous Hall conductance, which was recently measured in a magnetically doped 3D-TI. More generally, a magnetic domain boundary on the surface of TI hosts a CES, which is yet to be directly demonstrated because any local change of conductivity due to the CES does not affect conductance globally. Here we use a scanning superconducting quantum interference device (SQUID) to show that in a uniformly magnetized topological insulator - ferromagnetic insulator (TI-FMI) heterostructure current flows at the edge of the surface of the topological insulator when the Fermi level is gate-tuned to the surface band gap. We further induce micron-scale magnetic structures using the field coil of the SQUID and show that there emerges a chiral edge current at the magnetic domain boundary. In both cases the magnitude of the chiral edge current depends on the chemical potential rather than the applied current. Such magnetic nano-structures, which can be readily created on a TI in an arbitrary geometry, provide a versatile platform for detecting topological magnetoelectric effects and may allow the engineering of

  3. Eastern and Western Boundary Currents in the Labrador Sea, 1995-2008

    NASA Astrophysics Data System (ADS)

    Hall, M. M.; Torres, D. J.; Yashayaev, I.

    2010-12-01

    Since 1995, the annual occupation of AR7W in the Labrador Sea has usually included LADCP data in addition to hydrographic measurements and tracers. We have previously presented results discussing the section-wide circulation for particular years, comparison with geostrophic velocities, and heat flux as determined from individual as well as composite sections. In this work, we present boundary current transports for a sampling of AR7W sections from 1995 through 2008. Both eastern and western boundary currents (EBCs, WBCs) are examined by combining LADCP data with density (or hydrographic) measurements from ships and profiling floats (Argo, PALACE). The transport estimates from LADCP data are also compared with the currents based on along-track multi-mission altimetry and with the lagrangian velocities from historic float and drifter trajectories. We find that WBC transports are mostly weaker than EBC transports, with slightly less variability year to year. Transports may be underestimated by 2 - 4 Sv when LADCP data are not available far enough onshore, so we extrapolate the velocities (carefully) to improve our estimate. Geostrophic velocities from hydrographic data can also be used to extend the coverage. WBC transports are about 32 Sv in the mean, but range from 22 to as much as 55 Sv. EBC transports range from 26 to 70 (!) Sv, with a mean of about 45 Sv. Higher transports, year to year, result from a combination of greater current width and faster velocities. Baroclinic transport relative to 1500 dbars for the upper level current ranges from 2.5 - 4.6 Sv, in good agreement with Lazier and Wright (1993). Using hydrographic data to determine transport in prescribed density layers, we find reasonable agreement with other recent observations in the Labrador Sea: for the western boundaries, Fischer et al. (2004) and Dengler et al. (2006) (CTD, LADCP and moored array data near 53 N and 56 N, respectively); for the eastern boundaries, Holliday et al. (2009), their

  4. Current Pattern Change in the Fram Strait at the Pliocene/Pleistocene Boundary

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Geissler, W. H.; Matthiessen, J. J.; Jokat, W.

    2014-12-01

    Thick packages of drift-type sediments were identified in the northwestern and central part of the Fram Strait, mainly along the western Yermak Plateau flank, but also in the central, flat part of the Fram Strait. A large-scale field of sediment waves was found north of 80.5°, along the Yermak Plateau rise. This field separates two drift bodies, a deeper one towards west and a shallower one towards east. The drift bodies were deposited by bottom currents, most likely by the northbound Yermak Branch of the West Spitsbergen Current, but an influence of a southbound current on the westren drift body cannot be ruled out. Within the drift bodies and even more pronounced withing the sediment waves, a stratigraphic boundary is clearly visible. It separates a lower package of waves migrating upslope at a low angle of ~5° from an upper package with significantly increased wave crest migration at ~16.5°. Using the seismic network, this stratigraphic boundary could be tracked to ODP Leg 151, Site 911, where it corresponds to the lithostratigraphic boundary between units IA and IB dated to 2.7 Ma. The increase in wave-crest migration angle points at a shift towards higher sedimentation rates at 2.7 Ma. This corresponds to the intensification of the Northern Hemisphere glaciation with a major expansion of the Scandinavian, northern Barents Sea, North American and Greenland ice sheets. The Barents Shelf that was subaerially exposed and the expansion of the northern Barents Sea ice sheet (as well as Svalbard) are the likely sources for enhanced erosion and fluvial input along the pathway of the West Spitsbergen Current, resulting in higher sedimentation rates in the Fram Strait.

  5. Current Fluctuations in the One-Dimensional Symmetric Exclusion Process with Open Boundaries

    NASA Astrophysics Data System (ADS)

    Derrida, B.; Douçot, B.; Roche, P.-E.

    2004-05-01

    We calculate the first four cumulants of the integrated current of the one dimensional symmetric simple exclusion process of $N$ sites with open boundary conditions. For large system size $N$, the generating function of the integrated current depends on the densities $\\rho_a$ and $\\rho_b$ of the two reservoirs and on the fugacity $z$, the parameter conjugated to the integrated current, through a single parameter. Based on our expressions for these first four cumulants, we make a conjecture which leads to a prediction for all the higher cumulants. In the case $\\rho_a=1$ and $\\rho_b=0$, our conjecture gives the same universal distribution as the one obtained by Lee, Levitov and Yakovets for one dimensional quantum conductors in the metallic regime.

  6. On the Structure of the Ice-Shelf-Ocean Boundary Layer and Current

    NASA Astrophysics Data System (ADS)

    Jenkins, A.

    2015-12-01

    Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves that has been causally linked with acceleration in the outflow of grounded ice. What determines the distribution and rates of basal melting and freezing beneath an ice shelf and how these respond to changes in the ocean temperature or circulation are therefore key questions. Recent years have seen major progress in our ability to observe basal melting and the ocean conditions that drive it, but data on the latter remain sparse, limiting our understanding of the key processes of ice-ocean heat transfer. In particular, we have no observations of current profiles through the buoyancy- and frictionally-controlled flows along the ice shelf base that drive mixing through the ice-ocean boundary layer. This presentation represents an attempt to address this gap in our knowledge through the application of a very simple model of such boundary flows that considers only the spatial dimension perpendicular to the boundary. Results indicate that for the purely buoyancy-driven flow two possible regimes exist: a weakly-stratified, geostrophic cross-slope current with an embedded Ekman layer; or a strongly-stratified upslope jet with weak cross-slope flow. The latter regime, while well-known to students of katabatic winds, has no analogue in the ocean, and is most appropriate when the ice-ocean interface is very steep. For the gentle slopes typical of ice shelves the buoyant Ekman regime provides some useful insight. When combined with a background flow a range of possible near-ice current profiles emerges as a result of arrest or enhancement of the upslope Ekman transport. Furthermore a simple expression for the upslope transport can be formed that is analogous to that for the wind-forced surface Ekman layer, with the curvature of the ice shelf base replacing the wind-stress curl in driving Ekman pumping to and from the geostrophic flow.

  7. Space resolved imaging of currents and dissipation at low-angle grain boundaries

    NASA Astrophysics Data System (ADS)

    Jooss, Christian

    2003-03-01

    Using quantitative magneto-optical imaging (MOI)(Ch. Jooss, J. Albrecht, H. Kuhn, H. Kronmüller, S. Leonhardt, Rep. Prog. Phys. 65) (2002) 651. and electric field imaging by magneto optics (EFIMO)(Ch. Jooss, K. Guth, V. Born, J. Albrecht, Phys. Rev. B 65) (2002) 014505., the local critical current density, electric field and dissipated power distributions of low-angle grain boundaries (LAGB) in different REBaCuO films (RE=Y, Er, ...) and coated conductors are investigated. With these local methods, we obtain unique information on the spatial variation of local intergranular current densities and magnetic self field effects, depending on the length of the boundary and the magnetic history of the sample. The electric field distribution and the power dissipation are strongly inhomogeneous at LAGBs and deviate up to two orders of magnitude from the intragrain values in our experimental conditions. These results may have strong implications for the interpretation of E(j) curves of superconductors with inhomogeneous current. We apply these results to series of LAGB's in REBaCuO and Ca-doped YBaCuO films on different bicrystalline and textured substrates. An explanation of the observed electric field patterns is given in terms of vortex velocity fields. The transport data will be related to recent results on the microscopic properties of pure and Ca-doped LAGB in YBaCuO.

  8. Finite Element Analysis for Imaging Steel Bars Placed Under a Mild Steel Boundary Using Eddy Current Techniques

    SciTech Connect

    Hussin, H.; Zaid, M.; Gaydecki, P.; El-Madaani, F.; Fernandes, B.

    2006-03-06

    This paper reports on recent modelling results obtained using finite-element analysis for penetrating a magnetic field through a 2 mm steel boundary. The object is to detect 16 mm steel bars placed under mild steel boundaries at different operating frequencies. To penetrate thicker steel boundaries and increase the depth penetration, a different configuration based on remote field eddy currents (RFEC) has been modelled.

  9. 59 FR- Availability of the Final Management Plan and Corridor Boundaries for the Main, West Little and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-02-01

    ... Boundaries for the Main, West Little and North Fork Owyhee Rivers AGENCY: Vale District, Bureau of Land... the Main, West Little and North Fork Owyhee Rivers, components of the National Wild and Scenic Rivers... Owyhee Rivers lie entirely within Malheur County, Oregon. ADDRESSES: The Final Management Plan...

  10. Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions

    PubMed Central

    Rougerie, Rodolphe; Kitching, Ian J.; Haxaire, Jean; Miller, Scott E.; Hausmann, Axel; Hebert, Paul D. N.

    2014-01-01

    Main Objective We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae). Methods We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. Results Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%). Only seven species (10%) have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. Main Conclusions This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies. PMID:24987846

  11. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

    SciTech Connect

    Wood, R.

    2016-01-01

    The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiative cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.

  12. Final Technical Report: Grain Boundary Complexions and Transitions in Doped Silicon

    SciTech Connect

    Jian Luo

    2012-10-15

    This four-year research project has advanced the fundamental knowledge of grain boundary (GB) complexions (i.e., "two-dimensional interfacial phases") and associated GB "phase" transitions in several grounds. First, a bilayer interfacial phase, which had been directly observed by microscopy only in complex ceramic systems in prior studies, has been identified in simpler systems such as Au-doped Si and Bi-doped Ni in this study, where the interpretations of the their formation mechanisms and microscopic images are less equivocal. Second, convincing evidence for the existence of a first-order GB transition from a nominally "clean" GB to a bilayer adsorption interfacial phase has been revealed for Au-doped Si; the confirmation of the first-order nature of interfacial transitions at GBs, which was rare in prior studies, is scientifically significant and technologically important. Third, the bilayer interfacial phase discovered in Bi-doped Ni has been found to be the cause of the mysterious liquid metal embrittlement phenomenon in this system; the exact atomic level mechanism of this phenomenon has puzzled the materials and physics communities for over a century. Finally, significant advancements have been made to establish phenomenological thermodynamic models for GB complexions and transitions. Since GB complexions can control the transport, mechanical and physical properties of a broad range of metallic and ceramic materials, the fundamental knowledge generated by this project can have broad impacts on materials design in general. In this regard, understanding and controlling GB phase behaviors (complexions and transitions) can be an important component for the "Materials Genome" project.

  13. Alternation of sign of magnetization current in driven XXZ chains with twisted XY boundary gradients

    NASA Astrophysics Data System (ADS)

    Popkov, V.

    2012-12-01

    We investigate an open XXZ spin 1/2 chain driven out of equilibrium by coupling with boundary reservoirs targeting different spin orientations in the XY-plane. Symmetries of the model are revealed which appear to be different for spin chains of odd and even sizes. As a result, the spin current is found to alternate with chain length, ruling out the possibility of ballistic transport. Heat transport is switched off completely by virtue of another global symmetry. Further, we investigate the model numerically and analytically. At strong coupling, we find an exact nonequilibrium steady state using perturbation theory. The state is determined by solving secular conditions which guarantee self-consistency of the perturbative expansion. We find nontrivial dependence of the magnetization current on the spin chain anisotropy Δ in the critical region |Δ| < 1, and a phenomenon of tripling of the twisting angle along the chain for narrow lacunae of Δ.

  14. High current rf (HCRF) linac program. Final report

    SciTech Connect

    Not Available

    1992-11-01

    The High Current Radio Frequency (HCRF) Accelerator program began as an effort funded by the Strategic Defense Initiative Office (SDIO) through the Office of Naval Research (ONR). The three options carried a negotiated total of $3,731,115 so that the total negotiated amount was $3,950,340. SDIO only provided $600,000 for the effort, and only one of the three options was exercised. An additional $310,000 was provided by DARPA, the Office of Naval Technology (ONT) and the Naval Ocean System Center (NOSC) for a collaborative effort to explore an RF technology application in naval surveillance (ultra-wideband radar), an activity covered by the HCRF statement of work. Technical work on the HCRF program consisted of in-depth technology studies and experimental support on the naval radar task. The overall goal of the HCRF program was to develop an fundamentally new technology for compact (high gradient) electron accelerators that can efficiently drive high gain, single pass FEL amplifiers producing output radiation at a wavelength of approximately one micron or less in a pulsed format for boost phase and mid-course SDIO missions. SDIO mission requirements dictated that the accelerator technology goals be consistent with a laser system that can produce greater than ten megawatts of average optical power during a 200 second battle from a space platform placed in orbit with a single heavy lift booster.

  15. Eddy Surface properties and propagation at Southern Hemisphere western boundary current systems

    NASA Astrophysics Data System (ADS)

    Pilo, G. S.; Mata, M. M.; Azevedo, J. L. L.

    2015-02-01

    Oceanic eddies occur in all world oceans, but are more energetic when associated to western boundary currents (WBC) systems. In these regions, eddies play an important role on mixing and energy exchange. Therefore, it is important to quantify and qualify eddies occurring within these systems. Previous studies performed eddy censuses in Southern Hemisphere WBC systems. However, important aspects of local eddy population are still unknown. Main questions to be answered relate to eddies' spatial distribution, propagation and lifetime within each system. Here, we use a global eddy dataset to qualify eddies based on their surface characteristics at the Agulhas Current (AC), the Brazil Current (BC) and the East Australian Current (EAC) Systems. We show that eddy propagation within each system is highly forced by the local mean flow and bathymetry. In the AC System, eddy polarity dictates its propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC System eddies from both polarities cross south of Tasmania, but only anticyclonics reach the Great Australian Bight. Eddies in all systems and from both polarities presented a geographical segregation according to size. Large eddies occur along the Agulhas Retroflection, the Agulhas Return Current, the Brazil-Malvinas Confluence and the Coral Sea. Small eddies occur in the systems southernmost domains. Understanding eddies' propagation helps to establish monitoring programs, and to better understand how these features would affect local mixing.

  16. Boundary current instabilities, upwelling, shelf mixing and eutrophication processes in the Black Sea

    NASA Astrophysics Data System (ADS)

    Sur, Hali˙l. İ.; Özsoy, Emi˙n.; Ünlüata, Ümi˙t.

    Satellite and in situ data are utilized to investigate the mesoscale dynamics of the Black Sea boundary current system with special emphasis on aspects of transport and productivity. The satellite data are especially helpful in capturing rapid sub-mesoscale motions insufficiently resolved by the in situ measurements. Various forms of isolated features, including dipole eddies and river plumes, are identified in the satellite images. Unstable flow structures at these sites appear to transport materials and momentum across the continental shelf. Species differentiation and competition are evident along the boundary current system and at the frontal regions during the development of early summer productivity. A time series of Coastal Zone Colour Scanner (CZCS) images indicate dynamical modulation of the springtime surface productivity in the southern Black Sea. Unstable meandering motions generated at Sakarya Canyon propagate east with speeds of ∼10-15 km d -1. Within weeks, a turbulent jet is created which separates from the coast, covering the entire southwestern sector. The nutrients driving the phytoplankton production (mainly Emiliana huxleyi) of the current system evidently originate from fluvial discharge entering from the northwestern region including the Danube river. The productivity pattern develops in early summer when the Danube inflow is at its peak, and through meandering motions spreads into an area several times wider than the continental shelf. In 1980, the CZCS data, and in 1991 and 1992, the Advanced Very High Resolution Radiometer (AVHRR) data indicate patches of upwelling along the west Anatolian coastline between Sakarya Canyon and Cape İnce ( Ince Burun) in summer. The upwelling phenomenon is outstanding because it occurs on a coast where normally the surface convergence near the coast implies downwelling, and under conditions of unfavorable winds. In 1992, the hydrographic data indicated the upwelling to be the result of a surface

  17. Nonlinear effects on western boundary current structure and separation: a laboratory study

    NASA Astrophysics Data System (ADS)

    Pierini, S.; Falco, P.; Zambardino, G.; McClimans, T. A.; Ellingsen, I.

    2009-04-01

    The role played by nonlinear effects in shaping the structure of barotropic western boundary currents (WBCs) and in determining WBC separation from the coast has been investigated through laboratory simulations by means of the 5-m-diameter Coriolis rotating basin at SINTEF (Trondheim, Norway) in the framework of the HYDRALAB-III project. The laboratory setup consists of two parallel rectangular channels separated by an island and linked by two curved connections: in the first channel, a piston is forced at a constant speed U ranging from 0.05 to 3 cm/s over a distance of 2.5 m, producing a virtually unsheared current at the entrance of the second channel. In the latter, a linear reduction of the water depth provides the topographic beta-effect that produces the westward intensification. Nearly steady currents are obtained and measured photogrammetrically over a region of about 1 m2. The broad range of piston speeds permitted by the mechanical apparatus has allowed us to achieve an unprecedented coverage of the range of nonlinearity for WBCs in terms of experimental data, so that the cross-stream WBC profile could be analyzed from the nearly linear Munk-type case (e.g., for U=0.1 cm/s with T=30 s, where T is the rotation period of the basin) up to the more realistic highly nonlinear limit (particularly significant is the case U=1 cm/s and T=30 s, which is close to be dynamically similar to the Gulf Stream). Thanks to the large size of the rotating basin, cross-stream widths of the simulated WBC as large as 80 cm could be obtained. Moreover, in order to analyze the process of WBC separation, coastal variations have been introduced along the western boundary in the form of wedge-shaped continents with different coastline orientations, whose northern limit corresponds to an idealized Cape Hatteras. While weak WBCs follow the coast also past the cape, for sufficiently strong nonlinear effects the current detaches from the coast as a consequence of flow deceleration

  18. Statistics of auroral hiss and relationship to auroral boundaries and upward current regions

    NASA Astrophysics Data System (ADS)

    Spasojevic, M.

    2016-08-01

    An 8 year database of VLF auroral hiss observations from South Pole station (invariant latitude of -74° with magnetic local time (MLT) = UT -3.5 h) is analyzed. There are three peaks in hiss occurrence as a function of MLT in the evening sector (19-23 MLT), afternoon sector (13-17 MLT), and morning sector (7-11 MLT). The geomagnetic and interplanetary magnetic field (IMF) drivers of hiss are examined in the three MLT sectors, and the results are interpreted using an empirical model of auroral boundaries and an empirical model of field-aligned current patterns. Auroral hiss on the dayside occurs when the auroral oval is centered near the latitude of the station, and in the afternoon sector higher disturbance levels are required. The afternoon sector favors positive By when Bz is positive and negative By when Bz is strongly negative, while the morning sector favors the complementary conditions. In each case the preference for hiss occurrence follows the pattern of upward field-aligned currents, and hiss is more likely in the configuration where the peak in the upward current is closer to the latitude of the station. IMF By does not play a role on the nightside where hiss is most likely to occur during moderately weak driving conditions as higher disturbance levels are expected to move the auroral oval and upward current systems to latitudes well equatorward of South Pole.

  19. Modelling the coronal hole -- coronal loop boundary as a compressible current-vortex sheet

    NASA Astrophysics Data System (ADS)

    Dahlburg, R.; Einaudi, G.

    Recent observations and theoretical developments have re-awakened interest in finding out what happens at the boundary between closed and open magnetic field regions in the solar corona, i.e., between coronal loops and coronal holes. Habbal et al. (2001) report the existence of a pervasive radial magnetic field in the solar corona These observations appear to indicate that closed and open magnetic fields are in close proximity in the solar corona, making it likely that that interactions between the two are common. However, it is not necessary that open magnetic field lines thread through closed magnetic fields. It is possible that coronal holes have a fractal boundary, and that instead "estuaries" of open field intrude into active regions. Theoretical interest is shown in the ideas behind coronal whips (Pneumann 1974) and more recently models based of the magnetic junkyard (Dowdy et al. 1986) and the magnetic furnace (Axford and McKenzie 1992). A model for the coronal hole - coronal loop boundary, based on the linear and nonlinear evolution of a compressible current-vortex sheet, is proposed. The loop is modelled as force-free and massive, with the plasma in motion along the magnetic field. The hole is modelled with a potential magnetic field containing a rarer, static plasma. Both linear and nonlinear properties are explored. An acceleration along the coronal hole magnetic field direction is observed which would enhance the fast solar wind speed. W. I. Axford and J. F. McKenzie, in Solar Wind Seven, eds. E. Marsch and R. Schwenn, (Oxford: Pergamon Press), pp 1-5 (1992). J. F. Dowdy, D. Rabin, and R. L. Moore, Solar Phys. 105, 35 (1986). S. R. Habbal, R. Woo, and J. Arnaud, Astrophys. J. 55, 852 (2001). G. W. Pneumann, in Coronal Disturbances, ed. G. Newkirk, (Dordrecht: Reidel), p 35 (1974).

  20. Structure and variability of the boundary current in the Eurasian Basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pnyushkov, Andrey V.; Polyakov, Igor V.; Ivanov, Vladimir V.; Aksenov, Yevgeny; Coward, Andrew C.; Janout, Markus; Rabe, Benjamin

    2015-07-01

    The Arctic Circumpolar Boundary Current (ACBC) transports a vast amount of mass and heat around cyclonic gyres of the deep basins, acting as a narrow, topographically-controlled flow, confined to the continental margins. Current observations during 2002-2011 at seven moorings along the major Atlantic Water (AW) pathway, complemented by an extensive collection of measured temperatures and salinities as well as results of state-of-the-art numerical modeling, have been used to examine the spatial structure and temporal variability of the ACBC within the Eurasian Basin (EB). These observations and modeling results suggest a gradual, six-fold decrease of boundary current speed (from 24 to 4 cm/s) on the route between Fram Strait and the Lomonosov Ridge, accompanied by a transformation of the vertical flow structure from mainly barotropic in Fram Strait to baroclinic between the area north of Spitsbergen and the central Laptev Sea continental slope. The relative role of density-driven currents in maintaining AW circulation increases with the progression of the ACBC eastward from Fram Strait, so that baroclinic ACBC forcing dominates over the barotropic in the eastern EB. Mooring records have revealed that waters within the AW and the cold halocline layers circulate in roughly the same direction in the eastern EB. The seasonal signal, meanwhile, is the most powerful mode of variability in the EB, contributing up to ~70% of the total variability in currents (resolved by moorings records) within the eastern EB. Seasonal signal amplitudes for current speed and AW temperature both decrease with the eastward progression of AW flow from source regions, and demonstrate strong interannual modulation. In the 2000s, the state of the EB (e.g., circulation pattern, thermohaline conditions, and freshwater balance) experienced remarkable changes. Results showing anomalous circulation patterns for an extended period of 30 months in 2008-2010 for the eastern EB, and a two-core AW

  1. Enthalpy and Momentum Fluxes During Hurricane Earl over the North Atlantic Western Boundary Current System

    NASA Astrophysics Data System (ADS)

    Shay, L. K.; Jaimes, B.; Uhlhorn, E.

    2013-05-01

    The North Atlantic Western Boundary Current System consists of several energetic currents such as the Antilles Current, Caribbean Current, Yucatan Current, Loop Current, Florida Current, and Gulf Stream. These currents often support a rich eddy field along strong frontal regimes where thermal gradients change over distances of O(10) km. These warm oceanic regimes force the marine atmospheric boundary layer (ABL) at differing temporal scales which impact the wind stress and air-sea fluxes. The impact of these oceanic regimes on the evolution of the ABL in tropical cyclones (TC) and on rapid TC intensity fluctuations remains an important research question, where forecasts of TC intensity are typically inaccurate. This problem is relevant to recent hurricanes Earl (2010), Irene (2011), and Sandy (2012) that moved over the Gulf Stream. Using Global Positioning System Sondes deployed from several research flights in hurricane Earl (2010) from NASA and NOAA aircraft, satellite products, ocean buoys and drifters, this study estimates enthalpy and momentum fluxes, as well as the ocean heat loss, during Earl's rapid intensity changes (category 4 hurricane) over the Antilles Current and Gulf Stream. In an environment of weak wind shear, Earl experienced rapid intensification (40 kt in 24 hrs) over warm waters of the Antilles Current where the oceanic heat content was high (>100 kJ cm-2). This intensification was temporarily halted by increased wind shear and an eyewall replacement cycle. Subsequently, Earl experienced a second intensification, attaining its maximum intensity of 125 kt over warm waters where the Antilles Current and Gulf Stream merge. Earl then rapidly weakened as it moved in less favorable atmospheric environment and over cooler shelf waters on the western flank of the Gulf Stream. Reduced sea surface temperature (SST) cooling of less than 2°C occurred over the Antilles Current during Earl's rapid intensification, while SST cooling of 4°C occurred during

  2. Influence of grain boundary structure distribution and processing history on intergranular creep cavitation: Final report

    SciTech Connect

    Adams, B.L.

    1988-01-01

    A new measure of grain boundary structure in polycrystalline materials has been introduced which overcomes two difficult obstacles in modeling properties. Previous microstructural measures described intercrystalline misorientation and boundary physical orientation separately. The new measure, called the Intercrystalline Structure Distribution Function, successfully combines both of these elements into a single cohesive measure application to a wide class of property models. A method for determining the function from microdiffraction measurements in section planes was developed. 17 refs., 4 figs.

  3. The change features of the west boundary bifurcation line of the North Equatorial Current in the Pacific

    NASA Astrophysics Data System (ADS)

    Guo, Junru; Liu, Yulong; Song, Jun; Bao, Xianwen; Li, Yan; Chen, Shaoyang; Yang, Jinkun

    2015-12-01

    The equatorial Current in the North Pacific (NEC) is an upper layer westward ocean current, which flows to the west boundary of the ocean, east of the Philippines, and bifurcates into the northerly Kuroshio and the main body of the southerly Mindanao current. Thus, NEC is both the south branch of the Subtropical Circulation and the north branch of the Tropical Circulation. The junction of the two branches extends to the west boundary to connect the bifurcation points forming the bifurcation line. The position of the North Pacific Equatorial Current bifurcation line of the surface determines the exchange between and the distribution of subtropical and tropical circulations, thus affecting the local or global climate. A new identification method to track the line and the bifurcation channel was used in this study, focusing on the climatological characteristics of the western boundary of the North Equatorial Current bifurcation line. The long-term average NEC west boundary bifurcation line shifts northwards with depth. In terms of seasonal variation, the average position of the western boundary of the bifurcation line is southernmost in June and northernmost in December, while in terms of interannual variation, from spring to winter in the years when ENSO is developing, the position of the west boundary bifurcation line of NEC is relatively to the north (south) in EI Niño (La Niña) years as compared to normal years.

  4. The velocity and mixing time scale of the Arctic Ocean Boundary Current estimated with transient tracers

    NASA Astrophysics Data System (ADS)

    Mauldin, A.; Schlosser, P.; Newton, R.; Smethie, W. M.; Bayer, R.; Rhein, M.; Jones, E. Peter

    2010-08-01

    The Arctic Ocean Boundary Current (AOBC) is a persistent, large-scale feature of Arctic circulation that transports water of Atlantic origin around the Eurasian and Canadian Basins. Despite its importance as a link between North Atlantic sea surface temperature and the heat budget of the Arctic Ocean, elements of the pathways of the AOBC are still not well understood. Here we use transient tracer data collected during the 1990s at 22 locations to calculate the velocity and mixing time scale of the AOBC. The apparent spreading velocity derived from correlating 3H-3He ages in the Barents Sea branch water (BSBW) with the distance from its entry point at the Santa Anna Trough is 0.9 cm s-1. To correct this apparent velocity for the effects of mixing along the pathway, the AOBC is modeled as a leaky pipe, and 3H-3He and chlorofluorocarbon data are used to calculate the parameters of its transit time distribution function. The modeled velocity of the AOBC is 2.5 ± 0.5 cm s-1, and the time scale for mixing of waters between the core of the boundary current and the adjacent water masses is 5-10 years. These results imply that the advective time for transport around the perimeter of the Arctic Ocean from the Santa Anna Trough to the southern Canada Basin (approximately 6000 km) is 7.5 years, and the amplitude of a temperature anomaly or salinity anomaly in BSBW should decrease by 50%-75% along this path.

  5. Orbital obliquity cycles recorded in Kuroshio Current region, eastern Asia, around Plio-Pleistocene boundary

    NASA Astrophysics Data System (ADS)

    Iwatani, Hokuto; Kondo, Yasuo; Irizuki, Toshiaki; Iwai, Masao; Ikehara, Minoru

    2016-05-01

    Global climate underwent a period of significant cooling at the Plio-Pleistocene Transition (˜2.6 Ma). The influence of this change on the Kuroshio Current region in the Pacific Ocean, off eastern Asia, is not well known. In this study, we clarify temporal changes in the paleoenvironment under the influence of the Kuroshio Current during the late Pliocene and early Pleistocene using high-resolution faunal proxy records of fossil Ostracoda (Crustacea). The study unit is the Ananai Formation in the southeastern region of Shikoku, southwest Japan. The modern analog technique (MAT) is employed for the quantitative estimation of paleo-bottom water temperatures (PBWTs) and paleo-water depth (PWD) during the deposition of the formation. Ostracode MAT results show PBWT fluctuations during warmest and coldest months, with values of 16°C-20 °C and 12°C-16 °C, respectively, and a PWD of 70-140 m, reflecting sea-level oscillations. Moreover, the PBWT in the coldest month is 3 °C-4 °C lower than present-day water temperatures at the same shallow water depths. Temporal changes in these paleoenvironmental variables based on MAT are in good agreement with global oxygen isotope records. Orbital obliquity cycles with 41-kyr periodicity are recorded for the first time in an onshore section in the Kuroshio Current region at the Plio-Pleistocene boundary interval.

  6. Variations of deep western boundary currents in the Melanesian Basin in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Kawabe, Masaki; Yanagimoto, Daigo; Kitagawa, Shoji

    2006-06-01

    Five moorings ML1-ML5 were deployed on the slope of the Solomon Rise in the Melanesian Basin in the western North Pacific, northeastward at increasing water depths. We measured the velocities of the western branch current of the deep western boundary current (DWBC) and the upper deep current carrying the Lower and Upper Circumpolar Waters (LCPW, UCPW), respectively. The daily mean velocity data from 1-3 February 1999 to 24-26 February 2000 were analyzed, and variability of the DWBCs was clarified. Although the current meters did not entirely cover the western branch current of the DWBC composed of two or three streams, a stream of the western branch current was observed at a depth of 4700 m at ML4 or 4260 m at ML5 for more than half of the observation period. The stream had a mean velocity of 3.7 cm s -1 and alternated between ML4 and ML5 at 20- to 40-day intervals without occupying both of ML4 and ML5 simultaneously. This shows that the width of the stream is less than 120 km (distance between ML4 and ML5), and the position changes in a similar range. In contrast to the velocity of the eastern branch current of the DWBC, that of the western branch current did not decrease with decreasing depths to 4000 m. This reflects the vertical division into the branch currents by the bifurcation of the DWBC. The western branch current of the DWBC is located at the deep side of the countercurrent which was almost always observed at depths of 3880 and 4080 m at ML3. The countercurrent was thought to be the return flow of the western branch current that is partly reversed in the East Mariana Basin. The previous estimate of geostrophic transport of LCPW at the time of the mooring deployment was corrected to 1.4 Sv (10 6 m 3 s -1) in the western branch current, 1.7 Sv in the countercurrent, and 1.1 Sv in the inflow to the East Caroline Basin. The upper deep current was located over the slope of the Solomon Rise with water depth less than 4500 m including ML1-ML3. It flowed at

  7. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems

    NASA Astrophysics Data System (ADS)

    Pilo, G. S.; Mata, M. M.; Azevedo, J. L. L.

    2015-08-01

    Oceanic eddies exist throughout the world oceans, but are more energetic when associated with western boundary currents (WBC) systems. In these regions, eddies play an important role in mixing and energy exchange. Therefore, it is important to quantify and qualify eddies associated with these systems. This is particularly true for the Southern Hemisphere WBC system where only few eddy censuses have been performed to date. In these systems, important aspects of the local eddy population are still unknown, like their spatial distribution and propagation patterns. Moreover, the understanding of these patterns helps to establish monitoring programs and to gain insight in how eddies would affect local mixing. Here, we use a global eddy data set to qualify eddies based on their surface characteristics in the Agulhas Current (AC), the Brazil Current (BC) and the East Australian Current (EAC) systems. The analyses reveal that eddy propagation within each system is highly forced by the local mean flow and bathymetry. Large values of eddy amplitude and temporal variability are associated with the BC and EAC retroflections, while small values occur in the centre of the Argentine Basin and in the Tasman Sea. In the AC system, eddy polarity dictates the propagation distance. BC system eddies do not propagate beyond the Argentine Basin, and are advected by the local ocean circulation. EAC system eddies from both polarities cross south of Tasmania but only the anticyclonic ones reach the Great Australian Bight. For all three WBC systems, both cyclonic and anticyclonic eddies present a geographical segregation according to radius size and amplitude. Regions of high eddy kinetic energy are associated with the eddies' mean amplitudes, and not with their densities.

  8. Features and variability of the South China Sea western boundary current from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Quan, Qi; Xue, Huijie; Qin, Huiling; Zeng, Xuezhi; Peng, Shiqiu

    2016-07-01

    Different from the traditional definition of the South China Sea western boundary current (SCSWBC), in this paper, only the southwestward and southward currents along the northern and western slopes in the SCS, which are closely associated with the basin-wide wind stress curl, are defined as the SCSWBC, while the flows on the southwestern shelf driven directly by the local wind stress are regarded as part of the shelf circulation. Using a new reanalysis dataset of the SCS in conjunction with the in situ and remote sensing data, the main features and variability of the SCSWBC from 1992 to 2011 were studied. Dictated by the prevailing monsoonal winds and in- and outflows, the SCSWBC in winter extended the full length of the western slope and reached its maximum intensity off the southeast coast of Vietnam, while in summer the main body of the SCSWBC was limited to the northern half of the western slope and merged with the northward coastal current to form the Vietnam Offshore Current (VOC) at about 12° N. Moreover, the respective seasonal patterns of the SCSWBC showed pronounced interannual variations in its structure, including the axis, the width, and the maximum depth. The strength of the SCSWBC, with the transport of -11.8 ± 3.5 Sv in winter and -3.0 ± 1.6 Sv in summer off the central coast of Vietnam, also varied significantly from year to year. It was demonstrated that the monsoonal forcing over the SCS, the interannual variability of which was closely associated with El Niño events, played an important role in modulating the interannual variability of the SCSWBC, whereas the influence from the upper-layer Luzon Strait transport was secondary.

  9. Nonlinear Gulf Stream Interaction with the Deep Western Boundary Current System: Observations and a Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng

    2003-01-01

    Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.

  10. Seismotectonics of plate boundaries. Final report, 1 November 1973-30 June 1981

    SciTech Connect

    Berger, J.; Brune, J.N.; Goodkind, J.; Wyatt, F.; Agnew, D.C.; Beaumont, C.

    1981-06-01

    Research on the seismotectonics of plate boundaries is summarized. Instrumental development and an observational program designed to study various aspects of the seismotectonics of southern California and the northern Gulf of California are described. A unique superconducting gravimeter was further developed and supported under this program for deployment and operation at several sites. Work on Earth tides is also discussed.

  11. Flowfield measurements in a separated and reattached flat plate turbulent boundary layer. Final report

    SciTech Connect

    Patrick, W.P.

    1987-03-01

    The separation and reattachment of a large-scale, two-dimensional turbulent boundary layer at low subsonic speed on a flat plate has been studied experimentally. The separation bubble was 55 cm long and had a maximum bubble thickness, measured to the height of the mean dividing streamline, of 17 cm, which was twice the thickness of the inlet boundary layer. A combination of laser velocimetry, hot-wire anemometry, pneumatic probing techniques, and flow visualization were used as diagnostics. Principal findings were that an outer inviscid rotational flow was defined which essentially convected over the blockage associated with the inner, viscously dominated bubble recirculation region. A strong backflow region in which the flow moved upstream 100 percent of the time was measured near the test surface over the central 35 percent of the bubble. A laminar backflow boundary layer having pseudo-turbulent characteristics including a log-linear velocity profile was generated under the highly turbulent backflow. Velocity profile shapes in the reversed flow region matched a previously developed universal backflow profile at the upstream edge of the separation region but not in the steady backflow region downstream. A smoke flow visualization movie and hot-film measurements revealed low frequency nonperiodic flapping at reattachment. However, forward flow fraction data at reattachment and mean velocity profiles in the redeveloping boundary layer downstream of reattachment correlated with backward-facing step data when the axial dimension was scaled by the distance from the maximum bubble thickness to reattachment.

  12. Grain and grain-boundary critical currents in coated conductors with noncorrelating YBa2Cu3O7 and substrate grain-boundary networks

    NASA Astrophysics Data System (ADS)

    Palau, A.; Puig, T.; Obradors, X.; Feenstra, R.; Gapud, A. A.; Specht, E. D.; Feldmann, D. M.; Holesinger, T. G.

    2006-03-01

    The superconducting grain-boundary (GB) network of coated conductors (CCs) is usually assumed to be a replica of the substrate network. In this letter, we analyze IBAD and RABITS CCs, where such replica either do or do not exist. We have analyzed the effect of GB overgrowth on the critical currents by quantifying the average superconducting grain size and determining the intragrain and grain-boundary critical current densities, JcG and JcGB. We have employed a recently developed inductive methodology enabling the simultaneous determination of these three parameters. We show that the percolative JcGB may be reduced by 50% if the GB networks do not correlate, while JcG and the grain pinning properties appear unaffected.

  13. Relative impact of seasonal and oceanographic drivers on surface chlorophyll a along a Western Boundary Current

    NASA Astrophysics Data System (ADS)

    Everett, Jason D.; Baird, Mark E.; Roughan, Moninya; Suthers, Iain M.; Doblin, Martina A.

    2014-01-01

    Strengthening Western Boundary Currents (WBCs) advect warm, low nutrient waters into temperate latitudes, displacing more productive waters. WBCs also influence phytoplankton distribution and growth through current-induced upwelling, mesoscale eddy intrusion and seasonal changes in strength and poleward penetration. Here we examine dynamics of chlorophyll a (Chl. a) in the western Pacific Ocean, a region strongly influenced by the East Australian Current (EAC). We interpreted a spatial and temporal analysis of satellite-derived surface Chl. a, using a hydrodynamic model, a wind-reanalysis product and an altimetry-derived eddy-census. Our analysis revealed regions of persistently elevated surface Chl. a along the continental shelf and showed that different processes have a dominant effect in different locations. In the northern and central zones, upwelling events tend to regulate surface Chl. a patterns, with peaks in phytoplankton biomass corresponding to two known upwelling locations south of Cape Byron (28.5°S) and Smoky Cape (31°S). Within the central EAC separation zone, positive surface Chl. a anomalies occurred 65% of the time when both wind-stress (τw) and bottom-stress (τB) were upwelling-favourable, and only 17% of the time when both were downwelling-favourable. The interaction of wind and the EAC was a critical driver of surface Chl. a dynamics, with upwelling-favourable τW resulting in a 70% increase in surface Chl. a at some locations, when compared to downwelling-favourable τW . In the southern zone, surface Chl. a was driven by a strong seasonal cycle, with phytoplankton biomass increasing up to 152% annually each spring. The Stockton Bight region (32.25-33.25°S) contained ⩾20% of the total shelf Chl. a on 27% of occasions due to its location downstream of upwelling locations, wide shelf area and reduced surface velocities. This region is analogous to productive fisheries regions in the Aghulus Current (Natal Bight) and Kuroshio Current

  14. Field-Aligned Current at Plasma Sheet Boundary Layers During Storm Time: Cluster Observation

    NASA Astrophysics Data System (ADS)

    Shi, J.; Cheng, Z.; Zhang, T.; Dunlop, M.; Liu, Z.

    2007-05-01

    The magnetic field data from the FGM instruments on board the four Cluster spacecrafts were used to study Field Aligned Current (FAC) at the Plasma Sheet Boundary Layers (PSBLs) with the so called "curlometer technique". We analyzed the date obtained in 2001 in the magnetotail and only two cases were found in the storm time. One (August 17, 2001) occurred from sudden commencement to main phase, and the other (October 1, 2001) lay in the main phase and recovery phase. The relationship between the FAC density and the AE index was studied and the results are shown as follows. (1) In the sudden commencement and the main phase the density of the FAC increases obviously, in the recovery phase the density of the FAC increases slightly. (2) From the sudden commencement to the initial stage of the main phase the FAC increases with decreasing AE index and decreases with increasing AE index. From the late stage of the main phase to initial stage of the recovery phase, the FAC increases with increasing AE index and decreases with decreasing AE index. In the late stage of the recovery phase the disturbance of the FAC is not so violent, so that the FAC varying with the AE index is not very obvious.

  15. Effect of meridional wind on gap-leaping western boundary current

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Yuan, Dongliang; Hou, Yijun

    2010-03-01

    Using a 1.5-layer reduced-gravity nonlinear shallow-water equation model, we studied the effect of the meridional wind on the western boundary currents (WBC) at critical states with hysteresis courses. The results of the simulation indicate that the WBC is prone to penetrating into the gap under northerly winds, and its path is more difficult to alter due to the larger interval between the two critical transition curves ( C 1 P and C 1 L). For southerly winds, the WBC is prone to leaping across the gap, and its path is easier to alter due to the smaller interval between the two critical transition curves. The simulation results also indicate that the meridional winds over the southern region of the gap are the dominant factor determining the formation of the WBC. The dynamic mechanism influencing the transport of WBC near the gap is both Ekman transport and the blocking of Ekman transport. Ekman transport induced by northerly winds may reduce the transport of the WBC, causing the β-effect to dominate the meridional advection (promoting the penetration). Southerly winds, however, may enhance the transport of the WBC, causing the meridional advection to dominate the β-effect (promoting the leaping state). These results explain some structural features of the Kuroshio at the Luzon Strait.

  16. The recirculation of the intermediate western boundary current at the Tubarão Bight - Brazil

    NASA Astrophysics Data System (ADS)

    Costa, Vladimir S.; Mill, Guilherme N.; Gabioux, Mariela; Grossmann-Matheson, Guisela S.; Paiva, Afonso M.

    2017-02-01

    Lagrangian floats and current meter measurements from two moored arrays are analyzed, in combination with altimetry data, in order to investigate the recirculation of Antarctic Intermediate Waters (AAIW), and of the Intermediate Western Boundary Current (IWBC) at the Tubarão Bight, in the vicinity of the Vitória-Trindade Ridge (VTR), Brazil. Results from a high-resolution numerical simulation provide a complementary view of the flow at intermediate and surface levels. The data depict a topographically-induced cyclonic recirculation at intermediate levels, and five Argo floats are successively trapped inside the bight for two-and-a-half years, performing a total of 10 closed clockwise gyres during this period of time. In situ measurements at the western side of the bight show an intense alongshore flow at intermediate levels, with averaged velocities at 800 m of 30 cm/s, and peak velocities exceeding 50 cm/s, magnitudes comparable to the Brazil Current (BC) flow at surface levels. The recirculation extends from at least 1000 m deep up to 370 m, reaching sometimes depths as shallow as 150 m, but is mostly uncoupled from the surface flow during the one-and-a-half year long current meter record. Three different flow patterns are observed, and simulated, at surface levels inside the bight during the time the recirculation is well established at intermediate levels: a shallow cyclonic circulation, somewhat akin to the Vitória Eddy; a recurrent anticyclonic flow that encompasses the entire bight; and a southwestward-oriented circulation, associated with the BC being reorganized in a coherent flow after negotiating its way through the VTR channels. A significant portion (about 50% according to the model) of the inflow of intermediate waters recirculates, enhancing the flow of the IWBC within the bight, and increasing the age of AAIW that will eventually cross the VTR on its way to lower latitudes. Although the data are not conclusive about a preferential pathway of the

  17. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    NASA Technical Reports Server (NTRS)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons

  18. Characterising primary productivity measurements across a dynamic western boundary current region

    NASA Astrophysics Data System (ADS)

    Everett, Jason D.; Doblin, Martina A.

    2015-06-01

    Determining the magnitude of primary production (PP) in a changing ocean is a major research challenge. Thousands of estimates of marine PP exist globally, but there remain significant gaps in data availability, particularly in the Southern Hemisphere. In situ PP estimates are generally single-point measurements and therefore we rely on satellite models of PP in order to scale up over time and space. To reduce the uncertainty around the model output, these models need to be assessed against in situ measurements before use. This study examined the vertically-integrated productivity in four water-masses associated with the East Australian Current (EAC), the major western boundary current (WBC) of the South Pacific. We calculated vertically integrated PP from shipboard 14C PP estimates and then compared them to estimates from four commonly used satellite models (ESQRT, VGPM, VGPM-Eppley, VGPM-Kameda) to assess their utility for this region. Vertical profiles of the water-column show each water-mass had distinct temperature-salinity signatures. The depth of the fluorescence-maximum (fmax) increased from onshore (river plume) to offshore (EAC) as light penetration increased. Depth integrated PP was highest in river plumes (792±181 mg C m-2 d-1) followed by the EAC (534±116 mg C m-2 d-1), continental shelf (140±47 mg C m-2 d-1) and cyclonic eddy waters (121±4 mg C m-2 d-1). Surface carbon assimilation efficiency was greatest in the EAC (301±145 mg C (mg Chl-a)-1 d-1) compared to other water masses. All satellite primary production models tested underestimated EAC PP and overestimated continental shelf PP. The ESQRT model had the highest skill and lowest bias of the tested models, providing the best first-order estimates of PP on the continental shelf, including at a coastal time-series station, Port Hacking, which showed considerable inter-annual variability (155-2957 mg C m-2 d-1). This work provides the first estimates of depth integrated PP associated with the

  19. Effects of grain size and grain boundary on critical current density of high T(sub c) superconducting oxides

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Zhang, Q. R.; Zhang, H.

    1990-01-01

    By means of adding impurity elements in high T sub c oxides, the effects were studied of grain size and grain boundary on the critical current density of the following systems: YBa2Cu3O(7-y) and Bi-Pr-Sr-Ca-Cu-O. In order to only change the microstructure instead of the superconductivity of the grains in the samples, the impurity elements were added into the systems in terms of the methods like this: (1) substituting Y with the lanthanide except Pr, Ce, and Tb in YBa2Cu3O(7-y) system to finning down grains in the samples, therefore, the effect can be investigated of the grain size on the critical current density of 1:2:3 compounds; (2) mixing the high T sub c oxides with the metal elements, such as Ag, according to the composition of (high T sub c oxide)1-xAgx to metallize the grain boundaries in the samples, studying the effect of the electric conductivity of the grain boundaries on the critical current density; (3) adding SiO2, PbO2, and SnO2 into the high T sub c oxide to form impurity phases in the grain boundaries, trying to find out the effects of the impurity phases or metalloid grain boundaries on the critical current density of the high T sub c superconductors. The experimental results indicate that in the case of of the presence of the metalloid grain boundaries finning down grains fails to enhance the j sub c, but restrains it strongly, the granular high T sub c superconductors with the small size grains coupled weakly is always the low j sub c system.

  20. Nonlinear Dynamics of Two Western Boundary Currents Colliding at a Gap

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Yuan, D.

    2012-04-01

    Dynamics and hysteresis of two western boundary currents of Munk thickness LM encounter near a gap is studied using a 1.5 layer reduced-gravity quasi-geostrophic ocean model. When the gap (of width 2a) is narrow, γ≤7.3 (where γ= (a/LM), neither of the flow can penetrate into the western basin due to the viscous force. When 7.3<γ<9.0, both flows penetrate into the western basin for small transport, and choke at the gap for large transport. When 9.0≤γ≤9.6, two WBC flows penetrate for small transport and choke for large transport, and become periodic eddy-shedding for even larger transport, multiple steady states exist and hysteresis behavior show up. When γ>9.6, there is no choke state, and multiple states and hysteresis exist between penetrating states and periodic eddy-shedding states. A Hopf bifurcation emerges when the two flows transit from steady penetrating or choke state to periodic eddy-shedding state, and is found to be sensitive to the magnitude of γ and the baroclinic deformation radius. It occurs at lower Reynolds numbers for larger γ or deformation radius. Multiple steady states and hysteresis exist between some certain range parameters. Through vorticity term analysis, we found the time-dependent relative vorticity term varies remarkably and triggers the WBCs to alternately shed eddy into the western basin. The hysteresis is derived from the difference magnitude of the nonlinear inertial between the two different initial states.

  1. Analysis of the photodiode boundary layer transition indicator. LDRD final report

    SciTech Connect

    Kuntz, D.W.; Wilken, A.C.; Payne, J.L.

    1994-06-01

    The photodiode transition indicator is a device which has been successfully used to determine the onset of boundary layer transition on numerous hypersonic flight vehicles. The exact source of the electromagnetic radiation detected by the photodiode at transition was not understood. In some cases early saturation of the device occurred, and the device failed to detect transition. Analyses have been performed to determine the source of the radiation producing the photodiode signal. The results of these analyses indicate that the most likely source of the radiation is blackbody emission from the heatshield material bordering the quartz window of the device. Good agreement between flight data and calculations based on this radiation source has been obtained. Analyses also indicate that the most probable source of the radiation causing early saturation is blackbody radiation from carbon particles which break away from the nosetip during the ablation process.

  2. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect

    Kim, JunHo; Kim, SeongYeon; Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M.

    2014-02-10

    We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se{sub 2} solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs.

  3. Rectification and one-way street for the energy current in boundary-driven asymmetric quantum spin chains

    NASA Astrophysics Data System (ADS)

    Pereira, Emmanuel

    2017-03-01

    Motivated by the demand for efficient quantum devices to engineer energy transport, we analyze some inhomogeneous quantum spin systems, including X X Z chains, with magnetization baths at the ends. With a goal of finding general properties, we study the effects of suitable transformations on the boundary-driven Lindblad master equation associated with the dynamics of the systems. For asymmetric models with target polarization at the edges or twisted X Y boundary gradients, we show the properties of the steady state, which establish the features of the energy current irrespective of the system size and the regime of transport. We show the ubiquitous occurrence of energy rectification and, more interestingly, of an unusual phenomenon: in the absence of an external magnetic field, there is a one-way street for the energy current, i.e., the direction of the energy current does not change as we invert the magnetization baths at the boundaries. Given the extensiveness of the procedures, which essentially involve the properties of the Lindblad master equation, our results certainly follow for other interactions and other boundary conditions. Moreover, our results indicate graded spin chains as genuine quantum rectifiers.

  4. The Gulf Stream pathway and the impacts of the eddy-driven abyssal circulation and the Deep Western Boundary Current

    NASA Astrophysics Data System (ADS)

    Hurlburt, Harley E.; Hogan, Patrick J.

    2008-08-01

    A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9-47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary

  5. Modeling the polluted coastal urban environment: Volume 1, The PBL (planetary boundary level) model: Final report

    SciTech Connect

    Bornstein, R.; Pechinger, U.; Miller, R.; Klotz, S.; Street, R.

    1987-02-01

    The two-dimensional vorticity-mode URBMET planetary boundary-layer model has been extended to three dimensions by use of a second vorticity component and a second stream function. The model is capable of simulating the time-varying distributions of velocity, temperature, and (sub-saturation) moisture in a Boussinesq, hydrostatic, and incompressible flow field. The model consists of a numerical soil layer, and in the atmosphere, both an analytical constant-flux layer and numerical transition layer. Sea breeze flow conditions in the New York City (NYC) area have been simulated utilizing first-order turbulence closure, with surface temperature and moisture predicted from energy and moisture balances. Results reproduced many of the observed features of sea breeze fronts in the NYC area. Predicted meteorological variables were used as input to a three-dimensional Eulerian-grid sulfur-dioxide dispersion model of point and area sources within the NYC area, as described in Volume II of this report. The model was also used to simulate sea breeze flow at an idealized coastline using the Level 2.5 turbulence parameterization of Mellor and Yamada. This formulation involves solution of an additional prognostic differential equations for turbulent kinetic energy. Results indicate that turbulence from the mid-morning unstable land area was advected offshore into the stable marine region for significant distances.

  6. Dynamics of the Leeuwin Current: Part 2. Impacts of mixing, friction, and advection on a buoyancy-driven eastern boundary current over a shelf

    NASA Astrophysics Data System (ADS)

    Benthuysen, Jessica; Furue, Ryo; McCreary, Julian P.; Bindoff, Nathaniel L.; Phillips, Helen E.

    2014-03-01

    The boundary currents over the Western Australian continental shelf and slope consist of the poleward flowing Leeuwin Current (LC) and the equatorward flowing Leeuwin Undercurrent (LUC). Key properties of the LC are its poleward strengthening, deepening to the south, and shelfbreak intensification. The alongshore flow reverses direction below about 300 m, forming the LUC at greater depths. To investigate the processes that cause these features, we obtain solutions to an idealized, regional ocean model of the South Indian Ocean. Solutions are forced by relaxing surface density to a prescribed, meridionally varying density profile ρ*(y) with a timescale of δt. In addition, vertical diffusion is intensified near the ocean surface. This diffusion establishes the minimum thickness over which density is well-mixed. We define this thickness as the “upper layer”. Solutions are obtained with and without a continental shelf and slope off Western Australia and for a range of values of δt and mixing parameters. Within this upper layer, there is a meridional density gradient that balances a near-surface, eastward geostrophic flow. The eastward current downwells near the eastern boundary, leading to westward flow at depth. The upper layer's meridional structure and zonal currents crucially depend on coastal processes, including the presence of topography near the eastern boundary. Kelvin waves inhibit the upper layer from deepening at the coast. Rossby waves propagate the coastal density structure offshore, hence modifying the interior currents. A comparison of the solutions with or without a continental shelf and slope demonstrate that topographic trapping of Rossby waves is a necessary process for maintaining realistic eastern boundary current speeds. Significant poleward speeds occur only onshore of where the upper layer intersects the slope, that is, at a grounding line. Its poleward transport increases when surface-enhanced vertical mixing is applied over a greater

  7. Modelling coastal connectivity in a Western Boundary Current: Seasonal and inter-annual variability

    NASA Astrophysics Data System (ADS)

    Roughan, Moninya; Macdonald, Helen S.; Baird, Mark E.; Glasby, Tim M.

    2011-03-01

    Understanding the transport and distribution of marine larvae by ocean currents is one of the key goals of population ecology. Here we investigate circulation in the East Australian Current (EAC) and its impact on the transport of larvae and coastal connectivity. A series of Lagrangian particle trajectory experiments are conducted in summer and winter from 1992-2006 which enables us to investigate seasonal and inter-annual variability. We also estimate a mean connectivity state from the average of each of the individual realisations. Connectivity patterns are related to the movement of five individual larval species (two tropical, two temperate and one invasive species) and are found to be in qualitative agreement with historical distribution patterns found along the coast of SE Australia. We use a configuration of the Princeton Ocean Model to investigate physical processes in the ocean along the coast of SE Australia where the circulation is dominated by the EAC, a vigorous western boundary current. We assimilate hydrographic fields from a ˜10-km global analysis into a ˜3-km resolution continental shelf model to create a high-resolution hindcast of ocean state for each summer and winter from 1992-2006. Particles are released along the coast of SE Australia, and at various isobaths across the shelf (25-1000 m) over timescales ranging from 10-90 days. Upstream of the EAC separation point across-shelf release location dominates the particle trajectory length scales, whereas seasonality dominates in the southern half of the domain, downstream of the separation point. Lagrangian probability density functions show dispersion pathways vary with release latitude, distance offshore and the timescale of dispersion. Northern (southern) release sites are typified by maximum (minimum) dispersal pathways. Offshore release distance also plays a role having the greatest impact at the mid-latitude release sites. Maximum alongshore dispersion occurs at the mid-latitude release

  8. A QR accelerated volume-to-surface boundary condition for finite element solution of eddy current problems

    SciTech Connect

    White, D; Fasenfest, B; Rieben, R; Stowell, M

    2006-09-08

    We are concerned with the solution of time-dependent electromagnetic eddy current problems using a finite element formulation on three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient computational method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary condition specifying the total fields on the conductor boundaries. We propose a Biot-Savart law based volume-to-surface boundary condition to meet this requirement. This Biot-Savart approach is demonstrated to be very accurate. In addition, this approach can be accelerated via a low-rank QR approximation of the discretized Biot-Savart law.

  9. The Plate Boundary Observatory: Current status and plans for the next five years

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Feaux, K.; Meertens, C. M.; Mencin, D.; Miller, M.

    2013-12-01

    UNAVCO currently operates and maintains the NSF-funded Plate Boundary Observatory (PBO), which is the geodetic facility of EarthScope. PBO was designed and built from 2003 to 2008 with $100M investment from the NSF Major Research Equipment and Facilities Construction (MREFC) Program. UNAVCO operated and maintained PBO under a Cooperative Agreement (CA) with NSF from 2008 to 2013 and will continue PBO O&M for the next five years as part of the new Geodesy Advancing Geosciences and EarthScope (GAGE) Facility. PBO is largest continuous GPS and borehole geophysical network in the Americas, with 1100 continuous Global Positioning System (cGPS) sites, including several with multiple monuments, 79 boreholes, with 75 tensor strainmeters, 78 short-period, 3-component seismometers, and pore pressure sensors at 23 sites. PBO also includes 26 tiltmeters deployed at volcanoes in Alaska, Mt St Helens, and Yellowstone caldera and 6 long-baseline laser strainmeters. Surface meteorological sensors are collocated at 154 GPS sites. UNAVCO provides high-rate (1 Hz), low-latency (<1 s) GPS data streams (RT-GPS) from 382 stations in PBO. UNAVCO has delivered over 62 Tb of geodetic data to the EarthScope community since its PBO's inception in 2004. Over the past year, data return for the cGPS component of PBO is 98%, well above the data return metric of 85% set by the NSF, a result of efforts to upgrade power systems and communications infrastructure. In addition, PBO has set the standard for the design, construction, and operation of other multi-hazard networks across the Americas, including COCONet in the Caribbean region and TLALOCNet in Mexico. Funding to support ongoing PBO O&M has declined from FY2012 CA levels under the new GAGE Facility. The implications for data return and data quality metrics as well as replacement of aging PBO GPS instruments with GNSS-compatible systems are as yet unknown. A process to assess the cost of specific PBO components, data rates, enhanced

  10. Heat exchange between the boundary current of the North Atlantic Subpolar Gyre and the atmosphere: Insights from numerical models

    NASA Astrophysics Data System (ADS)

    Barnier, B.; Molines, J. M.; Penduff, T.; Mathiot, P.

    2009-04-01

    The role of strong ocean currents in the general circulation is intrinsically linked to the mesoscale turbulence they generate. In the Labrador Sea, the boundary current of the North Atlantic Subpolar Gyre is known to generate a great variety of eddies which have a strong impact on the seasonal cycle of deep convection, fluxing heat from the relatively warm water core of the boundary current into the interior of the Sea. This paper investigate the possible existence of an eddy-driven process that could connect the subsurface core of the boundary current to the atmosphere. The life cycle of Irminger Rings (IRs) in the Labrador Sea is investigated over several seasonal cycles in model simulations carried out with a full primitive equation, eddy resolving (4 km resolution), circulation model driven by realistic air-sea fluxes. It is found that a local topographic feature off Cape Desolation (west coast of Greeland) generates IRs, which are the main source of high EKE levels seen north of about 60°N in satellite altimetry. Model IRs characteristics are found to compare well with recent observations from gliders. Like ocean rings, their peculiar potential vorticity structure (a negative core surrounded by a positive ring) insulates them from surrounding waters, and eddies survive several winters. Model IRs properties primarily evolve through surface exchanges with the atmosphere, especially heat loss, as suggested by recent observations. Lateral exchange of heat with ambient waters appears to be significantly smaller. Under the forcing conditions of our simulations, it takes about two winters to the atmosphere to extract the heat contained in the subsurface core of a ring (at 1000 m depth) and to bring it to a colder temperature comparable to that of the deep convection area. The Ring usually collapses shortly after that. Therefore, the heat extracted by Irminger Rings from the boundary current is not given up to the interior ocean, but to the atmosphere. In that sense

  11. Remote sensing of ocean currents. [detection of current boundary in Gulf of Mexico through changes in sea state or ocean color

    NASA Technical Reports Server (NTRS)

    Maul, G. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Fourteen field experiments in support of the NOAA investigation of ocean color boundary determination using ERTS-1 data have been conducted since June 1972. The boundary between coastal waters and the Loop Current has been detected by ERTS-1 as a result of sea state changes as well as color differences. Computer enchancement of MSS data are revealing many features not shown in the NDPF product. Analysis of the 24 channel MSS data shows that a thermal IR channel is required on an ERTS MSS to distinguish between atmospheric and sea state effects. Cloud cover analysis suggests the need for daily coverage of this type sensor for routinely useful oceanographic applications.

  12. Mesoscopic current transport in two-dimensional materials with grain boundaries: Four-point probe resistance and Hall effect

    NASA Astrophysics Data System (ADS)

    Lotz, Mikkel R.; Boll, Mads; Østerberg, Frederik W.; Hansen, Ole; Petersen, Dirch H.

    2016-10-01

    We have studied the behavior of micro four-point probe (M4PP) measurements on two-dimensional (2D) sheets composed of grains of varying size and grain boundary resistivity by Monte Carlo based finite element (FE) modelling. The 2D sheet of the FE model was constructed using Voronoi tessellation to emulate a polycrystalline sheet, and a square sample was cut from the tessellated surface. Four-point resistances and Hall effect signals were calculated for a probe placed in the center of the square sample as a function of grain density n and grain boundary resistivity ρ GB . We find that the dual configuration sheet resistance as well as the resistance measured between opposing edges of the square sample have a simple unique dependency on the dimension-less parameter √{ n } ρ GB G 0 , where G0 is the sheet conductance of a grain. The value of the ratio R A / R B between resistances measured in A- and B-configurations depends on the dimensionality of the current transport (i.e., one- or two-dimensional). At low grain density or low grain boundary resistivity, two-dimensional transport is observed. In contrast, at moderate grain density and high grain resistivity, one-dimensional transport is seen. Ultimately, this affects how measurements on defective systems should be interpreted in order to extract relevant sample parameters. The Hall effect response in all M4PP configurations was only significant for moderate grain densities and fairly large grain boundary resistivity.

  13. Wave-current interaction in the bottom boundary layer during storm and non-storm conditions: observations and model predictions

    USGS Publications Warehouse

    Drake, D.E.; Cacchione, D.A.

    1992-01-01

    Bottom boundary layer measurements of current velocity profiles and bed response under combined wave and current conditions were obtained at a water depth of 145 m on the shelf off central California during December 1988. High quality logarithmic current profiles, excellent time-series bottom photographs, and a large variation in the relative strengths of the wave-induced oscillatory currents and the quasi-steady low frequency currents provided a dataset that is ideal for examining the effects of wave-current interaction near a rough boundary. During one period of 3 days that included a brief storm event, the wave-induced bottom currents (Ub 1 10) ranged from 2.3 to 22 cm s-1 and the steady currents (Ur) ranged from 1.8 to 28.1 cm s-1 at 0.18 m above the bottom; the ratio Ub U18 varied from below 0.2 to more than 7. Velocity profiles were highly logarithmic (R2 > 0.95) 60% of the time and 27 profiles collected at 2-h intervals had R2 {slanted equal to or greater-than} 0.994 which allowed reliable estimates of the current shear velocity (U*c) and roughness length (zoc). Mean U*c values had magnitudes of 0.3-2.4 cm s-1 and zoc, which ranged from 0.04 to 3.5 cm, was strongly correlated to the Ub U18 ratio. Drag coefficients (CD = ??c/??U1002) ranged from about 2.5 ?? 10-3-12 ?? 10-3 in direct response to the wave-current variation; the use of a constant CD of 3 ?? 10-3 for steady flow over a rough bed would have underpredicted the shear stress by up to four times during the storm event. The large zoc and U*c values cannot be explained by changes in the carefully-observed, small (<1 cm) physical bed roughness elements that covered the mud-rich study site. A side-scan sonar site survey also eliminated the possibility of flow disturbance by larger upstream topography. The observations clearly demonstrate the importance of wave-current interaction near a rough boundary. Comparison of the observations with results of the combined flow models of Grant and Madsen and Glenn

  14. Assimilation of high-frequency radar surface currents measurements to optimize tidal boundary conditions and wind forcing (Outstanding Young Scientist Lecture)

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Alvera-Azcárate, Aida; Gurgel, Klaus-Werner; Staneva, Joanna; Beckers, Jean-Marie; Port, Alexander; Stanev, Emil

    2010-05-01

    An ensemble smoother scheme is presented to assimilate high-frequency (HF) radar surface currents to improve tidal boundary conditions and wind forcings of a circulation model of the German Bight. To create an ensemble of dynamically realistic tidal boundary conditions, a cost function is formulated which is directly related to the probability of each perturbation. This cost function ensures that the perturbations are spatially smooth and that the structure of the perturbations satisfies approximately the harmonic linearized shallow water equations. Based on those perturbations an ensemble simulation is carried out using the full three-dimensional General Estuarine Ocean Model (GETM). Optimized boundary values are obtained using all observations within the assimilation period using the covariances of the ensemble simulation. The approach acts like a smoother scheme since past and future observations are taken into account. The final analysis is obtained by rerunning the model using the optimal perturbation of the boundary conditions. The analyzed model solution satisfies thus the model equations exactly and does not suffer from spurious adjustments often observed with sequential assimilation schemes. Model results are also compared to independent tide gage data. The assimilation also reduces the model error compared to those sea level observations. The same scheme is also used to correct surface winds. Surface winds are crucial for accurately modeling the marine circulation in coastal waters. The method is validated directly by comparing the analyzed wind speed to in situ measurements and indirectly by assessing the impact of the corrected winds on sea surface temperature (SST) relative to satellite SST.

  15. Critical current density behaviors across a grain boundary inclined to current with different angles in YBa2Cu3O7-δ bicrystal junctions

    NASA Astrophysics Data System (ADS)

    Tao, Hua; Wei-Wei, Xu; Zheng-Ming, Ji; Da-Yuan, Guo; Qing-Yun, Wang; Xiang-Rong, Ma; Rui-Yu, Liang

    2016-06-01

    The critical current density behaviors across a bicrystal grain boundary (GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated. There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field: (i) the GB plane area determines the current carrying cross section; (ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force. Furthermore, the vortex motion in a bicrystal GB is studied by investigating transverse (Hall) and longitudinal current-voltage characteristics (I-V xx and I-V xy ). It is found that the I-V xx curve diverges from linearity at a high driving current, while the I-V xy curve keeps nearly linear, which indicates the vortices inside the GB break out of the GB by Lorentz force. Project supported by the National Natural Science Foundation of China (Grant Nos. 61501222, 61371036, and 61571219) and the School Scientific Research Fund of Nanjing Institute of Technology, China (Grant Nos. YKJ201418).

  16. Application of Neural Networks for Real Time Determination of High-β Disruption Boundary and Current Profile Parameters

    NASA Astrophysics Data System (ADS)

    Wroblewski, D.; Jahns, G. L.; Leuer, J. A.; Ferron, J. R.; Kellman, A. G.

    1996-11-01

    Neural networks are adept at reproducing multidemensional non-linear mappings and, due to the simplicity of computation of network outputs, are particularly suitable for real time applications. A neural network empirical model of the high-β disruption boundary was constructed and its real-time performance demonstrated on the DIII--D tokamak. Neural network using multiple diagnostic signals provides much better evaluation of the disruption boundary than the Troyon limit, and can predict the β-limit tens of milliseconds before the disruption occurs, which makes this approach applicable in a disruption avoidance scheme. In another study, a neural network was successfully used to provide a mapping from internal and external magnetic measurements to selected parameters of the safety factor profile. The neural network approach circumvents the speed limitations of the MHD equilibrium codes that are presently used to reconstruct the plasma current profile, and may be used in feedback control.

  17. Sea turtle distribution along the boundary of the Gulf Stream current off eastern Florida

    USGS Publications Warehouse

    Hoffman, W.; Fritts, T.H.

    1982-01-01

    Aerial surveys, out to 222 km off the east coast of central Florida during August 1980, revealed that marine turtles were distributed in a narrow zone west of the Gulf Stream. Of 255 loggerhead turtles, Caretta caretta, only three were observed east of the western boundary of the Gulf Stream. Radiometric thermometry revealed that the waters occupied by most Caretta were markedly cooler than the nearby waters of the Gulf Stream. Of 18 leatherback turtles, Dermochelys coriacea, all were seen west of the Gulf Stream in waters less than 70 m in depth. Marine turtles off eastern Florida are confined seasonally to nearshore waters west of the Gulf Stream. The records of Dermochelys in nearshore waters are in contrast with a deep water oceanic ecology often hypothesized for this species.

  18. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms.

    PubMed

    Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y

    2016-05-28

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  19. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    SciTech Connect

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.; Brewer, W. A.; Miller, Matthew A.; Hall, Andrew M.; Burleyson, Casey D.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer wind (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.

  20. Prediction of Continental Shelf Sediment Transport Using a Theoretical Model of the Wave-Current Boundary Layer.

    DTIC Science & Technology

    1987-08-01

    and E) Leet and Judson (1958) (illustration from Dietz, 1963). * ~ 28 5. ’ wide variety of variables in this location: seasonal waves and currents...34________ I___.________,-_____ I I I 111111 " IiI I -I Nr-I c( ,) c( 0. ) v-; ..1. t,.’..0,;9,,. 1.- ..-. , I TT . .. . I . . . .O0 I ’ ’ ’ I I I " . , 0 7...the American Gas Association, 63 pp. Grant, W. D. and S. M. Glenn, 1983c. A continental shelf bottom boundary layer model. Vol. III : Users manual

  1. Current Lead System of the SuperKEKB Final Focus SC Magnet Cryostats

    NASA Astrophysics Data System (ADS)

    Zong, Z. G.; Ohuchi, N.; Tsuchiya, K.; Arimoto, Y.; Higashi, N.; Yamaoka, H.; Kondou, Y.; Kawai, M.

    To energize the SuperKEKB final focus superconducting (SC) magnets, 110 current leads in total will be equipped in the two service cryostats. For the SC quadrupoles and solenoids, 22 leads are the conventional vapor cooled type and the others for the SC correction coils employ an HTS section at the cold ends. The qualification program on the leads is being carried out at KEK as the cryogenic acceptance test prior to installation. This paper presents the thermal and electrical results of the cryogenic tests.

  2. Growth of a deep-water, predatory fish is influenced by the productivity of a boundary current system.

    PubMed

    Nguyen, Hoang Minh; Rountrey, Adam N; Meeuwig, Jessica J; Coulson, Peter G; Feng, Ming; Newman, Stephen J; Waite, Anya M; Wakefield, Corey B; Meekan, Mark G

    2015-03-12

    The effects of climate change on predatory fishes in deep shelf areas are difficult to predict because complex processes may govern food availability and temperature at depth. We characterised the net impact of recent environmental changes on hapuku (Polyprion oxygeneios), an apex predator found in continental slope habitats (>200 m depth) by using dendrochronology techniques to develop a multi-decadal record of growth from otoliths. Fish were sampled off temperate south-western Australia, a region strongly influenced by the Leeuwin Current, a poleward-flowing, eastern boundary current. The common variance among individual growth records was relatively low (3.4%), but the otolith chronology was positively correlated (r = 0.61, p < 0.02) with sea level at Fremantle, a proxy for the strength of the Leeuwin Current. The Leeuwin Current influences the primary productivity of shelf ecosystems, with a strong current favouring growth in hapuku. Leeuwin Current strength is predicted to decline under climate change models and this study provides evidence that associated productivity changes may flow through to higher trophic levels even in deep water habitats.

  3. Growth of a deep-water, predatory fish is influenced by the productivity of a boundary current system

    PubMed Central

    Nguyen, Hoang Minh; Rountrey, Adam N.; Meeuwig, Jessica J.; Coulson, Peter G.; Feng, Ming; Newman, Stephen J.; Waite, Anya M.; Wakefield, Corey B.; Meekan, Mark G.

    2015-01-01

    The effects of climate change on predatory fishes in deep shelf areas are difficult to predict because complex processes may govern food availability and temperature at depth. We characterised the net impact of recent environmental changes on hapuku (Polyprion oxygeneios), an apex predator found in continental slope habitats (>200 m depth) by using dendrochronology techniques to develop a multi-decadal record of growth from otoliths. Fish were sampled off temperate south-western Australia, a region strongly influenced by the Leeuwin Current, a poleward-flowing, eastern boundary current. The common variance among individual growth records was relatively low (3.4%), but the otolith chronology was positively correlated (r = 0.61, p < 0.02) with sea level at Fremantle, a proxy for the strength of the Leeuwin Current. The Leeuwin Current influences the primary productivity of shelf ecosystems, with a strong current favouring growth in hapuku. Leeuwin Current strength is predicted to decline under climate change models and this study provides evidence that associated productivity changes may flow through to higher trophic levels even in deep water habitats. PMID:25761975

  4. Growth of a deep-water, predatory fish is influenced by the productivity of a boundary current system

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang Minh; Rountrey, Adam N.; Meeuwig, Jessica J.; Coulson, Peter G.; Feng, Ming; Newman, Stephen J.; Waite, Anya M.; Wakefield, Corey B.; Meekan, Mark G.

    2015-03-01

    The effects of climate change on predatory fishes in deep shelf areas are difficult to predict because complex processes may govern food availability and temperature at depth. We characterised the net impact of recent environmental changes on hapuku (Polyprion oxygeneios), an apex predator found in continental slope habitats (>200 m depth) by using dendrochronology techniques to develop a multi-decadal record of growth from otoliths. Fish were sampled off temperate south-western Australia, a region strongly influenced by the Leeuwin Current, a poleward-flowing, eastern boundary current. The common variance among individual growth records was relatively low (3.4%), but the otolith chronology was positively correlated (r = 0.61, p < 0.02) with sea level at Fremantle, a proxy for the strength of the Leeuwin Current. The Leeuwin Current influences the primary productivity of shelf ecosystems, with a strong current favouring growth in hapuku. Leeuwin Current strength is predicted to decline under climate change models and this study provides evidence that associated productivity changes may flow through to higher trophic levels even in deep water habitats.

  5. Invigorating ocean boundary current systems around Australia during 1979-2014: As simulated in a near-global eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Zhang, Xuebin; Oke, Peter; Monselesan, Didier; Chamberlain, Matthew; Matear, Richard; Schiller, Andreas

    2016-05-01

    Ocean boundary currents, transporting water masses and marine biota along the coastlines, are important for regional climate and marine ecosystem functions. In this study, we review the dominant multi-decadal trends of ocean boundary currents around Australia. Using an eddy-resolving global ocean circulation model, this study has revealed that the major ocean boundary current systems around Australia, the East Australian Current (EAC), the Indonesian Throughflow (ITF), the Leeuwin Current, the South Australian Current and the Flinders Current, have strengthened during 1979-2014, consistent with existing observations. Eddy energetics in the EAC, the ITF/South Equatorial Current in the southeast Indian Ocean, and the Leeuwin Current have also enhanced during the same period. The multi-decadal strengthening of the ocean boundary current systems are primarily driven by large scale wind patterns associated with the dominant modes of climate variability and change - the phase shift of the Inter-decadal Pacific Oscillation/Pacific Decadal Oscillation strengthens the ITF and the Leeuwin Current/South Australian Current; and the poleward shift and strengthening of surface winds in the subtropical gyres reinforce the EAC and the Flinders Current. The invigorating ocean boundary current systems have induced extreme oceanographic conditions along the Australian coastlines in recent years, including the poleward shift of marine ecosystems off the east coast of Australia and the consecutive Ningaloo Niño - marine heatwave events off the west coast during 2011-2013. Understanding long-term trends and decadal variations of the ocean boundary currents is crucial to project future changes of the coastal marine systems under the influence of human-induced greenhouse gas forcing.

  6. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  7. Current good manufacturing practices, quality control procedures, quality factors, notification requirements, and records and reports, for infant formula. Final rule.

    PubMed

    2014-06-10

    The Food and Drug Administration (FDA or we) is issuing a final rule that adopts, with some modifications, the interim final rule (IFR) entitled "Current Good Manufacturing Practices, Quality Control Procedures, Quality Factors, Notification Requirements, and Records and Reports, for Infant Formula'' (February 10, 2014). This final rule affirms the IFR's changes to FDA's regulations and provides additional modifications and clarifications. The final rule also responds to certain comments submitted in response to the request for comments in the IFR.

  8. Zooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012

    NASA Astrophysics Data System (ADS)

    Dai, Luping; Li, Chaolun; Yang, Guang; Sun, Xiaoxia

    2016-03-01

    Horizontal changes in mesozooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012 were evaluated by ZooScan measurement on samples collected by net towing from 23 stations. Zooplankton abundance and biovolume ranged from 35.1 to 456.8 ind. m- 3 and 4.3 to 231.7 mm3 m- 3, respectively. Copepoda were the most dominant species, followed by Chaetognatha and Tunicata. According to the Bray-Curtis cluster analysis based on biovolume of zooplankton size classes of each taxonomic group at intervals of 1 (log2 mm3 ind.- 1) between - 6 and 12 and considering the effect of regional factors, zooplankton communities were classified into four groups, which basically coincided with the geographical patterns of different currents: the North Equatorial Current (NEC), the North Equatorial Counter Current (NECC), the Kuroshio Current (KC), and the Mindanao Eddy (ME), respectively. The largest and lowest biovolumes were observed in the NECC region and the NEC region, respectively, and both were dominated by the 0.3 to 1 mm equivalent spherical diameter (ESD) size class, while the ME region was dominant by the 1 to 2 mm ESD size class. The slopes of the normalized biovolume size spectra for each group were slightly lower than - 1 (range from - 0.85 to - 0.92), which indicates that zooplankton communities in the study area were characterized by low productivity and high energy transfer efficiency.

  9. Two-Equation Low-Reynolds-Number Turbulence Modeling of Transitional Boundary Layer Flows Characteristic of Gas Turbine Blades. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Schmidt, Rodney C.; Patankar, Suhas V.

    1988-01-01

    The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.

  10. Two-equation low-Reynolds-number turbulence modeling of transitional boundary layer flows characteristic of gas turbine blades. Ph. D. Thesis. Final Contractor Report

    SciTech Connect

    Schmidt, R.C.; Patankar, S.V.

    1988-05-01

    The use of low Reynolds number (LRN) forms of the k-epsilon turbulence model in predicting transitional boundary layer flow characteristic of gas turbine blades is developed. The research presented consists of: (1) an evaluation of two existing models; (2) the development of a modification to current LRN models; and (3) the extensive testing of the proposed model against experimental data. The prediction characteristics and capabilities of the Jones-Launder (1972) and Lam-Bremhorst (1981) LRN k-epsilon models are evaluated with respect to the prediction of transition on flat plates. Next, the mechanism by which the models simulate transition is considered and the need for additional constraints is discussed. Finally, the transition predictions of a new model are compared with a wide range of different experiments, including transitional flows with free-stream turbulence under conditions of flat plate constant velocity, flat plate constant acceleration, flat plate but strongly variable acceleration, and flow around turbine blade test cascades. In general, calculational procedure yields good agreement with most of the experiments.

  11. Multiscale wind cycles and current pulses at the Black Sea eastern boundary

    NASA Astrophysics Data System (ADS)

    Melnikov, Vasiliy; Moskalenko, Lidija; Piotoukh, Vladimir; Zatsepin, Andrey

    2015-04-01

    The goal of the research is to examine meteorological descriptive elements, sea-water properties, regional hydrodynamics and energy conversion fluxes in order to study sea responses to the local and far-field weather system. The Black Sea is situated in the chain of internal basins between the North Atlantic and Central Asia deserts in the marginal interaction zone and, accordingly, is under the influence of the Azores and Siberian anticyclones, Arctic cold-air surges and subtropical desert belt to the south. The analysis is based on the data of modern oceanographic measuring network "Hydro-physical Polygon" of the Institute of oceanology, using contact and remote sensing methods, weather stations around the Black Sea coasts, including long-term (1938-2014) measurements at the Gelendzhik weather station. Various satellite and Reanalysis databases are used. Currently, there are three long-time measuring moored stations (each contains ADCP and thermistor chain) and scanning profiling system "Akvalog". Hydrological sections and field surveys using towed ADCP and CTD are performed on a regular basis. The data are accumulated in the coastal archive which allows calibration of satellite measurements and testing results of numerical modeling. Data processing includes data sets preparation, editing, time series statistical calculations using histograms, progressive vector diagrams, traditional Fourier spectral analysis including auto- and cross spectra, auto and mutual wavelet diagrams, moving spectrograms, vector data methods using rotary components, spectral invariants, empirical modes, hodograph and pre-specified spectrum representations on the basis of stochastic models with imposed dynamical assumptions. Due to the intermittent nature of the time rows, spectral representation is misleading, often. In order to identify the individual evolving dynamical phenomenon, typical background (seasonal) three-dimensional structures of the hydrological field, as well as

  12. Magnetic perturbation effects on boundary plasmas during high power lower hybrid current drive in Tore Supra

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Goniche, M.; Grosman, A.; Guilhem, D.; Hess, W.; Vallet, J.-C.

    1992-12-01

    Small time-independent magnetic perturbations (δ br), produced with the Tore Supra ergodic divertor coils, have been used to control thermal loads on plasma facing components, current density profiles, the transport of non-Maxwellian particles, and the confinement properties of thermal plasmas during high power ( PLH≤3.3 MW) lower hybrid current drive (LHCD) discharges. MARFEs with 0.12 ≤ϱ m=π a2 < ne20> Ip-1≤0.22 (i.e., roughly a factor of 3 less than the smallest value of ϱ m previously reported) are obtained during the δ br pulse when PLH>2.0 MW and the edge safety factor is slightly less than 3. These MARFEs generally appear to have the same characteristics as high ϱ m MARFEs and are positionally stable throughout the LHCD+δ br pulse. Steady state conditions in which more than 90% of the total input power is radiated from a 0.15 m wide region near the high-field side wall were obtained.

  13. Observed evidence of the anomalous South China Sea western boundary current during the summers of 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Xie, Qiang; Chen, Ju; Li, Jian; Chen, Rongyu; He, Yunkai; Li, Daning

    2016-02-01

    Seven years of directly measured current data from a mooring in the Xisha area of the South China Sea (SCS), together with shipboard ADCP and satellite data, have shown the western boundary current (WBC) anomaly and its vertical structure during the summers of 2010 and 2011. The observed WBC presented obvious year-to-year variability, especially in the summer. Overall, the summer mean velocity at the mooring site over 7-year (2007-2013) was northeastward. The moored ADCP showed that the northeastward velocity was particularly strong in the summer of 2010, but the increase was confined in the upper 120 m. In contrast, the northeastward current disappeared throughout the observed depth range (from 50 to 450 m) in the summer of 2011. Even at the deepest observed position, the monthly velocity anomalies reached 14 cm s-1 westward and 12 cm s-1 southward in the zonal and meridional directions, respectively. Both the Vietnam offshore current (VOC) and double gyres in the western SCS disappeared and the southern anticyclonic gyre expanded to strengthened the northward WBC in the summer of 2010. However, in summer of 2011, the VOC intensified, and the northern cyclonic gyre enlarged with its northern edge reaching 18°N, slightly north of mooring site, which weakened the northeastward WBC. The observed SCS circulation anomalies during 2010 and 2011 were mainly induced by the basin-scale wind field anomalies associated with the 2009/2010 El Niño and 2010/2011 La Niña.

  14. Control of plasma properties in a short direct-current glow discharge with active boundaries

    SciTech Connect

    Adams, S. F.; Demidov, V. I.; Bogdanov, E. A.; Kudryavtsev, A. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-02-15

    To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slow electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.

  15. Direct measurements of HOx radicals in the marine boundary layer: testing the current tropospheric chemistry mechanism.

    PubMed

    Kanaya, Yugo; Akimoto, Hajime

    2002-01-01

    OH and HO(2) radicals, atmospheric detergents, and the reservoir thereof, play central roles in tropospheric chemistry. In spite of their importance, we had no choice but to trust their concentrations predicted by modeling studies based on known chemical processes. However, recent direct measurements of these radicals have enabled us to test and revise our knowledge of the processes by comparing the predicted and observed values of the radical concentrations. We developed a laser-induced fluorescence (LIF) instrument and successfully observed OH and HO(2) at three remote islands of Japan (Oki Island, Okinawa Island, and Rishiri Island). At Okinawa Island, the observed daytime level of HO(2) agreed closely with the model estimates, suggesting that the photochemistry at Okinawa is well described by the current chemistry mechanism. At Rishiri Island, in contrast, the observed daytime level of HO(2) was consistently much lower than the calculated values. We proposed that iodine chemistry, usually not incorporated into the mechanism, is at least partly responsible for the discrepancy in the results. At night, HO(2) was detected at levels greater than 1 pptv at all three islands, suggesting the presence of processes in the dark that produce radicals. We showed that ozone reactions with unsaturated hydrocarbons, including monoterpenes, could significantly contribute to radical production.

  16. Spatial, seasonal and vertical distributions of currently-used pesticides in the marine boundary layer of the North Sea

    NASA Astrophysics Data System (ADS)

    Mai, Carolin; Theobald, Norbert; Lammel, Gerhard; Hühnerfuss, Heinrich

    2013-08-01

    Pesticides are transported beyond source regions and reach coastal waters and shelf seas. 23 representatives of six chemical classes of currently-used pesticides (CUPs) were simultaneously quantified in the marine boundary layer and the surface seawater of the German Bight and the central North Sea in 2009 and 2010.Terbuthylazine, metolachlor, metazachlor, pendimethalin and trifluralin exhibited the highest concentrations, seasonally highly variable. Advection of contaminated air from land and subsequent atmospheric deposition was shown to contribute to surface seawater contamination significantly, in particular in regions beyond riverine input and during the main seasons of application in agriculture. Deposition was most significant for the seasonal and spatial distributions of pendimethalin and trifluralin. Atrazine and simazine levels in the air are lower than 1-2 decades ago.

  17. Characteristics and causes of Deep Western Boundary Current transport variability at 34.5° S during 2009-2014

    NASA Astrophysics Data System (ADS)

    Meinen, Christopher S.; Garzoli, Silvia L.; Perez, Renellys C.; Campos, Edmo; Piola, Alberto R.; Chidichimo, Maria Paz; Dong, Shenfu; Sato, Olga T.

    2017-03-01

    The Deep Western Boundary Current (DWBC) at 34.5° S in the South Atlantic carries a significant fraction of the cold deep limb of the Meridional Overturning Circulation (MOC), and therefore its variability affects the meridional heat transport and consequently the regional and global climate. Nearly 6 years of observations from a line of pressure-equipped inverted echo sounders (PIESs) have yielded an unprecedented data set for studying the characteristics of the time-varying DWBC volume transport at 34.5° S. Furthermore, the horizontal resolution of the observing array was greatly improved in December 2012 with the addition of two current-and-pressure-equipped inverted echo sounders (CPIESs) at the midpoints of the two westernmost pairs of PIES moorings. Regular hydrographic sections along the PIES/CPIES line confirm the presence of recently ventilated North Atlantic Deep Water carried by the DWBC. The time-mean absolute geostrophic transport integrated within the DWBC layer, defined between 800-4800 dbar and within longitude bounds of 51.5 to 44.5° W, is -15 Sv (1 Sv = 106 m3 s-1; negative indicates southward flow). The observed peak-to-peak range in volume transport using these integration limits is from -89 to +50 Sv, and the temporal standard deviation is 23 Sv. Testing different vertical integration limits based on time-mean water-mass property levels yields small changes to these values, but no significant alteration to the character of the transport time series. The time-mean southward DWBC flow at this latitude is confined west of 49.5° W, with recirculations dominating the flow further offshore. As with other latitudes where the DWBC has been observed for multiple years, the time variability greatly exceeds the time mean, suggesting the presence of strong coherent vortices and/or Rossby Wave-like signals propagating to the boundary from the interior.

  18. Variability of the Deep Western Boundary Current at 26.5°N during 2004-2009

    NASA Astrophysics Data System (ADS)

    Meinen, Christopher S.; Johns, William E.; Garzoli, Silvia L.; van Sebille, Erik; Rayner, Darren; Kanzow, Torsten; Baringer, Molly O.

    2013-01-01

    Five years of data from a line of dynamic height moorings (DHM), bottom-pressure recorders (BPR), and pressure-equipped inverted echo sounders (PIES) near the Atlantic Ocean western boundary at 26.5°N are used to evaluate the structure and variability of the Deep Western Boundary Current (DWBC) during 2004-2009. Comparisons made between transports estimated from the DHM+BPR and those made by the PIES demonstrate that the two systems are collecting equivalent volume transport information (correlation coefficient r=0.96, root-mean-square difference=6 Sv; 1 Sv=106 m3 s-1). Integrated to ˜450 km off from the continental shelf and between 800 and 4800 dbar, the DWBC has a mean transport of approximately 32 Sv and a standard deviation during these five years of 16 Sv. Both the barotropic (full-depth vertical mean) and baroclinic flows have significant variability (changes exceeding 10 Sv) on time scales ranging from a few days to months, with the barotropic variations being larger and more energetic at all time scales. The annual cycle of the deep transport is highly dependent on the horizontal integration distance; integrating ˜100 km offshore yields an annual cycle of roughly similar magnitude but shifted in phase relative to that found from current meter arrays in the 1980-1990s, while the annual cycle becomes quite weak when integrating ˜450 km offshore. Variations in the DWBC transport far exceed those of the total basin-wide Meridional Overturning Circulation (standard deviations of 16 Sv vs. 5 Sv). Transport integrated in the deep layer out to the west side of the Mid-Atlantic Ridge still demonstrates a surprisingly high variance, indicating that some compensation of the western basin deep variability must occur in the eastern basin.

  19. Dramatic Weakening of the Pacific Water Boundary Current in the Beaufort Sea during the First Decade of the 2000s.

    NASA Astrophysics Data System (ADS)

    Pickart, R. S.; Brugler, E.; Moore, K.; Roberts, S.; Weingartner, T.; Statscewich, H.

    2014-12-01

    Pacific-origin water has profound impacts on the physical state andecosystem of the Western Arctic Ocean. The cold winter waterventilates the upper halocline and supplies nutrients that fuelprimary productivity, while the warm summer waters melt sea ice andsupply freshwater to the Beaufort Gyre. Here we use mooring datacollected as part of the Arctic Observing Network (AON) to examine theinterannual trends in the current over the period 2002-2011.Strikingly, the volume transport of the current has decreased by morethan 80%, despite the fact that the flow through Bering Strait hasincreased over this time period. The largest changes have occurred inthe summer months. Using atmospheric reanalysis fields and weatherstation data, we demonstrate that an increase in summer easterly windsis the primary cause for the reduction in transport, which is largelydictated by the behavior of the two atmospheric centers of action, theBeaufort High and Aleutian Low. Using additional mooring and shipboarddata, together with satellite fields, we argue that a significantportion of the mass and heat passing through Bering Strait in recentyears has been advected out of Barrow Canyon into the interior CanadaBasin - rather than entering the boundary current in the Beaufort Sea- where it is responsible for a significant portion of the increasedsea ice melt in the basin.

  20. Diagnostic Studies of Mesoscale Variability in the Florida Current at the Downstream Boundary of the Intra-Americas Sea (IAS)

    NASA Astrophysics Data System (ADS)

    Mooers, C. N.; Bang, I.

    2007-05-01

    Most of the throughflow of the Intra-Americas Sea (IAS) passes through the Straits of Florida as the Florida Current. The Florida Current forms an intense jet and frontal system along the shelfbreak of the East Florida Shelf. It exhibits extrinsic variability associated with tides, synoptic weather systems, and seasonal and longer- term variations of atmospheric forcing and oceanic general circulation. The Florida Current also exhibits intrinsic variability associated with dynamical instabilities resulting in the formation of the well-known cyclonic Florida Current frontal eddies (FCFEs), their less well-known anticyclonic counterparts, and meanders on time scales similar to those of the synoptic atmospheric forcing. Here, the results of a limited-area, two-year numerical simulation using the Princeton Ocean Model (POM) [with mesoscale-admitting resolution; realistic bottom topography for the Straits of Florida; and realistic tidal, atmospheric, and open boundary forcing] are used for diagnostic studies of the aforementioned Florida Current variability. The simulations are validated against various types of observations and then used to examine processes beyond the scope and grasp of available observations. For example, powerful downwelling events occur along the East Florida Shelf (and upwelling events along the Bahamas) as the consequence of the passage of wintertime cold fronts which available observations can only partially characterize, while the simulations provide a much more comprehensive view of the associated countercurrent flows and related phenomena. Overall, a scientific strategy of diagnostic analyses based on numerical simulations is illustrated that should prove useful in improving the understanding of how other elements of the Gulf Stream System interact with the continental shelf and slope regions of the IAS.

  1. I-BIEM, an iterative boundary integral equation method for computer solutions of current distribution problems with complex boundaries: A new algorithm. I - Theoretical

    NASA Technical Reports Server (NTRS)

    Cahan, B. D.; Scherson, Daniel; Reid, Margaret A.

    1988-01-01

    A new algorithm for an iterative computation of solutions of Laplace's or Poisson's equations in two dimensions, using Green's second identity, is presented. This algorithm converges strongly and geometrically and can be applied to curved, irregular, or moving boundaries with nonlinear and/or discontinuous boundary conditions. It has been implemented in Pascal on a number of micro- and minicomputers and applied to several geometries. Cases with known analytic solutions have been tested. Convergence to within 0.1 percent to 0.01 percent of the theoretical values are obtained in a few minutes on a microcomputer.

  2. A numerical study of the roles of Subgyre-scale mixing and the Western boundary current on homogenization of a passive tracer

    NASA Astrophysics Data System (ADS)

    Musgrave, David L.

    1985-01-01

    A numerical model integrated the steady advection-diffusion equation by using a kinematic circulation with characteristics of a subtropical gyre, i.e., closed streamlines and western intensification. Homogenization of the interior concentration increased, and the gradients were forced to the boundaries as mixing, parameterized as eddy diffusion, decreased. As the western boundary current intensified, the value of the homogenized interior became closer to the southern boundary value. This indicated that cross-stream mixing was enhanced within the western boundary current. Tongues of high and low tracer concentration spiraled across streamlines toward the center of the gyre. These simulations will be helpful in the interpretation of lateral distributions of geochemical tracers, which are being generated by programs such as TTO.

  3. Current status of final design and R&D for ITER blanket shield blocks in Korea

    NASA Astrophysics Data System (ADS)

    Ha, M. S.; Kim, S. W.; Jung, H. C.; Hwang, H. S.; Heo, Y. G.; Kim, D. H.; Ahn, H. J.; Lee, H. G.; Jung, K. J.

    2015-07-01

    them and to optimize the cooling channels. The SB #8 FSP was manufactured and tested in accordance with the pre-qualification program based on the preliminary design, and related R&D activities were implemented to resolve the fabrication issues. This paper provides the current status of the final design and relevant R&D activities of the blanket SB.

  4. Influence of point defects on grain boundary diffusion in oxides. Final technical report, July 1, 1990--June 30, 1993

    SciTech Connect

    Stubican, V.S.

    1993-11-01

    Grain boundary diffusion coefficients of {sup 57}Co and {sup 59}Co in polycrys. NiO, NiO bicrystal, and polycrys. Fe{sub 3}O{sub 4} were determined at various oxygen pressures at 750 C. For NiO, the low oxygen pressure region (<10{sup {minus}10} MPa) displayed constant grain boundary diffusion coefficients as the oxygen pressure decreased, indicating an extrinsic region in which the impurity-induced defects dominated the intrinsic defects. At greater oxygen pressures, the intrinsic defects (Ni vacancies) dominated the extrinsic defects, causing the diffusion to increase with pressure. For Fe{sub 3}O{sub 4}, at low oxygen pressures (<10{sup {minus}16} MPa), the grain boundary diffusion coefficient increased when the pressure decreased, owing to interstitial type diffusion; at >10{sup {minus}15} MPa, the diffusion increased with pressure, owing to vacancy type diffusion. D{sub gb} of Co ions in Fe{sub 3}O{sub 4} is proportional to pO{sub 2}{sup {minus}2/3} in the low pressure region and to pO{sub 2}{sup 2/3} in the high pressure region, indicating similar mechanisms in the grain boundary diffusion and volume diffusion. Ratio of D{sub gb}/D was about 10{sup 3}.

  5. Links Between the Deep Western Boundary Current, Labrador Sea Water Formation and Export, and the Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Myers, Paul G.; Kulan, Nilgun

    2010-05-01

    Based on an isopyncal analysis of historical data, 3-year overlapping triad fields of objectively analysed temperature and salinity are produced for the Labrador Sea, covering 1949-1999. These fields are then used to spectrally nudge an eddy-permitting ocean general circulation model of the sub-polar gyre, otherwise forced by inter annually varying surface forcing based upon the Coordinated Ocean Reference Experiment (CORE). High frequency output from the reanalysis is used to examine Labrador Sea Water formation and its export. A number of different apprpoaches are used to estimate Labrador Sea Water formation, including an instanteous kinematic approach to calculate the annual rate of water mass subduction at a given density range. Historical transports are computed along sections at 53 and 56N for several different water masses for comparison with recent observations, showing a decline in the stength of the deep western boundary current with time. The variability of the strength of the meridional overturning circulation (MOC) from the reanalysis is also examined in both depth and density space. Linkages between MOC variability and water mass formation variability is considered.

  6. Temperature signature of high latitude Atlantic boundary currents revealed by marine mammal-borne sensor and Argo data

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Boehme, Lars; Meredith, Michael P.; Davidson, Fraser J. M.; Stenson, Garry B.; Hammill, Mike O.

    2011-08-01

    Results from the development and analysis of a novel temperature dataset for the high latitude North-West Atlantic are presented. The new 1° gridded dataset (“ATLAS”) has been produced from about 13,000 Argo and 48,000 marine mammal (hooded seal, harp seal, grey seal and beluga) profiles spanning 2004-8. These data sources are highly complementary as marine mammals greatly enhance shelf region coverage where Argo floats are absent. ATLAS reveals distinctive boundary current related temperature minima in the Labrador Sea (-1.1°C) and at the east Greenland coast (1.8°C), largely absent in the widely-used Levitus'09 and EN3v2a datasets. The ATLAS 0-500 m average temperature is lower than Levitus'09 and EN3v2a by up to 3°C locally. Differences are strongest from 0-300 m and persist at reduced amplitude from 300-500 m. Our results clearly reveal the value of marine mammal-borne sensors for a reliable description of the North-West Atlantic at a time of rapid change.

  7. Inverse current-source density method in 3D: reconstruction fidelity, boundary effects, and influence of distant sources.

    PubMed

    Łeski, Szymon; Wójcik, Daniel K; Tereszczuk, Joanna; Swiejkowski, Daniel A; Kublik, Ewa; Wróbel, Andrzej

    2007-01-01

    Estimation of the continuous current-source density in bulk tissue from a finite set of electrode measurements is a daunting task. Here we present a methodology which allows such a reconstruction by generalizing the one-dimensional inverse CSD method. The idea is to assume a particular plausible form of CSD within a class described by a number of parameters which can be estimated from available data, for example a set of cubic splines in 3D spanned on a fixed grid of the same size as the set of measurements. To avoid specificity of particular choice of reconstruction grid we add random jitter to the points positions and show that it leads to a correct reconstruction. We propose different ways of improving the quality of reconstruction which take into account the sources located outside the recording region through appropriate boundary treatment. The efficiency of the traditional CSD and variants of inverse CSD methods is compared using several fidelity measures on different test data to investigate when one of the methods is superior to the others. The methods are illustrated with reconstructions of CSD from potentials evoked by stimulation of a bunch of whiskers recorded in a slab of the rat forebrain on a grid of 4x5x7 positions.

  8. Weakest winter South China Sea western boundary current caused by the 2015-2016 El Niño event

    NASA Astrophysics Data System (ADS)

    Zhao, Ruixiang; Zhu, Xiao-Hua

    2016-10-01

    During the winter of 2015-2016, the strongest El Niño event of the twenty-first century occurred. At the same time, volume transport (VT) time series of the South China Sea western boundary current (SCSWBC) exhibited a minimum value of 3.7 Sv (1 Sv = 1 × 106 m3 s-1) toward the southwest, indicating the weakest strength ever recorded in boreal winter (from November to February). The South China Sea (SCS) cyclonic gyre, inferred from the satellite-derived surface absolute geostrophic current, was significantly reduced. It was considered that the weakened wind stress curl (negative anomaly) over the SCS resulting from an anticyclone over the Philippine Sea played an essential role. The anticyclone arose from a Rossby-wave response to a negative sea surface temperature anomaly in the northwest Pacific. This idea is further supported by composite analysis, which shows that during El Niño (La Niña) winter, negative (positive) wind stress curl anomalies prevail in the Philippine Sea and the SCS; thus, the wind stress curl over the SCS is reduced (strengthened), leading to a weaker (stronger) SCS cyclonic gyre and SCSWBC. The mean VT of SCSWBC is 4.7 Sv (5.6 Sv), which is smaller (larger) than 5.2 Sv in normal years. This study provides robust observational evidence from long-term in situ volume transport monitoring that El Niño can have a significant impact on the SCSWBC through an atmosphere-bridged teleconnection.

  9. Prototyping global Earth System Models at high resolution: Representation of climate, ecosystems, and acidification in Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Dunne, J. P.; John, J. G.; Stock, C. A.

    2013-12-01

    The world's major Eastern Boundary Currents (EBC) such as the California Current Large Marine Ecosystem (CCLME) are critically important areas for global fisheries. Computational limitations have divided past EBC modeling into two types: high resolution regional approaches that resolve the strong meso-scale structures involved, and coarse global approaches that represent the large scale context for EBCs, but only crudely resolve only the largest scales of their manifestation. These latter global studies have illustrated the complex mechanisms involved in the climate change and acidification response in these regions, with the CCLME response dominated not by local adjustments but large scale reorganization of ocean circulation through remote forcing of water-mass supply pathways. While qualitatively illustrating the limitations of regional high resolution studies in long term projection, these studies lack the ability to robustly quantify change because of the inability of these models to represent the baseline meso-scale structures of EBCs. In the present work, we compare current generation coarse resolution (one degree) and a prototype next generation high resolution (1/10 degree) Earth System Models (ESMs) from NOAA's Geophysical Fluid Dynamics Laboratory in representing the four major EBCs. We review the long-known temperature biases that the coarse models suffer in being unable to represent the timing and intensity of upwelling-favorable winds, along with lack of representation of the observed high chlorophyll and biological productivity resulting from this upwelling. In promising contrast, we show that the high resolution prototype is capable of representing not only the overall meso-scale structure in physical and biogeochemical fields, but also the appropriate offshore extent of temperature anomalies and other EBC characteristics. Results for chlorophyll were mixed; while high resolution chlorophyll in EBCs were strongly enhanced over the coarse resolution

  10. Boundary-layer cumulus over heterogeneous landscapes: A subgrid GCM parameterization. Final report, December 1991--November 1995

    SciTech Connect

    Stull, R.B.; Tripoli, G.

    1996-01-08

    The authors developed single-column parameterizations for subgrid boundary-layer cumulus clouds. These give cloud onset time, cloud coverage, and ensemble distributions of cloud-base altitudes, cloud-top altitudes, cloud thickness, and the characteristics of cloudy and clear updrafts. They tested and refined the parameterizations against archived data from Spring and Summer 1994 and 1995 intensive operation periods (IOPs) at the Southern Great Plains (SGP) ARM CART site near Lamont, Oklahoma. The authors also found that: cloud-base altitudes are not uniform over a heterogeneous surface; tops of some cumulus clouds can be below the base-altitudes of other cumulus clouds; there is an overlap region near cloud base where clear and cloudy updrafts exist simultaneously; and the lognormal distribution of cloud sizes scales to the JFD of surface layer air and to the shape of the temperature profile above the boundary layer.

  11. Low Reynold's number boundary layers in a disturbed environment. Ph.D. Thesis - August, 1985 - Final Report

    NASA Technical Reports Server (NTRS)

    Paik, D. K.; Reshotko, E.

    1986-01-01

    Studies of flat plate boundary layer development were made in a low speed wind tunnel at turbulence levels from 2%to 7%. Only transitional and turbulent flows were observed in the range 280 Re sub theta 700. The mean turbulent velocity profiles display law-of-the-wall behavior but have negligible wake component. The u' disturbance profiles compare well with those of other experiments, the peak value of u'/u sub tau being about 2.5. The effect of free-stream turbulence level on turbulent skin friction can be nicely correlated with those of other investigations on a plot of u sub e/u sub tau versus Re sub theta. A discussion on the u' spectra for the transitional boundary-layers is presented.

  12. Low-frequency variability of Western Boundary Currents in the turbulent ocean: intrinsic modes and atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Sérazin, Guillaume; Penduff, Thierry; Terray, Laurent; Grégorio, Sandy; Barnier, Bernard; Molines, Jean-Marc

    2015-04-01

    Ocean-atmosphere heat fluxes are particularly strong in Western Boundary Current (WBC) regions where SST front variations influence basin-scale climate variability. Observed low-frequency fluctuations in latitude and strength of these oceanic jets are classically thought to be essentially atmospherically-driven by wind stress curl variability via the oceanic Rossby wave adjustment. Yet academic eddy-resolving process-oriented models with double-gyre configurations have revealed that an idealized WBC may exhibit low-frequency intrinsic fluctuations without low-frequency external forcing (e.g. Berloff et al., 2007, Dijkstra and Ghil, 2005, etc). Experiments with eddying Ocean General Circulation Models (OGCMs) have also shown that the amount of low-frequency Sea Level Anomaly (SLA) variability is largely intrinsic in WBCs (Penduff et al. 2011; Sérazin et al 2014) and that the frontal-scale (<10°) pattern of the Kuroshio Extension (KE) variability is similar to intrinsic modes (Taguchi et al. 2010). Based on a pair of atmospherically-forced 1/12° OGCM experiments that simulate with accuracy either the intrinsic variability (seasonally-forced) or the observed total variability (forced with the full range of atmospheric timescales), Empirical Orthogonal Function analysis is performed on zonally-averaged SLA fields of four main WBCs (e.g. Gulf Stream, Kuroshio Extension, Agulhas Current and East Australian Current). The first two modes of the KE and GS exhibit a similar spatial structure that is shaped by oceanic intrinsic processes. The frequency content is however different between the intrinsic and total Principal Components, the former containing a wide range of timescales similar to a red noise and the latter being more autocorrelated at interannual-to-decadal timescales. These modes are compared with those obtained from the 20 years of altimetry observation and relationships with low-frequency westward propagative features in the respective oceanic basin are

  13. Scaling and modeling of three-dimensional, end-wall, turbulent boundary layers. Ph.D. Thesis - Final Report

    NASA Technical Reports Server (NTRS)

    Goldberg, U. C.; Reshotko, E.

    1984-01-01

    The method of matched asymptotic expansion was employed to identify the various subregions in three dimensional, turbomachinery end wall turbulent boundary layers, and to determine the proper scaling of these regions. The two parts of the b.l. investigated are the 3D pressure driven part over the endwall, and the 3D part located at the blade/end wall juncture. Models are proposed for the 3d law of the wall and law of the wake. These models and the data of van den Berg and Elsenaar and of Mueller are compared and show good agreement between models and experiments.

  14. Application of taxonomy theory, Volume 1: Computing a Hopf bifurcation-related segment of the feasibility boundary. Final report

    SciTech Connect

    Zaborszky, J.; Venkatasubramanian, V.

    1995-10-01

    Taxonomy Theory is the first precise comprehensive theory for large power system dynamics modeled in any detail. The motivation for this project is to show that it can be used, practically, for analyzing a disturbance that actually occurred on a large system, which affected a sizable portion of the Midwest with supercritical Hopf type oscillations. This event is well documented and studied. The report first summarizes Taxonomy Theory with an engineering flavor. Then various computational approaches are sighted and analyzed for desirability to use with Taxonomy Theory. Then working equations are developed for computing a segment of the feasibility boundary that bounds the region of (operating) parameters throughout which the operating point can be moved without losing stability. Then experimental software incorporating large EPRI software packages PSAPAC is developed. After a summary of the events during the subject disturbance, numerous large scale computations, up to 7600 buses, are reported. These results are reduced into graphical and tabular forms, which then are analyzed and discussed. The report is divided into two volumes. This volume illustrates the use of the Taxonomy Theory for computing the feasibility boundary and presents evidence that the event indeed led to a Hopf type oscillation on the system. Furthermore it proves that the Feasibility Theory can indeed be used for practical computation work with very large systems. Volume 2, a separate volume, will show that the disturbance has led to a supercritical (that is stable oscillation) Hopf bifurcation.

  15. Eliminating Boundaries through Family Centered Developmentally Appropriate Practices for Preschool and Primary Children with Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Holland, Francine; And Others

    This final report describes activities and achievements of a Texas project to facilitate inclusive programming for preschool and primary children with disabilities using the High/Scope approach, which provides for developmentally appropriate programming for young children with and without disabilities. The project focused on capacity building…

  16. Low frequency RF current drive. Final report, January 1, 1988--May 31, 1997

    SciTech Connect

    Hershkowitz, N.

    1999-05-01

    This report starts with a summary of research done on the Phaedrus Tandom Mirror concept and how this research led to the design and construction of the Phaedrus-T Tokamak. Next it gives a more detailed description of the results from the last four years of research, which include the following areas: (1) first experimental demonstration of AWCD (Alfven Wave Current Drive); (2) current drive location and loop voltage response; (3) trapping and current drive efficiency; and (4) reflectometry.

  17. Boric acid corrosion of carbon and low-alloy steel pressure-boundary components in PWRs: Final report

    SciTech Connect

    O'Neill, A.S.; Hall, J.F.

    1988-08-01

    This report presents the results of a literature survey of the effects of borated water leakage on carbon and low-alloy steel components (other than fasteners) in PWR applications. Boric acid corrosion field experience and laboratory test results are addressed. The report reviews and summarizes corrosion events that have occurred in PWRs and provides, for each event, plant identification, year of occurrence, component or part affected, materials, leak rates (where available), extent of corrosion and repair procedures. Laboratory test data are also discussed, including some recent unpublished data. The report recommends corrective actions that the utilities should take to prevent boric acid corrosion of pressure boundary components. 18 refs., 3 figs., 4 tabs.

  18. Current Interdisciplinary Science Research in the High School Classroom. Final Evaluation Report.

    ERIC Educational Resources Information Center

    Shann, Mary H.

    This is the final evaluation report of the On Growth and Form (OGAF): Learning Concepts of Probability and Fractals by Doing Science project that aimed at engaging high school students in hands-on science activities, experiments, and computer simulations that use probability and fractal geometry to model ragged structures in the real world.…

  19. Increased grain boundary critical current density Jcgb by Pr-doping in pulsed laser-deposited Y1-xPrxBCO thin films

    NASA Astrophysics Data System (ADS)

    Irjala, M.; Huhtinen, H.; Awana, V. P. S.; Falter, M.; Paturi, P.

    2011-12-01

    A comparative study has been performed on Pr-doped Y1-x PrxBCO (x =0-0.20) thin films deposited by pulsed laser deposition on MgO and buffered NiW substrates to study the effect of Pr-doping on the grain boundary critical current density (Jcgb). Our earlier work on bulk materials and SrTiO3 substrates indicated that, whereas Pr increases Jc in bulk samples, it does not increase Jc in film samples without grain boundaries. In this work, we present increased Jc in low concentrations of Pr3+-doping (x < 0.04) at temperatures above 60 K in film samples on MgO substrates and at all temperatures and fields in film samples on buffered NiW substrates. Results indicate that Pr segregates into grain boundary regions, improving the local hole concentration and carrier density, hence, increasing Jcgb.

  20. Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report

    SciTech Connect

    Not Available

    1981-12-10

    The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

  1. Influence of the grain boundary network on the critical current of YBa2Cu3O7 films grown on biaxially textured metallic substrates

    NASA Astrophysics Data System (ADS)

    Fernández, L.; Holzapfel, B.; Schindler, F.; de Boer, B.; Attenberger, A.; Hänisch, J.; Schultz, L.

    2003-02-01

    YBa2Cu3O7/YSZ/CeO2 heterostructures have been grown epitaxially on biaxially textured Ni substrates by pulsed laser deposition. The texture of the film was determined by electron backscattering diffraction, providing information on the propagation of the grain boundary network from the Ni substrate to the YBa2Cu3O7 film via the epitaxial growth. The grain boundary network limits the critical current density to 0.3 MA/cm2 (77 K, 0 T), compared with 1.3 MA/cm2 (77 K, 0 T) for a film grown on a single crystalline Ni substrate. Transport measurements on the coated conductor sample at different temperatures and magnetic fields show that there is a crossover field between intergrain and intragrain critical current that is shifted to higher magnetic fields as the temperature is reduced.

  2. Forecasting Performance in Organizations: An Application of Current-Value Human Resources Accounting. Final Report.

    ERIC Educational Resources Information Center

    Pecorella, Patricia A.; And Others

    A methodology to describe current-value human resources accounting (HRA) was developed to aid management in decision making and provide information about the effects of organizational policies and practices on the value of the organizations' human resources. A two-phase activity was designed to investigate the nature of the relationship between…

  3. SUPPLEMENTARY COMPARISON: Final report EURAMET.EM-S30 on EURAMET Project 1081: Supplementary comparison of measurements of current transformers

    NASA Astrophysics Data System (ADS)

    Dimitrov, Emil; Kumanova, Ginka; Styblíková, Renata; Draxler, Karel; Dierikx, Erik

    2010-01-01

    The supplementary comparison was carried out between CMI, Czech Republic and BIM, NCM Bulgaria in the field of current transformer ratio measurements. The current errors and phase displacement of the traveling standards, current transformers: Tettex 4720, CLA 2.2, CLA 2.2, CLA 3.2, CLB 10, I 523 were determined at 50 Hz, 5 VA burden at unity power factor at ratios: primary (4000, 2000, 1000, 500, 100, 5, 1 and 0.5) A/secondary 5 A. Both participants used their own standard measurement method. The obtained results show good agreement for all of the current ratio error measurements (except for the measurements at 2 kA) and for the current phase displacement measurements (the agreement on several measurement points is marginal). The aim of the comparison was to demonstrate the improvement and extension of the calibration and measurement capabilities (CMCs) of BIM in this working field and to support the improved CMCs in Appendix C of the CIPM Mutual Recognition Arrangement (MRA). Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  4. Commuter rail state-of-the-art: A study of current systems. Final report

    SciTech Connect

    Shen, L.D.; Wu, J.W.

    1992-12-01

    The report documents the results of the state-of-the-art study on current commuter rail systems in the United States. Detailed information on operations, fare collection, stations, maintenance facilities, patronage, railcars, and feeder systems are presented. This commuter rail report is intended to provide a database of actual operation statistics for the 12 commuter rail systems in the United States. Statistics were collected on existing commuter rail services through Federal Transit Administration (FTA) reports, American Public Transit Association (APTA) and railroad industry publications. In addition, a survey was also conducted to collect the pertinent information on existing systems. A comparative analysis of commuter rail service with respect to other mass transit systems was conducted. New and proposed systems are also discussed. Current trends in commuter rail operations are presented. Startup costs for new systems were analyzed. This report found that many cities are considering commuter rail as a potential part of the solution to local transportation problems.

  5. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report

    SciTech Connect

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data

  6. Evaluation of stainless steel cladding for use in current design LWRs. Final report

    SciTech Connect

    Strasser, A.; Santucci, J.; Lindquist, K.; Yario, W.; Stern, G.; Goldstein, L.; Joseph, L.

    1982-12-01

    The design of stainless steel-clad LWR fuel and its performance at steady-state, transient, and accident conditions were reviewed. The objective was to evaluate the potential benefits and disadvantages of substituting stainless steel-clad fuel for the currently used Zircaloy-clad fuel. For a large, modern PWR, the technology and the fuel-cycle costs of stainless steel- and Zircaloy-clad fuels were compared.

  7. R & D on Very-High-Current Superconducting Proton Linac, Final Report

    SciTech Connect

    Ben-Zvi, Ilan

    2013-03-31

    The aim of this R&D project was to develop a superconducting cavity for a very-­ high-current proton accelerator. The particular application motivating the proposal was a LHC upgrade called the Superconducting Proton Linac, or SPL. Under the grant awarded to Stony Brook University the cavity was designed, a prototype copper cavity, followed by the niobium cavity, were built. A new set of HOM dampers was developed. The cavity has outstanding RF performance parameters – low surface fields, low power loss and all HOMs are fully damped. In fact, it is a “universal cavity” in the sense that it is suited for the acceleration of high-­current protons and well as high current electrons. Its damping of HOM modes is so good that it can see service in a multi-pass linac or an Energy Recovery Linac in addition to the easier service in a single-pass linac. Extensive measurements were made on the cavities and couplers, with the exception of the cold test of the niobium cavity. At the time of this report the cavity has been chemically processed and is ready for vertical testing which will be carried out shortly.

  8. Direct current bias effects on grain boundary Schottky barriers in CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Kim, Il-Doo; Rothschild, Avner; Tuller, Harry L.

    2006-02-01

    CaCu3Ti4O12 exhibits an unusually high dielectric constant on the order of 105 and highly nonlinear I-V characteristics. Impedance spectroscopy measurements carried out in this work point to the crucial role played by grain boundary barriers in controlling the electrical properties of this material. Under dc bias, the grain boundary resistance decreases, followed by a precipitous breakdown at higher applied voltages. The barrier height is estimated to be ˜0.82eV. The grain conductivity shows a transition from a negative temperature coefficient of resistance with activation energy of ˜0.08eV to a positive temperature coefficient of resistance at 280 °C suggesting a transition from impurity ionization to scattering controlled mobility in the carrier saturation region.

  9. The Gulf Stream Pathway and the Impacts of the Eddy-Driven Abyssal Circulation and the Deep Western Boundary Current

    DTIC Science & Technology

    2008-07-06

    Western North Atlantic Ocean Gulf Stream region ABSTRACT A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9-47 N) is...Atlantic basin and the I ntra-Americas Sea (9 -47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape...between Cape Hatteras and the Grand Banks based on comparisons with Gulf Stream pathways from the satellite infrared (IR) sea surface temperature (SST

  10. [Magnetic helicity and current drive in fusion devices]. Final technical report

    SciTech Connect

    1998-02-02

    The research program focused on two main themes: (i) magnetic helicity and (ii) current drive by low-frequency waves. At first these themes seemed unrelated, but as time progressed, they became interwoven, and ultimately closely connected. A sub-theme is that while the MHD model of a plasma stimulates many intriguing counter-intuitive ideas for creating and sustaining magnetic confinement configurations, usually the crux of these schemes involves some sort of breakdown of MHD, i.e., involves physics which transcends MHD.

  11. Medical Gas Containers and Closures; Current Good Manufacturing Practice Requirements. Final rule.

    PubMed

    2016-11-18

    The Food and Drug Administration (FDA or the Agency) is amending its current good manufacturing practice (CGMP) and labeling regulations regarding medical gases. FDA is requiring that portable cryogenic medical gas containers not manufactured with permanent gas use outlet connections have gas-specific use outlet connections that cannot be readily removed or replaced except by the manufacturer. FDA is also requiring that portable cryogenic medical gas containers and high-pressure medical gas cylinders meet certain labeling, naming, and color requirements. These requirements are intended to increase the likelihood that the contents of medical gas containers are accurately identified and reduce the likelihood of the wrong gas being connected to a gas supply system or container. FDA is also revising an existing regulation that conditionally exempts certain medical gases from certain otherwise-applicable labeling requirements in order to add oxygen and nitrogen to the list of gases subject to the exemption, and to remove cyclopropane and ethylene from the list.

  12. Utilization of low-quality natural gas: A current assessment. Final report

    SciTech Connect

    Acheson, W.P.; Hackworth, J.H.; Kasper, S.; McIlvried, H.G.

    1993-01-01

    The objective of this report is to evaluate the low quality natural gas (LQNG) resource base, current utilization of LQNG, and environmental issues relative to its use, to review processes for upgrading LQNG to pipeline quality, and to make recommendations of research needs to improve the potential for LQNG utilization. LQNG is gas from any reservoir which contains amounts of nonhydrocarbon gases sufficient to lower the heating value or other properties of the gas below commercial, pipeline standards. For the purposes of this study, LQNG is defined as natural gas that contains more than 2% carbon dioxide, more than 4% nitrogen, or more than 4% combined CO{sub 2} plus N{sub 2}. The other contaminant of concern is hydrogen sulfide. A minor contaminant in some natural gases is helium, but this inert gas usually presents no problems.

  13. Analysis of environmental constraints on expanding reserves in current and future reservoirs in wetlands. Final report

    SciTech Connect

    Harder, B.J.

    1995-03-01

    Louisiana wetlands require careful management to allow exploitation of non-renewable resources without destroying renewable resources. Current regulatory requirements have been moderately successful in meeting this goal by restricting development in wetland habitats. Continuing public emphasis on reducing environmental impacts of resource development is causing regulators to reassess their regulations and operators to rethink their compliance strategies. We examined the regulatory system and found that reducing the number of applications required by going to a single application process and having a coherent map of the steps required for operations in wetland areas would reduce regulatory burdens. Incremental changes can be made to regulations to allow one agency to be the lead for wetland permitting at minimal cost to operators. Operators need cost effective means of access that will reduce environmental impacts, decrease permitting time, and limit future liability. Regulators and industry must partner to develop incentive based regulations that can provide significant environmental impact reduction for minimal economic cost. In addition regulators need forecasts of future E&P trends to estimate the impact of future regulations. To determine future activity we attempted to survey potential operators when this approach was unsuccessful we created two econometric models of north and south Louisiana relating drilling activity, success ratio, and price to predict future wetland activity. Results of the econometric models indicate that environmental regulations have a small but statistically significant effect on drilling operations in wetland areas of Louisiana. We examined current wetland practices and evaluated those practices comparing environmental versus economic costs and created a method for ranking the practices.

  14. Influence of shallowness, bank inclination and bank roughness on the variability of flow patterns and boundary shear stress due to secondary currents in straight open-channels

    NASA Astrophysics Data System (ADS)

    Blanckaert, K.; Duarte, A.; Schleiss, A. J.

    2010-09-01

    Boundary shear stress and flow variability due to its interaction with main flow and secondary currents were investigated under conditions that extend previous research on trapezoidal channels. Secondary currents that scale with the flow depth were found over the entire width in all experiments. These findings contradict the widespread perception that secondary currents die out at a distance of 2.5 times the flow depth from the bank, a perception which is largely based on experiments with smooth boundaries. The reported results indicate that a stable pattern of secondary currents over the entire channel width can only be sustained over a fixed horizontal bed if the bed's roughness is sufficient to provide the required transverse oscillations in the turbulent shear stresses. Contrary to laboratory flumes, alluvial river bed always provide sufficient roughness. The required external forcing of this hydrodynamic instability mechanism is provided by the turbulence-generated near-bank secondary currents. The pattern of near-bank secondary currents depends on the inclination and the roughness of the bank. In all configurations, secondary currents result in a reduction of the bed shear stress in the vicinity of the bank and a heterogeneous bank shear stress that reaches a maximum close to the toe of the bank. Moreover, these currents cause transverse variability of 10-15% for the streamwise velocities and 0.2 u*2-0.3 u* 2 for the bed shear stress. These variations are insufficient to provide the flow variability required in river restoration projects, but nevertheless must be accounted for in the design of stable channels.

  15. Assessment of research directions for high-voltage direct-current power systems. Final report

    SciTech Connect

    Long, W F

    1982-09-01

    High voltage direct current (HVDC) power transmission continues to be an emerging technology nearly thirty years after its introduction into modern power systems. To date its use has been restricted to either specialized applications having identifiable economic advantages (e.g., breakeven distance) or, rarely, applications where decoupling is needed. Only recently have the operational advantages (e.g., power modulation) of HVDC been realized on operating systems. A research project whose objective was to identify hardware developments and, where appropriate, system applications which can exemplify cost and operational advantages of integrated ac/dc power systems is discussed. The three principal tasks undertaken were: assessment of equipment developments; quantification of operational advantages; and interaction with system planners. Interest in HVDC power transmission has increased markedly over the past several years, and many new systems are now being investigated. The dissemination of information about HVDC, including specifically the symposium undertaken for Task 3, is a critical factor in fostering an understanding of this important adjunct to ac power transmission.

  16. RF current drive antenna. Final report, August 15, 1993--August 14, 1995

    SciTech Connect

    Probert, P.H.

    1995-09-01

    This work represents an attempt to solve a fundamental problem with all coupling devices in tokamaks intended to launch waves in the ion cyclotron range of frequencies (ICRF), that of excessive voltage levels on the launcher and its feed lines. These voltages can lead to impurity problems in the plasma, and they determine the maximum power that can be coupled to the plasma, since it is when arcs caused by this voltage frequently occur that the power must be reduced. The approach taken is to consider an antenna which is composed of many smaller units, each operating at much lower voltages, stacked on end to provide the equivalent functionality of a conventional launcher. The work described herein involved designing, building, and operating such a launcher in the Phaedrus-T tokamak. The results showed that the antenna worked as expected, reducing the voltage dramatically, while still functioning property, and producing fewer impurity problems and no arcing. A design extrapolating the principles of this idea to reactor-sized tokamaks such as ITER was developed. In addition, a novel decoupling scheme was developed in order to adapt this antenna idea to low frequency current drive schemes.

  17. Thermal plasma waste remediation technology: Historical perspective and current trends. Final report

    SciTech Connect

    Counts, D.A.; Sartwell, B.D.; Peterson, S.H.; Kirkland, R.; Kolak, N.P.

    1999-01-29

    The idea of utilizing thermal plasma technology for waste processing goes back to the mid-1970`s during the energy crisis. Since then, more interest has been shown by universities, industry, and government in developing thermal plasma waste processing technology for hazardous and non-hazardous waste treatment. Much of the development has occurred outside of the United States, most significantly in Japan and France, while the market growth for thermal plasma waste treatment technology has remained slow in the United States. Despite the slow expansion of the market in the United States, since the early 1990`s there has been an increase in interest in utilizing thermal plasma technology for environmental remediation and treatment in lieu of the more historical methods of incineration and landfilling. Currently within the Department of Defense there are several demonstration projects underway, and details of some of these projects are provided. Prior to these efforts by the U.S. Government, the State of New York had investigated the use of thermal plasma technology for treating PCB contaminated solvent wastes from the Love Canal cleanup. As interest continues to expand in the application of thermal plasma technology for waste treatment and remediation, more and more personnel are becoming involved with treatment, regulation, monitoring, and commercial operations and many have little understanding of this emerging technology. To address these needs, this report will describe: (1) characteristics of plasmas; (2) methods for generating sustained thermal plasmas; (3) types of thermal plasma sources for waste processing; (4) the development of thermal plasma waste treatment systems; and (5) Department of Defense plasma arc waste treatment demonstration projects.

  18. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    SciTech Connect

    Eberly, Brandon M.

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  19. Using a time-domain higher-order boundary element method to simulate wave and current diffraction from a 3-D body

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Teng, Bin; Ning, De-Zhi; Sun, Liang

    2010-06-01

    To study wave-current actions on 3-D bodies a time-domain numerical model was established using a higher-order boundary element method (HOBEM). By assuming small flow velocities, the velocity potential could be expressed for linear and higher order components by perturbation expansion. A 4th-order Runge-Kutta method was applied for time marching. An artificial damping layer was adopted at the outer zone of the free surface mesh to dissipate scattering waves. Validation of the numerical method was carried out on run-up, wave exciting forces, and mean drift forces for wave-currents acting on a bottom-mounted vertical cylinder. The results were in close agreement with the results of a frequency-domain method and a published time-domain method. The model was then applied to compute wave-current forces and run-up on a Seastar mini tension-leg platform.

  20. A TECHNICAL ASSESSMENT OF THE CURRENT WATER POLICY BOUNDARY AT U.S. DEPARTMENT OF ENERGY, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY

    SciTech Connect

    2012-12-13

    In 1988, groundwater contaminated with trichloroethene (TCE) and technetium-99 (Tc-99) was identified in samples collected from residential water wells withdrawing groundwater from the Regional Gravel Aquifer (RGA) north of the Paducah Gaseous Diffusion Plant (PGDP) facility. In response, the U.S. Department of Energy (DOE) provided temporary drinking water supplies to approximately 100 potentially affected residents by initially supplying bottled water, water tanks, and water-treatment systems, and then by extending municipal water lines, all at no cost, to those persons whose wells could be affected by contaminated groundwater. The Water Policy boundary was established in 1993. In the Policy, DOE agreed to pay the reasonable monthly cost of water for homes and businesses and, in exchange, many of the land owners signed license agreements committing to cease using the groundwater via rural water wells. In 2012, DOE requested that Oak Ridge Associated Universities (ORAU), managing contractor of Oak Ridge Institute for Science and Education (ORISE), provide an independent assessment of the quality and quantity of the existing groundwater monitoring data and determine if there is sufficient information to support a modification to the boundary of the current Water Policy. As a result of the assessment, ORAU concludes that sufficient groundwater monitoring data exists to determine that a shrinkage and/or shift of the plume(s) responsible for the initial development of this policy has occurred. Specifically, there is compelling evidence that the TCE plume is undergoing shrinkage due to natural attenuation and associated degradation. The plume shrinkage (and migration) has also been augmented in local areas where large volumes of groundwater were recovered by pump-and treat remedial systems along the eastern and western boundaries of the Northwest Plume, and in other areas where pump-and-treat systems have been deployed by DOE to remove source contaminants. The

  1. Definition of sanitary boundaries to prevent ISAv spread between salmon farms in southern Chile based on numerical simulations of currents

    NASA Astrophysics Data System (ADS)

    Olivares, Gonzalo; Sepúlveda, H. H.; Yannicelli, B.

    2015-06-01

    The infectious Salmon Anemia virus (ISAv) is a pathogen that mainly affects the Atlantic Salmon (Salmo salar). It was detected in Norway in 1984 and in June 2007 appeared in Chile, producing a drop of more than 30% in the country's production level. It is expected that with certain regularity, outbreaks will continue to appear in Chile without the need of reintroducing the virus from foreign countries. We present a numerical study of the influence of winds and tides in the dispersion of lagrangian particles to simulate the transport of ISAv in the Aysen region, in southern Chile. This study combines the use of numerical models of the ocean and atmosphere, lagrangian tracking and biological aspects of ISAv infections. As in previous results, a wider dispersion of ISAv was observed during spring tides. Temporal changes in wind significantly modified the transport of viral particles from an infected center. Under similar forcing conditions, the areas of risk associated to culture sites separated by a few kilometers could be very different. Our main results remark the importance of the use of a detailed knowledge of hydrographic and atmospheric circulation in the definition of boundaries for sanitary management areas. We suggest that a methodology similar to the one presented in this study should be considered to define sanitary strategies to minimize the occurrence of native outbreaks of ISAv.

  2. Investigation of blown boundary layers with an improved wall jet system. Ph.D. Thesis. Final Technical Report, 1 Jul. 1978 - Dec. 1979; [to prevent turbulent boundary layer separation

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1979-01-01

    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.

  3. The spatial extent of the Deep Western Boundary Current into the Bounty Trough: new evidence from parasound sub-bottom profiling

    NASA Astrophysics Data System (ADS)

    Horn, Michael; Uenzelmann-Neben, Gabriele

    2016-06-01

    Deep currents such as the Pacific Deep Western Boundary Current (DWBC) are strengthened periodically in Milankovitch cycles. We studied periodic fluctuations in seismic reflection pattern and reflection amplitude in order to detect cycles in the sedimentary layers of Bounty Trough and bounty fan, east of New Zealand. There, the occurrence of the obliquity frequency is caused only by the DWBC. Therefore, it provides direct evidence for the spatial extent of the DWBC. We can confirm the extent of the DWBC west of the outer sill, previously only inferred via erosional features at the outer sill. Further, our data allow an estimation of the extent of the DWBC into the Bounty Trough, limiting the DWBC presence to east of 178.15°E. Using the presented method a larger dataset will allow a chronological and areal mapping of sedimentation processes and hence provide information on glacial/interglacial cycles.

  4. A description of eddy-mean flow feedbacks in equatorial and boundary current systems of the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Maas, Leo R. M.; Ridderinkhof, Herman; van Aken, Hendrik

    2015-04-01

    While many observational and modeling efforts have addressed eddy-mean flow interactions acting over nearly idealized zonal jets, little is know about whether findings in those studies can be extended to current systems with different configurations in the real ocean. This topic is of special interest for ocean-climate models where eddy interactions with the mean flow may be unresolved, demanding further insight on the mechanism by which the eddy field and the mean circulation should feed back in a realistic representation of future climate change scenarios. Following this motivation, we investigate local exchange of momentum and kinetic energy operating in a variety of eddy-mean flow systems of the South Indian Ocean (SIO). To this aim we use 21 years (1993-2013) of newly processed satellite altimetry observations, and adopt a definition of the mean flow as a seasonally-dependent temporal mean where the eddy field encompasses the daily instantaneous deviation from the altimeter-derived velocities. This approach allows time-varying feedbacks to evolve throughout the year. We find that the eddy field feeds back on the mean circulation, contributing importantly to the overall seasonal strengthening and weakening of all current systems involved in the tropical and subtropical gyre of the SIO. Although significant contributions to the momentum and energy balances were also obtained along the Agulhas (Return) Current and the Antarctic Circumpolar Current (ACC), they exhibit a weak/absent seasonal cycle, suggesting that the strength of these dynamical processes is mostly persistent throughout the year. Spatial distribution of the eddy kinetic energy conversion rates and the convergence of horizontal eddy momentum fluxes indicate that over regions where the eddy field draws energy from the mean flow through barotropic instabilities, the current is importantly decelerated by alongstream eddy forces on its upstream side, while further downstream the situation reverses with

  5. Crossing the Boundaries of Our Current Healthcare System by Integrating Ultra-Weak Photon Emissions with Metabolomics

    PubMed Central

    Burgos, Rosilene C. Rossetto; van Wijk, Eduard P. A.; van Wijk, Roeland; He, Min; van der Greef, Jan

    2016-01-01

    The current healthcare system is hampered by a reductionist approach in which diagnostics and interventions focus on a specific target, resulting in medicines that center on generic, static phenomena while excluding inherent dynamic nature of biological processes, let alone psychosocial parameters. In this essay, we present some limitations of the current healthcare system and introduce the novel and potential approach of combining ultra-weak photon emission (UPE) with metabolomics technology in order to provide a dynamic readout of higher organizational systems. We argue that the combination of metabolomics and UPE can bring a new, broader, view of health state and can potentially help to shift healthcare toward more personalized approach that improves patient well-being. PMID:28018239

  6. Crossing the Boundaries of Our Current Healthcare System by Integrating Ultra-Weak Photon Emissions with Metabolomics.

    PubMed

    Burgos, Rosilene C Rossetto; van Wijk, Eduard P A; van Wijk, Roeland; He, Min; van der Greef, Jan

    2016-01-01

    The current healthcare system is hampered by a reductionist approach in which diagnostics and interventions focus on a specific target, resulting in medicines that center on generic, static phenomena while excluding inherent dynamic nature of biological processes, let alone psychosocial parameters. In this essay, we present some limitations of the current healthcare system and introduce the novel and potential approach of combining ultra-weak photon emission (UPE) with metabolomics technology in order to provide a dynamic readout of higher organizational systems. We argue that the combination of metabolomics and UPE can bring a new, broader, view of health state and can potentially help to shift healthcare toward more personalized approach that improves patient well-being.

  7. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries

    PubMed Central

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-01-01

    Thin films of the iron-based superconductor BaFe2(As1−xPx)2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (Jc). The Ba122:P film exhibited higher Jc at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe2As2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors. PMID:27833118

  8. Spatial and seasonal patterns of fine-scale to mesoscale upper ocean dynamics in an Eastern Boundary Current System

    NASA Astrophysics Data System (ADS)

    Grados, Daniel; Bertrand, Arnaud; Colas, François; Echevin, Vincent; Chaigneau, Alexis; Gutiérrez, Dimitri; Vargas, Gary; Fablet, Ronan

    2016-03-01

    The physical forcing of the ocean surface includes a variety of energetic processes, ranging from internal wave (IW) to submesoscale and mesoscale, associated with characteristic horizontal scales. While the description of mesoscale ocean dynamics has greatly benefited from the availability of satellite data, observations of finer scale patterns remain scarce. Recent studies showed that the vertical displacements of the oxycline depth, which separates the well-mixed oxygenated surface layer from the less oxygenated deeper ocean, estimated by acoustics, provide a robust proxy of isopycnal displacements over a wide range of horizontal scales. Using a high-resolution and wide-range acoustic data set in the Northern Humboldt Current System (NHCS) off Peru, the spatial and temporal patterns of fine-scale-to-mesoscale upper ocean dynamics are investigated. The spectral content of oxycline/pycnocline profiles presents patterns characteristic of turbulent flows, from the mesoscale to the fine scale, and an energization at the IW scale (2 km-200 m). On the basis of a typology performed on 35,000 structures we characterized six classes of physical structures according to their shape and scale range. The analysis reveals the existence of distinct features for the fine-scale range below ∼2-3 km, and clearly indicates the existence of intense IW and submesoscale activity over the entire NHCS region. Structures at scales smaller than ∼2 km were more numerous and energetic in spring than in summer. Their spatiotemporal variability supports the interpretation that these processes likely relate to IW generation by interactions between tidal flows, stratification and the continental slope. Given the impact of the physical forcing on the biogeochemical and ecological dynamics in EBUS, these processes should be further considered in future ecosystem studies based on observations and models. The intensification of upper ocean stratification resulting from climate change makes such

  9. Path transition of the western boundary current with a gap due to mesoscale eddies: a 1.5-layer, wind-driven experiment

    NASA Astrophysics Data System (ADS)

    Hu, Po; Hou, Yijun

    2010-03-01

    Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.

  10. Final Technical Report of ASR project entitled “ARM Observations for the Development and Evaluation of Models and Parameterizations of Cloudy Boundary Layers” (DE-SC0000825)

    SciTech Connect

    Zhu, Ping

    2016-02-22

    This project aims to elucidate the processes governing boundary layer clouds and improve the treatment of cloud processes in Global Climate Models (GCMs). Specifically, we have made research effort in following areas: (1) Developing novel numerical approach of using multiple scale Weather Research & Forecasting (WRF) model simulations for boundary layer cloud research; (2) Addressing issues of PDF schemes for parameterizing sub-grid scale cloud radiative properties; (3) Investigating the impact of mesoscale cloud organizations on the evolution of boundary layer clouds; (4) Evaluating parameterizations of the cumulus induced vertical transport; (5) Limited area model (LAM) intercomparison study of TWP-ICE convective case; (6) Investigating convective invigoration processes at shallow cumulus cold poll boundaries; and (7) Investigating vertical transport processes in moist convection.

  11. Diet of sardine ( Sardinops sagax) in the northern Humboldt Current system and comparison with the diets of clupeoids in this and other eastern boundary upwelling systems

    NASA Astrophysics Data System (ADS)

    Espinoza, Pepe; Bertrand, Arnaud; van der Lingen, Carl D.; Garrido, Susana; Rojas de Mendiola, Blanca

    2009-12-01

    Sardines are one of the main small pelagic fish resources in eastern boundary upwelling systems (EBUS) where they play an important ecological role both as a predator of plankton and as prey of top predators. Sardine trophodynamics have been relatively well studied in three of the EBUS (the Benguela, California and Canary upwelling systems) but not in the Humboldt Current system. In this paper we describe the diet of sardine Sardinops sagax in the northern Humboldt Current system (NHCS) off Peru, using an analytical method which assesses relative dietary importance in terms of estimated prey carbon content. We assessed sardine diet by examining a total of 555 stomachs collected during six surveys conducted off Peru during the period 1996-1998, and compare our results with the diet of anchoveta Engraulis ringens off Peru and with the diets of sardines from the southern Benguela (also S. sagax) and the northern Canary ( Sardina pilchardus) upwelling systems. The diet of sardine off Peru is based primarily on zooplankton, similar to that observed for anchoveta but with several important differences. Firstly, sardine feed on smaller zooplankton than do anchoveta, with sardine diet consisting of smaller copepods and fewer euphausiids than anchoveta diet. Secondly, whilst phytoplankton represents <2% of sardine dietary carbon, this fraction is dominated by dinoflagellates, whereas diatoms are the dominant phytoplankton consumed by anchoveta. Hence, trophic competition between sardine and anchovy in the northern Humboldt Current system is minimized by their partitioning of the zooplankton food resource based on prey size, as has been reported in other systems. Whereas sardine in the NHCS feed on smaller zooplankton than do anchovy in that system, sardine in the NHCS forage on larger prey and obtain a substantial portion of their dietary carbon from euphausiids compared to sardine from the northern Canary and southern Benguela Current systems.

  12. The Great Barrier Reef Ocean Observing System Mooring array: Monitoring the Western Boundary Currents of the Coral Sea and Impacts on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Steinberg, C. R.; McAllister, F.; Brinkman, B. W.; Pitcher, C.; Luetchford, J.; Rigby, P.

    2009-05-01

    Since 1987 Great Barrier Reef weather and water temperature observations have been transmitted in near real time using HF radio from pontoons or towers on coral reefs by AIMS. In contrast oceanographic measurements have however been restricted to loggers serviced at quarterly to half yearly downloads. The Great Barrier Reef Ocean Observing System (GBROOS) is a regional node of the Integrated Marine Observing System (IMOS). IMOS is an Australian Government initiative established under the National Collaborative Research Infrastructure Strategy and has been supported by Queensland Government since 2006. GBROOS comprises real time observations from weather stations, oceanographic moorings, underway ship observations, ocean surface radar, satellite image reception and reef based sensor networks. This paper focuses on an array of in-line moorings that have been deployed along the outer Great Barrier Reef in order to monitor the Western Boundary currents of the Coral Sea. The Westward flowing Southern Equatorial Current bifurcates into the poleward flowing East Australian Current and the equatorward North Queensland Current. The 4 mooring pairs consist of a continental slope mooring, nominally in 200m of water and one on the outer continental shelf within the GBR matrix in depths of 30 to 70m. The array is designed to detect any changes in circulation, temperature response, mixed layer depth and ocean-shelf interactions. A review of likely impacts of climate change on the physical oceanography of the GBR is providing a basis upon which to explore what processes may be affected by climate change. Sample data and results from the initial year of observations will be presented.

  13. Use of boundary element methods in field emission computations

    SciTech Connect

    Hartman, R.L.; Mackie, W.A.; Davis, P.R.

    1994-03-01

    The boundary element method is well suited to deal with some potential field problems encountered in the context of field emission. A boundary element method is presented in the specific case of three-dimensional problems with azimuthal symmetry. As a check, computed results are displayed for well-known theoretical examples. The code is then employed to calculate current from a field emission tip and from the same tip with a protrusion. Finally an extension of the boundary element code is employed to calculate space-charge effects on emitted current. 13 refs., 5 figs., 1 tab.

  14. Fundamental studies of grain boundary passivation in polycrystalline silicon with application to improved photovoltaic devices. A final research report covering work completed from February-December 1979

    SciTech Connect

    Seager, C.H.; Ginley, D.S.

    1980-02-01

    Several aspects of the electrical properties of silicon grain boundaries have been studied. The temperature dependence of the zero-bias conductance and capacitance of single boundaries has been measured and shown to be in good agreement with a simple double depletion layer/thermal emission (DDL/TE) model developed to predict the transport properties of such structures. In addition, it has been shown that deconvolution of the I-V properties of some boundaries via a deconvolution scheme suggested by Pike and Seager yields effective one-electron densities of trapping states which are in good agreement with estimates obtained by low temperature electron emission measurements. Experiments have also been performed which indicate that diffusion of atomic hydrogen into silicon grain boundaries greatly reduces this density of trapping states. In properly prepared, large grained polycrystalline samples all measurable traces of grain boundary potential barriers can be removed to substantial penetration depths after several hours exposure to a hydrogen plasma at elevated temperatures. Initial experiments on prototype polysilicon solar cells have shown that this passivation process can improve AM1 efficiencies. In order to more fully understand and develop this process for improving practical multigrained cells, several device research efforts with other DOE/SERI funded contractors have been initiated.

  15. Effect of a Compressive Uniaxial Strain on the Critical Current Density of Grain Boundaries in Superconducting YBa2Cu3O7-delta Films (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    composition by doping the grains [10] or the grain boundaries [11]. One of the most striking results is obtained by use of calcium doping in YBa2Cu3O7 (YBCO... Doping affects both the charge carrier concentra- tion and the strain fields at grain boundaries, which makes it hard to determine to what extent the...laser depo- sition onto single-crystal and bicrystalline SrTiO3 (STO) substrates. The bicrystalline substrates had symmetric [001]-tilt grain boundaries

  16. Coastal flooding and storm protection program; field verification program. Mathematical modeling of three-dimensional coastal currents and sediment dispersion: model development and application. Final report

    SciTech Connect

    Sheng, Y.P.

    1983-09-01

    A comprehensive model of Coastal currents and sediment dispersion has been formulated and applied to the Mississippi Sound and adjacent continental shelf waters. The study combines mathematical modeling of various hydrodynamic and sedimentary processes with laboratory and field experiments. Of primary importance is the development of an efficient and comprehensive three-dimensional, finite-difference model of coastal, estuarine, and lake currents (CELC3D). The model resolves currents driven by tide, wind, and density gradient. It has been applied to the Mississippi Sound, and results agree well with measured surface displacements and currents during two episodes. Rates of entrainment and deposition of the Mississippi Sound sediments have been studied in a laboratory flume. Effects of (1) bottom shear stress, (2) bed properties, (3) salinity of water, and (4) sediment type on the erodability of sediments have been examined. Results of the laboratory study have been incorporated into the bottom boundary conditions for a three-dimensional sediment dispersion model. Gravitational settling and particle size distribution of the Mississippi Sound sediments were also studied in laboratories. Bottom boundary layer dynamics and wave effect on sediment dispersion have been studied by means of a turbulent transport model and a wave model. Model simulations of sediment dispersion in the Mississippi Sound agree well available data from ship surveys.

  17. The eddy-mean flow interaction and the intrusion of western boundary current into the South China Sea type basin in an idealized model

    NASA Astrophysics Data System (ADS)

    Zhong, Linhao

    2016-04-01

    In this paper, an ideal model on the role of mesoscale eddies in the Kuroshio intruding into the South China Sea (SCS) is developed, which represents the northwestern Pacific and the SCS by two rectangle basins connected by a gap. In the case of only considering intrinsic ocean variability, a time-dependent western boundary current (WBC) driven by steady wind is modeled under both eddy-resolving and non-eddy-resolving resolutions. Almost all simulated WBC intrudes into the adjacent sea in the form of loop current with multiple-state transitions and eddy-shedding process, which has aperiodic variations on intraseasonal or interannual scales, determined by the eddy-induced WBC variation. For the parameters considered in this paper, the WBC intrusion exhibits a 30~90-day cycle in the presence of the subgrid-scale eddy forcing (SSEF), but a 300~500-day cycle in the absence of SSEF. Moreover, the roles of the resolved (grid-scale) and unresolved (subgrid-scale) eddies in the WBC intrusion are studied. It is found that the unresolved eddy-flow interaction strongly regulates the WBC intrusion through the PV forcing induced by shear flows and baroclinic processes. But the resolved eddy forcing, which is dominated by the eddy-eddy interaction solely through baroclinic processes, shows weak correlation to the WBC intrusion. The associated eddy-induced PV exchange between the two basins is mainly accomplished by isopycnal-thickness eddy fluxes, particularly by the cross-front PV fluxes due to the unresolved eddy. And the unresolved eddy-flow interaction, as well as resolved and unresolved eddy-eddy interactions, mainly governs the PV transport for the WBC intrusion.

  18. Intermediate water links to Deep Western Boundary Current variability in the subtropical NW Atlantic during marine isotope stages 5 and 4

    NASA Astrophysics Data System (ADS)

    Evans, H. K.; Hall, I. R.; Bianchi, G. G.; Oppo, D. W.

    2007-09-01

    Records from Ocean Drilling Program Sites 1057 and 1059 (2584 m and 2985 m water depth, respectively) have been used to reconstruct the behavior of the Deep Western Boundary Current (DWBC) on the Blake Outer Ridge (BOR) from 130 to 60 kyr B.P. (marine isotope stage (MIS) 5 and the 5/4 transition). Site 1057 lies within Labrador Sea Water (LSW) but close to the present-day boundary with Lower North Atlantic Deep Water (LNADW), while Site 1059 lies within LNADW. High-resolution sortable silt mean (?) grain size and benthic δ13C records were obtained, and changes in the DWBC intensity and spatial variability were inferred. Comparisons are made with similar proxy records generated for the Holocene from equivalent depth cores on the BOR. During MIS 5e, ? evidence at Site 1057 suggests slower relative flow speeds consistent with a weakening and a possible shoaling of the LSW-sourced shallower limb of the DWBC that occupies these depths today. In contrast, the paleocurrent record from the deeper site suggests that the fast flowing deep core of the DWBC was located close to its modern depth below 3500 m. During this interval the benthic δ13C suggests little chemical stratification of the water column and the presence of a near-uniform LNADW-dominated water mass. After ˜111 kyr B.P. the ? record at Site 1057 increases to reach values similar to Site 1059 for the rest of MIS 5. The strengthening of flow speeds at the shallow site may correspond to the initiation of Glacial North Atlantic Intermediate Water formation also suggested by a divergence in the benthic δ13C records with Site 1057 values increasing to ˜1.2‰. Coupled suborbital oscillations in DWBC flow variability and paleohydrography persisted throughout MIS 5. Comparison of these data with planktonic δ18O records from the sites and alkenone-derived sea surface temperature (SST) estimates from the nearby Bermuda Rise suggest a hitherto unrecognized degree of linkage between oscillations in subtropical North

  19. Biogeography of the Oceans: a Review of Development of Knowledge of Currents, Fronts and Regional Boundaries from Sailing Ships in the Sixteenth Century to Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Priede, Imants G.

    2014-06-01

    The development of knowledge of global biogeography of the oceans from sixteenthcentury European voyages of exploration to present-day use of satellite remote sensing is reviewed in three parts; the pre-satellite era (1513-1977), the satellite era leading to a first global synthesis (1978-1998), and more recent studies since 1998. The Gulf Stream was first identified as a strong open-ocean feature in 1513 and by the eighteenth century, regular transatlantic voyages by sailing ships had established the general patterns of winds and circulation, enabling optimisation of passage times. Differences in water temperature, water colour and species of animals were recognised as important cues for navigation. Systematic collection of information from ships' logs enabled Maury (The Physical Geography of the Sea Harper and Bros. New York 1855) to produce a chart of prevailing winds across the entire world's oceans, and by the early twentieth century the global surface ocean circulation that defines the major biogeographic regions was well-known. This information was further supplemented by data from large-scale plankton surveys. The launch of the Coastal Zone Color Scanner, specifically designed to study living marine resources on board the Nimbus 7 polar orbiting satellite in 1978, marked the advent of the satellite era. Over subsequent decades, correlation of satellite-derived sea surface temperature and chlorophyll data with in situ measurements enabled Longhurst (Ecological Geography of the Sea. Academic Press, New York 1998) to divide the global ocean into 51 ecological provinces with Polar, Westerly Wind, Trade Wind and Coastal Biomes clearly recognisable from earlier subdivisions of the oceans. Satellite imagery with semi-synoptic images of large areas of the oceans greatly aided definition of boundaries between provinces. However, ocean boundaries are dynamic, varying from season to season and year to year

  20. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  1. SAR-related stress variability in the marine atmospheric boundary layer. Final report, 1 June 1990-30 September 1992. [SAR (Synthetic Aperture Radars)

    SciTech Connect

    Shier, H.N.; Young, G.S.

    1992-09-30

    Satellite- or aircraft-bourne synthetic aperture radars (SAR) have the potential to serve as a powerful and essential part of the global meteorological/oceanographic observation system. While the potential of SAR systems is enormous, quantitative interpretation of SAR signals has clearly been frustrated by our incomplete understanding of the relationships between the radar backscatter cross section and a complicated heterogeneous and constantly changing state of the sea surface. In the first phase of our High-Res ARI work summarized here, we began developing two new marine atmosphere boundary layer models of the surface stress caused by submesoscale boundary layer coherent structures and we finished obtaining plainview patterns of surface stress variability caused by MABL updrafts and downdrafts. We began turning our attention to such mesoscale atmospheric circulations as the solenoidal circulation over the sea surface temperature front, the coastal sea breeze circulation, and the flow between the Bermuda High and the diurnally varying pressure through on the coastal plain. In this report, we briefly review our progress on the work that will be continued and extended during the second phase of the project from October 1, 1992 to September 30, 1995. In Appendix A and Appendix B we give two manuscripts of journal articles summarizing our results. The first one by Sikora and Young (1993) discusses the plainview patterns of surface stress variability. The second one by Wells et al. (1993) discusses a new method for estimating the correlation dimension of boundary layer turbulent time series.

  2. An important current reversal (influx) in the Rifian Corridor (Morocco) at the Tortonian-Messinian boundary: The end of Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Benson, Richard H.; Rakic-El Bied, Kruna; Bonaduce, Gioacchino

    1991-02-01

    Atlantic psychrospheric and temperate mesopelagic faunas found in the lower Messinian marls in Morocco indicate that a strong, eastward flowing, bottom current was present in the Rifian Corridor before the Salinity Crisis. This influx began just before diatomite deposition in the Paleo-Mediterranean, continued during a decrease in species diversity in coral reef formation, and diminished with the initial stages of "brine" concentration in the deep-water phase of the Crisis. The influx is most readily studied in a condensed section of marl in the Bou Regreg valley near Rabat. The beginning of this "siphon event" coincides with the Tortonian/Messinian boundary (6.4 Ma, subchron 6N1). It is identified by (1) a change in the planktonic foraminifera from dominance of warm, tropical, epipelagic Globorotalia menardii with Globigerinoides to the temperate, mesopelagic Gl. miotumida plexus with conomiozea; (2) the sudden appearance of an upper psychrospheric ostracode fauna with Agrenocythere pliocenica and Oblitacythereis ruggierii, (3) a change in nannoflora; and (4) beginning of the 6.3 Ma Global Carbon Shift. The initial strong influx stage of the siphon lasted at least 0.7 m.y., decreasing after the middle of Chron 5, ca. 5.7, to be lost ca. 5.3 Ma. Conditions for the siphon formed when the continental climate created a deficit in the water budget of the Paleo- Mediterranean Sea. The reversal took place when tectonic movement in the foredeeps of the Betic- Rif Orogene changed the thresholds of the twin straits, the Rifian Corridor and the Iberian Portal. Inflow increased rapidly in the southern Corridor to draw in waters from beneath the rising Atlantic pycnocline, while Paleo-Mediterranean Overflow Water (PMOW) continued out of the northern Iberian Portal. The invasion of "nappes" or olistoliths, first into the portal and then into the corridor, led to the end of the outflow of the PMOW terminating the need for the siphon, and then to the isolation of the Paleo-Mediterranean.

  3. Nutrient uplift in a cyclonic eddy increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current.

    PubMed

    Doblin, Martina A; Petrou, Katherina; Sinutok, Sutinee; Seymour, Justin R; Messer, Lauren F; Brown, Mark V; Norman, Louiza; Everett, Jason D; McInnes, Allison S; Ralph, Peter J; Thompson, Peter A; Hassler, Christel S

    2016-01-01

    The intensification of western boundary currents in the global ocean will potentially influence meso-scale eddy generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand eddy-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC) region to sample microbes in a cyclonic (cold-core) eddy (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2-10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton [Formula: see text], as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by eddies causes a 'greening' effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms increased in abundance with macronutrient (N, P, Si) and iron amendment, whereas haptophytes and phototrophic dinoflagellates declined. Our results indicate that cyclonic eddies increase delivery of nitrogen to the upper ocean to potentially mitigate the negative consequences of increased

  4. Nutrient uplift in a cyclonic eddy increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current

    PubMed Central

    Petrou, Katherina; Sinutok, Sutinee; Seymour, Justin R.; Messer, Lauren F.; Brown, Mark V.; Norman, Louiza; Everett, Jason D.; McInnes, Allison S.; Ralph, Peter J.; Thompson, Peter A.; Hassler, Christel S.

    2016-01-01

    The intensification of western boundary currents in the global ocean will potentially influence meso-scale eddy generation, and redistribute microbes and their associated ecological and biogeochemical functions. To understand eddy-induced changes in microbial community composition as well as how they control growth, we targeted the East Australian Current (EAC) region to sample microbes in a cyclonic (cold-core) eddy (CCE) and the adjacent EAC. Phototrophic and diazotrophic microbes were more diverse (2–10 times greater Shannon index) in the CCE relative to the EAC, and the cell size distribution in the CCE was dominated (67%) by larger micro-plankton \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$(\\geq 20\\lrm{\\mu }\\mathrm{m})$\\end{document}≥20μm, as opposed to pico- and nano-sized cells in the EAC. Nutrient addition experiments determined that nitrogen was the principal nutrient limiting growth in the EAC, while iron was a secondary limiting nutrient in the CCE. Among the diazotrophic community, heterotrophic NifH gene sequences dominated in the EAC and were attributable to members of the gamma-, beta-, and delta-proteobacteria, while the CCE contained both phototrophic and heterotrophic diazotrophs, including Trichodesmium, UCYN-A and gamma-proteobacteria. Daily sampling of incubation bottles following nutrient amendment captured a cascade of effects at the cellular, population and community level, indicating taxon-specific differences in the speed of response of microbes to nutrient supply. Nitrogen addition to the CCE community increased picoeukaryote chlorophyll a quotas within 24 h, suggesting that nutrient uplift by eddies causes a ‘greening’ effect as well as an increase in phytoplankton biomass. After three days in both the EAC and CCE, diatoms

  5. Advanced development of the boundary element method for elastic and inelastic thermal stress analysis. Ph.D. Thesis, 1987 Final Report

    NASA Technical Reports Server (NTRS)

    Henry, Donald P., Jr.

    1991-01-01

    The focus of this dissertation is on advanced development of the boundary element method for elastic and inelastic thermal stress analysis. New formulations for the treatment of body forces and nonlinear effects are derived. These formulations, which are based on particular integral theory, eliminate the need for volume integrals or extra surface integrals to account for these effects. The formulations are presented for axisymmetric, two and three dimensional analysis. Also in this dissertation, two dimensional and axisymmetric formulations for elastic and inelastic, inhomogeneous stress analysis are introduced. The derivatives account for inhomogeneities due to spatially dependent material parameters, and thermally induced inhomogeneities. The nonlinear formulation of the present work are based on an incremental initial stress approach. Two inelastic solutions algorithms are implemented: an iterative; and a variable stiffness type approach. The Von Mises yield criterion with variable hardening and the associated flow rules are adopted in these algorithms. All formulations are implemented in a general purpose, multi-region computer code with the capability of local definition of boundary conditions. Quadratic, isoparametric shape functions are used to model the geometry and field variables of the boundary (and domain) of the problem. The multi-region implementation permits a body to be modeled in substructured parts, thus dramatically reducing the cost of analysis. Furthermore, it allows a body consisting of regions of different (homogeneous) material to be studied. To test the program, results obtained for simple test cases are checked against their analytic solutions. Thereafter, a range of problems of practical interest are analyzed. In addition to displacement and traction loads, problems with body forces due to self-weight, centrifugal, and thermal loads are considered.

  6. Effect of a Compressive Uniaxial Strain on the Critical Current Density of Grain Boundaries in Superconducting YBa2Cu3O7-delta Films

    DTIC Science & Technology

    2009-07-09

    the chemical composition by doping the grains [10] or the grain boundaries [11]. One of the most striking results is obtained by use of calcium doping ...increase in Jc;GB [12–14]. Doping affects both the charge carrier concentra- tion and the strain fields at grain boundaries, which makes it hard to...deposited by pulsed-laser depo- sition onto single-crystal and bicrystalline SrTiO3 (STO) substrates. The bicrystalline substrates had symmetric [001

  7. Studies of microstructure/critical current density relationships for grain boundaries in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} bicrystals

    SciTech Connect

    Babcock, S.E.; Cai, Xue-Yu; Larbalestier, D.C.; Shin, D.H.; Zhang, Na; Gao, Yufei; Merkle, K.L.; Kaiser, D.L.; Zhang, Hong

    1992-11-01

    Results of coupled electromagnetic and microstructural studies of bicrystalline YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} specimens are described from a microstructural perspective. High-spatial-resolution transmission electron microscopy techniques (imaging and energy dispersive x-ray microanalysis) are used to probe the structure and composition of the grain boundaries. All of the boundaries studied possess microstructural features that are consistent with their specific electromagnetic character.

  8. Boundary issues

    NASA Astrophysics Data System (ADS)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    -centric boundary (Filippelli 2008, Handoh and Lenton 2003). However, human alteration of the P cycle has multiple potential boundaries (figure 1), including P-driven freshwater eutrophication (Smith and Schindler 2009), the potential for world P supply to place an ultimate limit on food production (Smil 2000, Childers et al 2011), and depletion of soil P stocks in some world regions (MacDonald et al 2011). Carpenter and Bennett revisit the P boundary from the freshwater eutrophication perspective. Given the extraordinary variation in freshwater ecosystems across the globe, this is a challenging task, but the authors strengthen their analysis by using three different boundaries with relevance to eutrophication, along with two water quality targets and a range of estimates of P flow to the sea. In doing so, they make a compelling case that if freshwater eutrophication is indeed a Rubicon, we have already crossed it. Importantly, Carpenter and Bennett go beyond the calculation of new boundaries to make broader points about humanity's relationship with the P cycle. Disruptions of both the P and N cycles are mostly about our need for food (Galloway et al 2008, Cordell et al 2009), but unlike N, P supplies are finite and irreplaceable. Environmental concerns aside, we can fix all the N2 from the atmosphere we want—but deplete our economically viable P reserves and we're in trouble. Figure 1 Figure 1. Human alteration of the global P cycle has multiple possible boundaries. These include the environmental risks posed by freshwater eutrophication and marine anoxic events, and the food security risks that come from depletion of soil P stocks in some world regions, as well as finite global supplies of high-value mineral P reserves. Photo credits beyond authors: upper left, Shelby Riskin; upper right, Pedro Sanchez. In effect, Carpenter and Bennett argue that among P's multiple boundaries, the one for freshwaters is less forgiving of our current activities (but no less important) than is

  9. A 4000-A HVDC (high-voltage direct-current) circuit breaker with fast fault-clearing capability: Final report

    SciTech Connect

    Not Available

    1988-04-01

    This project is a follow-up of the first development of a 500 kV HVDC airblast circuit breaker (EPRI project 1507-3). The objective was to increase the current interrupting capability from 2200 A to 4000 A and shorten its fault clearing time. A high current 500 kV HVDC circuit breaker has been built using the passive commutation circuit. The breaker is modular in construction and can be designed for a wide variety of system conditions. More than 400 current interruptions were carried out successfully. Tests have shown that this circuit breaker is capable of interrupting more than 4000 A dc. Practical breakers with current interrupting capability of even 5500 A dc could be built. The circuit breaker operation and the fault-clearing process can be materially speeded up if the trip signal is given as soon as the fault is detected and without waiting for the current levels to come down in response to converter control action. The new dc breakers are shown to be capable of withstanding these transient arc currents of 8000 A without affecting its ability to interrupt the direct current that follows the transient. This transient current withstand capability is greater than is likely to occur during dc faults. The fault clearing time of this HVDC circuit breaker is comparable to the fault clearing time of conventional ac breakers for ac faults. The developed HVDC circuit breaker is now commercially available and can be supplied for use in HVDC systems. Its use in such systems is expected to provide flexibility in system design and contribute to system stability. 38 refs., 52 figs., 9 tabs.

  10. Experimental and theoretical investigation of three-dimensional turbulent boundary layers and turbulence characteristics inside an axial flow inducer passage. Final Report. Ph.D. Thesis, Jun. 1971

    NASA Technical Reports Server (NTRS)

    Anand, A. K.; Lakshminarayana, B.

    1977-01-01

    Analytical and experimental investigations of the characteristics of three dimensional turbulent boundary layers in a rotating helical passage of an inducer rotor are reported. Expressions are developed for the velocity profiles in the inner layer, where the viscous effects dominate, in the outer layer, where the viscous effects are small, and in the interference layer, where the end walls influence the flow. The prediction of boundary layer growth is based on the momentum integral technique. The equations derived are general enough to be valid for all turbomachinery rotors with arbitrary pressure gradients. The experimental investigations are carried out in a flat plate inducer 3 feet in diameter. The mean velocity profiles, turbulence intensities and shear stresses, wall shear stress, and limiting streamline angles are measured at various radial and chordwise locations by using rotating probes. The measurements are in general agreement with the predictions. The radial flows are well represented by an expression which includes the effect of stagger angle and radial pressure gradient. The radial flows in the rotor channel are higher than those on a single blade. The collateral region exists only very near the blade surface. The radial component of turbulence intensity is higher than the streamwise component because of the effect of rotation.

  11. Correlation Between Grain and Grain-Boundary Critical Current Densities in ex situ Coated Conductors with Variable YBa2Cu3O7- δ Layer Thickness

    SciTech Connect

    Palau, A.; Puig, T.; Obradors, X.; Feenstra, Roeland; Gapud, Albert Agcaoili

    2006-01-01

    The dependence of the percolative critical current density at low magnetic fields on YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) layer thickness is studied by comparing grain, J{sub c}{sup G}, and grain-boundary, J{sub c}{sup GB}, critical current densities for a series of ex situ processed YBCO films on a RABiTS template. Both critical current densities decrease as a function of thickness and the values of J{sub c}{sup G} and J{sub c}{sup GB} show a clear correlation which suggests the existence of an interaction between Abrikosov-Josephson vortices on the grain boundaries and Abrikosov vortices in the bulk of the grains. This opens the possibility to improve J{sub c}{sup GB} by optimizing the pinning capabilities of the grains.

  12. Corrosion protection of Arctic offshore structures: Final report. [Effects of temperature and salinity on required cathodic protection current

    SciTech Connect

    Sackinger, W.M.; Rogers, J.C.; Feyk, C.; Theuveny, B.

    1985-10-01

    Results are presented for a research program on corrosion prevention for Arctic offshore structures which are in contact with sea ice for a significant portion of the year. The electrical method most adaptable for structure protection involves the injection of impressed current from several remote anodes buried just beneath the sea floor. The electrical resistivity of annual sea ice as a function of temperature and salinity is presented. Details of the interface layers formed between sea ice and steel in the presence of current injection are shown. A computer program was developed to enable the calculation of protective current density into the structure, in the presence of ice rubble and ridges around the structure. The program and the results of an example calculation are given for a caisson- retained island structure. 81 refs., 103 figs., 3 tabs.

  13. Testing an e2v CCD230-42 sensor for dark current performance at ambient temperatures - Final Paper

    SciTech Connect

    Dungee, Ryan

    2015-08-20

    The design of the Guidance Focus and Alignment (GFA) system for the Dark Energy Spectroscopic Instrument (DESI) project calls for a set of charge-coupled devices (CCDs) which operate at ambient temperature. Here we assess the performance of these CCDs under such conditions. Data was collected from –21°C to 28°C and used to determine the effect of temperature on the effectiveness of dark current subtraction. Comparing the dark current uncertainty to our expected signal has shown that the DESI design specifications will be met without need for significant changes.

  14. Final Report Providing the Design for Low-Cost Wireless Current Transducer and Electric Power Sensor Prototype

    SciTech Connect

    Kintner-Meyer, Michael CW; Burghard, Brion J.; Reid, Larry D.

    2005-01-31

    This report describes the design and development of a wireless current transducer and electric power sensor prototype. The report includes annotated schematics of the power sensor circuitry and the printed circuit board. The application program used to illustrate the functionality of the wireless sensors is described in this document as well.

  15. Review and Evaluation of Current Training Programs Found in Various Mining Environments. Final Report. Volume II, Analysis and Recommendations.

    ERIC Educational Resources Information Center

    Adkins, John; And Others

    A project was designed to produce a broad description of current mining training programs and to evaluate their effectiveness with respect to reducing mine injuries. Aggregate training and injury data were used to evaluate the overall training effort at 300 mines as well as specific efforts in 12 categories of training course objectives. From such…

  16. Review and Evaluation of Current Training Programs Found in Various Mining Environments. Final Report. Volume I, Summary.

    ERIC Educational Resources Information Center

    Adkins, John; And Others

    A project was designed to produce a broad description of current mining training programs and to evaluate their effectiveness with respect to reducing mine injuries. The research strategy was built on the ranking of mines according to the effectiveness of their training with an effective training effort being defined as that training which is…

  17. Advanced flux leakage and eddy current signal analysis for casing and pipe inspection. Final report, September 1994-October 1996

    SciTech Connect

    Merchant, G.A.

    1997-01-01

    The objective of the project was to develop signal analysis methods and algorithms which will extract from the magnetic flux leakage and eddy current (FLEC) signals all the quantitative information they inherently contain and format that information in a manner which facilitates its interpretation in terms of casing condition.

  18. Current collection from the space plasma through defects in high voltage solar array insulation. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Stillwell, R. P.

    1983-01-01

    For spacecraft operation in the near Earth environment, solar cell arrays constitute the major source of reliable long term power. Optimization of mass and power efficiency results in a general requirement for high voltage solar arrays. The space plasma environment, though, can result in large currents being collected by exposed solar cells. The solution of a protective covering of transparent insulation is not a complete solution, inasmuch as defects in the insulation result in anomalously large currents being collected through the defects. Tests simulating the electron collection from small defects in an insulation have shown that there are two major collection modes. The first mode involves current enhancement by means of a surface phenomenon involving the surrounding insulator. In the second mode the current collection is enhanced by vaporization and ionization of the insulators materials, in addition to the surface enhancement of the first mode. A model for the electron collection is the surface enhanced collection mode was developed. The model relates the secondary electron emission yield to the electron collection. It correctly predicts the qualitative effects of hole size, sample temperature and roughening of sample surface. The theory was also shown to predict electron collection within a factor of two for the polymers teflon and polyimide.

  19. Study of Current and Potential Uses of International Standard Book Number in United States Libraries. Final Report.

    ERIC Educational Resources Information Center

    Schmierer, Helen F.; Pasternack, Howard

    Summarizing a literature review and three questionnaire surveys, this study reports on the amount and types of both current and potential use of the International Standard Book Number (ISBN) by United States Libraries. It is divided into five parts: (1) literature survey and analysis, including the library use of ISBN in cataloging, circulation,…

  20. Burial, remineralization and utilization of organic matter at the sea floor under a strong western boundary current. Final report, May 1, 1992--April 30, 1995

    SciTech Connect

    Jahnke, R.A.

    1995-08-24

    The overall goals of this project were to quantify the rates of organic carbon export from the southern mid-Atlantic Bight and to quantify the rates at which carbon is exchanged between the inorganic and organic pools within the bottom sediments. This information is necessary to constrain the role of the oceans in the control of carbon dioxide released to the atmosphere in association with energy production. During this project, in situ benthic flux chamber incubations have been performed at six sites on the continental slope and rise adjacent to Cape Hatteras. Based on the analysis of the time-series samples recovered during each experiment, the sea floor exchange rates of the major biogenic elements, oxygen, carbon, nitrogen, phosphorus and silicon were calculated. From the estimated benthic flux rates and the ancillary pore water and sediment analyses, the deposition, remineralization and burial rates of organic carbon to the sea floor in this area was evaluated. This information has been incorporated into regional and global assessments of organic carbon fluxes to the deep sea.

  1. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications; Final report

    SciTech Connect

    Wilbur, P.J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred {mu}A/cm{sup 2} on a target 50 cm downstream of the ion source have been demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  2. Event boundaries and memory improvement.

    PubMed

    Pettijohn, Kyle A; Thompson, Alexis N; Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A

    2016-03-01

    The structure of events can influence later memory for information that is embedded in them, with evidence indicating that event boundaries can both impair and enhance memory. The current study explored whether the presence of event boundaries during encoding can structure information to improve memory. In Experiment 1, memory for a list of words was tested in which event structure was manipulated by having participants walk through a doorway, or not, halfway through the word list. In Experiment 2, memory for lists of words was tested in which event structure was manipulated using computer windows. Finally, in Experiments 3 and 4, event structure was manipulated by having event shifts described in narrative texts. The consistent finding across all of these methods and materials was that memory was better when the information was distributed across two events rather than combined into a single event. Moreover, Experiment 4 demonstrated that increasing the number of event boundaries from one to two increased the memory benefit. These results are interpreted in the context of the Event Horizon Model of event cognition.

  3. Time series measurements of transient tracers and tracer-derived transport in the Deep Western Boundary Current between the Labrador Sea and the subtropical Atlantic Ocean at Line W

    NASA Astrophysics Data System (ADS)

    Smith, John N.; Smethie, William M.; Yashayev, Igor; Curry, Ruth; Azetsu-Scott, Kumiko

    2016-11-01

    Time series measurements of the nuclear fuel reprocessing tracer 129I and the gas ventilation tracer CFC-11 were undertaken on the AR7W section in the Labrador Sea (1997-2014) and on Line W (2004-2014), located over the US continental slope off Cape Cod, to determine advection and mixing time scales for the transport of Denmark Strait Overflow Water (DSOW) within the Deep Western Boundary Current (DWBC). Tracer measurements were also conducted in 2010 over the continental rise southeast of Bermuda to intercept the equatorward flow of DSOW by interior pathways. The Labrador Sea tracer and hydrographic time series data were used as input functions in a boundary current model that employs transit time distributions to simulate the effects of mixing and advection on downstream tracer distributions. Model simulations of tracer levels in the boundary current core and adjacent interior (shoulder) region with which mixing occurs were compared with the Line W time series measurements to determine boundary current model parameters. These results indicate that DSOW is transported from the Labrador Sea to Line W via the DWBC on a time scale of 5-6 years corresponding to a mean flow velocity of 2.7 cm/s while mixing between the core and interior regions occurs with a time constant of 2.6 years. A tracer section over the southern flank of the Bermuda rise indicates that the flow of DSOW that separated from the DWBC had undergone transport through interior pathways on a time scale of 9 years with a mixing time constant of 4 years.

  4. Superconductive microprobes for eddy-current evaluation of materials. Final report, 1 August 1988-31 January 1989

    SciTech Connect

    Podney, W.N.

    1989-07-01

    Superconductive quantum interference devices (SQUIDS) offer new technology for locating materials flaws electromagnetically that promises to increase sensitivity, depth of magnetic flux enables use of microscopic pickup loops in a gradiometer configuration to give high resolution. A cryogenic umbilical connects pickup loops to a remote cryostat housing SQUID sensors to ease scanning. A pair of drive coils a few millimeters in radius that encircle pickup loops forming a coplanar gradiometer 1 mm or less in radius comprise a superconductive microprobe. It provides a depth of field of several millimeters to a 0.1 mm flaw in an aluminum plate, when operating with a drive current a 1 A oscillating at a frequency of 1kHz. Its field of view ranges to several millimeters, for flaws a few millimeters deep, and its horizontal resolution is 1 mm or so, for flaw depths out to its depth of field. An array of microprobes form receptors much like rods in the retina of a magnetic eye. The eye leads to an electromagnetic microscope for imaging internal flaws in aluminum plates. It gives multiple images that enable resolving depth of a 0.1 mm flaw to a few tenths of a millimeter with a horizontal resolution of one millimeter or so.

  5. Effect of space charge on surface insulation of high-voltage direct-current bushings: Final report

    SciTech Connect

    Zaffanella, L.E.

    1987-10-01

    The objective of this study was to test the effectiveness of a method to improve the contamination flashover performance of bushings for HVDC (High Voltage Direct Current) applications. Such a method, consisting of installing intense corona producing elements at the high voltage electrode of a bushing, had given some encouraging results in a laboratory application. A series of laboratory tests was performed to verify and quantify this improvement. It was found that intense corona caused some effect in the initial development of partial discharges on the bushing surface. Improvement in flashover voltage appears significant only when the bushing surface is relatively clean and moisture deposition occurs predominantly by impingement of water particles suspended in air. Thus, the technique of using intense corona at the high voltage electrode may be advantageous in laboratory applications in which the bushing surface can be maintained clean. In practical outdoor applications, however, where significant degrees of contamination and wetting of surfaces either by condensation or by rain or mist may occur, the effect of corona is likely to be negligible. The results of flashover tests performed during this project add to the knowledge of the behavior of HVDC insulation in contaminated conditions. The poor performance of wall bushing has been ascribed to their large diameter.

  6. Final report on RMO comparison SIM.EM-S10: High value resistance comparison with two-terminal cryogenic current comparators

    NASA Astrophysics Data System (ADS)

    Bierzychudek, Marcos E.; Elmquist, Randolph; Hernández, Felipe

    2014-01-01

    This work presents a supplementary comparison of high value resistance standards performed during 2012 and January 2013, following the guidelines presented in a document about measurement comparisons in the CIPM MRA. The purpose of this task was to compare the high resistance cryogenic current comparator scaling of the participating institutes: National Institute of Standards and Technology, USA (NIST), Centro Nacional de Metrología, Mexico (CENAM) and Instituto Nacional de Tecnología Industrial, Argentina (INTI), all of which are members of the Sistema Interamericano de Metrología (SIM) Regional Metrology Organization. All the measurements of this comparison were performed with two-terminal cryogenic current comparators (CCC). Degrees of equivalence of the participating institutes relative to the comparison reference values are given in the report for the measured resistance values. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by SIM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  8. Final Report

    SciTech Connect

    Gurney, Kevin R.

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  9. Grain Boundary (GB) Studies in Nano- and Micro- Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Tanju, Sohanazaman

    2011-12-01

    Polycrystalline materials are composed of grains and grain boundaries. The total volume of occupied grain boundaries in polycrystalline material depends on the grain size. When grain size decreases the volume fraction of grain boundaries increases. For example, when grain size is 10 nm grain boundary volume fraction is ˜ 25%. In polycrystalline materials, different properties (mechanical, electrical, optical, magnetic) are affected by the size of their grains and by the atomic structure of their grain boundaries. Nanocrystalline materials have unique properties compared to coarse grain counterpart because of the presence of more grain boundaries. Increased understanding of the role of grain boundaries play in nanocrystalline materials promotes the tunning of materials properties. In order to study the grain boundaries in different materials, fully dense bulk materials are processed using Current Activated Pressure Assisted Densification (CAPAD) technique. CAPAD is a unique technique for materials processing. It offers faster processing of nanoscale materials compared to traditional sintering technique. Joule heating and pressure are used to densify the materials in CAPAD system. X-ray analysis, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) are used to characterize the materials. There are three different parts in this dissertation: (1) Affect of grain size on grain boundary curvature on different materials; for example, nano and micro crystalline aluminum (metallic bond), silicon (covalent bond) and iron oxide (ionic bond); (2) Grain boundary geometry analysis of nanocrystalline materials and (3) Grain size dependent electrical and optical property investigation. In the first part of the dissertation, the effect of grain size on the grain boundary curvature is investigated. Several different types of materials were chosen, such as, micro and nano crystalline aluminum (Al), silicon (Si) and iron oxide (Fe2O3). It is found that the

  10. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    NASA Astrophysics Data System (ADS)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  11. Assessment of the coastal dynamics in a nested zoom and feedback on the boundary current: the North-Western Mediterranean Sea case

    NASA Astrophysics Data System (ADS)

    Declerck, Amandine; Ourmières, Yann; Molcard, Anne

    2016-11-01

    The Northern Current (hereafter NC), the major current in the North-Western Mediterranean (hereafter NWM) basin, has been largely investigated in the litterature for its mesoscale features. Its behaviour in the Var region can strongly condition the downstream flow along the Gulf of Lions shelf and Spain coast, making this zone a key area. However, the sub-mesoscale dynamics of the area and its potential impacts on the rest of the flow are not well known. This work reveals the potential interest of better simulating high-resolution dynamics in a restricted area and how this could improve the circulation representation in a larger area. To address this question, a very high resolution configuration (1/192∘) nested in an already existing high-resolution configuration (1/64∘) has been developed, using the NEMO model. Comparisons with observations show that the very high-resolution changes only weakly the mean NC characteristics but can significantly modify individual mesoscale events such as eddies and meanders occurring in the zoomed area. Furthermore, the coastal dynamics and episodic intrusions of a NC secondary branch inside a semi-enclosed bay appear to be significantly enhanced. In a second stage, the assessment of the feedback of this improved dynamics on the regional mesoscale dynamics is shown, this being allowed by the two-way coupling option of the embedded configuration using AGRIF.

  12. The atmospheric boundary layer

    SciTech Connect

    Garratt, J.R.

    1992-01-01

    This book is aimed at researchers in the atmospheric and associated sciences who require a moderately advanced text on the Atmospheric Boundary Layer (ABL) in which the many links between turbulence, air-surface transfer, boundary-layer structure and dynamics, and numerical modeling are discussed and elaborated upon. Chapter 1 serves as an introduction, with Chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and Chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and the sea. The structure of the clear-sky, thermally stratified ABL is treated in Chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant since the extensive stratocumulus regions over the sub-tropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, Chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes for the general circulation models of the atmosphere that are being used for climate simulation.

  13. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from Marine Boundary Layer over the California Current

    SciTech Connect

    William R. Wiley Environmental Sciences Laboratory, Pacific Northwest National Laboratory; Gilles, Mary K; Hopkins, Rebecca J.; Desyaterik, Yury; Tivanski, Alexei V.; Zaveri, Rahul A.; Berkowitz, Carl M.; Tyliszczak, Tolek; Gilles, Mary K.; Laskin, Alexander

    2008-03-12

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na>0.10 and CH3SO3-/nss-SO42->0.6.

  14. Chemical Speciation of Sulfur in Marine Cloud Droplets and Particles: Analysis of Individual Particles from the Marine Boundary Layer Over the California Current

    SciTech Connect

    Hopkins, Rebecca J; Desyaterik, Yury; Tivanski, Alexei V; Zaveri, Rahul A; Berkowitz, Carl M; Tyliszczak, T; Gilles, Marry K; Laskin, Alexander

    2008-02-27

    Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a complementary combination of microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X-rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOFSIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from an air mass that originated over the open ocean and then passed through the area of the California current located along the northern California coast. Based on composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea salt sulfate (nss-SO42-) in sea-salt particles with the characteristic ratios of CH3SO3-/nss-SO42-> 0.6. Although this value seems too high for a mid-latitude site, our model calculations suggest that high CH3SO3-/nss-SO42- ratios are expected during the early stages of dimethyl sulfide (DMS) oxidation when CH3SO3H forms more rapidly than H2SO4.

  15. Evidence for composition variations and impurity segregation at grain boundaries in high current-density polycrystalline K- and Co-doped BaFe{sub 2}As{sub 2} superconductors

    SciTech Connect

    Kim, Yoon-Jun; Weiss, Jeremy D.; Hellstrom, Eric E.; Larbalestier, David C.; Seidman, David N.

    2014-10-20

    Some polycrystalline forms of the K- and Co-doped BaFe{sub 2}As{sub 2} and SrFe{sub 2}As{sub 2} superconductors now have a critical current density (J{sub c}) within a factor of ∼5 of that required for real applications, even though it is known that some grain boundaries (GBs) block current, thus, raising the question of whether this blocking is intrinsic or extrinsically limited by artefacts amenable to improvement by better processing. Herein, we utilize atom-probe tomography (APT) to study the grain and GB composition in high J{sub c} K- and Co-doped BaFe{sub 2}As{sub 2} polycrystals. We find that all GBs studied show significant compositional variations on the scale of a few coherence lengths (ξ), as well as strong segregation of oxygen impurities, which we believe are largely introduced in the starting materials. Importantly, these findings demonstrate that APT enables quantitative analysis of the highest J{sub c} K-doped BaFe{sub 2}As{sub 2} samples, where analytical transmission electron microscopy (TEM) fails because of the great reactivity of thin TEM samples. The observations of major chemical perturbations at GBs make us cautiously optimistic that there is a large extrinsic component to the GB current blocking, which will be ameliorated by better processing, for which APT will likely be a crucial instrument.

  16. Dimension of fractal basin boundaries

    SciTech Connect

    Park, B.S.

    1988-01-01

    In many dynamical systems, multiple attractors coexist for certain parameter ranges. The set of initial conditions that asymptotically approach each attractor is its basin of attraction. These basins can be intertwined on arbitrary small scales. Basin boundary can be either smooth or fractal. Dynamical systems that have fractal basin boundary show final state sensitivity of the initial conditions. A measure of this sensitivity (uncertainty exponent {alpha}) is related to the dimension of the basin boundary d = D - {alpha}, where D is the dimension of the phase space and d is the dimension of the basin boundary. At metamorphosis values of the parameter, there might happen a conversion from smooth to fractal basin boundary (smooth-fractal metamorphosis) or a conversion from fractal to another fractal basin boundary characteristically different from the previous fractal one (fractal-fractal metamorphosis). The dimension changes continuously with the parameter except at the metamorphosis values where the dimension of the basin boundary jumps discontinuously. We chose the Henon map and the forced damped pendulum to investigate this. Scaling of the basin volumes near the metamorphosis values of the parameter is also being studied for the Henon map. Observations are explained analytically by using low dimensional model map.

  17. Current loops and fluctuations in the zero-range process on a diamond lattice

    NASA Astrophysics Data System (ADS)

    Villavicencio-Sanchez, R.; Harris, R. J.; Touchette, H.

    2012-07-01

    We study the zero-range process on a simple diamond lattice with open boundary conditions and determine the conditions for the existence of loops in the mean current. We also perform a large deviation analysis for fluctuations of partial and total currents and check the validity of the Gallavotti-Cohen fluctuation relation for these quantities. In this context, we show that the fluctuation relation is not satisfied for partial currents between sites even if it is satisfied for the total current flowing between the boundaries. Finally, we extend our methods to study a chain of coupled diamonds and demonstrate co-existence of mean current regimes.

  18. Crossing boundaries

    PubMed Central

    Miedema, Baukje; Easley, Julie; Fortin, Pierrette; Hamilton, Ryan; Tatemichi, Sue

    2009-01-01

    ABSTRACT OBJECTIVE To explore the tensions between professional and personal boundaries and how they affect the work and private lives of family physicians. DESIGN Qualitative case study using semistructured interviews. SETTING Province of New Brunswick. PARTICIPANTS Forty-eight family physicians from across the province. METHODS A collective case-study approach was developed, with 24 cases of 2 individuals per case. Cases were selected based on sex, location (urban or rural), language (French or English), and number of years since medical school graduation (< 10 years, 10 to 20 years, or > 20 years). Physicians were interviewed in either French or English. Participants were recruited using the College of Physicians and Surgeons of New Brunswick’s physician directory. Based on the rates of response and participation, some cases were overrepresented, while others were not completed. All interviews were audiotaped, transcribed verbatim, and analyzed thematically using a categorical aggregation approach. A coding scheme for the thematic analysis was developed by the research team before the interviews were transcribed. MAIN FINDINGS Almost all of the family physicians interviewed discussed how their profession negatively affected their personal lives. Many struggled with issues such as heavy workloads, the adverse effects of their profession on their family lives, and the trespassing of patients onto their personal lives in small towns and rural communities. Some physicians had developed strategies to balance their personal lives with their professional demands; however, this often meant reducing work hours or terminating certain shifts, such as those in the emergency department or after-hours clinics. CONCLUSION Family physicians struggle to keep their profession from intruding too much into their private lives. These struggles are important to acknowledge and address in order to avoid physician burnout and premature retirement from clinical practice. PMID:19282540

  19. A sharp interface immersed boundary method for compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Ghias, R.; Mittal, R.; Dong, H.

    2007-07-01

    An immersed boundary method for computing viscous, subsonic compressible flows with complex shaped stationary immersed boundaries is presented. The method employs a ghost-cell technique for imposing the boundary conditions on the immersed boundaries. The current approach leads to a sharp representation of the immersed boundaries, a property that is especially useful for flow simulations at high Reynolds numbers. Another unique feature of the method is that it can be applied on Cartesian as well as generalized body non-conformal curvilinear meshes. A mixed second-order central difference-QUICK scheme is used which allows a high degree of control over the numerical damping. A bilinear interpolation scheme used in conjunction with the ghost-cell approach results in second-order global as well as local spatial accuracy. The solver is parallelized for distributed memory platforms using domain decomposition and message passing interface (MPI) and salient features of the parallel algorithm are presented. The accuracy, fidelity and efficiency of the solver are examined by simulating flow past circular cylinders and airfoils and comparing against experimental data and other established results. Finally, we present results from a simulation of wing-tip flow at a relatively high Reynolds number in order to demonstrate the ability of the solver to model complex, non-canonical three-dimensional flows.

  20. Event boundaries and anaphoric reference.

    PubMed

    Thompson, Alexis N; Radvansky, Gabriel A

    2016-06-01

    The current study explored the finding that parsing a narrative into separate events impairs anaphor resolution. According to the Event Horizon Model, when a narrative event boundary is encountered, a new event model is created. Information associated with the prior event model is removed from working memory. So long as the event model containing the anaphor referent is currently being processed, this information should still be available when there is no narrative event boundary, even if reading has been disrupted by a working-memory-clearing distractor task. In those cases, readers may reactivate their prior event model, and anaphor resolution would not be affected. Alternatively, comprehension may not be as event oriented as this account suggests. Instead, any disruption of the contents of working memory during comprehension, event related or not, may be sufficient to disrupt anaphor resolution. In this case, reading comprehension would be more strongly guided by other, more basic language processing mechanisms and the event structure of the described events would play a more minor role. In the current experiments, participants were given stories to read in which we included, between the anaphor and its referent, either the presence of a narrative event boundary (Experiment 1) or a narrative event boundary along with a working-memory-clearing distractor task (Experiment 2). The results showed that anaphor resolution was affected by narrative event boundaries but not by a working-memory-clearing distractor task. This is interpreted as being consistent with the Event Horizon Model of event cognition.

  1. A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Fernholz, H. H.; Finley, P. J.; Dussauge, J. P.; Smits, A. J.; Reshotko, E. (Editor)

    1989-01-01

    A wide range of recent work on compressible turbulent boundary layers is described. Special attention was paid to flows with rapid changes in pressure including flows with shock waves, curved walls, and expansions. The application of rapid distortion theory to flows transversing expansion and shock waves is reviewed. This is followed by an account of experiments aimed at elucidating the large scale structures present in supersonic boundary layers. The current status of laser-Doppler and hot-wire anemometry in supersonic flow is discussed, and a new interferometric technique for the determination of wall-stress is described. The use of small pressure transducers to deduce information about the structure of zero pressure-gradient and severely perturbed boundary layers is investigated. Finally, there is an extension of the data presentation of AGARDographs 223, 253 and 263 to cover rapidly distorted boundary layers.

  2. Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Shao, Q.; Branson, M.

    1997-01-01

    The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.

  3. Derivation and implementation of the boundary integral formula for the convective acoustic wave equation in time domain.

    PubMed

    Lee, Yong Woo; Lee, Duck Joo

    2014-12-01

    Kirchhoff's formula for the convective wave equation is derived using the generalized function theory. The generalized convective wave equation for a stationary surface is obtained, and the integral formulation, the convective Kirchhoff's formula, is derived. The formula has a similar form to the classical Kirchhoff's formula, but an additional term appears due to a moving medium effect. For convenience, the additional term is manipulated to a final form as the classical Kirchhoff's formula. The frequency domain boundary integral can be obtained from the current time domain boundary integral form. The derived formula is verified by comparison with the analytic solution of source in the uniform flow. The formula is also utilized as a boundary integral equation. Time domain boundary element method (BEM) analysis using the boundary integral equation is conducted, and the results show good agreement with the analytical solution. The formula derived here can be useful for sound radiation and scattering by arbitrary bodies in a moving medium in the time domain.

  4. Law of 22 April 2005 on patients' rights and the end of life in France: setting the boundaries of euthanasia, with regard to current legislation in other European countries.

    PubMed

    Clin, Bénédicte; Ophélie, Ferrant

    2010-10-01

    The term 'euthanasia' is not clearly defined. Euthanasia is evoked in many aspects of terminal care: interruption of curative treatment at the end of life, palliative care or the act of deliberately provoking death through compassion. A law on 'patients' rights and the end of life', promulgated in France on 22 April 2005, led to changes in the French Code of Public Health. In this work, we have first outlined the key provisions of this law and the changes it has brought, then we have compared current legislation on the subject throughout Europe, where a rapid overview of current practice in terminal patient care revealed four different types of legislation: the first authorizes euthanasia (in the sense of provoking death, if this choice is medically justified), the second legalizes 'assisted suicide', the third, which is sometimes referred to as 'passive euthanasia', consists of the non-administration of life-sustaining treatment and, finally, the fourth prohibits euthanasia in any form whatsoever. In the last section, we have attempted to clarify the as yet indistinct notion of 'euthanasia' in order to determine whether the conception of terminal care in the Law of 22 April 2005 was consistent with that put forward by the philosopher Francis Bacon, who claimed that, 'The physician's role is to relieve pain, not only when such relief can lead to healing, but also when it can proffer a calm and trouble-free death, thus putting an end to the suffering and the agony of death' (modern adaptation of the original quote).

  5. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  6. Non-autonomous and stochastic dynamics of oceanic gravity currents

    NASA Astrophysics Data System (ADS)

    Bongolan-Walsh, Vena Pearl

    The incompressible Navier-Stokes equations (the momentum, continuity and scalar transport equations) are the fundamental equations of fluid mechanics. Of great importance to weather and climate studies is the thermohaline circulation, which is affected by gravity currents, hence we chose it as our application. First, we studied the Navier-Stokes equations (without scalar transport) using non-autonomous dynamical systems techniques, and showed the existence of recurrent or Poisson stable motions under recurrent or Poisson stable forcing, respectively. This was motivated by observed periodic and recurrent motions in nature. Next, we investigated the coupled Navier-Stokes and scalar transport equations (we may take the scalar to be salinity, say), with spatially correlated white noise on the boundary. We employed random dynamical system ideas, and showed that this system is ergodic under suitable conditions for mean salinity input flux on the boundary, Prandtl number and covariance of the noise. This addition of a random term to the boundary conditions was motivated by observed seasonal variations in the salinity flux in gravity currents. The final part of this thesis are numerical simulations studying the effects of different boundary conditions on the entrainment behavior, salinity distribution and salinity transport properties of gravity currents. The finding is that gravity currents developing under Neumann and Dirichlet boundary conditions differ most in the way they transport salinity from the middle salinity parts (roughly the middle of the current) towards the fresher part (roughly the top of the current). This study contributes to understanding the behavior of the Navier-Stokes Equations under time-periodic forcings, uncertain boundary conditions, and how gravity currents are affected by different boundary conditions.

  7. Measurement of density and temperature in a hypersonic turbulent boundary layer using the electron beam fluorescence technique. Ph.D. Thesis. Final Report, 1 Oct. 1969 - 1 Sep. 1972

    NASA Technical Reports Server (NTRS)

    Mcronald, A. D.

    1975-01-01

    Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.

  8. Eddies along western boundaries

    NASA Astrophysics Data System (ADS)

    Arruda, Wilton Zumpichiatti

    The Ulleung eddy owes its existence to beta and nonlinearities . A nonlinear theory for the Ulleung Warm Eddy (UWE) in the Japan/East Sea is proposed. Using the nonlinear reduced gravity (shallow water) equations, it is shown analytically and numerically that the eddy is established in order to balance the northward momentum flux exerted by the separating western boundary current (WBC). In this scenario the presence of beta produces a southward (eddy) force balancing the northward momentum flux of the separating East Korea Warm Current. In contrast to the familiar idea attributing the formation of eddies to instabilities (i.e., the breakdown of a known steady solution), the UWE is an integral part of the steady stable solution. On an f-plane no eddy is produced. To balance the northward momentum force imparted by the nonlinear WBC the f-plane system moves offshore producing a southward Coriolis force. We also found that the observed UWE scale agrees with the analytical and numerical estimates. The Mindanao and Halmahera eddies are due to the bending of their parent currents, nonlinearities and beta. Starting with the simple case of a northward (southward) WBC flowing along a concave solid boundary with a sharp corner on an beta-plane, it is shown that an anticyclonic (cyclonic) eddy is established to balance the upstream momentum flux. (On an f-plane no eddy is established because a pressure force which balances the WBC momentum flux is generated.) With the aid of the above analysis we then examine the collision of two opposing WBCs on a beta-plane. It is shown that this problem can be conceptually reduced to the above problem of two WBCs turning in a solid corner on a beta-plane where the streamline separating the two colliding currents acts like a "zonal wall." We show that an eddy is established (to balance the momentum flux of the respective WBC) on each side of the dividing streamline. Based on the collision problem, an explanation for the Mindanao and

  9. Unified Parameterization of the Marine Boundary Layer

    DTIC Science & Technology

    2010-09-30

    information if it does not display a currently valid OMB control number. 1. REPORT DATE 2010 2 . REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010...boundary layer closure for the convective boundary layer 2 . An EDMF approach to the vertical transport of TKE in convective boundary layers 3. EDMF in...4 implementation and extension to shallow cumulus parameterization is in progress. 2   An integrated TKE-based eddy-diffusivity/mass-flux

  10. Preliminary Structural Design Conceptualization for Composite Rotor for Verdant Power Water Current: Cooperative Research and Development Final Report, CRADA Number CRD-08-296

    SciTech Connect

    Hughes, S.

    2011-02-01

    The primary thrust of the CRADA will be to develop a new rotor design that will allow higher current flows (>4m/s), greater swept area (6-11m), and in the process, will maximize performance and energy capture.

  11. A measurement of the muon neutrino charged current quasielastic-like cross section on a hydrocarbon target and final state interaction effects

    SciTech Connect

    Walton, Tammy

    2014-01-01

    Presented is the analysis of the μ charged-current quasielastic-like interaction with a polystyrene (CH or hydrocarbon) target in the MINER A experiment, which was exposed to a neutrino beam that peaked at 3.5 GeV.

  12. Future Performance Trend Indicators: A Current Value Approach to Human Resources Accounting. Report I. Internal Consistencies and Relationships to Performance By Site. Final Report.

    ERIC Educational Resources Information Center

    Pecorella, Patricia A.; Bowers, David G.

    Analyses preparatory to construction of a suitable file for generating a system of future performance trend indicators are described. Such a system falls into the category of a current value approach to human resources accounting. It requires that there be a substantial body of data which: (1) uses the work group or unit, not the individual, as…

  13. Study of Boundary Structures.

    DTIC Science & Technology

    1982-09-01

    THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 11 - 4 TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY STRUCTURES...19 B THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 37 C TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY...layer structure. 10 SECTION 3 THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE The (111) planes of the fcc structure is stacked as ABCABC... as

  14. Time Resolved Optical Studies on The Plasmonic Field Enhancement of Bacteriorhodopsin Proton Photo-current: Final Technical Report Covering Aug 31, 2015–Aug 31, 2016

    SciTech Connect

    El-Sayed, Mostafa A.

    2016-09-15

    Our research continues to focus on the effects of plasmonic nanoparticles on organic and inorganic light-harvesting materials. Recent work has focused on the synthesis of stabilized gold nanoparticles to enhance the efficiency of dye-sensitized solar cells (DSSCs). Two major concerns in dye sensitized solar cells (DSSCs) are efficient light absorption and charge collection. Charge collection typically suffers because transport of electrons through the mesoporous TiO2 substrate is slow. Thus, one obvious way to improve charge collection is to reduce the thickness of the TiO2. Alternatively, a form of TiO2 with fewer grain boundaries, such as nanotubes, could be used in place of sintered nanospheres. Unfortunately, both of these solutions end up reducing the amount of surface area available to adsorb dye molecules. This directly reduces the percentage of photons absorbed. This problem could be avoided if dye molecules with larger absorption were designed; although synthetic chemists seem to be pushing the limits of what is achievable. Plasmonic nanoparticles offer an alternative way to boost light absorption. It is well known that plasmonic nanoparticles can enhance the local electric field of resonant frequencies of light. If this were in the same spectral region as the dye’s absorption band it would increase the percentage of absorbed photons. One concern is that if the nanoparticles are too close to the dye molecules they can quench the excited state. To avoid this problem, we prepared gold nanoparticles with a silica shell. This limited the amount of quenching while still permitting some enhancement of absorption. Unfortunately, we ran into some serious issues. The iodide based electrolyte etched the gold nanoparticles, completely dissolving them within a few hours. The silica shell should have provided protection but there were pinholes through which iodide could diffuse. Increasing the thickness of the silica to over 10 nm

  15. The Role of Grain Boundary Energy on Grain Boundary Complexion Transitions

    SciTech Connect

    Bojarski, Stephanie A.; Rohrer, Gregory S.

    2014-09-01

    Grain boundary complexions are distinct equilibrium structures and compositions of a grain boundary and complexion transformations are transition from a metastable to an equilibrium complexion at a specific thermodynamic and geometric conditions. Previous work indicates that, in the case of doped alumina, a complexion transition that increased the mobility of transformed boundaries and resulted in abnormal grain growth also caused a decrease in the mean relative grain boundary energy as well as an increase in the anisotropy of the grain boundary character distribution (GBCD). The current work will investigate the hypothesis that the rates of complexion transitions that result in abnormal grain growth (AGG) depend on grain boundary character and energy. Furthermore, the current work expands upon this understanding and tests the hypothesis that it is possible to control when and where a complexion transition occurs by controlling the local grain boundary energy distribution.

  16. Discovering the Role of Grain Boundary Complexions in Materials

    SciTech Connect

    Harmer, Martin P.

    2015-03-19

    Grain boundaries are inherently an area of disorder in polycrystalline materials which define the transport and various other material properties. The relationship between the interfacial chemistry, structure and the material properties is not well understood. Among the various taxonomies for grain boundaries, Grain Boundary Complexion is a relatively new conceptual scheme that relates the structure and kinetic properties of grain boundaries. In this classification scheme, grain boundaries are considered to be distinct three dimensional (the thickness being considerably smaller as compared to the other two dimensions but nonetheless discernible) equilibrium thermodynamic phases abutted between two crystalline phases. The stability and structure of these interfacial phases are dictated by various thermodynamic variables such as temperature, stress (pressure), interfacial chemistry (chemical potential) and most importantly by the energies of the adjoining crystal surfaces. These phases are only stable within the constraint of the adjoining grains. Although these interfacial phases are not stable in bulk form, they can transform from one complexion to another as a function of various thermodynamic variables analogous to the behavior of bulk phases. Examples of different complexions have been reported in various publications. However, a systematic investigation exploring the existence of grain boundary complexions in material systems other than alumina remains to be done. Although the role of interfacial chemistry on grain boundary complexions in alumina has been addressed, a clear understanding of the underlying thermodynamics governing complexion formation is lacking. Finally, the effects of grain boundary complexions in bulk material properties are widely unknown. Factors above urge a thorough exploration of grain boundary complexions in a range of different materials systems The purpose of the current program is to verify the existence of grain boundary complexion

  17. Final results on the Jurassic-Cretaceous boundary in the Gresten Klippenbelt (Austria): Macro-, micro-, nannofossils, isotopes, geochemistry, susceptibility, gamma-log and palaeomagnetic data as environmental proxies of the early Penninic Ocean history

    NASA Astrophysics Data System (ADS)

    Lukeneder, A.; Halásová, E.; Kroh, A.; Mayrhofer, S.; Pruner, P.; Reháková, D.; Schnabl, P.; Sprovieri, M.

    2009-04-01

    Jurassic to Lower Cretaceous pelagic sediments are well known to form a major element of the northernmost tectonic units of the Gresten Klippenbelt (Lower Austria). The Penninic Ocean was a side tract of the Central Atlantic Oceanic System intercalated between the European and the Austroalpine plates. Its opening started during the Mid Jurrasic, as rifting of the of the oceanic crust between the European and the Austroalpine plates. The turnover of the deposition on the European shelf (Helvetic Zone) from deep-water siliciclastics into pelagic carbonates is correlated with the deepening of this newly arising ocean. Within the Gresten Klippenbelt Unit, this transition is reflected by the lithostratigraphic boundary between the Tithonian marl-limestone succession and the Berriasian limestones of the Blassenstein Formation. This boundary is well exposed in a newly discovered site at Nutzhof, in the heart of Lower Austria (Kroh and Lukeneder 2009, Lukeneder 2009, Pruner, Schnabl, and Lukeneder 2009, Reháková, Halásová and Lukeneder 2009). Biostratigraphy. According to microfossil (calcareous dinoflagellates, calpionellids) and palaeomagnetic data, the association indicates that the cephalopod-bearing beds of the Nutzhof section belong to the Carpistomiosphaera tithonica-Zone of the Early Tithonian up to the Calpionella Zone of the Middle Berriasian. This interval corresponds to the ammonoid zones from the Early Tithonian Hybonoticeras hybonotum-Zone up to the Middle Berriasian Subthurmannia occitanica-Zone. Ammonoids. Late Jurassic to Early Cretaceous ammonoids were collected at the Nutzhof locality in the eastern part of the Gresten Klippenbelt in Lower Austria. The cephalopod fauna from the Blassenstein Formation, correlated with micro- and nannofossil data from the marly unit and the limestone unit, indicates Early Tithonian to Middle Berriasian age (Hybonoticeras hybonotum Zone up to the Subthurmannia occitanica Zone). According to the correlation of the fossil

  18. Quantification of Grain Boundary Mediated Plasticity Mechanisms in Nanocrystalline Metals

    NASA Astrophysics Data System (ADS)

    Panzarino, Jason F.

    Nanocrystalline metals have been a topic of great discussion over recent years due to their exceptional strengths and novel grain boundary-mediated deformation mechanisms. Their microstructures are known to evolve through dynamic processes such as grain boundary migration and grain rotation, but how the collective interaction of these mechanisms alter the microstructure on a larger scale is not completely understood. In this thesis, we present coupled atomistic modeling and experimental tasks that aim to understand how the grain structure, grain boundaries, and associated grain boundary network change during nanocrystalline plasticity. Due to the complex three-dimensional nature of these mechanisms and the limited spatial and temporal resolution of current in-situ experimental techniques, we turn to atomistic modeling to help understand the dynamics by which these mechanisms unfold. In order to provide a quantitative analysis of this behavior, we develop a tool which fully characterizes nanocrystalline microstructures in atomistic models and subsequently tracks their evolution during molecular dynamics simulations. We then use this algorithm to quantitatively track grain structure and boundary network evolution in plastically deformed nanocrystalline Al, finding that higher testing temperature and smaller average grain size results in increased evolution of grain structure with evidence of larger scale changes to the grain boundary network also taking place. This prompts us to extend our analysis technique to include full characterization of grain boundary networks and rigorous topographical feature identification. We then employ this tool on simulations of Al subject to monotonic tension, cycling loading, and simple annealing, and find that each case results in different evolution of the grain boundary network. Finally, our computational work is complemented synergistically by experimental analyses which track surface microstructure evolution during sliding wear

  19. Thermal stress imposed by prototype bilayer and current ground crew chemical defense ensembles: a limited laboratory comparison. Final report, 30 June 1986-1 January 1987

    SciTech Connect

    Krock, L.P.; Navalta, R.; Myhre, L.G.

    1988-07-01

    An open bilayer ground-crew chemical defense ensemble (CDE) was proposed to reduce the thermal burden during vapor-only exposure periods. This study compared the thermal-stress profile of the proposed ensemble to that produced by the currently employed closed CDE. Four subjects, alternating ensembles on separate days, walked on a treadmill in an environmental chamber at 5.3 km/h (3.3 mph) and 2% grade (an energy expenditure of 350 kcal/h) for alternating work/rest to achieve significant recovery. Mean total sweat production was lower (1.38 vs. 2.50 liters) and percent sweat evaporation greater (65.7% vs. 30.0%) in the prototype ensemble than in the CDE. The prototype ensemble provided greater heat dissipation and allowed more-efficient sweat evaporation which had the double benefit of reducing heat storage and limiting dehydration.

  20. Current good tissue practice for human cell, tissue, and cellular and tissue-based product establishments; inspection and enforcement. Final rule.

    PubMed

    2004-11-24

    The Food and Drug Administration (FDA) is requiring human cell, tissue, and cellular and tissue-based product (HCT/P) establishments to follow current good tissue practice (CGTP), which governs the methods used in, and the facilities and controls used for, the manufacture of HCT/Ps; recordkeeping; and the establishment of a quality program. The agency is also issuing new regulations pertaining to labeling, reporting, inspections, and enforcement that will apply to manufacturers of those HCT/Ps regulated solely under the authority of the Public Health Service Act (PHS Act), and not as drugs, devices, and/or biological products. The agency's actions are intended to improve protection of the public health while keeping regulatory burden to a minimum, which in turn would encourage significant innovation.

  1. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  2. On boundary superalgebras

    SciTech Connect

    Doikou, Anastasia

    2010-04-15

    We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.

  3. Review of the current status of reverse electrodialysis systems for salinity power systems using a stratified saturated solar pond. Final report. Report No. 220280

    SciTech Connect

    Not Available

    1980-02-22

    The overall objective of this study was to develop and place in operation a small salinity power heat engine of 100-watt capacity consisting of a saturated solar pond (SSP) coupled to a reverse electrodialysis (RED) membrane stack. The objectives of the contract were: (1) to demonstrate that a SSP can be used for unmixing of a mixed brine into a dilute and a concentrated brine stream, (2) to demonstrate that a RED stack can generate electrical power, and (3) to generate the necessary experimental data on the RED-SSP system which can be used to assess the potential of such a system for economical energy generation. The results of findings on the current status of ion-exchange membranes and RED stacks is summarized. It is shown that the electrical resistance of the present-day membranes, which are produced for electrodialysis and not reverse electrodialysis, and the solution compartments are very high. This causes the power density of present-day RED stacks, in terms of watts per unit membrane area, to be very low. This factor combined with the high cost of present-day membranes results in very high costs for the RED stack. Furthermore, present-day membranes as well as adhesives for membrane assemblies cannot operate at about 80/sup 0/C for any reasonable length of time without severe deterioration in performance. The areas that require development work include: (1) development of cheap ion-exchange membranes with low electrical resistance and high permselectivity; (2) development of very thin solution compartments; (3) development of RED stacks which can operate at high temperatures; and (4) laboratory testing of small RED stacks to investigate the effect of temperature on stack performance and the fouling of RED membranes with time, have been identified. (WHK)

  4. The effects of prosodic boundaries on nasality in Taiwan Min.

    PubMed

    Pan, Ho-hsien

    2007-06-01

    This study explores the effects of prosodic boundaries on nasality at intonational phrase, word, and syllable boundaries. The subjects were recorded saying phrases that contained a syllable-final nasal consonant followed by a syllable-initial stop. The timing, duration, and magnitude of the nasal airflows measured were used to determine the extent of nasality across boundaries. Nasal amplitudes were found to vary in a speaker-dependent manner among boundary types. However, the patterns of nasal contours and temporal aspects of the airflow parameters consistently varied with boundary type across all the speakers. In general, the duration of nasal airflow and nasal plateau were the longest at the intonational phrase boundary, followed by word boundary and then syllable boundary. In addition to the hierarchical influence of boundary strength, there were unique phonetic markings associated with individual boundaries. In particular, two nasal rises interrupted by nasal inhalation occurred only across an intonation phrase boundary. Also, unexpectedly, a word boundary was marked by the longest postboundary vowel, whereas a syllable boundary was marked with the shortest nasal duration. The results here support the hierarchical effect of boundary on both domain-edge strengthening and cross-boundary coarticulation.

  5. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency

    PubMed Central

    Uberuaga, Blas Pedro; Vernon, Louis J.; Martinez, Enrique; Voter, Arthur F.

    2015-01-01

    Nanocrystalline materials have received great attention due to their potential for improved functionality and have been proposed for extreme environments where the interfaces are expected to promote radiation tolerance. However, the precise role of the interfaces in modifying defect behavior is unclear. Using long-time simulations methods, we determine the mobility of defects and defect clusters at grain boundaries in Cu. We find that mobilities vary significantly with boundary structure and cluster size, with larger clusters exhibiting reduced mobility, and that interface sink efficiency depends on the kinetics of defects within the interface via the in-boundary annihilation rate of defects. Thus, sink efficiency is a strong function of defect mobility, which depends on boundary structure, a property that evolves with time. Further, defect mobility at boundaries can be slower than in the bulk, which has general implications for the properties of polycrystalline materials. Finally, we correlate defect energetics with the volumes of atomic sites at the boundary. PMID:25766999

  6. On boundary stimulation and optimal boundary control of the bidomain equations.

    PubMed

    Chamakuri, Nagaiah; Kunisch, Karl; Plank, Gernot

    2013-10-01

    The bidomain equations with Neumann boundary stimulation and optimal control of these stimuli are investigated. First an analytical framework for boundary control is provided. Then a parallel finite element based algorithm is devised and its efficiency is demonstrated not only for the direct problem but also for the optimal control problem. The computations realize a model configuration corresponding to optimal boundary defibrillation of a reentry phenomenon by applying current density stimuli.

  7. On Boundary Stimulation and Optimal Boundary Control of the Bidomain Equations

    PubMed Central

    Nagaiah, Chamakuri; Kunisch, Karl; Plank, Gernot

    2014-01-01

    The bidomain equations with Neumann boundary stimulation and optimal control of these stimuli are investigated. First an analytical framework for boundary control is provided. Then a parallel finite element based algorithm is devised and its efficiency is demonstrated not only for the direct problem but also for the optimal control problem. The computations realize a model configuration corresponding to optimal boundary defibrillation of a reentry phenomenon by applying current density stimuli. PMID:23856647

  8. Tectonics of oblique plate boundary systems

    NASA Astrophysics Data System (ADS)

    Díaz-Azpiroz, Manuel; Brune, Sascha; Leever, Karen A.; Fernández, Carlos; Czeck, Dyanna M.

    2016-12-01

    The relative displacement between lithospheric plates normally results in obliquely deforming plate boundaries. This is simply caused by the fact that, on plate tectonics basis, irregularly shaped plate boundaries are rarely perpendicular or parallel to small-circle rotation paths, which describe plate motion on a sphere (Fig. 1a). Global current relative plate motions estimated from geological data (DeMets et al., 2010; Argus et al., 2011) and GPS measurements (e.g., Kreemer et al., 2003; Argus et al., 2010) provide insight to the prevalent degrees of obliquity on Earth's surface. Based on these global data sets, Philippon and Corti (2016), statistically show that current orthogonal boundaries (obliquity angle smaller than 10°) represent around 8% of the total boundary length whereas strike-slip boundaries (obliquity angle larger than 80°) are encountered in < 10% of the total boundary length. Therefore, around 80% of active plate boundaries present oblique relative motions. Furthermore, changes in plate kinematics leading to migration or jumps in the rotation poles necessarily cause obliquity along former pure strike-slip or convergent/divergent boundaries (Fig. 1b).

  9. Integrable Boundary for Quad-Graph Systems: Three-Dimensional Boundary Consistency

    NASA Astrophysics Data System (ADS)

    Caudrelier, Vincent; Crampé, Nicolas; Zhang, Qi Cheng

    2014-02-01

    We propose the notion of integrable boundary in the context of discrete integrable systems on quad-graphs. The equation characterizing the boundary must satisfy a compatibility equation with the one characterizing the bulk that we called the three-dimensional (3D) boundary consistency. In comparison to the usual 3D consistency condition which is linked to a cube, our 3D boundary consistency condition lives on a half of a rhombic dodecahedron. The We provide a list of integrable boundaries associated to each quad-graph equation of the classification obtained by Adler, Bobenko and Suris. Then, the use of the term ''integrable boundary'' is justified by the facts that there are Bäcklund transformations and a zero curvature representation for systems with boundary satisfying our condition. We discuss the three-leg form of boundary equations, obtain associated discrete Toda-type models with boundary and recover previous results as particular cases. Finally, the connection between the 3D boundary consistency and the set-theoretical reflection equation is established.

  10. Observing the Vertical Extent of the Urban Boundary Layer Over Jersey City, NJ: A Diurnal and Seasonal Analysis

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.

    2015-12-01

    The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).

  11. Incorporation of the planetary boundary layer in atmospheric models

    NASA Technical Reports Server (NTRS)

    Moeng, Chin-Hoh; Wyngaard, John; Pielke, Roger; Krueger, Steve

    1993-01-01

    The topics discussed include the following: perspectives on planetary boundary layer (PBL) measurements; current problems of PBL parameterization in mesoscale models; and convective cloud-PBL interactions.

  12. 78 FR 35960 - Minor Boundary Revision at Mojave National Preserve

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... National Park Service Minor Boundary Revision at Mojave National Preserve AGENCY: National Park Service....S.C. 460l- 9(c)(1), the boundary of Mojave National Preserve is modified to include 7.12 acres of..., California, immediately adjacent to the current northern boundary of Mojave National Preserve. ] Notice...

  13. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  14. Theory and Fluid Simulations of Boundary Plasma Fluctuations

    SciTech Connect

    Cohen, R H; LaBombard, B; LoDestro, L L; Rognlien, T D; Ryutov, D D; Terry, J L; Umansky, M V; Xu, X Q; Zweben, S

    2007-01-09

    Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.

  15. Boundary lubrication: Revisited

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    A review of the various lubrication regimes, with particular, emphasis on boundary lubrication, is presented. The types of wear debris and extent of surface damage is illustrated for each regime. The role of boundary surface films along with their modes of formation and important physical properties are discussed. In addition, the effects of various operating parameters on friction and wear in the boundary lubrication regime are considered.

  16. Backgrounder: Final Rule for Current Good Manufacturing ...

    Center for Food Safety and Applied Nutrition (CFSAN)

    ... History. ... Tiếng Việt | 한국어 | Tagalog | Русский | العربية | Kreyòl Ayisyen | Français | Polski | Português | Italiano | Deutsch | 日本語 | فارسی | English. ...

  17. A Poisson-Boltzmann dynamics method with nonperiodic boundary condition

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Luo, Ray

    2003-12-01

    We have developed a well-behaved and efficient finite difference Poisson-Boltzmann dynamics method with a nonperiodic boundary condition. This is made possible, in part, by a rather fine grid spacing used for the finite difference treatment of the reaction field interaction. The stability is also made possible by a new dielectric model that is smooth both over time and over space, an important issue in the application of implicit solvents. In addition, the electrostatic focusing technique facilitates the use of an accurate yet efficient nonperiodic boundary condition: boundary grid potentials computed by the sum of potentials from individual grid charges. Finally, the particle-particle particle-mesh technique is adopted in the computation of the Coulombic interaction to balance accuracy and efficiency in simulations of large biomolecules. Preliminary testing shows that the nonperiodic Poisson-Boltzmann dynamics method is numerically stable in trajectories at least 4 ns long. The new model is also fairly efficient: it is comparable to that of the pairwise generalized Born solvent model, making it a strong candidate for dynamics simulations of biomolecules in dilute aqueous solutions. Note that the current treatment of total electrostatic interactions is with no cutoff, which is important for simulations of biomolecules. Rigorous treatment of the Debye-Hückel screening is also possible within the Poisson-Boltzmann framework: its importance is demonstrated by a simulation of a highly charged protein.

  18. Reconsideration of the planetary boundary for phosphorus

    NASA Astrophysics Data System (ADS)

    Carpenter, Stephen R.; Bennett, Elena M.

    2011-01-01

    Phosphorus (P) is a critical factor for food production, yet surface freshwaters and some coastal waters are highly sensitive to eutrophication by excess P. A planetary boundary, or upper tolerable limit, for P discharge to the oceans is thought to be ten times the pre-industrial rate, or more than three times the current rate. However this boundary does not take account of freshwater eutrophication. We analyzed the global P cycle to estimate planetary boundaries for freshwater eutrophication. Planetary boundaries were computed for the input of P to freshwaters, the input of P to terrestrial soil, and the mass of P in soil. Each boundary was computed for two water quality targets, 24 mg P m - 3, a typical target for lakes and reservoirs, and 160 mg m - 3, the approximate pre-industrial P concentration in the world's rivers. Planetary boundaries were also computed using three published estimates of current P flow to the sea. Current conditions exceed all planetary boundaries for P. Substantial differences between current conditions and planetary boundaries demonstrate the contrast between large amounts of P needed for food production and the high sensitivity of freshwaters to pollution by P runoff. At the same time, some regions of the world are P-deficient, and there are some indications that a global P shortage is possible in coming decades. More efficient recycling and retention of P within agricultural ecosystems could maintain or increase food production while reducing P pollution and improving water quality. Spatial heterogeneity in the global P cycle suggests that recycling of P in regions of excess and transfer of P to regions of deficiency could mitigate eutrophication, increase agricultural yield, and delay or avoid global P shortage.

  19. Probing temperature chaos through thermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlong; Machta, Jonathan; Katzgraber, Helmut

    2015-03-01

    Using population annealing Monte Carlo, we numerically study temperature chaos in the three-dimensional Edwards-Anderson Ising spin glass using thermal boundary conditions. In thermal boundary conditions all eight combinations of periodic vs antiperiodic boundary conditions in the three spatial directions appear in the ensemble with their respective Boltzmann weights, thus minimizing finite-size corrections due to domain walls. By studying salient features in the specific heat we show evidence of temperature chaos. Our results suggest that these bumps are mainly caused by system-size excitations where the free energy of two boundary conditions cross. Furthermore, we study the scaling of both entropy and energy at boundary condition crossings and find that the scaling of the energy is very different from the scaling obtained by a simple change of boundary conditions. We attribute this difference to the stronger finite-size effects induced via a simple change of boundary conditions. Finally, we show that temperature chaos occurs more frequently at higher temperatures within the spin-glass phase and for larger system sizes, while the normalized distribution function with respect to temperature is about the same for different system sizes. The work is supported from NSF (Grant No. DMR-1208046).

  20. Late Permian high-Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo-Asian ocean and the orogen-craton boundary

    NASA Astrophysics Data System (ADS)

    Yuan, Lingling; Zhang, Xiaohui; Xue, Fuhong; Lu, Yinghuai; Zong, Keqing

    2016-08-01

    High-Mg andesites (HMAs) and related basalts constitute a volumetrically minor, but genetically important occurrence along most convergent plate margins of various ages on Earth. The details of their petrogenesis can contain critical information for resolving essential geodynamic and crustal evolutionary issues. This zircon U-Pb dating and geochemical study documents the late Permian metamorphosed high-Mg basaltic to andesitic suite from Kaiyuan of northern Liaoning, North China. These rocks feature SiO2 contents ranging from 48.7 to 63.2 wt.%, high Mg# values of 63-75, an enrichment in large-ion lithophile elements (LILE), and depletion in high field strength elements (HFSE). They possess whole-rock initial 87Sr/86Sr ratios of 0.70417-0.70457, εNd(t) values from - 0.4 to 5.0, and εHf(t) values from 5.1 to 11, as well as zircon εHf(t) values from - 9.4 to 0.4. These features indicate that their petrogenesis most likely involved precursory metasomatism of mantle peridotites by melts from subduction-related sediments, and subsequent partial melting. With a depleted mantle source and possible tectonic link to post-subduction slab break-off, the Kaiyuan suite could present a spatial reference not only for defining the demarcation line between the North China craton (NCC) and the Central Asian Orogenic belt (CAOB) in the region, but also for tracing the final location of the cryptic suturing zone of the Paleo-Asian Ocean. Synthesizing the suite with coeval igneous episodes as well as concomitant metamorphic events along the Solonker-Xra Moron-Changchun zone leads to the characterization of the eventual closure of the Paleo-Asian Ocean within a double-sided subduction system during late Permian-Early Triassic.

  1. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  2. Boundary and intimacy.

    PubMed

    Paris, J

    1985-10-01

    Personal boundaries are essential for psychological stability. In psychopathology, they may be too porous, as in the case of borderline personalities, or too rigid, as in the case of narcissistic and paranoid personalities. A developmental model which could explain abnormal boundaries would postulate neglect producing porous boundaries, and intrusiveness producing rigid boundaries. Case material is presented in which patients with narcissistic personality traits had grown up with an intrusive, controlling mother, and without a father to provide a buffer. This led to an inability to tolerate intimacy in adult relationships. The transference of both patients reflected their extreme sensitivity to impingement on their boundaries. Such patients suffer from inner emptiness because of their inability to incorporate positive experiences.

  3. Ocean floor boundaries.

    PubMed

    Hedberg, H D

    1979-04-13

    The base of the continental slope, combined with the concepts of a boudary zone, a technical advisory boundary commission, and special treatment for restricted seas, offers a readily attainable, natural, practicable, and equitable boundary between national and international jurisdiction over the ocean floor. There is no point in bringing into the boundary formula the unnecessary added complication of thickness of sediments, as recently proposed. Review of the U.S. offshore brings out the critical importance with respect to energy resources of proper choice of boundary principles and proper determination of the base-of-continent line about our shores. The advice of the pertinent science and technology community should urgently be sought and contributed to decisions on offshore boundaries.

  4. Sensitivity to volcanic field boundary

    NASA Astrophysics Data System (ADS)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  5. Measurement of double-differential muon neutrino charged-current interactions on C8 H8 without pions in the final state using the T2K off-axis beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-06-01

    We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734 ×1020 protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross section in muon kinematic variables (cos θμ, pμ), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not distinguish among the available models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross section in the full phase space is σ =(0.417 ±0.047 (syst ) ±0.005 (stat ) )×10-38 cm2 nucleon-1 and the cross section integrated in the region of phase space with largest efficiency and best signal-over-background ratio (cos θμ>0.6 and pμ>200 MeV ) is σ =(0.202 ±0.036 (syst ) ±0.003 (stat ) )×10-38 cm2 nucleon-1 .

  6. Obliquity along plate boundaries

    NASA Astrophysics Data System (ADS)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  7. How Listeners Weight Acoustic Cues to Intonational Phrase Boundaries

    PubMed Central

    Yang, Xiaohong; Shen, Xiangrong; Li, Weijun; Yang, Yufang

    2014-01-01

    The presence of an intonational phrase boundary is often marked by three major acoustic cues: pause, final lengthening, and pitch reset. The present study investigates how these three acoustic cues are weighted in the perception of intonational phrase boundaries in two experiments. Sentences that contained two intonational phrases with a critical boundary between them were used as the experimental stimuli. The roles of the three acoustic cues at the critical boundary were manipulated in five conditions. The first condition featured none of the acoustic cues. The following three conditions featured only one cue each: pause, final lengthening, and pitch reset, respectively. The fifth condition featured both pause duration and pre-final lengthening. A baseline condition was also included in which all three acoustic cues were preserved intact. Listeners were asked to detect the presence of the critical boundaries in Experiment 1 and judge the strength of the critical boundaries in Experiment 2. The results of both experiments showed that listeners used all three acoustic cues in the perception of prosodic boundaries. More importantly, these acoustic cues were weighted differently across the two experiments: Pause was a more powerful perceptual cue than both final lengthening and pitch reset, with the latter two cues perceptually equivalent; the effect of pause and the effects of the other two acoustic cues were not additive. These results suggest that the weighting of acoustic cues contributes significantly to the perceptual differences of intonational phrase boundary. PMID:25019156

  8. Identifying chemicals that are planetary boundary threats.

    PubMed

    MacLeod, Matthew; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; Persson, Linn M; Rudén, Christina; McLachlan, Michael S

    2014-10-07

    Rockström et al. proposed a set of planetary boundaries that delimit a "safe operating space for humanity". Many of the planetary boundaries that have so far been identified are determined by chemical agents. Other chemical pollution-related planetary boundaries likely exist, but are currently unknown. A chemical poses an unknown planetary boundary threat if it simultaneously fulfills three conditions: (1) it has an unknown disruptive effect on a vital Earth system process; (2) the disruptive effect is not discovered until it is a problem at the global scale, and (3) the effect is not readily reversible. In this paper, we outline scenarios in which chemicals could fulfill each of the three conditions, then use the scenarios as the basis to define chemical profiles that fit each scenario. The chemical profiles are defined in terms of the nature of the effect of the chemical and the nature of exposure of the environment to the chemical. Prioritization of chemicals in commerce against some of the profiles appears feasible, but there are considerable uncertainties and scientific challenges that must be addressed. Most challenging is prioritizing chemicals for their potential to have a currently unknown effect on a vital Earth system process. We conclude that the most effective strategy currently available to identify chemicals that are planetary boundary threats is prioritization against profiles defined in terms of environmental exposure combined with monitoring and study of the biogeochemical processes that underlie vital Earth system processes to identify currently unknown disruptive effects.

  9. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    SciTech Connect

    Lundquist, K A

    2010-05-12

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model. First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the

  10. Arc Flash Boundary Calculations Using Computer Software Tools

    SciTech Connect

    Gibbs, M.D.

    2005-01-07

    Arc Flash Protection boundary calculations have become easier to perform with the availability of personal computer software. These programs incorporate arc flash protection boundary formulas for different voltage and current levels, calculate the bolted fault current at each bus, and use built in time-current coordination curves to determine the clearing time of protective devices in the system. Results of the arc flash protection boundary calculations can be presented in several different forms--as an annotation to the one-line diagram, as a table of arc flash protection boundary distances, and as printed placards to be attached to the appropriate equipment. Basic arc flash protection boundary principles are presented in this paper along with several helpful suggestions for performing arc flash protection boundary calculations.

  11. Boundary detection via dynamic programming

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Samarasekera, Supun; Barrett, William A.

    1992-09-01

    This paper reports a new method for detecting optimal boundaries in multidimensional scene data via dynamic programming (DP). In its current form the algorithm detects 2-D contours on slices and differs from other reported DP-based algorithms in an essential way in that it allows freedom in 2-D for finding optimal contour paths (as opposed to a single degree of freedom in the published methods). The method is being successfully used in segmenting object boundaries in a variety of medical applications including orbital volume from CT images (for craniofacial surgical planning), segmenting bone in MR images for kinematic analysis of the joints of the foot, segmenting the surface of the brain from the inner surface of the cranial vault, segmenting pituitary gland tumor for following the effect of a drug on the tumor, segmenting the boundaries of the heart in MR images, and segmenting the olfactory bulb for verifying hypotheses related to the size of this bulb in certain disease states.

  12. Grain boundary engineering of powder-processed Ni-base superalloy RR1000

    NASA Astrophysics Data System (ADS)

    Detrois, Martin

    formation of twin boundaries from twin-reorientation and annihilation of pre-existing twins. While recrystallization was found to populate the microstructure with grains that contained very few twin boundaries, post-deformation texture was found to promote the formation of Sigma3 boundaries and triple junctions when Goss texture was present. A final consideration of larger scale forgings was used to raise an outlook on the current issues and the potential of high-temperature GBE for turbine engines.

  13. Final Report

    SciTech Connect

    DeTar, Carleton

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  14. 77 FR 56231 - Minor Boundary Revision at Virgin Islands National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... National Park Service Minor Boundary Revision at Virgin Islands National Park AGENCY: National Park Service....S.C. 4601- 9(c)(1)(ii), the boundary of the Virgin Islands National Park is modified to include an... adjacent to the current boundary of the Virgin Islands National Park. The boundary revision is depicted...

  15. Atomistic simulations of grain and interphase boundary mobility

    NASA Astrophysics Data System (ADS)

    Hoyt, J. J.

    2014-04-01

    In recent years, atomistic simulations have provided valuable insights into the thermodynamic and kinetic properties of grain and interphase boundaries. In this work, we provide a brief overview of kinetic processes occurring at migrating interfaces and survey various molecular dynamics techniques for extracting grain boundary mobilities. The advantages and disadvantages of fluctuation and applied driving force methods will be discussed. In addition, we review recent examples of simulations that have identified structural phase transformations at grain boundaries. Finally, simulations that have investigated the mobility and atomic mechanisms of growth of an fcc-bcc interphase boundary are summarized.

  16. FINAL REPORT

    SciTech Connect

    Lettenmaier, Dennis

    2012-05-26

    We proposed to extend Maurer’s data sets through at least 2005 (to include extreme drought years in the Colorado basin). We updated and verified the forcings for tmin, tmax, and precipitation over the Colorado River basin at 1/8-deg spatial resolution through November 2008, with the potential to alter the resolution as needed (we subsequently extended the Maurer et al data set over the entire continental U.S. at 1/16 degree spatial resolution; see Livneh et al., 2013). We proposed to use either MODIS-based land cover data for recent years, or modification of the existing fixed seasonal cycle used in VIC (based on University of Maryland land cover data) to represent interannual variations in vegetation characteristics such as leaf area index (LAI) particularly in drought years. We assessed model performance with respect to evapotranspiration estimation through comparison of the model predictions with ground observations and in experiments that use time-varying and fixed seasonal LAI cycles (based on University of Maryland land cover data) in a test region of northwestern Mexico where the ground ET observations from eddy covariance tower sites are available for the period from 2001 to 2008 (Tang et al., 2011). We also proposed to implement statistical downscaling with an adjustment to constrain precipitation changes at the GCM level. These simulations were performed, using 20 IPCC AR4 GCMs over the Colorado River basin with two global emissions scenarios, and are reported in Vano et al., 2014. Task 2: Coupled model implementation We proposed to implement the “standard” climate version of WRF, as used by collaborator Ruby Leung in NARCCAP simulations (see Section 5.4), and perform tests to assure that model output for runs equivalent to NARCCAP Phase 1 (reanalysis boundary conditions) are consistent. We proposed do test sensitivity to higher spatial resolution. We made a run of 11 years’ length with the “standard” version of WRF, forced by NCEP/DOE with

  17. Boundary Layer Heights from CALIOP

    NASA Astrophysics Data System (ADS)

    Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.

    2012-12-01

    This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.

  18. The dynamics of the tundra-taiga boundary: an overview and suggested coordinated and integrated approach to research.

    PubMed

    Callaghan, Terry V; Crawford, Robert M M; Eronen, Matti; Hofgaard, Annika; Payette, Serge; Rees, W Gareth; Skre, Oddvar; Sveinbjörnsson, Bjartmar; Vlassova, Tatiana K; Werkman, Ben R

    2002-08-01

    The tundra-taiga boundary stretches for more than 13,400 km around the Northern Hemisphere and is probably the Earth's greatest vegetation transition. The trees that define the boundary have been sensitive to climate changes in the past and models of future vegetation distribution suggest a rapid and dramatic invasion of the tundra by the taiga. Such changes would generate both positive and negative feedbacks to the climate system and the balance could result in a net warming effect. However, the boundary is becoming increasingly affected by human activities that remove trees and degrade forest-tundra into tundra-like areas. Because of the vastness and remoteness of the tundra-taiga boundary, and of methodological problems such as problematic definitions and lack of standardized methods to record the location and characteristics of the ecotone, a project group has been established under the auspices of the International Arctic Science Committee (IASC). This paper summarizes the initial output of the group and focuses on our uncertainties in understanding the current processes at the tundra-taiga boundary and the conflicts between model predictions of changes in the location of the boundary and contrasting recently observed changes due to human activities. Finally, we present recommendations for a coordinated international approach to the problem and invite the international community to join us in reducing the uncertainties about the dynamics of the ecotone and their consequences.

  19. Vandenberg Boundary Layer Survey (VBLS) Final Report - Results

    DTIC Science & Technology

    1990-04-01

    due to the neutral stratification (see Mizzi and Pielke 1984). The evening pattern ranged widely during VBLS. Evening Northerlies were the rule... Mizzi , A.P., and R.A. Pielke, 1984: A Numerical Study of the Mesoscale Atmospheric Circulation Observed During a Coastal Upwelling Event on August

  20. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Walsh, I.D.

    1998-11-01

    The central goal of DOE`s Ocean Margin Program (OMP) has been to determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or exporting it to the open ocean. The purpose of this research was to recover and process samples from two sediment traps deployed on the continental slope in conjunction with the OMP physical oceanography mooring program.

  1. A Broad Approach to Abrupt Boundaries: Looking Beyond the Boundary at Soil Attributes within and Across Tropical Vegetation Types

    PubMed Central

    Warman, Laura; Bradford, Matt G.; Moles, Angela T.

    2013-01-01

    Most research on boundaries between vegetation types emphasizes the contrasts and similarities between conditions on either side of a boundary, but does not compare boundary to non-boundary vegetation. That is, most previous studies lack suitable controls, and may therefore overlook underlying aspects of landscape variability at a regional scale and underestimate the effects that the vegetation itself has on the soil. We compared 25 soil chemistry variables in rainforest, sclerophyll vegetation and across rainforest-sclerophyll boundaries in north-eastern Queensland, Australia. Like previous studies, we did find some contrasts in soil chemistry across vegetation boundaries. However we did not find greater variation in chemical parameters across boundary transects than in transects set in either rainforest or woodland. We also found that soil on both sides of the boundary is more similar to “rainforest soil” than to “woodland soil”. Transects in wet sclerophyll forests with increasing degrees of rainforest invasion showed that as rainforest invades wet sclerophyll forest, the soil beneath wet sclerophyll forest becomes increasingly similar to rainforest soil. Our results have implications for understanding regional vegetation dynamics. Considering soil-vegetation feedbacks and the differences between soil at boundaries and in non-boundary sites may hold clues to some of the processes that occur across and between vegetation types in a wide range of ecosystems. Finally, we suggest that including appropriate controls should become standard practice for studies of vegetation boundaries and edge effects worldwide. PMID:23593312

  2. An analysis of grain boundary sliding and grain boundary cavitation in discontinuously reinforced composites

    SciTech Connect

    Biner, S.B.

    1996-05-01

    In this study, the creep cavitation and rupture characteristics of polycrystalline matrix material and discontinuously reinforced composites are investigated including grain boundary sliding behavior, reinforcement aspect ratio and interfacial behavior between the reinforcement and surrounding matrix grains. Free sliding of the grain boundaries, a continuous nucleation of the grain boundary cavities, their diffusional growth and coalescence to form grain boundary facet cracks are fully accounted for in the analyses. The results indicate that, with sliding grain boundaries, the stress enhancement factor for the composites is much higher than the one observed for the matrix material and its value increases with increasing reinforcement aspect ratio, reduction in the matrix grain size and sliding interfacial behavior between the reinforcement and the matrix. For the composites, the influence of grain boundary sliding on the creep life is reduced by the stress concentration effect that is seen at the end of the reinforcements. In contrast with the behavior of polycrystalline matrix material in composites after the formation of the first facet crack, resulting from the coalescence of the cavities, a significant time is required for the formation of the other grain boundary facet cracks across the ligament to cause final rupture. The results also show that experimentally observed higher creep exponents or stress dependent creep exponent values in discontinuously reinforced composites can occur as a result of creep damage evolution behavior.

  3. Cavitation at migrating boundaries during high temperature fatigue

    SciTech Connect

    Raman, V.

    1987-06-01

    There is growing interest in the role of migrating boundaries during high temperature deformation. One area of current interest is the manner in which grain boundary migration can influence deformation and fracture at elevated temperatures. Much of the detailed treatments of intergranular cracking and cavitation during creep deformation have centered on effects occurring at stationary grain boundaries. The conventional idea represented in numerous publications is that grain boundary sliding plays an important role in intergranular fracture at elevated temperatures. The large stress concentrations developed at irregularities on grain boundaries are frequently cited as the principal reason for the easy generation of cracks and cavities. This article concludes that high temperature fatigue can cause significant migration and sliding in Al-3% Mg and Pb-2% Sn solid solution alloys, and that microcavitation and cracking takes place at the migrating boundaries in specimens tested at large strain amplitudes and low test frequencies. Cavities may be isolated within grains due to boundary migration.

  4. Incorporation of a circular boundary condition into the program POISSON

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1984-03-02

    Two-dimensional problems in electrostatics or magnetostatics frequently are solved numerically by means of relaxation techniques. In many such problems the ''sources'' (charges or currents, and regions of permeable material) lie exclusively within a finite closed boundary curve and the relaxation process in principle then could be confined to the region interior to such a boundary - provided a suitable boundary condition is imposed onto the solution at that boundary. The present notes discuss and illustrate the use of a boundary condition of such a nature as to imply the absence of external sources, in order thereby to avoid the inaccuracies and more extensive meshes present when alternatively a simple Dirichlet or Neumann boundary condition is specified on a somewhat more remote outer boundary.

  5. Boundary layer receptivity and control

    NASA Technical Reports Server (NTRS)

    Hill, D. C.

    1993-01-01

    -dimensional motions of a non-parallel boundary layer was developed. The method makes use of the same computationally efficient formulation that makes the PSE currently so appealing. In the area of flow control, adjoint systems offer a powerful insight into the effect of control forces. One of the simplest control strategies for boundary layers involves the application of localized mean wall suction.

  6. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  7. Extending the Boundaries of College Reading Programs.

    ERIC Educational Resources Information Center

    Jeremiah, Milford A.

    The current uniform content of college reading programs can be expanded to include insights from other disciplines, specifically those areas of instruction which pertain to the neuropsychological mechanisms governing behavior, especially language behavior. There are several reasons for expanding the boundaries of college reading programs to…

  8. Algorithms for Discovery of Multiple Markov Boundaries

    PubMed Central

    Statnikov, Alexander; Lytkin, Nikita I.; Lemeire, Jan; Aliferis, Constantin F.

    2013-01-01

    Algorithms for Markov boundary discovery from data constitute an important recent development in machine learning, primarily because they offer a principled solution to the variable/feature selection problem and give insight on local causal structure. Over the last decade many sound algorithms have been proposed to identify a single Markov boundary of the response variable. Even though faithful distributions and, more broadly, distributions that satisfy the intersection property always have a single Markov boundary, other distributions/data sets may have multiple Markov boundaries of the response variable. The latter distributions/data sets are common in practical data-analytic applications, and there are several reasons why it is important to induce multiple Markov boundaries from such data. However, there are currently no sound and efficient algorithms that can accomplish this task. This paper describes a family of algorithms TIE* that can discover all Markov boundaries in a distribution. The broad applicability as well as efficiency of the new algorithmic family is demonstrated in an extensive benchmarking study that involved comparison with 26 state-of-the-art algorithms/variants in 15 data sets from a diversity of application domains. PMID:25285052

  9. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    SciTech Connect

    L.E. Zakharov

    2010-11-22

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the δ-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  10. The Kinematics of Turbulent Boundary Layer Structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  11. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  12. Free-boundary magnetohydrodynamic equilibria with flow

    NASA Astrophysics Data System (ADS)

    Schmitt, R. F.; Guazzotto, L.; Strauss, H.; Park, G. Y.; Chang, C.-S.

    2011-02-01

    The finite-element M3D code [W. Park et al., Phys. Plasmas 6, 1796 (1999)] has been modified to include a free-boundary equilibrium solver with arbitrary toroidal and poloidal flows. With this modification, the M3D code now has the capability to self-consistently model two essential ingredients necessary for equilibrium calculations in the edge region, namely, free-boundary and arbitrary flow. As a free-boundary code, M3D includes the separatrix and scrape-off layer regions in the equilibrium calculation. Poloidal flows in the subsonic, supersonic, and transonic regimes can be calculated with the new version of the M3D code. Calculation results show that the presence of equilibrium flows, in particular those next to the plasma boundary, can considerably influence the position of the X-point and magnetic separatrix shape/location and hence the position of the strike point on the divertor plates. Moreover, it is shown that poloidal flow is not a rigid-body rotation, with the fastest flows occurring on the inboard side of the plasma. A numerical confirmation of the "de Laval nozzle" model of Betti and Freidberg [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)] for free-boundary equilibrium calculations is obtained, with the formation of the predicted discontinuities between regions of subsonic and supersonic flows (with respect to the poloidal sound speed). Finally, a detailed comparison between isentropic and isothermal equilibria is presented, showing qualitative analogies and quantitative differences.

  13. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  14. Boundary Changing without Acrimony

    ERIC Educational Resources Information Center

    Gunnell, Thomas J.

    2011-01-01

    In December 2009, a rapid-growth school district on the Texas Gulf Coast shifted its paradigm of rezoning. Even though half of the Katy Independent School District (Katy ISD) was affected, it achieved a genuine ownership for boundary changes that would affect more than 11,500 students at five schools. Katy ISD accomplished this by seeking…

  15. Final Report

    SciTech Connect

    Marchant, Gary E.

    2013-04-23

    This is the final report of a two year project entitled "Governing Nanotechnology Risks and Benefits in the Transition to Regulation: Innovative Public and Private Approaches." This project examined the role of new governance or "soft law" mechanisms such as codes of conduct, voluntary programs and partnership agreements to manage the risks of emerging technologies such as nanotechnology. A series of published or in publication papers and book chapters are attached.

  16. Final Report

    SciTech Connect

    R. Paul Drake

    2001-11-30

    This final report describes work involving 22 investigators from 11 institutions to explore the dynamics present in supernova explosions by means of experiments on the Omega laser. The specific experiments emphasized involved the unstable expansion of a spherical capsule and the coupling of perturbations at a first interface to a second interface by means of a strong shock. Both effects are present in supernovae. The experiments were performed at Omega and the computer simulations were undertaken at several institutions. B139

  17. Final Report

    SciTech Connect

    Stinis, Panos

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  18. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.

    PubMed

    Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir

    2014-06-28

    Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that

  19. On the theory of laminar boundary layers involving separation

    NASA Technical Reports Server (NTRS)

    Von Karman, TH; Millikan, C

    1934-01-01

    This paper presents a mathematical discussion of the laminar boundary layer, which was developed with a view of facilitating the investigation of those boundary layers in particular for which the phenomenon of separation occurs. The treatment starts with a slight modification of the form of the boundary layer equation first published by Von Mises. Two approximate solutions of this equation are found, one of which is exact at the outer edge of the boundary layer while the other is exact at the wall. The final solution is obtained by joining these two solutions at the inflection points of the velocity profiles. The final solution is given in terms of a series of universal functions for a fairly broad class of potential velocity distributions outside of the boundary layer. Detailed calculations of the boundary layer characteristics are worked out for the case in which the potential velocity is a linear function of the distance from the upstream stagnation point. Finally, the complete separation point characteristics are determined for the boundary layer associated with a potential velocity distribution made up of two linear functions of the distance from the stagnation point. It appears that extensions of the detailed calculations to more complex potential flows can be fairly easily carried out by using the explicit formulae given in the paper. (author)

  20. Uranus evolution models with simple thermal boundary layers

    NASA Astrophysics Data System (ADS)

    Nettelmann, N.; Wang, K.; Fortney, J. J.; Hamel, S.; Yellamilli, S.; Bethkenhagen, M.; Redmer, R.

    2016-09-01

    The strikingly low luminosity of Uranus (Teff ≃ Teq) constitutes a long-standing challenge to our understanding of Ice Giant planets. Here we present the first Uranus structure and evolution models that are constructed to agree with both the observed low luminosity and the gravity field data. Our models make use of modern ab initio equations of state at high pressures for the icy components water, methane, and ammonia. Proceeding step by step, we confirm that adiabatic models yield cooling times that are too long, even when uncertainties in the ice:rock ratio (I:R) are taken into account. We then argue that the transition between the ice/rock-rich interior and the H/He-rich outer envelope should be stably stratified. Therefore, we introduce a simple thermal boundary and adjust it to reproduce the low luminosity. Due to this thermal boundary, the deep interior of the Uranus models are up to 2-3 warmer than adiabatic models, necessitating the presence of rocks in the deep interior with a possible I:R of 1 × solar. Finally, we allow for an equilibrium evolution (Teff ≃ Teq) that begun prior to the present day, which would therefore no longer require the current era to be a "special time" in Uranus' evolution. In this scenario, the thermal boundary leads to more rapid cooling of the outer envelope. When Teff ≃ Teq is reached, a shallow, subadiabatic zone in the atmosphere begins to develop. Its depth is adjusted to meet the luminosity constraint. This work provides a simple foundation for future Ice Giant structure and evolution models, that can be improved by properly treating the heat and particle fluxes in the diffusive zones.

  1. Infrared Imaging of Boundary Layer Transition Flight Experiments

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J., Jr.; Schwartz, Richard; Ross, Martin; Anderson, Brian; Campbell, Charles H.

    2008-01-01

    The Hypersonic Thermodynamic Infrared Measurement (HYTHIRM) project is presently focused on near term support to the Shuttle program through the development of an infrared imaging capability of sufficient spatial and temporal resolution to augment existing on-board Orbiter instrumentation. Significant progress has been made with the identification and inventory of relevant existing optical imaging assets and the development, maturation, and validation of simulation and modeling tools for assessment and mission planning purposes, which were intended to lead to the best strategies and assets for successful acquisition of quantitative global surface temperature data on the Shuttle during entry. However, there are longer-term goals of providing global infrared imaging support to other flight projects as well. A status of HYTHIRM from the perspective of how two NASA-sponsored boundary layer transition flight experiments could benefit by infrared measurements is provided. Those two flight projects are the Hypersonic Boundary layer Transition (HyBoLT) flight experiment and the Shuttle Boundary Layer Transition Flight Experiment (BLT FE), which are both intended for reducing uncertainties associated with the extrapolation of wind tunnel derived transition correlations for flight application. Thus, the criticality of obtaining high quality flight data along with the impact it would provide to the Shuttle program damage assessment process are discussed. Two recent wind tunnel efforts that were intended as risk mitigation in terms of quantifying the transition process and resulting turbulent wedge locations are briefly reviewed. Progress is being made towards finalizing an imaging strategy in support of the Shuttle BLT FE, however there are no plans currently to image HyBoLT.

  2. Final Project Report

    SciTech Connect

    Small, R. Justin; Bryan, Frank; Tribbia, Joseph; Park, Sungsu; Dennis, John; Saravanan, R.; Schneider, Niklas; Kwon, Young-Oh

    2015-06-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. This project was only possible due to the highly scalable aspect of the CAM Spectral Element dynamical core, and the significant resources allocated at Yellowstone and NERSC for which we are grateful.

  3. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES

    PubMed Central

    Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.

    2010-01-01

    A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919

  4. Final Report

    SciTech Connect

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  5. FINAL REPORT

    SciTech Connect

    Kanai S. Shah

    2003-08-07

    Current and next generation experiments in nuclear and particle physics require detectors with high spatial resolution, fast response, and accurate energy information. In many nuclear physics experiments, existing detector technology is the limiting factor. The proposed project aims to investigate a promising detector concept that will have wide applicability in particle physics and many other applications.

  6. Rossby Rip Currents

    NASA Astrophysics Data System (ADS)

    Marshall, D. P.; Vogel, B.; Zhai, X.

    2014-12-01

    Oceanic Rossby waves and eddies flux energy and fluid westward, the latter through the Stokes drift or bolus transport. While the wave energy is largely dissipated at the western boundary, mass conservation requires that the fluid be returned offshore through Rossby rip currents. The form and magnitude of these rip currents are investigated through linear Rossby wave theory, a nonlinear numerical model, and analysis of sea surface height satellite observations. The net eastward volume transport by Rossby rip currents over the global ocean is estimated to be of order 10 Sv. In an eddying ocean, both the westward Stokes drift and eastward rip currents assume the form of banded quasi-zonal jets, albeit for reasons unrelated to the rip currents themselves. A mismatch between the vertical structures of the eddy energy and the Rossby rip currents will also be discussed.

  7. Boundary transfer matrices and boundary quantum KZ equations

    SciTech Connect

    Vlaar, Bart

    2015-07-15

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin’s boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  8. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.

    1984-01-01

    High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.

  9. Autocatalytic sets and boundaries.

    PubMed

    Hordijk, Wim; Steel, Mike

    Autopoietic systems, chemotons, and autogens are models that aim to explain (the emergence of) life as a functionally closed and self-sustaining system. An essential element in these models is the notion of a boundary containing, maintaining, and being generated by an internal reaction network. The more general concept of collectively autocatalytic sets, formalized as RAF theory, does not explicitly include this notion of a boundary. Here, we argue that (1) the notion of a boundary can also be incorporated in the formal RAF framework, (2) this provides a mechanism for the emergence of higher-level autocatalytic sets, (3) this satisfies a necessary condition for the evolvability of autocatalytic sets, and (4) this enables the RAF framework to formally represent and analyze (at least in part) the other models. We suggest that RAF theory might thus provide a basis for a unifying formal framework for the further development and study of such models. Graphical abstractThe emergence of an autocatalytic (super)set of autocatalytic (sub)sets.

  10. A new approach to grain boundary engineering for nanocrystalline materials

    PubMed Central

    Tsurekawa, Sadahiro; Watanabe, Tadao

    2016-01-01

    A new approach to grain boundary engineering (GBE) for high performance nanocrystalline materials, especially those produced by electrodeposition and sputtering, is discussed on the basis of some important findings from recently available results on GBE for nanocrystalline materials. In order to optimize their utility, the beneficial effects of grain boundary microstructures have been seriously considered according to the almost established approach to GBE. This approach has been increasingly recognized for the development of high performance nanocrystalline materials with an extremely high density of grain boundaries and triple junctions. The effectiveness of precisely controlled grain boundary microstructures (quantitatively characterized by the grain boundary character distribution (GBCD) and grain boundary connectivity associated with triple junctions) has been revealed for recent achievements in the enhancement of grain boundary strengthening, hardness, and the control of segregation-induced intergranular brittleness and intergranular fatigue fracture in electrodeposited nickel and nickel alloys with initial submicrometer-grained structure. A new approach to GBE based on fractal analysis of grain boundary connectivity is proposed to produce high performance nanocrystalline or submicrometer-grained materials with desirable mechanical properties such as enhanced fracture resistance. Finally, the potential power of GBE is demonstrated for high performance functional materials like gold thin films through precise control of electrical resistance based on the fractal analysis of the grain boundary microstructure. PMID:28144533

  11. A new approach to grain boundary engineering for nanocrystalline materials.

    PubMed

    Kobayashi, Shigeaki; Tsurekawa, Sadahiro; Watanabe, Tadao

    2016-01-01

    A new approach to grain boundary engineering (GBE) for high performance nanocrystalline materials, especially those produced by electrodeposition and sputtering, is discussed on the basis of some important findings from recently available results on GBE for nanocrystalline materials. In order to optimize their utility, the beneficial effects of grain boundary microstructures have been seriously considered according to the almost established approach to GBE. This approach has been increasingly recognized for the development of high performance nanocrystalline materials with an extremely high density of grain boundaries and triple junctions. The effectiveness of precisely controlled grain boundary microstructures (quantitatively characterized by the grain boundary character distribution (GBCD) and grain boundary connectivity associated with triple junctions) has been revealed for recent achievements in the enhancement of grain boundary strengthening, hardness, and the control of segregation-induced intergranular brittleness and intergranular fatigue fracture in electrodeposited nickel and nickel alloys with initial submicrometer-grained structure. A new approach to GBE based on fractal analysis of grain boundary connectivity is proposed to produce high performance nanocrystalline or submicrometer-grained materials with desirable mechanical properties such as enhanced fracture resistance. Finally, the potential power of GBE is demonstrated for high performance functional materials like gold thin films through precise control of electrical resistance based on the fractal analysis of the grain boundary microstructure.

  12. Evaluating Edge Detection through Boundary Detection

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ge, Feng; Liu, Tiecheng

    2006-12-01

    Edge detection has been widely used in computer vision and image processing. However, the performance evaluation of the edge-detection results is still a challenging problem. A major dilemma in edge-detection evaluation is the difficulty to balance the objectivity and generality: a general-purpose edge-detection evaluation independent of specific applications is usually not well defined, while an evaluation on a specific application has weak generality. Aiming at addressing this dilemma, this paper presents new evaluation methodology and a framework in which edge detection is evaluated through boundary detection, that is, the likelihood of retrieving the full object boundaries from this edge-detection output. Such a likelihood, we believe, reflects the performance of edge detection in many applications since boundary detection is the direct and natural goal of edge detection. In this framework, we use the newly developed ratio-contour algorithm to group the detected edges into closed boundaries. We also collect a large data set ([InlineEquation not available: see fulltext.]) of real images with unambiguous ground-truth boundaries for evaluation. Five edge detectors (Sobel, LoG, Canny, Rothwell, and Edison) are evaluated in this paper and we find that the current edge-detection performance still has scope for improvement by choosing appropriate detectors and detector parameters.

  13. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  14. Grain-boundary plane crystallography and energy in austenitic steel

    SciTech Connect

    Caul, M.; Randle, V.; Fiedler, J.

    1996-10-01

    The presence of grain boundaries in polycrystalline materials affects the materials properties and performance. Recently it has been realized that boundaries can be manipulated to give better properties, and the design and control of grain boundaries is now an area of strong research interest in the search for high performance engineering materials. Grain boundaries can be classified using the Coincident Site Lattice Model (CSL), which defines the periodicity, i.e., the degree of fit between the two lattices which constitute the boundary. Using this model it is possible to divide boundaries into categories: low angle (up to 15{degree} misorientation), CSL and random i.e., high angle non-CSL. Some CSL boundaries have been shown to have special properties: an example from recent research in the same program as that currently reported has shown that twin boundaries ({Sigma} = 3 in CSL notation) in High Nitrogen Austenitic Stainless Steels do not favor the formation of Cr{sub 2}N precipitates. The research presented here examines grain boundary inclinations of surface grains in austenitic steel specimens which have been isothermally aged at higher 700 C or 800 C. Grain boundary plane crystallography has also been obtained for the 800 C aged sample.

  15. 77 FR 49457 - Availability of the Final Environmental Assessment and Finding of No Significant Impact for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... WATER COMMISSION, UNITED STATES AND MEXICO Availability of the Final Environmental Assessment and... States Section, International Boundary and Water Commission, United States and Mexico. ACTION: Notice of..., International Boundary and Water Commission, United States and Mexico (USIBWC). PROPOSED ACTION The...

  16. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  17. A Model for Axial Magnetic Bearings Including Eddy Currents

    NASA Technical Reports Server (NTRS)

    Kucera, Ladislav; Ahrens, Markus

    1996-01-01

    This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.

  18. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

    PubMed Central

    Pan, Yunlu; Zhao, Xuezeng

    2014-01-01

    Summary The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found. PMID:25161839

  19. Permeable Boundaries in Organizational Learning

    NASA Astrophysics Data System (ADS)

    Hazy, James K.; Tivnan, Brian F.; Schwandt, David R.

    The nature of the organizational boundary is investigated in the context of organizational learning. Boundary permeability is defined and hypotheses relating it to performance are tested computationally using data from 5,500 artificial organizations. We find that matching boundary permeability to the environment predicts both agent and organization survival.

  20. Textured boundaries and their effects on ciliary locomotion

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Yang, Sung; Jung, Sunghwan

    2011-03-01

    Many microorganisms in nature propel themselves by creating coordinated motion of the cilia and often interact with each other through hydrodynamic interactions. We study the behavior of these organisms near boundaries of different topography and rationalize the hydrodynamic effects involved. Various geometries like wavy, rough or solid walls are simulated using micro fabrication and their effects on the locomotory traits are observed. Finally a comprehensive discussion on the effect of different boundaries on the swimming characteristics of the organism is presented.

  1. Advantageous grain boundaries in iron pnictide superconductors

    PubMed Central

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  2. Local and social facets of planetary boundaries: right to nutrients

    NASA Astrophysics Data System (ADS)

    Kahiluoto, Helena; Kuisma, Miia; Kuokkanen, Anna; Mikkilä, Mirja; Linnanen, Lassi

    2015-10-01

    Anthropogenic nutrient flows exceed the planetary boundaries. The boundaries and the current excesses vary spatially. Such variations have both an ecological and a social facet. We explored the spatial variation using a bottom-up approach. The local critical boundaries were determined through the current or accumulated flow of the preceding five years before the planetary boundary criteria were met. Finland and Ethiopia served as cases with contrasting ecology and wealth. The variation in excess depends on historical global inequities in the access to nutrients. Globally, the accumulated use per capita is 2300 kg reactive nitrogen (Nr) and 200 kg phosphorus (P). For Finland, the accumulated use per capita is 3400 kg Nr and 690 kg P, whereas for Ethiopia, it is 26 kg Nr and 12 kg P. The critical N boundary in Finland is currently exceeded by 40 kg cap-1 a-1 and the accumulated excess is 65 kg cap-1 a-1, while the global current excess is 24 kg cap-1 a-1 and there is space in Ethiopia to increase even the accumulated flow. The critical P boundary is exceeded in Finland and (although less so) in Ethiopia, but for contrary reasons: (1) the excessive past inflow to the agrifood system in Finland and (2) the excessive outflow from the agrifood system triggered by deficits in inflow and waste management in Ethiopia. The critical boundaries set by Finnish marine systems are lower and those set by freshwaters are higher than the planetary boundaries downscaled per capita. The shift to dominance of internal loading in watercourses represents a tipping point. We conclude that food security within the safe boundaries requires global redistribution of nutrients in residues, soils and sediments and of rights to use nutrients. Bottom-up assessments reveal local dynamics that shed new light on the relevant boundary criteria and on estimates and remedies.

  3. Grain boundary migration in metals: Molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Hao

    Grain boundary migration is key to materials microstructural processes such as grain growth and recrystallization. Quantitative boundary dynamic data is difficult to obtain, yet important for quantitative prediction of microstructural evolution and understanding migration fundamentals. Our molecular dynamics simulations first focus on curvature driven grain boundary migration to extract the reduced mobility and activation energy for migration as a function of boundary misorientation in aluminum. Simulation results are in good agreement with experimental observations except that the activation energy for migration found is much smaller than in experiment. This discrepancy led to a more systematic study of the absolute mobility and atomistic level mechanism for boundary migration. To study the mobility of a flat, fully defined boundary, we developed a strain-energy-anisotropy-driven migration simulation method. We applied this method to a series of Sigma5 [010] asymmetric tilt grain boundaries and extracted the absolute mobility as a function of temperature and inclination. Simulation results suggest that the mobility is a sensitive function of temperature and inclination. The boundary mobility tends to be minimized when one of the grain boundary planes has low Miller indices. Meanwhile, the comparison between grain boundary mobility, grain boundary self-diffusivity and energy suggests strong correlation at special inclinations, when one of the boundary planes is a high symmetry plane. In addition, we derive the grain boundary stiffness and reduced mobility as a function of boundary inclination. The grain boundary stiffness exhibits a large anisotropy, which is of the same order of magnitude as that of the grain boundary mobility. However, these two anisotropies nearly cancel, leaving the reduced mobility nearly isotropic. Finally, we identify the migration mechanism through frequent quenches and analysis of the atomic displacements, local and global excess volume

  4. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  5. Final Report

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo

    1997-01-01

    As an ongoing project, the original proposal of implementing BFS (Bozzolo-Ferrante-Smith methods) to the process of alloy design was satisfied beyond the original expectations, as the project evolved from the original goal of backing the experimental results with theoretical and computational evidence, to the point where theoretical predictions lead the way for further experimental studies. For the first time, computer simulations were used to predict the phase stability of many component systems (four and five elements), which are currently being developed and analyzed experimentally. Similar progress was made in the area of surface structure analysis via computer simulations.

  6. Boundaries and Boundary Marks - Substantive Cultural Heritage of Extensive Importance

    NASA Astrophysics Data System (ADS)

    Waldhaeusl, P.; Koenig, H.; Mansberger, R.

    2015-08-01

    The Austrian Society for surveying and Geoinformation (ASG) has proposed to submit "Boundaries and Boundary Marks" for the UNESCO World Heritage title. It was time that boundaries, borders and limits of all types as well as ownership rights would find the proper attention in the global public. Landmarks symbolize the real property and the associated rights and obligations, in a figurative sense, the property generally and all legal limits. A democratic state of law is impossible at today's population density without a functioning land administration system with surveying and jurisdiction. As monumental World Heritage representatives of the geodetic artwork "Boundaries and Boundary Marks" are specifically proposed: remaining monuments of the original cadastral geodetic network, the first pan-Austrian surveying headquarters in Vienna, and a specific selection of outstanding boundary monuments. Landmarks are monuments to the boundaries which separate rights and obligations, but also connect the neighbors peacefully after written agreement. "And cursed be he who does not respect the boundaries" you wrote already 3000 years ago. Boundaries and Boundary Marks are a real thing; they all belong to the tangible or material heritage of human history. In this context also the intangible heritage is discussed. This refers to oral tradition and expressions, performing arts; social practices, rituals and festive events; as well as to knowledge and practices handling nature and the universe. "Boundaries and Boundary Marks" do not belong to it, but clearly to the material cultural world heritage. "Boundary and Boundary Marks" is proposed to be listed according to the criteria (ii),(iv),(vi).

  7. Anisotropy across Superplume Boundaries

    NASA Astrophysics Data System (ADS)

    Cottaar, S.; Romanowicz, B. A.

    2011-12-01

    Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an

  8. Space Boundary Tool (SBT)

    SciTech Connect

    Rose, Cody

    2012-07-01

    SBT is an application that automatically calculates thermal zone boundaries suitable for input to the EnergyPlus simulation engine from building element and space geometry defined in IFC. SBT has multiple components. There is a general computational core, a DLL for reading and writing IFC files, and a GUI front end. The GUI also has the capability to create ready-to-simulate IDF files for EnergyPlus. Hardware req: PC; Operating Syst/Version: MSVC++2010; Type of files: source code; Documentation: User Manual (Electronic).

  9. TIGER 2010 Boundaries

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). This web service includes the State and County boundaries from the TIGER shapefiles compiled into a single national coverage for each layer. The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB).

  10. A classification of ecological boundaries

    USGS Publications Warehouse

    Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J.

    2003-01-01

    Ecologists use the term boundary to refer to a wide range of real and conceptual structures. Because imprecise terminology may impede the search for general patterns and theories about ecological boundaries, we present a classification of the attributes of ecological boundaries to aid in communication and theory development. Ecological boundaries may differ in their origin and maintenance, their spatial structure, their function, and their temporal dynamics. A classification system based on these attributes should help ecologists determine whether boundaries are truly comparable. This system can be applied when comparing empirical studies, comparing theories, and testing theoretical predictions against empirical results.

  11. Final Report

    SciTech Connect

    Webb, Robert C.; Kamon, Teruki; Toback, David; Safonov, Alexei; Dutta, Bhaskar; Dimitri, Nanopoulos; Pope, Christopher; White, James

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  12. Integrating Observations of the Boundary Current Flow around Sri Lanka

    DTIC Science & Technology

    2014-09-30

    mooring.ucsd.edu LONG-TERM GOALS To investigate the ocean circulation by making in-situ observations of bottom pressure and vertical acoustic travel ...collaboration with partners from Sri Lanka. APPROACH PIES instruments sit on the seafloor and measure pressure and travel time of an acoustic

  13. Eddy-Mean Flow Interactions in Western Boundary Current Jets

    DTIC Science & Technology

    2009-02-01

    the thermocline, which act to provide localized sources and sinks of vor- ticity (“plungers” of Ekman pumping velocity) to the deep ocean through...and a forcing amplitude Adim corresponding to an Ekman pumping velocity of ∼ 1x10−3 m/s (or equivalently a wind stress of ∼ 0.4 N/m2). Hence a typical...wind stress of 0.1 N/ms2 or equivalently an Ekman pumping velocity of 1x10−4 m/s), hence I now consider cases where the amplitude of the forcing is

  14. Boundary Current and Mixing Processes in The High Latitude Oceans

    DTIC Science & Technology

    2016-06-07

    regions of the global ocean. It focuses on high latitudes because: (1) they are primary sites for surface conditioning of deep waters that drive the...measure the associated mixing processes, and assess the impacts of these processes on water mass modification; ● Document and quantify the generation at...their dynamics and impact on adjacent basin waters ; ● Acquire quantitative, field-based information on seawater equation-of-state processes, such as

  15. Grain boundary wetness of partially molten dunite

    NASA Astrophysics Data System (ADS)

    Mu, S.; Faul, U.

    2013-12-01

    The grain scale melt distribution plays a key role for physical properties of partially molten regions in Earth's upper mantle, but our current understanding of the distribution of basaltic melt at the grain scale is still incomplete. A recent experimental study shows that wetted two-grain boundaries are a common feature of partially molten dunite at small melt fractions (Garapic et al., G3, 2013). In early ideal models which assume isotropic surface energy, the grain scale melt distribution is uniquely determined by knowing the melt fraction and the dihedral angle between two crystalline grains and the melt (von Bargen and Waff, JGR, 1986). Olivine is anisotropic in surface energy, hence the grain scale melt distribution at given melt fraction cannot be characterized by the dihedral angle alone. The grain boundary wetness, which is defined as the ratio of solid-liquid boundary area over the total interfacial area (Takei, JGR, 1998), is a more objective measure of the grain scale melt distribution. The aim of this study is to quantify the relationship between grain size, melt fraction, temperature and grain boundary wetness of partially molten dunite under dry conditions. We annealed olivine-basalt aggregates with melt fractions from 0.03% to 6% at a range of temperatures and 1 GPa in a piston cylinder for 1 to 336 hours, with resulting mean grain sizes of 10 to 60 μm. The samples were sectioned, polished and imaged at high resolution by using a field emission SEM. Each image had a size of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 μm/pixel, depending on magnification. For each sample, depending on grain sizes, we made mosaics of 3 x 3 or 6 x 6 overlapping images. Measurements of melt fraction, grain boundary wetness and grain size were carried out on these high resolution mosaics by using ImageJ software. Analyses of mosaics show that grain boundary wetness increases with increasing melt fraction at constant grain size to values well above those

  16. Addressing therapeutic boundaries in social networking.

    PubMed

    Ginory, Almari; Sabatier, Laura Mayol; Eth, Spencer

    2012-01-01

    Facebook is the leading social networking website, with over 500 million users. Prior studies have shown an increasing number of housestaff accessing the site. While Facebook can be used to foster camaraderie, it can also create difficulties in the doctor-patient relationship, especially when boundaries are crossed. This study explored the prevalence of such boundary crossings and offers recommendations for training. An anonymous voluntary survey regarding Facebook use was distributed to current psychiatry residents through the American Psychiatric Association (APA) listserv. Of the 182 respondents, 95.7% had current Facebook profiles, and 9.7% had received friend requests from patients. In addition, 18.7% admitted to viewing patient profiles on Facebook. There is a substantial utilization of Facebook among psychiatric residents as compared with prior studies. Specific guidance regarding social media websites and the potential for ethical difficulties should be offered to trainees.

  17. Grain Boundary Energies in Copper.

    NASA Astrophysics Data System (ADS)

    Omar, Ramli

    Available from UMI in association with The British Library. Requires signed TDF. The dependence of grain boundary energy on boundary orientation was studied in copper annealed at 1000 ^circC. Grain boundary orientations and the disorientations across the boundaries were measured. A rotation matrix notation is used to interpret selected area electron channelling patterns observed in a scanning electron microscope. The Herring and Shewmon torque terms were investigated using wire specimens having a "bamboo" structure. The Herring torque terms were determined using the Hess relation. The (110) section of the Sigma 11 gamma-plot (i.e. the variation of grain boundary energy with boundary orientation) was evaluated. In this plot, minima in energies were found at the (311) and (332) mirror planes. Sigma 3 and Sigma9 boundaries were investigated in sheet specimens. The (110) and (111) sections of the Sigma3 gamma -plot were evaluated. In addition to the sharp cusps occurring at the Sigma3 {111} planes, the further shallower cusps occur at the incoherent Sigma 3 boundaries with the interfacial planes approximately parallel to {322} in one crystal and {11.44} in the other crystal. Flat and curved Sigma9 boundaries were investigated. The break up of Sigma9 boundaries into two Sigma3 boundaries and the relation between the Sigma3 and Sigma 9 gamma-plots was also examined. The (110) section of the Sigma9 gamma-plot was constructed.

  18. Final Report

    SciTech Connect

    Ananth Devulapalli

    2009-06-30

    Ohio Supercomputer Center (OSC) is a junior partner in the project titled Common HEC I/O Forwarding Scalability Layer. The goal of this project is to design and implement an open platform for scalable I/O forwarding for the next generation leadership class machines. These machines are going to be made up of hundreds of thousands of nodes, and current distributed file system architectures cannot scale to such large number of clients due to problems caused by large fan-in. One solution to that problem is to add another layer of machines between the file servers and the clients, which can intermediate the I/O requests. Not only does it reduce the fan-in problem at the file servers, but this additional layer of indirection also allows architectural flexibility, like the ability to support heterogeneous networks and file systems.

  19. Final Report

    SciTech Connect

    Taylor, Philip L.

    2012-11-11

    possible to produce fuel cells capable of delivering much higher currents than those currently available.

  20. Final Report

    SciTech Connect

    Kouvetakis, John

    2013-01-03

    The project addressed the need for improved multijunction solar cells as identified within the Solar America Initiative program. The basic Ge/InGaAs/InGaP triple-junction structure that has led to record commercial efficiencies remains unoptimized due to excess current in the germanium component. Furthermore, its deployment cannot be scaled up to terawatt-level applications due to bottlenecks related to germanium's cost and abundance. The purpose of the program was to explore new strategies developed at Arizona State University to deposit germanium films on much cheaper silicon substrates, largely eliminating the germanium bottleneck, and at the same time to develop new materials that should lead to an improvement in multijunction efficiencies. This included the ternary alloy SiGeSn, which can be inserted as a fourth junction in a Ge/SiGeSn/InGaAs/InGaP structure to compensate for the excess current in the bottom cell. Moreover, the possibility of depositing materials containing Sn on Si substrates created an opportunity for replacing the bottom Ge cell with a GeSn alloy, which, combined with new III-V alloys for the top cells, should enable 4-junction structures with perfectly optimized band gaps. The successes of the program, to be described below, has led to the developments of new strategies for the growth of high-quality germanium films on Si substrates and to a widespread recognition that SiGeSn is likely to play a significant role in future generations of high-efficiency devices, as demonstrated by new research and intellectual property efforts by major US industrial players.

  1. Turbulent boundary layer heat

    NASA Astrophysics Data System (ADS)

    Finson, M. L.; Clarke, A. S.; Wu, P. K. S.

    1981-01-01

    A Reynolds stress model for turbulent boundary layers is used to study surface roughness effects on skin friction and heat transfer. The issues of primary interest are the influence of roughness character (element shape and spacing) and the nature of roughness effects at high Mach numbers. Computations based on the model compare satisfactorily with measurements from experiments involving variations in roughness character, in low speed and modestly supersonic conditions. The more limited data base at hypersonic Mach numbers is also examined with reasonable success, although no quantitative explanation is offered for the reduction of heat transfer with increasing roughness observed by Holden at Me -9.4. The present calculations indicate that the mean velocity is approximately uniform over much of the height range below the tops of the elements, y less than or equal to k. With this constant (roughness velocity,) it is simple to estimate the form drag on the elements. This roughness velocity has been investigated by systematically exercising the present model over ranges of potential parameters. The roughness velocity is found to be primarily a function of the projected element frontal area per unit surface area, thus providing a new and simple method for predicting roughness character effects. The model further suggests that increased boundary layer temperatures should be generated by roughness at high edge Mach numbers, which would tend to reduce skin friction and heat transfer, perhaps below smooth wall levels.

  2. No-boundary thinking in bioinformatics research

    PubMed Central

    2013-01-01

    Currently there are definitions from many agencies and research societies defining “bioinformatics” as deriving knowledge from computational analysis of large volumes of biological and biomedical data. Should this be the bioinformatics research focus? We will discuss this issue in this review article. We would like to promote the idea of supporting human-infrastructure (HI) with no-boundary thinking (NT) in bioinformatics (HINT). PMID:24192339

  3. Nuclear Power Plant Containment Pressure Boundary Research

    SciTech Connect

    Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

    1999-09-15

    Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

  4. Ring current and radiation belts

    NASA Technical Reports Server (NTRS)

    Williams, D. J.

    1987-01-01

    Studies performed during 1983-1986 on the ring current, the injection boundary model, and the radiation belts are discussed. The results of these studies yielded the first observations on the composition and charge state of the ring current throughout the ring-current energy range, and strong observational support for an injection-boundary model accounting for the origins of radiation-belt particles, the ring current, and substorm particles observed at R less than about 7 earth radii. In addition, the results have demonstrated that the detection of energetic neutral atoms generated by charge-exchange interactions between the ring current and the hydrogen geocorona can provide global images of the earth's ring current and its spatial and temporal evolution.

  5. The Ocean Boundary Layer beneath Hurricane Frances

    NASA Astrophysics Data System (ADS)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  6. Information theoretic SAR boundary detection with user interaction

    NASA Astrophysics Data System (ADS)

    Demirkesen, Can; Leloǧlu, Uǧur M.

    2015-10-01

    Detection of region boundaries is a very challenging task especially in the presence of noise or speckle as in synthetic aperture radar images. In this work, we propose a user interaction based boundary detection technique which makes use of B-splines and well-known powerful tools of information theory such as the Kullback-Leibler divergence (KLD) and Bhattacharyya distance. The proposed architecture consists of the following four main steps: (1) The user selects points inside and outside of a region. (2) Profiles that link these inside and outside points are extracted. (3) Boundary points that lie on the profile are located. (4) Finally, the B-splines that provide both elasticity and smoothness are used connect boundary points together to obtain an accurate estimate of the actual boundary. Existing work related to this approach are extended in several axes. First the use of multiple points both inside and outside of a region made possible to obtain a few times more boundary points. A tracking stage is proposed to put the boundary points in the right order and at the same time eliminate some of them that are erroneously detected as boundary points as well. Experiments were conducted using simulated and real SAR images.

  7. FINAL REPORT

    SciTech Connect

    Juergen Eckert; Anthony K. Cheetham

    2011-03-11

    Hydrogen storage systems based on the readily reversible adsorption of H{sub 2} in porous materials have a number of very attractive properties with the potential to provide superior performance among candidate materials currently being investigated were it not for the fact that the interaction of H{sub 2} with the host material is too weak to permit viable operation at room temperature. Our study has delineated in quantitative detail the structural elements which we believe to be the essential ingredients for the future synthesis of porous materials, where guest-host interactions are intermediate between those found in the carbons and the metal hydrides, i.e. between physisorption and chemisorption, which will result in H{sub 2} binding energies required for room temperature operation. The ability to produce porous materials with much improved hydrogen binding energies depends critically on detailed molecular level analysis of hydrogen binding in such materials. However, characterization of H{sub 2} sorption is almost exclusively carried by thermodynamic measurements, which give average properties for all the sites occupied by H{sub 2} molecules at a particular loading. We have therefore extensively utilized the most powerful of the few molecular level experimental probes available to probe the interactions of hydrogen with porous materials, namely inelastic neutron scattering (INS) spectroscopy of the hindered rotations of the hydrogen molecules adsorbed at various sites, which in turn can be interpreted in a very direct way in by computational studies. This technique can relate spectral signatures of various H{sub 2} molecules adsorbed at binding sites with different degrees of interaction. In the course of this project we have synthesized a rather large number of entirely new hybrid materials, which include structural modifications for improved interactions with adsorbed hydrogen. The results of our systematic studies on many porous materials provide detailed

  8. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  9. Dynamic multiple thresholding breast boundary detection algorithm for mammograms

    SciTech Connect

    Wu, Yi-Ta; Zhou Chuan; Chan, Heang-Ping; Paramagul, Chintana; Hadjiiski, Lubomir M.; Daly, Caroline Plowden; Douglas, Julie A.; Zhang Yiheng; Sahiner, Berkman; Shi Jiazheng; Wei Jun

    2010-01-15

    Purpose: Automated detection of breast boundary is one of the fundamental steps for computer-aided analysis of mammograms. In this study, the authors developed a new dynamic multiple thresholding based breast boundary (MTBB) detection method for digitized mammograms. Methods: A large data set of 716 screen-film mammograms (442 CC view and 274 MLO view) obtained from consecutive cases of an Institutional Review Board approved project were used. An experienced breast radiologist manually traced the breast boundary on each digitized image using a graphical interface to provide a reference standard. The initial breast boundary (MTBB-Initial) was obtained by dynamically adapting the threshold to the gray level range in local regions of the breast periphery. The initial breast boundary was then refined by using gradient information from horizontal and vertical Sobel filtering to obtain the final breast boundary (MTBB-Final). The accuracy of the breast boundary detection algorithm was evaluated by comparison with the reference standard using three performance metrics: The Hausdorff distance (HDist), the average minimum Euclidean distance (AMinDist), and the area overlap measure (AOM). Results: In comparison with the authors' previously developed gradient-based breast boundary (GBB) algorithm, it was found that 68%, 85%, and 94% of images had HDist errors less than 6 pixels (4.8 mm) for GBB, MTBB-Initial, and MTBB-Final, respectively. 89%, 90%, and 96% of images had AMinDist errors less than 1.5 pixels (1.2 mm) for GBB, MTBB-Initial, and MTBB-Final, respectively. 96%, 98%, and 99% of images had AOM values larger than 0.9 for GBB, MTBB-Initial, and MTBB-Final, respectively. The improvement by the MTBB-Final method was statistically significant for all the evaluation measures by the Wilcoxon signed rank test (p<0.0001). Conclusions: The MTBB approach that combined dynamic multiple thresholding and gradient information provided better performance than the breast boundary

  10. Final Report

    SciTech Connect

    Dr. Meng Tao

    2010-12-22

    The objective of this DOE SAI project is to demonstrate the feasibility of electrodeposited and solution-doped transparent conducting oxides (TCOs) such as zinc oxide with resistivity in the mid-10{sup -4} {Omega}-cm range. The target application is an 'on-top' TCO which can be deposited on semiconductors in thin-film and future solar cells including amorphous silicon, copper indium gallium selenide and emerging solar cells. There is no solution-prepared on-top TCO currently used in commercial solar cells. This project, if successful, will fill this gap. Our technical objectives include electrodeposited TCOs with (1) resistivity in the mid-10{sup -4} {Omega}-cm range, (2) post-deposition annealing below 300 C and (3) no-vacuum processing or low-vacuum processing. All the three research objectives listed above have been accomplished in the 14-month period from July 1, 2009 through September 30, 2010. The most noticeable accomplishments of this project are (1) identification of a terawatt-scale dopant for zinc oxide, i.e. yttrium, whose known reserve is enough for 60 peak terawatts of thin-film solar cells; (2) demonstration of a record-low resistivity, 6.3 x 10{sup -5} {Omega}-cm, in solution-deposited zinc oxide with an abundant dopant; and (3) the record-low resistivity was accomplished with a maximum process temperature of 300 C and without vacuum annealing. Industrial applications of the new yttrium-doped zinc oxide are being pursued, including (1) green deposition of yttrium-doped zinc oxide to reduce water consumption during deposition and (2) search for an industrial partner to develop an electrochemical tool for large-area uniform deposition of yttrium-doped zinc oxide.

  11. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  12. Boundary layer transition studies

    NASA Astrophysics Data System (ADS)

    Watmuff, Jonathan H.

    1995-02-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  13. Rossby rip currents

    NASA Astrophysics Data System (ADS)

    Marshall, David P.; Vogel, Bendix; Zhai, Xiaoming

    2013-08-01

    Oceanic Rossby waves and eddies flux energy and fluid westward, the latter through the Stokes drift or bolus transport. While the wave energy is largely dissipated at the western boundary, mass conservation requires that the fluid be returned offshore through Rossby rip currents. The form and magnitude of these rip currents are investigated through linear Rossby wave theory, a nonlinear numerical model, and analysis of sea surface height satellite observations. The net eastward volume transport by Rossby rip currents over the global ocean is estimated to be of order 10 Sv (1 Sv ≡106 m3 s-1). In an eddying ocean, both the westward Stokes drift and eastward rip currents can assume the form of banded quasi-zonal jets.

  14. Final report

    SciTech Connect

    Dobbs, Fred C.

    2003-01-15

    species of flagellates, Spumella sp. and Bodo sp. (identifications are tentative) were isolated from South Oyster sediments by repetitive serial dilution/extinction method. Protistan cells were cultured with Cereal leaf Prescott medium and pelleted by centrifugation. Protistan DNAs were extracted with a DNA extraction kit (Sigma Co.) and the sequencing of their SSrDNA is underway. Finally, to follow up on our collaboration of Dr. Bill Johnson (Univ. of Utah), one of the co-PIs under the same NABIR umbrella, we are pleased to report we have successfully tested antibody-ferrographic capture of protists (See previous year's report for more background). Polyclonal FITC-conjugated antibody specific for a flagellate, Spumella sp., was produced by Rockland Inc., and we now are able to enumerate that species using ferrographic capture. There are, however, some issues of non-specific staining that remain to be resolved.

  15. Final Report

    SciTech Connect

    Hameed A. Naseem, Husam H. Abu-Safe

    2007-02-09

    The purpose of this project was to investigate metal-induced crystallization of amorphous silicon at low temperatures using excitation sources such as laser and rapid thermal annealing, as well as, electric field. Deposition of high quality crystalline silicon at low temperatures allows the use of low cost soda-lime glass and polymeric films for economically viable photovoltaic solar cells and low cost large area flat panel displays. In light of current and expected demands on Si supply due to expanding use of consumer electronic products throughout the world and the incessant demand for electric power the need for developing high grade Si thin films on low cost substrate becomes even more important. We used hydrogenated and un-hydrogenated amorphous silicon deposited by plasma enhanced chemical vapor deposition and sputtering techniques (both of which are extensively used in electronic and solar cell industries) to fabricate nano-crystalline, poly-crystalline (small as well as large grain), and single-crystalline (epitaxial) films at low temperatures. We demonstrated Si nanowires on flat surfaces that can be used for fabricating nanometer scale transistors. We also demonstrated lateral crystallization using Al with and without an applied electric field. These results are critical for high mobility thin film transistors (TFT) for large area display applications. Large grain silicon (~30-50 µm grain size for < 0.5 µm thick films) was demonstrated on glass substrates at low temperatures. We also demonstrated epitaxial growth of silicon on (100) Si substrates at temperatures as low as 450°C. Thin film Si solar cells are being projected as the material of choice for low cost high efficiency solar cells when properly coupled with excellent light-trapping schemes. Ar ion laser (CW) was shown to produce dendritic nanowire structures at low power whereas at higher powers yielded continuous polycrystalline films. The power density required for films in contact with Al

  16. On a problem for wave equation with local data on the whole boundary

    NASA Astrophysics Data System (ADS)

    Yessirkegenov, Nurgisa

    2016-12-01

    In the current paper we propose a new formulation of a local boundary value problem for a one-dimensional wave equation in a rectangular domain in which boundary conditions are given on the whole boundary. We prove the well-posedness of the boundary value problem in the classical and generalized senses. The proof of the well-posedness of the formulated problem is reduced to question of the existence and uniqueness of solutions of the corresponding functional equations.

  17. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  18. Final Report

    SciTech Connect

    Robert D. Cess

    2008-12-05

    the surface tends to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. Paper Number 2 provides an improved version of the algorithm that prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellite. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms.

  19. 76 FR 14897 - Boundary Establishment for the Yellow Dog National Wild and Scenic River, Ottawa National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Forest Service Boundary Establishment for the Yellow Dog National Wild and Scenic River, Ottawa National..., Washington Office, is transmitting the final boundary of the Yellow Dog National Wild and Scenic River to.... SUPPLEMENTARY INFORMATION: The Yellow Dog Wild and Scenic River boundary is available for review at...

  20. 78 FR 29762 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for... (FEMA's) National Flood Insurance Program (NFIP). In addition, the FIRM and FIS report are used...

  1. 78 FR 29761 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... (SFHA) boundaries or zone designations, or regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for... (FEMA's) National Flood Insurance Program (NFIP). In addition, the FIRM and FIS report are used...

  2. Symbolic Boundary Work in Schools: Demarcating and Denying Ethnic Boundaries

    ERIC Educational Resources Information Center

    Tabib-Calif, Yosepha; Lomsky-Feder, Edna

    2014-01-01

    This article examines the symbolic boundary work that is carried out at a school whose student population is heterogeneous in terms of ethnicity and class. Based on ethnography, the article demonstrates how the school's staff seeks to neutralize ethnic boundaries and their accompanying discourse, while the pupils try to bring ethnic…

  3. The Martian Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Petrosyan, A.; Galperin, B.; Larsen, S. E.; Lewis, S. R.; Määttänen, A.; Read, P. L.; Renno, N.; Rogberg, L. P. H. T.; Savijärvi, H.; Siili, T.; Spiga, A.; Toigo, A.; Vázquez, L.

    2011-09-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime. This portion of the atmosphere is extremely important, both scientifically and operationally, because it is the region within which surface lander spacecraft must operate and also determines exchanges of heat, momentum, dust, water, and other tracers between surface and subsurface reservoirs and the free atmosphere. To date, this region of the atmosphere has been studied directly, by instrumented lander spacecraft, and from orbital remote sensing, though not to the extent that is necessary to fully constrain its character and behavior. Current data strongly suggest that as for the Earth's PBL, classical Monin-Obukhov similarity theory applies reasonably well to the Martian PBL under most conditions, though with some intriguing differences relating to the lower atmospheric density at the Martian surface and the likely greater role of direct radiative heating of the atmosphere within the PBL itself. Most of the modeling techniques used for the PBL on Earth are also being applied to the Martian PBL, including novel uses of very high resolution large eddy simulation methods. We conclude with those aspects of the PBL that require new measurements in order to constrain models and discuss the extent to which anticipated missions to Mars in the near future will fulfill these requirements.

  4. Defining Neighborhood Boundaries for Social Measurement: Advancing Social Work Research

    ERIC Educational Resources Information Center

    Foster, Kirk A.; Hipp, J. Aaron

    2011-01-01

    Much of the current neighborhood-based research uses variables aggregated on administrative boundaries such as zip codes, census tracts, and block groups. However, other methods using current technological advances in geographic sciences may broaden our ability to explore the spatial concentration of neighborhood factors affecting individuals and…

  5. Kink modes and surface currents associated with vertical displacement events

    SciTech Connect

    Manickam, Janardhan; Boozer, Allen; Gerhardt, Stefan

    2012-08-15

    The fast termination phase of a vertical displacement event (VDE) in a tokamak is modeled as a sequence of shrinking equilibria, where the core current profile remains constant so that the safety-factor at the axis, q{sub axis}, remains fixed and the q{sub edge} systematically decreases. At some point, the n = 1 kink mode is destabilized. Kink modes distort the magnetic field lines outside the plasma, and surface currents are required to nullify the normal component of the B-field at the plasma boundary and maintain equilibrium at finite pressure. If the plasma touches a conductor, the current can be transferred to the conductor, and may be measurable by the halo current monitors. This report describes a practical method to model the plasma as it evolves during a VDE, and determine the surface currents, needed to maintain equilibrium. The main results are that the onset conditions for the disruption are that the growth-rate of the n = 1 kink exceeds half the Alfven time and the associated surface current needed to maintain equilibrium exceeds one half of the core plasma current. This occurs when q{sub edge} drops below a low integer, usually 2. Application to NSTX provides favorable comparison with non-axisymmetric halo-current measurements. The model is also applied to ITER and shows that the 2/1 mode is projected to be the most likely cause of the final disruption.

  6. Boundary effects in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  7. Physics of Boundaries and their Interactions in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Omidi, Nojan; Karimabadi, Homayoun; Krauss-Varban, Dietmar

    1998-01-01

    This final report describes a brief summary of our accomplishments during the complete contract period. Traditionally, due to computational limitations, it has been impossible to obtain a global view of the magnetosphere on ion time and spatial scales. As a result, kinetic simulations have concentrated on the local structure of different magnetospheric discontinuities and boundaries. However, due to the emergence of low cost desktop superconductors, as well as by taking full advantage of latest advances in data mining and visualization technology, we were able to bypass our planned (proposed) regional simulations and proceed to large-scale 3-D and 2-D global hybrid simulations of the magnetosphere. As a result, although we are only finishing the second year of the proposed activity, much of the original scientific objectives have been surpassed and new avenues of investigation have been opened. Such simulations have led us to possible explanations of some long-standing issues in magnetospheric physics. They have also enabled us to make a number of important discoveries/predictions, which need to be looked for in satellite data. Examples include: (1) the finding that the bow shock can become unstable to the Kelvin-Helmholtz (KH;) (2) the discovery of a mechanism for intermittent reconnection due to ion physics which may be relevant to the explanation of the recurrence rate of flux transfer events (FTEs;) and (3) the finding that the current sheet in the near-Earth magnetotail region can become unstable to KH with detectable, unique ionospheric signatures. Further, we demonstrated a viable mechanism for the onset of reconnection at the magnetopause, examined the detailed structure of the boundary layer incorporating curvature effects, and provided an explanation for the large core fields observed within FTEs as well as flux ropes in the magnetotail.

  8. Physics of Boundaries and their Interactions in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Omidi, Nojan; Karimabadi, Homayoun; Krauss-Varban, Dietmar

    1998-01-01

    This final report describes a brief summary of our accomplishments during the complete contract period. Traditionally, due to computational limitations, it has been impossible to obtain a global view of the magnetosphere on ion time and spatial scales. As a result, kinetic-simulations have concentrated on the local structure of different magnetospheric discontinuities and boundaries. However, due to the emergence of low cost supercomputers, as well as by taking full advantage of latest advances in data mining and visualization technology, we were able to bypass our planned (proposed) regional simulations and proceed to large-scale 3-D and 2-D global hybrid simulations of the magnetosphere. As a result, although we are only finishing the second year of the proposed activity, much of the original scientific objectives have been surpassed and new avenues of investigation have been opened. Such simulations have led us to possible explanations of some long-standing issues in magnetospheric physics. They have also enables us to make a number of important discoveries predictions, which need to be looked for in satellite data. Examples include the finding that the bow shock can become unstable to the Kelvin-Helmholtz (KH), (2) the discovery of a mechanism for intermittent reconnection due to ion physics which may be relevant to the explanation of the recurrence rate of flux transfer events (FTEs), and (3) this finding that the current sheet in the near-Earth magnetotail region can become unstable to KH with detectable, unique ionospheric signatures. Further, we demonstrated a viable mechanism for the onset of reconnection at the magnetopause, examined the detailed structure of the boundary layer incorporating curvature effects, and provided an explanation for the large core fields observed within FTEs as well as flux ropes in the magnetotail.

  9. Redefinition of the Meramecian/Chesterian boundary (Mississippian)

    SciTech Connect

    Maples, C.G.; Waters, J.A.

    1987-07-01

    The Meramecian/Chesterian (Mississippi) boundary in the type area is currently defined as the highest occurrence of the crinoid Platycrinites penicillus and the lowest occurrence of the crinoid genera Agassizocrinus and Talarocrinus. Because these taxa have not been reported outside eastern North America, attempts have been made to use conodonts and Foraminifera to extend the Meramecian/Chesterian boundary outside the type area. Unfortunately, changes in conodont and foraminiferal assemblages do not coincide with the currently defined Meramecian/Chesterian boundary, and use of these fossil groups does not allow exact placement of the boundary outside of eastern North America. The authors suggest that the Meramecian/Chesterian boundary be redefined as the boundary between Foraminiferal Zones 15 and 16i of the Mamet scheme, irrespective of the occurrence of Platycrinites penicillus. This change in definition places the Ste. Genevieve Limestone (Genevievian Stage) in the lowermost part of the Chesterian Series, with which it is biotically and sedimentologically more allied than with the underlying St. Louis Limestone. This change provides a sound biostratigraphic base for correlating the Meramecian/Chesterian boundary outside of the type area. Foraminifera, conodonts, brachiopods, and corals all show significant changes at or slightly below the St. Louis/Ste. Genevieve contact rather than at the Genevievian/Chesterian contact. 52 references.

  10. Compositional space boundaries for organic compounds.

    PubMed

    Lobodin, Vladislav V; Marshall, Alan G; Hsu, Chang Samuel

    2012-04-03

    An upper elemental compositional boundary for fossil hydrocarbons has previously been established as double-bond equivalents (i.e., DBE = rings plus double bonds) not exceeding 90% of the number of carbons. For heteroatom-containing fossil compounds, the 90% rule still applies if each N atom is counted as a C atom. The 90% rule eliminates more than 10% of the possible elemental compositions at a given mass for fossil database molecules. However, some synthetic compounds can fall outside the upper boundary defined for naturally occurring compounds. Their inclusion defines an "absolute" upper boundary as DBE (rings plus double bonds to carbon) equal to carbon number plus one, and applies to all organic compounds including fullerenes and other molecules containing no hydrogen. Finally, the DBE definition can fail for molecules with particular atomic valences. Therefore, we also present a generalized DBE definition that includes atomic valence to enable calculation of the correct total number of rings, double bonds, and triple bonds for heteroatom-containing compounds.

  11. Further Improvements to Nozzle Boundary Layer Calculations in BLIMPJ

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Gross, Klaus W.

    1989-01-01

    Further improvements made to advance the current Boundary Layer Integral Matrix Procedure - Version J (BLIMPJ) containing previously modeled simplified calculation methods by accounting for condensed phase, thick boundary layer and free stream turbulence effects are discussed. The condensed phase effects were included through species composition effect considered via input to the code and through particle damping effect considered via a turbulence model. The thrust loss calculation procedure for thick boundary layer effects was improved and the optimization of net thrust with respect to nozzle length was performed. The effects of free stream turbulence were approximately modeled in the turbulence model.

  12. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  13. Reconstruction of multiple cracks from experimental electrostatic boundary measurements

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Liepa, Valdis; Vogelius, Michael

    1993-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is described. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. An apparatus that was constructed specifically for generating laboratory data on which to test the algorithm is also described. The algorithm is applied to a number of different test cases and the results are discussed.

  14. Evaluating the Importance of Outflow Velocity at the MHD Inner Boundary

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.; Toth, G.; Glocer, A.

    2013-12-01

    Including an ionospheric source of magnetospheric plasma in global magnetohydrodynamic models (MHD) is an exercise in setting inner boundary mass density and radial velocity. Recently, in order to account for the complex processes that accelerate plasmas up from ionospheric altitudes to MHD inner boundary altitudes (typically 2.5 to 3 Earth Radii), empirical and first-principles-based models have been developed to set inner boundary conditions in a dynamic and activity-dependent manner. However, such measures are not necessary to achieve outflowing fluences of the order observed by various spacecraft. Spatially and temporally constant boundary conditions, even with zero radial velocity, have been shown to produce dynamic outflow patterns and supply the bulk of magnetospheric plasma. Noteworthy of this approach is the inherent assumption that no acceleration has occurred between the ionosphere and the inner boundary, that is, the ionosphere is simply a mass reservoir. This assumption is contrary to our understanding of the magnetosphere-ionosphere system, yet the net result - outflowing heavy and light ions that populate the rest of geospace - is similar to that when a more realistic outflow specification is applied. The implication is that radial velocity matters little when supplying outflow to global MHD models. This paper investigates the importance of radial velocity at the inner boundary of MHD codes in driving ionospheric outflows into the greater domain. Multi-fluid BATS-R-US is used to simulate an idealized storm, first using zero radial velocity at the inner boundary, then non-zero constant values, and finally with spatially and temporally dynamic values driven by the Polar Wind Outflow Model (PWOM), which sets radial velocity and number density based on physics-based modeling of gap region populations. The results, in terms of total fluence, spatial outflowing flux patterns, and overall magnetospheric response, are compared to investigate how the

  15. Delineation of modular proteins: domain boundary prediction from sequence information.

    PubMed

    Kong, Lesheng; Ranganathan, Shoba

    2004-06-01

    The delineation of domain boundaries of a given sequence in the absence of known 3D structures or detectable sequence homology to known domains benefits many areas in protein science, such as protein engineering, protein 3D structure determination and protein structure prediction. With the exponential growth of newly determined sequences, our ability to predict domain boundaries rapidly and accurately from sequence information alone is both essential and critical from the viewpoint of gene function annotation. Anyone attempting to predict domain boundaries for a single protein sequence is invariably confronted with a plethora of databases that contain boundary information available from the internet and a variety of methods for domain boundary prediction. How are these derived and how well do they work? What definition of 'domain' do they use? We will first clarify the different definitions of protein domains, and then describe the available public databases with domain boundary information. Finally, we will review existing domain boundary prediction methods and discuss their strengths and weaknesses.

  16. Paint and Click: Unified Interactions for Image Boundaries

    SciTech Connect

    Summa, B.; Gooch, A. A.; Scorzelli, G.; Pascucci, V.

    2015-06-22

    Image boundaries are a fundamental component of many interactive digital photography techniques, enabling applications such as segmentation, panoramas, and seamless image composition. Interactions for image boundaries often rely on two complementary but separate approaches: editing via painting or clicking constraints. In this work, we provide a novel, unified approach for interactive editing of pairwise image boundaries that combines the ease of painting with the direct control of constraints. Rather than a sequential coupling, this new formulation allows full use of both interactions simultaneously, giving users unprecedented flexibility for fast boundary editing. To enable this new approach, we provide technical advancements. In particular, we detail a reformulation of image boundaries as a problem of finding cycles, expanding and correcting limitations of the previous work. Our new formulation provides boundary solutions for painted regions with performance on par with state-of-the-art specialized, paint-only techniques. In addition, we provide instantaneous exploration of the boundary solution space with user constraints. Finally, we provide examples of common graphics applications impacted by our new approach.

  17. Grain boundaries in CdTe thin film solar cells: a review

    NASA Astrophysics Data System (ADS)

    Major, Jonathan D.

    2016-09-01

    The current state of knowledge on the impact of grain boundaries in CdTe solar cells is reviewed with emphasis being placed on working cell structures. The role of the chemical composition of grain boundaries as well as growth processes are discussed, along with characterisation techniques such as electron beam induced current and cathodoluminescence, which are capable of extracting information on a level of resolution comparable to the size of the grain boundaries. Work which attempts to relate grain boundaries to device efficiency is also assessed and gaps in the current knowledge are highlighted.

  18. Expansive Learning across Workplace Boundaries

    ERIC Educational Resources Information Center

    Kerosuo, Hannele; Toiviainen, Hanna

    2011-01-01

    The article analyses a collaborative effort of learning across workplace boundaries in a regional learning network of South Savo, Finland. The focus is on the "Forum of In-house Development" in the network. Our objective is to highlight a dialectical approach to boundaries that draws from the ideas of cultural-historical activity theory.…

  19. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  20. Pushing the boundaries

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2011-09-01

    Over a cup of green tea at the headquarters of the Institute for High Energy Physics (IHEP) in Beijing, Hesheng Chen, who has been its director since 1998, takes me through a list of the institute's many current and planned research facilities.

  1. Direct numerical simulation of turbulent boundary layer with constant thickness

    NASA Astrophysics Data System (ADS)

    Yao, Yichen; Xu, Chunxiao; Huang, Weixi

    2016-11-01

    Direct numerical simulation is performed to turbulent boundary layer (TBL) with constant thickness at Reθ = 1420 . Periodic boundary condition is applied in the streamwise direction, and a mean body force equivalent to the convection term in the mean momentum equation is imposed in this direction. The body force is calculated using the published TBL data of Schlatter and Orlu (2010) at Reθ = 1420 . The presently simulated TBL is compared with the conventional TBL and turbulent channel flow at the prescribed Reynolds number. The turbulent statistics agrees well with that of Schlatter and Orlu (2010). The pre-multiplied energy spectra in current simulation also present high similarity with the conventional TBL, while differ obviously with those in turbulent channel. The successful replication of turbulent boundary in the current simulation provides an alternative method for boundary layer simulation with much less computational cost. Meanwhile, in aspect of both turbulent statistics and flow structures, the current results indicate that the differences between turbulent channel and boundary layer flow mainly caused by the discrepancy in driving force distribution rather than the periodic boundary restriction. National Natural Science Foundation of China (Project No. 11490551, 11472154, 11322221, 11132005).

  2. Plasma Relaxation Dynamics Moderated by Current Sheets

    NASA Astrophysics Data System (ADS)

    Dewar, Robert; Bhattacharjee, Amitava; Yoshida, Zensho

    2014-10-01

    Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor-relaxed equilibrium model all these constraints are relaxed save for global magnetic flux and helicity. A Lagrangian is presented that leads to a new variational formulation of magnetized fluid dynamics, relaxed MHD (RxMHD), all static solutions of which are Taylor equilibrium states. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-relaxed MHD (MRxMHD), is developed. These concepts are illustrated using a simple two-region slab model similar to that proposed by Hahm and Kulsrud--the formation of an initial shielding current sheet after perturbation by boundary rippling is calculated using MRxMHD and the final island state, after the current sheet has relaxed through a reconnection sequence, is calculated using RxMHD. Australian Research Council Grant DP110102881.

  3. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    SciTech Connect

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  4. [Nonlinear magnetohydrodynamics]. Final report

    SciTech Connect

    Montgomery, D.C.

    1998-11-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant`s lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the

  5. Theory of the low-latitude boundary layer

    NASA Technical Reports Server (NTRS)

    Sonnerup, B. U. OE.

    1980-01-01

    A one-dimensional steady state fluid mechanical model is developed of the low-latitude plasma boundary layer inside the dawn and dusk magnetopause. Momentum transfer in the layer is produced by viscosity and/or mass diffusion. Coupling to the ionosphere is achieved via field-aligned currents, the magnitude of which is limited by parallel potential drops. These currents flow into and out of the ionosphere in the manner described by Iijima and Potemra. The higher-latitude (region 1) currents are associated with the boundary layer proper, while the lower-latitude (region 2) ones are associated with a region of sunward return flow adjacent to the boundary layer. The parallel potential drops have a magnitude of typically 2-3 kV and a north-south extent of 100-200 km. The calculated potential profile corresponds reasonably well to observed inverted V precipitation events.

  6. Brain response to prosodic boundary cues depends on boundary position

    PubMed Central

    Holzgrefe, Julia; Wellmann, Caroline; Petrone, Caterina; Truckenbrodt, Hubert; Höhle, Barbara; Wartenburger, Isabell

    2013-01-01

    Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer's syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well-understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP) study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name) as compared to later in the utterance (i.e., after the second name). A closure positive shift (CPS)—marking the processing of a prosodic phrase boundary—was elicited for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context. PMID:23882234

  7. Generation of Boundary Manikin Anthropometry

    NASA Technical Reports Server (NTRS)

    Young, Karen S.; Margerum, Sarah; Barr, Abbe; Ferrer, Mike A.; Rajulu, Sudhakar

    2008-01-01

    The purpose of this study was to develop 3D digital boundary manikins that are representative of the anthropometry of a unique population. These digital manikins can be used by designers to verify and validate that the components of the spacesuit design satisfy the requirements specified in the Human Systems Integration Requirements (HSIR) document. Currently, the HSIR requires the suit to accommodate the 1st percentile American female to the 99th percentile American male. The manikin anthropometry was derived using two methods: Principal Component Analysis (PCA) and Whole Body Posture Based Analysis (WBPBA). PCA is a statistical method for reducing a multidimensional data set by using eigenvectors and eigenvalues. The goal is to create a reduced data set that encapsulates the majority of the variation in the population. WBPBA is a multivariate analytical approach that was developed by the Anthropometry and Biomechanics Facility (ABF) to identify the extremes of the population for a given body posture. WBPBA is a simulation-based method that finds extremes in a population based on anthropometry and posture whereas PCA is based solely on anthropometry. Both methods yield a list of subjects and their anthropometry from the target population; PCA resulted in 20 female and 22 male subjects anthropometry and WBPBA resulted in 7 subjects' anthropometry representing the extreme subjects in the target population. The subjects anthropometry is then used to 'morph' a baseline digital scan of a person with the same body type to create a 3D digital model that can be used as a tool for designers, the details of which will be discussed in subsequent papers.

  8. Solid Inflammability Boundary at Low Speed (SIBAL)

    NASA Technical Reports Server (NTRS)

    Tien, James S.; Sacksteder, Kurt R.; Ferkul, Paul V.; Bedir, Hasan; Shih, Hsin-Yi; Greenberg, Paul S.; Pettegrew, Richard D.; Piltch, Nancy; Frate, David

    1997-01-01

    This research program is concerned with the effect of low speed flow on the spreading and extinction processes of flames over solid fuels. We are particularly interested in the flammability boundary and the near-limit flame behavior in a microgravity environment. Primary attention is given to flame propagation in concurrent flow - the more hazardous situation from the point of view of fire safety. Both theoretical modeling and experimental research are in progress. This project passed the Science Concept Review (SCR) in 1996. As a result, the experiment continues on the flight definition path, and is currently scheduled to be performed in the Space Station Fluids and Combustion Facility (FCF).

  9. Boundary Conditions for Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Johnson, D. K.

    1994-01-01

    This paper explores solutions to the spherically symmetric Euler equations. Motivated by the work of Hagstrom and Hariharan and Geer and Pope, we modeled the effect of a pulsating sphere in a compressible medium. The literature available on this suggests that an accurate numerical solution requires artificial boundary conditions which simulate the propagation of nonlinear waves in open domains. Until recently, the boundary conditions available were in general linear and based on nonreflection. Exceptions to this are the nonlinear nonreflective conditions of Thompson, and the nonlinear reflective conditions of Hagstrom and Hariharan. The former are based on the rate of change of the incoming characteristics; the latter rely on asymptotic analysis and the method of characteristics and account for the coupling of incoming and outgoing characteristics. Furthermore, Hagstrom and Hariharan have shown that, in a test situation in which the flow would reach a steady state over a long time, Thompson's method could lead to an incorrect steady state. The current study considers periodic flows and includes all possible types and techniques of boundary conditions. The technique recommended by Hagstrom and Hariharan proved superior to all others considered and matched the results of asymptotic methods that are valid for low subsonic Mach numbers.

  10. Identification of the plasma boundary shape and position in the Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Abbasi Davani, F.

    2017-01-01

    A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of required fields to obtain elongated plasma in the Damavand tokamak.

  11. Enhanced electrical properties at boundaries including twin boundaries of polycrystalline CdTe thin-film solar cells.

    PubMed

    Li, H; Liu, X X; Lin, Y S; Yang, B; Du, Z M

    2015-05-07

    The effect of grain boundaries (GBs), in particular twin boundaries (TBs), on CdTe polycrystalline thin films is studied by conductive atomic force microscopy (C-AFM), electron-beam-induced current (EBIC), scanning Kelvin probe microscopy (SKPM), electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM). Four types of CdTe grains with various densities of {111} Σ3 twin boundaries (TBs) are found in Cl-treated CdTe polycrystalline thin films: (1) grains having multiple {111} Σ3 TBs with a low angle to the film surface; (2) grains having multiple {111} Σ3 TBs parallel to the film surfaces; (3) small grains on a scale of not more than 500 nm, composed of Cd, Cl, Te, and O; and (4) CdTe grains with not more than two {111} Σ3 TBs. Grain boundaries (including TBs) exhibit enhanced current transport phenomena. However, the {111} Σ3 TB is much more beneficial to micro-current transport. The enhanced current transport can be explained by the lower electron potential at GBs (including TBs) than the grain interiors (GIs). Our results open new opportunities for enhancing solar cell performances by controlling the grain boundaries, and in particular TBs.

  12. Boundary Development in the Field of International Nutrition Science12

    PubMed Central

    Centrone Stefani, Monique; Humphries, Debbie L.

    2014-01-01

    Using a sociological approach that elaborates on key observations of institutional entrepreneurs in international nutrition, this paper explores institutional boundaries and boundary work in international nutrition. Sociological concepts of “boundary making” and “situated knowledge” are applied to the boundaries between the nutrition sciences and lay nutrition knowledge in nutrition intervention. These concepts allow an analysis of how nutrition science creates boundaries between its field and other sciences and between nutrition as a science and other nutrition practices, providing additional perspective on current challenges in global food security and malnutrition. Analysis of boundary processes in international nutrition can also illuminate the development of “implementation” or “delivery science” in the field of international nutrition as it attempts to strengthen effectiveness of global efforts to reduce malnutrition. Although some risk taking in the academic world is rewarded, the analysis indicates that there are underlying processes that may inhibit full partnership with local people in the course of intervention work that builds scientific nutrition knowledge. As nutrition science becomes increasingly central to development, the boundaries that are reinforced by digging in heels over the implementation of programs with little local input or softened by inviting local stakeholders to publicly consider the problems in global nutrition together are important to consider in helping to create directions that favor viable solutions. PMID:24618761

  13. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  14. The plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.; Frank, L. A.; Peterson, W. K.; Lennartsson, W.

    1984-01-01

    A spatially distinct, temporally variable, transition region between the magnetotail lobes and the central plasma sheet designated the plasma sheet boundary layer has been identified from a survey of particle spectra and three-dimensional distributions as sampled by the ISEE 1 LEPEDEA. The instrumentation and data presentation are described, and the signatures of the magnetotail plasma regimes are presented and discussed for the central plasma sheet and lobe and the plasma sheet boundary layer. Comparisons of plasma parameters and distribution fucntions are made and the evolution of ion velocity distributions within the plasma sheet boundary layer is discussed. The spatial distribution of the plasma sheet boundary layer is considered and ion composition measurements are presented.

  15. Changing the Structure Boundary Geometry

    SciTech Connect

    Karasev, Viktor; Dzlieva, Elena; Ivanov, Artyom

    2008-09-07

    Analysis of previously obtained results shows that hexagonal crystal lattice is the dominant type of ordering, in particular, in striated glow discharges. We explore the possibility for changing the dust distribution in horizontal cross sections of relatively highly ordered structures in a glow-discharge. Presuming that boundary geometry can affect dust distribution, we used cylindrical coolers held at 0 deg. C and placed against a striation containing a structure, to change the geometry of its outer boundary. By varying the number of coolers, their positions, and their separations from the tube wall, azimuthally asymmetric thermophoretic forces can be used to form polygonal boundaries and vary the angles between their segments (in a horizontal cross section). The corner in the structure's boundary of 60 deg. stimulates formation of hexagonal cells. The structure between the supported parallel boundaries is also characterized by stable hexagonal ordering. We found that a single linear boundary segment does not give rise to any sizable domain, but generates a lattice extending from the boundary (without edge defects). A square lattice can be formed by setting the angle equal to 90 deg. . However, angles of 45 deg. and 135 deg. turned out easier to form. Square lattice was created by forming a near-135 deg. corner with four coolers. It was noted that no grain ordering is observed in the region adjacent to corners of angles smaller than 30 deg. , which do not promote ordering into cells of any shape. Thus, manipulation of a structure boundary can be used to change dust distribution, create structures free of the ubiquitous edge defects that destroy orientation order, and probably change the crystal lattice type.

  16. Free boundary problems in biology.

    PubMed

    Friedman, Avner

    2015-09-13

    In this paper, I review several free boundary problems that arise in the mathematical modelling of biological processes. The biological topics are quite diverse: cancer, wound healing, biofilms, granulomas and atherosclerosis. For each of these topics, I describe the biological background and the mathematical model, and then proceed to state mathematical results, including existence and uniqueness theorems, stability and asymptotic limits, and the behaviour of the free boundary. I also suggest, for each of the topics, open mathematical problems.

  17. Removing Boundary Layer by Suction

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  18. Boundary Condition for Modeling Semiconductor Nanostructures

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard

    2006-01-01

    A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.

  19. Grain-boundary migration in KCl bicrystals

    NASA Technical Reports Server (NTRS)

    Gibbon, C. F.

    1968-01-01

    Boundary migration in melt-grown bicrystals of KCl containing pure twist boundaries was investigated. The experiments involve the use of bicrystal specimens in the shape of right-triangular prisms with the boundary parallel to one side.

  20. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    SciTech Connect

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  1. Exploring the planetary boundary for chemical pollution.

    PubMed

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  2. Using Molecular Genetic Markers to Resolve a Subspecies Boundary: The Northern Boundary of the Southwestern Willow Flycatcher in the Four-Corner States

    USGS Publications Warehouse

    Paxton, Eben H.; Sogge, Mark K.; Theimer, Tad C.; Girard, Jessica; Keim, Paul

    2008-01-01

    *Executive Summary* The northern boundary of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus) is currently approximated as running through southern Colorado and Utah, but the exact placement is uncertain because this subspecies shares a border with the more northern and non-endangered E. t. adastus. To help resolve this issue, we evaluated the geographic distribution of mitochondrial and nuclear DNA by sampling breeding sites across the four-corner states (Arizona, Colorado, New Mexico, and Utah). We found that breeding sites clustered into two major groups generally consistent with the currently designated boundary, with the exception of three sites situated along the current boundary. However, delineating a precise boundary that would separate the two subspecies is made difficult because (1) we found evidence for a region of intergradation along the boundary area, suggesting the boundary is not discreet, and (2) the boundary region is sparsely populated, with too few extant breeding populations to precisely locate a boundary. The boundary region encompasses an area where elevation changes markedly over relatively short distances, with low elevation deserts to the south and more mesic, higher elevation habitats to the north. We hypothesized that latitudinal and elevational differences and their concomitant ecological effects could form an ecological barrier that inhibited gene flow between the subspecies, forming the basis for the subspecies boundary. We modeled changes in geographic patterns of genetic markers as a function of latitude and elevation finding significant support for this relationship. The model was brought into a GIS environment to create multiple subspecies boundaries, with the strength of each predicted boundary evaluated on the basis of how much genetic variation it explained. The candidate boundary that accounted for the most genetic variation was situated generally near the currently recognized subspecies boundary

  3. Boundary element analysis of post-tensioned slabs

    NASA Astrophysics Data System (ADS)

    Rashed, Youssef F.

    2015-06-01

    In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.

  4. Reconnection properties in collisionless plasma with open boundary conditions

    SciTech Connect

    Sun, H. E.; Ma, Z. W.; Huang, J.

    2014-07-15

    Collisionless magnetic reconnection in a Harris current sheet with different initial thicknesses is investigated using a 21/2 -D Darwin particle-in-cell simulation with the magnetosonic open boundary condition. It is found that the thicknesses of the ion dissipation region and the reconnection current sheet, when the reconnection rate E{sub r} reaches its first peak, are independent of the initial thickness of the current sheet; while the peak reconnection rate depends on it. The peak reconnection rate increases with decrease of the current sheet thickness as E{sub r}∼a{sup −1/2}, where a is the initial current sheet half-thickness.

  5. The role of prominence in determining the scope of boundary-related lengthening in Greek

    PubMed Central

    Katsika, Argyro

    2016-01-01

    This study aims at examining and accounting for the scope of the temporal effect of phrase boundaries. Previous research has indicated that there is an interaction between boundary-related lengthening and prominence such that the former extends towards the nearby prominent syllable. However, it is unclear whether this interaction is due to lexical stress and/or phrasal prominence (marked by pitch accent) and how far towards the prominent syllable the effect extends. Here, we use an electromagnetic articulography (EMA) study of Greek to examine the scope of boundary-related lengthening as a function of lexical stress and pitch accent separately. Boundaries are elicited by the means of a variety of syntactic constructions.. The results show an effect of lexical stress. Phrase-final lengthening affects the articulatory gestures of the phrase-final syllable that are immediately adjacent to the boundary in words with final stress, but is initiated earlier within phrase-final words with non-final stress. Similarly, the articulatory configurations during inter-phrasal pauses reach their point of achievement later in words with final stress than in words with non-final stress. These effects of stress hold regardless of whether the phrase-final word is accented or de-accented. Phrase-initial lengthening, on the other hand, is consistently detected on the phrase-initial constriction, independently of where the stress is within the preceding, phrase-final, word. These results indicate that the lexical aspect of prominence plays a role in determining the scope of boundary-related lengthening in Greek. Based on these results, a gestural account of prosodic boundaries in Greek is proposed in which lexical and phrasal prosody interact in a systematic and coordinated fashion. The cross-linguistic dimensions of this account and its implications for prosodic structure are discussed. PMID:27773955

  6. University of Washington/ Northwest National Marine Renewable Energy Center Tidal Current Technology Test Protocol, Instrumentation, Design Code, and Oceanographic Modeling Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-11-452

    SciTech Connect

    Driscoll, Frederick R.

    2016-11-01

    The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation system and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.

  7. Measurement and mitigation of corrosion on self-contained fluid filled (SCFF) submarine circuits for New York Power Authority: Volume 2 -- Stray electrical current measurements and preliminary design of the cathodic protection system. Final report

    SciTech Connect

    1998-10-01

    In 1987, the New York Power Authority (NYPA) installed a 345-kV submarine cable circuit across Long Island Sound between substations at Davenport Neck and Hempstead Harbor. During design and installation of the cable circuit, utility and cable manufacturers engineers identified corrosion as a possible problem for the cable system. They considered such effects in the cable design and discussed preliminary requirements for a cathodic protection system on Long Island Sound circuit. EPRI cosponsored this review of the corrosion effects with NYPA and Empire State Electric Energy Research Corp. (ESEERCO). Volume 1 of this report discusses the results from an in-depth evaluation of the self-contained fluid-filled (SCFF) cable construction materials and their susceptibility to corrosion. Volume 2 provides extended stray current field measurements and a preliminary design for a cathodic protection system to ensure cable service reliability. This study provides a blueprint for East or West Coast utilities evaluating site-specific corrosion processes and cable circuit protection methods suitable for underwater environments.

  8. A three-dimensional phase-field study of grain boundary tracking behavior in crack-seal microstructures

    NASA Astrophysics Data System (ADS)

    Ankit, Kumar; Nestler, Britta; Selzer, Michael

    2013-04-01

    The mechanism by which vein formation occurs is a widely debated topic with chief assertions related to growing crystals-fracture wall surface interaction, degree of super-saturation and fluid-flow pathways. Amidst the debate, an important question is what causes the grain boundaries to curve/bend, a feature commonly observed in natural crack-seal microstructures. Therefore, with a view to amend the current understanding of the vein-growth mechanism, we present a 3D multi-phase-field model to explain the dynamics of crystals precipitating from a super-saturated solution in a progressively widening fracture. Since the present model equations are derived on the basis of general thermodynamic and kinetic principles and relies on interfacial energy minimization, complicated moving boundary problems such as microstructure evolution on a large scale, can be dealt with ease [1,2]. A systematic simulation study of the influence of different boundary conditions (free growth and crack-sealing) on growing crystals highlights the importance of anisotropy in surface energy in free-growth as well as crack-sealing conditions; a factor overlooked in the previous models. To define the crystal symmetry, we consider the anisotropy in surface energy to simulate crystals (with flat facets and sharp corners) possessing different orientations and study the resulting growth competition to deduce a consistent orientation selection rule in the free-growth regime. From the crack-sealing simulations, we co-relate the grain boundary tracking behavior and the relative rates of crack opening and trajectory, initial grain size and wall roughness. Further, the formation of curved grain boundaries in crack-sealing conditions as an imprint of anisotropy in surface energy of growing crystals and coupling with wall rock is elucidated. We also identify the 'mixed-mode' growth of crystals in crack-sealing conditions, characterized by formation of curved as well as straight grain boundaries and decrease

  9. Ecological Growth Boundaries

    NASA Astrophysics Data System (ADS)

    Bluszcz, Anna

    2017-03-01

    The trends of the society for the continuous growth, combined with the demographic changes, today have led to the important ecological problems on a global scale, which include, among others: the increased use of non-renewable natural resources, an increase of the greenhouse gas emissions, contamination of soil, water, air and the progressive degradation of ecosystems. In the face of such serious threats the global initiatives of all countries are important to limit the results of the excessive consumption. The aim of the article is to present the methods of measurement of the consumption level of natural resources by the societies and the examination of relationships between the level of development of the societies and the use of resources. The popular measure - the ecological footprint - was used as a measurement method for the consumption of the today's generations in relation to the regenerative possibilities of the natural environment. On the other hand, as the assessment method for the level of development of societies - the Human Development Index (HDI), including three basic areas: the life expectancy, GDP level per capita and education was used. The results of the research indicate that the current trend of the unlimited consumption of the highly developed countries takes place at the expense of the future generations.

  10. Current limiters

    SciTech Connect

    Loescher, D.H.; Noren, K.

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  11. Imaging magnetospheric boundaries at ionospheric heights

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Baumgardner, Jeffrey; Wroten, Joei; Martinis, Carlos; Smith, Steven; Merenda, Kevin-Druis; Fritz, Theodore; Hairston, Marc; Heelis, Rod; Barbieri, Cesare

    2013-11-01

    all-sky imager (ASI) records atmospheric emissions from zenith to low on the horizon at all azimuths, a region typically spanning millions of square kilometers. Each pixel (with its unique elevation, azimuth, and emission height) can be mapped along B-field lines to the equatorial plane of the magnetosphere. Auroral and subauroral structures and boundaries seen in emission within the ionosphere-thermosphere (I-T) system can thus be related to source regions. For a midlatitude site, this I-T to inner magnetosphere connection typically falls within the L = 2-5 earth radii domain. In this study, we present the first case of a stable auroral red (SAR) arc observed from three widely spaced ASI sites (Europe, North America, New Zealand). SAR arcs are produced during the main and recovery phases of a geomagnetic storm, with emission driven by heat conduction from a very specific location in the magnetosphere—the L value where the plasmapause and the inner edge of the ring current overlap. Using three-site observations, we show that this boundary can be followed for 24 consecutive hours. Simultaneous observations made by three satellites in the Defense Meteorological Satellite Program (DMSP) show that the lowest latitude peak in electron temperature can be used to map the same boundary. A key structure of the inner magnetosphere that cannot be observed continuously from sensors orbiting within the magnetosphere is made continuously visible to ground-based optical systems via effects caused by the drainage of small amounts of ring current energy into the I-T system.

  12. Final Scientific EFNUDAT Workshop

    ScienceCinema

    None

    2016-07-12

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  13. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  14. Spike-like Negative Bias In Deep-sea Current Meter Observations Over The Continental Slope

    NASA Astrophysics Data System (ADS)

    Hosegood, P.; van Haren, H.

    Data from Aanderaa RCM-8 current meters, deployed on the continental slope of the Faeroe-Shetland Channel between depths of 471m-1000m, show spike-like reductions in current speed of approximately 20-40%. The spikes have a duration of only one data value, corresponding to the instruments unusually high sampling period of one minute. Associated with the spikes are concurrent deflections in the current direction records, with a mean value of 7 degrees and in a predominantly clockwise sense. The spikes furthermore only occur when the current direction has a positive long-slope compo- nent. We reject instrumental causes alone of the spikes, and propose a mechanism of three components as the cause. Firstly, the negative bias of the spikes is explained by the cosine response of the current meter when it is misaligned with the mean flow. This misalignment is due to turbulence to which the instrument is unable to respond adequately and is facilitated by a turbulent bursting phenomenon in long-slope current boundary layers. The quasi-period of the spikes and their duration are consistent with previous field observations and laboratory studies. Obliquely incident internal waves reflecting from the sloping boundary are also associated with the high incidence of spikes in the upper current meters on the moorings as a turbulent layer forms further from the boundary. Finally, a positive long-slope mean flow is required for the spikes to occur, creating an adverse pressure gradient that promotes the occurrence of burst- ing. Our findings cause concern for the reliability of data from mechanical current meters sampling at longer intervals and deployed in turbulent near-bed regions.

  15. Towards Arbitrary Accuracy Inviscid Surface Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Hixon, Ray

    2002-01-01

    Inviscid nonlinear surface boundary conditions are currently limited to third order accuracy in time for non-moving surfaces and actually reduce to first order in time when the surfaces move. For steady-state calculations it may be possible to achieve higher accuracy in space, but high accuracy in time is required for efficient simulation of multiscale unsteady phenomena. A surprisingly simple technique is shown here that can be used to correct the normal pressure derivatives of the flow at a surface on a Cartesian grid so that arbitrarily high order time accuracy is achieved in idealized cases. This work demonstrates that nonlinear high order time accuracy at a solid surface is possible and desirable, but it also shows that the current practice of only correcting the pressure is inadequate.

  16. Antimatter Production at a Potential Boundary

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Reddy, Dhanireddy (Technical Monitor)

    2001-01-01

    Current antiproton production techniques rely on high-energy collisions between beam particles and target nuclei to produce particle and antiparticle pairs, but inherently low production and capture efficiencies render these techniques impractical for the cost-effective production of antimatter for space propulsion and other commercial applications. Based on Dirac's theory of the vacuum field, a new antimatter production concept is proposed in which particle-antiparticle pairs are created at the boundary of a steep potential step formed by the suppression of the local vacuum fields. Current antimatter production techniques are reviewed, followed by a description of Dirac's relativistic quantum theory of the vacuum state and corresponding solutions for particle tunneling and reflection from a potential barrier. The use of the Casimir effect to suppress local vacuum fields is presented as a possible technique for generating the sharp potential gradients required for particle-antiparticle pair creation.

  17. Mechanism and modeling of interphase boundary precipitation

    NASA Astrophysics Data System (ADS)

    Meng, Weigang

    the dynamics of the pearlite transformation coupled with vanadium carbide precipitation with the argument made that the static interpretation of phase transformations (including interphase boundary structure) can be misleading. Part 2. Modeling the number of orientation variants and the equilibrium shape of nuclei at interphase boundaries. The equilibrium shape of nuclei at interphase boundaries is modeled in this part of the thesis through minimization of interfacial energy under the assumptions of a rigid planar interphase boundary (IPB) and constant volume constraint. The nucleus equilibrium shapes are also graphically derived by a modified Wulff construction. The current model predicts that the IPB nucleation activation energy increases with the nucleus faceting angle phi, the angle between the nucleus facet plane and the interphase boundary plane. Therefore, it is energetically favorable for the nucleus facet to lie as parallel as possible to the interphase boundary plane. The model provides theoretical rationalization to many experimental observations made on IPB precipitation that only one of the several possible orientation variants is adopted between the IPB precipitates and one of the matrix phases.

  18. Detecting dynamical boundaries from kinematic data in biomechanics

    NASA Astrophysics Data System (ADS)

    Ross, Shane D.; Tanaka, Martin L.; Senatore, Carmine

    2010-03-01

    Ridges in the state space distribution of finite-time Lyapunov exponents can be used to locate dynamical boundaries. We describe a method for obtaining dynamical boundaries using only trajectories reconstructed from time series, expanding on the current approach which requires a vector field in the phase space. We analyze problems in musculoskeletal biomechanics, considered as exemplars of a class of experimental systems that contain separatrix features. Particular focus is given to postural control and balance, considering both models and experimental data. Our success in determining the boundary between recovery and failure in human balance activities suggests this approach will provide new robust stability measures, as well as measures of fall risk, that currently are not available and may have benefits for the analysis and prevention of low back pain and falls leading to injury, both of which affect a significant portion of the population.

  19. Sound Radiation from a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Laufer, J.

    1961-01-01

    If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.

  20. Boundary Layer Transition Flight Experiment Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.

    2011-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.

  1. Immersed Boundary Fractional Step Method

    NASA Astrophysics Data System (ADS)

    Taira, Kunihiko

    2005-11-01

    We present a new formulation of the immersed boundary method for incompressible flow over moving rigid bodies. Like many existing techniques we introduce a set of interpolation points on the surface at which the no-slip boundary condition is satisfied by including a (regularized) force in the momentum equations. By introducing interpolation and regularization operators and grouping pressure and force unknowns together, the discretized Navier-Stokes equations with the immersed boundary method can be formulated with an identical structure to the traditional fractional step method, but with a modified Poisson equation whose unknowns are both the pressure and the boundary force. The method highlights the analogous roles of pressure and boundary forcing as Lagrange multipliers in order to satisfy the divergence free and no-slip constraints, respectively. The overall method is found to be a simple addition to an existing fractional step code and the extended Poisson equation is solved efficiently with the conjugate gradient method. We demonstrate convergence and present results for two-dimensional flows with a variety of moving rigid bodies.

  2. Thermal Boundary Conductance: A Materials Science Perspective

    NASA Astrophysics Data System (ADS)

    Monachon, Christian; Weber, Ludger; Dames, Chris

    2016-07-01

    The thermal boundary conductance (TBC) of materials pairs in atomically intimate contact is reviewed as a practical guide for materials scientists. First, analytical and computational models of TBC are reviewed. Five measurement methods are then compared in terms of their sensitivity to TBC: the 3ω method, frequency- and time-domain thermoreflectance, the cut-bar method, and a composite effective thermal conductivity method. The heart of the review surveys 30 years of TBC measurements around room temperature, highlighting the materials science factors experimentally proven to influence TBC. These factors include the bulk dispersion relations, acoustic contrast, and interfacial chemistry and bonding. The measured TBCs are compared across a wide range of materials systems by using the maximum transmission limit, which with an attenuated transmission coefficient proves to be a good guideline for most clean, strongly bonded interfaces. Finally, opportunities for future research are discussed.

  3. Spatial Optimal Disturbances in Three-Dimensional Boundary Layers

    NASA Astrophysics Data System (ADS)

    Tempelmann, David; Hanifi, Ardeshir; Henningson, Dan S.

    A parabolised set of equations is used to compute spatial optimal disturbances in Falkner-Skan-Cooke boundary layers. These disturbances associated with maximum energy growth initially take the form of vortices which are tilted against the direction of the mean crossflow shear. They evolve into bended streaks while traveling downstream and finally into crossflow disturbances when entering the supercritical domain of the boundary layer. Two physical mechanisms, namely the lift-up and the Orr-mechanism, can be identified as being responsible for nonmodal growth in three-dimensional boundary layers. A parametric study is presented where, amongst others, the influences of pressure gradient and sweep angle on optimal growth are investigated. It turns out that substantial disturbance growth is already found in regions of the flow where modal disturbances are damped.

  4. Numerical solution of an inverse conductive boundary value problem

    NASA Astrophysics Data System (ADS)

    Yaman, F.

    2008-12-01

    In this paper, we derive a numerical solution of an inverse obstacle scattering problem with conductive boundary condition. The aim of the direct problem is the computation of the scattered field for a given arbitrarily shaped cylinder with conductive boundary condition on its surface.The inverse problem considered here is the reconstruction of the conductivity function of the scatterer from meausurements of the far field. A potential approach is used to obtain boundary layer integral equations both for the solution of the direct and the inverse problem. The numerical solutions of the integral equations which contain logarithmically singular kernels are evaluated by a Nyström method and Tikhonov regularization is used to solve the first kind of integral equations occuring in the solution of the inverse problem. Finally, numerical simulations are carried out to test the applicability and the effectiveness of the method.

  5. Supersonic separated turbulent boundary - layer over a wavy wall

    NASA Technical Reports Server (NTRS)

    Polak, A.; Werle, M. J.

    1977-01-01

    A prediction method is developed for calculating distributions of surface heating rates, pressure and skin friction over a wavy wall in a two-dimensional supersonic flow. Of particular interest is the flow of thick turbulent boundary layers. The surface geometry and the flow conditions considered are such that there exists a strong interaction between the viscous and inviscid flow. First, using the interacting turbulent boundary layer equations, the problem is formulated in physical coordinates and then a reformulation of the governing equations in terms of Levy-Lees variables is given. Next, a numerical scheme for solving interacting boundary layer equations is adapted. A number of modifications which led to the improvement of the numerical algorithm are discussed. Finally, results are presented for flow over a train of up to six waves at various flow conditions.

  6. A poroelastic immersed boundary method with applications to cell biology

    NASA Astrophysics Data System (ADS)

    Strychalski, Wanda; Copos, Calina A.; Lewis, Owen L.; Guy, Robert D.

    2015-02-01

    The immersed boundary method is a widely used mixed Eulerian/Lagrangian framework for simulating the motion of elastic structures immersed in viscous fluids. In the traditional immersed boundary method, the fluid and structure move with the same velocity field. In this work, a model based on the immersed boundary method is presented for simulating poroelastic media in which the fluid permeates a porous, elastic structure of small volume fraction that moves with its own velocity field. Two distinct methods for calculating elastic stresses are presented and compared. The methods are validated on a radially symmetric test problem by comparing with a finite difference solution of the classical equations of poroelasticity. Finally, two applications of the modeling framework to cell biology are provided: cellular blebbing and cell crawling. It is shown that in both examples, poroelastic effects are necessary to explain the relevant mechanics.

  7. Kapitza resistance at segregated boundaries in β-SiC

    NASA Astrophysics Data System (ADS)

    Goel, Nipun; Webb, Edmund, III; Oztekin, Alparslan; Rickman, Jeffrey; Neti, Sudhakar

    Silicon Carbide is a candidate material for high-temperature thermoelectric applications for harvesting waste heat associated with exhaust from automotive and furnaces as well hot surfaces in solar towers and power electronics. However, for SiC to be a viable thermoelectric material, its thermoelectric figure of merit must be improved significantly. In this talk we examine the role of grain-boundary segregation on phononic thermal transport, an important factor in determining the figure of merit, via non-equilibrium molecular dynamics simulations. In particular, we consider the role of dopant concentration and dopant/matrix interactions on the enhancement of the Kapitza resistance of symmetric tilt grain boundaries. We find that the calculated resistance depends on the segregation profile, with increases of more than a factor of 50 (relative to an unsegregated boundary) at the highest dopant concentrations. Finally, we relate the calculated phonon density of states to changes in the Kapitza resistance.

  8. Boundary conditions for the Boltzmann equation for rough walls

    NASA Astrophysics Data System (ADS)

    Brull, Stéphane; Charrier, Pierre

    2014-12-01

    In some applications, rarefied gases have to considered in a domain whose boundary presents some nanoscale roughness. That is why, we have considered (Brull,2014) a new derivation of boundary conditions for the Boltzmann equation, where the wall present some nanoscale roughness. In this paper, the interaction between the gas and the wall is represented by a kinetic equation defined in a surface layer at the scale of the nanometer close to the wall. The boundary conditions are obtained from a formal asymptotic expansion and are describded by a scattering kernel satisfying classical properties (non-negativeness, normalization, reciprocity). Finally, we present some numerical simulations of scattering diagrams showing the importance of the consideration of roughness for small scales in the model.

  9. Acoustic boundary control for quieter aircraft

    NASA Astrophysics Data System (ADS)

    Hirsch, Scott Michael

    1999-08-01

    There is a strong interest in reducing the volume of low- frequency noise in aircraft cabins. Active noise control (ANC), in which loudspeakers placed in the cabin are used to generate a sound field which will cancel these disturbances, is now a commercially available solution. A second control approach is active structural acoustic control (ASAC), which uses structural control forces to reduce sound transmitted into the cabin through the fuselage. Some of the goals of current research are to reduce the cost, weight, and bulk of these control systems, along with improving global control performance. This thesis introduces an acoustic boundary control (ABC) concept for active noise control in aircraft. This control strategy uses distributed actuator arrays along enclosure boundaries to reduce noise transmitted into the enclosure through the boundaries and to reduce global noise levels due to other disturbances. The motivation is to provide global pressure attenuation with small, lightweight control actuators. Analytical studies are conducted of acoustic boundary in two-dimensional and three-dimensional rectangular enclosures and in a finite cylindrical enclosure. The simulations provide insight into the control mechanisms of ABC and demonstrate potential advantages of ABC over traditional ANC and ASAC implementations. A key component of acoustic boundary control is the ``smart'' trim panel, a structurally modified aircraft trim panel for use as an acoustic control source. A prototype smart trim panel is built and tested. The smart trim panel is used as the control source in a real-time active noise control system in a laboratory- scale fuselage model. It is shown that the smart trim panel works as well as traditional loudspeakers for this application. A control signal scheduling approach is proposed which allows for a reduction in the computational burden of the real-time controller used in active noise control applications. This approach uses off-line system

  10. The FZZ duality with boundary

    NASA Astrophysics Data System (ADS)

    Creutzig, Thomas; Hikida, Yasuaki; Rønne, Peter B.

    2011-09-01

    The Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality relates Witten's cigar model to sine-Liouville theory. This duality was proven in the path integral formulation and extended to the case of higher genus closed Riemann surfaces by Schomerus and one of the authors. In this note we further extend the duality to the case with boundary. Specifically, we relate D1-branes in the cigar model to D2-branes in the sine-Liouville theory. In particular, the boundary action for D2-branes in the sine-Liouville theory is constructed. We also consider the fermionic version of the FZZ duality. This duality was proven as a mirror symmetry by Hori and Kapustin, but we give an alternative proof in the path integral formulation which directly relates correlation functions. Also here the case with boundary is investigated and the results are consistent with those for branes in mathcal{N} = 2 super Liouville field theory obtained by Hosomichi.

  11. Final Technical Report

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK B202 Final Technical Report. The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  12. Renewing Occupational Cultures--Bridging Boundaries in Learning Spaces

    ERIC Educational Resources Information Center

    Kalliola, Satu; Nakari, Risto

    2007-01-01

    Professional bureaucracies of the Finnish municipal services are challenged by many modernization pressures manifested currently in the form of New Public Management. Along with efficiency demands the new emphasis is on the provision of client-oriented services by the means of multi-professional teamwork crossing the traditional sector boundaries.…

  13. Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Wilson, K. Van; Clair, Michael G.; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (Hydrologic Unit Codes) were further subdivided into 10-digit watersheds (62.5 to 391 square miles (mi2)) and 12-digit subwatersheds (15.6 to 62.5 mi2) - the exceptions being the Delta part of Mississippi and the Mississippi River inside levees, which were subdivided into 10-digit watersheds only. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, subdivision codes and names, and drainage-area data - are stored in a Geographic Information System database, which are available at: http://ms.water.usgs.gov/. This map shows information on drainage and hydrography in the form of U.S. Geological Survey hydrologic unit boundaries for water-resource 2-digit regions, 4-digit subregions, 6-digit basins (formerly called accounting units), 8-digit subbasins (formerly called cataloging units), 10-digit watershed, and 12-digit subwatersheds in Mississippi. A description of the project study area, methods used in the development of watershed and subwatershed boundaries for Mississippi, and results are presented in Wilson and others (2008). The data presented in this map and by Wilson and others (2008) supersede the data presented for Mississippi by Seaber and others (1987) and U.S. Geological Survey (1977).

  14. Boundaries and the Exploration of Self

    ERIC Educational Resources Information Center

    Gharabaghi, Kiaras

    2008-01-01

    Boundaries and the exploration of self are conceptualized within the agency-structure problem first articulated in social theory during the 1970s. Constructing boundaries as a professional issue within the discipline has to take account the agency embedded within boundaries. Multiple boundary dilemmas are discussed within the framework of the…

  15. The Shaping of Communication across Boundaries

    ERIC Educational Resources Information Center

    Daniels, Harry

    2011-01-01

    This article will consider the formative effect of boundaries between activities in directing and deflecting the attention of actors who are seeking to develop innovatory practice at these boundaries. Specific attention will be directed to practices of communication at these boundaries and also to the way in which these boundaries shape the…

  16. Boundary data completion: the method of boundary value problem factorization

    NASA Astrophysics Data System (ADS)

    Ben Abda, Amel; Henry, Jacques; Jday, Fadhel

    2011-05-01

    We consider the following data completion problem for the Laplace equation in the cylindrical domain: \\Omega =\\left]0,a\\right[\\times { O},{ O}\\subset {R}^{n-1} ({ O} is a smooth bounded open set and a > 0), limited by the faces \\Gamma _{0}=\\lbrace 0\\rbrace \\times { O} and \\Gamma _{a}=\\lbrace a\\rbrace \\times { O}. The Neumann and Dirichlet boundary conditions are given on Γ0 while no condition is given on Γa. The completion data problem consists in recovering a boundary condition on Γa. This problem has been known to be ill-posed since Hadamard [12]. The problem is set as an optimal control problem with a regularized cost function. To obtain directly an approximation of the missing data on Γa we use the method of factorization of elliptic boundary value problems. This method allows us to factorize a boundary value problem in the product of two parabolic problems. Here it is applied to the optimality system (i.e. jointly on the state and adjoint state equations).

  17. Boundary interference assessment and correction for open jet wind tunnels using panel methods

    NASA Astrophysics Data System (ADS)

    Mokhtar, Wael Ahmed

    The presence of nearby boundaries in a wind tunnel can lead to aerodynamic measurements on a model in the wind tunnel that differ from those that would be made when the boundaries of the moving fluid were infinitely far away. The differences, referred to as boundary interference or wall interference, can be quite large, such as when testing aircraft models developing high lift forces, or whose wingspan is a large fraction of the wind tunnel width, or high drag models whose frontal area is a large fraction of the tunnel cross section. Correction techniques for closed test section (solid walled) wind tunnels are fairly well developed, but relatively little recent work has addressed the case of open jet tunnels specifically for aeronautical applications. A method to assess the boundary interferences for open jet test sections is introduced. The main objective is to overcome some of the limitations in the classical and currently used methods for aeronautical and automotive wind tunnels, particularly where the levels of interference are large and distortion of the jet boundary becomes significant. The starting point is to take advantage of two well-developed approaches used in closed wall test sections, namely the boundary measurement approach and adaptive wall wind tunnels. A low-order panel code is developed because it offers a relatively efficient approach from the computational point of view, within the required accuracy. It also gives the method more flexibility to deal with more complex model geometries and test section cross sections. The method is first compared to the method of images. Several lifting and non-lifting model representations are used for both two- and three-dimensional studies. Then the method is applied to results of a test of a full-scale Wright Flyer replica inside the Langley Full Scale Tunnel. The study is extended to include the effect of model representation and the test section boundaries (closed, open and 3/4 open) on the interference

  18. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  19. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  20. Submesoscale cyclones in the Agulhas current

    NASA Astrophysics Data System (ADS)

    Krug, M.; Swart, S.; Gula, J.

    2017-01-01

    Gliders were deployed for the first time in the Agulhas Current region to investigate processes of interactions between western boundary currents and shelf waters. Continuous observations from the gliders in water depths of 100-1000 m and over a period of 1 month provide the first high-resolution observations of the Agulhas Current's inshore front. The observations collected in a nonmeandering Agulhas Current show the presence of submesoscale cyclonic eddies, generated at the inshore boundary of the Agulhas Current. The submesoscale cyclones are often associated with warm water plumes, which extend from their western edge and exhibit strong northeastward currents. These features are a result of shear instabilities and extract their energy from the mean Agulhas Current jet.

  1. Nucleation of small-angle boundaries

    SciTech Connect

    Nabarro, F.R.N. |; Wilsdorf, D.K.

    1996-12-01

    The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition, the new boundaries having finite misorientations. The calculated misorientations both of the new boundaries and of the existing boundaries which provoke the transition agree well with observations.

  2. Current Titles

    SciTech Connect

    Various

    2006-06-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

  3. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    PubMed

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  4. Cell boundary analysis using radial search for dual staining techniques

    NASA Astrophysics Data System (ADS)

    Iftikhar, Saadia; Bharath, Anil Anthony

    2009-02-01

    In medical image analysis and segmentation, many conventional methods work very well on good quality tissue section images, but often fail when the images are not of good quality. Active contours or snakes are widely used in medical image processing applications especially for boundary detection. However, the problems with initialization and poor performance of snakes on noisy images limit their efficacy. As an alternative, this research presents an efficient and robust method to segment cell nuclei and their respective boundaries for low contrast cell images using a combination of a radial search and interpolation methods. This radial search method can be used in medical image analysis and segmentation applications for images which are very noisy or whose structural regions are not very clear. The processes in this method consists of (1) extracting the location of the cell nuclei (2) finding the edge information of the given image (3) applying radial search on the edge image patch for finding the radial initialization and finally (4) using an interpolation method to find the desired boundary points, which describe the potential boundary points to best fit to that candidate shape or cell. The results shown on the images of branch aorta of rabbit are suggesting that the proposed radial search method correctly finds the boundaries even on very low contrast images, which can be used for further medical image analysis.

  5. A locally stabilized immersed boundary method for the compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Brehm, C.; Hader, C.; Fasel, H. F.

    2015-08-01

    A higher-order immersed boundary method for solving the compressible Navier-Stokes equations is presented. The distinguishing feature of this new immersed boundary method is that the coefficients of the irregular finite-difference stencils in the vicinity of the immersed boundary are optimized to obtain improved numerical stability. This basic idea was introduced in a previous publication by the authors for the advection step in the projection method used to solve the incompressible Navier-Stokes equations. This paper extends the original approach to the compressible Navier-Stokes equations considering flux vector splitting schemes and viscous wall boundary conditions at the immersed geometry. In addition to the stencil optimization procedure for the convective terms, this paper discusses other key aspects of the method, such as imposing flux boundary conditions at the immersed boundary and the discretization of the viscous flux in the vicinity of the boundary. Extensive linear stability investigations of the immersed scheme confirm that a linearly stable method is obtained. The method of manufactured solutions is used to validate the expected higher-order accuracy and to study the error convergence properties of this new method. Steady and unsteady, 2D and 3D canonical test cases are used for validation of the immersed boundary approach. Finally, the method is employed to simulate the laminar to turbulent transition process of a hypersonic Mach 6 boundary layer flow over a porous wall and subsonic boundary layer flow over a three-dimensional spherical roughness element.

  6. Schwarz alternating methods for anisotropic problems with prolate spheroid boundaries.

    PubMed

    Dai, Zhenlong; Du, Qikui; Liu, Baoqing

    2016-01-01

    The Schwarz alternating algorithm, which is based on natural boundary element method, is constructed for solving the exterior anisotropic problem in the three-dimension domain. The anisotropic problem is transformed into harmonic problem by using the coordinate transformation. Correspondingly, the algorithm is also changed. Continually, we analysis the convergence and the error estimate of the algorithm. Meanwhile, we give the contraction factor for the convergence. Finally, some numerical examples are computed to show the efficiency of this algorithm.

  7. Prosodic Boundaries in Alaryngeal Speech

    ERIC Educational Resources Information Center

    van Rossum, M. A.; Quene, H.; Nooteboom, S. G.

    2008-01-01

    Alaryngeal speakers (speakers in whom the larynx has been removed) have inconsistent control over acoustic parameters such as F[subscript 0] and duration. This study investigated whether proficient tracheoesophageal and oesophageal speakers consistently convey phrase boundaries. It was further investigated if these alaryngeal speakers used the…

  8. Dynamics of Coronal Hole Boundaries

    NASA Astrophysics Data System (ADS)

    Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Wyper, P. F.; Zurbuchen, T. H.

    2017-03-01

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  9. Stability of Boundary Layer Flow.

    DTIC Science & Technology

    1980-03-01

    and Teske (1975). We can conclude (as in the case of ducting) that theoretical models of boundary layer structure and associated radar structure...FI33 (Secret). Hitney, (1978) "Surface Duct Effects," Naval Ocean Systems Center, San Diego, Calif., Report No. TD144. Lewellen, W. S., and M. E. Teske

  10. The seismotectonics of plate boundaries

    NASA Technical Reports Server (NTRS)

    Berger, J.; Brune, J. N.; Goodkind, J.; Wyatt, F.; Agnew, D. C.; Beaumont, C.

    1981-01-01

    Research on the seismotectonics of plate boundaries is summarized. Instrumental development and an observational program designed to study various aspects of the seismotectonics of southern California and the northern Gulf of California are described. A unique superconducting gravimeter was further developed and supported under this program for deployment and operation at several sites. Work on Earth tides is also discussed.

  11. Interaction strength and model geometry effects on the structure of crossing-shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.

    1993-01-01

    The flowfield structure of a range of symmetric crossing-shock wave/turbulent boundary-layer interactions of varying strength is presented. The test geometry, consisting of a symmetric pair of opposing sharp fins at angle of attack, alpha, mounted to a flat plate, is studied experimentally for a range of alpha from 7 to 15 degrees at Mach numbers of 3 and 4. Results reveal that the basic flowfield shock structure remains similar in nature over the range of interaction strengths examined, with the only changes being in the scale and location of the various features present. The separated flow regions are classified as being either completely or partially separated, the completely separated case being the one in which the entire incoming boundary layer separates from the plate surface. For the current experiments, all but the weakest of the interactions exhibited complete boundary layer separation. Finally, the effects of model geometry are analyzed by comparing data for shock generators of varying lengths, with the results showing no evidence of upstream influence due to the shock generator trailing edges.

  12. Squirmer dynamics near a boundary

    NASA Astrophysics Data System (ADS)

    Ishimoto, Kenta; Gaffney, Eamonn A.

    2013-12-01

    The boundary behavior of axisymmetric microswimming squirmers is theoretically explored within an inertialess Newtonian fluid for a no-slip interface and also a free surface in the small capillary number limit, preventing leading-order surface deformation. Such squirmers are commonly presented as abridged models of ciliates, colonial algae, and Janus particles and we investigate the case of low-mode axisymmetric tangential surface deformations with, in addition, the consideration of a rotlet dipole to represent torque-motor swimmers such as flagellated bacteria. The resulting boundary dynamics reduces to a phase plane in the angle of attack and distance from the boundary, with a simplifying time-reversal duality. Stable swimming adjacent to a no-slip boundary is demonstrated via the presence of stable fixed points and, more generally, all types of fixed points as well as stable and unstable limit cycles occur adjacent to a no-slip boundary with variations in the tangential deformations. Nonetheless, there are constraints on swimmer behavior—for instance, swimmers characterized as pushers are never observed to exhibit stable limit cycles. All such generalities for no-slip boundaries are consistent with observations and more geometrically faithful simulations to date, suggesting the tangential squirmer is a relatively simple framework to enable predications and classifications for the complexities associated with axisymmetric boundary swimming. However, in the presence of a free surface, with asymptotically small capillary number, and thus negligible leading-order surface deformation, no stable surface swimming is predicted across the parameter space considered. While this is in contrast to experimental observations, for example, the free-surface accumulation of sterlet sperm, extensive surfactants are present, most likely invalidating the low capillary number assumption. In turn, this suggests the necessity of surface deformation for stable free-surface three

  13. Turbulent oceanic western-boundary layers at low latitude

    NASA Astrophysics Data System (ADS)

    Quam Cyrille Akuetevi, Cataria; Wirth, Achim

    2013-04-01

    Low latitude oceanic western-boundary layers range within the most turbulent regions in the worlds ocean. The Somali current system with the Great Whirl and the Brazilian current system with its eddy shedding are the most prominent examples. Results from analytical calculations and integration of a one layer reduced-gravity fine resolution shallow water model is used to entangle this turbulent dynamics. Two types of wind-forcing are applied: a remote Trade wind forcing with maximum shear along the equator and a local Monsoon wind forcing with maximum shear in the vicinity of the boundary. For high values of the viscosity (> 1000m2s-1) the stationary solutions compare well to analytical predictions using Munk and inertial layer theory. When lowering the friction parameter time dependence results. The onset of instability is strongly influenced by inertial effects. The unstable boundary current proceeds as a succession of anti-cyclonic coherent eddies performing a chaotic dynamics in a turbulent flow. The dynamics is governed by the turbulent fluxes of mass and momentum. We determine these fluxes by analyzing the (potential) vorticity dynamics. We demonstrate that the boundary-layer can be separated in four sub-layers, which are (starting from the boundary): (1) the viscous sub-layer (2) the turbulent buffer-layer (3) the layer containing the coherent structures and (4) the extended boundary layer. The characteristics of each sub-layer and the corresponding turbulent fluxes are determined, as are the dependence on latitude and the type of forcing. A new pragmatic method of determining the eddy viscosity, based on Munk-layer theory, is proposed. Results are compared to observations and solutions of the multi-level primitive equation model (DRAKKAR).

  14. Secondary traumatization of partners of war veterans: The role of boundary ambiguity.

    PubMed

    Dekel, Rachel; Levinstein, Yoav; Siegel, Alana; Fridkin, Shimon; Svetlitzky, Vlad

    2016-02-01

    The existing literature has shown that war veterans' posttraumatic stress disorder (PTSD) symptoms are associated with a higher level of distress in their female partners. However, less agreement exists regarding the sources of this distress and the mechanism by which this process occurs. The current study examined the consequences of Israeli war veterans' PTSD on their female partners, as manifested by the females' PTSD symptoms, mental health status, and functioning, while taking into account females' earlier traumatic events. Using the theory of ambiguous loss, it also suggested boundary ambiguity as a mediating variable by which the PTSD of the male veteran is transmitted to his female partner. Participants were 300 men who had served in the 2006 Israel-Lebanon War and their female partners. Results revealed direct associations between males' PTSD and their female partners' PTSD, functioning, and mental health. In addition, boundary ambiguity mediated the association between males' PTSD and females' adjustment. Finally, females' own earlier traumatic events were directly associated with their own PTSD symptoms. Implications of this model for intervention and research are further discussed.

  15. General Boundary-Value Problems for the Heat Conduction Equation with Piecewise-Continuous Coefficients

    NASA Astrophysics Data System (ADS)

    Tatsii, R. M.; Pazen, O. Yu.

    2016-03-01

    A constructive scheme for the construction of a solution of a mixed problem for the heat conduction equation with piecewise-continuous coefficients coordinate-dependent in the final interval is suggested and validated in the present work. The boundary conditions are assumed to be most general. The scheme is based on: the reduction method, the concept of quasi-derivatives, the currently accepted theory of the systems of linear differential equations, the Fourier method, and the modified method of eigenfunctions. The method based on this scheme should be related to direct exact methods of solving mixed problems that do not employ the procedures of constructing Green's functions or integral transformations. Here the theorem of eigenfunction expansion is adapted for the case of coefficients that have discontinuity points of the 1st kind. The results obtained can be used, for example, in investigating the process of heat transfer in a multilayer slab under conditions of ideal thermal contact between the layers. A particular case of piecewise-continuous coefficients is considered. A numerical example of calculation of a temperature field in a real four-layer building slab under boundary conditions of the 3rd kind (conditions of convective heat transfer) that model the phenomenon of fire near one of the external surfaces is given.

  16. Numerical Prediction of the Hypersonic Boundary-Layer Over a Row of Microcavities

    NASA Astrophysics Data System (ADS)

    Theofilis, Vassilios

    2002-09-01

    This report results from tasking Nu-Modeling, Inc. as follows: the contractor will perform detailed numerical predictions of the flowfield in the neighborhood of the microcavities that are embedded in wall-coatings. The key deliverable of the proposed work will be the ability to put forward an improved integral condition to replace what is used in the current theoretical approach. This will be determined numerically at each of the parameters of the problem. The numerical effort required for the solution of the problem at a single value of each of the parameters involved limits to subset of the (M, Re, m, d, d/D, d/ s) parameter space that can be investigated within the available year. It is intended to approximate existing analytic results of Fedorov first, at a single set of parameters, by imposing his pressure boundary condition at the lips of the microcavities (i.e. taking D=0). The effect of nonzero values of this parameter will then be examined, keeping all other parameters in the problem constant. Subsequently, the effect of d, and 5 will be investigated, at constant D and 2(d+s). In all D1 0 cases to be studied, integral boundary conditions will be provided to the parties involved in the project. Progress of the proposed research will be monitored by means of one intermediate and one final report.

  17. Projected current density comparison in tDCS block and smooth FE modeling.

    PubMed

    Indahlastari, Aprinda; Chauhan, Munish; Sadleir, Rosalind J

    2016-08-01

    Current density distribution and projected current density calculation following transcranial direct current stimulation (tDCS) forward model in a human head were compared between two modeling pipelines: block and smooth. Block model was directly constructed from MRI voxel resolution and simulated in C. Smooth models underwent a boundary smoothing process by applying recursive Gaussian filters and simulated in COMSOL. Three smoothing levels were added to determine their effects on current density distribution compared to block models. Median current density percentage differences were calculated in anterior superior temporal gyrus (ASTG), hippocampus (HIP), inferior frontal gyrus (IFG), occipital lobes (OCC) and precentral gyrus (PRC) and normalized against a baseline value. A maximum of + 20% difference in median current density was found for three standard electrode montages: F3-RS, T7-T8 and Cz-Oz. Furthermore, median current density percentage differences in each montage target brain structures were found to be within + 7%. Higher levels of smoothing increased median current density percentage differences in T7-T8 and Cz-Oz target structures. However, while demonstrating similar trends in each montage, additional smoothing levels showed no clear relationship between their smoothing effects and calculated median current density in the five cortical structures. Finally, relative L2 error in reconstructed projected current density was found to be 17% and 21% for block and smooth pipelines, respectively. Overall, a block model workflow may be a more attractive alternative for simulating tDCS stimulation because involves a shorter modeling time and independence from commercial modeling platforms.

  18. SUSTAINABILITY. Comment on "Planetary boundaries: Guiding human development on a changing planet".

    PubMed

    Jaramillo, Fernando; Destouni, Georgia

    2015-06-12

    Steffen et al. (Research Articles, 13 February 2015, p. 736) recently assessed current global freshwater use, finding it to be well below a corresponding planetary boundary. However, they ignored recent scientific advances implying that the global consumptive use of freshwater may have already crossed the associated planetary boundary.

  19. Moonshot Panel Moving Toward Final Report

    Cancer.gov

    An NCI Cancer Currents blog from acting NCI Director Dr. Doug Lowy providing an update on the activities of the National Cancer Moonshot Initiative’s Blue Ribbon Panel and its work to develop a final report.

  20. Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Anderson, Brian P.; King, Rudolph A.; Kegerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.

    2010-01-01

    Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon similar correlation techniques that have been is use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. Recent entry flight testing performed with the Orbiter Discovery now provides a means to validate this engineering correlation approach to higher confidence. These results only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, and to discuss the characteristics which are desirable in a next generation advancement. The details of the paper will review the experimental facilities and techniques that were utilized to perform the implementation of the Orbiter RTF BLT Vsn 2 prediction capability. Statistically significant results for multiple engineering correlations from a ground testing campaign will be reviewed in order to describe why only

  1. Plasma dynamics on current-carrying magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.

  2. Large Deviations in Weakly Interacting Boundary Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    van Wijland, Frédéric; Rácz, Zoltán

    2005-01-01

    One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.

  3. Crossing turbulent boundaries: interfacial flux in environmental flows.

    PubMed

    Grant, Stanley B; Marusic, Ivan

    2011-09-01

    Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems.

  4. Current water quality in Cook Inlet, Alaska, study. Final report

    SciTech Connect

    Segar, D.A.

    1995-03-01

    The University of Alaska Anchorage`s Environment and Natural Resources Institue conducted a 1993 field investigation to establish a baseline of information on the occurrence of petroleum hydrocarbons, naturally occuring radioactive materials, and trace metals in Cook Inlet, Alaska. The sampling and analyses included trace metals and hydrocarbons in water, biota, and sediments; sediment grain size; carbon-hydrogen-nitrogen in sediments; naturally occurring radioactive materials in mollusc shells; total suspended solids and suspended sediment trace metals in water; hydrgraphy; and water and sediment bioassays.

  5. Diamagnetic boundary layers - A kinetic theory. [for collisionless magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Lemaire, J.; Burlaga, L. F.

    1976-01-01

    A kinetic theory is presented for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma, such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers in which the current is carried by protons are discussed; in particular, cases are considered in which the magnetic-field intensity, direction, or both, changed across the layer. In every case, the thickness was of the order of a few proton gyroradii, and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. These results are consistent with observations of boundary layers in the solar wind near 1 AU.

  6. Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary.

    PubMed

    Cotter, Daniel J; Brotman, Sarah M; Wilson Sayres, Melissa A

    2016-05-01

    Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the nonrecombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the nonrecombining regions, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in PAR2 is not significantly elevated compared to the nonPARs, suggesting that recombination is not obligatory in PAR2. Finally, diversity in the X-transposed region is higher than in the surrounding nonPARs, providing evidence that recombination may occur with some frequency between the X and Y chromosomes in the X-transposed region.

  7. Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary

    PubMed Central

    Cotter, Daniel J.; Brotman, Sarah M.

    2016-01-01

    Unlike the autosomes, recombination between the X chromosome and the Y chromosome is often thought to be constrained to two small pseudoautosomal regions (PARs) at the tips of each sex chromosome. PAR1 spans the first 2.7 Mb of the proximal arm of the human sex chromosomes, whereas the much smaller PAR2 encompasses the distal 320 kb of the long arm of each sex chromosome. In addition to PAR1 and PAR2, there is a human-specific X-transposed region that was duplicated from the X to the Y chromosome. The X-transposed region is often not excluded from X-specific analyses, unlike the PARs, because it is not thought to routinely recombine. Genetic diversity is expected to be higher in recombining regions than in nonrecombining regions because recombination reduces the effect of linked selection. In this study, we investigated patterns of genetic diversity in noncoding regions across the entire X chromosome of a global sample of 26 unrelated genetic females. We found that genetic diversity in PAR1 is significantly greater than in the nonrecombining regions (nonPARs). However, rather than an abrupt drop in diversity at the pseudoautosomal boundary, there is a gradual reduction in diversity from the recombining through the nonrecombining regions, suggesting that recombination between the human sex chromosomes spans across the currently defined pseudoautosomal boundary. A consequence of recombination spanning this boundary potentially includes increasing the rate of sex-linked disorders (e.g., de la Chapelle) and sex chromosome aneuploidies. In contrast, diversity in PAR2 is not significantly elevated compared to the nonPARs, suggesting that recombination is not obligatory in PAR2. Finally, diversity in the X-transposed region is higher than in the surrounding nonPARs, providing evidence that recombination may occur with some frequency between the X and Y chromosomes in the X-transposed region. PMID:27010023

  8. Flow Characteristics and Basal Boundary Condition for Daugaard-Jensen Gletscher, East Greenland

    NASA Astrophysics Data System (ADS)

    Perry, Thomas; Christoffersen, Poul; Dowdeswell, Julian; Palmer, Steven; Young, Duncan

    2014-05-01

    The recent acceleration of mass loss from the Greenland Ice Sheet can in part be attributed to the dynamic thinning and acceleration of its tidewater outlet glaciers. Many of these glaciers have been shown to exhibit sensitivity to conditions at their marine termini, where warm ocean currents promote ice front melting and retreat. However, these currents are confined to a northerly extent of 69N, and whilst remarkable change is seen to the south of this latitude, glaciers to the north are considerably more stable in terms of terminus position. Different environmental variables may thus control the flow characteristics of glaciers north of this well-defined geographical boundary. During 2011, high-resolution ice data was collected for Daugaard-Jensen Gletscher (71N) as part of the Greenland Outlet Glacier Geophysics (GrOGG) project. Remote sensing has confirmed its stability but few, if any, have applied an ice flow model to examine its ice dynamics in more detail. Here, the numerical Elmer-ICE model is applied to a new bed DEM in order to analyse flow characteristics and basal boundary conditions for Daugaard-Jensen Gletscher. The bed elevation of the inland part of the catchment was derived from Operation Icebridge and GrOGG ice thickness data, whilst the main glacier trunk was inferred through mass conservation calculations at a resolution of 100 m using TerraSAR-X velocity data. The latter was also used for 3D inverse modelling with Elmer-ICE, to analyse basal boundary conditions such as basal traction, sliding speed, frictional heating, and the basal melt rate. This is critical in accurately reproducing velocities and flow characteristics for the glacier, which is not always successful with a simple parameterisation in pure forward modelling. The new DEM offers considerable improvements in vertical accuracy and horizontal resolution compared to previous bed datasets created at the ice-sheet scale. Preliminary results indicate that two deep channels within the

  9. Grain Boundaries in the Cuprate Superconductors: Tapes and Tunneling Spectroscopy

    SciTech Connect

    Shim, H.; Chaudhari, P.

    2010-03-01

    Grain boundaries in the high temperature superconducting cuprates have played a central role in their development for practical applications and in the fundamental understanding of the nature of superconductivity in these materials. Tapes for energy use, SQUIDS, symmetry of the wavefunction, Qbits, applications related to the AC Josephson effect, and tunneling spectroscopy are some areas of current research. In this brief paper, the authors first summarize what we know about what limits the critical current densities of tapes and suggest a few experiments to further understand these limits to critical current densities and, secondly, discuss the use of grain boundary for carrying out tunneling spectroscopy in optimally doped La{sub 1.84}Sr{sub 0.16}CuO{sub 4} (LSCO). This includes new data and comparisons with theory and experiments. The background material and review were presented at the EUCAS 09 conference in Dresden as one of the plenary talks and are available from the authors.

  10. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    SciTech Connect

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  11. Absorbing boundary conditions for exterior problems

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    Elliptic and hyperbolic problems in unbounded regions are considered. These problems, when one wants to solve them numerically, have the difficulty of prescribing boundary conditions at infinity. Computationally, one needs a finite region in which to solve these problems. The corresponding conditions at infinity imposed on the finite distance boundaries should dictate the boundary condition at infinity and be accurate with respect to the interior numerical scheme. Such boundary conditions are commonly referred to as absorbing boundary conditions. A treatment is given of these boundary conditions for wave-like equations.

  12. Quantum "violation" of Dirichlet boundary condition

    NASA Astrophysics Data System (ADS)

    Park, I. Y.

    2017-02-01

    Dirichlet boundary conditions have been widely used in general relativity. They seem at odds with the holographic property of gravity simply because a boundary configuration can be varying and dynamic instead of dying out as required by the conditions. In this work we report what should be a tension between the Dirichlet boundary conditions and quantum gravitational effects, and show that a quantum-corrected black hole solution of the 1PI action no longer obeys, in the naive manner one may expect, the Dirichlet boundary conditions imposed at the classical level. We attribute the 'violation' of the Dirichlet boundary conditions to a certain mechanism of the information storage on the boundary.

  13. Current titles

    SciTech Connect

    1995-07-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Gretchen Hermes at (510) 486-5006 or address below for a User`s Guide. Copies of available papers can be ordered from: Theda Crawford National Center for Electron Microscopy, Lawrence Berkeley Laboratory, One Cyclotron Rd., MS72, Berkeley, California, USA 94720.

  14. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  15. On Supersonic-Inlet Boundary-Layer Bleed Flow

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Smith, Gregory E.

    1995-01-01

    Boundary-layer bleed in supersonic inlets is typically used to avoid separation from adverse shock-wave/boundary-layer interactions and subsequent total pressure losses in the subsonic diffuser and to improve normal shock stability. Methodologies used to determine bleed requirements are reviewed. Empirical sonic flow coefficients are currently used to determine the bleed hole pattern. These coefficients depend on local Mach number, pressure ratio, hole geometry, etc. A new analytical bleed method is presented to compute sonic flow coefficients for holes and narrow slots and predictions are compared with published data to illustrate the accuracy of the model. The model can be used by inlet designers and as a bleed boundary condition for computational fluid dynamic studies.

  16. Anomalous plasma diffusion and the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond

    1992-01-01

    An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.

  17. Final Technical Report

    SciTech Connect

    Schuur, Edward; Luo, Yiqi

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  18. Final Technical Report

    SciTech Connect

    Alexander Fridman

    2005-06-01

    This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental control business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.

  19. Boundary Preserving Dense Local Regions.

    PubMed

    Kim, Jaechul; Grauman, Kristen

    2015-05-01

    We propose a dense local region detector to extract features suitable for image matching and object recognition tasks. Whereas traditional local interest operators rely on repeatable structures that often cross object boundaries (e.g., corners, scale-space blobs), our sampling strategy is driven by segmentation, and thus preserves object boundaries and shape. At the same time, whereas existing region-based representations are sensitive to segmentation parameters and object deformations, our novel approach to robustly sample dense sites and determine their connectivity offers better repeatability. In extensive experiments, we find that the proposed region detector provides significantly better repeatability and localization accuracy for object matching compared to an array of existing feature detectors. In addition, we show our regions lead to excellent results on two benchmark tasks that require good feature matching: weakly supervised foreground discovery and nearest neighbor-based object recognition.

  20. Grain boundary loops in graphene

    NASA Astrophysics Data System (ADS)

    Cockayne, Eric; Rutter, Gregory M.; Guisinger, Nathan P.; Crain, Jason N.; First, Phillip N.; Stroscio, Joseph A.

    2011-05-01

    Topological defects can affect the physical properties of graphene in unexpected ways. Harnessing their influence may lead to enhanced control of both material strength and electrical properties. Here we present a class of topological defects in graphene composed of a rotating sequence of dislocations that close on themselves, forming grain boundary loops that either conserve the number of atoms in the hexagonal lattice or accommodate vacancy or interstitial reconstruction, while leaving no unsatisfied bonds. One grain boundary loop is observed as a “flower” pattern in scanning tunneling microscopy studies of epitaxial graphene grown on SiC(0001). We show that the flower defect has the lowest energy per dislocation core of any known topological defect in graphene, providing a natural explanation for its growth via the coalescence of mobile dislocations.