Sample records for boundary integral modeling

  1. How to fold a spin chain: Integrable boundaries of the Heisenberg XXX and Inozemtsev hyperbolic models

    NASA Astrophysics Data System (ADS)

    De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas

    2017-04-01

    We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.

  2. Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS

    DTIC Science & Technology

    2006-09-30

    model integrated with mesoscale meterological data to study marine boundary layer aerosol dynamics, J. Geophys. Res., in press, 2006. Hoppel, W. A...W.A. Hoppel, J.J. Shi: A one-dimensional sectional aerosol model integrated with mesoscale meterological data to study marine boundary layer aerosol

  3. A finite element-boundary integral method for cavities in a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.

  4. Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

    PubMed Central

    Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.

    2013-01-01

    We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561

  5. Finite-volume spectra of the Lee-Yang model

    NASA Astrophysics Data System (ADS)

    Bajnok, Zoltan; el Deeb, Omar; Pearce, Paul A.

    2015-04-01

    We consider the non-unitary Lee-Yang minimal model in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels ( r, s) = (1 , 1) , (1 , 2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ 1,3 integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ1,3 integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A 4 RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of ( m, n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.

  6. Salient object detection based on discriminative boundary and multiple cues integration

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzhu; Wu, Zemin; Tian, Chang; Liu, Tao; Zeng, Mingyong; Hu, Lei

    2016-01-01

    In recent years, many saliency models have achieved good performance by taking the image boundary as the background prior. However, if all boundaries of an image are equally and artificially selected as background, misjudgment may happen when the object touches the boundary. We propose an algorithm called weighted contrast optimization based on discriminative boundary (wCODB). First, a background estimation model is reliably constructed through discriminating each boundary via Hausdorff distance. Second, the background-only weighted contrast is improved by fore-background weighted contrast, which is optimized through weight-adjustable optimization framework. Then to objectively estimate the quality of a saliency map, a simple but effective metric called spatial distribution of saliency map and mean saliency in covered window ratio (MSR) is designed. Finally, in order to further promote the detection result using MSR as the weight, we propose a saliency fusion framework to integrate three other cues-uniqueness, distribution, and coherence from three representative methods into our wCODB model. Extensive experiments on six public datasets demonstrate that our wCODB performs favorably against most of the methods based on boundary, and the integrated result outperforms all state-of-the-art methods.

  7. The NURBS curves in modelling the shape of the boundary in the parametric integral equations systems for solving the Laplace equation

    NASA Astrophysics Data System (ADS)

    Zieniuk, Eugeniusz; Kapturczak, Marta; Sawicki, Dominik

    2016-06-01

    In solving of boundary value problems the shapes of the boundary can be modelled by the curves widely used in computer graphics. In parametric integral equations system (PIES) such curves are directly included into the mathematical formalism. Its simplify the way of definition and modification of the shape of the boundary. Until now in PIES the B-spline, Bézier and Hermite curves were used. Recent developments in the computer graphics paid our attention, therefore we implemented in PIES possibility of defining the shape of boundary using the NURBS curves. The curves will allow us to modeling different shapes more precisely. In this paper we will compare PIES solutions (with applied NURBS) with the solutions existing in the literature.

  8. On integrable boundaries in the 2 dimensional O(N) σ-models

    NASA Astrophysics Data System (ADS)

    Aniceto, Inês; Bajnok, Zoltán; Gombor, Tamás; Kim, Minkyoo; Palla, László

    2017-09-01

    We make an attempt to map the integrable boundary conditions for 2 dimensional non-linear O(N) σ-models. We do it at various levels: classically, by demanding the existence of infinitely many conserved local charges and also by constructing the double row transfer matrix from the Lax connection, which leads to the spectral curve formulation of the problem; at the quantum level, we describe the solutions of the boundary Yang-Baxter equation and derive the Bethe-Yang equations. We then show how to connect the thermodynamic limit of the boundary Bethe-Yang equations to the spectral curve.

  9. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  10. Perceptions of boundary ambiguity in the process of leaving an abusive partner.

    PubMed

    Khaw, Lyndal; Hardesty, Jennifer L

    2015-06-01

    The process of leaving an abusive partner has been theorized using the Stages of Change Model. Although useful, this model does not account for changes in relational boundaries unique to the process of leaving. Using family stress and feminist perspectives, this study sought to integrate boundary ambiguity into the Stages of Change Model. Boundary ambiguity is defined as a perception of uncertainty as to who is in or out of a family system (Boss & Greenberg, 1984). Twenty-five mothers who had temporarily or permanently left their abusers were interviewed. Data were analyzed using constructivist grounded theory methods. Results identify types, indicators of, and mothers' responses to boundary ambiguity throughout the five stages of change. Most mothers and abusers fluctuated between physical and psychological presence and absence over multiple separations. The integration of boundary ambiguity into the Stages of Change Model highlights the process of leaving an abusive partner as systemic, fluid, and nonlinear. © 2014 Family Process Institute.

  11. Boundary layer integral matrix procedure: Verification of models

    NASA Technical Reports Server (NTRS)

    Bonnett, W. S.; Evans, R. M.

    1977-01-01

    The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.

  12. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.

    PubMed

    Bardhan, Jaydeep P

    2008-10-14

    The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement is obtained in only a few iterations. The boundary-integral-equation framework may also provide a means to derive rigorous results explaining how the empirical correction terms in many modern GB models significantly improve accuracy despite their simple analytical forms.

  13. A model for the estimation of the surface fluxes of momentum, heat and moisture of the cloud topped marine atmospheric boundary layer from satellite measurable parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Allison, D. E.

    1984-01-01

    A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.

  14. Numerical solution of boundary-integral equations for molecular electrostatics.

    PubMed

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  15. Sub-optimal control of unsteady boundary layer separation and optimal control of Saltzman-Lorenz model

    NASA Astrophysics Data System (ADS)

    Sardesai, Chetan R.

    The primary objective of this research is to explore the application of optimal control theory in nonlinear, unsteady, fluid dynamical settings. Two problems are considered: (1) control of unsteady boundary-layer separation, and (2) control of the Saltzman-Lorenz model. The unsteady boundary-layer equations are nonlinear partial differential equations that govern the eruptive events that arise when an adverse pressure gradient acts on a boundary layer at high Reynolds numbers. The Saltzman-Lorenz model consists of a coupled set of three nonlinear ordinary differential equations that govern the time-dependent coefficients in truncated Fourier expansions of Rayleigh-Renard convection and exhibit deterministic chaos. Variational methods are used to derive the nonlinear optimal control formulations based on cost functionals that define the control objective through a performance measure and a penalty function that penalizes the cost of control. The resulting formulation consists of the nonlinear state equations, which must be integrated forward in time, and the nonlinear control (adjoint) equations, which are integrated backward in time. Such coupled forward-backward time integrations are computationally demanding; therefore, the full optimal control problem for the Saltzman-Lorenz model is carried out, while the more complex unsteady boundary-layer case is solved using a sub-optimal approach. The latter is a quasi-steady technique in which the unsteady boundary-layer equations are integrated forward in time, and the steady control equation is solved at each time step. Both sub-optimal control of the unsteady boundary-layer equations and optimal control of the Saltzman-Lorenz model are found to be successful in meeting the control objectives for each problem. In the case of boundary-layer separation, the control results indicate that it is necessary to eliminate the recirculation region that is a precursor to the unsteady boundary-layer eruptions. In the case of the Saltzman-Lorenz model, it is possible to control the system about either of the two unstable equilibrium points representing clockwise and counterclockwise rotation of the convection roles in a parameter regime for which the uncontrolled solution would exhibit deterministic chaos.

  16. Response of a partially penetrating well in a heterogeneous aquifer: integrated well-face flux vs. uniform well-face flux boundary conditions

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Kabala, Z. J.

    1997-07-01

    A two-dimensional integrated well-face flux (IWFF) model is developed for computing the drawdown at the well-face and around a fully or partially penetrating well with wellbore storage, situated in a layered confined aquifer. In this model, we calculate drawdown and well-face flux distributions by numerically solving a two-dimensional diffusion equation in cylindrical coordinates subject to appropriate initial and boundary conditions and to the well-face boundary constraint of an integrated well-face flux rather than the physically inconsistent uniform well-face flux boundary condition (the UWFF model). The differences between the IWFF and UWFF models in a partially penetrating well situated in a homogeneous isotropic aquifer are insignificant for wellbore drawdown (less than 3%) but are pronounced for the well-face flux. In fact, the latter strongly deviates from uniformity as the ratio of the screen length to the aquifer thickness decreases. For partially penetrating wells situated in multilayer aquifers, significant differences between the two models may arise, especially if the screen is not located in the most conductive layer. These differences depend on the hydraulic conductivity contrast of the adjacent layers. Consequently, the uniform well-face flux boundary condition should be used with extreme caution.

  17. Evaluating Models Of The Neutral, Barotropic Planetary Boundary Layer Using Integral Measures: Part Ii. Modelling Observed Conditions

    NASA Astrophysics Data System (ADS)

    Hess, G. D.; Garratt, J. R.

    The steady-state, horizontally homogeneous, neutral, barotropiccase forms the foundation of our theoretical understanding of the planetary boundary layer (PBL).While simple analytical models and first-order closure models simulate atmospheric observationsof this case well, more sophisticated models, in general, do not. In this paperwe examine how well three higher-order closure models, E - - l, E - l, and LRR - l,which have been especially modified for PBL applications, perform in predicting the behaviour of thecross-isobaric angle 0, the geostrophic drag coefficient Cg, and the integral of the dissipationrate over the boundary layer, as a function of the surface Rossby number Ro. For comparison we alsoexamine the performance of three first-order closure mixing-length models, two proposed byA. K. Blackadar and one by H. H. Lettau, and the performance of the standard model forsecond-order closure and a modification of it designed to reduce the overprediction of turbulence inthe upper part of the boundary layer.

  18. Three-dimensional analysis of chevron-notched specimens by boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L.

    1983-01-01

    The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.

  19. Hierarchical matrices implemented into the boundary integral approaches for gravity field modelling

    NASA Astrophysics Data System (ADS)

    Čunderlík, Róbert; Vipiana, Francesca

    2017-04-01

    Boundary integral approaches applied for gravity field modelling have been recently developed to solve the geodetic boundary value problems numerically, or to process satellite observations, e.g. from the GOCE satellite mission. In order to obtain numerical solutions of "cm-level" accuracy, such approaches require very refined level of the disretization or resolution. This leads to enormous memory requirements that need to be reduced. An implementation of the Hierarchical Matrices (H-matrices) can significantly reduce a numerical complexity of these approaches. A main idea of the H-matrices is based on an approximation of the entire system matrix that is split into a family of submatrices. Large submatrices are stored in factorized representation, while small submatrices are stored in standard representation. This allows reducing memory requirements significantly while improving the efficiency. The poster presents our preliminary results of implementations of the H-matrices into the existing boundary integral approaches based on the boundary element method or the method of fundamental solution.

  20. ALGORITHM TO REDUCE APPROXIMATION ERROR FROM THE COMPLEX-VARIABLE BOUNDARY-ELEMENT METHOD APPLIED TO SOIL FREEZING.

    USGS Publications Warehouse

    Hromadka, T.V.; Guymon, G.L.

    1985-01-01

    An algorithm is presented for the numerical solution of the Laplace equation boundary-value problem, which is assumed to apply to soil freezing or thawing. The Laplace equation is numerically approximated by the complex-variable boundary-element method. The algorithm aids in reducing integrated relative error by providing a true measure of modeling error along the solution domain boundary. This measure of error can be used to select locations for adding, removing, or relocating nodal points on the boundary or to provide bounds for the integrated relative error of unknown nodal variable values along the boundary.

  1. The Effects of Evidence Bounds on Decision-Making: Theoretical and Empirical Developments

    PubMed Central

    Zhang, Jiaxiang

    2012-01-01

    Converging findings from behavioral, neurophysiological, and neuroimaging studies suggest an integration-to-boundary mechanism governing decision formation and choice selection. This mechanism is supported by sequential sampling models of choice decisions, which can implement statistically optimal decision strategies for selecting between multiple alternative options on the basis of sensory evidence. This review focuses on recent developments in understanding the evidence boundary, an important component of decision-making raised by experimental findings and models. The article starts by reviewing the neurobiology of perceptual decisions and several influential sequential sampling models, in particular the drift-diffusion model, the Ornstein–Uhlenbeck model and the leaky-competing-accumulator model. In the second part, the article examines how the boundary may affect a model’s dynamics and performance and to what extent it may improve a model’s fits to experimental data. In the third part, the article examines recent findings that support the presence and site of boundaries in the brain. The article considers two questions: (1) whether the boundary is a spontaneous property of neural integrators, or is controlled by dedicated neural circuits; (2) if the boundary is variable, what could be the driving factors behind boundary changes? The review brings together studies using different experimental methods in seeking answers to these questions, highlights psychological and physiological factors that may be associated with the boundary and its changes, and further considers the evidence boundary as a generic mechanism to guide complex behavior. PMID:22870070

  2. Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Eliëns, I. S.; Ramos, F. B.; Xavier, J. C.; Pereira, R. G.

    2016-05-01

    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-S chains with S =1 /2 , 1, and 3 /2 .

  3. Boundary-integral modeling of cochlear hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2008-04-01

    A two-dimensional model that captures the essential features of the vibration of the basilar membrane of the cochlea is proposed. The flow due to the vibration of the stapes footplate and round window is modeled by a point source and a point sink, and the cochlear pressure is computed simultaneously with the oscillations of the basilar membrane. The mathematical formulation relies on the boundary-integral representation of the potential flow established far from the basilar membrane and cochlea side walls, neglecting the thin Stokes boundary layer lining these surfaces. The boundary-integral approach furnishes integral equations for the membrane vibration amplitude and pressure distribution on the upper or lower side of the membrane. Several approaches are discussed, and numerical solutions in the frequency domain are presented for a rectangular cochlea model using different membrane response functions. The numerical results reproduce and extend the theoretical predictions of previous authors and delineate the effect of physical and geometrical parameters. It is found that the membrane vibration depends weakly on the position of the membrane between the upper and lower wall of the cochlear channel and on the precise location of the oval and round windows. Solutions of the initial-value problem with a single-period sinusoidal impulse reveal the formation of a traveling wave packet that eventually disappears at the helicotrema.

  4. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  5. A finite element: Boundary integral method for electromagnetic scattering. Ph.D. Thesis Technical Report, Feb. - Sep. 1992

    NASA Technical Reports Server (NTRS)

    Collins, J. D.; Volakis, John L.

    1992-01-01

    A method that combines the finite element and boundary integral techniques for the numerical solution of electromagnetic scattering problems is presented. The finite element method is well known for requiring a low order storage and for its capability to model inhomogeneous structures. Of particular emphasis in this work is the reduction of the storage requirement by terminating the finite element mesh on a boundary in a fashion which renders the boundary integrals in convolutional form. The fast Fourier transform is then used to evaluate these integrals in a conjugate gradient solver, without a need to generate the actual matrix. This method has a marked advantage over traditional integral equation approaches with respect to the storage requirement of highly inhomogeneous structures. Rectangular, circular, and ogival mesh termination boundaries are examined for two-dimensional scattering. In the case of axially symmetric structures, the boundary integral matrix storage is reduced by exploiting matrix symmetries and solving the resulting system via the conjugate gradient method. In each case several results are presented for various scatterers aimed at validating the method and providing an assessment of its capabilities. Important in methods incorporating boundary integral equations is the issue of internal resonance. A method is implemented for their removal, and is shown to be effective in the two-dimensional and three-dimensional applications.

  6. Boundary element modelling of dynamic behavior of piecewise homogeneous anisotropic elastic solids

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Litvinchuk, S. Yu

    2018-04-01

    A traditional direct boundary integral equations method is applied to solve three-dimensional dynamic problems of piecewise homogeneous linear elastic solids. The materials of homogeneous parts are considered to be generally anisotropic. The technique used to solve the boundary integral equations is based on the boundary element method applied together with the Radau IIA convolution quadrature method. A numerical example of suddenly loaded 3D prismatic rod consisting of two subdomains with different anisotropic elastic properties is presented to verify the accuracy of the proposed formulation.

  7. A Real-Time Method for Estimating Viscous Forebody Drag Coefficients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.

    2000-01-01

    This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.

  8. Boundary-element modelling of dynamics in external poroviscoelastic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Litvinchuk, S. Yu; Ipatov, A. A.; Petrov, A. N.

    2018-04-01

    A problem of a spherical cavity in porous media is considered. Porous media are assumed to be isotropic poroelastic or isotropic poroviscoelastic. The poroviscoelastic formulation is treated as a combination of Biot’s theory of poroelasticity and elastic-viscoelastic correspondence principle. Such viscoelastic models as Kelvin–Voigt, Standard linear solid, and a model with weakly singular kernel are considered. Boundary field study is employed with the help of the boundary element method. The direct approach is applied. The numerical scheme is based on the collocation method, regularized boundary integral equation, and Radau stepped scheme.

  9. What is an integrable quench?

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Pozsgay, Balázs; Vernier, Eric

    2017-12-01

    Inspired by classical results in integrable boundary quantum field theory, we propose a definition of integrable initial states for quantum quenches in lattice models. They are defined as the states which are annihilated by all local conserved charges that are odd under space reflection. We show that this class includes the states which can be related to integrable boundary conditions in an appropriate rotated channel, in loose analogy with the picture in quantum field theory. Furthermore, we provide an efficient method to test integrability of given initial states. We revisit the recent literature of global quenches in several models and show that, in all of the cases where closed-form analytical results could be obtained, the initial state is integrable according to our definition. In the prototypical example of the XXZ spin-s chains we show that integrable states include two-site product states but also larger families of matrix product states with arbitrary bond dimension. We argue that our results could be practically useful for the study of quantum quenches in generic integrable models.

  10. A boundary integral approach in primitive variables for free surface flows

    NASA Astrophysics Data System (ADS)

    Casciola, C.; Piva, R.

    The boundary integral formulation, very efficient for free surface potential flows, was considered for its possible extension to rotational flows either inviscid or viscous. We first analyze a general formulation for unsteady Navier-Stokes equations in primitive variables, which reduces to a representation for the Euler equations in the limiting case of Reynolds infinity. A first simplified model for rotational flows, obtained by decoupling kinematics and dynamics, reduces the integral equations to a known kinematical form whose mathematical and numerical properties have been studied. The dynamics equations to complete the model are obtained for the free surface and the wake. A simple and efficient scheme for the study of the non linear evolution of the wave system and its interaction with the body wake is presented. A steady state version for the calculation of the wave resistance is also reported. A second model was proposed for the simulation of rotational separated regions, by coupling the integral equations in velocity with an integral equation for the vorticity at the body boundary. The same procedure may be extended to include the diffusion of the vorticity in the flowfield. The vortex shedding from a cylindrical body in unsteady motion is discussed, as a first application of the model.

  11. Analysis of crack propagation in roller bearings using the boundary integral equation method - A mixed-mode loading problem

    NASA Technical Reports Server (NTRS)

    Ghosn, L. J.

    1988-01-01

    Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.

  12. Switching moving boundary models for two-phase flow evaporators and condensers

    NASA Astrophysics Data System (ADS)

    Bonilla, Javier; Dormido, Sebastián; Cellier, François E.

    2015-03-01

    The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

  13. State-of-the-lagoon reports as vehicles of cross-disciplinary integration.

    PubMed

    Zaucha, Jacek; Davoudi, Simin; Slob, Adriaan; Bouma, Geiske; van Meerkerk, Ingmar; Oen, Amy Mp; Breedveld, Gijs D

    2016-10-01

    An integrative approach across disciplines is needed for sustainable lagoon and estuary management as identified by integrated coastal zone management. The ARCH research project (Architecture and roadmap to manage multiple pressures on lagoons) has taken initial steps to overcome the boundaries between disciplines and focus on cross-disciplinary integration by addressing the driving forces, challenges, and problems at various case study sites. A model was developed as a boundary-spanning activity to produce joint knowledge and understanding. The backbone of the model is formed by the interaction between the natural and human systems, including economy and governance-based subsystems. The model was used to create state-of-the-lagoon reports for 10 case study sites (lagoons and estuarine coastal areas), with a geographical distribution covering all major seas surrounding Europe. The reports functioned as boundary objects to build joint knowledge. The experiences related to the framing of the model and its subsequent implementation at the case study sites have resulted in key recommendations on how to address the challenges of cross-disciplinary work required for the proper management of complex social-ecological systems such as lagoons, estuarine areas, and other land-sea regions. Cross-disciplinary integration is initially resource intensive and time consuming; one should set aside the required resources and invest efforts at the forefront. It is crucial to create engagement among the group of researchers by focusing on a joint, appealing overall concept that will stimulate cross-sectoral thinking and focusing on the identified problems as a link between collected evidence and future management needs. Different methods for collecting evidence should be applied including both quantitative (jointly agreed indicators) and qualitative (narratives) information. Cross-disciplinary integration is facilitated by functional boundary objects. Integration offers important rewards in terms of developing a better understanding and subsequently improved management of complex social-ecological systems. Integr Environ Assess Manag 2016;12:690-700. © 2016 SETAC. © 2016 SETAC.

  14. Horses for courses: analytical tools to explore planetary boundaries

    NASA Astrophysics Data System (ADS)

    van Vuuren, D. P.; Lucas, P. L.; Häyhä, T.; Cornell, S. E.; Stafford-Smith, M.

    2015-09-01

    There is a need for further integrated research on developing a set of sustainable development objectives, based on the proposed framework of planetary boundaries indicators. The relevant research questions are divided in this paper into four key categories, related to the underlying processes and selection of key indicators, understanding the impacts of different exposure levels and influence of connections between different types of impacts, a better understanding of different response strategies and the available options to implement changes. Clearly, different categories of scientific disciplines and associated models exist that can contribute to the necessary analysis, noting that the distinctions between them are fuzzy. In the paper, we both indicate how different models relate to the four categories of questions but also how further insights can be obtained by connecting the different disciplines (without necessarily fully integrating them). Research on integration can support planetary boundary quantification in a credible way, linking human drivers and social and biophysical impacts.

  15. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.

  16. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.

  17. Preliminary Work for Modeling the Propellers of an Aircraft as a Noise Source in an Acoustic Boundary Element Analysis

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.

    1998-01-01

    An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.

  18. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.

    1991-01-01

    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported.

  19. On modeling the sound propagation through a lined duct with a modified Ingard-Myers boundary condition

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Fang, Yi; Zhao, Chao; Zhang, Xin

    2018-06-01

    A duct acoustics model is an essential component of an impedance eduction technique and its computation cost determines the impedance measurement efficiency. In this paper, a model is developed for the sound propagation through a lined duct carrying a uniform mean flow. In contrast to many existing models, the interface between the liner and the duct field is defined with a modified Ingard-Myers boundary condition that takes account of the effect of the boundary layer above the liner. A mode-matching method is used to couple the unlined and lined duct segments for the model development. For the lined duct segment, the eigenvalue problem resulted from the modified boundary condition is solved by an integration scheme which, on the one hand, allows the lined duct modes to be computed in an efficient manner, and on the other hand, orders the modes automatically. The duct acoustics model developed from the solved lined duct modes is shown to converge more rapidly than the one developed from the rigid-walled duct modes. Validation against the experiment data in the literature shows that the proposed model is able to predict more accurately the liner performance measured by the two-source method. This, however, cannot be made by a duct acoustics model associated with the conventional Ingard-Myers boundary condition. The proposed model has the potential to be integrated into an impedance eduction technique for more reliable liner measurement.

  20. Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media

    NASA Astrophysics Data System (ADS)

    Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.

    2018-02-01

    This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.

  1. The critical boundary RSOS M(3,5) model

    NASA Astrophysics Data System (ADS)

    El Deeb, O.

    2017-12-01

    We consider the critical nonunitary minimal model M(3, 5) with integrable boundaries and analyze the patterns of zeros of the eigenvalues of the transfer matrix and then determine the spectrum of the critical theory using the thermodynamic Bethe ansatz ( TBA) equations. Solving the TBA functional equation satisfied by the transfer matrices of the associated A 4 restricted solid-on-solid Forrester-Baxter lattice model in regime III in the continuum scaling limit, we derive the integral TBA equations for all excitations in the ( r, s) = (1, 1) sector and then determine their corresponding energies. We classify the excitations in terms of ( m, n) systems.

  2. Analysis of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Chamberlain, James P.; Consiglio, Maria C.

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defnes the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. Analytical techniques are used to study the properties and relationships satisfied by the models. Some of these properties are numerically quantifed using statistical methods.

  3. Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours

    NASA Astrophysics Data System (ADS)

    Romano, Giovanni; Luciano, Raimondo; Barretta, Raffaele; Diaco, Marina

    2018-02-01

    Nonlocal elasticity is addressed in terms of integral convolutions for structural models of any dimension, that is bars, beams, plates, shells and 3D continua. A characteristic feature of the treatment is the recourse to the theory of generalised functions (distributions) to provide a unified presentation of previous proposals. Local-nonlocal mixtures are also included in the analysis. Boundary effects of convolutions on bounded domains are investigated, and analytical evaluations are provided in the general case. Methods for compensation of boundary effects are compared and discussed with a comprehensive treatment. Estimates of limit behaviours for extreme values of the nonlocal parameter are shown to give helpful information on model properties, allowing for new comments on previous proposals. Strain-driven and stress-driven models are shown to emerge by swapping the mechanical role of input and output fields in the constitutive convolution, with stress-driven elastic model leading to well-posed problems. Computations of stress-driven nonlocal one-dimensional elastic models are performed to exemplify the theoretical results.

  4. Finite Difference Model of a Four-Electrode Conductivity Measurement System

    DTIC Science & Technology

    2016-05-27

    for an infinite half space with electrodes placed on the air/media boundary : 1 Less...8) The left hand side of Equation (8) can be converted to a surface integral using Green’s theorem : − � ∇ ∙ �σ���∇ϕ...adjacent to a boundary between two conductivities. The discretized solutions for each face are summed to comprise the surface integral: − � σ

  5. Simulation and Sensitivity in a Nested Modeling System for South America. Part II: GCM Boundary Forcing.

    NASA Astrophysics Data System (ADS)

    Rojas, Maisa; Seth, Anji

    2003-08-01

    of this study, the RegCM's ability to simulate circulation and rainfall observed in the two extreme seasons was demonstrated when driven at the lateral boundaries by reanalyzed forcing. Seasonal integrations with the RegCM driven by GCM ensemble-derived lateral boundary forcing demonstrate that the nested model responds well to the SST forcing, by capturing the major features of the circulation and rainfall differences between the two years. The GCM-driven model also improves upon the monthly evolution of rainfall compared with that from the GCM. However, the nested model rainfall simulations for the two seasons are degraded compared with those from the reanalyses-driven RegCM integrations. The poor location of the Atlantic intertropical convergence zone (ITCZ) in the GCM leads to excess rainfall in Nordeste in the nested model.An expanded domain was tested, wherein the RegCM was permitted more internal freedom to respond to SST and regional orographic forcing. Results show that the RegCM is able to improve the location of the ITCZ, and the seasonal evolution of rainfall in Nordeste, the Amazon region, and the southeastern region of Brazil. However, it remains that the limiting factor in the skill of the nested modeling system is the quality of the lateral boundary forcing provided by the global model.

  6. Evaluation of a technique to generate artificially thickened boundary layers in supersonic and hypersonic flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Hingst, W. R.; Davis, D. O.; Blair, A. B., Jr.

    1991-01-01

    The feasibility of using a contoured honeycomb model to generate a thick boundary layer in high-speed, compressible flow was investigated. The contour of the honeycomb was tailored to selectively remove momentum in a minimum of streamwise distance to create an artificially thickened turbulent boundary layer. Three wind tunnel experiments were conducted to verify the concept. Results indicate that this technique is a viable concept, especially for high-speed inlet testing applications. In addition, the compactness of the honeycomb boundary layer simulator allows relatively easy integration into existing wind tunnel model hardware.

  7. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements

    NASA Astrophysics Data System (ADS)

    Dodig, H.

    2017-11-01

    This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.

  8. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online.

  9. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators

    PubMed Central

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581

  10. Three-dimensional application of the Johnson-King turbulence model for a boundary-layer direct method

    NASA Technical Reports Server (NTRS)

    Kavsaoglu, Mehmet S.; Kaynak, Unver; Van Dalsem, William R.

    1989-01-01

    The Johnson-King turbulence model as extended to three-dimensional flows was evaluated using finite-difference boundary-layer direct method. Calculations were compared against the experimental data of the well-known Berg-Elsenaar incompressible flow over an infinite swept-wing. The Johnson-King model, which includes the nonequilibrium effects in a developing turbulent boundary-layer, was found to significantly improve the predictive quality of a direct boundary-layer method. The improvement was especially visible in the computations with increased three-dimensionality of the mean flow, larger integral parameters, and decreasing eddy-viscosity and shear stress magnitudes in the streamwise direction; all in better agreement with the experiment than simple mixing-length methods.

  11. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  12. A computationally efficient modelling of laminar separation bubbles

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.

    1988-01-01

    The goal of this research is to accurately predict the characteristics of the laminar separation bubble and its effects on airfoil performance. To this end, a model of the bubble is under development and will be incorporated in the analysis section of the Eppler and Somers program. As a first step in this direction, an existing bubble model was inserted into the program. It was decided to address the problem of the short bubble before attempting the prediction of the long bubble. In the second place, an integral boundary-layer method is believed more desirable than a finite difference approach. While these two methods achieve similar prediction accuracy, finite-difference methods tend to involve significantly longer computer run times than the integral methods. Finally, as the boundary-layer analysis in the Eppler and Somers program employs the momentum and kinetic energy integral equations, a short-bubble model compatible with these equations is most preferable.

  13. Determination of welding residual stresses by inverse approach with eigenstrain formulations of boundary integral equation

    NASA Astrophysics Data System (ADS)

    Ma, Hang; Wang, Ying; Qin, Qing-Hua

    2011-04-01

    Based on the concept of eigenstrain, a straightforward computational model of the inverse approach is proposed for determining the residual stress field induced by welding using the eigenstrain formulations of boundary integral equations. The eigenstrains are approximately expressed in terms of low-order polynomials in the local area around welded zones. The domain integrals with polynomial eigenstrains are transformed into the boundary integrals to preserve the favourable features of the boundary-only discretization in the process of numerical solutions. The sensitivity matrices in the inverse approach for evaluating the eigenstrain fields are constructed by either the measured deformations (displacements) on the boundary or the measured stresses in the domain after welding over a number of selected measuring points, or by both the measured information. It shows from the numerical examples that the results of residual stresses from deformation measurements are always better than those from stress measurements but they are sensitive to the noises from experiments. The results from stress measurements can be improved by introducing a few deformation measuring points while reducing the number of points for stress measuring to reduce the cost since the measurement of deformation is easier than that of stresses in practice.

  14. Locally-constrained Boundary Regression for Segmentation of Prostate and Rectum in the Planning CT Images

    PubMed Central

    Shao, Yeqin; Gao, Yaozong; Wang, Qian; Yang, Xin; Shen, Dinggang

    2015-01-01

    Automatic and accurate segmentation of the prostate and rectum in planning CT images is a challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain existence of bowel gas across different patients. Recently, regression forest was adopted for organ deformable segmentation on 2D medical images by training one landmark detector for each point on the shape model. However, it seems impractical for regression forest to guide 3D deformable segmentation as a landmark detector, due to large number of vertices in the 3D shape model as well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In this paper, we propose a novel boundary detection method by exploiting the power of regression forest for prostate and rectum segmentation. The contributions of this paper are as follows: 1) we introduce regression forest as a local boundary regressor to vote the entire boundary of a target organ, which avoids training a large number of landmark detectors and building an accurate 3D vertex correspondence for each landmark detector; 2) an auto-context model is integrated with regression forest to improve the accuracy of the boundary regression; 3) we further combine a deformable segmentation method with the proposed local boundary regressor for the final organ segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image dataset with 70 images from 70 different patients. The experimental results show that our proposed boundary regression method outperforms the conventional boundary classification method in guiding the deformable model for prostate and rectum segmentations. Compared with other state-of-the-art methods, our method also shows a competitive performance. PMID:26439938

  15. Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.

    PubMed

    Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent

    2009-01-01

    Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.

  16. A rapid boundary integral equation technique for protein electrostatics

    NASA Astrophysics Data System (ADS)

    Grandison, Scott; Penfold, Robert; Vanden-Broeck, Jean-Marc

    2007-06-01

    A new boundary integral formulation is proposed for the solution of electrostatic field problems involving piecewise uniform dielectric continua. Direct Coulomb contributions to the total potential are treated exactly and Green's theorem is applied only to the residual reaction field generated by surface polarisation charge induced at dielectric boundaries. The implementation shows significantly improved numerical stability over alternative schemes involving the total field or its surface normal derivatives. Although strictly respecting the electrostatic boundary conditions, the partitioned scheme does introduce a jump artefact at the interface. Comparison against analytic results in canonical geometries, however, demonstrates that simple interpolation near the boundary is a cheap and effective way to circumvent this characteristic in typical applications. The new scheme is tested in a naive model to successfully predict the ground state orientation of biomolecular aggregates comprising the soybean storage protein, glycinin.

  17. Acoustic coupled fluid-structure interactions using a unified fast multipole boundary element method.

    PubMed

    Wilkes, Daniel R; Duncan, Alec J

    2015-04-01

    This paper presents a numerical model for the acoustic coupled fluid-structure interaction (FSI) of a submerged finite elastic body using the fast multipole boundary element method (FMBEM). The Helmholtz and elastodynamic boundary integral equations (BIEs) are, respectively, employed to model the exterior fluid and interior solid domains, and the pressure and displacement unknowns are coupled between conforming meshes at the shared boundary interface to achieve the acoustic FSI. The low frequency FMBEM is applied to both BIEs to reduce the algorithmic complexity of the iterative solution from O(N(2)) to O(N(1.5)) operations per matrix-vector product for N boundary unknowns. Numerical examples are presented to demonstrate the algorithmic and memory complexity of the method, which are shown to be in good agreement with the theoretical estimates, while the solution accuracy is comparable to that achieved by a conventional finite element-boundary element FSI model.

  18. Vorticity dipoles and a theoretical model of a finite force at the moving contact line singularity

    NASA Astrophysics Data System (ADS)

    Zhang, Peter; Devoria, Adam; Mohseni, Kamran

    2017-11-01

    In the well known works of Moffatt (1964) and Huh & Scriven (1971), an infinite force was reported at the moving contact line (MCL) and attributed to a non-integrable stress along the fluid-solid boundary. In our recent investigation of the boundary driven wedge, a model of the MCL, we find that the classical solution theoretically predicts a finite force at the contact line if the forces applied by the two boundaries that make up the corner are taken into consideration. Mathematically, this force can be obtained by the complex contour integral of the holomorphic vorticity-pressure function given by G = μω + ip . Alternatively, this force can also be found using a carefully defined real integral that incorporates the two boundaries. Motivated by this discovery, we have found that the rate of change in circulation, viscous energy dissipation, and viscous energy flux is also finite per unit contact line length. The analysis presented demonstrates that despite a singular stress and a relatively simple geometry, the no-slip semi-infinite wedge is capable of capturing some physical quantities of interest. Furthermore, this result provides a foundation for other challenging topics such as dynamic contact angle.

  19. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Cliff, Susan E.

    1991-01-01

    Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.

  20. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  1. Horses for courses: analytical tools to explore planetary boundaries

    NASA Astrophysics Data System (ADS)

    van Vuuren, Detlef P.; Lucas, Paul L.; Häyhä, Tiina; Cornell, Sarah E.; Stafford-Smith, Mark

    2016-03-01

    There is a need for more integrated research on sustainable development and global environmental change. In this paper, we focus on the planetary boundaries framework to provide a systematic categorization of key research questions in relation to avoiding severe global environmental degradation. The four categories of key questions are those that relate to (1) the underlying processes and selection of key indicators for planetary boundaries, (2) understanding the impacts of environmental pressure and connections between different types of impacts, (3) better understanding of different response strategies to avoid further degradation, and (4) the available instruments to implement such strategies. Clearly, different categories of scientific disciplines and associated model types exist that can accommodate answering these questions. We identify the strength and weaknesses of different research areas in relation to the question categories, focusing specifically on different types of models. We discuss that more interdisciplinary research is need to increase our understanding by better linking human drivers and social and biophysical impacts. This requires better collaboration between relevant disciplines (associated with the model types), either by exchanging information or by fully linking or integrating them. As fully integrated models can become too complex, the appropriate type of model (the racehorse) should be applied for answering the target research question (the race course).

  2. Quantifying the Stable Boundary Layer Structure and Evolution during T-REX 2006

    DTIC Science & Technology

    2014-09-30

    integrating surface observations, data from in-situ measurements, and a nested numerical model with two related topics was conducted in this project. the WRF ...as well as quantify differences at a fine scale model output using the different turbulent mixing/diffusion options in the WRF -ARW model; and (2... WRF model planetary boundary layer schemes were also conducted to study a downslope windstorm and rotors in Las Vegas valley. Two events (March 20

  3. Effect of geometric size on mechanical properties of dielectric elastomers based on an improved visco-hyperelastic film model

    NASA Astrophysics Data System (ADS)

    Chang, Mengzhou; Wang, Zhenqing; Tong, Liyong; Liang, Wenyan

    2017-03-01

    Dielectric polymers show complex mechanical behaviors with different boundary conditions, geometry size and pre-stress. A viscoelastic model suitable for inhomogeneous deformation is presented integrating the Kelvin-Voigt model in a new form in this work. For different types of uniaxial tensile test loading along the length direction of sample, single-step-relaxation tests, loading-unloading tests and tensile-creep-relaxation tests the improved model provides a quite favorable comparison with the experiment results. Moreover, The mechanical properties of test sample with several length-width ratios under different boundary conditions are also invested. The influences of the different boundary conditions are calculated with a stress applied on the boundary point and the result show that the fixed boundary will increase the stress compare with homogeneous deformation. In modeling the effect of pre-stress in the shear test, three pre-stressed mode are discussed. The model validation on the general mechanical behavior shows excellent predictive capability.

  4. On continuous and discontinuous approaches for modeling groundwater flow in heterogeneous media using the Numerical Manifold Method: Model development and comparison

    NASA Astrophysics Data System (ADS)

    Hu, Mengsu; Wang, Yuan; Rutqvist, Jonny

    2015-06-01

    One major challenge in modeling groundwater flow within heterogeneous geological media is that of modeling arbitrarily oriented or intersected boundaries and inner material interfaces. The Numerical Manifold Method (NMM) has recently emerged as a promising method for such modeling, in its ability to handle boundaries, its flexibility in constructing physical cover functions (continuous or with gradient jump), its meshing efficiency with a fixed mathematical mesh (covers), its convenience for enhancing approximation precision, and its integration precision, achieved by simplex integration. In this paper, we report on developing and comparing two new approaches for boundary constraints using the NMM, namely a continuous approach with jump functions and a discontinuous approach with Lagrange multipliers. In the discontinuous Lagrange multiplier method (LMM), the material interfaces are regarded as discontinuities which divide mathematical covers into different physical covers. We define and derive stringent forms of Lagrange multipliers to link the divided physical covers, thus satisfying the continuity requirement of the refraction law. In the continuous Jump Function Method (JFM), the material interfaces are regarded as inner interfaces contained within physical covers. We briefly define jump terms to represent the discontinuity of the head gradient across an interface to satisfy the refraction law. We then make a theoretical comparison between the two approaches in terms of global degrees of freedom, treatment of multiple material interfaces, treatment of small area, treatment of moving interfaces, the feasibility of coupling with mechanical analysis and applicability to other numerical methods. The newly derived boundary-constraint approaches are coded into a NMM model for groundwater flow analysis, and tested for precision and efficiency on different simulation examples. We first test the LMM for a Dirichlet boundary and then test both LMM and JFM for an idealized heterogeneous model, comparing the numerical results with analytical solutions. Then we test both approaches for a heterogeneous model and compare the results of hydraulic head and specific discharge. We show that both approaches are suitable for modeling material boundaries, considering high accuracy for the boundary constraints, the capability to deal with arbitrarily oriented or complexly intersected boundaries, and their efficiency using a fixed mathematical mesh.

  5. Free vibration analysis of elastic structures submerged in an infinite or semi-infinite fluid domain by means of a coupled FE-BE solver

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo

    2018-04-01

    The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.

  6. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  7. Exact solution of the XXX Gaudin model with generic open boundaries

    NASA Astrophysics Data System (ADS)

    Hao, Kun; Cao, Junpeng; Yang, Tao; Yang, Wen-Li

    2015-03-01

    The XXX Gaudin model with generic integrable open boundaries specified by the most general non-diagonal reflecting matrices is studied. Besides the inhomogeneous parameters, the associated Gaudin operators have six free parameters which break the U(1) -symmetry. With the help of the off-diagonal Bethe ansatz, we successfully obtained the eigenvalues of these Gaudin operators and the corresponding Bethe ansatz equations.

  8. Multimodality Tumor Delineation and Predictive Modelling via Fuzzy-Fusion Deformable Models and Biological Potential Functions

    NASA Astrophysics Data System (ADS)

    Wasserman, Richard Marc

    The radiation therapy treatment planning (RTTP) process may be subdivided into three planning stages: gross tumor delineation, clinical target delineation, and modality dependent target definition. The research presented will focus on the first two planning tasks. A gross tumor target delineation methodology is proposed which focuses on the integration of MRI, CT, and PET imaging data towards the generation of a mathematically optimal tumor boundary. The solution to this problem is formulated within a framework integrating concepts from the fields of deformable modelling, region growing, fuzzy logic, and data fusion. The resulting fuzzy fusion algorithm can integrate both edge and region information from multiple medical modalities to delineate optimal regions of pathological tissue content. The subclinical boundaries of an infiltrating neoplasm cannot be determined explicitly via traditional imaging methods and are often defined to extend a fixed distance from the gross tumor boundary. In order to improve the clinical target definition process an estimation technique is proposed via which tumor growth may be modelled and subclinical growth predicted. An in vivo, macroscopic primary brain tumor growth model is presented, which may be fit to each patient undergoing treatment, allowing for the prediction of future growth and consequently the ability to estimate subclinical local invasion. Additionally, the patient specific in vivo tumor model will be of significant utility in multiple diagnostic clinical applications.

  9. COMPLEX VARIABLE BOUNDARY ELEMENT METHOD: APPLICATIONS.

    USGS Publications Warehouse

    Hromadka, T.V.; Yen, C.C.; Guymon, G.L.

    1985-01-01

    The complex variable boundary element method (CVBEM) is used to approximate several potential problems where analytical solutions are known. A modeling result produced from the CVBEM is a measure of relative error in matching the known boundary condition values of the problem. A CVBEM error-reduction algorithm is used to reduce the relative error of the approximation by adding nodal points in boundary regions where error is large. From the test problems, overall error is reduced significantly by utilizing the adaptive integration algorithm.

  10. A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Brown-Dymkoski, Eric; Kasimov, Nurlybek; Vasilyev, Oleg V.

    2014-04-01

    In order to introduce solid obstacles into flows, several different methods are used, including volume penalization methods which prescribe appropriate boundary conditions by applying local forcing to the constitutive equations. One well known method is Brinkman penalization, which models solid obstacles as porous media. While it has been adapted for compressible, incompressible, viscous and inviscid flows, it is limited in the types of boundary conditions that it imposes, as are most volume penalization methods. Typically, approaches are limited to Dirichlet boundary conditions. In this paper, Brinkman penalization is extended for generalized Neumann and Robin boundary conditions by introducing hyperbolic penalization terms with characteristics pointing inward on solid obstacles. This Characteristic-Based Volume Penalization (CBVP) method is a comprehensive approach to conditions on immersed boundaries, providing for homogeneous and inhomogeneous Dirichlet, Neumann, and Robin boundary conditions on hyperbolic and parabolic equations. This CBVP method can be used to impose boundary conditions for both integrated and non-integrated variables in a systematic manner that parallels the prescription of exact boundary conditions. Furthermore, the method does not depend upon a physical model, as with porous media approach for Brinkman penalization, and is therefore flexible for various physical regimes and general evolutionary equations. Here, the method is applied to scalar diffusion and to direct numerical simulation of compressible, viscous flows. With the Navier-Stokes equations, both homogeneous and inhomogeneous Neumann boundary conditions are demonstrated through external flow around an adiabatic and heated cylinder. Theoretical and numerical examination shows that the error from penalized Neumann and Robin boundary conditions can be rigorously controlled through an a priori penalization parameter η. The error on a transient boundary is found to converge as O(η), which is more favorable than the error convergence of the already established Dirichlet boundary condition.

  11. A boundary integral approach to the scattering of nonplanar acoustic waves by rigid bodies

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Myers, M. K.; Farassat, F.

    1990-01-01

    The acoustic scattering of an incident wave by a rigid body can be described by a singular Fredholm integral equation of the second kind. This equation is derived by solving the wave equation using generalized function theory, Green's function for the wave equation in unbounded space, and the acoustic boundary condition for a perfectly rigid body. This paper will discuss the derivation of the wave equation, its reformulation as a boundary integral equation, and the solution of the integral equation by the Galerkin method. The accuracy of the Galerkin method can be assessed by applying the technique outlined in the paper to reproduce the known pressure fields that are due to various point sources. From the analysis of these simpler cases, the accuracy of the Galerkin solution can be inferred for the scattered pressure field caused by the incidence of a dipole field on a rigid sphere. The solution by the Galerkin technique can then be applied to such problems as a dipole model of a propeller whose pressure field is incident on a rigid cylinder. This is the groundwork for modeling the scattering of rotating blade noise by airplane fuselages.

  12. A Hybrid Numerical Analysis Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Staroselsky, Alexander

    2001-01-01

    A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. B.; Zhu, X. W., E-mail: xiaowuzhu1026@znufe.edu.cn; Dai, H. H.

    Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings aremore » considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.« less

  14. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation

    PubMed Central

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-01-01

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem. PMID:23729844

  15. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    PubMed

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  16. Variable Combinations of Specific Ephrin Ligand/Eph Receptor Pairs Control Embryonic Tissue Separation

    PubMed Central

    Rohani, Nazanin; Parmeggiani, Andrea; Winklbauer, Rudolf; Fagotto, François

    2014-01-01

    Ephrins and Eph receptors are involved in the establishment of vertebrate tissue boundaries. The complexity of the system is puzzling, however in many instances, tissues express multiple ephrins and Ephs on both sides of the boundary, a situation that should in principle cause repulsion between cells within each tissue. Although co-expression of ephrins and Eph receptors is widespread in embryonic tissues, neurons, and cancer cells, it is still unresolved how the respective signals are integrated into a coherent output. We present a simple explanation for the confinement of repulsion to the tissue interface: Using the dorsal ectoderm–mesoderm boundary of the Xenopus embryo as a model, we identify selective functional interactions between ephrin–Eph pairs that are expressed in partial complementary patterns. The combined repulsive signals add up to be strongest across the boundary, where they reach sufficient intensity to trigger cell detachments. The process can be largely explained using a simple model based exclusively on relative ephrin and Eph concentrations and binding affinities. We generalize these findings for the ventral ectoderm–mesoderm boundary and the notochord boundary, both of which appear to function on the same principles. These results provide a paradigm for how developmental systems may integrate multiple cues to generate discrete local outcomes. PMID:25247423

  17. Variable combinations of specific ephrin ligand/Eph receptor pairs control embryonic tissue separation.

    PubMed

    Rohani, Nazanin; Parmeggiani, Andrea; Winklbauer, Rudolf; Fagotto, François

    2014-09-01

    Ephrins and Eph receptors are involved in the establishment of vertebrate tissue boundaries. The complexity of the system is puzzling, however in many instances, tissues express multiple ephrins and Ephs on both sides of the boundary, a situation that should in principle cause repulsion between cells within each tissue. Although co-expression of ephrins and Eph receptors is widespread in embryonic tissues, neurons, and cancer cells, it is still unresolved how the respective signals are integrated into a coherent output. We present a simple explanation for the confinement of repulsion to the tissue interface: Using the dorsal ectoderm-mesoderm boundary of the Xenopus embryo as a model, we identify selective functional interactions between ephrin-Eph pairs that are expressed in partial complementary patterns. The combined repulsive signals add up to be strongest across the boundary, where they reach sufficient intensity to trigger cell detachments. The process can be largely explained using a simple model based exclusively on relative ephrin and Eph concentrations and binding affinities. We generalize these findings for the ventral ectoderm-mesoderm boundary and the notochord boundary, both of which appear to function on the same principles. These results provide a paradigm for how developmental systems may integrate multiple cues to generate discrete local outcomes.

  18. OPTIMIZATION OF COUNTERCURRENT STAGED PROCESSES.

    DTIC Science & Technology

    CHEMICAL ENGINEERING , OPTIMIZATION), (*DISTILLATION, OPTIMIZATION), INDUSTRIAL PRODUCTION, INDUSTRIAL EQUIPMENT, MATHEMATICAL MODELS, DIFFERENCE EQUATIONS, NONLINEAR PROGRAMMING, BOUNDARY VALUE PROBLEMS, NUMERICAL INTEGRATION

  19. A combined application of boundary-element and Runge-Kutta methods in three-dimensional elasticity and poroelasticity

    NASA Astrophysics Data System (ADS)

    Igumnov, Leonid; Ipatov, Aleksandr; Belov, Aleksandr; Petrov, Andrey

    2015-09-01

    The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary) and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.

  20. An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skin

    NASA Astrophysics Data System (ADS)

    Chang, Chien-Chieh; Chen, Chia-Shyun

    2002-06-01

    A flowing partially penetrating well with infinitesimal well skin is a mixed boundary because a Cauchy condition is prescribed along the screen length and a Neumann condition of no flux is stipulated over the remaining unscreened part. An analytical approach based on the integral transform technique is developed to determine the Laplace domain solution for such a mixed boundary problem in a confined aquifer of finite thickness. First, the mixed boundary is changed into a homogeneous Neumann boundary by substituting the Cauchy condition with a Neumann condition in terms of well bore flux that varies along the screen length and is time dependent. Despite the well bore flux being unknown a priori, the modified model containing this homogeneous Neumann boundary can be solved with the Laplace and the finite Fourier cosine transforms. To determine well bore flux, screen length is discretized into a finite number of segments, to which the Cauchy condition is reinstated. This reinstatement also restores the relation between the original model and the solutions obtained. For a given time, the numerical inversion of the Laplace domain solution yields the drawdown distributions, well bore flux, and the well discharge. This analytical approach provides an alternative for dealing with the mixed boundary problems, especially when aquifer thickness is assumed to be finite.

  1. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  2. Integral approximations to classical diffusion and smoothed particle hydrodynamics

    DOE PAGES

    Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.

    2014-12-31

    The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less

  3. The study on the real estate integrated cadastral information system based on shared plots

    NASA Astrophysics Data System (ADS)

    Xu, Huan; Liu, Nan; Liu, Renyi; Huang, Jie

    2008-10-01

    Solving the problem of the land property right on the shared parcel demands the integration of real estate information into cadastral management. Therefore a new cadastral feature named Shared Plot is introduced. After defining the shared plot clearly and describing its characteristics in detail, the impact resulting from the new feature on the traditional cadastral model composed of three cadastral features - parcels, parcel boundary lines and parcel boundary points is focused on and a four feature cadastral model that makes some amendments to the three feature one is put forward. The new model has been applied to the development of a new generation of real estate integrated cadastral information system, which incorporates real estate attribute and spatial information into cadastral database in addition to cadastral information. The system has been used in several cities of Zhejiang Province and got a favorable response. This verifies the feasibility and effectiveness of the model to some extent.

  4. The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Reynolds, R. S.

    1993-01-01

    An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.

  5. Work and personal life boundary management: boundary strength, work/personal life balance, and the segmentation-integration continuum.

    PubMed

    Bulger, Carrie A; Matthews, Russell A; Hoffman, Mark E

    2007-10-01

    While researchers are increasingly interested in understanding the boundaries surrounding the work and personal life domains, few have tested the propositions set forth by theory. Boundary theory proposes that individuals manage the boundaries between work and personal life through processes of segmenting and/or integrating the domains. The authors investigated boundary management profiles of 332 workers in an investigation of the segmentation-integration continuum. Cluster analysis indicated consistent clusters of boundary management practices related to varying segmentation and integration of the work and personal life domains. But, the authors suggest that the segmentation-integration continuum may be more complicated. Results also indicated relationships between boundary management practices and work-personal life interference and work-personal life enhancement. Less flexible and more permeable boundaries were related to more interference, while more flexible and more permeable boundaries were related to more enhancement.

  6. A boundary element method for steady incompressible thermoviscous flow

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1991-01-01

    A boundary element formulation is presented for moderate Reynolds number, steady, incompressible, thermoviscous flows. The governing integral equations are written exclusively in terms of velocities and temperatures, thus eliminating the need for the computation of any gradients. Furthermore, with the introduction of reference velocities and temperatures, volume modeling can often be confined to only a small portion of the problem domain, typically near obstacles or walls. The numerical implementation includes higher order elements, adaptive integration and multiregion capability. Both the integral formulation and implementation are discussed in detail. Several examples illustrate the high level of accuracy that is obtainable with the current method.

  7. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less

  8. Training tomorrow's environmental problem-solvers: an integrative approach to graduate education

    USDA-ARS?s Scientific Manuscript database

    Environmental problems are generally complex and blind to disciplinary boundaries. Efforts to devise long-term solutions require collaborative research that integrates knowledge across historically disparate fields, yet the traditional model for training new scientists emphasizes personal independe...

  9. Region of validity of the finite–temperature Thomas–Fermi model with respect to quantum and exchange corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyachkov, Sergey, E-mail: serj.dyachkov@gmail.com; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700; Levashov, Pavel, E-mail: pasha@ihed.ras.ru

    We determine the region of applicability of the finite–temperature Thomas–Fermi model and its thermal part with respect to quantum and exchange corrections. Very high accuracy of computations has been achieved by using a special approach for the solution of the boundary problem and numerical integration. We show that the thermal part of the model can be applied at lower temperatures than the full model. Also we offer simple approximations of the boundaries of validity for practical applications.

  10. High Performance Computing Application: Solar Dynamo Model Project II, Corona and Heliosphere Component Initialization, Integration and Validation

    DTIC Science & Technology

    2015-06-24

    physically . While not distinct from IH models, they require inner boundary magnetic field and plasma property values, the latter not currently measured...initialization for the computational grid. Model integration continues until a physically consistent steady-state is attained. Because of the more... physical basis and greater likelihood of realistic solutions, only MHD-type coronal models were considered in the review. There are two major types of

  11. Application of the Boundary Element Method to Elastic Wave Scattering Problems in Ultrasonic Nondestructive Evaluation.

    NASA Astrophysics Data System (ADS)

    Schafbuch, Paul Jay

    The boundary element method (BEM) is used to numerically simulate the interaction of ultrasonic waves with material defects such as voids, inclusions, and open cracks. The time harmonic formulation is in 3D and therefore allows flaws of arbitrary shape to be modeled. The BEM makes such problems feasible because the underlying boundary integral equation only requires a surface (2D) integration and difficulties associated with the seemingly infinite extent of the host domain are not encountered. The computer code utilized in this work is built upon recent advances in elastodynamic boundary element theory such as a scheme for self adjusting integration order and singular integration regularization. Incident fields may be taken as compressional or shear plane waves or predicted by an approximate Gauss -Hermite beam model. The code is highly optimized for voids and has been coupled with computer aided engineering packages for automated flaw shape definition and mesh generation. Subsequent graphical display of intermediate results supports model refinement and physical interpretation. Final results are typically cast in a nondestructive evaluation (NDE) context as either scattering amplitudes or flaw signals (via a measurement model based on a reciprocity integral). The near field is also predicted which allows for improved physical insight into the scattering process and the evaluation of certain modeling approximations. The accuracy of the BEM approach is first examined by comparing its predictions to those of other models for single, isolated scatterers. The comparisons are with the predictions of analytical solutions for spherical defects and with MOOT and T-matrix calculations for axisymmetric flaws. Experimental comparisons are also made for volumetric shapes with different characteristic dimensions in all three directions, since no other numerical approach has yet produced results of this type. Theoretical findings regarding the fictitious eigenfrequency difficulty are substantiated through the analytical solution of a fundamental elastodynamics problem and corresponding BEM studies. Given the confidence in the BEM technique engendered by these comparisons, it is then used to investigate the modeling of "open", cracklike defects amenable to a volumetric formulation. The limits of applicability of approximate theories (e.g., quasistatic, Kirchhoff, and geometric theory of diffraction) are explored for elliptical cracks, from this basis. The problem of two interacting scatterers is then considered. Results from a fully implicit approach and from a more efficient hybrid scheme are compared with generalized Born and farfield approximate interaction theories.

  12. Application of the boundary element method to elastic wave scattering problems in ultrasonic nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Schafbuch, Paul Jay

    1991-02-01

    The boundary element method (BEM) is used to numerically simulate the interaction of ultrasonic waves with material defects such as voids, inclusions, and open cracks. The time harmonic formulation is in 3D and therefore allows flaws of arbitrary shape to be modeled. The BEM makes such problems feasible because the underlying boundary integral equation only requires a surface (2D) integration and difficulties associated with the seemingly infinite extent of the host domain are not encountered. The computer code utilized in this work is built upon recent advances in elastodynamic boundary element theory such as a scheme for self adjusting integration order and singular integration regularization. Incident fields may be taken as compressional or shear plane waves or predicted by an approximate Gauss-Hermite beam model. The code is highly optimized for voids and has been coupled with computer aided engineering packages for automated flaw shape definition and mesh generation. Subsequent graphical display of intermediate results supports model refinement and physical interpretation. Final results are typically cast in a nondestructive evaluation (NDE) context as either scattering amplitudes or flaw signals (via a measurement model based on a reciprocity integral). The near field is also predicted which allows for improved physical insight into the scattering process and the evaluation of certain modeling approximations. The accuracy of the BEM approach is first examined by comparing its predictions to those of other models for single, isolated scatters. The comparisons are with the predictions of analytical solutions for spherical defects and with MOOT and T-matrix calculations for axisymmetric flaws. Experimental comparisons are also made for volumetric shapes with different characteristic dimensions in all three directions, since no other numerical approach has yet produced results of this type. Theoretical findings regarding the fictitious eigenfrequency difficulty are substantiated through the analytical solution of a fundamental elastodynamics problem and corresponding BEM studies. Given the confidence in the BEM technique engendered by these comparisons, it is then used to investigate the modeling of 'open', cracklike defects amenable to a volumetric formulation. The limits of applicability of approximate theories (e.g., quasistatic, Kirchhoff, and geometric theory of diffraction) are explored for elliptical cracks, from this basis. The problem of two interacting scatterers is then considered. Results from a fully implicit approach and from a more efficient hybrid scheme are compared with generalized Born and farfield approximate interaction theories.

  13. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    PubMed Central

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods. PMID:18567005

  14. Maintaining a Cognitive Map in Darkness: The Need to Fuse Boundary Knowledge with Path Integration

    PubMed Central

    Cheung, Allen; Ball, David; Milford, Michael; Wyeth, Gordon; Wiles, Janet

    2012-01-01

    Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's “cognitive map”, or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and – we conjecture – necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on their implications and significance for the design, analysis and interpretation of experiments. PMID:22916006

  15. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model

    NASA Astrophysics Data System (ADS)

    Wang, Y. B.; Zhu, X. W.; Dai, H. H.

    2016-08-01

    Though widely used in modelling nano- and micro- structures, Eringen's differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.

  16. Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Mader, Charles A.; Kenway, Gaetan K. W.; Martins, Joaquim R. R. A.

    2017-01-01

    Airframe-propulsion integration concepts that use boundary layer ingestion have the potential to reduce aircraft fuel burn. One concept that has been recently explored is NASA's Starc-ABL aircraft configuration, which offers the potential for 12% mission fuel burn reduction by using a turbo-electric propulsion system with an aft-mounted electrically driven boundary layer ingestion propulsor. This large potential for improved performance motivates a more detailed study of the boundary layer ingestion propulsor design, but to date, analyses of boundary layer ingestion have used uncoupled methods. These methods account for only aerodynamic effects on the propulsion system or propulsion system effects on the aerodynamics, but not both simultaneously. This work presents a new approach for building fully coupled propulsive-aerodynamic models of boundary layer ingestion propulsion systems. A 1D thermodynamic cycle analysis is coupled to a RANS simulation to model the Starc-ABL aft propulsor at a cruise condition and the effects variation in propulsor design on performance are examined. The results indicates that both propulsion and aerodynamic effects contribute equally toward the overall performance and that the fully coupled model yields substantially different results compared to uncoupled. The most significant finding is that boundary layer ingestion, while offering substantial fuel burn savings, introduces throttle dependent aerodynamics effects that need to be accounted for. This work represents a first step toward the multidisciplinary design optimization of boundary layer ingestion propulsion systems.

  17. Simple turbulence models and their application to boundary layer separation

    NASA Technical Reports Server (NTRS)

    Wadcock, A. J.

    1980-01-01

    Measurements in the boundary layer and wake of a stalled airfoil are presented in two coordinate systems, one aligned with the airfoil chord, the other being conventional boundary layer coordinates. The NACA 4412 airfoil is studied at a single angle of attack corresponding to maximum lift, the Reynolds number based on chord being 1.5 x 10 to the 6th power. Turbulent boundary layer separation occurred at the 85 percent chord position. The two-dimensionality of the flow was documented and the momentum integral equation studied to illustrate the importance of turbulence contributions as separation is approached. The assumptions of simple eddy-viscosity and mixing-length turbulence models are checked directly against experiment. Curvature effects are found to be important as separation is approached.

  18. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    USGS Publications Warehouse

    Iverson, Richard M.; Chaojun Ouyang,

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  19. Stabilization of time domain acoustic boundary element method for the exterior problem avoiding the nonuniqueness.

    PubMed

    Jang, Hae-Won; Ih, Jeong-Guon

    2013-03-01

    The time domain boundary element method (TBEM) to calculate the exterior sound field using the Kirchhoff integral has difficulties in non-uniqueness and exponential divergence. In this work, a method to stabilize TBEM calculation for the exterior problem is suggested. The time domain CHIEF (Combined Helmholtz Integral Equation Formulation) method is newly formulated to suppress low order fictitious internal modes. This method constrains the surface Kirchhoff integral by forcing the pressures at the additional interior points to be zero when the shortest retarded time between boundary nodes and an interior point elapses. However, even after using the CHIEF method, the TBEM calculation suffers the exponential divergence due to the remaining unstable high order fictitious modes at frequencies higher than the frequency limit of the boundary element model. For complete stabilization, such troublesome modes are selectively adjusted by projecting the time response onto the eigenspace. In a test example for a transiently pulsating sphere, the final average error norm of the stabilized response compared to the analytic solution is 2.5%.

  20. Overcoming Indecision by Changing the Decision Boundary

    PubMed Central

    2017-01-01

    The dominant theoretical framework for decision making asserts that people make decisions by integrating noisy evidence to a threshold. It has recently been shown that in many ecologically realistic situations, decreasing the decision boundary maximizes the reward available from decisions. However, empirical support for decreasing boundaries in humans is scant. To investigate this problem, we used an ideal observer model to identify the conditions under which participants should change their decision boundaries with time to maximize reward rate. We conducted 6 expanded-judgment experiments that precisely matched the assumptions of this theoretical model. In this paradigm, participants could sample noisy, binary evidence presented sequentially. Blocks of trials were fixed in duration, and each trial was an independent reward opportunity. Participants therefore had to trade off speed (getting as many rewards as possible) against accuracy (sampling more evidence). Having access to the actual evidence samples experienced by participants enabled us to infer the slope of the decision boundary. We found that participants indeed modulated the slope of the decision boundary in the direction predicted by the ideal observer model, although we also observed systematic deviations from optimality. Participants using suboptimal boundaries do so in a robust manner, so that any error in their boundary setting is relatively inexpensive. The use of a normative model provides insight into what variable(s) human decision makers are trying to optimize. Furthermore, this normative model allowed us to choose diagnostic experiments and in doing so we present clear evidence for time-varying boundaries. PMID:28406682

  1. Investigating the quality of modeled aerosol profiles based on combined lidar and sunphotometer data

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Balis, Dimitris S.; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyridon; Melas, Dimitris; Giannakaki, Eleni; Filioglou, Maria; Basart, Sara; Chaikovsky, Anatoli

    2017-06-01

    In this study we present an evaluation of the Comprehensive Air Quality Model with extensions (CAMx) for Thessaloniki using radiometric and lidar data. The aerosol mass concentration profiles of CAMx are compared against the PM2.5 and PM2. 5-10 concentration profiles retrieved by the Lidar-Radiometer Inversion Code (LIRIC). The CAMx model and the LIRIC algorithm results were compared in terms of mean mass concentration profiles, center of mass and integrated mass concentration in the boundary layer and the free troposphere. The mean mass concentration comparison resulted in profiles within the same order of magnitude and similar vertical structure for the PM2. 5 particles. The mean centers of mass values are also close, with a mean bias of 0.57 km. On the opposite side, there are larger differences for the PM2. 5-10 mode, both in the boundary layer and in the free troposphere. In order to grasp the reasons behind the discrepancies, we investigate the effect of aerosol sources that are not properly included in the model's emission inventory and in the boundary conditions such as the wildfires and the desert dust component. The identification of the cases that are affected by wildfires is performed using wind backward trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model in conjunction with satellite fire pixel data from MODerate-resolution Imaging Spectroradiometer (MODIS) Terra and Aqua global monthly fire location product MCD14ML. By removing those cases the correlation coefficient improves from 0.69 to 0.87 for the PM2. 5 integrated mass in the boundary layer and from 0.72 to 0.89 in the free troposphere. The PM2.5 center of mass fractional bias also decreases to 0.38 km. Concerning the analysis of the desert dust component, the simulations from the Dust Regional Atmospheric Model (BSC-DREAM8b) were deployed. When only the Saharan dust cases are taken into account, BSC-DREAM8b generally outperforms CAMx when compared with LIRIC, achieving a correlation of 0.91 and a mean bias of -29.1 % for the integrated mass in the free troposphere and a correlation of 0.57 for the center of mass. CAMx, on the other hand, underestimates the integrated mass in the free troposphere. Consequently, the accuracy of CAMx is limited concerning the transported Saharan dust cases. We conclude that the performance of CAMx appears to be best for the PM2.5 particles, both in the boundary layer and in the free troposphere. Sources of particles not properly taken into account by the model are confirmed to negatively affect its performance, especially for the PM2. 5-10 particles.

  2. A return mapping algorithm for isotropic and anisotropic plasticity models using a line search method

    DOE PAGES

    Scherzinger, William M.

    2016-05-01

    The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Here, most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, of J 2, yield surface has a simple predictor-corrector algorithm - the radial return algorithm - to integrate the model.

  3. A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Narkawicz, Anthony; Chamberlain, James; Consiglio, Maria; Upchurch, Jason

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defines the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. For these models, algorithms that predict well-clear violations along aircraft current trajectories are provided. These algorithms are analogous to conflict detection algorithms but instead of predicting loss of separation, they predict whether well-clear violations will occur during a given lookahead time interval. Analytical techniques are used to study the properties and relationships satisfied by the models.

  4. Developing a framework for integrating turbulence measurements and modeling of ecosystem-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.

    2017-12-01

    Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.

  5. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  6. Updated users' guide for TAWFIVE with multigrid

    NASA Technical Reports Server (NTRS)

    Melson, N. Duane; Streett, Craig L.

    1989-01-01

    A program for the Transonic Analysis of a Wing and Fuselage with Interacted Viscous Effects (TAWFIVE) was improved by the incorporation of multigrid and a method to specify lift coefficient rather than angle-of-attack. A finite volume full potential multigrid method is used to model the outer inviscid flow field. First order viscous effects are modeled by a 3-D integral boundary layer method. Both turbulent and laminar boundary layers are treated. Wake thickness effects are modeled using a 2-D strip method. A brief discussion of the engineering aspects of the program is given. The input, output, and use of the program are covered in detail. Sample results are given showing the effects of boundary layer corrections and the capability of the lift specification method.

  7. Explorations in Integrated Science

    ERIC Educational Resources Information Center

    Lega, Joceline C.; Buxner, Sanlyn; Blonder, Benjamin; Tama, Florence

    2014-01-01

    We describe a third-year undergraduate course that focuses on multiscale modeling and protein folding and has as its primary goal the encouragement of students to integrate thinking across and beyond disciplinary boundaries. The ability to perform innovative and successful research work in STEM (science, technology, engineering, and mathematics)…

  8. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  9. On the Formulation of Weakly Singular Displacement/Traction Integral Equations; and Their Solution by the MLPG Method

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.; Shen, Shengping

    2002-01-01

    In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.

  10. Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1993-01-01

    The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.

  11. Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Rizzo, F.J.

    1997-08-01

    In this paper, the composite boundary integral equation (BIE) formulation is applied to scattering of elastic waves from thin shapes with small but {ital finite} thickness (open cracks or thin voids, thin inclusions, thin-layer interfaces, etc.), which are modeled with {ital two surfaces}. This composite BIE formulation, which is an extension of the Burton and Miller{close_quote}s formulation for acoustic waves, uses a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the conventional BIE, as well as the hypersingular BIE, will degenerate (or nearly degenerate) if they are applied {ital individually} on the two surfaces. Themore » composite BIE formulation, however, will not degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed to compute these nearly singular integrals. Numerical examples of elastic waves scattered from penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the composite BIE formulation. {copyright} {ital 1997 Acoustical Society of America.}« less

  12. Analysis of 3D poroelastodynamics using BEM based on modified time-step scheme

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Petrov, A. N.; Vorobtsov, I. V.

    2017-10-01

    The development of 3d boundary elements modeling of dynamic partially saturated poroelastic media using a stepping scheme is presented in this paper. Boundary Element Method (BEM) in Laplace domain and the time-stepping scheme for numerical inversion of the Laplace transform are used to solve the boundary value problem. The modified stepping scheme with a varied integration step for quadrature coefficients calculation using the symmetry of the integrand function and integral formulas of Strongly Oscillating Functions was applied. The problem with force acting on a poroelastic prismatic console end was solved using the developed method. A comparison of the results obtained by the traditional stepping scheme with the solutions obtained by this modified scheme shows that the computational efficiency is better with usage of combined formulas.

  13. Solution of the Lindblad equation for spin helix states.

    PubMed

    Popkov, V; Schütz, G M

    2017-04-01

    Using Lindblad dynamics we study quantum spin systems with dissipative boundary dynamics that generate a stationary nonequilibrium state with a nonvanishing spin current that is locally conserved except at the boundaries. We demonstrate that with suitably chosen boundary target states one can solve the many-body Lindblad equation exactly in any dimension. As solution we obtain pure states at any finite value of the dissipation strength and any system size. They are characterized by a helical stationary magnetization profile and a ballistic spin current which is independent of system size, even when the quantum spin system is not integrable. These results are derived in explicit form for the one-dimensional spin-1/2 Heisenberg chain and its higher-spin generalizations, which include the integrable spin-1 Zamolodchikov-Fateev model and the biquadratic Heisenberg chain.

  14. Integration of off-ramp and arterial signal controls to minimize the recurrent congestion on the I-495 Capital Beltway.

    DOT National Transportation Integrated Search

    2010-11-01

    This study developed an integrated control model to contend with the impact of off-ramp queue spillback on both the freeway and arterials within the interchange control boundaries. The entire control system consists of two levels that compute the opt...

  15. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    NASA Astrophysics Data System (ADS)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  16. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.

    PubMed

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  17. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  18. The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems

    NASA Astrophysics Data System (ADS)

    Galenko, Peter K.; Alexandrov, Dmitri V.; Titova, Ekaterina A.

    2018-01-01

    The boundary integral method for propagating solid/liquid interfaces is detailed with allowance for the thermo-solutal Stefan-type models. Two types of mass transfer mechanisms corresponding to the local equilibrium (parabolic-type equation) and local non-equilibrium (hyperbolic-type equation) solidification conditions are considered. A unified integro-differential equation for the curved interface is derived. This equation contains the steady-state conditions of solidification as a special case. The boundary integral analysis demonstrates how to derive the quasi-stationary Ivantsov and Horvay-Cahn solutions that, respectively, define the paraboloidal and elliptical crystal shapes. In the limit of highest Péclet numbers, these quasi-stationary solutions describe the shape of the area around the dendritic tip in the form of a smooth sphere in the isotropic case and a deformed sphere along the directions of anisotropy strength in the anisotropic case. A thermo-solutal selection criterion of the quasi-stationary growth mode of dendrites which includes arbitrary Péclet numbers is obtained. To demonstrate the selection of patterns, computational modelling of the quasi-stationary growth of crystals in a binary mixture is carried out. The modelling makes it possible to obtain selected structures in the form of dendritic, fractal or planar crystals. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  19. Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.

    1973-01-01

    Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.

  20. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet directions for the coated and uncoated bubble are similar but the jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness and shell viscosity are analyzed and determined to affect the bubble dynamics, including jet development.

  1. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  2. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    NASA Technical Reports Server (NTRS)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  3. Analytically-derived sensitivities in one-dimensional models of solute transport in porous media

    USGS Publications Warehouse

    Knopman, D.S.

    1987-01-01

    Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)

  4. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations

    NASA Astrophysics Data System (ADS)

    Huck, Thierry; Vallis, Geoffrey K.

    2001-08-01

    What can we learn from performing a linear stability analysis of the large-scale ocean circulation? Can we predict from the basic state the occurrence of interdecadal oscillations, such as might be found in a forward integration of the full equations of motion? If so, do the structure and period of the linearly unstable modes resemble those found in a forward integration? We pursue here a preliminary study of these questions for a case in idealized geometry, in which the full nonlinear behavior can also be explored through forward integrations. Specifically, we perform a three-dimensional linear stability analysis of the thermally-driven circulation of the planetary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions, comparing them with the structure of the interdecadal oscillations found in the fully nonlinear model in various parameter regimes. We obtain a steady state by running the time-dependent, nonlinear model to equilibrium using restoring boundary conditions on surface temperature. If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal oscillations. We construct a linearized version of the model by empirically evaluating the tangent linear matrix at the steady state, under both restoring and constant-flux boundary conditions. An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode that shows a striking resemblance to the fully-developed oscillations in terms of three-dimensional structure, period and growth rate. The mode may be damped through either surface restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of this simple numerical method in idealized geometry suggests applications in the study of the stability of the ocean circulation in more realistic configurations, and the possibility of predicting potential oceanic modes, even weakly damped, that might be excited by stochastic atmospheric forcing or mesoscale ocean eddies.

  5. On solvability of boundary value problems for hyperbolic fourth-order equations with nonlocal boundary conditions of integral type

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay S.

    2017-11-01

    Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.

  6. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China

    PubMed Central

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-01-01

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032

  7. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China.

    PubMed

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-08-21

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  8. A numerical world ocean general circulation model Part I. Basic design and barotropic experiment

    NASA Astrophysics Data System (ADS)

    Han, Young-June

    1984-08-01

    A new six-layer world ocean general circulation model based on the primitive system of equations is described in detail and its performance in the case of a homogeneous ocean is described. These test integrations show that the model is capable of reproducing the observed mean barotropic or vertically-integrated transport, as well as the seasonal variability of the major ocean gyres. The surface currents, however, are dominated by the Ekman transport, and such non-linear features as the western boundary currents and the equatorial countercurrents are poorly represented. The abyssal boundary countercurrents are also absent due to the lack of thermohaline forcing. The most conspicuous effect of the bottom topography on a homogeneous ocean is seen in the Southern ocean where the calculated Antarctic circumpolar transport through the Drake passage ( ≈ 10 Sv, with bathymetry included) greatly underestimates the observed transport (≈ 100 Sv).

  9. Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Hunter, William W., Jr.; Covell, Peter F.; Nichols, Cecil E., Jr.

    1990-01-01

    A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented.

  10. Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Milanič, Matija; Premru, Jan

    2015-01-01

    In three-dimensional (3-D) modeling of light transport in heterogeneous biological structures using the Monte Carlo (MC) approach, space is commonly discretized into optically homogeneous voxels by a rectangular spatial grid. Any round or oblique boundaries between neighboring tissues thus become serrated, which raises legitimate concerns about the realism of modeling results with regard to reflection and refraction of light on such boundaries. We analyze the related effects by systematic comparison with an augmented 3-D MC code, in which analytically defined tissue boundaries are treated in a rigorous manner. At specific locations within our test geometries, energy deposition predicted by the two models can vary by 10%. Even highly relevant integral quantities, such as linear density of the energy absorbed by modeled blood vessels, differ by up to 30%. Most notably, the values predicted by the customary model vary strongly and quite erratically with the spatial discretization step and upon minor repositioning of the computational grid. Meanwhile, the augmented model shows no such unphysical behavior. Artifacts of the former approach do not converge toward zero with ever finer spatial discretization, confirming that it suffers from inherent deficiencies due to inaccurate treatment of reflection and refraction at round tissue boundaries.

  11. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    PubMed

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  12. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    PubMed Central

    Yang, Wei

    2018-01-01

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality. PMID:29671792

  13. The dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1993-08-01

    The extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied to one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks, and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elastoplastic behavior is modeled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral, and/or triangular cells. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analyzed and the results are compared with others available in the literature. J-type integrals are calculated.

  14. Shifting contours of boundaries: an exploration of inter-agency integration between hospital and community interprofessional diabetes programs.

    PubMed

    Wong, Rene; Breiner, Petra; Mylopoulos, Maria

    2014-09-01

    This article reports on research into the relationships that emerged between hospital-based and community-based interprofessional diabetes programs involved in inter-agency care. Using constructivist grounded theory methodology we interviewed a purposive theoretical sample of 21 clinicians and administrators from both types of programs. Emergent themes were identified through a process of constant comparative analysis. Initial boundaries were constructed based on contrasts in beliefs, practices and expertise. In response to bureaucratic and social pressures, boundaries were redefined in a way that created role uncertainty and disempowered community programs, ultimately preventing collaboration. We illustrate the dynamic and multi-dimensional nature of social and symbolic boundaries in inter-agency diabetes care and the tacit ways in which hospitals can maintain a power position at the expense of other actors in the field. As efforts continue in Canada and elsewhere to move knowledge and resources into community sectors, we highlight the importance of hospitals seeing beyond their own interests and adopting more altruistic models of inter-agency integration.

  15. Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models

    NASA Astrophysics Data System (ADS)

    Challamel, Noël

    2018-04-01

    The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed-fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.

  16. Quantum phase transitions of the one-dimensional Peierls-Hubbard model with next-nearest-neighbor hopping integrals

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi

    1998-06-01

    We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling region U>>t, t' [t (t'), nearest- (next-nearest-) neighbor hopping; U, on-site Coulomb repulsion]. In the uniform case, with the help of the conformal field theory prediction, we numerically determine a phase boundary t'c(U/t) between the spin-fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size systems and a value of the central charge are also examined. The critical phenomenological aspect of the spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin gap (i.e., the Cross-Fisher scaling law) are discussed.

  17. A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx

    PubMed Central

    Sumets, P. P.; Cater, J. E.; Long, D. S.; Clarke, R. J.

    2015-01-01

    We describe a new boundary-integral representation for biphasic mixture theory, which allows us to efficiently solve certain elastohydrodynamic–mobility problems using boundary element methods. We apply this formulation to model the motion of a rigid particle through a microtube which has non-uniform wall shape, is filled with a viscous Newtonian fluid, and is lined with a thin poroelastic layer. This is relevant to scenarios such as the transport of small rigid cells (such as neutrophils) through microvessels that are lined with an endothelial glycocalyx layer (EGL). In this context, we examine the impact of geometry upon some recently reported phenomena, including the creation of viscous eddies, fluid flux into the EGL, as well as the role of the EGL in transmitting mechanical signals to the underlying endothelial cells. PMID:26345494

  18. Integrable boundary value problems for elliptic type Toda lattice in a disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerses, Metin; Habibullin, Ismagil; Zheltukhin, Kostyantyn

    The concept of integrable boundary value problems for soliton equations on R and R{sub +} is extended to regions enclosed by smooth curves. Classes of integrable boundary conditions in a disk for the Toda lattice and its reductions are found.

  19. Free-form geometric modeling by integrating parametric and implicit PDEs.

    PubMed

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  20. Object Segmentation from Motion Discontinuities and Temporal Occlusions–A Biologically Inspired Model

    PubMed Central

    Beck, Cornelia; Ognibeni, Thilo; Neumann, Heiko

    2008-01-01

    Background Optic flow is an important cue for object detection. Humans are able to perceive objects in a scene using only kinetic boundaries, and can perform the task even when other shape cues are not provided. These kinetic boundaries are characterized by the presence of motion discontinuities in a local neighbourhood. In addition, temporal occlusions appear along the boundaries as the object in front covers the background and the objects that are spatially behind it. Methodology/Principal Findings From a technical point of view, the detection of motion boundaries for segmentation based on optic flow is a difficult task. This is due to the problem that flow detected along such boundaries is generally not reliable. We propose a model derived from mechanisms found in visual areas V1, MT, and MSTl of human and primate cortex that achieves robust detection along motion boundaries. It includes two separate mechanisms for both the detection of motion discontinuities and of occlusion regions based on how neurons respond to spatial and temporal contrast, respectively. The mechanisms are embedded in a biologically inspired architecture that integrates information of different model components of the visual processing due to feedback connections. In particular, mutual interactions between the detection of motion discontinuities and temporal occlusions allow a considerable improvement of the kinetic boundary detection. Conclusions/Significance A new model is proposed that uses optic flow cues to detect motion discontinuities and object occlusion. We suggest that by combining these results for motion discontinuities and object occlusion, object segmentation within the model can be improved. This idea could also be applied in other models for object segmentation. In addition, we discuss how this model is related to neurophysiological findings. The model was successfully tested both with artificial and real sequences including self and object motion. PMID:19043613

  1. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  2. Coupled NASTRAN/boundary element formulation for acoustic scattering

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.

    1987-01-01

    A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.

  3. The magnetic field at the core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Bloxham, J.; Gubbins, D.

    1985-01-01

    Models of the geomagnetic field are, in general, produced from a least-squares fit of the coefficients in a truncated spherical harmonic expansion to the available data. Downward continuation of such models to the core-mantle boundary (CMB) is an unstable process: the results are found to be critically dependent on the choice of truncation level. Modern techniques allow this fundamental difficulty to be circumvented. The method of stochastic inversion is applied to modeling the geomagnetic field. Prior information is introduced by requiring that the spectrum of spherical harmonic coefficients to fall-off in a particular manner which is consistent with the Ohmic heating in the core having a finite lower bound. This results in models with finite errors in the radial field at the CMB. Curves of zero radial field can then be determined and integrals of the radial field over patches on the CMB bounded by these null-flux curves calculated. With the assumption of negligible magnetic diffusion in the core; frozen-flux hypothesis, these integrals are time-invariant.

  4. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  5. Lung segmentation from HRCT using united geometric active contours

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  6. A numerical method for computing unsteady 2-D boundary layer flows

    NASA Technical Reports Server (NTRS)

    Krainer, Andreas

    1988-01-01

    A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.

  7. Development of BEM for ceramic composites

    NASA Technical Reports Server (NTRS)

    Henry, D. P.; Banerjee, P. K.; Dargush, G. F.

    1990-01-01

    Details on the progress made during the first three years of a five-year program towards the development of a boundary element code are presented. This code was designed for the micromechanical studies of advance ceramic composites. Additional effort was made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry. The ceramic composite formulations developed were implemented in the three-dimensional boundary element computer code BEST3D. BEST3D was adopted as the base for the ceramic composite program, so that many of the enhanced features of this general purpose boundary element code could by utilized. Some of these facilities include sophisticated numerical integration, the capability of local definition of boundary conditions, and the use of quadratic shape functions for modeling geometry and field variables on the boundary. The multi-region implementation permits a body to be modeled in substructural parts; thus dramatically reducing the cost of the analysis. Furthermore, it allows a body consisting of regions of different ceramic matrices and inserts to be studied.

  8. Section 1. Simulation of surface-water integrated flow and transport in two-dimensions: SWIFT2D user's manual

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    2004-01-01

    A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the model framework, documents the type and format of inputs required, and identifies the type and format of output available.

  9. A new hybrid numerical scheme for modelling elastodynamics in unbounded media with near-source heterogeneities

    NASA Astrophysics Data System (ADS)

    Hajarolasvadi, Setare; Elbanna, Ahmed E.

    2017-11-01

    The finite difference (FD) and the spectral boundary integral (SBI) methods have been used extensively to model spontaneously-propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modelling approach in which these two methods are combined through consistent exchange of boundary tractions and displacements. Benefiting from the flexibility of FD and the efficiency of SBI methods, the proposed hybrid scheme will solve a wide range of problems in a computationally efficient way. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low-velocity layer and the other in which off-fault plasticity is permitted. We discuss possible potential uses of the hybrid scheme in earthquake cycle simulations as well as an exact absorbing boundary condition.

  10. Boundary Condition Study for the Juncture Flow Experiment in the NASA Langley 14x22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Carlson, J.-R.; Hannon, J. A.; Jenkins, L. N.; Bartram, S. M.; Pulliam, T. H.; Lee, H. C.

    2017-01-01

    Because future wind tunnel tests associated with the NASA Juncture Flow project are being designed for the purpose of CFD validation, considerable effort is going into the characterization of the wind tunnel boundary conditions, particularly at inflow. This is important not only because wind tunnel flowfield nonuniformities can play a role in integrated testing uncertainties, but also because the better the boundary conditions are known, the better CFD can accurately represent the experiment. This paper describes recent investigative wind tunnel tests involving two methods to measure and characterize the oncoming flow in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The features of each method, as well as some of their pros and cons, are highlighted. Boundary conditions and modeling tactics currently used by CFD for empty-tunnel simulations are also described, and some results using three different CFD codes are shown. Preliminary CFD parametric studies associated with the Juncture Flow model are summarized, to determine sensitivities of the flow near the wing-body juncture region of the model to a variety of modeling decisions.

  11. Integrating watershed– and farm–scale models to target critical source areas while maintaining farm economic viability

    USDA-ARS?s Scientific Manuscript database

    Nonpoint source pollution from agriculture and the impacts of mitigating best management practices are commonly evaluated based on hydrologic boundaries using watershed models. However, management practice effectiveness is impacted by which of the feasible practices are actually selected, implemente...

  12. An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver

    NASA Astrophysics Data System (ADS)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2014-11-01

    While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.

  13. Quantitative three-dimensional transrectal ultrasound (TRUS) for prostate imaging

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Aarnink, Rene G.; de la Rosette, Jean J.; Chalana, Vikram; Wijkstra, Hessel; Haynor, David R.; Debruyne, Frans M. J.; Kim, Yongmin

    1998-06-01

    With the number of men seeking medical care for prostate diseases rising steadily, the need of a fast and accurate prostate boundary detection and volume estimation tool is being increasingly experienced by the clinicians. Currently, these measurements are made manually, which results in a large examination time. A possible solution is to improve the efficiency by automating the boundary detection and volume estimation process with minimal involvement from the human experts. In this paper, we present an algorithm based on SNAKES to detect the boundaries. Our approach is to selectively enhance the contrast along the edges using an algorithm called sticks and integrate it with a SNAKES model. This integrated algorithm requires an initial curve for each ultrasound image to initiate the boundary detection process. We have used different schemes to generate the curves with a varying degree of automation and evaluated its effects on the algorithm performance. After the boundaries are identified, the prostate volume is calculated using planimetric volumetry. We have tested our algorithm on 6 different prostate volumes and compared the performance against the volumes manually measured by 3 experts. With the increase in the user inputs, the algorithm performance improved as expected. The results demonstrate that given an initial contour reasonably close to the prostate boundaries, the algorithm successfully delineates the prostate boundaries in an image, and the resulting volume measurements are in close agreement with those made by the human experts.

  14. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    PubMed

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  15. Transport of reacting solutes subject to a moving dissolution boundary: Numerical methods and solutions

    USGS Publications Warehouse

    Willis, Catherine; Rubin, Jacob

    1987-01-01

    A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.

  16. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  17. Integrated care in the emergency department: a complex adaptive systems perspective.

    PubMed

    Nugus, Peter; Carroll, Katherine; Hewett, David G; Short, Alison; Forero, Roberto; Braithwaite, Jeffrey

    2010-12-01

    Emergency clinicians undertake boundary-work as they facilitate patient trajectories through the Emergency Department (ED). Emergency clinicians must manage the constantly-changing dynamics at the boundaries of the ED and other hospital departments and organizations whose services emergency clinicians seek to integrate. Integrating the care that differing clinical groups provide, the services EDs offer, and patients' needs across this journey is challenging. The journey is usually accounted for in a linear way - as a "continuity of care" problem. In this paper, we instead conceptualize integrated care in the ED using a complex adaptive systems (CAS) perspective. A CAS perspective accounts for the degree to which other departments and units outside of the ED are integrated, and appropriately described, using CAS concepts and language. One year of ethnographic research was conducted, combining observation and semi-structured interviews, in the EDs of two tertiary referral hospitals in Sydney, Australia. We found the CAS approach to be salient to analyzing integrated care in the ED because the processes of categorization, diagnosis and discharge are primarily about the linkages between services, and the communication and negotiation required to enact those linkages, however imperfectly they occur in practice. Emergency clinicians rapidly process large numbers of high-need patients, in a relatively efficient system of care inadequately explained by linear models. A CAS perspective exposes integrated care as management of the patient trajectory within porous, shifting and negotiable boundaries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. A Non-hydrostatic Atmospheric Model for Global High-resolution Simulation

    NASA Astrophysics Data System (ADS)

    Peng, X.; Li, X.

    2017-12-01

    A three-dimensional non-hydrostatic atmosphere model, GRAPES_YY, is developed on the spherical Yin-Yang grid system in order to enforce global high-resolution weather simulation or forecasting at the CAMS/CMA. The quasi-uniform grid makes the computation be of high efficiency and free of pole problem. Full representation of the three-dimensional Coriolis force is considered in the governing equations. Under the constraint of third-order boundary interpolation, the model is integrated with the semi-implicit semi-Lagrangian method using the same code on both zones. A static halo region is set to ensure computation of cross-boundary transport and updating Dirichlet-type boundary conditions in the solution process of elliptical equations with the Schwarz method. A series of dynamical test cases, including the solid-body advection, the balanced geostrophic flow, zonal flow over an isolated mountain, development of the Rossby-Haurwitz wave and a baroclinic wave, are carried out, and excellent computational stability and accuracy of the dynamic core has been confirmed. After implementation of the physical processes of long and short-wave radiation, cumulus convection, micro-physical transformation of water substances and the turbulent processes in the planetary boundary layer include surface layer vertical fluxes parameterization, a long-term run of the model is then put forward under an idealized aqua-planet configuration to test the model physics and model ability in both short-term and long-term integrations. In the aqua-planet experiment, the model shows an Earth-like structure of circulation. The time-zonal mean temperature, wind components and humidity illustrate reasonable subtropical zonal westerly jet, meridional three-cell circulation, tropical convection and thermodynamic structures. The specific SST and solar insolation being symmetric about the equator enhance the ITCZ and tropical precipitation, which concentrated in tropical region. Additional analysis and tuning of the model is still going on, and preliminary results have demonstrated the possibility of high-resolution application of the model to global weather prediction and even seasonal climate projection.

  19. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  20. A spectral boundary integral equation method for the 2-D Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated.

  1. 3-D orbital evolution model of outer asteroid belt

    NASA Technical Reports Server (NTRS)

    Solovaya, Nina A.; Gerasimov, Igor A.; Pittich, Eduard M.

    1992-01-01

    The evolution of minor planets in the outer part of the asteroid belt is considered. In the framework of the semi-averaged elliptic restricted three-dimensional three-body model, the boundary of regions of the Hill's stability is found. As was shown in our work, the Jacobian integral exists.

  2. GLOFRIM - A globally applicable framework for integrated hydrologic-hydrodynamic inundation modelling

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Neal, J. C.; Baart, F.; Van Beek, L. P.; Winsemius, H.; Bates, P. D.; Bierkens, M. F.

    2017-12-01

    Currently, many approaches to provide detailed flood hazard and risk estimates are built upon specific hydrologic or hydrodynamic model routines. By applying these routines in stand-alone mode important processes can however not accurately be described. For instance, global hydrologic models run at coarse spatial resolution, not supporting the detailed simulation of flood hazard. Hydrodynamic models excel in the computations of open water flow dynamics, but dependent on specific runoff or observed discharge as input. In most cases hydrodynamic models are forced at the boundaries and thus cannot account for water sources within the model domain, limiting the simulation of inundation dynamics to reaches fed by upstream boundaries. Recently, Hoch et al. (HESS, 2017) coupled PCR-GLOBWB (PCR) with the hydrodynamic model Delft3D Flexible Mesh (DFM). By means of the Basic Model Interface both models were connected on a cell-by-cell basis, allowing for spatially explicit coupling. Model results showed that discharge simulations can profit from model coupling compared to stand-alone runs. As model results of a coupled simulation depend on the quality of the models, it would be worthwhile to allow a suite of models to be coupled. To facilitate this, we present GLOFRIM, a globally applicable framework for integrated hydrologic-hydrodynamic inundation modelling. In the current version coupling between PCR and both DFM and LISFLOOD-FP (LFP) can be established (Hoch et al., GMDD, 2017). First results show that differences between both hydrodynamic models are present in the timing of peak discharge which is most likely due to differences in channel-floodplain interactions and bathymetry processing. Having benchmarked inundation extent, LFP and DFM agree for around half of the inundated area which is attributable to variations in grid size. Results also indicate that, despite using identical boundary conditions and forcing, the schematization itself as well as internal processes can still greatly influence results. In general, the application of GLOFRIM brings several advantages. For example, with PCR being a global model, it is possible to reduce the dependency of observation data for discharge boundaries, and benchmarking of hydrodynamic models is greatly facilitated by employing identical hydrologic forcing.

  3. Integrated Modelling in CRUCIAL Science Education

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and discussed.

  4. Investigation of viscous/inviscid interaction in transonic flow over airfoils with suction

    NASA Technical Reports Server (NTRS)

    Vemuru, C. S.; Tiwari, S. N.

    1988-01-01

    The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods.

  5. An implicit boundary integral method for computing electric potential of macromolecules in solvent

    NASA Astrophysics Data System (ADS)

    Zhong, Yimin; Ren, Kui; Tsai, Richard

    2018-04-01

    A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.

  6. Numerical simulation of the atmospheric response ito the time-varying El Nino SST anomalies during May 1982 through October 1983

    NASA Technical Reports Server (NTRS)

    Fennessy, M. J.; Shukla, J.

    1988-01-01

    An attempt is made to simulate the atmospheric circulation anomalies corresponding to the observed SST anomalies in the Pacific Ocean for the 18-month period of May 1982 through October 1983. A GCM is first integrated for 25 months with monthly climatological boundary conditions of SST, soil moisture, sea, ice, and albedo. Starting from day 165 of this 'control' integration, which corresponds to May 1, the 18-month integration is carried out with the same boundary conditions except that the observed monthly SST anomalies for May 1982-October 1983 are added to the climatological values in the Pacific from 40 S to 60 N. The evolution of the model-simulated circulation and rainfall anomalies are compared to actual observations for the same period, and remarkable agreement is found.

  7. Application of Intel Many Integrated Core (MIC) architecture to the Yonsei University planetary boundary layer scheme in Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  8. The Full Ward-Takahashi Identity for Colored Tensor Models

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, Carlos I.

    2018-03-01

    Colored tensor models (CTM) is a random geometrical approach to quantum gravity. We scrutinize the structure of the connected correlation functions of general CTM-interactions and organize them by boundaries of Feynman graphs. For rank- D interactions including, but not restricted to, all melonic φ^4 -vertices—to wit, solely those quartic vertices that can lead to dominant spherical contributions in the large- N expansion—the aforementioned boundary graphs are shown to be precisely all (possibly disconnected) vertex-bipartite regularly edge- D-colored graphs. The concept of CTM-compatible boundary-graph automorphism is introduced and an auxiliary graph calculus is developed. With the aid of these constructs, certain U (∞)-invariance of the path integral measure is fully exploited in order to derive a strong Ward-Takahashi Identity for CTMs with a symmetry-breaking kinetic term. For the rank-3 φ^4 -theory, we get the exact integral-like equation for the 2-point function. Similarly, exact equations for higher multipoint functions can be readily obtained departing from this full Ward-Takahashi identity. Our results hold for some Group Field Theories as well. Altogether, our non-perturbative approach trades some graph theoretical methods for analytical ones. We believe that these tools can be extended to tensorial SYK-models.

  9. Dual boundary element formulation for elastoplastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Leitao, V.; Aliabadi, M. H.; Rooke, D. P.

    1995-01-01

    In this paper the extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elasto-plastic behavior is modelled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral and/or triangular cells. This formulation was implemented for two-dimensional domains only, although there is no theoretical or numerical limitation to its application to three-dimensional ones. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analysed and the results are compared with others available in the literature. J-type integrals are calculated.

  10. A one-dimensional sectional aerosol model integrated with mesoscale meteorological data to study marine boundary layer aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Caffrey, Peter F.; Hoppel, William A.; Shi, Jainn J.

    2006-12-01

    The dynamics of aerosols in the marine boundary layer are simulated with a one-dimensional, multicomponent, sectional aerosol model using vertical profiles of turbulence, relative humidity, temperature, vertical velocity, cloud cover, and precipitation provided by 3-D mesoscale meteorological model output. The Naval Research Laboratory's (NRL) sectional aerosol model MARBLES (Fitzgerald et al., 1998a) was adapted to use hourly meteorological input taken from NRL's Coupled Ocean-Atmosphere Prediction System (COAMPS). COAMPS-generated turbulent mixing coefficients and large-scale vertical velocities determine vertical exchange within the marine boundary layer and exchange with the free troposphere. Air mass back trajectories were used to define the air column history along which the meteorology was retrieved for use with the aerosol model. Details on the integration of these models are described here, as well as a description of improvements made to the aerosol model, including transport by large-scale vertical motions (such as subsidence and lifting), a revised sea-salt aerosol source function, and separate tracking of sulfate mass from each of the five sources (free tropospheric, nucleated, condensed from gas phase oxidation products, cloud-processed, and produced from heterogeneous oxidation of S(IV) on sea-salt aerosol). Results from modeling air masses arriving at Oahu, Hawaii, are presented, and the relative contribution of free-tropospheric sulfate particles versus sea-salt aerosol from the surface to CCN concentrations is discussed. Limitations and benefits of the method are presented, as are sensitivity analyses of the effect of large-scale vertical motions versus turbulent mixing.

  11. Notes on integrable boundary interactions of open SU(4) alternating spin chains

    NASA Astrophysics Data System (ADS)

    Wu, JunBao

    2018-07-01

    Ref. [J. High Energy Phys. 1708, 001 (2017)] showed that the planar flavored Ahanory-Bergman-Jafferis-Maldacena (ABJM) theory is integrable in the scalar sector at two-loop order using coordinate Bethe ansatz. A salient feature of this case is that the boundary reflection matrices are anti-diagonal with respect to the chosen basis. In this paper, we relax the coefficients of the boundary terms to be general constants to search for integrable systems among this class. We found that the only integrable boundary interaction at each end of the spin chain aside from the one in ref. [J. High Energy Phys. 1708, 001 (2017)] is the one with vanishing boundary interactions leading to diagonal reflection matrices. We also construct non-supersymmetric planar flavored ABJM theory which leads to trivial boundary interactions at both ends of the open chain from the two-loop anomalous dimension matrix in the scalar sector.

  12. Discontinuous Galerkin Methods for Turbulence Simulation

    NASA Technical Reports Server (NTRS)

    Collis, S. Scott

    2002-01-01

    A discontinuous Galerkin (DG) method is formulated, implemented, and tested for simulation of compressible turbulent flows. The method is applied to turbulent channel flow at low Reynolds number, where it is found to successfully predict low-order statistics with fewer degrees of freedom than traditional numerical methods. This reduction is achieved by utilizing local hp-refinement such that the computational grid is refined simultaneously in all three spatial coordinates with decreasing distance from the wall. Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly through integrals of the numerical fluxes. Both for a model advection-diffusion problem and for turbulent channel flow, weak enforcement of wall boundaries is found to improve results at low resolution. Such weak boundary conditions may play a pivotal role in wall modeling for large-eddy simulation.

  13. A statistical approach to the brittle fracture of a multi-phase solid

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lua, Y. I.; Belytschko, T.

    1991-01-01

    A stochastic damage model is proposed to quantify the inherent statistical distribution of the fracture toughness of a brittle, multi-phase solid. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. Due to the high concentration of microcracks near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated first for an arbitrary array of cracks. The effects of uncertainties in locations and orientations of microcracks at a macro-tip are analyzed quantitatively by using the boundary integral equations method in conjunction with the computer simulation of the random microcrack array. The short range interactions resulting from surrounding microcracks closet to the main crack tip are investigated. The effects of microcrack density parameter are also explored in the present study. The validity of the present model is demonstrated by comparing its statistical output with the Neville distribution function, which gives correct fits to sets of experimental data from multi-phase solids.

  14. Planetary boundaries for a blue planet.

    PubMed

    Nash, Kirsty L; Cvitanovic, Christopher; Fulton, Elizabeth A; Halpern, Benjamin S; Milner-Gulland, E J; Watson, Reg A; Blanchard, Julia L

    2017-11-01

    Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

  15. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  16. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  17. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1978-01-01

    Methods of predicting integral parameters and skin friction coefficients of turbulent boundary layers developing over moving ground planes were evaluated. The three methods evaluated were: relative integral parameter method; relative power law method; and modified law of the wall method.

  18. Boundary Ambiguity in Parents with Chronically Ill Children: Integrating Theory and Research

    ERIC Educational Resources Information Center

    Berge, Jerica M.; Holm, Kristen E.

    2007-01-01

    This article integrates theory and research related to boundary ambiguity in parents of children with a chronic health condition. We propose that boundary ambiguity is a risk factor for psychological distress in these parents. Clinical applications and a case example highlight how boundary ambiguity can be assessed and managed in clinical settings…

  19. Symmetric vibrations of a liquid in a vessel with a separator and an elastic bottom

    NASA Astrophysics Data System (ADS)

    Goncharov, D. A.; Pozhalostin, A. A.

    2018-04-01

    The paper considers the problem of small axisymmetric vibrations of an ideal fluid filling a vessel with rigid walls and an elastic bottom. The liquid is divided into two layers by an elastic septum. The elastic baffle and the vessel elastic bottom are modeled by elastic membranes. The Neumann boundary-value problem is posed for the fluid. The equations of motion of the membranes are integrated with boundary conditions.

  20. Efficient Creation of Overset Grid Hole Boundaries and Effects of Their Locations on Aerodynamic Loads

    NASA Technical Reports Server (NTRS)

    Chan, William Machado; Pandya, Shishir Ashok; Rogers, Stuart E.

    2013-01-01

    Recent developments on the automation of the X-rays approach to hole-cutting in over- set grids is further improved. A fast method to compute an auxiliary wall-distance function used in providing a rst estimate of the hole boundary location is introduced. Subsequent iterations lead to automatically-created hole boundaries with a spatially-variable o set from the minimum hole. For each hole boundary location, an averaged cell attribute measure over all fringe points is used to quantify the compatibility between the fringe points and their respective donor cells. The sensitivity of aerodynamic loads to di erent hole boundary locations and cell attribute compatibilities is investigated using four test cases: an isolated re-entry capsule, a two-rocket con guration, the AIAA 4th Drag Prediction Workshop Common Research Model (CRM), and the D8 \\Double Bubble" subsonic aircraft. When best practices in hole boundary treatment are followed, only small variations in integrated loads and convergence rates are observed for different hole boundary locations.

  1. Shape optimization of three-dimensional stamped and solid automotive components

    NASA Technical Reports Server (NTRS)

    Botkin, M. E.; Yang, R.-J.; Bennett, J. A.

    1987-01-01

    The shape optimization of realistic, 3-D automotive components is discussed. The integration of the major parts of the total process: modeling, mesh generation, finite element and sensitivity analysis, and optimization are stressed. Stamped components and solid components are treated separately. For stamped parts a highly automated capability was developed. The problem description is based upon a parameterized boundary design element concept for the definition of the geometry. Automatic triangulation and adaptive mesh refinement are used to provide an automated analysis capability which requires only boundary data and takes into account sensitivity of the solution accuracy to boundary shape. For solid components a general extension of the 2-D boundary design element concept has not been achieved. In this case, the parameterized surface shape is provided using a generic modeling concept based upon isoparametric mapping patches which also serves as the mesh generator. Emphasis is placed upon the coupling of optimization with a commercially available finite element program. To do this it is necessary to modularize the program architecture and obtain shape design sensitivities using the material derivative approach so that only boundary solution data is needed.

  2. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  3. Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz

    NASA Astrophysics Data System (ADS)

    Vanicat, Matthieu

    2018-04-01

    We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.

  4. Process and data fragmentation-oriented enterprise network integration with collaboration modelling and collaboration agents

    NASA Astrophysics Data System (ADS)

    Li, Qing; Wang, Ze-yuan; Cao, Zhi-chao; Du, Rui-yang; Luo, Hao

    2015-08-01

    With the process of globalisation and the development of management models and information technology, enterprise cooperation and collaboration has developed from intra-enterprise integration, outsourcing and inter-enterprise integration, and supply chain management, to virtual enterprises and enterprise networks. Some midfielder enterprises begin to serve for different supply chains. Therefore, they combine related supply chains into a complex enterprise network. The main challenges for enterprise network's integration and collaboration are business process and data fragmentation beyond organisational boundaries. This paper reviews the requirements of enterprise network's integration and collaboration, as well as the development of new information technologies. Based on service-oriented architecture (SOA), collaboration modelling and collaboration agents are introduced to solve problems of collaborative management for service convergence under the condition of process and data fragmentation. A model-driven methodology is developed to design and deploy the integrating framework. An industrial experiment is designed and implemented to illustrate the usage of developed technologies in this paper.

  5. 4D Floodplain representation in hydrologic flood forecasting using WRFHydro modeling framework

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Li, Z.; Adams, T.; Ito, T.; Maitaria, K.; Islam, M.; Dhondia, J.

    2015-12-01

    Floods claim more lives and damage more property than any other category of natural disaster in the Continental U.S. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007, 2011) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels with the fourth dimension, time. We use modeled flows from WRFHydro and demarcate the right and left lateral boundaries of inundation dynamically. This approach dynamically integrates with high resolution models (e.g., hourly and ~ 1 km spatial resolution) that are developed from recent advancements in high computational power with ground based measurements (e.g., Fluxnet), lateral inundation vectors (direction and spatial extent) derived from multi-temporal remote sensing data (e.g., LiDAR, WorldView 2, Landsat, ASTER, MODIS), and improved representations of the physical processes through multi-parameterizations. Our approach enhances the normalized (streams are at zero elevations) DEM derived upstream flow routing pathways for stream reaches for given water stages as more and more satellite data become available for various flood inundations. Validation of the inundation boundaries is performed using HEC-RAS hydrodynamic model results for selected streams.

  6. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jimenez Cortes, M. A.; Jonassen, M.; van den Kroonenberg, A.; Lenschow, D. H.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.

    2014-04-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective to the night-time stable boundary layer, still raises several scientific issues. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective regime, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of integrated instrument platforms including full-size aircraft, remotely piloted aircraft systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observations from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, like new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the residual layer of the previous day, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and evidenced the evolution of the turbulence characteristic lengthscales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.

  7. Advanced development of the boundary element method for elastic and inelastic thermal stress analysis. Ph.D. Thesis, 1987 Final Report

    NASA Technical Reports Server (NTRS)

    Henry, Donald P., Jr.

    1991-01-01

    The focus of this dissertation is on advanced development of the boundary element method for elastic and inelastic thermal stress analysis. New formulations for the treatment of body forces and nonlinear effects are derived. These formulations, which are based on particular integral theory, eliminate the need for volume integrals or extra surface integrals to account for these effects. The formulations are presented for axisymmetric, two and three dimensional analysis. Also in this dissertation, two dimensional and axisymmetric formulations for elastic and inelastic, inhomogeneous stress analysis are introduced. The derivatives account for inhomogeneities due to spatially dependent material parameters, and thermally induced inhomogeneities. The nonlinear formulation of the present work are based on an incremental initial stress approach. Two inelastic solutions algorithms are implemented: an iterative; and a variable stiffness type approach. The Von Mises yield criterion with variable hardening and the associated flow rules are adopted in these algorithms. All formulations are implemented in a general purpose, multi-region computer code with the capability of local definition of boundary conditions. Quadratic, isoparametric shape functions are used to model the geometry and field variables of the boundary (and domain) of the problem. The multi-region implementation permits a body to be modeled in substructured parts, thus dramatically reducing the cost of analysis. Furthermore, it allows a body consisting of regions of different (homogeneous) material to be studied. To test the program, results obtained for simple test cases are checked against their analytic solutions. Thereafter, a range of problems of practical interest are analyzed. In addition to displacement and traction loads, problems with body forces due to self-weight, centrifugal, and thermal loads are considered.

  8. A boundary condition to the Khokhlov-Zabolotskaya equation for modeling strongly focused nonlinear ultrasound fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosnitskiy, P., E-mail: pavrosni@yandex.ru; Yuldashev, P., E-mail: petr@acs366.phys.msu.ru; Khokhlova, V., E-mail: vera@acs366.phys.msu.ru

    2015-10-28

    An equivalent source model was proposed as a boundary condition to the nonlinear parabolic Khokhlov-Zabolotskaya (KZ) equation to simulate high intensity focused ultrasound (HIFU) fields generated by medical ultrasound transducers with the shape of a spherical shell. The boundary condition was set in the initial plane; the aperture, the focal distance, and the initial pressure of the source were chosen based on the best match of the axial pressure amplitude and phase distributions in the Rayleigh integral analytic solution for a spherical transducer and the linear parabolic approximation solution for the equivalent source. Analytic expressions for the equivalent source parametersmore » were derived. It was shown that the proposed approach allowed us to transfer the boundary condition from the spherical surface to the plane and to achieve a very good match between the linear field solutions of the parabolic and full diffraction models even for highly focused sources with F-number less than unity. The proposed method can be further used to expand the capabilities of the KZ nonlinear parabolic equation for efficient modeling of HIFU fields generated by strongly focused sources.« less

  9. Bubble dynamics in a compressible liquid in contact with a rigid boundary

    PubMed Central

    Wang, Qianxi; Liu, Wenke; Zhang, A. M.; Sui, Yi

    2015-01-01

    A bubble initiated near a rigid boundary may be almost in contact with the boundary because of its expansion and migration to the boundary, where a thin layer of water forms between the bubble and the boundary thereafter. This phenomenon is modelled using the weakly compressible theory coupled with the boundary integral method. The wall effects are modelled using the imaging method. The numerical instabilities caused by the near contact of the bubble surface with the boundary are handled by removing a thin layer of water between them and joining the bubble surface with its image to the boundary. Our computations correlate well with experiments for both the first and second cycles of oscillation. The time history of the energy of a bubble system follows a step function, reducing rapidly and significantly because of emission of shock waves at inception of a bubble and at the end of collapse but remaining approximately constant for the rest of the time. The bubble starts being in near contact with the boundary during the first cycle of oscillation when the dimensionless stand-off distance γ = s/Rm < 1, where s is the distance of the initial bubble centre from the boundary and Rm is the maximum bubble radius. This leads to (i) the direct impact of a high-speed liquid jet on the boundary once it penetrates through the bubble, (ii) the direct contact of the bubble at high temperature and high pressure with the boundary, and (iii) the direct impingement of shock waves on the boundary once emitted. These phenomena have clear potential to damage the boundary, which are believed to be part of the mechanisms of cavitation damage. PMID:26442148

  10. Advanced Space Propulsion System Flowfield Modeling

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon

    1998-01-01

    Solar thermal upper stage propulsion systems currently under development utilize small low chamber pressure/high area ratio nozzles. Consequently, the resulting flow in the nozzle is highly viscous, with the boundary layer flow comprising a significant fraction of the total nozzle flow area. Conventional uncoupled flow methods which treat the nozzle boundary layer and inviscid flowfield separately by combining the two calculations via the influence of the boundary layer displacement thickness on the inviscid flowfield are not accurate enough to adequately treat highly viscous nozzles. Navier Stokes models such as VNAP2 can treat these flowfields but cannot perform a vacuum plume expansion for applications where the exhaust plume produces induced environments on adjacent structures. This study is built upon recently developed artificial intelligence methods and user interface methodologies to couple the VNAP2 model for treating viscous nozzle flowfields with a vacuum plume flowfield model (RAMP2) that is currently a part of the Plume Environment Prediction (PEP) Model. This study integrated the VNAP2 code into the PEP model to produce an accurate, practical and user friendly tool for calculating highly viscous nozzle and exhaust plume flowfields.

  11. Boundary objects in complementary and alternative medicine: acupuncture vs. Christian Science.

    PubMed

    Owens, Kellie

    2015-03-01

    Nearly four in ten American use complementary or alternative medicine (CAM) each year. Even with a large number of patients, CAM practitioners face scrutiny from physicians and biomedical researchers who, in an era of evidence-based medicine, argue there is little evidence to support CAM treatments. Examining how CAM has or has not been integrated into American health care is crucial in understanding the contemporary boundaries of healthcare systems. An analytical tool from science and technology studies, boundary objects, can help scholars of medicine understand which practices become integrated into these systems. Using a comparative analysis based on archival and interview data, this paper examines the use of boundary objects in two alternative medical practices - acupuncture and Christian Science. While boundary objects alone cannot explain what health practices succeed or fail, juxtaposing the use of boundary objects by different CAM groups identifies the work boundary objects do to facilitate integration and the conditions under which they "work." I find that acupuncturists' use of sterile needles as a boundary objects assists in their effective integration into U.S. healthcare because needles are both a symbol of biomedical prowess and a potentially unsafe device requiring regulation. Christian Scientists' use of the placebo effect as a boundary object has not succeeded because they fail to acknowledge the different contextual definitions of the placebo effect in biomedical communities. This comparative analysis highlights how context affects which boundary objects "work" for CAM practices and theorizes why alternative health practices succeed or fail to become integrated into healthcare systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Coupled ocean-atmosphere models feature systematic delay in Indian monsoon onset compared to their atmosphere-only component

    NASA Astrophysics Data System (ADS)

    Turner, Andrew

    2014-05-01

    In this study we examine monsoon onset characteristics in 20th century historical and AMIP integrations of the CMIP5 multi-model database. We use a period of 1979-2005, common to both the AMIP and historical integrations. While all available observed boundary conditions, including sea-surface temperature (SST), are prescribed in the AMIP integrations, the historical integrations feature ocean-atmosphere models that generate SSTs via air-sea coupled processes. The onset of Indian monsoon rainfall is shown to be systematically earlier in the AMIP integrations when comparing groups of models that provide both experiments, and in the multi-model ensemble means for each experiment in turn. We also test some common circulation indices of the monsoon onset including the horizontal shear in the lower troposphere and wind kinetic energy. Since AMIP integrations are forced by observed SSTs and CMIP5 models are known to have large cold SST biases in the northern Arabian Sea during winter and spring that limits their monsoon rainfall, we relate the delayed onset in the coupled historical integrations to cold Arabian Sea SST biases. This study provides further motivation for solving cold SST biases in the Arabian Sea in coupled models.

  13. Dissolved organic carbon fluxes in the Middle Atlantic Bight: An integrated approach based on satellite data and ocean model products

    NASA Astrophysics Data System (ADS)

    Mannino, Antonio; Signorini, Sergio R.; Novak, Michael G.; Wilkin, John; Friedrichs, Marjorie A. M.; Najjar, Raymond G.

    2016-02-01

    Continental margins play an important role in global carbon cycle, accounting for 15-21% of the global marine primary production. Since carbon fluxes across continental margins from land to the open ocean are not well constrained, we undertook a study to develop satellite algorithms to retrieve dissolved organic carbon (DOC) and combined these satellite data with physical circulation model products to quantify the shelf boundary fluxes of DOC for the U.S. Middle Atlantic Bight (MAB). Satellite DOC was computed through seasonal relationships of DOC with colored dissolved organic matter absorption coefficients, which were derived from an extensive set of in situ measurements. The multiyear time series of satellite-derived DOC stocks (4.9 Teragrams C; Tg) shows that freshwater discharge influences the magnitude and seasonal variability of DOC on the continental shelf. For the 2010-2012 period studied, the average total estuarine export of DOC into the MAB shelf is 0.77 Tg C yr-1 (year). The integrated DOC tracer fluxes across the shelf boundaries are 12.1 Tg C yr-1 entering the MAB from the southwest alongshore boundary, 18.5 Tg C yr-1 entering the MAB from the northeast alongshore boundary, and 29.0 Tg C yr-1 flowing out of the MAB across the entire length of the 100 m isobath. The magnitude of the cross-shelf DOC flux is quite variable in time (monthly) and space (north to south). The highly dynamic exchange of water along the shelf boundaries regulates the DOC budget of the MAB at subseasonal time scales.

  14. Dissolved organic carbon fluxes in the Middle Atlantic Bight: An integrated approach based on satellite data and ocean model products.

    PubMed

    Mannino, Antonio; Signorini, Sergio R; Novak, Michael G; Wilkin, John; Friedrichs, Marjorie A M; Najjar, Raymond G

    2016-02-01

    Continental margins play an important role in global carbon cycle, accounting for 15-21% of the global marine primary production. Since carbon fluxes across continental margins from land to the open ocean are not well constrained, we undertook a study to develop satellite algorithms to retrieve dissolved organic carbon (DOC) and combined these satellite data with physical circulation model products to quantify the shelf boundary fluxes of DOC for the U.S. Middle Atlantic Bight (MAB). Satellite DOC was computed through seasonal relationships of DOC with colored dissolved organic matter absorption coefficients, which were derived from an extensive set of in situ measurements. The multiyear time series of satellite-derived DOC stocks (4.9 Teragrams C; Tg) shows that freshwater discharge influences the magnitude and seasonal variability of DOC on the continental shelf. For the 2010-2012 period studied, the average total estuarine export of DOC into the MAB shelf is 0.77 Tg C yr -1 (year). The integrated DOC tracer fluxes across the shelf boundaries are 12.1 Tg C yr -1 entering the MAB from the southwest alongshore boundary, 18.5 Tg C yr -1 entering the MAB from the northeast alongshore boundary, and 29.0 Tg C yr -1 flowing out of the MAB across the entire length of the 100 m isobath. The magnitude of the cross-shelf DOC flux is quite variable in time (monthly) and space (north to south). The highly dynamic exchange of water along the shelf boundaries regulates the DOC budget of the MAB at subseasonal time scales.

  15. Asymptotic Analysis of the Ponzano-Regge Model with Non-Commutative Metric Boundary Data

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Raasakka, Matti

    2014-06-01

    We apply the non-commutative Fourier transform for Lie groups to formulate the non-commutative metric representation of the Ponzano-Regge spin foam model for 3d quantum gravity. The non-commutative representation allows to express the amplitudes of the model as a first order phase space path integral, whose properties we consider. In particular, we study the asymptotic behavior of the path integral in the semi-classical limit. First, we compare the stationary phase equations in the classical limit for three different non-commutative structures corresponding to the symmetric, Duflo and Freidel-Livine-Majid quantization maps. We find that in order to unambiguously recover discrete geometric constraints for non-commutative metric boundary data through the stationary phase method, the deformation structure of the phase space must be accounted for in the variational calculus. When this is understood, our results demonstrate that the non-commutative metric representation facilitates a convenient semi-classical analysis of the Ponzano-Regge model, which yields as the dominant contribution to the amplitude the cosine of the Regge action in agreement with previous studies. We also consider the asymptotics of the SU(2) 6j-symbol using the non-commutative phase space path integral for the Ponzano-Regge model, and explain the connection of our results to the previous asymptotic results in terms of coherent states.

  16. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  17. Development of a defect stream function, law of the wall/wake method for compressible turbulent boundary layers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wahls, Richard A.

    1990-01-01

    The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.

  18. A systematic comparison between visual cues for boundary detection.

    PubMed

    Mély, David A; Kim, Junkyung; McGill, Mason; Guo, Yuliang; Serre, Thomas

    2016-03-01

    The detection of object boundaries is a critical first step for many visual processing tasks. Multiple cues (we consider luminance, color, motion and binocular disparity) available in the early visual system may signal object boundaries but little is known about their relative diagnosticity and how to optimally combine them for boundary detection. This study thus aims at understanding how early visual processes inform boundary detection in natural scenes. We collected color binocular video sequences of natural scenes to construct a video database. Each scene was annotated with two full sets of ground-truth contours (one set limited to object boundaries and another set which included all edges). We implemented an integrated computational model of early vision that spans all considered cues, and then assessed their diagnosticity by training machine learning classifiers on individual channels. Color and luminance were found to be most diagnostic while stereo and motion were least. Combining all cues yielded a significant improvement in accuracy beyond that of any cue in isolation. Furthermore, the accuracy of individual cues was found to be a poor predictor of their unique contribution for the combination. This result suggested a complex interaction between cues, which we further quantified using regularization techniques. Our systematic assessment of the accuracy of early vision models for boundary detection together with the resulting annotated video dataset should provide a useful benchmark towards the development of higher-level models of visual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modelling the Centers of Galaxies

    NASA Technical Reports Server (NTRS)

    Smith, B. F.; Miller, R. H.; Young, Richard E. (Technical Monitor)

    1997-01-01

    The key to studying central regions by means of nobody numerical experiments is to concentrate on the central few parsecs of a galaxy, replacing the remainder of the galaxy by a suitable boundary condition, rather after the manner in which stellar interiors can be studied without a detailed stellar atmosphere by replacing the atmosphere with a boundary condition. Replacements must be carefully designed because the long range gravitational force means that the core region is sensitive to mass outside that region and because particles can exchange between the outer galaxy and the core region. We use periodic boundary conditions, coupled with an iterative procedure to generate initial particle loads in isothermal equilibrium. Angular momentum conservation is ensured for problems including systematic rotation by a circular reflecting boundary and by integrating in a frame that rotates with the mean flow. Mass beyond the boundary contributes to the gravitational potential, but does not participate in the dynamics. A symplectic integration scheme has been developed for rotating coordinate systems. This combination works well, leading to robust configurations. Some preliminary results with this combination show that: (1) Rotating systems are extremely sensitive to non-axisymmetric external potentials, and (2) that a second core, orbiting near the main core (like the M31 second core system), shows extremely rapid orbital decay. The experimental setups will be discussed, along with preliminary results.

  20. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  1. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals.

  2. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics

    PubMed Central

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y. C.

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals. PMID:26064591

  3. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed.more » The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and retrieve the required data, and their ability to integrate the data into environmental models using the FRAMES environment.« less

  4. The Boundary Integral Equation Method for Porous Media Flow

    NASA Astrophysics Data System (ADS)

    Anderson, Mary P.

    Just as groundwater hydrologists are breathing sighs of relief after the exertions of learning the finite element method, a new technique has reared its nodes—the boundary integral equation method (BIEM) or the boundary equation method (BEM), as it is sometimes called. As Liggett and Liu put it in the preface to The Boundary Integral Equation Method for Porous Media Flow, “Lately, the Boundary Integral Equation Method (BIEM) has emerged as a contender in the computation Derby.” In fact, in July 1984, the 6th International Conference on Boundary Element Methods in Engineering will be held aboard the Queen Elizabeth II, en route from Southampton to New York. These conferences are sponsored by the Department of Civil Engineering at Southampton College (UK), whose members are proponents of BIEM. The conferences have featured papers on applications of BIEM to all aspects of engineering, including flow through porous media. Published proceedings are available, as are textbooks on application of BIEM to engineering problems. There is even a 10-minute film on the subject.

  5. Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems.

    PubMed

    Vasseur, Romain; Trinh, Kien; Haas, Stephan; Saleur, Hubert

    2013-06-14

    A general framework is proposed to tackle analytically local quantum quenches in integrable impurity systems, combining a mapping onto a boundary problem with the form factor approach to boundary-condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and the distribution of the work done during the quantum quench. Our results display an interesting crossover physics characterized by the energy scale T(b) of the impurity corresponding to the Kondo temperature. We discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable impurity models and check our results using numerical methods.

  6. Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Adam Z.; Newman, John

    2008-08-29

    In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.

  7. Transport of contaminants in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Swan, P. R.

    1978-01-01

    A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.

  8. Collocation for an integral equation arising in duct acoustics

    NASA Technical Reports Server (NTRS)

    Moss, W. F.

    1986-01-01

    A mathematical model is developed to describe the effect of aircraft-engine inlet geometry on the reflected and radiated acoustic field without flow, as studied experimentally using a spinning-mode synthesizer by Silcox (1983). The acoustic pressure in the inlet interior and exterior is modeled by a pure cylindrical azimuthal mode for the Helmholtz equation with hardwall boundary and by the Helmholtz equation and the radiation condition at infinity, respectively. The analytical approach to the solution of the resulting boundary-value problem and the program implementation are explained; numerical results are presented in tables and graphs; and the uniqueness of the problem is demonstrated.

  9. Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models

    PubMed Central

    Geremia, Chris; White, P. J.; Wallen, Rick L.; Watson, Fred G. R.; Treanor, John J.; Borkowski, John; Potter, Christopher S.; Crabtree, Robert L.

    2011-01-01

    Long distance migrations by ungulate species often surpass the boundaries of preservation areas where conflicts with various publics lead to management actions that can threaten populations. We chose the partially migratory bison (Bison bison) population in Yellowstone National Park as an example of integrating science into management policies to better conserve migratory ungulates. Approximately 60% of these bison have been exposed to bovine brucellosis and thousands of migrants exiting the park boundary have been culled during the past two decades to reduce the risk of disease transmission to cattle. Data were assimilated using models representing competing hypotheses of bison migration during 1990–2009 in a hierarchal Bayesian framework. Migration differed at the scale of herds, but a single unifying logistic model was useful for predicting migrations by both herds. Migration beyond the northern park boundary was affected by herd size, accumulated snow water equivalent, and aboveground dried biomass. Migration beyond the western park boundary was less influenced by these predictors and process model performance suggested an important control on recent migrations was excluded. Simulations of migrations over the next decade suggest that allowing increased numbers of bison beyond park boundaries during severe climate conditions may be the only means of avoiding episodic, large-scale reductions to the Yellowstone bison population in the foreseeable future. This research is an example of how long distance migration dynamics can be incorporated into improved management policies. PMID:21340035

  10. A Global Interpolation Function (GIF) boundary element code for viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Lafe, O.; Cheng, A. H-D.

    1995-01-01

    Using global interpolation functions (GIF's), boundary element solutions are obtained for two- and three-dimensional viscous flows. The solution is obtained in the form of a boundary integral plus a series of global basis functions. The unknown coefficients of the GIF's are determined to ensure the satisfaction of the governing equations at selected collocation points. The values of the coefficients involved in the boundary integral equations are determined by enforcing the boundary conditions. Both primitive variable and vorticity-velocity formulations are examined.

  11. Numerical simulation of the generation, propagation, and diffraction of nonlinear waves in a rectangular basin: A three-dimensional numerical wave tank

    NASA Astrophysics Data System (ADS)

    Darwiche, Mahmoud Khalil M.

    The research presented herein is a contribution to the understanding of the numerical modeling of fully nonlinear, transient water waves. The first part of the work involves the development of a time-domain model for the numerical generation of fully nonlinear, transient waves by a piston type wavemaker in a three-dimensional, finite, rectangular tank. A time-domain boundary-integral model is developed for simulating the evolving fluid field. A robust nonsingular, adaptive integration technique for the assembly of the boundary-integral coefficient matrix is developed and tested. A parametric finite-difference technique for calculating the fluid- particle kinematics is also developed and tested. A novel compatibility and continuity condition is implemented to minimize the effect of the singularities that are inherent at the intersections of the various Dirichlet and/or Neumann subsurfaces. Results are presented which demonstrate the accuracy and convergence of the numerical model. The second portion of the work is a study of the interaction of the numerically-generated, fully nonlinear, transient waves with a bottom-mounted, surface-piercing, vertical, circular cylinder. The numerical model developed in the first part of this dissertation is extended to include the presence of the cylinder at the centerline of the basin. The diffraction of the numerically generated waves by the cylinder is simulated, and the particle kinematics of the diffracted flow field are calculated and reported. Again, numerical results showing the accuracy and convergence of the extended model are presented.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, Yoshihiro

    Heat-conduction analysis under steady state without heat generation can easily be treated by the boundary element method. However, in the case with heat conduction with heat generation can approximately be solved without a domain integral by an improved multiple-reciprocity boundary element method. The convention multiple-reciprocity boundary element method is not suitable for complicated heat generation. In the improved multiple-reciprocity boundary element method, on the other hand, the domain integral in each step is divided into point, line, and area integrals. In order to solve the problem, the contour lines of heat generation, which approximate the actual heat generation, are used.

  13. An exterior Poisson solver using fast direct methods and boundary integral equations with applications to nonlinear potential flow

    NASA Technical Reports Server (NTRS)

    Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.

    1986-01-01

    A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.

  14. Initial-boundary value problems associated with the Ablowitz-Ladik system

    NASA Astrophysics Data System (ADS)

    Xia, Baoqiang; Fokas, A. S.

    2018-02-01

    We employ the Ablowitz-Ladik system as an illustrative example in order to demonstrate how to analyze initial-boundary value problems for integrable nonlinear differential-difference equations via the unified transform (Fokas method). In particular, we express the solutions of the integrable discrete nonlinear Schrödinger and integrable discrete modified Korteweg-de Vries equations in terms of the solutions of appropriate matrix Riemann-Hilbert problems. We also discuss in detail, for both the above discrete integrable equations, the associated global relations and the process of eliminating of the unknown boundary values.

  15. Some practical turbulence modeling options for Reynolds-averaged full Navier-Stokes calculations of three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1993-01-01

    New turbulence modeling options recently implemented for the 3-D version of Proteus, a Reynolds-averaged compressible Navier-Stokes code, are described. The implemented turbulence models include: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, the Chien k-epsilon model, and the Launder-Sharma k-epsilon model. Features of this turbulence modeling package include: well documented and easy to use turbulence modeling options, uniform integration of turbulence models from different classes, automatic initialization of turbulence variables for calculations using one- or two-equation turbulence models, multiple solid boundaries treatment, and fully vectorized L-U solver for one- and two-equation models. Validation test cases include the incompressible and compressible flat plate turbulent boundary layers, turbulent developing S-duct flow, and glancing shock wave/turbulent boundary layer interaction. Good agreement is obtained between the computational results and experimental data. Sensitivity of the compressible turbulent solutions with the method of y(sup +) computation, the turbulent length scale correction, and some compressibility corrections are examined in detail. The test cases show that the highly optimized one-and two-equation turbulence models can be used in routine 3-D Navier-Stokes computations with no significant increase in CPU time as compared with the Baldwin-Lomax algebraic model.

  16. The influence of a wind tunnel on helicopter rotational noise: Formulation of analysis

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    An analytical model is discussed that can be used to examine the effects of wind tunnel walls on helicopter rotational noise. A complete physical model of an acoustic source in a wind tunnel is described and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. The simplified physical model is then modeled as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. Details of generating a suitable Green's function and integral equation are included and the equation is discussed and also given for a two-dimensional case.

  17. Integral methods of solving boundary-value problems of nonstationary heat conduction and their comparative analysis

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2017-11-01

    The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.

  18. A computer model for the recombination zone of a microwave-plasma electrothermal rocket

    NASA Technical Reports Server (NTRS)

    Filpus, John W.; Hawley, Martin C.

    1987-01-01

    As part of a study of the microwave-plasma electrothermal rocket, a computer model of the flow regime below the plasma has been developed. A second-order model, including axial dispersion of energy and material and boundary conditions at infinite length, was developed to partially reproduce the absence of mass-flow rate dependence that was seen in experimental temperature profiles. To solve the equations of the model, a search technique was developed to find the initial derivatives. On integrating with a trial set of initial derivatives, the values and their derivatives were checked to judge whether the values were likely to attain values outside the practical regime, and hence, the boundary conditions at infinity were likely to be violated. Results are presented and directions for further development are suggested.

  19. Some boundary-value problems for anisotropic quarter plane

    NASA Astrophysics Data System (ADS)

    Arkhypenko, K. M.; Kryvyi, O. F.

    2018-04-01

    To solve the mixed boundary-value problems of the anisotropic elasticity for the anisotropic quarter plane, a method based on the use of the space of generalized functions {\\Im }{\\prime }({\\text{R}}+2) with slow growth properties was developed. The two-dimensional integral Fourier transform was used to construct the system of fundamental solutions for the anisotropic quarter plane in this space and a system of eight boundary integral relations was obtained, which allows one to reduce the mixed boundary-value problems for the anisotropic quarter plane directly to systems of singular integral equations with fixed singularities. The exact solutions of these systems were found by using the integral Mellin transform. The asymptotic behavior of solutions was investigated at the vertex of the quarter plane.

  20. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL service is provided for semantic-based querying of the ontology.

  1. Integral equation theory study on the phase separation in star polymer nanocomposite melts.

    PubMed

    Zhao, Lei; Li, Yi-Gui; Zhong, Chongli

    2007-10-21

    The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.

  2. Determinant representation of the domain-wall boundary condition partition function of a Richardson-Gaudin model containing one arbitrary spin

    NASA Astrophysics Data System (ADS)

    Faribault, Alexandre; Tschirhart, Hugo; Muller, Nicolas

    2016-05-01

    In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N-1 spins \\frac{1}{2}, contains one arbitrarily large spin S. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly nonlinear Bethe equations. It can therefore offer significant gains in stability and computation speed.

  3. An accurate boundary element method for the exterior elastic scattering problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Xu, Liwei; Yin, Tao

    2017-11-01

    This paper is concerned with a Galerkin boundary element method solving the two dimensional exterior elastic wave scattering problem. The original problem is first reduced to the so-called Burton-Miller [1] boundary integral formulation, and essential mathematical features of its variational form are discussed. In numerical implementations, a newly-derived and analytically accurate regularization formula [2] is employed for the numerical evaluation of hyper-singular boundary integral operator. A new computational approach is employed based on the series expansions of Hankel functions for the computation of weakly-singular boundary integral operators during the reduction of corresponding Galerkin equations into a discrete linear system. The effectiveness of proposed numerical methods is demonstrated using several numerical examples.

  4. A finite element-boundary integral method for scattering and radiation by two- and three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.

    1991-01-01

    A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exac, and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite-element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement.

  5. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    NASA Astrophysics Data System (ADS)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach), and iii) process-level evaluation at climate time-scales. The advantages and disadvantages of each approach will be identified and discussed, and some thoughts about possible future developments will be given.

  6. [Three-dimensional data fusion method for tooth crown and root based on curvature continuity algorithm].

    PubMed

    Zhao, Y J; Liu, Y; Sun, Y C; Wang, Y

    2017-08-18

    To explore a three-dimensional (3D) data fusion and integration method of optical scanning tooth crowns and cone beam CT (CBCT) reconstructing tooth roots for their natural transition in the 3D profile. One mild dental crowding case was chosen from orthodontics clinics with full denture. The CBCT data were acquired to reconstruct the dental model with tooth roots by Mimics 17.0 medical imaging software, and the optical impression was taken to obtain the dentition model with high precision physiological contour of crowns by Smart Optics dental scanner. The two models were doing 3D registration based on their common part of the crowns' shape in Geomagic Studio 2012 reverse engineering software. The model coordinate system was established by defining the occlusal plane. crown-gingiva boundary was extracted from optical scanning model manually, then crown-root boundary was generated by offsetting and projecting crown-gingiva boundary to the root model. After trimming the crown and root models, the 3D fusion model with physiological contour crown and nature root was formed by curvature continuity filling algorithm finally. In the study, 10 patients with dentition mild crowded from the oral clinics were followed up with this method to obtain 3D crown and root fusion models, and 10 high qualification doctors were invited to do subjective evaluation of these fusion models. This study based on commercial software platform, preliminarily realized the 3D data fusion and integration method of optical scanning tooth crowns and CBCT tooth roots with a curvature continuous shape transition. The 10 patients' 3D crown and root fusion models were constructed successfully by the method, and the average score of the doctors' subjective evaluation for these 10 models was 8.6 points (0-10 points). which meant that all the fusion models could basically meet the need of the oral clinics, and also showed the method in our study was feasible and efficient in orthodontics study and clinics. The method of this study for 3D crown and root data fusion could obtain an integrate tooth or dental model more close to the nature shape. CBCT model calibration may probably improve the precision of the fusion model. The adaptation of this method for severe dentition crowding and micromaxillary deformity needs further research.

  7. Research on the Automatic Fusion Strategy of Fixed Value Boundary Based on the Weak Coupling Condition of Grid Partition

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.

    2018-03-01

    With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.

  8. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  9. A New Formulation of Time Domain Boundary Integral Equation for Acoustic Wave Scattering in the Presence of a Uniform Mean Flow

    NASA Technical Reports Server (NTRS)

    Hu, Fang; Pizzo, Michelle E.; Nark, Douglas M.

    2017-01-01

    It has been well-known that under the assumption of a constant uniform mean flow, the acoustic wave propagation equation can be formulated as a boundary integral equation, in both the time domain and the frequency domain. Compared with solving partial differential equations, numerical methods based on the boundary integral equation have the advantage of a reduced spatial dimension and, hence, requiring only a surface mesh. However, the constant uniform mean flow assumption, while convenient for formulating the integral equation, does not satisfy the solid wall boundary condition wherever the body surface is not aligned with the uniform mean flow. In this paper, we argue that the proper boundary condition for the acoustic wave should not have its normal velocity be zero everywhere on the solid surfaces, as has been applied in the literature. A careful study of the acoustic energy conservation equation is presented that shows such a boundary condition in fact leads to erroneous source or sink points on solid surfaces not aligned with the mean flow. A new solid wall boundary condition is proposed that conserves the acoustic energy and a new time domain boundary integral equation is derived. In addition to conserving the acoustic energy, another significant advantage of the new equation is that it is considerably simpler than previous formulations. In particular, tangential derivatives of the solution on the solid surfaces are no longer needed in the new formulation, which greatly simplifies numerical implementation. Furthermore, stabilization of the new integral equation by Burton-Miller type reformulation is presented. The stability of the new formulation is studied theoretically as well as numerically by an eigenvalue analysis. Numerical solutions are also presented that demonstrate the stability of the new formulation.

  10. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  11. A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding.

    PubMed

    Taillefumier, Thibaud; Magnasco, Marcelo O

    2013-04-16

    Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H < 1/2, the probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.

  12. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning.

    PubMed

    Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi

    2017-11-28

    For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.

  13. Spontaneous Imbibition Process in Micro-Nano Fractal Capillaries Considering Slip Flow

    NASA Astrophysics Data System (ADS)

    Shen, Yinghao; Li, Caoxiong; Ge, Hongkui; Guo, Xuejing; Wang, Shaojun

    An imbibition process of water into a matrix is required to investigate the influences of large-volume fracturing fluids on gas production of unconventional formations. Slip flow has been recognized by recent studies as a major mechanism of fluid transport in nanotubes. For nanopores in shale, a slip boundary is nonnegligible in the imbibition process. In this study, we established an analytic equation of spontaneous imbibition considering slip effects in capillaries. A spontaneous imbibition model that couples the analytic equation considering the slip effect was constructed based on fractal theory. We then used a model for various conditions, such as slip boundary, pore structure, and fractal dimension of pore tortuosity, to capture the imbibition characteristics considering the slip effect. A dynamic contact angle was integrated into the modeling. Results of our study verify that the slip boundary influences water imbibition significantly. The imbibition speed is significantly improved when slip length reaches the equivalent diameter of a tube. Therefore, disregarding the slip effect will underestimate the imbibition speed in shale samples.

  14. Numerical modeling of Stokes flows over a superhydrophobic surface containing gas bubbles

    NASA Astrophysics Data System (ADS)

    Ageev, A. I.; Golubkina, I. V.; Osiptsov, A. N.

    2017-10-01

    This paper continues the numerical modeling of Stokes flows near cavities of a superhydrophobic surface, occupied by gas bubbles, based on the Boundary Element Method (BEM). The aim of the present study is to estimate the friction reduction (pressure drop) in a microchannel with a bottom superhydrophobic surface, the texture of which is formed by a periodic system of striped rectangular microcavities containing compressible gas bubbles. The model proposed takes into account the streamwise variation of the bubble shift into the cavities, caused by the longitudinal pressure gradient in the channel flow. The solution for the macroscopic (averaged) flow in the microchannel, constructed using an effective slip boundary condition on the superhydrophobic bottom wall, is matched with the solution of the Stokes problem at the microscale of a single cavity containing a gas bubble. The 2D Stokes problems of fluid flow over single cavities containing curved phase interfaces with the condition of zero shear stress are reduced to the boundary integral equations which are solved using the BEM method.

  15. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning

    NASA Astrophysics Data System (ADS)

    Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi

    2017-11-01

    For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.

  16. Numerical Simulation of Boundary Layer Ingesting (BLI) Inlet-Fan Interaction

    NASA Technical Reports Server (NTRS)

    Giuliani, James; Chen, Jen-Ping; Beach, Timothy; Bakhle, Milind

    2014-01-01

    Future civil transport designs may incorporate engine inlets integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlet ingests the lower momentum boundary layer flow. Previous studies have shown, however, that efficiency benefits of Boundary Layer Ingesting (BLI) ingestion are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This paper presents an effort to extend the modeling capabilities of an existing rotating turbomachinery unsteady analysis code to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations, such as the development of rotating stall and inlet distortion through compressor stages. This paper describes the first phase of an effort to extend the TURBO model to calculate the external and inlet flowfield upstream of fan so that accurate pressure distortions that result from BLI configurations can be computed and used to analyze fan aerodynamics and structural response. To validate the TURBO program modifications for the BLI flowfield, experimental test data obtained by NASA for a flushmounted S-duct with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Quantitative data is presented that indicates good predictive capability of the model in the upstream flow. A representative fan is attached to the inlet and results are presented for the coupled inlet/fan model. The impact on the total pressure distortion at the AIP after the fan is attached is examined.

  17. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States

    NASA Astrophysics Data System (ADS)

    Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.

    2018-03-01

    This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.

  18. Dissolved organic carbon fluxes in the Middle Atlantic Bight: An integrated approach based on satellite data and ocean model products

    PubMed Central

    Mannino, Antonio; Signorini, Sergio R.; Novak, Michael G.; Wilkin, John; Friedrichs, Marjorie A. M.; Najjar, Raymond G.

    2017-01-01

    Continental margins play an important role in global carbon cycle, accounting for 15–21% of the global marine primary production. Since carbon fluxes across continental margins from land to the open ocean are not well constrained, we undertook a study to develop satellite algorithms to retrieve dissolved organic carbon (DOC) and combined these satellite data with physical circulation model products to quantify the shelf boundary fluxes of DOC for the U.S. Middle Atlantic Bight (MAB). Satellite DOC was computed through seasonal relationships of DOC with colored dissolved organic matter absorption coefficients, which were derived from an extensive set of in situ measurements. The multiyear time series of satellite-derived DOC stocks (4.9 Teragrams C; Tg) shows that freshwater discharge influences the magnitude and seasonal variability of DOC on the continental shelf. For the 2010–2012 period studied, the average total estuarine export of DOC into the MAB shelf is 0.77 Tg C yr−1 (year). The integrated DOC tracer fluxes across the shelf boundaries are 12.1 Tg C yr−1 entering the MAB from the southwest alongshore boundary, 18.5 Tg C yr−1 entering the MAB from the northeast alongshore boundary, and 29.0 Tg C yr−1 flowing out of the MAB across the entire length of the 100 m isobath. The magnitude of the cross-shelf DOC flux is quite variable in time (monthly) and space (north to south). The highly dynamic exchange of water along the shelf boundaries regulates the DOC budget of the MAB at subseasonal time scales. PMID:29201582

  19. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  20. Further development and implementation of the DIWA distributed hydrological model-based integrated hydroinformatics system in the Danube River Basin for supporting decision making in water management

    NASA Astrophysics Data System (ADS)

    Szabó, J. A.; Réti, G. Z.; Tóth, T.

    2012-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date Spatial Decision Support Systems (SDSS) for aiding decision-making processes to improve water management. One of the most important parts of such an SDSS is a distributed hydrologic model-based integrated hydroinformatics system to analyze the different scenarios. The less successful statistical and/or empirical model-experiments of earlier decades have highlighted the importance of paradigm shift in hydrological modelling approach towards the physically based distributed models, to better describe the complex hydrological processes even on catchments of more ten thousands of square km. Answers to questions like what are the effects of human actions in the catchment area (e. g. forestation or deforestation) or the changing of climate/land use on the flood, drought, or water scarcity, or what is the optimal strategy for planning and/or operating reservoirs, have become increasingly important. Nowadays the answers to this kind of questions can be provided more easily than before. The progress of applied mathematical methods, the advanced state of computer technology as well as the development of remote sensing and meteorological radar technology have accelerated the research capable of answering these questions using well-designed integrated hydroinformatics systems. With most emphasis on the recent years of extensive scientific and computational development HYDROInform UnLtd developed a distributed hydrological model-based integrated hydroinformatics system for supporting the various decisions in water management. Our developed integrated model has two basic pillars: the DIWA (DIstributed WAtershed) hydrologic, and the well-known HEC-RAS hydraulic models. The DIWA is a dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. According to the philosophy of the distributed model approach the catchment is divided into basic elements, cells where the basin characteristics, parameters, physical properties, and the boundary conditions are applied in the centre of the cell, and the cell is supposed to be homogenous between the block boundaries. The neighbouring cells are connected to each other according to runoff hierarchy (local drain direction). Applying the hydrological mass balance and the adequate dynamic equations to these cells, the result is a distributed hydrological model on a continuous, 3D gridded domain. For calculating the water level as well the HEC-RASS hydraulic model has been embedded into DIWA model. In this integration the DIWA model provides the upper boundary conditions for HEC-RAS, and then HEC-RAS provides the water levels along the lowland parts of the river-network. In this presentation, our recently developed integrated hydroinformatics system and its implementation for the middle-upper part of the Danube River Basin will be reported. Following an outline of the backgrounds, an overview on the DIWA and the integrated model-system will be given. The implementation of this integrated hydroinformatics system in the Danube River Basin will also be presented, including a summary of the developed 1km resolution geo-dataset for the modelling. Then some demonstrative results of the use of the pre-calibrated system will be discussed. Finally, an outline of the future steps of the development will be discussed.

  1. A new momentum integral method for approximating bed shear stress

    NASA Astrophysics Data System (ADS)

    Wengrove, M. E.; Foster, D. L.

    2016-02-01

    In nearshore environments, accurate estimation of bed stress is critical to estimate morphologic evolution, and benthic mass transfer fluxes. However, bed shear stress over mobile boundaries in wave environments is notoriously difficult to estimate due to the non-equilibrium boundary layer. Approximating the friction velocity with a traditional logarithmic velocity profile model is common, but an unsteady non-uniform flow field violates critical assumptions in equilibrium boundary layer theory. There have been several recent developments involving stress partitioning through an examination of the momentum transfer contributions that lead to improved estimates of the bed stress. For the case of single vertical profile observations, Mehdi et al. (2014) developed a full momentum integral-based method for steady-unidirectional flow that integrates the streamwise Navier-Stokes equation three times to an arbitrary position within the boundary layer. For the case of two-dimensional velocity observations, Rodriguez-Abudo and Foster (2014) were able to examine the momentum contributions from waves, turbulence and the bedform in a spatial and temporal averaging approach to the Navier-Stokes equations. In this effort, the above methods are combined to resolve the bed shear stress in both short and long wave dominated environments with a highly mobile bed. The confluence is an integral based approach for determining bed shear stress that makes no a-priori assumptions of boundary layer shape and uses just a single velocity profile time series for both the phase dependent case (under waves) and the unsteady case (under solitary waves). The developed method is applied to experimental observations obtained in a full scale laboratory investigation (Oregon State's Large Wave Flume) of the nearbed velocity field over a rippled sediment bed in oscillatory flow using both particle image velocimetry and a profiling acoustic Doppler velocimeter. This method is particularly relevant for small scale field observations and laboratory observations.

  2. A combined finite element-boundary element formulation for solution of two-dimensional problems via CGFFT

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Jin, Jian-Ming; Volakis, John L.

    1990-01-01

    A method for the computation of electromagnetic scattering from arbitrary two-dimensional bodies is presented. The method combines the finite element and boundary element methods leading to a system for solution via the conjugate gradient Fast Fourier Transform (FFT) algorithm. Two forms of boundaries aimed at reducing the storage requirement of the boundary integral are investigated. It is shown that the boundary integral becomes convolutional when a circular enclosure is chosen, resulting in reduced storage requirement when the system is solved via the conjugate gradient FFT method. The same holds for the ogival enclosure, except that some of the boundary integrals are not convolutional and must be carefully treated to maintain O(N) memory requirement. Results for several circular and ogival structures are presented and shown to be in excellent agreement with those obtained by traditional methods.

  3. Integral Method of Boundary Characteristics: Neumann Condition

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2018-05-01

    A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.

  4. The boundary structure in the analysis of reversibly interacting systems by sedimentation velocity.

    PubMed

    Zhao, Huaying; Balbo, Andrea; Brown, Patrick H; Schuck, Peter

    2011-05-01

    Sedimentation velocity (SV) experiments of heterogeneous interacting systems exhibit characteristic boundary structures that can usually be very easily recognized and quantified. For slowly interacting systems, the boundaries represent concentrations of macromolecular species sedimenting at different rates, and they can be interpreted directly with population models based solely on the mass action law. For fast reactions, migration and chemical reactions are coupled, and different, but equally easily discernable boundary structures appear. However, these features have not been commonly utilized for data analysis, for the lack of an intuitive and computationally simple model. The recently introduced effective particle theory (EPT) provides a suitable framework. Here, we review the motivation and theoretical basis of EPT, and explore practical aspects for its application. We introduce an EPT-based design tool for SV experiments of heterogeneous interactions in the software SEDPHAT. As a practical tool for the first step of data analysis, we describe how the boundary resolution of the sedimentation coefficient distribution c(s) can be further improved with a Bayesian adjustment of maximum entropy regularization to the case of heterogeneous interactions between molecules that have been previously studied separately. This can facilitate extracting the characteristic boundary features by integration of c(s). In a second step, these are assembled into isotherms as a function of total loading concentrations and fitted with EPT. Methods for addressing concentration errors in isotherms are discussed. Finally, in an experimental model system of alpha-chymotrypsin interacting with soybean trypsin inhibitor, we show that EPT provides an excellent description of the experimental sedimentation boundary structure of fast interacting systems. Published by Elsevier Inc.

  5. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    PubMed

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America

  6. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems; results and implications of numerical experiments

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.

    1987-01-01

    The most critical and difficult aspect of defining a groundwater system or problem for conceptual analysis or numerical simulation is the selection of boundary conditions . This report demonstrates the effects of different boundary conditions on the steady-state response of otherwise similar ground-water systems to a pumping stress. Three series of numerical experiments illustrate the behavior of three hypothetical groundwater systems that are rectangular sand prisms with the same dimensions but with different combinations of constant-head, specified-head, no-flow, and constant-flux boundary conditions. In the first series of numerical experiments, the heads and flows in all three systems are identical, as are the hydraulic conductivity and system geometry . However, when the systems are subjected to an equal stress by a pumping well in the third series, each differs significantly in its response . The highest heads (smallest drawdowns) and flows occur in the systems most constrained by constant- or specified-head boundaries. These and other observations described herein are important in steady-state calibration, which is an integral part of simulating many ground-water systems. Because the effects of boundary conditions on model response often become evident only when the system is stressed, a close match between the potential distribution in the model and that in the unstressed natural system does not guarantee that the model boundary conditions correctly represent those in the natural system . In conclusion, the boundary conditions that are selected for simulation of a ground-water system are fundamentally important to groundwater systems analysis and warrant continual reevaluation and modification as investigation proceeds and new information and understanding are acquired.

  7. Numerical modeling of the atmosphere with an isentropic vertical coordinate

    NASA Technical Reports Server (NTRS)

    Hsu, Yueh-Jiuan G.; Arakawa, Akio

    1990-01-01

    A theta-coordinate model simulating the nonlinear evolution of a baroclinic wave is presented. In the model, vertical discretization maintains important integral constraints such as conservation of the angular momentum and total energy. A massless-layer approach is used in the treatment of the intersections of coordinate surfaces with the lower boundary. This formally eliminates the intersection problem, but raises other computational problems. Horizontal discretization of the continuity and momentum equations in the model are designed to overcome these problems. Selected results from a 10-day integration with the 25-layer, beta-plane version of the model are presented. It is concluded that the model can simulate the nonlinear evolution of a baroclinic wave and associated dynamical processes without major computational difficulties.

  8. Shared mental models of integrated care: aligning multiple stakeholder perspectives.

    PubMed

    Evans, Jenna M; Baker, G Ross

    2012-01-01

    Health service organizations and professionals are under increasing pressure to work together to deliver integrated patient care. A common understanding of integration strategies may facilitate the delivery of integrated care across inter-organizational and inter-professional boundaries. This paper aims to build a framework for exploring and potentially aligning multiple stakeholder perspectives of systems integration. The authors draw from the literature on shared mental models, strategic management and change, framing, stakeholder management, and systems theory to develop a new construct, Mental Models of Integrated Care (MMIC), which consists of three types of mental models, i.e. integration-task, system-role, and integration-belief. The MMIC construct encompasses many of the known barriers and enablers to integrating care while also providing a comprehensive, theory-based framework of psychological factors that may influence inter-organizational and inter-professional relations. While the existing literature on integration focuses on optimizing structures and processes, the MMIC construct emphasizes the convergence and divergence of stakeholders' knowledge and beliefs, and how these underlying cognitions influence interactions (or lack thereof) across the continuum of care. MMIC may help to: explain what differentiates effective from ineffective integration initiatives; determine system readiness to integrate; diagnose integration problems; and develop interventions for enhancing integrative processes and ultimately the delivery of integrated care. Global interest and ongoing challenges in integrating care underline the need for research on the mental models that characterize the behaviors of actors within health systems; the proposed framework offers a starting point for applying a cognitive perspective to health systems integration.

  9. Vanishing Boundaries between Science and Art: Modelling Effective Middle Years of Schooling Practice in Pre-Service Science Education

    ERIC Educational Resources Information Center

    Paige, Kathryn; Whitney, John

    2008-01-01

    This paper describes an innovation in science pre-service education that endeavours to increase student engagement in learning and doing science in the middle years through integrating science, mathematics and art. (Contains 8 figures.)

  10. Simulating land-atmosphere feedbacks and response to widespread forest disturbance: The role of lower boundary configuration and dynamic water table in meteorological modeling

    NASA Astrophysics Data System (ADS)

    Forrester, M.; Maxwell, R. M.; Bearup, L. A.; Gochis, D.

    2017-12-01

    Numerical meteorological models are frequently used to diagnose land-atmosphere interactions and predict large-scale response to extreme or hazardous events, including widespread land disturbance or perturbations to near-surface moisture. However, few atmospheric modeling platforms consider the impact that dynamic groundwater storage, specifically 3D subsurface flow, has on land-atmosphere interactions. In this study, we use the Weather Research and Forecasting (WRF) mesoscale meteorological model to identify ecohydrologic and land-atmosphere feedbacks to disturbance by the mountain pine beetle (MPB) over the Colorado Headwaters region. Disturbance simulations are applied to WRF with various lower boundary configurations: Including default Noah land surface model soil moisture representation; a version of WRF coupled to ParFlow (PF), an integrated groundwater-surface water model that resolves variably saturated flow in the subsurface; and WRF coupled to PF in a static water table version, simulating only vertical and no lateral subsurface flow. Our results agree with previous literature showing MPB-induced reductions in canopy transpiration in all lower boundary scenarios, as well as energy repartitioning, higher water tables, and higher planetary boundary layer over infested regions. Simulations show that expanding from local to watershed scale results in significant damping of MPB signal as unforested and unimpacted regions are added; and, while deforestation appears to have secondary feedbacks to planetary boundary layer and convection, these slight perturbations to cumulative summer precipitation are insignificant in the context of ensemble methodologies. Notably, the results suggest that groundwater representation in atmospheric modeling affects the response intensity of a land disturbance event. In the WRF-PF case, energy and atmospheric processes are more sensitive to disturbance in regions with higher water tables. Also, when dynamic subsurface hydrology is removed, WRF simulates a greater response to MPB at the land-atmosphere interface, including greater changes to daytime skin temperature, Bowen ratio and near-surface humidity. These findings highlight lower boundary representations in computational meteorology and numerical land-atmosphere modeling.

  11. DYNAMIC PLANE-STRAIN SHEAR RUPTURE WITH A SLIP-WEAKENING FRICTION LAW CALCULATED BY A BOUNDARY INTEGRAL METHOD.

    USGS Publications Warehouse

    Andrews, D.J.

    1985-01-01

    A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.

  12. Fluid-structure interaction of turbulent boundary layer over a compliant surface

    NASA Astrophysics Data System (ADS)

    Anantharamu, Sreevatsa; Mahesh, Krishnan

    2016-11-01

    Turbulent flows induce unsteady loads on surfaces in contact with them, which affect material stresses, surface vibrations and far-field acoustics. We are developing a numerical methodology to study the coupled interaction of a turbulent boundary layer with the underlying surface. The surface is modeled as a linear elastic solid, while the fluid follows the spatially filtered incompressible Navier-Stokes equations. An incompressible Large Eddy Simulation finite volume flow approach based on the algorithm of Mahesh et al. is used in the fluid domain. The discrete kinetic energy conserving property of the method ensures robustness at high Reynolds number. The linear elastic model in the solid domain is integrated in space using finite element method and in time using the Newmark time integration method. The fluid and solid domain solvers are coupled using both weak and strong coupling methods. Details of the algorithm, validation, and relevant results will be presented. This work is supported by NSWCCD, ONR.

  13. Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model

    NASA Technical Reports Server (NTRS)

    Gray, Justin; Mader, Charles A.; Kenway, Gaetan K. W.; Martins, Joaquim R. R. A.

    2017-01-01

    Although boundary layer ingestion (BLI), or wake ingestion, is commonly applied in marine propulsion applications, it has not yet seen wide-spread adoption in aircraft applications. However, recent studies have predicted that BLI offers a potential for a 10 reduction in aircraft fuel burn, even on a fairly traditional aircraft configuration. This dramatic reduction in fuel burn is achieved via tight integration of the propulsion system and airframe aerodynamics, but actually realizing such large performance gains will require modifying the aircraft design process to account for this integration. Traditionally, in aircraft design, the airframe and the propulsion system are designed separately and then the engine sizing is managed with a rubber-engine approach. This works when the propulsion system is placed in the free-stream air, away from the aerodynamic influence of the airframe, and it is reasonable to assume that small changes to either system won't have a strong impact on the other.

  14. Experiments on integral length scale control in atmospheric boundary layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Poddar, Kamal

    2011-11-01

    Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.

  15. Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

    PubMed

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.

  16. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  17. An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations

    NASA Astrophysics Data System (ADS)

    Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.

    2018-06-01

    We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.

  18. Energy Based Multiscale Modeling with Non-Periodic Boundary Conditions

    DTIC Science & Technology

    2013-05-13

    below in Figure 8. At each incremental step in the analysis , the user material defined subroutine (UMAT) was utilized to perform the communication...initiation and modeling using XFEM. Appropriate localization schemes will be developed to allow for deformations conducive for crack opening...REFERENCES 1. Talreja R., 2006, “Damage analysis for structural integrity and durability of composite materials ,” Fatigue & Fracture of

  19. Simulation of Electric Propulsion Thrusters (Preprint)

    DTIC Science & Technology

    2011-02-07

    activity concerns the plumes produced by electric thrusters. Detailed information on the plumes is required for safe integration of the thruster...ground-based laboratory facilities. Device modelling also plays an important role in plume simulations by providing accurate boundary conditions at...methods used to model the flow of gas and plasma through electric propulsion devices. Discussion of the numerical analysis of other aspects of

  20. Interface tension in the improved Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Hasenbusch, Martin

    2017-09-01

    We study interfaces with periodic boundary conditions in the low-temperature phase of the improved Blume-Capel model on the simple cubic lattice. The interface free energy is defined by the difference of the free energy of a system with antiperiodic boundary conditions in one of the directions and that of a system with periodic boundary conditions in all directions. It is obtained by integration of differences of the corresponding internal energies over the inverse temperature. These differences can be computed efficiently by using a variance reduced estimator that is based on the exchange cluster algorithm. The interface tension is obtained from the interface free energy by using predictions based on effective interface models. By using our numerical results for the interface tension σ and the correlation length ξ obtained in previous work, we determine the universal amplitude ratios R2 nd ,+=σ0f2nd ,+ 2=0.3863 (6 ) , R2 nd ,-=σ0f2nd ,- 2=0.1028 (1 ) , and Rexp ,-=σ0fexp,- 2=0.1077 (3 ) . Our results are consistent with those obtained previously for the three-dimensional Ising model, confirming the universality hypothesis.

  1. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  2. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai

    2009-03-14

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  3. Bounding the electrostatic free energies associated with linear continuum models of molecular solvation

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai

    2009-03-01

    The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.

  4. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Dunn, Michael G.

    1988-01-01

    Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms.

  5. Height system unification based on the Fixed Geodetic Boundary Value Problem with limited availability of gravity data

    NASA Astrophysics Data System (ADS)

    Porz, Lucas; Grombein, Thomas; Seitz, Kurt; Heck, Bernhard; Wenzel, Friedemann

    2017-04-01

    Regional height reference systems are generally related to individual vertical datums defined by specific tide gauges. The discrepancies of these vertical datums with respect to a unified global datum cause height system biases that range in an order of 1-2 m at a global scale. One approach for unification of height systems relates to the solution of a Geodetic Boundary Value Problem (GBVP). In particular, the fixed GBVP, using gravity disturbances as boundary values, is solved at GNSS/leveling benchmarks, whereupon height datum offsets can be estimated by least squares adjustment. In spherical approximation, the solution of the fixed GBVP is obtained by Hotine's spherical integral formula. However, this method relies on the global availability of gravity data. In practice, gravity data of the necessary resolution and accuracy is not accessible globally. Thus, the integration is restricted to an area within the vicinity of the computation points. The resulting truncation error can reach several meters in height, making height system unification without further consideration of this effect unfeasible. This study analyzes methods for reducing the truncation error by combining terrestrial gravity data with satellite-based global geopotential models and by modifying the integral kernel in order to accelerate the convergence of the resulting potential. For this purpose, EGM2008-derived gravity functionals are used as pseudo-observations to be integrated numerically. Geopotential models of different spectral degrees are implemented using a remove-restore-scheme. Three types of modification are applied to the Hotine-kernel and the convergence of the resulting potential is analyzed. In a further step, the impact of these operations on the estimation of height datum offsets is investigated within a closed loop simulation. A minimum integration radius in combination with a specific modification of the Hotine-kernel is suggested in order to achieve sub-cm accuracy for the estimation of height datum offsets.

  6. On some problems in a theory of thermally and mechanically interacting continuous media. Ph.D. Thesis; [linearized theory of interacting mixture of elastic solid and viscous fluid

    NASA Technical Reports Server (NTRS)

    Lee, Y. M.

    1971-01-01

    Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.

  7. Neural Networks for Segregation of Multiple Objects: Visual Figure-Ground Separation and Auditory Pitch Perception.

    NASA Astrophysics Data System (ADS)

    Wyse, Lonce

    An important component of perceptual object recognition is the segmentation into coherent perceptual units of the "blooming buzzing confusion" that bombards the senses. The work presented herein develops neural network models of some key processes of pre-attentive vision and audition that serve this goal. A neural network model, called an FBF (Feature -Boundary-Feature) network, is proposed for automatic parallel separation of multiple figures from each other and their backgrounds in noisy images. Figure-ground separation is accomplished by iterating operations of a Boundary Contour System (BCS) that generates a boundary segmentation of a scene, and a Feature Contour System (FCS) that compensates for variable illumination and fills-in surface properties using boundary signals. A key new feature is the use of the FBF filling-in process for the figure-ground separation of connected regions, which are subsequently more easily recognized. The new CORT-X 2 model is a feed-forward version of the BCS that is designed to detect, regularize, and complete boundaries in up to 50 percent noise. It also exploits the complementary properties of on-cells and off -cells to generate boundary segmentations and to compensate for boundary gaps during filling-in. In the realm of audition, many sounds are dominated by energy at integer multiples, or "harmonics", of a fundamental frequency. For such sounds (e.g., vowels in speech), the individual frequency components fuse, so that they are perceived as one sound source with a pitch at the fundamental frequency. Pitch is integral to separating auditory sources, as well as to speaker identification and speech understanding. A neural network model of pitch perception called SPINET (SPatial PItch NETwork) is developed and used to simulate a broader range of perceptual data than previous spectral models. The model employs a bank of narrowband filters as a simple model of basilar membrane mechanics, spectral on-center off-surround competitive interactions, and a "harmonic sieve" mechanism whereby the strength of a pitch depends only on spectral regions near harmonics. The model is evaluated using data involving mistuned components, shifted harmonics, complex tones with varying phase relationships, and continuous spectra such as rippled noise and narrow noise bands.

  8. The influence of wind-tunnel walls on discrete frequency noise

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    This paper describes an analytical model that can be used to examine the effects of wind-tunnel walls on discrete frequency noise. First, a complete physical model of an acoustic source in a wind tunnel is described, and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. Second, the simplified physical model is formulated as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. The integral equation has been solved with a panel program on a computer. Preliminary results from a simple model problem will be shown and compared with the approximate analytic solution.

  9. A new hybrid numerical scheme for simulating fault ruptures with near-fault bulk inhomogeneities

    NASA Astrophysics Data System (ADS)

    Hajarolasvadi, S.; Elbanna, A. E.

    2017-12-01

    The Finite Difference (FD) and Boundary Integral (BI) Method have been extensively used to model spontaneously propagating shear cracks, which can serve as a useful idealization of natural earthquakes. While FD suffers from artificial dispersion and numerical dissipation and has a large computational cost as it requires the discretization of the whole volume of interest, it can be applied to a wider range of problems including ones with bulk nonlinearities and heterogeneities. On the other hand, in the BI method, the numerical consideration is confined to the crack path only, with the elastodynamic response of the bulk expressed in terms of integral relations between displacement discontinuities and tractions along the crack. Therefore, this method - its spectral boundary integral (SBI) formulation in particular - is much faster and more computationally efficient than other bulk methods such as FD. However, its application is restricted to linear elastic bulk and planar faults. This work proposes a novel hybrid numerical scheme that combines FD and the SBI to enable treating fault zone nonlinearities and heterogeneities with unprecedented resolution and in a more computationally efficient way. The main idea of the method is to enclose the inhomgeneities in a virtual strip that is introduced for computational purposes only. This strip is then discretized using a volume-based numerical method, chosen here to be the finite difference method while the virtual boundaries of the strip are handled using the SBI formulation that represents the two elastic half spaces outside the strip. Modeling the elastodynamic response in these two halfspaces needs to be carried out by an Independent Spectral Formulation before joining them to the strip with the appropriate boundary conditions. Dirichlet and Neumann boundary conditions are imposed on the strip and the two half-spaces, respectively, at each time step to propagate the solution forward. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low velocity layer and the other in which off-fault plasticity is permitted. This approach is more computationally efficient than pure FD and expands the range of applications of SBI beyond the current state of the art.

  10. 3D Higher Order Modeling in the BEM/FEM Hybrid Formulation

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Wilton, D. R.

    2000-01-01

    Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number of unknowns is approximately equal. Also, convergence rates obtained using higher order bases are compared to those obtained with lower order bases for selected sample

  11. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    PubMed

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  12. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface

    PubMed Central

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005

  13. Preliminary mixed-layer model results for FIRE marine stratocumulus IFO conditions

    NASA Technical Reports Server (NTRS)

    Barlow, R.; Nicholls, S.

    1990-01-01

    Some preliminary results from the Turton and Nicholls mixed layer model using typical FIRE boundary conditions are presented. The model includes entrainment and drizzle parametrizations as well as interactive long and shortwave radiation schemes. A constraint on the integrated turbulent kinetic energy balance ensures that the model remains energetically consistent at all times. The preliminary runs were used to identify the potentially important terms in the heat and moisture budgets of the cloud layer, and to assess the anticipated diurnal variability. These are compared with typical observations from the C130. Sensitivity studies also revealed the remarkable stability of these cloud sheets: a number of negative feedback mechanisms appear to operate to maintain the cloud over an extended time period. These are also discussed. The degree to which such a modelling approach can be used to explain observed features, the specification of boundary conditions and problems of interpretation in non-horizontally uniform conditions is also raised.

  14. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  15. Boundary integral equation analysis for suspension of spheres in Stokes flow

    NASA Astrophysics Data System (ADS)

    Corona, Eduardo; Veerapaneni, Shravan

    2018-06-01

    We show that the standard boundary integral operators, defined on the unit sphere, for the Stokes equations diagonalize on a specific set of vector spherical harmonics and provide formulas for their spectra. We also derive analytical expressions for evaluating the operators away from the boundary. When two particle are located close to each other, we use a truncated series expansion to compute the hydrodynamic interaction. On the other hand, we use the standard spectrally accurate quadrature scheme to evaluate smooth integrals on the far-field, and accelerate the resulting discrete sums using the fast multipole method (FMM). We employ this discretization scheme to analyze several boundary integral formulations of interest including those arising in porous media flow, active matter and magneto-hydrodynamics of rigid particles. We provide numerical results verifying the accuracy and scaling of their evaluation.

  16. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions

    DTIC Science & Technology

    2008-02-07

    micro-ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier... Supersonic boundary layer flow with micro-ramp and no shock wave 3.2 SBLI with no micro-ramp 3.3 SBLI with micro-ramp 3.4 Micro-ramp size and location IV . C...ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier

  17. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    NASA Astrophysics Data System (ADS)

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  18. Studies in integrated line-and packet-switched computer communication systems

    NASA Astrophysics Data System (ADS)

    Maglaris, B. S.

    1980-06-01

    The problem of efficiently allocating the bandwidth of a trunk to both types of traffic is handled for various system and traffic models. A performance analysis is carried out both for variable and fixed frame schemes. It is shown that variable frame schemes, adjusting the frame length according to the traffic variations, offer better trunk utilization at the cost of the additional hardware and software complexity needed because of the lack of synchronization. An optimization study on the fixed frame schemes follows. The problem of dynamically allocating the fixed frame to both types of traffic is formulated as a Markovian Decision process. It is shown that the movable boundary scheme, suggested for commercial implementations of integrated multiplexors, offers optimal or near optimal performance and simplicity of implementation. Finally, the behavior of the movable boundary integrated scheme is studied for tandem link connections. Under the assumptions made for the line-switched traffic, the forward allocation technique is found to offer the best alternative among different path set-up strategies.

  19. A Tensor-Train accelerated solver for integral equations in complex geometries

    NASA Astrophysics Data System (ADS)

    Corona, Eduardo; Rahimian, Abtin; Zorin, Denis

    2017-04-01

    We present a framework using the Quantized Tensor Train (QTT) decomposition to accurately and efficiently solve volume and boundary integral equations in three dimensions. We describe how the QTT decomposition can be used as a hierarchical compression and inversion scheme for matrices arising from the discretization of integral equations. For a broad range of problems, computational and storage costs of the inversion scheme are extremely modest O (log ⁡ N) and once the inverse is computed, it can be applied in O (Nlog ⁡ N) . We analyze the QTT ranks for hierarchically low rank matrices and discuss its relationship to commonly used hierarchical compression techniques such as FMM and HSS. We prove that the QTT ranks are bounded for translation-invariant systems and argue that this behavior extends to non-translation invariant volume and boundary integrals. For volume integrals, the QTT decomposition provides an efficient direct solver requiring significantly less memory compared to other fast direct solvers. We present results demonstrating the remarkable performance of the QTT-based solver when applied to both translation and non-translation invariant volume integrals in 3D. For boundary integral equations, we demonstrate that using a QTT decomposition to construct preconditioners for a Krylov subspace method leads to an efficient and robust solver with a small memory footprint. We test the QTT preconditioners in the iterative solution of an exterior elliptic boundary value problem (Laplace) formulated as a boundary integral equation in complex, multiply connected geometries.

  20. Quasi One-Dimensional Unsteady Modeling of External Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Kratz, Jonathan

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of an axisymmetric external compression supersonic inlet is being developed. The model utilizes compressible flow computational fluid dynamics to model the internal inlet segment as well as the external inlet portion between the cowl lip and normal shock, and compressible flow relations with flow propagation delay to model the oblique shocks upstream of the normal shock. The external compression portion between the cowl-lip and the normal shock is also modeled with leaking fluxes crossing the sonic boundary, with a moving CFD domain at the normal shock boundary. This model has been verified in steady state against tunnel inlet test data and it s a first attempt towards developing a more comprehensive model for inlet dynamics.

  1. A parameter optimization tool for evaluating the physical consistency of the plot-scale water budget of the integrated eco-hydrological model GEOtop in complex terrain

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Cordano, Emanuele; Brenner, Johannes; Senoner, Samuel; Della Chiesa, Stefano; Niedrist, Georg

    2017-04-01

    In mountain regions, the plot- and catchment-scale water and energy budgets are controlled by a complex interplay of different abiotic (i.e. topography, geology, climate) and biotic (i.e. vegetation, land management) controlling factors. When integrated, physically-based eco-hydrological models are used in mountain areas, there are a large number of parameters, topographic and boundary conditions that need to be chosen. However, data on soil and land-cover properties are relatively scarce and do not reflect the strong variability at the local scale. For this reason, tools for uncertainty quantification and optimal parameters identification are essential not only to improve model performances, but also to identify most relevant parameters to be measured in the field and to evaluate the impact of different assumptions for topographic and boundary conditions (surface, lateral and subsurface water and energy fluxes), which are usually unknown. In this contribution, we present the results of a sensitivity analysis exercise for a set of 20 experimental stations located in the Italian Alps, representative of different conditions in terms of topography (elevation, slope, aspect), land use (pastures, meadows, and apple orchards), soil type and groundwater influence. Besides micrometeorological parameters, each station provides soil water content at different depths, and in three stations (one for each land cover) eddy covariance fluxes. The aims of this work are: (I) To present an approach for improving calibration of plot-scale soil moisture and evapotranspiration (ET). (II) To identify the most sensitive parameters and relevant factors controlling temporal and spatial differences among sites. (III) Identify possible model structural deficiencies or uncertainties in boundary conditions. Simulations have been performed with the GEOtop 2.0 model, which is a physically-based, fully distributed integrated eco-hydrological model that has been specifically designed for mountain regions, since it considers the effect of topography on radiation and water fluxes and integrates a snow module. A new automatic sensitivity and optimization tool based on the Particle Swarm Optimization theory has been developed, available as R package on https://github.com/EURAC-Ecohydro/geotopOptim2. The model, once calibrated for soil and vegetation parameters, predicts the plot-scale temporal SMC dynamics of SMC and ET with a RMSE of about 0.05 m3/m3 and 40 W/m2, respectively. However, the model tends to underestimate ET during summer months over apple orchards. Results show how most sensitive parameters are both soil and canopy structural properties. However, ranking is affected by the choice of the target function and local topographic conditions. In particular, local slope/aspect influences results in stations located over hillslopes, but with marked seasonal differences. Results for locations in the valley floor are strongly controlled by the choice of the bottom water flux boundary condition. The poorer model performances in simulating ET over apple orchards could be explained by a model structural deficiency in representing the stomatal control on vapor pressure deficit for this particular type of vegetation. The results of this sensitivity could be extended to other physically distributed models, and also provide valuable insights for optimizing new experimental designs.

  2. Applying Turbulence Models to Hydroturbine Flows: A Sensitivity Analysis Using the GAMM Francis Turbine

    NASA Astrophysics Data System (ADS)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2011-11-01

    Turbulence models are generally developed to study common academic geometries, such as flat plates and channels. Creating quality computational grids for such geometries is trivial, and allows stringent requirements to be met for boundary layer grid refinement. However, engineering applications, such as flow through hydroturbines, require the analysis of complex, highly curved geometries. To produce body-fitted grids for such geometries, the mesh quality requirements must be relaxed. Relaxing these requirements, along with the complexity of rotating flows, forces turbulence models to be employed beyond their developed scope. This study explores the solution sensitivity to boundary layer grid quality for various turbulence models and boundary conditions currently implemented in OpenFOAM. The following models are resented: k-omega, k-omega SST, k-epsilon, realizable k-epsilon, and RNG k-epsilon. Standard wall functions, adaptive wall functions, and sub-grid integration are compared using various grid refinements. The chosen geometry is the GAMM Francis Turbine because experimental data and comparison computational results are available for this turbine. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  3. Combining active and passive remote sensing from research aircraft with atmospheric models to evaluate NOx emission fluxes and O3 formation in the Los Angeles Megacity

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer

    2013-04-01

    Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.

  4. What is Wrong with the Boundary Conditions in Column Tracer Tests

    NASA Astrophysics Data System (ADS)

    Zhan, H.

    2007-12-01

    Solute transport in a column is probably one of the most fundamental problems investigated in contaminant hydrology and soil physics because it serves as a benchmark for testing transport theories, for measuring dispersivities, etc. Despite its importance, there are still dispute and inconsistency on how to deal with the boundary conditions involved in such problems. The boundary condition could impose great influence upon transport in a column, particularly when the length of the column is relatively short, or the so-called Peclet number is not large. There are three types of boundary conditions to choose for transport in a column. Among these three types of boundary conditions, only the third-type boundary satisfies the mass balance requirement rigorously. The first type boundary, despite its frequent use in previous studies, could lead to serious mass balance problems. The most serious problem is on how to deal with the outlet boundary. Some studies have used a zero concentration gradient at the outlet (the so-called Danckwerts' boundary condition). This is named the model A. Another idea is to treat the finite length column as a part of an infinitely long column and to calculate the concentration at the outlet based on a formula developed for an infinitely long column. This is named the model B. The model A satisfies the mass balance requirement but was found to fit with the experimental data poorly. The model B does not satisfy the mass balance requirement, but usually agree well with the experimental data. So, the dilemma is: which model to choose? At present, most investigators prefer to choose the model B because of its close agreement with the experimental data, despite of its violation of the mass balance requirement. But the question is: why the model A, which satisfies the mass balance requirement, does not fit with the experimental data? It turns out that the advection-dispersion equation (ADE) that uses the Fick's first law to describe the hydrodynamic dispersion has some problems, particularly in the regions near the two boundaries. Taylor (1921) has pointed out that the dispersion coefficient varies linearly with time at the beginning and tends to its asymptotic, Fickian value after a travel time of a few correlation scales. Dagan and Bresler (1985) have further pointed out that the constant dispersivity is attained after the solute body has traveled tens of conductivity integral scales. For transport in a homogeneous column, the integral scale of the conductivity is probably around the pore scale or equivalent to the dispersivity value. Therefore, for a finite column whose length is not much greater than the dispersivity value, the transition zones in which solute transport is non-Fickian could consist of a significant portion of the column length. It is such non-Fickian transport in the column that is responsible for the failure of the model A. But still, why does the model B yield the right solution? There is no answer to this question based on a rigorous quantitative analysis yet. To resolve the dilemma, one must carry out a non-Fickian transport study to deal with the transition zones. It is my hypothesis that if the non-Fickian transport analysis succeeds, one will find that the mass balance requirement is indeed satisfied in the model B. Dagan and Bresler (1985) have pointed to the right direction, but a rigorous analysis has not followed. This is something interesting and worthwhile to investigate. REFERENCES CITED Dagan, G., and Bresler, E., 1985. Comment on ¡°Flux-averaged and volume-averaged concentration in continuum approaches to solute transport¡± by J.C. Parker and M.Th. van Genuchten. Water Resources Research, 21: 1299- 1300. Taylor, G.I., 1921. Diffusion by continuous movements. Proc. London Math Soc. 2: 196-212.

  5. Displacement potential solution of a guided deep beam of composite materials under symmetric three-point bending

    NASA Astrophysics Data System (ADS)

    Rahman, M. Muzibur; Ahmad, S. Reaz

    2017-12-01

    An analytical investigation of elastic fields for a guided deep beam of orthotropic composite material having three point symmetric bending is carried out using displacement potential boundary modeling approach. Here, the formulation is developed as a single function of space variables defined in terms of displacement components, which has to satisfy the mixed type of boundary conditions. The relevant displacement and stress components are derived into infinite series using Fourier integral along with suitable polynomials coincided with boundary conditions. The results are presented mainly in the form of graphs and verified with finite element solutions using ANSYS. This study shows that the analytical and numerical solutions are in good agreement and thus enhances reliability of the displacement potential approach.

  6. Kinematic cross-correlation induces sensory integration across separate objects.

    PubMed

    Debats, Nienke B; Ernst, Marc O; Heuer, Herbert

    2017-12-01

    In a basic cursor-control task, the perceived positions of the hand and the cursor are biased towards each other. We recently found that this phenomenon conforms to the reliability-based weighting mechanism of optimal multisensory integration. This indicates that optimal integration is not restricted to sensory signals originating from a single source, as is the prevailing view, but that it also applies to separate objects that are connected by a kinematic relation (i.e. hand and cursor). In the current study, we examined which aspects of the kinematic relation are crucial for eliciting the sensory integration: (i) the cross-correlation between kinematic variables of the hand and cursor trajectories, and/or (ii) an internal model of the hand-cursor kinematic transformation. Participants made out-and-back movements from the centre of a semicircular workspace to its boundary, after which they judged the position where either their hand or the cursor hit the boundary. We analysed the position biases and found that the integration was strong in a condition with high kinematic correlations (a straight hand trajectory was mapped to a straight cursor trajectory), that it was significantly reduced for reduced kinematic correlations (a straight hand trajectory was transformed into a curved cursor trajectory) and that it was not affected by the inability to acquire an internal model of the kinematic transformation (i.e. by the trial-to-trial variability of the cursor curvature). These findings support the idea that correlations play a crucial role in multisensory integration irrespective of the number of sensory sources involved. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. SALLY LEVEL II- COMPUTE AND INTEGRATE DISTURBANCE AMPLIFICATION RATES ON SWEPT AND TAPERED LAMINAR FLOW CONTROL WINGS WITH SUCTION

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1994-01-01

    The computer program SALLY was developed to compute the incompressible linear stability characteristics and integrate the amplification rates of boundary layer disturbances on swept and tapered wings. For some wing designs, boundary layer disturbance can significantly alter the wing performance characteristics. This is particularly true for swept and tapered laminar flow control wings which incorporate suction to prevent boundary layer separation. SALLY should prove to be a useful tool in the analysis of these wing performance characteristics. The first step in calculating the disturbance amplification rates is to numerically solve the compressible laminar boundary-layer equation with suction for the swept and tapered wing. A two-point finite-difference method is used to solve the governing continuity, momentum, and energy equations. A similarity transformation is used to remove the wall normal velocity as a boundary condition and place it into the governing equations as a parameter. Thus the awkward nonlinear boundary condition is avoided. The resulting compressible boundary layer data is used by SALLY to compute the incompressible linear stability characteristics. The local disturbance growth is obtained from temporal stability theory and converted into a local growth rate for integration. The direction of the local group velocity is taken as the direction of integration. The amplification rate, or logarithmic disturbance amplitude ratio, is obtained by integration of the local disturbance growth over distance. The amplification rate serves as a measure of the growth of linear disturbances within the boundary layer and can serve as a guide in transition prediction. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on a CDC CYBER 70 series computer with a central memory requirement of approximately 67K (octal) of 60 bit words. SALLY was developed in 1979.

  8. Architectural Blueprint for Plate Boundary Observatories based on interoperable Data Management Platforms

    NASA Astrophysics Data System (ADS)

    Kerschke, D. I.; Häner, R.; Schurr, B.; Oncken, O.; Wächter, J.

    2014-12-01

    Interoperable data management platforms play an increasing role in the advancement of knowledge and technology in many scientific disciplines. Through high quality services they support the establishment of efficient and innovative research environments. Well-designed research environments can facilitate the sustainable utilization, exchange, and re-use of scientific data and functionality by using standardized community models. Together with innovative 3D/4D visualization, these concepts provide added value in improving scientific knowledge-gain, even across the boundaries of disciplines. A project benefiting from the added value is the Integrated Plate boundary Observatory in Chile (IPOC). IPOC is a European-South American network to study earthquakes and deformation at the Chilean continental margin and to monitor the plate boundary system for capturing an anticipated great earthquake in a seismic gap. In contrast to conventional observatories that monitor individual signals only, IPOC captures a large range of different processes through various observation methods (e.g., seismographs, GPS, magneto-telluric sensors, creep-meter, accelerometer, InSAR). For IPOC a conceptual design has been devised that comprises an architectural blueprint for a data management platform based on common and standardized data models, protocols, and encodings as well as on an exclusive use of Free and Open Source Software (FOSS) including visualization components. Following the principles of event-driven service-oriented architectures, the design enables novel processes by sharing and re-using functionality and information on the basis of innovative data mining and data fusion technologies. This platform can help to improve the understanding of the physical processes underlying plate deformations as well as the natural hazards induced by them. Through the use of standards, this blueprint can not only be facilitated for other plate observing systems (e.g., the European Plate Observing System EPOS), it also supports integrated approaches to include sensor networks that provide complementary processes for dynamic monitoring. Moreover, the integration of such observatories into superordinate research infrastructures (federation of virtual observatories) will be enabled.

  9. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be; Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse; Magin, Thierry E.

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as wellmore » as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.« less

  10. Regional primitive equation modeling and analysis of the polymode data set

    NASA Astrophysics Data System (ADS)

    Spall, Michael A.

    A regional, hybrid coordinate, primitive equation (PE) model is applied to a 60-day period of the POLYMODE data set. The initialization techniques and open boundary conditions introduced by Spall and Robinson are shown to produce stable, realistic, and reasonably accurate hindcasts for the 2-month data set. Comparisons with quasi-geostrophic (QG) modeling studies indicate that the PE model reproduced the jet formation that dominates the region more accurately than did the QG model. When the PE model used boundary conditions that were partially adjusted by the QG model, the resulting fields were very similar to the QG fields, indicating a rapid degradation of small-scale features near the boundaries in the QG calculation. A local term-by-term primitive equation energy and vorticity analysis package is also introduced. The full vorticity, horizontal divergence, kinetic energy, and available gravitational energy equations are solved diagnostically from the output of the regional PE model. Through the analysis of a time series of horizontal maps, the dominant processes in the flow are illustrated. The individual terms are also integrated over the region of jet formation to highlight the net balances as a function of time. The formation of the deep thermocline jet is shown to be due to horizontal advection through the boundary, baroclinic conversion in the deep thermocline and vertical pressure work, which exports the deep energy to the upper thermocline levels. It is concluded here that the PE model reproduces the observed jet formation better than the QG model because of the increased horizontal advection and stronger vertical pressure work. Although the PE model is shown to be superior to the QG model in this application, it is believed that both PE and QG models can play an important role in the regional study of mid-ocean mesoscale eddies.

  11. 48 CFR 836.606-73 - Application of 6 percent architect-engineer fee limitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (vi) Surveys: topographic, boundary, utilities, etc. (2) Special consultant services that are not... required. (3) Other: (i) Reproduction of approved designs through models, color renderings, photographs, or...) All other services that are not an integral part of the production and delivery of plans, designs, and...

  12. Intrapersonal and Interpersonal Models: Blending Gestalt and Family Therapies

    ERIC Educational Resources Information Center

    Hatcher, Chris

    1978-01-01

    Family therapy is primarily focused upon interpersonal or transactional issues. Gestalt therapy is particularly well suited for short term work on intrapersonal and boundary issues. This paper shows how the selective integration of the two approaches provides a significant, new dimension in the development of family therapy. (Author)

  13. Preparing Emerging Doctoral Scholars for Transdisciplinary Research: A Developmental Approach

    ERIC Educational Resources Information Center

    Kemp, Susan Patricia; Nurius, Paula S.

    2015-01-01

    Research models that bridge disciplinary, theoretical, and methodological boundaries are increasingly common as funders and the public push for effective responses to pressing social problems. Although social work is inherently an integrative discipline, there is growing recognition of the need to better prepare emerging scholars for sophisticated…

  14. Communication Privacy Disclosure Management: An Empirical Study of Socialization Support in a Pseudo-Online Course

    ERIC Educational Resources Information Center

    Heo, Misook

    2011-01-01

    This study investigated the boundaries of online learners' information disclosure, relationship building, interpersonal integration, and motivation by drawing upon the theoretical frameworks of the social information processing and communication privacy management theories and the hyperpersonal model. A total of 103 students from a higher…

  15. Scattering Of Nonplanar Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  16. Interaction of wave with a body submerged below an ice sheet with multiple arbitrarily spaced cracks

    NASA Astrophysics Data System (ADS)

    Li, Z. F.; Wu, G. X.; Ji, C. Y.

    2018-05-01

    The problem of wave interaction with a body submerged below an ice sheet with multiple arbitrarily spaced cracks is considered, based on the linearized velocity potential theory together with the boundary element method. The ice sheet is modeled as a thin elastic plate with uniform properties, and zero bending moment and shear force conditions are enforced at the cracks. The Green function satisfying all the boundary conditions including those at cracks, apart from that on the body surface, is derived and is expressed in an explicit integral form. The boundary integral equation for the velocity potential is constructed with an unknown source distribution over the body surface only. The wave/crack interaction problem without the body is first solved directly without the need for source. The convergence and comparison studies are undertaken to show the accuracy and reliability of the solution procedure. Detailed numerical results through the hydrodynamic coefficients and wave exciting forces are provided for a body submerged below double cracks and an array of cracks. Some unique features are observed, and their mechanisms are analyzed.

  17. Hypersonic Boundary Layer Stability over a Flared Cone in a Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona; Wilkinson, Stephen P.

    1996-01-01

    Hypersonic boundary layer measurements were conducted over a flared cone in a quiet wind tunnel. The flared cone was tested at a freestream unit Reynolds number of 2.82x106/ft in a Mach 6 flow. This Reynolds number provided laminar-to-transitional flow over the model in a low-disturbance environment. Point measurements with a single hot wire using a novel constant voltage anemometry system were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the laminar-to-transitional state of the boundary layer and to identify instability modes. Results suggest that the second mode disturbances were the most unstable and scaled with the boundary layer thickness. The integrated growth rates of the second mode compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode sub-harmonic. The sub-harmonic wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that non-linear disturbances are not associated with high free stream disturbance levels.

  18. Teaching an Old Dog an Old Trick: FREE-FIX and Free-Boundary Axisymmetric MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca

    2015-11-01

    A common task in plasma physics research is the calculation of an axisymmetric equilibrium for tokamak modeling. The main unknown of the problem is the magnetic poloidal flux ψ. The easiest approach is to assign the shape of the plasma and only solve the equilibrium problem in the plasma / closed-field-lines region (the ``fixed-boundary approach''). Often, one may also need the vacuum fields, i.e. the equilibrium in the open-field-lines region, requiring either coil currents or ψ on some closed curve outside the plasma to be assigned (the ``free-boundary approach''). Going from one approach to the other is a textbook problem, involving the calculation of Green's functions and surface integrals in the plasma. However, no tools are readily available to perform this task. Here we present a code (FREE-FIX) to compute a boundary condition for a free-boundary equilibrium given only the corresponding fixed-boundary equilibrium. An improvement to the standard solution method, allowing for much faster calculations, is presented. Applications are discussed. PPPL fund 245139 and DOE grant G00009102.

  19. How to improve healthcare? Identify, nurture and embed individuals and teams with "deep smarts".

    PubMed

    Eljiz, Kathy; Greenfield, David; Molineux, John; Sloan, Terry

    2018-03-19

    Purpose Unlocking and transferring skills and capabilities in individuals to the teams they work within, and across, is the key to positive organisational development and improved patient care. Using the "deep smarts" model, the purpose of this paper is to examine these issues. Design/methodology/approach The "deep smarts" model is described, reviewed and proposed as a way of transferring knowledge and capabilities within healthcare organisations. Findings Effective healthcare delivery is achieved through, and continues to require, integrative care involving numerous, dispersed service providers. In the space of overlapping organisational boundaries, there is a need for "deep smarts" people who act as "boundary spanners". These are critical integrative, networking roles employing clinical, organisational and people skills across multiple settings. Research limitations/implications Studies evaluating the barriers and enablers to the application of the deep smarts model and 13 knowledge development strategies proposed are required. Such future research will empirically and contemporary ground our understanding of organisational development in modern complex healthcare settings. Practical implications An organisation with "deep smarts" people - in managerial, auxiliary and clinical positions - has a greater capacity for integration and achieving improved patient-centred care. Originality/value In total, 13 developmental strategies, to transfer individual capabilities into organisational capability, are proposed. These strategies are applicable to different contexts and challenges faced by individuals and teams in complex healthcare organisations.

  20. Modeling human-climate interaction

    NASA Astrophysics Data System (ADS)

    Jacoby, Henry D.

    If policymakers and the public are to be adequately informed about the climate change threat, climate modeling needs to include components far outside its conventional boundaries. An integration of climate chemistry and meteorology, oceanography, and terrestrial biology has been achieved over the past few decades. More recently the scope of these studies has been expanded to include the human systems that influence the planet, the social and ecological consequences of potential change, and the political processes that lead to attempts at mitigation and adaptation. For example, key issues—like the relative seriousness of climate change risk, the choice of long-term goals for policy, and the analysis of today's decisions when uncertainty may be reduced tomorrow—cannot be correctly understood without joint application of the natural science of the climate system and social and behavioral science aspects of human response. Though integration efforts have made significant contributions to understanding of the climate issue, daunting intellectual and institutional barriers stand in the way of needed progress. Deciding appropriate policies will be a continuing task over the long term, however, so efforts to extend the boundaries of climate modeling and assessment merit long-term attention as well. Components of the effort include development of a variety of approaches to analysis, the maintenance of a clear a division between close-in decision support and science/policy research, and the development of funding institutions that can sustain integrated research over the long haul.

  1. How job demands affect partners' experience of exhaustion: integrating work-family conflict and crossover theory.

    PubMed

    Bakker, Arnold B; Demerouti, Evangelia; Dollard, Maureen F

    2008-07-01

    This study among 168 couples of dual-earner parents uses insights from previous work-family conflict and crossover research to propose an integrative model delineating how job demands experienced by men and women carry over to the home domain. The authors hypothesized that for both men and women, job demands foster their own work-family conflict (WFC), which in turn contributes to their partners' home demands, family-work conflict (FWC), and exhaustion. In addition, they hypothesized that social undermining mediates the relationship between individuals' WFC and their partners' home demands. The results of structural equation modeling analyses provided strong support for the proposed model. The hypothesis that gender would moderate the model relationships was rejected. These findings integrate previous findings on work-family conflict and crossover theories and suggest fluid boundaries between the work and home domains.

  2. Theoretical investigations of plasma processes in the ion bombardment thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    A physical model for a thruster discharge was developed, consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field. The associated boundary-value problem for the coupled partial differential equations with mixed boundary conditions, which describe the electric potential and the plasma velocity fields, was solved in closed form. By means of quantum-mechanical perturbation theory, a formula for the number S(E) of atoms sputtered on the average by an ion of energy E was derived from first principles. The boundary-value problem describing the diffusion of the sputtered atoms through the surrounding rarefied electron-ion plasma to the system surfaces of ion propulsion systems was formulated and treated analytically. It is shown that outer boundary-value problems of this type lead to a complex integral equation, which requires numerical resolution.

  3. Mach 6 flowfield survey at the engine inlet of a research airplane

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Lawing, P. L.

    1977-01-01

    A flowfield survey was conducted to better define the nature of vehicle forebody flowfield at the inlet location of an airframe-integrated scramjet engine mounted on the lower surface of a high-speed research airplane to be air launched from a B-52 and rocket boosted to Mach 6. The tests were conducted on a 1/30-scale brass model in a Mach-6 20-in. wind tunnel at Reynolds number of 11,200,000 based on distance to engine inlet. Boundary layer profiles at five spanwise locations indicate that the boundary layer in the area of the forebody centerline is more than twice as thick as the boundary layer at three outboard stations. It is shown that the cold streak found in heating contours on the centerline of the forebody is caused by a thickening of the boundary layer on the centerline, and that this thickening decreases with angle of attack.

  4. Integrated Data Modeling and Simulation on the Joint Polar Satellite System Program

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Boyce, Leslye; Smith, Gary; Li, Angela; Barrett, Larry

    2012-01-01

    The Joint Polar Satellite System is a modern, large-scale, complex, multi-mission aerospace program, and presents a variety of design, testing and operational challenges due to: (1) System Scope: multi-mission coordination, role, responsibility and accountability challenges stemming from porous/ill-defined system and organizational boundaries (including foreign policy interactions) (2) Degree of Concurrency: design, implementation, integration, verification and operation occurring simultaneously, at multiple scales in the system hierarchy (3) Multi-Decadal Lifecycle: technical obsolesce, reliability and sustainment concerns, including those related to organizational and industrial base. Additionally, these systems tend to become embedded in the broader societal infrastructure, resulting in new system stakeholders with perhaps different preferences (4) Barriers to Effective Communications: process and cultural issues that emerge due to geographic dispersion and as one spans boundaries including gov./contractor, NASA/Other USG, and international relationships.

  5. Inverse random source scattering for the Helmholtz equation in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Ming; Chen, Chuchu; Li, Peijun

    2018-01-01

    This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.

  6. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems ⋆

    PubMed Central

    Ying, Wenjun; Henriquez, Craig S.

    2013-01-01

    This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES method. During the iteration, the boundary and volume integrals involving Green's functions are approximated by structured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green's functions. The KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented. It is observed that the number of GM-RES iterations used by the method for solving isotropic and moderately anisotropic BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong. PMID:23519600

  7. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision

    PubMed Central

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon color spreading, binocular rivalry, 3D Necker cube, and many examples of 3D figure-ground separation. PMID:25309467

  8. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon color spreading, binocular rivalry, 3D Necker cube, and many examples of 3D figure-ground separation.

  9. A finite element-boundary integral method for scattering and radiation by two- and three-dimensional structures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.

    1991-01-01

    A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.

  10. Unicorns in the world of chemical bonding models.

    PubMed

    Frenking, Gernot; Krapp, Andreas

    2007-01-15

    The appearance and the significance of heuristically developed bonding models are compared with the phenomenon of unicorns in mythical saga. It is argued that classical bonding models played an essential role for the development of the chemical science providing the language which is spoken in the territory of chemistry. The advent and the further development of quantum chemistry demands some restrictions and boundary conditions for classical chemical bonding models, which will continue to be integral parts of chemistry. Copyright (c) 2006 Wiley Periodicals, Inc.

  11. A finite element conjugate gradient FFT method for scattering

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.

    1991-01-01

    Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.

  12. Towards an Automated Full-Turbofan Engine Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.

    2003-01-01

    The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.

  13. First principles cable braid electromagnetic penetration model

    DOE PAGES

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; ...

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  14. Planetary boundary-layer wind model evaluation at a mid-Atlantic coastal site

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.

    1980-01-01

    Detailed measurements of the mean flow and turbulence were made with the use of a micrometeorological facility consisting of an instrumented 76-m tall tower located within a 100-m distance from the Atlantic Ocean at Wallops Island, Virginia. Under moderately strong wind conditions, the popular neutral boundary layer flow model fails to provide an adequate description of the actual flow. In addition to detailed flow information for all wind directions, averages of the important flow parameters used for design such as vertical distribution of mean velocity, turbulence intensities and turbulence integral scales were presented for wind direction sectors with near uniform upstream terrain. Power spectra of the three velocity components for the prevailing northwesterly and southerly winds are discussed.

  15. Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method

    NASA Astrophysics Data System (ADS)

    Ampilogov, Dmitrii; Leble, Sergey

    2016-07-01

    We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.

  16. Novel conformal technique to reduce staircasing artifacts at material boundaries for FDTD modeling of the bioheat equation.

    PubMed

    Neufeld, E; Chavannes, N; Samaras, T; Kuster, N

    2007-08-07

    The modeling of thermal effects, often based on the Pennes Bioheat Equation, is becoming increasingly popular. The FDTD technique commonly used in this context suffers considerably from staircasing errors at boundaries. A new conformal technique is proposed that can easily be integrated into existing implementations without requiring a special update scheme. It scales fluxes at interfaces with factors derived from the local surface normal. The new scheme is validated using an analytical solution, and an error analysis is performed to understand its behavior. The new scheme behaves considerably better than the standard scheme. Furthermore, in contrast to the standard scheme, it is possible to obtain with it more accurate solutions by increasing the grid resolution.

  17. Results of the GABLS3 diurnal-cycle benchmark for wind energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigo, J. Sanz; Allaerts, D.; Avila, M.

    We present results of the GABLS3 model intercomparison benchmark revisited for wind energy applications. The case consists of a diurnal cycle, measured at the 200-m tall Cabauw tower in the Netherlands, including a nocturnal low-level jet. The benchmark includes a sensitivity analysis of WRF simulations using two input meteorological databases and five planetary boundary-layer schemes. A reference set of mesoscale tendencies is used to drive microscale simulations using RANS k-ϵ and LES turbulence models. The validation is based on rotor-based quantities of interest. Cycle-integrated mean absolute errors are used to quantify model performance. The results of the benchmark are usedmore » to discuss input uncertainties from mesoscale modelling, different meso-micro coupling strategies (online vs offline) and consistency between RANS and LES codes when dealing with boundary-layer mean flow quantities. Altogether, all the microscale simulations produce a consistent coupling with mesoscale forcings.« less

  18. Results of the GABLS3 diurnal-cycle benchmark for wind energy applications

    DOE PAGES

    Rodrigo, J. Sanz; Allaerts, D.; Avila, M.; ...

    2017-06-13

    We present results of the GABLS3 model intercomparison benchmark revisited for wind energy applications. The case consists of a diurnal cycle, measured at the 200-m tall Cabauw tower in the Netherlands, including a nocturnal low-level jet. The benchmark includes a sensitivity analysis of WRF simulations using two input meteorological databases and five planetary boundary-layer schemes. A reference set of mesoscale tendencies is used to drive microscale simulations using RANS k-ϵ and LES turbulence models. The validation is based on rotor-based quantities of interest. Cycle-integrated mean absolute errors are used to quantify model performance. The results of the benchmark are usedmore » to discuss input uncertainties from mesoscale modelling, different meso-micro coupling strategies (online vs offline) and consistency between RANS and LES codes when dealing with boundary-layer mean flow quantities. Altogether, all the microscale simulations produce a consistent coupling with mesoscale forcings.« less

  19. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  20. Solving the hypersingular boundary integral equation for the Burton and Miller formulation.

    PubMed

    Langrenne, Christophe; Garcia, Alexandre; Bonnet, Marc

    2015-11-01

    This paper presents an easy numerical implementation of the Burton and Miller (BM) formulation, where the hypersingular Helmholtz integral is regularized by identities from the associated Laplace equation and thus needing only the evaluation of weakly singular integrals. The Helmholtz equation and its normal derivative are combined directly with combinations at edge or corner collocation nodes not used when the surface is not smooth. The hypersingular operators arising in this process are regularized and then evaluated by an indirect procedure based on discretized versions of the Calderón identities linking the integral operators for associated Laplace problems. The method is valid for acoustic radiation and scattering problems involving arbitrarily shaped three-dimensional bodies. Unlike other approaches using direct evaluation of hypersingular integrals, collocation points still coincide with mesh nodes, as is usual when using conforming elements. Using higher-order shape functions (with the boundary element method model size kept fixed) reduces the overall numerical integration effort while increasing the solution accuracy. To reduce the condition number of the resulting BM formulation at low frequencies, a regularized version α = ik/(k(2 )+ λ) of the classical BM coupling factor α = i/k is proposed. Comparisons with the combined Helmholtz integral equation Formulation method of Schenck are made for four example configurations, two of them featuring non-smooth surfaces.

  1. Analytical methods for solving boundary value heat conduction problems with heterogeneous boundary conditions on lines. I - Review

    NASA Astrophysics Data System (ADS)

    Kartashov, E. M.

    1986-10-01

    Analytical methods for solving boundary value problems for the heat conduction equation with heterogeneous boundary conditions on lines, on a plane, and in space are briefly reviewed. In particular, the method of dual integral equations and summator series is examined with reference to stationary processes. A table of principal solutions to dual integral equations and pair summator series is proposed which presents the known results in a systematic manner. Newly obtained results are presented in addition to the known ones.

  2. Comparison Of Landscape-level Carbon Flux Estimates from Budgeting The Planetary Boundary Layer And Footprinting On Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, J. M.; Mo, G.

    2006-12-01

    Carbon balance estimation at the landscape/regional scale is a challenge because of the heterogeneity of the land surface and the nonlinearity inherent in ecophysiological processes. Two methodologies, a simple atmospheric boundary-layer budgeting method and an integrated modeling method, were explored and compared in this study. Studies of the atmospheric boundary-layer (ABL) budget of CO2 have the potential to provide information on carbon balance of the land surface on a regional scale. Indeed, the surface area of integration by the ABL moving through a tower in one day was estimated to be ~104 km2. Two novel methodologies to retrieve the landscape/regional carbon balance information captured by the CO2 concentration measurements are explored and compared in this study: boundary-layer budgeting and remote sensing-based footprint integration. We investigated four boreal continental sites in this study. Boundary-layer budgeting: By assuming the horizontal advection is negligible, the regional surface net flux (representative of an upwind area ~105 km2) can be calculated as, Fc=(Cm-CFT)ù+dC/dt*zi, where ù is the mean vertical velocity, zi is the mean ABL height, and and are the biweekly mean mixing ratio of CO2 in the ABL and the free troposphere, respectively. ù is from the NCEP (National Centers for Environmental Prediction) reanalysis data, while zi was simulated by an one-dimensional ABL model. The CO2 flux in the upwind area of the tower was also estimated based on ecosystem modeling using remote sensing measurements. Remote sensing-based footprint integration: The total regional flux captured by the sensor on a tower (mixing ratio) is the weighted sum of the upwind footprint source areas (Ømega), Fc= Σ FiWi, where Fi and Wi are the CO2 flux and its weighting factor for each pixel, respectively. Fiis calculated using an ecosystem model (BEPS: Boreal Ecosystem Productivity Simulator). Wiis comparative contribution factor of footprint function for each pixel within the whole footprint area as, Wi= fi/Σ fi, while the footprint function fi (the pixel i with x,y coordinates; x and y are along and the cross daily mean wind direction, respectively) is computed using a concentration footprint model as, fi(x,y,zm-z0)=Dy(x,y)Dz(x,zm)/U(x) Where Dy and Dz are the crosswind and vertical concentration distribution function, respectively and U(x) is the effective speed of plume advection. They are dependant on standard surface-layer scaling parameters and based on an analytical solution of Eulerian theory. Methodology comparison: The regional fluxes estimated using these two methods matched well. These regional net CO2 flux estimates were also comparable to local-scale measurements by eddy covariance techniques. The calculated upwind regional CO2 flux shows considerable seasonal and inter-annual variations. Annual regional flux was sensitive to air temperature in boreal regions and the temperature-sensitivities were region dependent. Larger fluxes are found in the warmer growing seasons and warmer years in the boreal forest regions.

  3. Divergence is not enough: the use of ecological niche models for the validation of taxon boundaries.

    PubMed

    Dagnino, D; Minuto, L; Casazza, G

    2017-11-01

    Delimiting taxon boundaries is crucial for any evolutionary research and conservation regulation. In order to avoid mistaken description of species, the approach of integrative taxonomy recommends considering multidisciplinary lines of evidence, including ecology. Unfortunately, ecological data are often difficult to quantify objectively. Here we test and discuss the potential use of ecological niche models for validating taxon boundaries, using three pairs of closely related plant taxa endemic to the south-western Alps as a case study. We also discuss the application of ecological niche models for species delimitation and the implementation of different approaches. Niche overlap, niche equivalency and niche similarity were assessed both in multidimensional environmental space and in geographic space to look for differences in the niche of three pairs of closely related plant taxa. We detected a high degree of niche differentiation between taxa although this result seems not due to differences in habitat selection. The different statistical tests gave contrasting outcomes between environmental and geographic spaces. According to our results, niche divergence does not seem to support taxon boundaries at species level, but may have had important consequences for local adaptation and in generating phenotypic diversity at intraspecific level. Environmental space analysis should be preferred to geographic space as it provides more clear results. Even if the different analyses widely disagree in their conclusions about taxon boundaries, our study suggests that ecological niche models may help taxonomists to reach a decision. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Implementation of Radiation, Ablation, and Free Energy Minimization Modules for Coupled Simulations of Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Thompson, Richard A.

    2009-01-01

    A description of models and boundary conditions required for coupling radiation and ablation physics to a hypersonic flow simulation is provided. Chemical equilibrium routines for varying elemental mass fraction are required in the flow solver to integrate with the equilibrium chemistry assumption employed in the ablation models. The capability also enables an equilibrium catalytic wall boundary condition in the non-ablating case. The paper focuses on numerical implementation issues using FIRE II, Mars return, and Apollo 4 applications to provide context for discussion. Variable relaxation factors applied to the Jacobian elements of partial equilibrium relations required for convergence are defined. Challenges of strong radiation coupling in a shock capturing algorithm are addressed. Results are presented to show how the current suite of models responds to a wide variety of conditions involving coupled radiation and ablation.

  5. Cell mechanics in biomedical cavitation

    PubMed Central

    Wang, Qianxi; Manmi, Kawa; Liu, Kuo-Kang

    2015-01-01

    Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed. PMID:26442142

  6. Updated Panel-Method Computer Program

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1995-01-01

    Panel code PMARC_12 (Panel Method Ames Research Center, version 12) computes potential-flow fields around complex three-dimensional bodies such as complete aircraft models. Contains several advanced features, including internal mathematical modeling of flow, time-stepping wake model for simulating either steady or unsteady motions, capability for Trefftz computation of drag induced by plane, and capability for computation of off-body and on-body streamlines, and capability of computation of boundary-layer parameters by use of two-dimensional integral boundary-layer method along surface streamlines. Investigators interested in visual representations of phenomena, may want to consider obtaining program GVS (ARC-13361), General visualization System. GVS is Silicon Graphics IRIS program created to support scientific-visualization needs of PMARC_12. GVS available separately from COSMIC. PMARC_12 written in standard FORTRAN 77, with exception of NAMELIST extension used for input.

  7. Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface.

    PubMed

    Ahmad Khan, Junaid; Mustafa, M; Hayat, T; Alsaedi, A

    2015-01-01

    This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. Similarity approach is utilized to normalize the governing boundary layer equations. Local similarity solutions are achieved by shooting approach together with fourth-fifth-order Runge-Kutta integration technique and Newton's method. Our computations reveal that fluid temperature has inverse relationship with the thermal relaxation time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A comparison of Fourier's law and the Cattaneo-Christov's law is also presented. Present attempt even in the case of Newtonian fluid is not yet available in the literature.

  8. Topics in Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang

    Integrable quantum spin chains have close connections to integrable quantum field. theories, modern condensed matter physics, string and Yang-Mills theories. Bethe. ansatz is one of the most important approaches for solving quantum integrable spin. chains. At the heart of the algebraic structure of integrable quantum spin chains is. the quantum Yang-Baxter equation and the boundary Yang-Baxter equation. This. thesis focuses on four topics in Bethe ansatz. The Bethe equations for the isotropic periodic spin-1/2 Heisenberg chain with N. sites have solutions containing ±i/2 that are singular: both the corresponding energy and the algebraic Bethe ansatz vector are divergent. Such solutions must be carefully regularized. We consider a regularization involving a parameter that can be. determined using a generalization of the Bethe equations. These generalized Bethe. equations provide a practical way of determining which singular solutions correspond. to eigenvectors of the model. The Bethe equations for the periodic XXX and XXZ spin chains admit singular. solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to bephysical, in which case they correspond to genuine eigenvalues and eigenvectors of. the Hamiltonian. We analyze the ground state of the open spin-1/2 isotropic quantum spin chain. with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots. split evenly into two sets: those that remain finite, and those that become infinite. We. argue that the former satisfy conventional Bethe equations, while the latter satisfy a. generalization of the Richardson-Gaudin equations. We derive an expression for the. leading correction to the boundary energy in terms of the boundary parameters. We argue that the Hamiltonians for A(2) 2n open quantum spin chains corresponding. to two choices of integrable boundary conditions have the symmetries Uq(Bn) and. Uq(Cn), respectively. The deformation of Cn is novel, with a nonstandard coproduct. We find a formula for the Dynkin labels of the Bethe states (which determine the degeneracies of the corresponding eigenvalues) in terms of the numbers of Bethe roots of. each type. With the help of this formula, we verify numerically (for a generic value of. the anisotropy parameter) that the degeneracies and multiplicities of the spectra implied by the quantum group symmetries are completely described by the Bethe ansatz.

  9. Meso-scale anisotropic hydrogen segregation near grain-boundaries in polycrystalline nickel characterized by EBSD/SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudriss, A.; Le Guernic, Solenne; Wang, Zhaoying

    2016-02-15

    To study anisotropic hydrogen segregation and diffusion in nickel polycrystalline, Secondary Ion Mass Spectrometry (SIMS) and Electron Back Scattered Diffraction (EBSD) are integrated to investigate hydrogen distribution around grain boundaries. Hydrogen distribution in pre-charged samples were correlated with grain boundary character by integrating high-resolution grain microstructure from EBSD inverse pole figure map and low-resolution hydrogen concentration profile map from SIMS. This multimodal imaging instrumentation shows that grain boundaries in nickel can be categorized into two families based on behavior of hydrogen distribution crossing grain boundary: the first one includes random grain boundaries with fast hydrogen diffusivity, showing a sharp gapmore » for hydrogen concentration profile cross the grain boundaries. The second family are special Σ3n grain boundaries with low hydrogen diffusivity, showing a smooth gradient of hydrogen concentration cross the grain boundary. Heterogeneous hydrogen distributions due to grain boundary family revealed by SIMS/EBSD on mesoscale further validate the recent hydrogen permeation data and anisotropic ab-initio calculations in nanoscale. The results highlight the fact that grain boundaries character impacts hydrogen distribution significantly.« less

  10. Behavior of boundary string field theory associated with integrable massless flow.

    PubMed

    Fujii, A; Itoyama, H

    2001-06-04

    We put forward an idea that the boundary entropy associated with integrable massless flow of thermodynamic Bethe ansatz (TBA) is identified with tachyon action of boundary string field theory. We show that the temperature parametrizing a massless flow in the TBA formalism can be identified with tachyon energy for the classical action at least near the ultraviolet fixed point, i.e., the open string vacuum.

  11. Dynamic modeling of normal faults of the 2016 Central Italy earthquake sequence

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo

    2017-04-01

    The earthquake sequence of the Central Italy in 2016 are characterized mainly by the Mw6.0 24th August, Mw5.9 26th October and Mw6.4 30th October as well as two Mw5.4 earthquakes (24th August, 26th October) (catalogue INGV). They all show normal faulting mechanisms corresponding to the Apennines's tectonics. They are aligned briefly along NNW-SSE axis, and they may not be on a single continuous fault plane. Therefore, dynamic rupture modeling of sequences should be carried out supposing co-planar normal multiple segments. We apply a Boundary Domain Method (BDM, Goto and Bielak, GJI, 2008) coupling a boundary integral equation method and a domain-based method, namely a finite difference method in this study. The Mw6.0 24th August earthquake is modeled. We use the basic information of hypocenter position, focal mechanism and potential ruptured dimension from the INGV catalogue and Tinti et al., GRL, 2016), and begin with a simple condition (homogeneous boundary condition). From our preliminary simulations, it is shown that a uniformly extended rupture model does not fit the near-field ground motions and localized heterogeneity would be required.

  12. Diurnal changes in urban boundary layer environment induced by urban greening

    NASA Astrophysics Data System (ADS)

    Song, Jiyun; Wang, Zhi-Hua

    2016-11-01

    Urban green infrastructure has been widely used for mitigating adverse environmental problems as well as enhancing urban sustainability of cities worldwide. Here we develop an integrated urban-land-atmosphere modeling framework with the land surface processes parameterized by an advanced urban canopy model and the atmospheric processes parameterized by a single column model. The model is then applied to simulate a variety of forms of green infrastructure, including urban lawns, shade trees, green and cool roofs, and their impact on environmental changes in the total urban boundary layer (UBL) for a stereotypical desert city, viz. Phoenix, Arizona. It was found that green roofs have a relatively uniform cooling effect proportional to their areal coverage. In particular, a reduction of UBL temperature of 0.3 °C and 0.2 °C per 10% increase of green roof coverage was observed at daytime and nighttime, respectively. In contrast, the effect of greening of street canyons is constrained by the overall abundance of green infrastructure and the energy available for evapotranspiration. In addition, the increase in urban greening causes boundary-layer height to decrease during daytime but increase at nighttime, leading to different trends of changes in urban air quality throughout a diurnal cycle.

  13. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks

    PubMed Central

    2015-01-01

    Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency. PMID:26539722

  14. New solutions to the constant-head test performed at a partially penetrating well

    NASA Astrophysics Data System (ADS)

    Chang, Y. C.; Yeh, H. D.

    2009-05-01

    SummaryThe mathematical model describing the aquifer response to a constant-head test performed at a fully penetrating well can be easily solved by the conventional integral transform technique. In addition, the Dirichlet-type condition should be chosen as the boundary condition along the rim of wellbore for such a test well. However, the boundary condition for a test well with partial penetration must be considered as a mixed-type condition. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The model for such a mixed boundary problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the dual series equations and perturbation method. This approach provides analytical results for the drawdown in the partially penetrating well and the well discharge along the screen. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.

  15. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.

    PubMed

    Jin, Junghwan; Kim, Jinsoo

    2015-01-01

    Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.

  16. Critical Casimir force scaling functions of the two-dimensional Ising model at finite aspect ratios

    NASA Astrophysics Data System (ADS)

    Hobrecht, Hendrik; Hucht, Alfred

    2017-02-01

    We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function Z on an L× M square lattice, wrapped around a torus with aspect ratio ρ =L/M . By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a 2× 2 transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films ρ \\to 0 . Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.

  17. A study of hierarchical clustering of galaxies in an expanding universe

    NASA Astrophysics Data System (ADS)

    Porter, D. H.

    The nonlinear hierarchical clustering of galaxies in an Einstein-deSitter (Omega = 1), initially white noise mass fluctuations (n = 0) model universe is investigated and shown to be in contradiction with previous results. The model is done in terms of an 11,000-body numerical simulation. The independent statics of 0.72 million particles are used to simulte the boundary conditions. A new method for integrating the Newtonian N-body gravity equations, which has controllable accuracy, incorporates a recursive center of mass reduction, and regularizes two body encounters is used to do the simulation. The coordinate system used here is well suited for the investigation of galaxy clustering, incorporating the independent positions and velocities of an arbitrary number of particles into a logarithmic hierarchy of center of mass nodes. The boundary for the simulation is created by using this hierarchy to map the independent statics of 0.72 million particles into just 4,000 particles. This method for simulating the boundary conditions also has controllable accuracy.

  18. Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.

    2011-01-01

    In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.

  19. An Integrated Modeling and Observational Study of Three-Dimensional Upper Ocean Boundary Layer Dynamics and Parameterizations

    DTIC Science & Technology

    2012-04-26

    for public release ; distribution is unlimited. 4 Figure 3. First Kuroshio survey. Colors show MODIS SST image. Inset shows the survey...Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA. *To whom correspondence should be addressed. E-mail: stevens@scripps.edu 15

  20. Preparing Middle Grades Educators to Teach about World Cultures: An Interdisciplinary Approach

    ERIC Educational Resources Information Center

    Reidel, Michelle; Draper, Christine

    2013-01-01

    With the realities of standards-based accountability, it is imperative to model and demonstrate for students how subject areas and teaching methods transcend across traditional boundaries. In an effort to prepare future social studies educators to teach for global awareness and to meaningfully integrate critical literacy skills into their…

  1. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  2. Panel methods: An introduction

    NASA Technical Reports Server (NTRS)

    Erickson, Larry L.

    1990-01-01

    Panel methods are numerical schemes for solving (the Prandtl-Glauert equation) for linear, inviscid, irrotational flow about aircraft flying at subsonic or supersonic speeds. The tools at the panel-method user's disposal are (1) surface panels of source-doublet-vorticity distributions that can represent nearly arbitrary geometry, and (2) extremely versatile boundary condition capabilities that can frequently be used for creative modeling. Panel-method capabilities and limitations, basic concepts common to all panel-method codes, different choices that were made in the implementation of these concepts into working computer programs, and various modeling techniques involving boundary conditions, jump properties, and trailing wakes are discussed. An approach for extending the method to nonlinear transonic flow is also presented. Three appendices supplement the main test. In appendix 1, additional detail is provided on how the basic concepts are implemented into a specific computer program (PANAIR). In appendix 2, it is shown how to evaluate analytically the fundamental surface integral that arises in the expressions for influence-coefficients, and evaluate its jump property. In appendix 3, a simple example is used to illustrate the so-called finite part of the improper integrals.

  3. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1990-01-01

    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity.

  4. Calculation of unsteady transonic flows with mild separation by viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Howlett, James T.

    1992-01-01

    This paper presents a method for calculating viscous effects in two- and three-dimensional unsteady transonic flow fields. An integral boundary-layer method for turbulent viscous flow is coupled with the transonic small-disturbance potential equation in a quasi-steady manner. The viscous effects are modeled with Green's lag-entrainment equations for attached flow and an inverse boundary-layer method for flows that involve mild separation. The boundary-layer method is used stripwise to approximate three-dimensional effects. Applications are given for two-dimensional airfoils, aileron buzz, and a wing planform. Comparisons with inviscid calculations, other viscous calculation methods, and experimental data are presented. The results demonstrate that the present technique can economically and accurately calculate unsteady transonic flow fields that have viscous-inviscid interactions with mild flow separation.

  5. Automated Boundary Conditions for Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  6. Task reports on developing techniques for scattering by 3D composite structures and to generate new solutions in diffraction theory using higher order boundary conditions

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1990-01-01

    There are two tasks described in this report. First, an extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. Second, the diffraction by a material discontinuity in a thick dielectric/ferrite layer is considered by modeling the layer as a distributed current sheet obeying generalized sheet transition conditions (GSTC's).

  7. A watershed model to integrate EO data

    NASA Astrophysics Data System (ADS)

    Jauch, Eduardo; Chambel-Leitao, Pedro; Carina, Almeida; Brito, David; Cherif, Ines; Alexandridis, Thomas; Neves, Ramiro

    2013-04-01

    MOHID LAND is a open source watershed model developed by MARETEC and is part of the MOHID Framework. It integrates four mediums (or compartments): porous media, surface, rivers and atmosphere. The movement of water between these mediums are based on mass and momentum balance equations. The atmosphere medium is not explicity simulated. Instead, it's used as boundary condition to the model through meteorological properties: precipitation, solar radiation, wind speed/direction, relative humidity and air temperature. The surface medium includes the overland runoff and vegetation growth processes and is simulated using a 2D grid. The porous media includes both the unsaturated (soil) and saturated zones (aquifer) and is simulated using a 3D grid. The river flow is simulated through a 1D drainage network. All these mediums are linked through evapotranspiration and flow exchanges (infiltration, river-soil growndwater flow, surface-river overland flow). Besides the water movement, it is also possible to simulate water quality processes and solute/sediment transport. Model setup include the definition of the geometry and the properties of each one of its compartments. After the setup of the model, the only continuous input data that MOHID LAND requires are the atmosphere properties (boundary conditions) that can be provided as timeseries or spacial data. MOHID LAND has been adapted the last 4 years under FP7 and ESA projects to integrate Earth Observation (EO) data, both variable in time and in space. EO data can be used to calibrate/validate or as input/assimilation data to the model. The currently EO data used include LULC (Land Use Land Cover) maps, LAI (Leaf Area Index) maps, EVTP (Evapotranspiration) maps and SWC (Soil Water Content) maps. Model results are improved by the EO data, but the advantage of this integration is that the model can still run without the EO data. This means that model do not stop due to unavailability of EO data and can run on a forecast mode. The LCLU maps are coupled with a database that transforms land use into model properties through lookup tables. The LAI maps, usually based on NDVI satellite images, can be used directly as input to the model. When the vegetation growth is being simulated, the use of a LAI distributed in space improve the model results, by improving, for example, the estimated evapotranspiration, the estimated values of biomass, the nutrient uptake, etc. MOHID LAND calculates a Reference Evapotranspiration (rEVTP), based on the meteorological properties. The Actual Evapotranspiration (aEVTP) is then computed based on vegetation transpiration, soil evaporation and the available water in soil. Alternatively, EO derived maps of EVTP can be used as input to the model, in the place of the rEVTP, or even in the place of the aEVTP, both being provided as boundary condition. The same can be done with SWC maps, that can be used to initialize the model soil water content. The integration of EO data with MOHID LAND was tested and is being continuously developed and applied for support farmers and to help water managers to improve the water management.

  8. A simple approach to adjust tidal forcing in fjord models

    NASA Astrophysics Data System (ADS)

    Hjelmervik, Karina; Kristensen, Nils Melsom; Staalstrøm, André; Røed, Lars Petter

    2017-07-01

    To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.

  9. Implementation of the glacial rebound prestress advection correction in general-purpose finite element analysis software: Springs versus foundations

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Lund, Björn; Hieronymus, Christoph

    2012-03-01

    When general-purpose finite element analysis software is used to model glacial isostatic adjustment (GIA), the first-order effect of prestress advection has to be accounted for by the user. We show here that the common use of elastic foundations at boundaries between materials of different densities will produce incorrect displacements, unless the boundary is perpendicular to the direction of gravity. This is due to the foundations always acting perpendicular to the surface to which they are attached, while the body force they represent always acts in the direction of gravity. If prestress advection is instead accounted for by the use of elastic spring elements in the direction of gravity, the representation will be correct. The use of springs adds a computation of the spring constants to the analysis. The spring constant for a particular node is defined by the product of the density contrast at the boundary, the gravitational acceleration, and the area supported by the node. To be consistent with the finite element formulation, the area is evaluated by integration of the nodal shape functions. We outline an algorithm for the calculation and include a Python script that integrates the shape functions over a bilinear quadrilateral element. For linear rectangular and triangular elements, the area supported by each node is equal to the element area divided the number of defining nodes, thereby simplifying the computation. This is, however, not true in the general nonrectangular case, and we demonstrate this with a simple 1-element model. The spring constant calculation is simple and performed in the preprocessing stage of the analysis. The time spent on the calculation is more than compensated for by a shorter analysis time, compared to that for a model with foundations. We illustrate the effects of using springs versus foundations with a simple two-dimensional GIA model of glacial loading, where the Earth model has an inclined boundary between the overlying elastic layer and the lower viscoelastic layer. Our example shows that the error introduced by the use of foundations is large enough to affect an analysis based on high-accuracy geodetic data.

  10. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.

    PubMed

    Yang, S A

    2002-10-01

    This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.

  11. Application of the Integrative Harmony paradigm and Model.

    PubMed

    Haley, Janice; Ratliffe, Clark

    2006-01-01

    Medically-fragile children at home with technologic equipment to support their vital organs place extraordinary demands on the parent caregiver. An ethnographic study was conducted following 12 Pacific Island families in their homes who cared for their medically-fragile child from hospital discharge over a period of two and a half years. Results showed the 'strengths' parents needed and the 'stressors' encountered in caring for their child. Based on the 'strengths' and 'stressors,' the Integrative Harmony Model was introduced as a new nursing model to bring a sense of harmony/balance into the lives of these parents challenged by extreme conditions. This article explains the Integrative Harmony Model and demonstrates its application with a Pacific Island mother and her medically-fragile child. This new and unique nursing model views individuals from an inclusive, non-dualistic world view. In this model, strengths and stressors are not opposed but are melded together in such a way that a sense of harmony is approached. This model challenges the nurse and others to leave behind the usual boundaries and adapt an integrative perspective connecting with clients/others at a level where it is not a case and someone else's life-it is all our lives.

  12. Cost-effectiveness of two operational models at industrial wastewater treatment plants in China: a case study in Shengze town, Suzhou City.

    PubMed

    Yuan, Zengwei; Jiang, Weili; Bi, Jun

    2010-10-01

    The widespread illegal discharge of industrial wastewater in China has posed significant challenges to the effective management of industrial wastewater treatment plants (IWTPs) and caused or exacerbated critical social issues such as trans-boundary environmental pollution. This study examines two operational strategies, decentralized model and an innovative integrated model, that have been used in the industrial town of Shengze (located in Suzhou City) over the past two decades at IWTPs handling wastewater from the city's dyeing industry. Our cost-effectiveness analysis shows that, although the operational cost of IWTPs under the integrated model is higher than under the original decentralized model, the integrated model has significantly improved IWTP performance and effectively reduced illegal discharge of industrial wastewater. As a result, the number of reported incidents of unacceptable pollution in local receiving water bodies had declined from 13 in 2000-1 in 2008. Key factors contributing to the success of the innovative integrated model are strong support from municipal and provincial leaders, mandatory ownership transfer of IWTPs to a centralized management body, strong financial incentives for proper plant management, and geographically-clustered IWTPs. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Building agribusiness model of LEISA to achieve sustainable agriculture in Surian Subdistrict of Sumedang Regency West Java Indonesia

    NASA Astrophysics Data System (ADS)

    Djuwendah, E.; Priyatna, T.; Kusno, K.; Deliana, Y.; Wulandari, E.

    2018-03-01

    Building agribusiness model of LEISA is needed as a prototype of sustainable regional and economic development (SRRED) in the watersheds (DAS) of West Java Province. Agribusiness model of LEISA is a sustainable agribusiness system applying low external input. The system was developed in the framework of optimizing local-based productive resources including soil, water, vegetation, microclimate, renewable energy, appropriate technology, social capital, environment and human resources by combining various subsystems including integrated production subsystems of crops, livestock and fish to provide a maximum synergy effect, post-harvest subsystem and processing of results, marketing subsystems and supporting subsystems. In this study, the ecological boundary of Cipunegara sub-watershed ecosystem, administrative boundaries are Surian Subdistricts in Sumedang. The purpose of this study are to identify the potency of natural resources and local agricultural technologies that could support the LEISA model in Surian and to identify the potency of internal and external inputs in the LEISA model. The research used qualitative descriptive method and technical action research. Data were obtained through interviews, documentation, and observation. The results showed that natural resources in the form of agricultural land, water resources, livestock resources, and human labor are sufficient to support agribusiness model of LEISA. LEISA agribusiness model that has been applied in the research location is the integration of beef cattle, agroforestry, and agrosilvopasture. By building LEISA model, agribusiness can optimize the utilization of locally based productive resources, reduce dependence on external resources, and support sustainable food security.

  14. Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.

    PubMed

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the two methods are essentially equivalent; i.e., they have comparable accuracies for the same number of elements. We find that ions in water--charges embedded in a high-dielectric medium--are harder to compute accurately than charges in a low-dielectric medium.

  15. Accurate path integration in continuous attractor network models of grid cells.

    PubMed

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  16. Care Model Design for E-Health: Integration of Point-of-Care Testing at Dutch General Practices.

    PubMed

    Verhees, Bart; van Kuijk, Kees; Simonse, Lianne

    2017-12-21

    Point-of-care testing (POCT)-laboratory tests performed with new mobile devices and online technologies outside of the central laboratory-is rapidly outpacing the traditional laboratory test market, growing at a rate of 12 to 15% each year. POCT impacts the diagnostic process of care providers by yielding high efficiency benefits in terms of turnaround time and related quality improvements in the reduction of errors. However, the implementation of this disruptive eHealth technology requires the integration and transformation of diagnostic services across the boundaries of healthcare organizations. Research has revealed both advantages and barriers of POCT implementations, yet to date, there is no business model for the integration of POCT within general practice. The aim of this article is to contribute with a design for a care model that enables the integration of POCT in primary healthcare. In this research, we used a design modelling toolkit for data collection at five general practices. Through an iterative design process, we modelled the actors and value transactions, and designed an optimized care model for the dynamic integration of POCTs into the GP's network of care delivery. The care model design will have a direct bearing on improving the integration of POCT through the connectivity and norm guidelines between the general practice, the POC technology, and the diagnostic centre.

  17. Care Model Design for E-Health: Integration of Point-of-Care Testing at Dutch General Practices

    PubMed Central

    Verhees, Bart; van Kuijk, Kees

    2017-01-01

    Point-of-care testing (POCT)—laboratory tests performed with new mobile devices and online technologies outside of the central laboratory—is rapidly outpacing the traditional laboratory test market, growing at a rate of 12 to 15% each year. POCT impacts the diagnostic process of care providers by yielding high efficiency benefits in terms of turnaround time and related quality improvements in the reduction of errors. However, the implementation of this disruptive eHealth technology requires the integration and transformation of diagnostic services across the boundaries of healthcare organizations. Research has revealed both advantages and barriers of POCT implementations, yet to date, there is no business model for the integration of POCT within general practice. The aim of this article is to contribute with a design for a care model that enables the integration of POCT in primary healthcare. In this research, we used a design modelling toolkit for data collection at five general practices. Through an iterative design process, we modelled the actors and value transactions, and designed an optimized care model for the dynamic integration of POCTs into the GP’s network of care delivery. The care model design will have a direct bearing on improving the integration of POCT through the connectivity and norm guidelines between the general practice, the POC technology, and the diagnostic centre. PMID:29267224

  18. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions.

    PubMed

    Akrami, Mohammad; Qian, Zhihui; Zou, Zhemin; Howard, David; Nester, Chris J; Ren, Lei

    2018-04-01

    The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.

  19. Derivation of Boundary Manikins: A Principal Component Analysis

    NASA Technical Reports Server (NTRS)

    Young, Karen; Margerum, Sarah; Barr, Abbe; Ferrer, Mike A.; Rajulu, Sudhakar

    2008-01-01

    When designing any human-system interface, it is critical to provide realistic anthropometry to properly represent how a person fits within a given space. This study aimed to identify a minimum number of boundary manikins or representative models of subjects anthropometry from a target population, which would realistically represent the population. The boundary manikin anthropometry was derived using, Principal Component Analysis (PCA). PCA is a statistical approach to reduce a multi-dimensional dataset using eigenvectors and eigenvalues. The measurements used in the PCA were identified as those measurements critical for suit and cockpit design. The PCA yielded a total of 26 manikins per gender, as well as their anthropometry from the target population. Reduction techniques were implemented to reduce this number further with a final result of 20 female and 22 male subjects. The anthropometry of the boundary manikins was then be used to create 3D digital models (to be discussed in subsequent papers) intended for use by designers to test components of their space suit design, to verify that the requirements specified in the Human Systems Integration Requirements (HSIR) document are met. The end-goal is to allow for designers to generate suits which accommodate the diverse anthropometry of the user population.

  20. Implementation of perfectly matched layers in an arbitrary geometrical boundary for elastic wave modelling

    NASA Astrophysics Data System (ADS)

    Gao, Hongwei; Zhang, Jianfeng

    2008-09-01

    The perfectly matched layer (PML) absorbing boundary condition is incorporated into an irregular-grid elastic-wave modelling scheme, thus resulting in an irregular-grid PML method. We develop the irregular-grid PML method using the local coordinate system based PML splitting equations and integral formulation of the PML equations. The irregular-grid PML method is implemented under a discretization of triangular grid cells, which has the ability to absorb incident waves in arbitrary directions. This allows the PML absorbing layer to be imposed along arbitrary geometrical boundaries. As a result, the computational domain can be constructed with smaller nodes, for instance, to represent the 2-D half-space by a semi-circle rather than a rectangle. By using a smooth artificial boundary, the irregular-grid PML method can also avoid the special treatments to the corners, which lead to complex computer implementations in the conventional PML method. We implement the irregular-grid PML method in both 2-D elastic isotropic and anisotropic media. The numerical simulations of a VTI lamb's problem, wave propagation in an isotropic elastic medium with curved surface and in a TTI medium demonstrate the good behaviour of the irregular-grid PML method.

  1. Tornado wind-loading requirements based on risk assessment techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deobald, T.L.; Coles, G.A.; Smith, G.L.

    Regulations require that nuclear power plants be protected from tornado winds. If struck by a tornado, a plant must be capable of safely shutting down and removing decay heat. Probabilistic techniques are used to show that risk to the public from the US Department of Energy (DOE) SP-100 reactor is acceptable without tornado hardening parts of the secondary system. Relaxed requirements for design wind loadings will result in significant cost savings. To demonstrate an acceptable level of risk, this document examines tornado-initiated accidents. The two tornado-initiated accidents examined in detail are loss of cooling resulting in core damage and lossmore » of secondary system boundary integrity leading to sodium release. Loss of core cooling is analyzed using fault/event tree models. Loss of secondary system boundary integrity is analyzed by comparing the consequences to acceptance criteria for the release of radioactive material or alkali metal aerosol. 4 refs., 4 figs.« less

  2. A class of hybrid finite element methods for electromagnetics: A review

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Chatterjee, A.; Gong, J.

    1993-01-01

    Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.

  3. Comparison of analytical and experimental performance of a wind-tunnel diffuser section

    NASA Technical Reports Server (NTRS)

    Shyne, R. J.; Moore, R. D.; Boldman, D. R.

    1986-01-01

    Wind tunnel diffuser performance is evaluated by comparing experimental data with analytical results predicted by an one-dimensional integration procedure with skin friction coefficient, a two-dimensional interactive boundary layer procedure for analyzing conical diffusers, and a two-dimensional, integral, compressible laminar and turbulent boundary layer code. Pressure, temperature, and velocity data for a 3.25 deg equivalent cone half-angle diffuser (37.3 in., 94.742 cm outlet diameter) was obtained from the one-tenth scale Altitude Wind Tunnel modeling program at the NASA Lewis Research Center. The comparison is performed at Mach numbers of 0.162 (Re = 3.097x19(6)), 0.326 (Re = 6.2737x19(6)), and 0.363 (Re = 7.0129x10(6)). The Reynolds numbers are all based on an inlet diffuser diameter of 32.4 in., 82.296 cm, and reasonable quantitative agreement was obtained between the experimental data and computational codes.

  4. Work-Family Boundary Strategies: Stability and Alignment between Preferred and Enacted Boundaries

    ERIC Educational Resources Information Center

    Ammons, Samantha K.

    2013-01-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability.…

  5. Existence and uniqueness theorems for impulsive fractional differential equations with the two-point and integral boundary conditions.

    PubMed

    Mardanov, M J; Mahmudov, N I; Sharifov, Y A

    2014-01-01

    We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.

  6. Time domain reflectometry measurements of solute transport across a soil layer boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, H.H.; Moldrup, P.; Kachanoski, R.G.

    2000-02-01

    The mechanisms governing solute transport through layered soil are not fully understood. Solute transport at, above, and beyond the interface between two soil layers during quasi-steady-state soil water movement was investigated using time domain reflectometry (TDR). A 0.26-m sandy loam layer was packed on top of a 1.35-m fine sand layer in a soil column. Soil water content ({theta}) and bulk soil electrical conductivity (EC{sub b}) were measured by 50 horizontal and 2 vertical TDR probes. A new TDR calibration method that gives a detailed relationship between apparent relative dielectric permittivity (K{sub s}) and {theta} was applied. Two replicate solutemore » transport experiments were conducted adding a conservative tracer (CCl) to the surface as a short pulse. The convective lognormal transfer function model (CLT) was fitted to the TDR-measured time integral-normalized resident concentration breakthrough curves (BTCs). The BTCs and the average solute-transport velocities showed preferential flow occurred across the layer boundary. A nonlinear decrease in TDR-measured {theta} in the upper soil toward the soil layer boundary suggests the existence of a 0.10-m zone where water is confined towards fingered flow, creating lateral variations in the area-averaged water flux above the layer boundary. A comparison of the time integral-normalized flux concentration measured by vertical and horizontal TDR probes at the layer boundary also indicates a nonuniform solute transport. The solute dispersivity remained constant in the upper soil layer, but increased nonlinearly (and further down, linearly) with depth in the lower layer, implying convective-dispersive solute transport in the upper soil, a transition zone just below the boundary, and stochastic-convective solute transport in the remaining part of the lower soil.« less

  7. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.

  8. Singular boundary method for global gravity field modelling

    NASA Astrophysics Data System (ADS)

    Cunderlik, Robert

    2014-05-01

    The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.

  9. Good fences: the importance of setting boundaries for peaceful coexistence.

    PubMed

    Rutherford, Alex; Harmon, Dion; Werfel, Justin; Gard-Murray, Alexander S; Bar-Yam, Shlomiya; Gros, Andreas; Xulvi-Brunet, Ramon; Bar-Yam, Yaneer

    2014-01-01

    We consider the conditions of peace and violence among ethnic groups, testing a theory designed to predict the locations of violence and interventions that can promote peace. Characterizing the model's success in predicting peace requires examples where peace prevails despite diversity. Switzerland is recognized as a country of peace, stability and prosperity. This is surprising because of its linguistic and religious diversity that in other parts of the world lead to conflict and violence. Here we analyze how peaceful stability is maintained. Our analysis shows that peace does not depend on integrated coexistence, but rather on well defined topographical and political boundaries separating groups, allowing for partial autonomy within a single country. In Switzerland, mountains and lakes are an important part of the boundaries between sharply defined linguistic areas. Political canton and circle (sub-canton) boundaries often separate religious groups. Where such boundaries do not appear to be sufficient, we find that specific aspects of the population distribution guarantee either sufficient separation or sufficient mixing to inhibit intergroup violence according to the quantitative theory of conflict. In exactly one region, a porous mountain range does not adequately separate linguistic groups and that region has experienced significant violent conflict, leading to the recent creation of the canton of Jura. Our analysis supports the hypothesis that violence between groups can be inhibited by physical and political boundaries. A similar analysis of the area of the former Yugoslavia shows that during widespread ethnic violence existing political boundaries did not coincide with the boundaries of distinct groups, but peace prevailed in specific areas where they did coincide. The success of peace in Switzerland may serve as a model to resolve conflict in other ethnically diverse countries and regions of the world.

  10. Good Fences: The Importance of Setting Boundaries for Peaceful Coexistence

    PubMed Central

    Rutherford, Alex; Harmon, Dion; Werfel, Justin; Gard-Murray, Alexander S.; Bar-Yam, Shlomiya; Gros, Andreas; Xulvi-Brunet, Ramon; Bar-Yam, Yaneer

    2014-01-01

    We consider the conditions of peace and violence among ethnic groups, testing a theory designed to predict the locations of violence and interventions that can promote peace. Characterizing the model's success in predicting peace requires examples where peace prevails despite diversity. Switzerland is recognized as a country of peace, stability and prosperity. This is surprising because of its linguistic and religious diversity that in other parts of the world lead to conflict and violence. Here we analyze how peaceful stability is maintained. Our analysis shows that peace does not depend on integrated coexistence, but rather on well defined topographical and political boundaries separating groups, allowing for partial autonomy within a single country. In Switzerland, mountains and lakes are an important part of the boundaries between sharply defined linguistic areas. Political canton and circle (sub-canton) boundaries often separate religious groups. Where such boundaries do not appear to be sufficient, we find that specific aspects of the population distribution guarantee either sufficient separation or sufficient mixing to inhibit intergroup violence according to the quantitative theory of conflict. In exactly one region, a porous mountain range does not adequately separate linguistic groups and that region has experienced significant violent conflict, leading to the recent creation of the canton of Jura. Our analysis supports the hypothesis that violence between groups can be inhibited by physical and political boundaries. A similar analysis of the area of the former Yugoslavia shows that during widespread ethnic violence existing political boundaries did not coincide with the boundaries of distinct groups, but peace prevailed in specific areas where they did coincide. The success of peace in Switzerland may serve as a model to resolve conflict in other ethnically diverse countries and regions of the world. PMID:24847861

  11. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

    NASA Astrophysics Data System (ADS)

    Kazantsev, I. G.; Olsen, U. L.; Poulsen, H. F.; Hansen, P. C.

    2018-02-01

    We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.

  12. Retention and release of hydrogen isotopes in tungsten plasma-facing components: the role of grain boundaries and the native oxide layer from a joint experiment-simulation integrated approach

    NASA Astrophysics Data System (ADS)

    Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.

    2017-07-01

    Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion in the model of a thin defective oxide layer following the experimental observation of the presence of an oxygen layer on the surface even after annealing to 1300 K.

  13. A solid reactor core thermal model for nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Rider, William J.; Cappiello, Michael W.; Liles, Dennis R.

    1991-01-01

    A Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods, and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions.

  14. Organizing integrated care in a university hospital: application of a conceptual framework.

    PubMed

    Axelsson, Runo; Axelsson, Susanna Bihari; Gustafsson, Jeppe; Seemann, Janne

    2014-04-01

    As a result of New Public Management, a number of industrial models of quality management have been implemented in health care, mainly in hospitals. At the same time, the concept of integrated care has been developed within other parts of the health sector. The aim of the article is to discuss the relevance of integrated care for hospitals. The discussion is based on application of a conceptual framework outlining a number of organizational models of integrated care. These models are illustrated in a case study of a Danish university hospital implementing a new organization for improving the patient flows of the hospital. The study of the reorganization is based mainly on qualitative data from individual and focus group interviews. The new organization of the university hospital can be regarded as a matrix structure combining a vertical integration of clinical departments with a horizontal integration of patient flows. This structure has elements of both interprofessional and interorganizational integration. A strong focus on teamwork, meetings and information exchange is combined with elements of case management and co-location. It seems that integrated care can be a relevant concept for a hospital. Although the organizational models may challenge established professional boundaries and financial control systems, this concept can be a more promising way to improve the quality of care than the industrial models that have been imported into health care. This application of the concept may also contribute to widen the field of integrated care.

  15. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  16. A flowing partially penetrating well in a finite-thickness aquifer: a mixed-type initial boundary value problem

    NASA Astrophysics Data System (ADS)

    Chang, Chien-Chieh; Chen, Chia-Shyun

    2003-02-01

    An analytical approach using integral transform techniques is developed to deal with a well hydraulics model involving a mixed boundary of a flowing partially penetrating well, where constant drawdown is stipulated along the well screen and no-flux condition along the remaining unscreened part. The aquifer is confined of finite thickness. First, the mixed boundary is changed into a homogeneous Neumann boundary by discretizing the well screen into a finite number of segments, each of which at constant drawdown is subject to unknown a priori well bore flux. Then, the Laplace and the finite Fourier transforms are used to solve this modified model. Finally, the prescribed constant drawdown condition is reinstated to uniquely determine the well bore flux function, and to restore the relation between the solution and the original model. The transient and the steady-state solutions for infinite aquifer thickness can be derived from the semi-analytical solution, complementing the currently available dual integral solution. If the distance from the edge of the well screen to the bottom/top of the aquifer is 100 times greater than the well screen length, aquifer thickness can be assumed infinite for times of practical significance, and groundwater flow can reach a steady-state condition, where the well will continuously supply water under a constant discharge. However, if aquifer thickness is smaller, the well discharge decreases with time. The partial penetration effect is most pronounced in the vicinity of the flowing well, decreases with increasing horizontal distance, and vanishes at distances larger than 1-2 times the aquifer thickness divided by the square root of aquifer anisotropy. The horizontal hydraulic conductivity and the specific storage coefficient can be determined from vertically averaged drawdown as measured by fully penetrating observation wells. The vertical hydraulic conductivity can be determined from the well discharge under two particular partial penetration conditions.

  17. Improving wave forecasting by integrating ensemble modelling and machine learning

    NASA Astrophysics Data System (ADS)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  18. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers.

    PubMed

    Cooper, Christopher D; Bardhan, Jaydeep P; Barba, L A

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known apbs finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the apbs solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is in the order of 1-2% error, when running on one gpu card (nvidia Tesla C2075), compared with apbs running on six Intel Xeon cpu cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using gpus via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  19. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Bardhan, Jaydeep P.; Barba, L. A.

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known APBS finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the APBS solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is on the order of 1-2% error, when running on one GPU card (NVIDIA Tesla C2075), compared with APBS running on six Intel Xeon CPU cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using GPUs via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  20. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore

    PubMed Central

    Ai, Zhijiu; Sun, Xu; Fu, Biwei

    2016-01-01

    Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations. PMID:27649535

  1. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore.

    PubMed

    Gong, Yinchun; Ai, Zhijiu; Sun, Xu; Fu, Biwei

    2016-01-01

    Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.

  2. Combined measurement of surface, grain boundary and lattice diffusion coefficients on olivine bi-crystals

    NASA Astrophysics Data System (ADS)

    Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes

    2014-05-01

    Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA measurements. To evaluate the obtained diffusion profiles we adapted the isolated grain boundary model, first proposed by Fisher (1951) to match several observations: (i) Anisotropic diffusion in forsterite, (ii) fast diffusion along the grain boundary, (iii) fast diffusion on the surface of the sample. The latter process is needed to explain an additional flux of material from the surface into the grain boundary. Surface and grain boundary diffusion coefficients are on the order of 10000 times faster than diffusion in the lattice. Another observation was that in some regions the diffusion profiles in the lattice were greatly extended. TEM observations suggest here that surface defects (nano-cracks, ect.) have been present, which apparently enhanced the diffusion through the bulk lattice. Dohmen, R., & Milke, R. (2010). Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data. Reviews in Mineralogy and Geochemistry, 72(1), 921-970. Fisher, J. C. (1951). Calculations of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. Journal of Applied Physics, 22(1), 74-77. Le Claire, A. D. (1951). Grain boundary diffusion in metals. Philosophical Magazine A, 42(328), 468-474.

  3. Interdisciplinary methods and practices for integrating social sciences into studies on catchment evolution

    NASA Astrophysics Data System (ADS)

    Carr, G.

    2017-12-01

    Real world problems rarely regard disciplinary boundaries. This is particularly apparent in catchments, where knowledge and understanding from many different research disciplines is essential to address the water resource challenges facing society. People are an integral part of any catchment. Therefore a comprehensive understanding of catchment evolution needs to include the social system. Socio-hydrological models that can simulate the co-evolution of human-water systems, for example, with regards to floods and droughts, show great promise in their capacity to capture and understand such systems. Yet, to develop socio-hydrological models into more comprehensive analysis tools that adequately capture the social components of the system, researchers need to embrace interdisciplinary working and multi-disciplinary research teams. By exploring the development of interdisciplinary research in a water programme, several key practices have been identified that support interdisciplinary collaboration. These include clarification where researchers discuss and re-explain their research or position to expose all the assumptions being made until all involved understand it; harnessing differences where different opinions and types of knowledge are treated respectfully to minimise tensions and disputes; and boundary setting where defensible limits to the research enquiry are set with consideration for the restrictions (funds, skills, resources) through negotiation and discussion between the research team members. Focussing on these research practices while conducting interdisciplinary collaborative research into the human-water system, is anticipated to support the development of more integrated approaches and models.

  4. Dynamic model of open shell structures buried in poroelastic soils

    NASA Astrophysics Data System (ADS)

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  5. Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona

    1996-01-01

    Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

  6. Boundary particle method for Laplace transformed time fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Yang, Hai-Tian

    2013-02-01

    This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.

  7. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  8. Discrete mathematical model of wave diffraction on pre-fractal impedance strips. TM mode case

    NASA Astrophysics Data System (ADS)

    Nesvit, K. V.

    2013-10-01

    In this paper a transverse magnetic (TM) wave diffraction problem on pre-fractal impedance strips is considered. The overall aim of this work is to develop a discrete mathematical model of the boundary integral equations (IEs) with the help of special quadrature formulas with the nodes in the zeros of Chebyshev polynomials and to perform a numerical experiments with the help of an efficient discrete singularities method (DSM).

  9. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  10. Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution

    NASA Astrophysics Data System (ADS)

    Melis, M. T.; Mundula, F.; DessÌ, F.; Cioni, R.; Funedda, A.

    2014-09-01

    Unequivocal delimitation of landforms is an important issue for different purposes, from science-driven morphometric analysis to legal issues related to land conservation. This study is aimed at giving a new contribution to the morphometric approach for the delineation of the boundaries of volcanic edifices, applied to 13 monogenetic volcanoes (scoria cones) related to the Pliocene-Pleistocene volcanic cycle in Sardinia (Italy). External boundary delimitation of the edifices is discussed based on an integrated methodology using automatic elaboration of digital elevation models together with geomorphological and geological observations. Different elaborations of surface slope and profile curvature have been proposed and discussed; among them, two algorithms based on simple mathematical functions combining slope and profile curvature well fit the requirements of this study. One of theses algorithms is a modification of a function introduced by Grosse et al. (2011), which better performs for recognizing and tracing the boundary between the volcanic scoria cone and its basement. Although the geological constraints still drive the final decision, the proposed method improves the existing tools for a semi-automatic tracing of the boundaries.

  11. Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution

    NASA Astrophysics Data System (ADS)

    Melis, M. T.; Mundula, F.; Dessì, F.; Cioni, R.; Funedda, A.

    2014-05-01

    Unequivocal delimitation of landforms is an important issue for different purposes, from science-driven morphometric analysis to legal issues related to land conservation. This study is aimed at giving a new contribution to the morphometric approach for the delineation of the boundaries of volcanic edifices, applied to 13 monogenetic volcanoes (scoria cones) related to the Pliocene-Pleistocene volcanic cycle in Sardinia (Italy). External boundary delimitation of the edifices is discussed based on an integrated methodology using automatic elaboration of digital elevation models together with geomorphological and geological observations. Different elaborations of surface slope and profile curvature have been proposed and discussed; among them, two algorithms based on simple mathematical functions combining slope and profile curvature well fit the requirements of this study. One of theses algorithms is a modification of a function already discussed by Grosse et al. (2011), which better perform for recognizing and tracing the boundary between the volcanic scoria cone and its basement. Although the geological constraints still drive the final decision, the proposed method improves the existing tools for a semi-automatic tracing of the boundaries.

  12. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.

  13. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  14. A Simulation Study of the Overdetermined Geodetic Boundary Value Problem Using Collocation

    DTIC Science & Technology

    1989-03-01

    9 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AIR FORCE BASE...linearized integral equation is obtained through an infinite system of integral equations which is solved step by step by means of Stokes’ function. The...computed. Since 9 and W = W(9) 4 are known on the boundary, then the boundary is known in the new coordinate system . The serious disadvantage of this

  15. Process-oriented integration and coordination of healthcare services across organizational boundaries.

    PubMed

    Tello-Leal, Edgar; Chiotti, Omar; Villarreal, Pablo David

    2012-12-01

    The paper presents a methodology that follows a top-down approach based on a Model-Driven Architecture for integrating and coordinating healthcare services through cross-organizational processes to enable organizations providing high quality healthcare services and continuous process improvements. The methodology provides a modeling language that enables organizations conceptualizing an integration agreement, and identifying and designing cross-organizational process models. These models are used for the automatic generation of: the private view of processes each organization should perform to fulfill its role in cross-organizational processes, and Colored Petri Net specifications to implement these processes. A multi-agent system platform provides agents able to interpret Colored Petri-Nets to enable the communication between the Healthcare Information Systems for executing the cross-organizational processes. Clinical documents are defined using the HL7 Clinical Document Architecture. This methodology guarantees that important requirements for healthcare services integration and coordination are fulfilled: interoperability between heterogeneous Healthcare Information Systems; ability to cope with changes in cross-organizational processes; guarantee of alignment between the integrated healthcare service solution defined at the organizational level and the solution defined at technological level; and the distributed execution of cross-organizational processes keeping the organizations autonomy.

  16. Study of a mixed dispersal population dynamics model

    DOE PAGES

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; ...

    2016-08-27

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to diemore » out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.« less

  17. The role of thermal and lubricant boundary layers in the transient thermal analysis of spur gears

    NASA Technical Reports Server (NTRS)

    El-Bayoumy, L. E.; Akin, L. S.; Townsend, D. P.; Choy, F. C.

    1989-01-01

    An improved convection heat-transfer model has been developed for the prediction of the transient tooth surface temperature of spur gears. The dissipative quality of the lubricating fluid is shown to be limited to the capacity extent of the thermal boundary layer. This phenomenon can be of significance in the determination of the thermal limit of gears accelerating to the point where gear scoring occurs. Steady-state temperature prediction is improved considerably through the use of a variable integration time step that substantially reduces computer time. Computer-generated plots of temperature contours enable the user to animate the propagation of the thermal wave as the gears come into and out of contact, thus contributing to better understanding of this complex problem. This model has a much better capability at predicting gear-tooth temperatures than previous models.

  18. Theoretical model for thin ferroelectric films and the multilayer structures based on them

    NASA Astrophysics Data System (ADS)

    Starkov, A. S.; Pakhomov, O. V.; Starkov, I. A.

    2013-06-01

    A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.

  19. The terminal area simulation system. Volume 1: Theoretical formulation

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.

    1987-01-01

    A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.

  20. Traction reveals mechanisms of wall effects for microswimmers near boundaries

    NASA Astrophysics Data System (ADS)

    Shen, Xinhui; Marcos, Fu, Henry C.

    2017-03-01

    The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.

  1. Traction reveals mechanisms of wall effects for microswimmers near boundaries.

    PubMed

    Shen, Xinhui; Marcos; Fu, Henry C

    2017-03-01

    The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.

  2. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  3. [Delimitation of urban growth boundary based on ecological suitability and risk control: A case of Taibai Lake New District in Jining City, Shandong, China.

    PubMed

    Liu, Yan Xu; Peng, Jian; Sun, Mao Long; Yang, Yang

    2016-08-01

    Urban growth boundary, with full consideration of regional ecological constraints, can effectively control the unordered urban sprawl. Thus, urban growth boundary is a significant planning concept integrating regional ecological protection and urban construction. Finding the preferential position for urban construction, as well as controlling the ecological risk, has always been the core content of urban growth boundary delimitation. This study selected Taibai Lake New District in Jining City as a case area, and analyzed the scenario of ecological suitability by ordered weighted ave-raging algorithm. Surface temperature retrieval and rain flooding simulation were used to identify the spatial ecological risk. In the result of ecological suitability, the suitable construction zone accounted for 25.3% of the total area, the unsuitable construction zone accounted for 20.4%, and the other area was in the limit construction zone. Excluding the ecological risk control region, the flexible urban growth boundary covered 2975 hm 2 in near term, and covered 6754 hm 2 in long term. The final inflexible urban growth boundary covered 9405 hm 2 . As a new method, the scenario algorithms of ordered weighted averaging and ecological risk modeling could provide effective support in urban growth boundary identification.

  4. Combined horizontal and vertical integration of care: a goal of practice-based commissioning.

    PubMed

    Thomas, Paul; Meads, Geoffrey; Moustafa, Ahmet; Nazareth, Irwin; Stange, Kurt C; Donnelly Hess, Gertrude

    2008-01-01

    Practice-based commissioning (PBC) in the UK is intended to improve both the vertical and horizontal integration of health care, in order to avoid escalating costs and enhance population health. Vertical integration involves patient pathways to treat named medical conditions that transcend organisational boundaries and connect community-based generalists with largely hospital-sited specialists, whereas horizontal integration involves peer-based and cross-sectoral collaboration to improve overall health. Effective mechanisms are now needed to permit ongoing dialogue between the vertical and horizontal dimensions to ensure that medical and nonmedical care are both used to their best advantage. This paper proposes three different models for combining vertical and horizontal integration - each is a hybrid of internationally recognised ideal types of primary care organisation. Leaders of PBC should consider a range of models and apply them in ways that are relevant to the local context. General practitioners, policy makers and others whose job it is to facilitate horizontal and vertical integration must learn to lead such combined approaches to integration if the UK is to avoid the mistakes of the USA in over-medicalising health issues.

  5. Integrated modelling for Sustainability Appraisal of urban river corridors: going beyond compartmentalised thinking.

    PubMed

    Kumar, Vikas; Rouquette, J R; Lerner, David N

    2013-12-15

    Sustainability Appraisal (SA) is a complex task that involves integration of social, environmental and economic considerations and often requires trade-offs between multiple stakeholders that may not easily be brought to consensus. Classical SA, often compartmentalised in the rigid boundary of disciplines, can facilitate discussion, but can only partially inform decision makers as many important aspects of sustainability remain abstract and not interlinked. A fully integrated model can overcome compartmentality in the assessment process and provides opportunity for a better integrative exploratory planning process. The objective of this paper is to explore the benefit of an integrated modelling approach to SA and how a structured integrated model can be used to provide a coherent, consistent and deliberative platform to assess policy or planning proposals. The paper discusses a participative and integrative modelling approach to urban river corridor development, incorporating the principal of sustainability. The paper uses a case study site in Sheffield, UK, with three alternative development scenarios, incorporating a number of possible riverside design features. An integrated SA model is used to develop better design by optimising different design elements and delivering a more sustainable (re)-development plan. We conclude that participatory integrated modelling has strong potential for supporting the SA processes. A high degree of integration provides the opportunity for more inclusive and informed decision-making regarding issues of urban development. It also provides the opportunity to reflect on their long-term dynamics, and to gain insights on the interrelationships underlying persistent sustainability problems. Thus the ability to address economic, social and environmental interdependencies within policies, plans, and legislations is enhanced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  7. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  8. Modeling variability and scale integration of LAI measurements

    Treesearch

    Kris Nackaerts; Pol Coppin

    2000-01-01

    Rapid and reliable estimation of leaf area at various scales is important for research on chance detection of leaf area index (LAI) as an indicator of ecosystem condition. It is of utmost importance to know to what extent boundary and illumination conditions, data aggregation method, and sampling scheme influence the relative accuracy of stand-level LAI measurements....

  9. Higher Education Collective Bargaining: Beyond the Boundaries. Proceedings of the Annual Conference (23rd, New York, NY, April 24-25, 1995).

    ERIC Educational Resources Information Center

    Annunziato, Frank R., Ed.; Johnson, Beth H., Ed.

    This collection of 17 papers addresses current issues related to collective bargaining in higher education and the professions. The papers include: (1) "The American Academic Model Abroad" (Irwin H. Polishook); (2) "The European Perspective" (Gerd Kohler); (3) "Economic Integration in the North American Region:…

  10. Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean.

    PubMed

    Díaz, J I; Hidalgo, A; Tello, L

    2014-10-08

    We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge-Kutta total variation diminishing for time integration.

  11. Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean

    PubMed Central

    Díaz, J. I.; Hidalgo, A.; Tello, L.

    2014-01-01

    We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration. PMID:25294969

  12. Integral Equations in Computational Electromagnetics: Formulations, Properties and Isogeometric Analysis

    NASA Astrophysics Data System (ADS)

    Lovell, Amy Elizabeth

    Computational electromagnetics (CEM) provides numerical methods to simulate electromagnetic waves interacting with its environment. Boundary integral equation (BIE) based methods, that solve the Maxwell's equations in the homogeneous or piecewise homogeneous medium, are both efficient and accurate, especially for scattering and radiation problems. Development and analysis electromagnetic BIEs has been a very active topic in CEM research. Indeed, there are still many open problems that need to be addressed or further studied. A short and important list includes (1) closed-form or quasi-analytical solutions to time-domain integral equations, (2) catastrophic cancellations at low frequencies, (3) ill-conditioning due to high mesh density, multi-scale discretization, and growing electrical size, and (4) lack of flexibility due to re-meshing when increasing number of forward numerical simulations are involved in the electromagnetic design process. This dissertation will address those several aspects of boundary integral equations in computational electromagnetics. The first contribution of the dissertation is to construct quasi-analytical solutions to time-dependent boundary integral equations using a direct approach. Direct inverse Fourier transform of the time-harmonic solutions is not stable due to the non-existence of the inverse Fourier transform of spherical Hankel functions. Using new addition theorems for the time-domain Green's function and dyadic Green's functions, time-domain integral equations governing transient scattering problems of spherical objects are solved directly and stably for the first time. Additional, the direct time-dependent solutions, together with the newly proposed time-domain dyadic Green's functions, can enrich the time-domain spherical multipole theory. The second contribution is to create a novel method of moments (MoM) framework to solve electromagnetic boundary integral equation on subdivision surfaces. The aim is to avoid the meshing and re-meshing stages to accelerate the design process when the geometry needs to be updated. Two schemes to construct basis functions on the subdivision surface have been explored. One is to use the div-conforming basis function, and the other one is to create a rigorous iso-geometric approach based on the subdivision basis function with better smoothness properties. This new framework provides us better accuracy, more stability and high flexibility. The third contribution is a new stable integral equation formulation to avoid catastrophic cancellations due to low-frequency breakdown or dense-mesh breakdown. Many of the conventional integral equations and their associated post-processing operations suffer from numerical catastrophic cancellations, which can lead to ill-conditioning of the linear systems or serious accuracy problems. Examples includes low-frequency breakdown and dense mesh breakdown. Another instability may come from nontrivial null spaces of involving integral operators that might be related with spurious resonance or topology breakdown. This dissertation presents several sets of new boundary integral equations and studies their analytical properties. The first proposed formulation leads to the scalar boundary integral equations where only scalar unknowns are involved. Besides the requirements of gaining more stability and better conditioning in the resulting linear systems, multi-physics simulation is another driving force for new formulations. Scalar and vector potentials (rather than electromagnetic field) based formulation have been studied for this purpose. Those new contributions focus on different stages of boundary integral equations in an almost independent manner, e.g. isogeometric analysis framework can be used to solve different boundary integral equations, and the time-dependent solutions to integral equations from different formulations can be achieved through the same methodology proposed.

  13. Time-dependent boundary conditions for hyperbolic systems. II

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1990-01-01

    A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.

  14. Time-dependent boundary conditions for hyperbolic systems. II

    NASA Astrophysics Data System (ADS)

    Thompson, Kevin W.

    1990-08-01

    A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.

  15. Implicit level set algorithms for modelling hydraulic fracture propagation.

    PubMed

    Peirce, A

    2016-10-13

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture 'tip screen-out'; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research. This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  16. Implicit level set algorithms for modelling hydraulic fracture propagation

    PubMed Central

    2016-01-01

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture ‘tip screen-out’; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research.  This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597787

  17. Sensitivities Kernels of Seismic Traveltimes and Amplitudes for Quality Factor and Boundary Topography

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Zhao, L.; Ma, K.

    2010-12-01

    Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.

  18. UXO Discrimination in Cases with Overlapping Signatures

    DTIC Science & Technology

    2007-03-07

    13. APPENDIX B: HFE -BIEM ..........................................................................................................290 - 7...First principals numerical solutions developed were a Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM) body of revolution (BOR...attacks, namely the Method of Auxiliary Sources (MAS) and the Hybrid Finite Element – Boundary Integral Equation Method ( HFE -BIEM). These work

  19. Study of microwave drying of wet materials based on one-dimensional two-phase model

    NASA Astrophysics Data System (ADS)

    Salomatov, Vl V.; Karelin, V. A.

    2017-11-01

    Currently, microwave is one of the most interesting ways to conduct drying of dielectric materials, in particular coal. In this paper, two processes were considered - heating and drying. The temperature field of the coal semi-mass in the heating mode is found analytically strictly with the use of integral transformations. The drying process is formulated as a nonlinear Stephen problem with a moving boundary of the liquid-vapor phase transformation. The temperature distribution, speed and drying time in this mode are determined approximately analytically. Parametric analysis of the influence of the material and boundary conditions on the dynamics of warming up and drying is revealed.

  20. Innovative visualization and segmentation approaches for telemedicine

    NASA Astrophysics Data System (ADS)

    Nguyen, D.; Roehrig, Hans; Borders, Marisa H.; Fitzpatrick, Kimberly A.; Roveda, Janet

    2014-09-01

    In health care applications, we obtain, manage, store and communicate using high quality, large volume of image data through integrated devices. In this paper we propose several promising methods that can assist physicians in image data process and communication. We design a new semi-automated segmentation approach for radiological images, such as CT and MRI to clearly identify the areas of interest. This approach combines the advantages from both the region-based method and boundary-based methods. It has three key steps compose: coarse segmentation by using fuzzy affinity and homogeneity operator, image division and reclassification using the Voronoi Diagram, and refining boundary lines using the level set model.

  1. A survey of nested grid techniques and their potential for use within the MASS weather prediction model

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.; Mcqueen, Jeffery T.

    1987-01-01

    A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.

  2. Effect of Surface Roughness on Polymer Drag Reduction with a High-Reynolds-Number Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Dowling, David; Solomon, Michael; Bian, Sherry; Ceccio, Steven

    2007-11-01

    A recent experiment at the U.S. Navy's Large Cavitation Channel (LCC) investigated the effect of wall roughness on wall-injection polymer drag reduction (PDR) within a high-Reynolds-number (10^7 to 2x10^8 based on downstream distance) turbulent boundary layer (TBL). Testing was performed in two parts: 1) PDR experiment on a 12.9 m long, 3.05 m wide hydro-dynamically smooth flat plate and 2) PDR experiment on the same model with the entire surface roughened. The roughness was produced by blowing glass beads into epoxy paint that was applied to the entire model. The roughened model had an average roughness height ranging between 307 and 1154 μm. Drag reduction was determined using six, stream-wise located integrated skin-friction balances. In addition to skin-friction measurements, sampling was performed at three stream-wise located ports. The sampling ports were used to determine the amount of degradation, if any, caused by the turbulent flow on the polymer. Both the skin-friction measurements and sampling analysis indicates that wall roughness in a turbulent boundary layer significantly increases degradation of the polymer solution.

  3. Dynamic Floodplain representation in hydrologic flood forecasting using WRF-Hydro modeling framework

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Li, Z.; Maitaria, K.; Islam, M.; Ito, T.; Dhondia, J.

    2016-12-01

    Floods claim more lives and damage more property than any other category of natural disaster in the Continental United States. A system that can demarcate local flood boundaries dynamically could help flood prone communities prepare for and even prevent from catastrophic flood events. Lateral distance from the centerline of the river to the right and left floodplains for the water levels coming out of the models at each grid location have not been properly integrated with the national hydrography dataset (NHDPlus). The NHDPlus dataset represents the stream network with feature classes such as rivers, tributaries, canals, lakes, ponds, dams, coastlines, and stream gages. The NHDPlus dataset consists of approximately 2.7 million river reaches defining how surface water drains to the ocean. These river reaches have upstream and downstream nodes and basic parameters such as flow direction, drainage area, reach slope etc. We modified an existing algorithm (Gangodagamage et al., 2007) to provide lateral distance from the centerline of the river to the right and left floodplains for the flows simulated by models. Previous work produced floodplain boundaries for static river stages (i.e. 3D metric: distance along the main stem, flow depth, lateral distance from river center line). Our new approach introduces the floodplain boundary for variable water levels at each reach with the fourth dimension, time. We use modeled flows from WRF-Hydro and demarcate the right and left lateral boundaries of inundation dynamically by appropriately mapping discharges into hydraulically corrected stages. Backwater effects from the mainstem to tributaries are considered and proper corrections are applied for the tributary inundations. We obtained river stages by optimizing reach level channel parameters using newly developed stream flow routing algorithm. Non uniform inundations are mapped at each NHDplus reach (upstream and downstream nodes) and spatial interpolation is carried out on a normalized digital elevation model (always streams are at zero elevations) to obtain the smooth flood boundaries between adjacent reaches. The validation of the dynamic inundation boundaries is performed using multi-temporal satellite datasets as well as HEC-RAS hydrodynamic model results for selected streams for previous flood events.

  4. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  5. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  6. Application of variational principles and adjoint integrating factors for constructing numerical GFD models

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2015-04-01

    The proposed method is considered on an example of hydrothermodynamics and atmospheric chemistry models [1,2]. In the development of the existing methods for constructing numerical schemes possessing the properties of total approximation for operators of multiscale process models, we have developed a new variational technique, which uses the concept of adjoint integrating factors. The technique is as follows. First, a basic functional of the variational principle (the integral identity that unites the model equations, initial and boundary conditions) is transformed using Lagrange's identity and the second Green's formula. As a result, the action of the operators of main problem in the space of state functions is transferred to the adjoint operators defined in the space of sufficiently smooth adjoint functions. By the choice of adjoint functions the order of the derivatives becomes lower by one than those in the original equations. We obtain a set of new balance relationships that take into account the sources and boundary conditions. Next, we introduce the decomposition of the model domain into a set of finite volumes. For multi-dimensional non-stationary problems, this technique is applied in the framework of the variational principle and schemes of decomposition and splitting on the set of physical processes for each coordinate directions successively at each time step. For each direction within the finite volume, the analytical solutions of one-dimensional homogeneous adjoint equations are constructed. In this case, the solutions of adjoint equations serve as integrating factors. The results are the hybrid discrete-analytical schemes. They have the properties of stability, approximation and unconditional monotony for convection-diffusion operators. These schemes are discrete in time and analytic in the spatial variables. They are exact in case of piecewise-constant coefficients within the finite volume and along the coordinate lines of the grid area in each direction on a time step. In each direction, they have tridiagonal structure. They are solved by the sweep method. An important advantage of the discrete-analytical schemes is that the values of derivatives at the boundaries of finite volume are calculated together with the values of the unknown functions. This technique is particularly attractive for problems with dominant convection, as it does not require artificial monotonization and limiters. The same idea of integrating factors is applied in temporal dimension to the stiff systems of equations describing chemical transformation models [2]. The proposed method is applicable for the problems involving convection-diffusion-reaction operators. The work has been partially supported by the Presidium of RAS under Program 43, and by the RFBR grants 14-01-00125 and 14-01-31482. References: 1. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Variational approach and Euler's integrating factors for environmental studies// Computers and Mathematics with Applications, (2014) V.67, Issue 12, P. 2240-2256. 2. V.V.Penenko, E.A.Tsvetova. Variational methods of constructing monotone approximations for atmospheric chemistry models // Numerical analysis and applications, 2013, V. 6, Issue 3, pp 210-220.

  7. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Brian; Scherzinger, William

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, andmore » compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less

  8. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Brian T.; Scherzinger, William M.

    2017-01-19

    A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and comparedmore » to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less

  9. Basin deconstruction-construction: Seeking thermal-tectonic consistency through the integration of geochemical thermal indicators and seismic fault mechanical stratigraphy ​- Example from Faras Field, North Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Pigott, John D.; Abouelresh, Mohamed O.

    2016-02-01

    To construct a model of a sedimentary basin's thermal tectonic history is first to deconstruct it: taking apart its geological elements, searching for its initial conditions, and then to reassemble the elements in the temporal order that the basin is assumed to have evolved. Two inherent difficulties implicit to the analysis are that most organic thermal indicators are cumulative, irreversible and a function of both temperature and time and the non-uniqueness of crustal strain histories which complicates tectonic interpretations. If the initial conditions (e.g. starting maturity of the reactants and initial crustal temperature) can be specified and the boundary conditions incrementally designated from changes in the lithospheric heat engine owing to stratigraphic structural constraints, then the number of pathways for the temporal evolution of a basin is greatly reduced. For this investigation, model input uncertainties are reduced through seeking a solution that iteratively integrates the geologically constrained tectonic subsidence, geochemically constrained thermal indicators, and geophysically constrained fault mechanical stratigraphy. The Faras oilfield in the Abu Gharadig Basin, North Western Desert, Egypt, provides an investigative example of such a basin's deconstructive procedure. Multiple episodes of crustal extension and shortening are apparent in the tectonic subsidence analyses which are constrained from the fault mechanical stratigraphy interpreted from reflection seismic profiles. The model was iterated with different thermal boundary conditions until outputs best fit the geochemical observations. In so doing, the thermal iterations demonstrate that general relationship that basin heat flow increases decrease vertical model maturity gradients, increases in surface temperatures shift vertical maturity gradients linearly to higher values, increases in sediment conductivities lower vertical maturities with depth, and the addition of ;ghost; layers (those layers removed) prior to the erosional event increase maturities beneath, and conversely. These integrated constraints upon the basin evolution model indicate that the principal source rocks, Khatatba and the lowest part of the Alam El Bueib formations, entered the oil window at approximately 95 Ma and the gas window at approximately 25 Ma. The upper part of the Alam El Bueib Formation is within the oil window at the present day. Establishing initial and boundary value conditions for a basin's thermal evolution when geovalidated by the integration of seismic fault mechanical stratigraphy, tectonic subsidence analysis, and organic geochemical maturity indicators provides a powerful tool for optimizing petroleum exploration in both mature and frontier basins.

  10. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. Integration of certain singular boundary element integrals for applications in linear acoustics

    NASA Technical Reports Server (NTRS)

    Zimmerle, D.; Bernhard, R. J.

    1985-01-01

    An alternative method for performing singular boundary element integrals for applications in linear acoustics is discussed. The method separates the integral of the characteristic solution into a singular and nonsingular part. The singular portion is integrated with a combination of analytic and numerical techniques while the nonsingular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of subparametric elements. The integrals over elements containing the root node are considered, and the characteristic solution for linear acoustic problems are examined. The method may be generalized to most characteristic solutions.

  11. [Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].

    PubMed

    Gómez, Amparo

    2014-01-01

    This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.

  12. Geomorphic modeling of macro-tidal embayment with extensive tidal flats: Skagit Bay, Washington

    DTIC Science & Technology

    2012-09-30

    integrated Delft3D-MOR submodel. Measured river discharge, predicted tides, bathymetry, wind , and density-driven flow were incorporated into the model...supplied with sediment initially. Water temperature and salinity at the tidal boundary were adapted from (Moore et al., 2008). Wind forcing was...tide range varied from 2.4 m at Deception Pass to 3.5 m at Crescent Harbor. Because observations have indicated that wind -generated waves may be

  13. A fast direct solver for boundary value problems on locally perturbed geometries

    NASA Astrophysics Data System (ADS)

    Zhang, Yabin; Gillman, Adrianna

    2018-03-01

    Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

  14. Two Legendre-Dual-Petrov-Galerkin Algorithms for Solving the Integrated Forms of High Odd-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.

    2014-01-01

    Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620

  15. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  16. Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform.

    PubMed

    Klaseboer, Evert; Sepehrirahnama, Shahrokh; Chan, Derek Y C

    2017-08-01

    The general space-time evolution of the scattering of an incident acoustic plane wave pulse by an arbitrary configuration of targets is treated by employing a recently developed non-singular boundary integral method to solve the Helmholtz equation in the frequency domain from which the space-time solution of the wave equation is obtained using the fast Fourier transform. The non-singular boundary integral solution can enforce the radiation boundary condition at infinity exactly and can account for multiple scattering effects at all spacings between scatterers without adverse effects on the numerical precision. More generally, the absence of singular kernels in the non-singular integral equation confers high numerical stability and precision for smaller numbers of degrees of freedom. The use of fast Fourier transform to obtain the time dependence is not constrained to discrete time steps and is particularly efficient for studying the response to different incident pulses by the same configuration of scatterers. The precision that can be attained using a smaller number of Fourier components is also quantified.

  17. Organizing integrated care in a university hospital: application of a conceptual framework

    PubMed Central

    Axelsson, Runo; Axelsson, Susanna Bihari; Gustafsson, Jeppe; Seemann, Janne

    2014-01-01

    Background and aim As a result of New Public Management, a number of industrial models of quality management have been implemented in health care, mainly in hospitals. At the same time, the concept of integrated care has been developed within other parts of the health sector. The aim of the article is to discuss the relevance of integrated care for hospitals. Theory and methods The discussion is based on application of a conceptual framework outlining a number of organizational models of integrated care. These models are illustrated in a case study of a Danish university hospital implementing a new organization for improving the patient flows of the hospital. The study of the reorganization is based mainly on qualitative data from individual and focus group interviews. Results The new organization of the university hospital can be regarded as a matrix structure combining a vertical integration of clinical departments with a horizontal integration of patient flows. This structure has elements of both interprofessional and interorganizational integration. A strong focus on teamwork, meetings and information exchange is combined with elements of case management and co-location. Conclusions It seems that integrated care can be a relevant concept for a hospital. Although the organizational models may challenge established professional boundaries and financial control systems, this concept can be a more promising way to improve the quality of care than the industrial models that have been imported into health care. This application of the concept may also contribute to widen the field of integrated care. PMID:24966806

  18. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Borge, Rafael; Alexandrov, Vassil; José del Vas, Juan; Lumbreras, Julio; Rodríguez, Encarnacion

    Meteorological inputs play a vital role on regional air quality modelling. An extensive sensitivity analysis of the Weather Research and Forecasting (WRF) model was performed, in the framework of the Integrated Assessment Modelling System for the Iberian Peninsula (SIMCA) project. Up to 23 alternative model configurations, including Planetary Boundary Layer schemes, Microphysics, Land-surface models, Radiation schemes, Sea Surface Temperature and Four-Dimensional Data Assimilation were tested in a 3 km spatial resolution domain. Model results for the most significant meteorological variables, were assessed through a series of common statistics. The physics options identified to produce better results (Yonsei University Planetary Boundary Layer, WRF Single-Moment 6-class microphysics, Noah Land-surface model, Eta Geophysical Fluid Dynamics Laboratory longwave radiation and MM5 shortwave radiation schemes) along with other relevant user settings (time-varying Sea Surface Temperature and combined grid-observational nudging) where included in a "best case" configuration. This setup was tested and found to produce more accurate estimation of temperature, wind and humidity fields at surface level than any other configuration for the two episodes simulated. Planetary Boundary Layer height predictions showed a reasonable agreement with estimations derived from routine atmospheric soundings. Although some seasonal and geographical differences were observed, the model showed an acceptable behaviour overall. Despite being useful to define the most appropriate setup of the WRF model for air quality modelling over the Iberian Peninsula, this study provides a general overview of WRF sensitivity and can constitute a reference for future mesoscale meteorological modelling exercises.

  19. Sequence stratigraphy of the Monterey Formation, Santa Barbara County: Integration of physical, chemical, and biofacies data from outcrop and subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohacs, K.M.

    1990-05-01

    Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less

  20. On the possibility of control restoration in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.

  1. High Reynolds number tests of a Douglas DLBA 032 airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Charles B.; Dress, David A.; Hill, Acquilla S.; Wilcox, Peter A.; Bui, Minh H.

    1986-01-01

    A wind-tunnel investigation of a Douglas advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). The temperature was varied from 227 K (409 R) to 100 K (180 R) at pressures ranging from about 159 kPa (1.57 atm) to about 514 kPa (5.07 atm). Mach number was varied from 0.50 to 0.78. These variables provided a Reynolds number range (based on airfoil chord) from 6.0 to 30.0 x 10 to the 6th power. This investigation was specifically designed to: (1) test a Douglas airfoil from moderately low to flight-equivalent Reynolds numbers, and (2) evaluate sidewall-boundary-layer effects on transonic airfoil performance characteristics by a systematic variation of Mach number, Reynolds number, and sidewall-boundary-layer removal. Data are included which demonstrate the effects of fixing transition, Mach number, Reynolds number, and sidewall-boundary-layer removal on the aerodynamic characteristics of the airfoil. Also included are remarks on model design and model structural integrity.

  2. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  3. Wildfire smoke transport and impact on air quality observed by a mullti-wavelength elastic-raman lidar and ceilometer in New York city

    NASA Astrophysics Data System (ADS)

    Wu, Yonghua; Peña, Wilson; Gross, Barry.; Moshary, Fred

    2018-04-01

    The intense wildfires from the western Canada in May 2016 injected large amount of smoke into the atmosphere. This paper presents integrated observation of the event by a lidar, ceilometer, and satellite together with models and an assessment of smoke plume impacts on local air quality in New York City (NYC) area. A dense aloft plume on May 20 and a boundary layer plume on May 25 are analyzed. The smoke mixing into planetary-boundary-layer (PBL) and strong diurnal variation of PBL-top are shown. For the 2ndcase, the ground PM2.5 measurements show a significant increase in both the urban and upwind non-urban areas of NYC. The smoke sources and transport paths are further verified by the satellite observations and HYSPLIT model data.

  4. A turbulence model for iced airfoils and its validation

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Chen, Hsun H.; Cebeci, Tuncer

    1992-01-01

    A turbulence model based on the extension of the algebraic eddy viscosity formulation of Cebeci and Smith developed for two dimensional flows over smooth and rough surfaces is described for iced airfoils and validated for computed ice shapes obtained for a range of total temperatures varying from 28 to -15 F. The validation is made with an interactive boundary layer method which uses a panel method to compute the inviscid flow and an inverse finite difference boundary layer method to compute the viscous flow. The interaction between inviscid and viscous flows is established by the use of the Hilbert integral. The calculated drag coefficients compare well with recent experimental data taken at the NASA-Lewis Icing Research Tunnel (IRT) and show that, in general, the drag increase due to ice accretion can be predicted well and efficiently.

  5. Crossing the Boundaries: The Need to Integrate School Leadership and Early Childhood Education

    ERIC Educational Resources Information Center

    Göncü, Artin; Main, Catherine; Perone, Anthony; Tozer, Steve

    2014-01-01

    Recent Illinois legislation requires school principals in the state to be qualified to provide school leadership for children from preschool to grade twelve instead of kindergarten to grade twelve. Illinois is the first state to make such a change and may well serve as a model for change in school leadership preparation on a national level. The…

  6. Thinking Out of the Box: A Green and Social Climate Fund

    PubMed Central

    Ooms, Gorik; van de Pas, Remco; Decoster, Kristof; Hammonds, Rachel

    2017-01-01

    Solomon Benatar’s paper "Politics, Power, Poverty and Global Health: Systems and Frames" examines the inequitable state of global health challenging readers to extend the discourse on global health beyond conventional boundaries by addressing the interconnectedness of planetary life. Our response explores existing models of international cooperation, assessing how modifying them may achieve the twin goals of ensuring healthy people and planet. First, we address why the inequality reducing post World War II European welfare model, if implemented state-by-state, is unfit for reducing global inequality and respecting environmental boundaries. Second, we argue that to advance beyond the ‘Westphalian,’ human centric thinking integral to global inequality and climate change requires challenging the logic of global economic integration and exploring the politically infeasible. In conclusion, we propose social policy focused changes to the World Trade Organisation (WTO) and a Green and Social Climate Fund, financed by new global greenhouse gas charges, both of which could advance human and planetary health. Recent global political developments may offer a small window of opportunity for out of the box proposals that could be advanced by concerted and united advocacy by global health activists, environmental activists, human rights activists, and trade unions. PMID:28949466

  7. Solid/FEM integration at SNLA

    NASA Technical Reports Server (NTRS)

    Chavez, Patrick F.

    1987-01-01

    The effort at Sandia National Labs. on the methodologies and techniques being used to generate strict hexahedral finite element meshes from a solid model is described. The functionality of the modeler is used to decompose the solid into a set of nonintersecting meshable finite element primitives. The description of the decomposition is exported, via a Boundary Representative format, to the meshing program which uses the information for complete finite element model specification. Particular features of the program are discussed in some detail along with future plans for development which includes automation of the decomposition using artificial intelligence techniques.

  8. Do the benefits of family-to-work transitions come at too great a cost?

    PubMed

    Carlson, Dawn S; Kacmar, K Michele; Zivnuska, Suzanne; Ferguson, Merideth

    2015-04-01

    This research examines the impact of role boundary management on the work-family interface, as well as on organizational (job embeddedness) and family (relationship tension) outcomes. First, we integrate conservation of resources theory with crossover theory, to build a theoretical model of work-family boundary management. Second, we extend prior work by exploring positive and negative paths through which boundary management affects work and family outcomes. Third, we incorporate spouse perceptions to create a dynamic, systems-perspective explanation of the work-family interface. Using a matched sample of 639 job incumbents and their spouses, we found that family-to-work boundary transitions was related to the job incumbents' work-to-family conflict, work-to-family enrichment, and job embeddedness as well as the boundary management strain transmitted to the spouse. We also found that the boundary management strain transmitted to the spouse mediated the relationship between family-to-work boundary transitions and both work-to-family conflict and work-to-family enrichment. Finally, we found significant indirect effects between family-to-work boundary transitions and job embeddedness and relationship tension through both the boundary management strain transmitted to the spouse and the incumbent's work-family conflict, but not through work-family enrichment. Thus, family-to-work boundary transitions offer some benefits to the organization by contributing to job embeddedness, but they also come at a cost in that they are associated with work-family conflict and relationship tension. We discuss the study's implications for theory, research, and practice while suggesting new research directions. (c) 2015 APA, all rights reserved).

  9. Recalibration of the Multisensory Temporal Window of Integration Results from Changing Task Demands

    PubMed Central

    Mégevand, Pierre; Molholm, Sophie; Nayak, Ashabari; Foxe, John J.

    2013-01-01

    The notion of the temporal window of integration, when applied in a multisensory context, refers to the breadth of the interval across which the brain perceives two stimuli from different sensory modalities as synchronous. It maintains a unitary perception of multisensory events despite physical and biophysical timing differences between the senses. The boundaries of the window can be influenced by attention and past sensory experience. Here we examined whether task demands could also influence the multisensory temporal window of integration. We varied the stimulus onset asynchrony between simple, short-lasting auditory and visual stimuli while participants performed two tasks in separate blocks: a temporal order judgment task that required the discrimination of subtle auditory-visual asynchronies, and a reaction time task to the first incoming stimulus irrespective of its sensory modality. We defined the temporal window of integration as the range of stimulus onset asynchronies where performance was below 75% in the temporal order judgment task, as well as the range of stimulus onset asynchronies where responses showed multisensory facilitation (race model violation) in the reaction time task. In 5 of 11 participants, we observed audio-visual stimulus onset asynchronies where reaction time was significantly accelerated (indicating successful integration in this task) while performance was accurate in the temporal order judgment task (indicating successful segregation in that task). This dissociation suggests that in some participants, the boundaries of the temporal window of integration can adaptively recalibrate in order to optimize performance according to specific task demands. PMID:23951203

  10. Finite volume solution of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Murman, E. M.

    1986-01-01

    A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.

  11. Global Dynamic Modeling of Space-Geodetic Data

    NASA Technical Reports Server (NTRS)

    Bird, Peter

    1995-01-01

    The proposal had outlined a year for program conversion, a year for testing and debugging, and two years for numerical experiments. We kept to that schedule. In first (partial) year, author designed a finite element for isostatic thin-shell deformation on a sphere, derived all of its algebraic and stiffness properties, and embedded it in a new finite element code which derives its basic solution strategy (and some critical subroutines) from earlier flat-Earth codes. Also designed and programmed a new fault element to represent faults along plate boundaries. Wrote a preliminary version of a spherical graphics program for the display of output. Tested this new code for accuracy on individual model plates. Made estimates of the computer-time/cost efficiency of the code for whole-earth grids, which were reasonable. Finally, converted an interactive graphical grid-designer program from Cartesian to spherical geometry to permit the beginning of serious modeling. For reasons of cost efficiency, models are isostatic, and do not consider the local effects of unsupported loads or bending stresses. The requirements are: (1) ability to represent rigid rotation on a sphere; (2) ability to represent a spatially uniform strain-rate tensor in the limit of small elements; and (3) continuity of velocity across all element boundaries. Author designed a 3-node triangle shell element which has two different sets of basis functions to represent (vector) velocity and all other (scalar) variables. Such elements can be shown to converge to the formulas for plane triangles in the limit of small size, but can also applied to cover any area smaller than a hemisphere. The difficult volume integrals involved in computing the stiffness of such elements are performed numerically using 7 Gauss integration points on the surface of the sphere, beneath each of which a vertical integral is performed using about 100 points.

  12. Regional climate model sensitivity to domain size

    NASA Astrophysics Data System (ADS)

    Leduc, Martin; Laprise, René

    2009-05-01

    Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge ismore » how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.« less

  14. Three-dimensional face model reproduction method using multiview images

    NASA Astrophysics Data System (ADS)

    Nagashima, Yoshio; Agawa, Hiroshi; Kishino, Fumio

    1991-11-01

    This paper describes a method of reproducing three-dimensional face models using multi-view images for a virtual space teleconferencing system that achieves a realistic visual presence for teleconferencing. The goal of this research, as an integral component of a virtual space teleconferencing system, is to generate a three-dimensional face model from facial images, synthesize images of the model virtually viewed from different angles, and with natural shadow to suit the lighting conditions of the virtual space. The proposed method is as follows: first, front and side view images of the human face are taken by TV cameras. The 3D data of facial feature points are obtained from front- and side-views by an image processing technique based on the color, shape, and correlation of face components. Using these 3D data, the prepared base face models, representing typical Japanese male and female faces, are modified to approximate the input facial image. The personal face model, representing the individual character, is then reproduced. Next, an oblique view image is taken by TV camera. The feature points of the oblique view image are extracted using the same image processing technique. A more precise personal model is reproduced by fitting the boundary of the personal face model to the boundary of the oblique view image. The modified boundary of the personal face model is determined by using face direction, namely rotation angle, which is detected based on the extracted feature points. After the 3D model is established, the new images are synthesized by mapping facial texture onto the model.

  15. The Deep Western Boundary Current in the Labrador Sea From Observations and a High-Resolution Model

    NASA Astrophysics Data System (ADS)

    Handmann, Patricia; Fischer, Jürgen; Visbeck, Martin; Karstensen, Johannes; Biastoch, Arne; Böning, Claus; Patara, Lavinia

    2018-04-01

    Long-term observations from a 17 year long mooring array at the exit of the Labrador Sea at 53°N are compared to the output of a high-resolution model (VIKING20). Both are analyzed to define robust integral properties on basin and regional scale, which can be determined and evaluated equally well. While both, the observations and the model, show a narrow DWBC cyclonically engulfing the Labrador Sea, the model's boundary current system is more barotropic than in the observations and spectral analysis indicates stronger monthly to interannual transport variability. Compared to the model, the observations show a stronger density gradient, hence a stronger baroclinicity, from center to boundary. Despite this, the observed temporal evolution of the temperature in the central Labrador Sea is reproduced. The model results yield a mean export of North Atlantic Deep Water (NADW) (33.0 ± 5.7 Sv), which is comparable to the observed transport (31.2 ± 5.5 Sv) at 53°N. The results also include a comparable spatial pattern and March mixed layer depth in the central Labrador Sea (maximum depth ˜2,000 m). During periods containing enhanced deep convection (1990s) our analyses show increased correlation between LSW and LNADW model transport at 53°N. Our results indicate that the transport variability in LSW and LNADW at 53°N is a result of a complex modulation of wind stress and buoyancy forcing on regional and basin wide scale.

  16. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Lenschow, D. H.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jiménez, M. A.; Jonassen, M.; van den Kroonenberg, A.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.

    2014-10-01

    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.

  17. Assessing the usefulness of the photogrammetric method in the process of capturing data on parcel boundaries

    NASA Astrophysics Data System (ADS)

    Benduch, Piotr; Pęska-Siwik, Agnieszka

    2017-06-01

    A parcel is the most important object of real estate cadastre. Its primary spatial attribute are boundaries, determining the extent of property rights. Capturing the data on boundaries should be performed in the way ensuring sufficiently high accuracy and reliability. In recent years, as part of the project "ZSIN - Construction of Integrated Real Estate Information System - Stage I", in the territories of the participating districts, actions were taken aimed at the modernization of the register of land and buildings. In many cases, this process was carried out basing on photogrammetric materials. Applicable regulations allow such a possibility. This paper, basing on the documentation from the National Geodetic and Cartographic Documentation Center and on the authors' own surveys attempts to assess the applicability of the photogrammetric method to capture data on the boundaries of cadastral parcels. The scope of the research, most importantly, included the problem of accuracy with which it was possible to determine the position of a boundary point using photogrammetric surveys carried out on the terrain model created from processed aerial photographs. The article demonstrates the manner of recording this information in the cadastral database, as well as the resulting legal consequences. Moreover, the level of reliability of the entered values of the selected attributes of boundary points was assessed.

  18. Integrated Site Investigation Methods and Modeling: Recent Developments at the BHRS (Invited)

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Bradford, J. H.; Cardiff, M. A.; Dafflon, B.; Johnson, B. A.; Malama, B.; Thoma, M. J.

    2010-12-01

    The Boise Hydrogeophysical Research Site (BHRS) is a field-scale test facility in an unconfined aquifer with the goals of: developing cost-effective, non-invasive methods for quantitative characterization of heterogeneous aquifers using hydrologic and geophysical techniques; understanding fundamental relations and processes at multiple scales; and testing theories and models for groundwater flow and solute transport. The design of the BHRS supports a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrogeophysical experiments. New installations support direct and geophysical monitoring of hydrologic fluxes and states from the aquifer through the vadose zone to the atmosphere, including ET and river boundary behavior. Efforts to date have largely focused on establishing the 1D, 2D, and 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for testing methods to integrate direct and indirect data and invert for “known” parameter distributions, material boundaries, and tracer test or other system state behavior. Aquifer structure at the BHRS is hierarchical and includes layers and lenses that are recognized with geologic, hydrologic, radar, electrical, and seismic methods. Recent advances extend findings and method developments, but also highlight the need to examine assumptions and understand secular influences when designing and modeling field tests. Examples of advances and caveats include: New high-resolution 1D K profiles obtained from multi-level slug tests (inversion improves with priors for aquifer K, wellbore skin, and local presence of roots) show variable correlation with porosity and bring into question a Kozeny-Carman-type relation for much of the system. Modeling of 2D conservative tracer transport through a synthetic BHRS-like heterogeneous system shows the importance of including porosity heterogeneity (rather than assuming constant porosity for an aquifer) in addition to K heterogeneity. Similarly, 3D transient modeling of a conservative tracer test at the BHRS improves significantly with the use of prior geophysical information for layering and parameter structure and with use of both variable porosity and K. Joint inversion of multiple intersecting 2D radar tomograms gives well-resolved and consistent 3D distributions of porosity and unit boundaries that are largely correlated with neutron-porosity log and other site data, but the classic porosity-dielectric relation does not hold for one stratigraphic unit that also is recognized as anomalous with capacitive resistivity logs (i.e., cannot assume one petrophysical relation holds through a given aquifer system). Advances are being made in the new method of hydraulic tomography (2D with coincident electrical geophysics; 3D will be supplemented with priors); caveats here include the importance of boundary conditions and even ET effects. Also integrated data collection and modeling with multiple geophysical and hydrologic methods show promise for high-resolution quantification of vadose zone moisture and parameter distributions to improve variably saturated process models.

  19. Slip-mediated dewetting of polymer microdroplets

    PubMed Central

    McGraw, Joshua D.; Chan, Tak Shing; Maurer, Simon; Salez, Thomas; Benzaquen, Michael; Raphaël, Elie; Brinkmann, Martin; Jacobs, Karin

    2016-01-01

    Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slides against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap-shaped polystyrene microdroplets, with nonequilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using in situ atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient nonspherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition. PMID:26787903

  20. Classical geometry to quantum behavior correspondence in a virtual extra dimension

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-09-01

    In the Lorentz invariant formalism of compact space-time dimensions the assumption of periodic boundary conditions represents a consistent semi-classical quantization condition for relativistic fields. In Dolce (2011) [18] we have shown, for instance, that the ordinary Feynman path integral is obtained from the interference between the classical paths with different winding numbers associated with the cyclic dynamics of the field solutions. By means of the boundary conditions, the kinematical information of interactions can be encoded on the relativistic geometrodynamics of the boundary, see Dolce (2012) [8]. Furthermore, such a purely four-dimensional theory is manifestly dual to an extra-dimensional field theory. The resulting correspondence between extra-dimensional geometrodynamics and ordinary quantum behavior can be interpreted in terms of AdS/CFT correspondence. By applying this approach to a simple Quark-Gluon-Plasma freeze-out model we obtain fundamental analogies with basic aspects of AdS/QCD phenomenology.

  1. Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan, Pierre -Alexandre; Dingreville, Remi

    Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less

  2. Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity

    DOE PAGES

    Juan, Pierre -Alexandre; Dingreville, Remi

    2017-09-13

    Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less

  3. A new technique for simulating composite material

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1991-01-01

    This project dealt with the development on new methodologies and algorithms for the multi-spectrum electromagnetic characterization of large scale nonmetallic airborne vehicles and structures. A robust, low memory, and accurate methodology was developed which is particularly suited for modern machine architectures. This is a hybrid finite element method that combines two well known numerical solution approaches. That of the finite element method for modeling volumes and the boundary integral method which yields exact boundary conditions for terminating the finite element mesh. In addition, a variety of high frequency results were generated (such as diffraction coefficients for impedance surfaces and material layers) and a class of boundary conditions were developed which hold promise for more efficient simulations. During the course of this project, nearly 25 detailed research reports were generated along with an equal number of journal papers. The reports, papers, and journal articles are listed in the appendices along with their abstracts.

  4. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  5. PAN AIR: A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows About Arbitrary Configurations Using a Higher Order Panel Method. Volume 1; Theory Document (Version 1.1)

    NASA Technical Reports Server (NTRS)

    Magnus, Alfred E.; Epton, Michael A.

    1981-01-01

    An outline of the derivation of the differential equation governing linear subsonic and supersonic potential flow is given. The use of Green's Theorem to obtain an integral equation over the boundary surface is discussed. The engineering techniques incorporated in the PAN AIR (Panel Aerodynamics) program (a discretization method which solves the integral equation for arbitrary first order boundary conditions) are then discussed in detail. Items discussed include the construction of the compressibility transformations, splining techniques, imposition of the boundary conditions, influence coefficient computation (including the concept of the finite part of an integral), computation of pressure coefficients, and computation of forces and moments.

  6. Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabha, Thara V.; Balaji, B.; Resmi, E. A.; Karipot, Anandakumar

    2017-09-01

    Accurate representations of the planetary boundary layer (PBL) are important in all weather forecast systems, especially in simulations of turbulence, wind and air quality in the lower atmosphere. In the present study, detailed observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign (CAIPEEX-IGOC) 2014 comprising of the complete surface energy budget and detailed boundary layer observations are used to validate Advanced Research Weather Research and Forecasting (WRF) model simulations over a diverse terrain over the Ganges valley region, Uttar Pradesh, India. A drying event in June 2014 associated with a heat wave is selected for validation.Six local and nonlocal PBL schemes from WRF at 1 km resolution are compared with hourly observations during the diurnal cycle. Near-surface observations of weather parameters, radiation components and eddy covariance fluxes from micrometeorological tower, and profiles of variables from microwave radiometer, and radiosonde observations are used for model evaluations. Models produce a warmer, drier surface layer with higher wind speed, sensible heat flux and temperature than observations. Layered boundary layer dynamics, including the residual layer structure as illustrated in the observations over the Ganges valley are missed in the model, which lead to deeper mixed layers and excessive drying.Although it is difficult to identify any single scheme as the best, the qualitative and quantitative analyses for the entire study period and overall reproducibility of the observations indicate that the MYNN2 simulations describe lower errors and more realistic simulation of spatio-temporal variations in the boundary layer height.

  7. Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Motallebi, Fariborz

    1995-02-01

    This report presents a method for the prediction of mean flow data (i.e. , skin friction, velocity profile, and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the wake, the van Driest model for the complete inner region, and a correlation between the Reynolds number based on the boundary layer integral length scale (Re(sub Delta*)) and the Reynolds number based on the boundary layer momentum thickness (Re(sub theta)) were used to predict the mean flow quantities. The results for skin friction coefficient show good agreement with a number of existing theories including those of van Driest and Huang et al. Comparison with a large number of experimental data suggests that at least for transonic and supersonic flows, the velocity profile as described by van Driest and Coles is Reynolds number dependent and should not be presumed universal. Extra information or perhaps a better physical approach to the formulation of the mean structure of compressible turbulent boundary layers, even in zero pressure gradient and adiabatic condition, is required in order to achieve complete (physical and mathematical) convergence when it is applied in any prediction methods.

  8. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    NASA Technical Reports Server (NTRS)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  9. Secondary eyewall formation as a progressive boundary layer response

    NASA Astrophysics Data System (ADS)

    Abarca, S. F.; Montgomery, M. T.; Bell, M. M.

    2012-12-01

    The robust observational (satellite based) evidence that secondary eyewalls are common features in major hurricanes contrasts with the scarce in situ observations of the phenomena and its life cycle. This lack of observations has resulted in an incomplete understanding of the dynamics of secondary eyewall formation (SEF). A wide variety of physical processes have been invoked to explain SEF, but only the recently proposed theory of a progressive boundary layer control in SEF has been supported by a variety of full physics mesoscale numerical integrations. The RAINEX field project provided unique observations of the secondary eyewall of Hurricane Rita (2005) both before and during the time Rita exhibited a clear secondary eyewall structure. These observations have contributed to the advancement of the understanding of the secondary eyewall phenomenon. However, in the RAINEX experiment, there was limited data sampling during the development of the secondary wind maxima, thereby precluding a complete observational investigation of the dynamics of SEF. In this presentation we adopt an azimuthally-averaged perspective of the flow dynamics and we test the newly proposed theory of a progressive boundary layer control on SEF. Specifically, we use both RAINEX data as well as data from high resolution, full physics mesoscale numerical simulations to initialize and force an axisymmetric slab boundary layer model with radial diffusion included. The objective is to investigate whether such a reduced boundary layer model can generate secondary wind maxima as a response to environments like those that result in SEF in nature and in full physics simulations.

  10. TBIEM3D: A Computer Program for Predicting Ducted Fan Engine Noise. Version 1.1

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.

    1997-01-01

    This document describes the usage of the ducted fan noise prediction program TBIEM3D (Thin duct - Boundary Integral Equation Method - 3 Dimensional). A scattering approach is adopted in which the acoustic pressure field is split into known incident and unknown scattered parts. The scattering of fan-generated noise by a finite length circular cylinder in a uniform flow field is considered. The fan noise is modeled by a collection of spinning point thrust dipoles. The program, based on a Boundary Integral Equation Method (BIEM), calculates circumferential modal coefficients of the acoustic pressure at user-specified field locations. The duct interior can be of the hard wall type or lined. The duct liner is axisymmetric, locally reactive, and can be uniform or axially segmented. TBIEM3D is written in the FORTRAN programming language. Input to TBIEM3D is minimal and consists of geometric and kinematic parameters. Discretization and numerical parameters are determined automatically by the code. Several examples are presented to demonstrate TBIEM3D capabilities.

  11. A computer program for the simulation of heat and moisture flow in soils

    NASA Technical Reports Server (NTRS)

    Camillo, P.; Schmugge, T. J.

    1981-01-01

    A computer program that simulates the flow of heat and moisture in soils is described. The space-time dependence of temperature and moisture content is described by a set of diffusion-type partial differential equations. The simulator uses a predictor/corrector to numerically integrate them, giving wetness and temperature profiles as a function of time. The simulator was used to generate solutions to diffusion-type partial differential equations for which analytical solutions are known. These equations include both constant and variable diffusivities, and both flux and constant concentration boundary conditions. In all cases, the simulated and analytic solutions agreed to within the error bounds which were imposed on the integrator. Simulations of heat and moisture flow under actual field conditions were also performed. Ground truth data were used for the boundary conditions and soil transport properties. The qualitative agreement between simulated and measured profiles is an indication that the model equations are reasonably accurate representations of the physical processes involved.

  12. Saturn and Earth polar oval position forecast by IMPEx InfrastructureWeb Services based on the Paraboloid magnetospheric model

    NASA Astrophysics Data System (ADS)

    Blokhina, M. S.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Barinova, V. O.; Khodachenko, M. L.; Topf, F.

    2012-09-01

    The Saturn and Earth auroral emissions have different generation mechanisms, however, both mechanisms are not understood very well till now (see [1]). Both of these phenomena have a long history of observations. For Saturn these are Hubble images and big onground telescope images, as well as the Cassini ones in recent time. For Earth these are the satellite visible and UV camera images and onground observations. In course of the EU-FP7 Project "Integrated Medium for Planetary Exploration" the Web services based on the paraboloid magnetospheric models were constructed . The model field lines tracing gives us a possibility to distinguish the closed and open field line bundles. Additionally, we can find a boundary between the dipole type field lines and determine a region of the tail-like field lines crossing the equatorial plane tailward from the inner edge of the tail current sheet. Projections of this boundary and of the boundary between open and closed field lines at the ionospheric level mark the terrestrial auroral oval boundaries. The final result depends on the solar wind parameters and the magnetospheric state. In the Earth's case we have the ACE solar wind monitoring data which should be used to determine the magnetospheric state (http://smdc.sinp.msu.ru/index.py? nav=paraboloid/index [Interactive Earth]). For Saturn we use the three levels of the solar wind dynamic pressure (http://smdc.sinp. msu.ru/index.py?nav=paraboloid/index [Interactive Saturn]).

  13. Kinematics at the Intersection of the Garlock and Death Valley Fault Zones, California: Integration of TM Data and Field Studies

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Brady, Roland H., III; Abrams, Michael

    1989-01-01

    Kinematic relationships at the intersection of the southern Death Valley and Garlock fault zones were examined to identify and delineate the eastern structural boundary between the Mojave and the Basin and Range geologic terrains, and to construct a model for the evolution of this boundary through time. In order to accomplish this, satellite imagery was combined with field investigations to study six areas in the vicinity of the intersection, or possible extensions, of the fault zones. The information gathered from these areas allows the test of various hypotheses that were proposed to explain the interaction between the Death Valley and Garlock fault zones.

  14. Analysis of a Circular Composite Disk Subjected to Edge Rotations and Hydrostatic Pressure

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.

    2004-01-01

    The structural analysis results for a graphite/epoxy quasi-isotropic circular plate subjected to a forced rotation at the boundary and pressure is presented. The analysis is to support a specialized material characterization test for composite cryogenic tanks. Finite element models were used to ensure panel integrity and determine the pressure necessary to achieve a predetermined equal biaxial strain value. The displacement results due to the forced rotation at the boundary led to a detailed study of the bending stiffness matrix [D]. The variation of the bending stiffness terms as a function of angular position is presented graphically, as well as, an illustrative technique of considering the laminate as an I-beam.

  15. Diffusion mechanisms in chemical vapor-deposited iridium coated on chemical vapor-deposited rhenium

    NASA Technical Reports Server (NTRS)

    Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.; Franklin, J. E.

    1992-01-01

    Radiation-cooled rocket thruster chambers have been developed which use CVD Re coated with CVD Ir on the interior surface that is exposed to hot combustion gases. The Ir serves as an oxidation barrier which protects the structural integrity-maintaining Re at elevated temperatures. The diffusion kinetics of CVD materials at elevated temperatures is presently studied with a view to the prediction and extension of these thrusters' performance limits. Line scans for Ir and Re were fit on the basis of a diffusion model, in order to extract relevant diffusion constants; the fastest diffusion process is grain-boundary diffusion, where Re diffuses down grain boundaries in the Ir overlayer.

  16. Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System with a Bearing Defect

    PubMed Central

    Cao, Hongrui; Niu, Linkai; He, Zhengjia

    2012-01-01

    Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514

  17. Large Scale Skill in Regional Climate Modeling and the Lateral Boundary Condition Scheme

    NASA Astrophysics Data System (ADS)

    Veljović, K.; Rajković, B.; Mesinger, F.

    2009-04-01

    Several points are made concerning the somewhat controversial issue of regional climate modeling: should a regional climate model (RCM) be expected to maintain the large scale skill of the driver global model that is supplying its lateral boundary condition (LBC)? Given that this is normally desired, is it able to do so without help via the fairly popular large scale nudging? Specifically, without such nudging, will the RCM kinetic energy necessarily decrease with time compared to that of the driver model or analysis data as suggested by a study using the Regional Atmospheric Modeling System (RAMS)? Finally, can the lateral boundary condition scheme make a difference: is the almost universally used but somewhat costly relaxation scheme necessary for a desirable RCM performance? Experiments are made to explore these questions running the Eta model in two versions differing in the lateral boundary scheme used. One of these schemes is the traditional relaxation scheme, and the other the Eta model scheme in which information is used at the outermost boundary only, and not all variables are prescribed at the outflow boundary. Forecast lateral boundary conditions are used, and results are verified against the analyses. Thus, skill of the two RCM forecasts can be and is compared not only against each other but also against that of the driver global forecast. A novel verification method is used in the manner of customary precipitation verification in that forecast spatial wind speed distribution is verified against analyses by calculating bias adjusted equitable threat scores and bias scores for wind speeds greater than chosen wind speed thresholds. In this way, focusing on a high wind speed value in the upper troposphere, verification of large scale features we suggest can be done in a manner that may be more physically meaningful than verifications via spectral decomposition that are a standard RCM verification method. The results we have at this point are somewhat limited in view of the integrations having being done only for 10-day forecasts. Even so, one should note that they are among very few done using forecast as opposed to reanalysis or analysis global driving data. Our results suggest that (1) running the Eta as an RCM no significant loss of large-scale kinetic energy with time seems to be taking place; (2) no disadvantage from using the Eta LBC scheme compared to the relaxation scheme is seen, while enjoying the advantage of the scheme being significantly less demanding than the relaxation given that it needs driver model fields at the outermost domain boundary only; and (3) the Eta RCM skill in forecasting large scales, with no large scale nudging, seems to be just about the same as that of the driver model, or, in the terminology of Castro et al., the Eta RCM does not lose "value of the large scale" which exists in the larger global analyses used for the initial condition and for verification.

  18. A time-domain finite element boundary integral approach for elastic wave scattering

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.

    2018-04-01

    The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

  19. A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1996-11-01

    Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.

  20. Option volatility and the acceleration Lagrangian

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Cao, Yang

    2014-01-01

    This paper develops a volatility formula for option on an asset from an acceleration Lagrangian model and the formula is calibrated with market data. The Black-Scholes model is a simpler case that has a velocity dependent Lagrangian. The acceleration Lagrangian is defined, and the classical solution of the system in Euclidean time is solved by choosing proper boundary conditions. The conditional probability distribution of final position given the initial position is obtained from the transition amplitude. The volatility is the standard deviation of the conditional probability distribution. Using the conditional probability and the path integral method, the martingale condition is applied, and one of the parameters in the Lagrangian is fixed. The call option price is obtained using the conditional probability and the path integral method.

  1. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1985-01-01

    The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data.

  2. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  3. Memoryless control of boundary concentrations of diffusing particles.

    PubMed

    Singer, A; Schuss, Z; Nadler, B; Eisenberg, R S

    2004-12-01

    Flux between regions of different concentration occurs in nearly every device involving diffusion, whether an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory has calculated that flux since the time of Fick (1855), and the flux has been known to arise from the stochastic behavior of Brownian trajectories since the time of Einstein (1905), yet the mathematical description of the behavior of trajectories corresponding to different types of boundaries is not complete. We consider the trajectories of noninteracting particles diffusing in a finite region connecting two baths of fixed concentrations. Inside the region, the trajectories of diffusing particles are governed by the Langevin equation. To maintain average concentrations at the boundaries of the region at their values in the baths, a control mechanism is needed to set the boundary dynamics of the trajectories. Different control mechanisms are used in Langevin and Brownian simulations of such systems. We analyze models of controllers and derive equations for the time evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference between the time evolution and the steady state concentrations. While the time evolution of the density is governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator. The boundary conditions for the time dependent density depend on the model of the controller; however, this dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers, however, produce spurious boundary layers that can be catastrophic in simulations of charged particles, because even a tiny net charge can have global effects. The design of a nonrenewal controller that maintains concentrations of noninteracting particles without creating spurious boundary layers at the interface requires the solution of the time-dependent Fokker-Planck equation with absorption of outgoing trajectories and a source of ingoing trajectories on the boundary (the so called albedo problem).

  4. Dynamic Modeling, Controls, and Testing for Electrified Aircraft

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph; Stalcup, Erik

    2017-01-01

    Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.

  5. A combined finite element-boundary integral formulation for solution of two-dimensional scattering problems via CGFFT. [Conjugate Gradient Fast Fourier Transformation

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming

    1990-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  6. A combined finite element and boundary integral formulation for solution via CGFFT of 2-dimensional scattering problems

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Volakis, John L.

    1989-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principle advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  7. Observation of the magnetospheric ``sash'' and its implications relative to solar-wind/magnetospheric coupling: A multisatellite event analysis

    NASA Astrophysics Data System (ADS)

    Maynard, N. C.; Savin, S.; Erickson, G. M.; Kawano, H.; Němeček, Z.; Peterson, W. K.; Šafránoková, J.; Sandahl, I.; Scudder, J. D.; Siscoe, G. L.; Sonnerup, B. U. Ö.; Weimer, D. R.; White, W. W.; Wilson, G. R.

    2001-04-01

    Using a unique data set from the Wind, Polar, Interball 1, Magion 4, and Defense Meteorological Satellite Program (DMSP) F11 satellites, comparisons with the Integrated Space Weather Model (ISM) have provided validation of the global structure predicted by the ISM model, which in turn has allowed us to use the model to interpret the data to further understand boundary layers and magnetospheric processes. The comparisons have shown that the magnetospheric ``sash'' [White et al., 1998], a region of low magnetic field discovered by the MHD modeling which extends along the high-latitude flank of the magnetopause, is related to the turbulent boundary layer on the high-latitude magnetopause, recently mapped by Interball 1. The sash in the data and in the model has rotational discontinuity properties, expected for a reconnection site. At some point near or behind the terminator, the sash becomes a site for reconnection of open field lines, which were previously opened by merging on the dayside. This indicates that significant reconnection in the magnetotail occurs on the flanks. Polar mapped to the high-density extension of the sash into the tilted plasma sheet. The source of the magnetosheath plasma observed by Polar on closed field lines behind the terminator was plasma entry through the low field connection of the sash to the central plasma sheet. The Polar magnetic field line footprints in each hemisphere are moving in different directions. Above and below the tilted plasma sheet the flows in the model are consistent with the corresponding flows in the ionosphere. The turbulence in the plasma sheet allows the convection patterns from each hemisphere to adjust. The boundary layer in the equatorial plane on the flank for this interplanetary magnetic field BY condition, which is below the tilted central plasma sheet, is several RE thick and is on tailward flowing open field lines. This thick boundary layer shields the magnetopause from viscous forces and must be driven by magnetic tension. Above the plasma sheet the boundary layer is dominated by the sash, and the model indicates that the open region inside the sash is considerably thinner.

  8. Boundary Interaction: Towards Developing a Mobile Technology-Enabled Science Curriculum to Integrate Learning in the Informal Spaces

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2018-01-01

    This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…

  9. Boundary as Bridge: An Analysis of the Educational Neuroscience Literature from a Boundary Perspective

    ERIC Educational Resources Information Center

    Beauchamp, Catherine; Beauchamp, Miriam H.

    2013-01-01

    Within the emerging field of educational neuroscience, concerns exist that the impact of neuroscience research on education has been less effective than hoped. In seeking a way forward, it may be useful to consider the problems of integrating two complex fields in the context of disciplinary boundaries. Here, a boundary perspective is used as a…

  10. Quantum Quenches and Relaxation Dynamics in the Thermodynamic Limit

    NASA Astrophysics Data System (ADS)

    Mallayya, Krishnanand; Rigol, Marcos

    2018-02-01

    We implement numerical linked cluster expansions (NLCEs) to study dynamics of lattice systems following quantum quenches, and focus on a hard-core boson model in one-dimensional lattices. We find that, in the nonintegrable regime and within the accessible times, local observables exhibit exponential relaxation. We determine the relaxation rate as one departs from the integrable point and show that it scales quadratically with the strength of the integrability breaking perturbation. We compare the NLCE results with those from exact diagonalization calculations on finite chains with periodic boundary conditions, and show that NLCEs are far more accurate.

  11. Application of boundary integral equations to elastoplastic problems

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Albers, L. U.

    1975-01-01

    The application of boundary integral equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elastoplastic torsion of a square cross section bar and for the plane problem of notched beams. A comparison of different formulations as well as comparisons with experimental results are presented.

  12. The Application of a Boundary Integral Equation Method to the Prediction of Ducted Fan Engine Noise

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tweed, J.; Farassat, F.

    1999-01-01

    The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is considered. Governing equations for the BIEM are based on linearized acoustics and describe the scattering of incident sound by a thin, finite-length cylindrical duct in the presence of a uniform axial inflow. A classical boundary value problem (BVP) is derived that includes an axisymmetric, locally reacting liner on the duct interior. Using potential theory, the BVP is recast as a system of hypersingular boundary integral equations with subsidiary conditions. We describe the integral equation derivation and solution procedure in detail. The development of the computationally efficient ducted fan noise prediction program TBIEM3D, which implements the BIEM, and its utility in conducting parametric noise reduction studies are discussed. Unlike prediction methods based on spinning mode eigenfunction expansions, the BIEM does not require the decomposition of the interior acoustic field into its radial and axial components which, for the liner case, avoids the solution of a difficult complex eigenvalue problem. Numerical spectral studies are presented to illustrate the nexus between the eigenfunction expansion representation and BIEM results. We demonstrate BIEM liner capability by examining radiation patterns for several cases of practical interest.

  13. A Riemann-Hilbert formulation for the finite temperature Hubbard model

    NASA Astrophysics Data System (ADS)

    Cavaglià, Andrea; Cornagliotto, Martina; Mattelliano, Massimo; Tateo, Roberto

    2015-06-01

    Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.

  14. Integrating medical and environmental sociology with environmental health: crossing boundaries and building connections through advocacy.

    PubMed

    Brown, Phil

    2013-06-01

    This article reviews the personal and professional processes of developing an interdisciplinary approach to understanding the complex issues of environmental health in their community, political-economic, social science, and scientific contexts. This interdisciplinary approach includes a synthesis of research, policy work, and advocacy. To examine multiple forms of interdisciplinarity, I examine pathways of integrating medical and environmental sociology via three challenges to the boundaries of traditional research: (1) crossing the boundaries of medical and environmental sociology, (2) linking social science and environmental health science, and (3) crossing the boundary of research and advocacy. These boundary crossings are discussed in light of conceptual and theoretical developments of popular epidemiology, contested illnesses, and health social movements. This interdisciplinary work offers a more comprehensive sociological lens for understanding complex problems and a practical ability to join with scientists, activists, and officials to meet public health needs for amelioration and prevention of environmental health threats.

  15. Towards a Coupled Vortex Particle and Acoustic Boundary Element Solver to Predict the Noise Production of Bio-Inspired Propulsion

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2016-11-01

    The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid dynamics with the noise generation. Such a framework is developed where the fluid motion is modeled with a two-dimensional unsteady boundary element method that includes a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The use of the boundary element method for both the hydrodynamic and acoustic solvers permits dramatic computational acceleration by application of the fast multiple method. The reduced order of calculations due to the fast multipole method allows for greater spatial resolution of the vortical wake per unit of computational time. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. The capability of the coupled solver is demonstrated by analyzing the performance and noise production of an isolated bio-inspired swimmer and of tandem swimmers.

  16. Enhancing in vivo tumor boundary delineation with structured illumination fluorescence molecular imaging and spatial gradient mapping

    NASA Astrophysics Data System (ADS)

    Sun, Jessica; Miller, Jessica P.; Hathi, Deep; Zhou, Haiying; Achilefu, Samuel; Shokeen, Monica; Akers, Walter J.

    2016-08-01

    Fluorescence imaging, in combination with tumor-avid near-infrared (NIR) fluorescent molecular probes, provides high specificity and sensitivity for cancer detection in preclinical animal models, and more recently, assistance during oncologic surgery. However, conventional camera-based fluorescence imaging techniques are heavily surface-weighted such that surface reflection from skin or other nontumor tissue and nonspecific fluorescence signals dominate, obscuring true cancer-specific signals and blurring tumor boundaries. To address this challenge, we applied structured illumination fluorescence molecular imaging (SIFMI) in live animals for automated subtraction of nonspecific surface signals to better delineate accumulation of an NIR fluorescent probe targeting α4β1 integrin in mice bearing subcutaneous plasma cell xenografts. SIFMI demonstrated a fivefold improvement in tumor-to-background contrast when compared with other full-field fluorescence imaging methods and required significantly reduced scanning time compared with diffuse optical spectroscopy imaging. Furthermore, the spatial gradient mapping enhanced highlighting of tumor boundaries. Through the relatively simple hardware and software modifications described, SIFMI can be integrated with clinical fluorescence imaging systems, enhancing intraoperative tumor boundary delineation from the uninvolved tissue.

  17. Computational analysis of amoeboid swimming at low Reynolds number.

    PubMed

    Wang, Qixuan; Othmer, Hans G

    2016-06-01

    Recent experimental work has shown that eukaryotic cells can swim in a fluid as well as crawl on a substrate. We investigate the swimming behavior of Dictyostelium discoideum  amoebae who swim by initiating traveling protrusions at the front that propagate rearward. In our model we prescribe the velocity at the surface of the swimming cell, and use techniques of complex analysis to develop 2D models that enable us to study the fluid-cell interaction. Shapes that approximate the protrusions used by Dictyostelium discoideum  can be generated via the Schwarz-Christoffel transformation, and the boundary-value problem that results for swimmers in the Stokes flow regime is then reduced to an integral equation on the boundary of the unit disk. We analyze the swimming characteristics of several varieties of swimming Dictyostelium discoideum  amoebae, and discuss how the slenderness of the cell body and the shapes of the protrusion effect the swimming of these cells. The results may provide guidance in designing low Reynolds number swimming models.

  18. Global boundary flattening transforms for acoustic propagation under rough sea surfaces.

    PubMed

    Oba, Roger M

    2010-07-01

    This paper introduces a conformal transform of an acoustic domain under a one-dimensional, rough sea surface onto a domain with a flat top. This non-perturbative transform can include many hundreds of wavelengths of the surface variation. The resulting two-dimensional, flat-topped domain allows direct application of any existing, acoustic propagation model of the Helmholtz or wave equation using transformed sound speeds. Such a transform-model combination applies where the surface particle velocity is much slower than sound speed, such that the boundary motion can be neglected. Once the acoustic field is computed, the bijective (one-to-one and onto) mapping permits the field interpolation in terms of the original coordinates. The Bergstrom method for inverse Riemann maps determines the transform by iterated solution of an integral equation for a surface matching term. Rough sea surface forward scatter test cases provide verification of the method using a particular parabolic equation model of the Helmholtz equation.

  19. Site energies and charge transfer rates near pentacene grain boundaries from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hajime; Tokita, Yuichi

    2015-03-01

    Charge transfer rates near pentacene grain boundaries are derived by calculating the site energies and transfer integrals of 37 pentacene molecules using first-principles calculations. The site energies decrease considerably near the grain boundaries, and electron traps of up to 300 meV and hole barriers of up to 400 meV are generated. The charge transfer rates across the grain boundaries are found to be reduced by three to five orders of magnitude with a grain boundary gap of 4 Å because of the reduction in the transfer integrals. The electron traps and hole barriers also reduce the electron and hole transfer rates by factors of up to 10 and 50, respectively. It is essential to take the site energies into consideration to determine charge transport near the grain boundaries. We show that the complex site energy distributions near the grain boundaries can be represented by an equivalent site energy difference, which is a constant for any charge transfer pass. When equivalent site energy differences are obtained for various grain boundary structures by first-principles calculations, the effects of the grain boundaries on the charge transfer rates are introduced exactly into charge transport simulations, such as the kinetic Monte Carlo method.

  20. Advances in air quality prediction with the use of integrated systems

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.

    2017-12-01

    Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.

Top