Sample records for boundary layer approximation

  1. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation

    PubMed Central

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-01-01

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem. PMID:23729844

  2. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    PubMed

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  3. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  4. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  5. Structure of the low-latitude boundary layer. [in magnetopause

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. OE.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1981-01-01

    High temporal resolution observations of the frontside magnetopause and plasma boundary layer made with the fast plasma analyzer aboard the ISEE 1 and 2 spacecraft are reported. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Periods are included when the thickness is essentially zero and others when it is of the order of 1 earth radius. The duration of these periods is highly variable but is typically in the range of 2-5 min corresponding to a distance along the magnetopuase of approximately 3-8 earth radii. The observed boundary layer features include a steep density gradient at the magnetopause with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer.

  6. Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Todd, C. A.

    1974-01-01

    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region.

  7. Practical calculation of laminar and turbulent bled-off boundary layers

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1978-01-01

    Bleed-off of boundary layer material is shown to be an effective means for reducing drag by conserving the laminar boundary layer and preventing separation of the turbulent boundary layer. The case in which the two effects of bleed-off overlap is examined. Empirical methods are extended to the case of bleed-off. Laminar and turbulent boundary layers are treated simultaneously and the approximation differential equations are solved without an uncertain error. The case without bleed-off is also treated.

  8. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  9. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    PubMed

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  10. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary

    PubMed Central

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations. PMID:27031232

  11. A filament of energetic particles near the high-latitude dawn magnetopause

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Williams, D. J.; Mcentire, R. W.; Christon, S. P.; Jacquey, C.; Angelopoulos, V.; Yamamoto, T.; Kokubun, S.; Frank, L. A.; Ackerson, K. L.

    1994-01-01

    The Geotail satelite detected a filament of tailward-streaming energetic particles spatially separated from the boundary layer of energetic particles at the high-latitude dawn magnetopause at a downstream distance of approximately 80 R(sub E) on October 27, 1992. During this event, the composition and charge states of energetic ions at energies above approximately 10 keV show significant intermix of ions from solar wind and ionospheric sources. Detailed analysis leads to the deduction that the filament was moving southward towards the neutral sheet at an average speed of approximately 80 km/s, implying an average duskward electric field of approximately 1 mV/m. Its north-south dimension was approximately 1 R(sub E) and it was associated with an earthward directed field-aligned current of approximately 5 mA/m. The filament was separated from the energetic particle boundary layer straddling the magnetopause by approximately 0.8 R(sub E) and was inferred to be detached from the boundary layer at downstream distance beyond approximately 70 R(sub E) in the distant tail.

  12. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  13. Modeling boundary measurements of scattered light using the corrected diffusion approximation

    PubMed Central

    Lehtikangas, Ossi; Tarvainen, Tanja; Kim, Arnold D.

    2012-01-01

    We study the modeling and simulation of steady-state measurements of light scattered by a turbid medium taken at the boundary. In particular, we implement the recently introduced corrected diffusion approximation in two spatial dimensions to model these boundary measurements. This implementation uses expansions in plane wave solutions to compute boundary conditions and the additive boundary layer correction, and a finite element method to solve the diffusion equation. We show that this corrected diffusion approximation models boundary measurements substantially better than the standard diffusion approximation in comparison to numerical solutions of the radiative transport equation. PMID:22435102

  14. Boundary Layer Remote Sensing with Combined Active and Passive Techniques: GPS Radio Occultation and High-Resolution Stereo Imaging (WindCam) Small Satellite Concept

    NASA Technical Reports Server (NTRS)

    Mannucci, A.J.; Wu, D.L.; Teixeira, J.; Ao, C.O.; Xie, F.; Diner, D.J.; Wood, R.; Turk, Joe

    2012-01-01

    Objective: significant progress in understanding low-cloud boundary layer processes. This is the Single largest uncertainty in climate projections. Radio occultation has unique features suited to boundary layer remote sensing (1) Cloud penetrating (2) Very high vertical resolution (approximately 50m-100m) (3) Sensitivity to thermodynamic variables

  15. DIFFUSION IN THE VICINITY OF STANDARD-DESIGN NUCLEAR POWER PLANTS-I. WIND-TUNNEL EVALUATION OF DIFFUSIVE CHARACTERISTICS OF A SIMULATED SUBURBAN NEUTRAL ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...

  16. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  17. A model of the wall boundary layer for ducted propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Moehring, Willi

    1987-01-01

    The objective of the present study is to include a representation of a wall boundary layer in an existing finite element model of the propeller in the wind tunnel environment. The major consideration is that the new formulation should introduce only modest alterations in the numerical model and should still be capable of producing economical predictions of the radiated acoustic field. This is accomplished by using a stepped approximation in which the velocity profile is piecewise constant in layers. In the limit of infinitesimally thin layers, the velocity profile of the stepped approximation coincides with that of the continuous profile. The approach described here could also be useful in modeling the boundary layer in other duct applications, particularly in the computation of the radiated acoustic field for sources contained in a duct.

  18. Computation of the shock-wave boundary layer interaction with flow separation

    NASA Technical Reports Server (NTRS)

    Ardonceau, P.; Alziary, T.; Aymer, D.

    1980-01-01

    The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.

  19. Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Tao, Wei-Kuo

    1999-01-01

    The MM5 mesoscale model is used to simulate Hurricane Bob (1991) using grids nested to high resolution (4 km). Tests are conducted to determine the sensitivity of the simulation to the available planetary boundary layer parameterizations, including the bulk-aerodynamic, Blackadar, Medium-RanGe Forecast (MRF) model, and Burk-Thompson boundary-layer schemes. Significant sensitivity is seen, with minimum central pressures varying by up to 17 mb. The Burk-Thompson and bulk-aerodynamic boundary-layer schemes produced the strongest storms while the MRF scheme produced the weakest storm. Precipitation structure of the simulated hurricanes also varied substantially with the boundary layer parameterizations. Diagnostics of boundary-layer variables indicated that the intensity of the simulated hurricanes generally increased as the ratio of the surface exchange coefficients for heat and momentum, C(sub h)/C(sub M), although the manner in which the vertical mixing takes place was also important. Findings specific to the boundary-layer schemes include: 1) the MRF scheme produces mixing that is too deep and causes drying of the lower boundary layer in the inner-core region of the hurricane; 2) the bulk-aerodynamic scheme produces mixing that is probably too shallow, but results in a strong hurricane because of a large value of C(sub h)/C(sub M) (approximately 1.3); 3) the MRF and Blackadar schemes are weak partly because of smaller surface moisture fluxes that result in a reduced value of C(sub h)/C(sub M) (approximately 0.7); 4) the Burk-Thompson scheme produces a strong storm with C(sub h)/C(sub M) approximately 1; and 5) the formulation of the wind-speed dependence of the surface roughness parameter, z(sub 0), is important for getting appropriate values of the surface exchange coefficients in hurricanes based upon current estimates of these parameters.

  20. Revisiting the effective medium approximation in all-dielectric subwavelength multilayers: Breakdown and rebuilding

    NASA Astrophysics Data System (ADS)

    Lei, Xinrui; Mao, Lei; Lu, Yonghua; Wang, Pei

    2017-07-01

    Here, we present a comprehensive analysis of the effective medium approximation (EMA) breakdown in all-dielectric deep-subwavelength multilayers made of alternating layers by means of the transfer matrix method. We demonstrated that the approximation is invalid at the vicinity of the effective medium's critical angle for total internal reflection and obtained an analytical criterion for the breakdown of the EMA, which depends on the layer thickness, the incident angle, and the permittivity difference between the alternate layers. We rebuilt the EMA by adding higher-order correction onto the traditional effective permittivity. Furthermore, we found that the EMA breakdown that arises from the boundary effect cannot be repaired in the traditional homogenization strategy with only one layer of effective medium. By adding an artificial matched layer after the conventional effective layer, the boundary effect breakdown was neatly removed.

  1. End-wall boundary layer measurements in a two-stage fan

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Reid, L.; Schmidt, J. F.

    1983-01-01

    Detailed flow measurements made in the casing boundary layer of a two-stage transonic fan are summarized. These measurements were taken at a station upstream of the fan, between all blade rows, and downstream of the last row. Conventional boundary layer parameters were calculated from the measured data. A classical two dimensional casing boundary layer was measured at the fan inlet and extended inward to approximately 15 percent of span. A highly three dimensional boundary layer was measured at the exit of each blade row and extended inward to approximately 10 percent of span. The steep radial gradient of axial velocity noted at the exit of the rotors was reduced substantially as the flow passed through the stators. This reduced gradient is attributed to flow mixing. The amount of flow mixing was reflected in the radial redistribution of total temperature as the flow passed through the stators. The blockage factors calculated from the measured data show an increase in blockage across the rotors and a decrease across the stators. For this fan the calculated blockages for the second stage were essentially the same as those for the first stage.

  2. Goertler instability in compressible boundary layers along curved surfaces with suction and cooling

    NASA Technical Reports Server (NTRS)

    El-Hady, N.; Verma, A. K.

    1982-01-01

    The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.

  3. Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Fei, Mingwen; Han, Daozhi; Wang, Xiaoming

    2017-01-01

    In this paper, we study the vanishing Darcy number limit of the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system (DBOB). This singular perturbation problem involves singular structures both in time and in space giving rise to initial layers, boundary layers and initial-boundary layers. We construct an approximate solution to the DBOB system by the method of multiple scale expansions. The convergence with optimal convergence rates in certain Sobolev norms is established rigorously via the energy method.

  4. Sound-turbulence interaction in transonic boundary layers

    NASA Astrophysics Data System (ADS)

    Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva

    2014-11-01

    Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.

  5. Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary

    NASA Astrophysics Data System (ADS)

    Burmasheva, N. V.; Prosviryakov, E. Yu.

    2017-12-01

    A new exact analytical solution of a system of thermal convection equations in the Boussinesq approximation describing layered flows in an incompressible viscous fluid is obtained. A fluid flow in an infinite layer is considered. Convection in the fluid is induced by tangential stresses specified on the upper non-deformable boundary. At the fixed lower boundary, the no-slip condition is satisfied. Temperature corrections are given on the both boundaries of the fluid layer. The possibility of physical field stratification is investigated.

  6. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  7. The effect of the wind tunnel wall boundary layer on the acoustic testing of propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1989-01-01

    An approximation based on the representation of the boundary layer by lamina of uniform flow with suitable interlayer boundary conditions is shown to be accurate, efficient, and compatible with finite element formulations. The approximation has been implemented using existing codes to produce a model for assessing the suitability of the acoustic environment in a wind tunnel for the acoustic testing of propellers. It is found that, with suitable acoustic treatment and with measurements made near the propeller and well removed from the walls, the free field directivity and level can be reproduced with good fidelity.

  8. Calculations of Laminar Heat Transfer Around Cylinders of Arbitrary Cross Section and Transpiration-Cooled Walls with Application to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Eckert, E.R.G.; Livingood, John N.B.

    1951-01-01

    An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.

  9. Efficient algorithms for analyzing the singularly perturbed boundary value problems of fractional order

    NASA Astrophysics Data System (ADS)

    Sayevand, K.; Pichaghchi, K.

    2018-04-01

    In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.

  10. Helicity in dynamic atmospheric processes

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2017-03-01

    An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth's rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.

  11. Trip-Induced Transition Measurements in a Hypersonic Boundary Layer Using Molecular Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Jones, Stephen B.; Johansen, Craig T.; Goyne, Christopher P.

    2013-01-01

    Measurements of mean streamwise velocity, fluctuating streamwise velocity, and instantaneous streamwise velocity profiles in a hypersonic boundary layer were obtained over a 10-degree half-angle wedge model. A laser-induced fluorescence-based molecular tagging velocimetry technique was used to make the measurements. The nominal edge Mach number was 4.2. Velocity profiles were measured both in an untripped boundary layer and in the wake of a 4-mm diameter cylindrical tripping element centered 75.4 mm downstream of the sharp leading edge. Three different trip heights were investigated: k = 0.53 mm, k = 1.0 mm and k = 2.0 mm. The laminar boundary layer thickness at the position of the measurements was approximately 1 mm, though the exact thickness was dependent on Reynolds number and wall temperature. All of the measurements were made starting from a streamwise location approximately 18 mm downstream of the tripping element. This measurement region continued approximately 30 mm in the streamwise direction. Additionally, measurements were made at several spanwise locations. An analysis of flow features show how the magnitude, spatial location, and spatial growth of streamwise velocity instabilities are affected by parameters such as the ratio of trip height to boundary layer thickness and roughness Reynolds number. The fluctuating component of streamwise velocity measured along the centerline of the model increased from approximately 75 m/s with no trip to +/-225 m/s with a 0.53-mm trip, and to +/-240 m/s with a 1-mm trip, while holding the freestream Reynolds number constant. These measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  12. Calculations of unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.; Patel, V. C.

    1975-01-01

    The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.

  13. Boundary condition for Ginzburg-Landau theory of superconducting layers

    NASA Astrophysics Data System (ADS)

    Koláček, Jan; Lipavský, Pavel; Morawetz, Klaus; Brandt, Ernst Helmut

    2009-05-01

    Electrostatic charging changes the critical temperature of superconducting thin layers. To understand the basic mechanism, it is possible to use the Ginzburg-Landau theory with the boundary condition derived by de Gennes from the BCS theory. Here we show that a similar boundary condition can be obtained from the principle of minimum free energy. We compare the two boundary conditions and use the Budd-Vannimenus theorem as a test of approximations.

  14. Modified equations of finite-size layered plates made of orthotropic material. Comparison of the results of numerical calculations with analytical solutions

    NASA Astrophysics Data System (ADS)

    Volchkov, Yu. M.

    2017-09-01

    This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.

  15. The effects of the laminar/turbulent boundary layer states on the development of a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Foss, J. F.

    1977-01-01

    The effect of the laminar/turbulent boundary layer state on the mean and rms velocities of a developing plane mixing layer was investigated. The use of commonly accepted nondimensional representations of the data confirm (at least) an approximately self-preserving condition. It is suggested that the effects of the laminar/turbulent initial condition persist in the self-preserving region.

  16. Roles of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer

    NASA Technical Reports Server (NTRS)

    Wang, Shouping; Wang, Qing

    1994-01-01

    This study focuses on the effects of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. When the simulated drizzle rate is relatively small (maximum approximately equal to 0.6 mm/day), steady-state solutions are obtained. The boundary layer stabilizes essentially because drizzle causes evaporative cooling of the subcloud layer. This stabilization considerably reduces the buoyancy flux and turbulence kinetic energy below the stratus cloud. Thus, drizzle tends to decouple the cloud from the subcloud layer in the model, as suggested by many observational studies. In addition, the evaporation of drizzle in the subcloud layer creates small scattered clouds, which are likely to represent cumulus clouds, below the solid stratus cloud in the model. The sensitivity experiments show that these scattered clouds help maintain a coupled boundary layer. When the drizzle rate is relatively large (maximum approximately equal to 0.9 mm/day), the response of the model becomes transient with bursts in turbulent fluxes. This phenomenon is related to the formation of the scattered cloud layer below the solid stratus cloud. It appears that the model is inadequate to represent the heat and moisture transport by strong updrafts covering a small fractional area in cumulus convection.

  17. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    USDA-ARS?s Scientific Manuscript database

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  18. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

    PubMed

    Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin

    2016-01-01

    This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.

  19. Comparison Between Navier-Stokes and Thin-Layer Computations for Separated Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Degani, David; Steger, Joseph L.

    1983-01-01

    In the numerical simulation of high Reynolds-number flow, one can frequently supply only enough grid points to resolve the viscous terms in a thin layer. As a consequence, a body-or stream-aligned coordinate system is frequently used and viscous terms in this direction are discarded. It is argued that these terms cannot be resolved and computational efficiency is gained by their neglect. Dropping the streamwise viscous terms in this manner has been termed the thin-layer approximation. The thin-layer concept is an old one, and similar viscous terms are dropped, for example, in parabolized Navier-Stokes schemes. However, such schemes also make additional assumptions so that the equations can be marched in space, and such a restriction is not usually imposed on a thin-layer model. The thin-layer approximation can be justified in much the same way as the boundary-layer approximation; it requires, therefore, a body-or stream-aligned coordinate and a high Reynolds number. Unlike the boundary-layer approximation, the same equations are used throughout, so there is no matching problem. Furthermore, the normal momentum equation is not simplified and the convection terms are not one-sided differenced for marching. Consequently, the thin-layer equations are numerically well behaved at separation and require no special treatment there. Nevertheless, the thin-layer approximation receives criticism. It has been suggested that the approximation is invalid at separation and, more recently, that it is inadequate for unsteady transonic flow. Although previous comparisons between the thin-layer and Navier-Stokes equations have been made, these comparisons have not been adequately documented.

  20. Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2012-01-01

    Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.

  1. Finite volume solution of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Murman, E. M.

    1986-01-01

    A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.

  2. Experimental investigation of a two-dimensional shock-turbulent boundary layer interaction with bleed

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Tanji, F. T.

    1983-01-01

    The two-dimensional interaction of an oblique shock wave with a turbulent boundary layer that included the effect of bleed was examined experimentally using a shock generator mounted across a supersonic wind tunnel The studies were performed at Mach numbers 2.5 and 2.0 and unit Reynolds number of approximately 2.0 x 10 to the 7th/meter. The study includes surface oil flow visualization, wall static pressure distributions and boundary layer pitot pressure profiles. In addition, the variation of the local bleed rates were measured. The results show the effect of the bleed on the boundary layer as well as the effect of the flow conditions on the local bleed rate.

  3. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    NASA Technical Reports Server (NTRS)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  4. Charts and Tables for Estimating the Stability of the Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal

    1959-01-01

    The minimum critical Reynolds numbers for the similar solutions of the compressible laminar boundary layer computed by Cohen and Reshotko and also for the Falkner and Skan solutions as recomputed by Smith have been calculated by Lin's rapid approximate method for two-dimensional disturbances. These results enable the stability of the compressible laminar boundary layer with heat transfer and pressure gradient to be easily estimated after the behavior of the boundary layer has been computed by the approximate method of Cohen and Reshotko. The previously reported unusual result (NACA Technical Note 4037) that a highly cooled stagnation point flow is more unstable than a highly cooled flat-plate flow is again encountered. Moreover, this result is found to be part of the more general result that a favorable pressure gradient is destabilizing for very cool walls when the Mach number is less than that for complete stability. The minimum critical Reynolds numbers for these wall temperature ratios are, however, all larger than any value of the laminar-boundary-layer Reynolds number likely to be encountered. For Mach numbers greater than those for which complete stability occurs a favorable pressure gradient is stabilizing, even for very cool walls.

  5. Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram

    2015-11-01

    Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.

  6. Dynamic behavior of an unsteady trubulent boundary layer

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Reynolds, W. C.; Jayaramen, R.; Carr, L. W.

    1981-01-01

    Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle.

  7. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  8. Measurements in the near-wall region of a relaxing three-dimensional low speed turbulent air boundary layer

    NASA Technical Reports Server (NTRS)

    Hebbar, K. S.; Melnik, W. L.

    1976-01-01

    An experimental investigation was conducted at selected locations of the near-wall region of a three dimensional turbulent air boundary layer relaxing in a nominally zero external pressure gradient behind a transverse hump (in the form of a 30 deg swept, 5-foot chord wing-type model) faired into the side wall of a low speed wind tunnel. Wall shear stresses measured with a flush-mounted hot-film gage and a sublayer fence were in very good agreement with experimental data obtained with two Preston probes. With the upstream unit Reynolds number held constant at 325,000/ft. approximately one-fourth of the boundary layer thickness adjacent to the wall was surveyed with a single rotated hot-wire probe mounted on a specially designed minimum interference traverse mechanism. The boundary layer (approximately 3.5 in thick near the first survey station where the length Reynolds number was 5.5 million) had a maximum crossflow velocity ratio of 0.145 and a maximum crossflow angle of 21.875 deg close to the wall.

  9. Calculation of heat transfer on shuttle type configurations including the effects of variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1972-01-01

    A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.

  10. The Effects of Blade Count on Boundary Layer Development in a Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Flitan, Horia C.; Ashpis, David E.; Solomon, William J.

    2000-01-01

    Experimental data from jet-engine tests have indicated that turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Recent studies have shown that Reynolds number effects contribute to the lower efficiencies at cruise conditions. In the current study numerical simulations have been performed to study the boundary layer development in a two-stage low-pressure turbine, and to evaluate the models available for low Reynolds number flows in turbomachinery. In a previous study using the same geometry the predicted time-averaged boundary layer quantities showed excellent agreement with the experimental data, but the predicted unsteady results showed only fair agreement with the experimental data. It was surmised that the blade count approximation used in the numerical simulations generated more unsteadiness than was observed in the experiments. In this study a more accurate blade approximation has been used to model the turbine, and the method of post-processing the boundary layer information has been modified to more closely resemble the process used in the experiments. The predicted results show improved agreement with the unsteady experimental data.

  11. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  12. Interactive boundary-layer calculations of a transonic wing flow

    NASA Technical Reports Server (NTRS)

    Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel

    1989-01-01

    Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).

  13. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  14. Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.; Viegas, John R.

    1961-01-01

    The flow and heat transfer are analyzed at the reattachment zone of two-dimensional separated laminar boundary layers. The fluid is considered to be flowing normal to the wall at reattachment. An approximate expression is derived for the heat transfer in the reattachment region and a calculated value is compared with an experimental measurement.

  15. Boundary layer thermal stresses in angle-ply composite laminates, part 1. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1981-01-01

    Thermal boundary-layer stresses (near free edges) and displacements were determined by a an eigenfunction expansion technique and the establishment of an appropriate particular solution. Current solutions in the region away from the singular domain (free edge) are found to be excellent agreement with existing approximate numerical results. As the edge is approached, the singular term controls the near field behavior of the boundary layer. Results are presented for cases of various angle-ply graphite/epoxy laminates with (theta/-theta/theta/theta) configurations. These results show high interlaminar (through-the-thickness) stresses. Thermal boundary-layer thicknesses of different composite systems are determined by examining the strain energy density distribution in composites. It is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers. The interlaminar thermal stresses are compressive with increasing temperature. The corresponding residual stresses are tensile and may enhance interply delaminations.

  16. Gasdynamic simulations of the solar wind interaction with Venus - Boundary layer formation

    NASA Astrophysics Data System (ADS)

    McGary, J. E.

    1993-05-01

    A 2D gasdynamic simulation of the mass-loaded solar wind flow around the dayside of Venus is presented. For average ionopause conditions near 300 km, the simulations show that mass loading from the pickup of oxygen ions produces a boundary layer of finite thickness along the ionopause. Within this layer and toward the ionopause, the temperature decreases and the total mass density increases significantly. Furthermore, there is a shear in the bulk flow velocity across the boundary layer, such that the tangential flow decreases in speed as the ionopause is approached and remains low along the ionopause which is consistent with Pioneer Venus observations. Numerical simulations are carried out for various mass addition rates and demonstrate that the boundary layer develops when oxygen ion production exceeds approximately 2 x 10 exp 5/cu m per s.

  17. Space-Time Correlations and Spectra of Wall Pressure in a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Willmarth, W. W.

    1959-01-01

    Measurements of the statistical properties of the fluctuating wall pressure produced by a subsonic turbulent boundary layer are described. The measurements provide additional information about the structure of the turbulent boundary layer; they are applicable to the problems of boundary-layer induced noise inside an airplane fuselage and to the generation of waves-on water. The spectrum of the wall pressure is presented in dimensionless form. The ratio of the root-mean-square wall pressure to the free-stream dynamic pressure is found to be a constant square root of bar P(sup 2)/q(sub infinity) = 0.006 independent of Mach number and Reynolds number. In addition, space- time correlation measurements in the stream direction show that pressure fluctuations whose scale is greater than or equal to 0.3 times the boundary-layer thickness are convected with the convection speed U(sub c) = 0.82U(sub infinity) where U(infinity) is the free-stream velocity and have lost their identity in a distance approximately equal to 10 boundary-layer thicknesses.

  18. Investigation of boundary layer and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Anand, A.; Gorton, C.; Lakshminarayana, B.; Yamaoka, H.

    1973-01-01

    A study of the boundary layer and turbulence characteristics inside the passages of an axial flow inducer is reported. The first part deals with the analytical and experimental investigation of the boundary layer characteristics in a four bladed flat plate inducer passage operated with no throttle. An approximate analysis for the prediction of radial and chordwise velocity profiles across the passage is carried out. The momentum integral technique is used to predict the gross properties of the boundary layer. Equations are given for the exact analysis of the turbulent boundary layer characteristics using the turbulent field method. Detailed measurement of boundary layer profiles, limiting streamline angle and skin friction stress on the rotating blade is also reported. Part two of this report deals with the prediction of the flow as well as blade static pressure measurements in a three bladed inducer with cambered blades operated at a flow coefficient of 0.065. In addition, the mean velocity and turbulence measurements carried out inside the passage using a rotating triaxial probe is reported.

  19. Thin-layer approximation and algebraic model for separated turbulent flows

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Lomax, H.

    1978-01-01

    An algebraic turbulence model for two- and three-dimensional separated flows is specified that avoids the necessity for finding the edge of the boundary layer. Properties of the model are determined and comparisons made with experiment for an incident shock on a flat plate, separated flow over a compression corner, and transonic flow over an airfoil. Separation and reattachment points from numerical Navier-Stokes solutions agree with experiment within one boundary-layer thickness. Use of law-of-the-wall boundary conditions does not alter the predictions significantly. Applications of the model to other cases are contained in companion papers.

  20. Generation of net sediment transport by velocity skewness in oscillatory sheet flow

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Yong; Chen, Genfa; Wang, Fujun; Tang, Xuelin

    2018-01-01

    This study utilizes a qualitative approach and a two-phase numerical model to investigate net sediment transport caused by velocity skewness beneath oscillatory sheet flow and current. The qualitative approach is derived based on the pseudo-laminar approximation of boundary layer velocity and exponential approximation of concentration. The two-phase model can obtain well the instantaneous erosion depth, sediment flux, boundary layer thickness, and sediment transport rate. It can especially illustrate the difference between positive and negative flow stages caused by velocity skewness, which is considerably important in determining the net boundary layer flow and sediment transport direction. The two-phase model also explains the effect of sediment diameter and phase-lag to sediment transport by comparing the instantaneous-type formulas to better illustrate velocity skewness effect. In previous studies about sheet flow transport in pure velocity-skewed flows, net sediment transport is only attributed to the phase-lag effect. In the present study with the qualitative approach and two-phase model, phase-lag effect is shown important but not sufficient for the net sediment transport beneath pure velocity-skewed flow and current, while the asymmetric wave boundary layer development between positive and negative flow stages also contributes to the sediment transport.

  1. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  2. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  3. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three-dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  4. Simulation and optimal control of wind-farm boundary layers

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a nonlinear conjugate gradient method, and the gradients are calculated by solving the adjoint LES equations. We find that the extracted farm power increases by approximately 20% when using optimal model-predictive control. However, the increased power output is also responsible for an increase in turbulent dissipation, and a deceleration of the boundary layer. Further investigating the energy balances in the boundary layer, it is observed that this deceleration is mainly occurring in the outer layer as a result of higher turbulent energy fluxes towards the turbines. In a second optimization case, we penalize boundary-layer deceleration, and find an increase of energy extraction of approximately 10%. In this case, increased energy extraction is balanced by a reduction in of turbulent dissipation in the boundary layer. J.M. acknowledges support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  5. Viscous wing theory development. Volume 2: GRUMWING computer program user's manual

    NASA Technical Reports Server (NTRS)

    Chow, R. R.; Ogilvie, P. L.

    1986-01-01

    This report is a user's manual which describes the operation of the computer program, GRUMWING. The program computes the viscous transonic flow over three-dimensional wings using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by an approximate factorization (AFZ)method for the full potential equation. The boundary layer solution is based on integral entrainment methods.

  6. A Vortical Dawn Flank Boundary Layer for Near-Radial IMF: Wind Observations on 24 October 2001

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Gratton, F. T.; Gnavi, G.; Torbert, R. B.; Wilson, Lynn B., III

    2014-01-01

    We present an example of a boundary layer tailward of the dawn terminator which is entirely populated by rolled-up flow vortices. Observations were made by Wind on 24 October 2001 as the spacecraft moved across the region at the X plane approximately equal to -13 Earth radii. Interplanetary conditions were steady with a near-radial interplanetary magnetic field (IMF). Approximately 15 vortices were observed over the 1.5 hours duration of Wind's crossing, each lasting approximately 5 min. The rolling up is inferred from the presence of a hot tenuous plasma being accelerated to speeds higher than in the adjoining magnetosheath, a circumstance which has been shown to be a reliable signature of this in single-spacecraft observations. A blob of cold dense plasma was entrained in each vortex, at whose leading edge abrupt polarity changes of field and velocity components at current sheets were regularly observed. In the frame of the average boundary layer velocity, the dense blobs were moving predominantly sunward and their scale size along the X plane was approximately 7.4 Earth radii. Inquiring into the generation mechanism of the vortices, we analyze the stability of the boundary layer to sheared flows using compressible magnetohydrodynamic Kelvin-Helmholtz theory with continuous profiles for the physical quantities. We input parameters from (i) the exact theory of magnetosheath flow under aligned solar wind field and flow vectors near the terminator and (ii) the Wind data. It is shown that the configuration is indeed Kelvin-Helmholtz (KH) unstable. This is the first reported example of KH-unstable waves at the magnetopause under a radial IMF.

  7. An experimental investigation of the effect of boundary layer refraction on the noise from a high-speed propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Burns, R. J.; Leciejewski, D. J.

    1984-01-01

    Models of supersonic propellers were previously tested for acoustics in the Lewis 8- by 6-Foot Wind Tunnel using pressure transducers mounted in the tunnel ceiling. The boundary layer on the tunnel ceiling is believed to refract some of the propeller noise away from the measurement transducers. Measurements were made on a plate installed in the wind tunnel which had a thinner boundary layer than the ceiling boundary layer. The plate was installed in two locations for comparison with tunnel ceiling noise data and with fuselage data taken on the NASA Dryden Jetstar airplane. Analysis of the data indicates that the refraction increases with: increasing boundary layer thickness; increasing free stream Mach number; increasing frequency; and decreasing sound radiation angle (toward the inlet axis). At aft radiation angles greater than about 100 deg there was little or no refraction. Comparisons with the airplane data indicated that not only is the boundary layer thickness important but also the shape of the velocity profile. Comparisons with an existing two-dimensional theory, using an idealized shear layer to approximate the boundary layer, showed that the theory and data had the same trends. Analysis of the data taken in the tunnel at two different distances from the propeller indicates a decay with distance in the wind tunnel at high Mach numbers but the decay at low Mach numbers is not as clear.

  8. Forward marching procedure for separated boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Carter, J. E.; Wornom, S. F.

    1975-01-01

    A forward-marching procedure for separated boundary-layer flows which permits the rapid and accurate solution of flows of limited extent is presented. The streamwise convection of vorticity in the reversed flow region is neglected, and this approximation is incorporated into a previously developed (Carter, 1974) inverse boundary-layer procedure. The equations are solved by the Crank-Nicolson finite-difference scheme in which column iteration is carried out at each streamwise station. Instabilities encountered in the column iterations are removed by introducing timelike terms in the finite-difference equations. This provides both unconditional diagonal dominance and a column iterative scheme, found to be stable using the von Neumann stability analysis.

  9. Numerical methods for stiff systems of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  10. Experimental data and model for the turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnson, J. P.; Moffat, R. J.; Kays, W. M.

    1981-01-01

    Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.

  11. CFL3D Contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2010-01-01

    This paper documents the CFL3D contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop, held in Orlando, Florida in January 2010. CFL3D is a Reynolds-averaged Navier-Stokes code. Four shock boundary layer interaction cases are computed using a one-equation turbulence model widely used for other aerodynamic problems of interest. Two of the cases have experimental data available at the workshop, and two of the cases do not. The effect of grid, flux scheme, and thin-layer approximation are investigated. Comparisons are made to the available experimental data. All four cases exhibit strong three-dimensional behavior in and near the interaction regions, resulting from influences of the tunnel side-walls.

  12. On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions

    PubMed

    Niklasson; Datta; Dunn

    2000-09-01

    In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.

  13. Aircraft Boundary-layer Measurements in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Melville, W. K.

    2005-11-01

    Airborne flux, meteorological, and wave measurements were made from the NSF/NCAR EC130Q aircraft in the Gulf of Tehuantepec under strong boundary-layer gap winds up to 25 m/sec at 33 m height. Statistics of flux estimates were obtained from multiple 33-m tracks flown under reasonably stationary and homogeneous conditions. Flux divergence was obtained from stack patterns flown at various distances from shore. Tracks flown at 33 m between the stacks provided the pressure gradient and advection terms in the momentum balance. Near shore, flux divergence was important and approximately balanced by the pressure gradient and advective terms; off-shore (400 km), divergence was small and again approximately in balance with the other two terms. Data from dropsondes and the Scanning Aerosol Backscatter LIDAR (SABL) revealed that the internal boundary layer initially thins off-shore as the gap wind field spreads horizontally, and then thickens due to turbulent mixing and possible hydraulic effects. Supported by NSF Division of Ocean Sciences.

  14. Study of the Structure of Turbulence in Accelerating Transitional Boundary Layers.

    DTIC Science & Technology

    1987-12-23

    be sufficient to relaminarize even fully turbulent boundary layers. Since local heat transfer rates are very sensitive to the state of the boundary...was calibrated for velocity and angular sensitivity in a low- .’ turbulence 1 1/2-in. dia. jet flow for approximately twenty jet flow speeds "-’ ranging...intersection of the wires of the x. The angular sensitivity of the wires was assumed to conform to Champagne’s k2 law (Ref. 20), UE2 (0) = U2(0 = 0) (cos 2

  15. BLSTA: A boundary layer code for stability analysis

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1992-01-01

    A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.

  16. A preliminary assessment of the Titan planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Allison, Michael

    1992-01-01

    Results of a preliminary assessment of the characteristic features of the Titan planetary boundary are addressed. These were derived from the combined application of a patched Ekman surface layer model and Rossby number similarity theory. Both these models together with Obukhov scaling, surface speed limits and saltation are discussed. A characteristic Akman depth of approximately 0.7 km is anticipated, with an eddy viscosity approximately equal to 1000 sq cm/s, an associated friction velocity approximately 0.01 m/s, and a surface wind typically smaller than 0.6 m/s. Actual values of these parameters probably vary by as much as a factor of two or three, in response to local temporal variations in surface roughness and stability. The saltation threshold for the windblown injection of approximately 50 micrometer particulates into the atmosphere is less than twice the nominal friction velocity, suggesting that dusty breezes might be an occassional feature of the Titan meteorology.

  17. Burgers approximation for two-dimensional flow past an ellipse

    NASA Technical Reports Server (NTRS)

    Dorrepaal, J. M.

    1982-01-01

    A linearization of the Navier-Stokes equation due to Burgers in which vorticity is transported by the velocity field corresponding to continuous potential flow is examined. The governing equations are solved exactly for the two dimensional steady flow past an ellipse of arbitrary aspect ratio. The requirement of no slip along the surface of the ellipse results in an infinite algebraic system of linear equations for coefficients appearing in the solution. The system is truncated at a point which gives reliable results for Reynolds numbers R in the range 0 R 5. Predictions of the Burgers approximation regarding separation, drag and boundary layer behavior are investigated. In particular, Burgers linearization gives drag coefficients which are closer to observed experimental values than those obtained from Oseen's approximation. In the special case of flow past a circular cylinder, Burgers approximation predicts a boundary layer whose thickness is roughly proportional to R-1/2.

  18. A spectrally accurate boundary-layer code for infinite swept wings

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1994-01-01

    This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.

  19. Altitude transitions in energy climbs

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    The aircraft energy-climb trajectory for configurations with a sharp transonic drag rise is well known to possess two branches in the altitude/Mach-number plane. Transition in altitude between the two branches occurs instantaneously, a 'corner' in the minimum-time solution obtained with the energy-state model. If the initial and final values of altitude do not lie on the energy-climb trajectory, then additional jumps (crude approximations to dives and zooms) are required at the initial and terminal points. With a singular-perturbation approach, a 'boundary-layer' correction is obtained for each altitude jump, the transonic jump being a so-called 'internal' boundary layer, different in character from the initial and terminal layers. The determination of this internal boundary layer is examined and some computational results for an example presented.

  20. Approximate convective heating equations for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.; Sutton, K.

    1979-01-01

    Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.

  1. Streamline-curvature effect in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.; Lin, Ray-Sing; Petraglia, Media M.

    1992-01-01

    The effect of including wall and streamline curvature terms in swept-wing boundary-layer stability calculations is studied. The linear disturbance equations are cast on a fixed, body-intrinsic, curvilinear coordinate system. Those nonparallel terms which contribute mainly to the streamline-curvature effect are retained in this formulation and approximated by their local finite-difference values. Convex-wall curvature has a stabilizing effect, while streamline curvature is destabilizing if the curvature exceeds a critical value.

  2. Dinosaurs, spherules, and the “magic” layer: A new K-T boundary clay site in Wyoming

    NASA Astrophysics Data System (ADS)

    Bohor, Bruce F.; Triplehorn, Don M.; Nichols, Douglas J.; Millard, Hugh T., Jr.

    1987-10-01

    A new Cretaceous-Tertiary (K-T) boundary clay site has been found along Dogie Creek in Wyoming in the drainage of Lance Creek—the type area of the Lance Formation of latest Cretaceous age. The boundary clay was discovered in the uppermost part of the Lance Formation, 4 7 cm beneath the lowest lignite in the Paleocene Fort Union Formation and approximately 1 m above a fragmented dinosaur bone. The boundary clay consists of a basal kaolinitic claystone layer as much as 3 cm thick containing hollow goyazite spherules, overlain by a 2 3 mm smectitic layer (the “magic” layer) containing both shock-metamorphosed minerals and an iridium anomaly of 21 ppb. A palynological break coincides with the base of the claystone layer; numerous Late Cretaceous palynomorph species terminate at this boundary. The paleontological significance of this new boundary site lies in its close association with the well-studied assemblage of dinosaurs and other vertebrates and flora within the type area of the Lance Formation. The spherules at the Dogie Creek site are extremely well preserved by virtue of their replacement by the mineral goyazite. This preservation should facilitate the resolution of the origin of the spherules and of their host layer.

  3. Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy; Chilson, Phillip; Zielke, Brett; Fedorovich, Evgeni

    2013-01-01

    The evolution of the lower portion of the planetary boundary layer is investigated using the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial vehicle developed at the University of Oklahoma. The study focuses on the lowest 200 m of the atmosphere, where the most noticeable thermodynamic changes occur during the day. Between October 2010 and February 2011, a series of flights was conducted during the evening hours on several days to examine the vertical structure of the lower boundary layer. Data from a nearby Oklahoma Mesonet tower was used to supplement the vertical profiles of temperature, humidity, and pressure, which were collected approximately every 30 min, starting 2 h before sunset and continuing until dusk. From the profiles, sensible and latent heat fluxes were estimated. These fluxes were used to diagnose the portion of the boundary layer that was most affected by the early evening transition. During the transition period, a shallow cool and moist layer near the ground was formed, and as the evening progressed the cooling affected an increasingly shallower layer just above the surface.

  4. Turbulence measurements in hypersonic boundary layers using constant-temperature anemometry and Reynolds stress measurements in hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Spina, Eric F.

    1995-01-01

    The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic flows. Each of the research tasks performed during the NASA Langley research grants is discussed separately below.

  5. Experimental study of boundary layer transition with elevated freestream turbulence on a heated flat plate

    NASA Technical Reports Server (NTRS)

    Sohn, Ki-Hyeon; Reshotko, Eli

    1991-01-01

    A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.

  6. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    PubMed

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  7. A Theoretical Understanding of Circular Polarization Memory in Random Media

    NASA Astrophysics Data System (ADS)

    Dark, Julia

    Radiative transport theory describes the propagation of light in random media that absorb, scatter, and emit radiation. To describe the propagation of light, the full polarization state is quantified using the Stokes parameters. For the sake of mathematical convenience, the polarization state of light is often neglected leading to the scalar radiative transport equation for the intensity only. For scalar transport theory, there is a well-established body of literature on numerical and analytic approximations to the radiative transport equation. We extend the scalar theory to the vector radiative transport equation (vRTE). In particular, we are interested in the theoretical basis for a phenomena called circular polarization memory. Circular polarization memory is the physical phenomena whereby circular polarization retains its ellipticity and handedness when propagating in random media. This is in contrast to the propagation of linear polarization in random media, which depolarizes at a faster rate, and specular reflection of circular polarization, whereby the circular polarization handedness flips. We investigate two limits that are of known interest in the phenomena of circular polarization memory. The first limit we investigate is that of forward-peaked scattering, i.e. the limit where most scattering events occur in the forward or near-forward directions. The second limit we consider is that of strong scattering and weak absorption. In the forward-peaked scattering limit we approximate the vRTE by a system of partial differential equations motivated by the scalar Fokker-Planck approximation. We call the leading order approximation the vector Fokker-Planck approximation. The vector Fokker Planck approximation predicts that strongly forward-peaked media exhibit circular polarization memory where the strength of the effect can be calculated from the expansion of the scattering matrix in special functions. In addition, we find in this limit that total intensity, linear polarization, and circular polarization decouple. From this result we conclude, that in the Fokker-Planck limit the scalar approximation is an appropriate leading order approximation. In the strong scattering and weak absorbing limit the vector radiative transport equation can be analyzed using boundary layer theory. In this case, the problem of light scattering in an optically thick medium is reduced to a 1D vRTE near the boundary and a 3D diffusion equation in the interior. We develop and implement a numerical solver for the boundary layer problem by using a discrete ordinate solver in the boundary layer and a spectral method to solve the diffusion approximation in the interior. We implement the method in Fortran 95 with external dependencies on BLAS, LAPACK, and FFTW. By analyzing the spectrum of the discretized vRTE in the boundary layer, we are able to predict the presence of circular polarization memory in a given medium.

  8. Finite Element A Posteriori Error Estimation for Heat Conduction. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lang, Christapher G.; Bey, Kim S. (Technical Monitor)

    2002-01-01

    This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.

  9. Theoretical face pressure and drag characteristics of forward-facing steps in supersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Patel, D. K.; Czarnecki, K. R.

    1975-01-01

    A theoretical investigation of the pressure distributions and drag characteristics was made for forward facing steps in turbulent flow at supersonic speeds. An approximate solution technique proposed by Uebelhack has been modified and extended to obtain a more consistent numerical procedure. A comparison of theoretical calculations with experimental data generally indicated good agreement over the experimentally available range of ratios of step height to boundary layer thickness from 7 to 0.05.

  10. Shock-like structures in the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  11. Global stability behaviour for the BEK family of rotating boundary layers

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Thomas, Christian

    2017-12-01

    Numerical simulations were conducted to investigate the linear global stability behaviour of the Bödewadt, Ekman, von Kármán (BEK) family of flows, for cases where a disc rotates beneath an incompressible fluid that is also rotating. This extends the work reported in recent studies that only considered the rotating-disc boundary layer with a von Kármán configuration, where the fluid that lies above the boundary layer remains stationary. When a homogeneous flow approximation is made, neglecting the radial variation of the basic state, it can be shown that linearised disturbances are susceptible to absolute instability. We shall demonstrate that, despite this prediction of absolute instability, the disturbance development exhibits globally stable behaviour in the BEK boundary layers with a genuine radial inhomogeneity. For configurations where the disc rotation rate is greater than that of the overlying fluid, disturbances propagate radially outwards and there is only a convective form of instability. This replicates the behaviour that had previously been documented when the fluid did not rotate beyond the boundary layer. However, if the fluid rotation rate is taken to exceed that of the disc, then the propagation direction reverses and disturbances grow while convecting radially inwards. Eventually, as they approach regions of smaller radii, where stability is predicted according to the homogeneous flow approximation, the growth rates reduce until decay takes over. Given sufficient time, such disturbances can begin to diminish at every radial location, even those which are positioned outwards from the radius associated with the onset of absolute instability. This leads to the confinement of the disturbance development within a finitely bounded region of the spatial-temporal plane.

  12. On the tectonics of Venus

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Jafar

    1993-02-01

    The thermal evolution and mechanical properties of a mechanical boundary layer of mantle convection are calculated for three Venus models—cold, Earth-like, and hot—with temperatures of 1300°C, 1400°C, and 1500°C, respectively at the base of their thermal boundary layers. The mechanical boundary layers consist of a basaltic crust with thicknesses of 3 km, 9 km, and 18 km, and depleted periodotitic mantle with thicknesses of 37 km, 65 km, and 90 km, respectively. The thin crust of the cold Venus model couples tightly to the underlying mantle and produces a single competent layer, whereas the thicker crust of the other models has a weak lower part that decouples the crust from the mantle. The characteristic wavelengths (10-20 km) of the banded terrains of tesserae surrounding Ishtar Terra can be explained by the buckling of the crusts of all three Venus models as long as their mechanical boundary layers are older than approximately 150 m.a., implying that the observed wavelengths provide no constraint on the thickness and age of the Venusian crust that is older than approximately 150 m.a. Shortening of the basaltic crust, however, cannot produce surface elevations higher than about 2 km on Venus, because basalt in the lower crust transforms to high-density eclogite, which sinks into the mantle. Therefore, Lakshmi Planum and the surrounding mountains probably contain lower-density material and are analogous to continental masses on the Earth. The ridge spacings of the northern ridge belt can be interpreted as being caused by faulting of the depleted mantle of the cold and Earth-like Venus models if the mechanical boundary layer is older than about 100 m.a. and 200 m.a., respectively. The hot model, however, cannot account for the formation of the ridge belt. Besides the characteristic wavelengths of the banded terrains and spacings of the ridge belts, the cold Venus model seems to account for many other features on Venus. The dynamic support of the surface topography of tesserae requires a convergence velocity of less than 0.1 cm year -1 for the mechanical boundary layer of the cold Venus model. This very low velocity is supported by the spatially random distribution of craters on Venus. Furthermore, the lack of pervasive volcanism on Venus in approximately the last 500 m.y., the lack of an internal magnetic field of Venus, and the lack of an oceanic type ridge system on Venus support the cold Venus model.

  13. A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization

    NASA Technical Reports Server (NTRS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    2001-01-01

    A working wind tunnel test facility has been constructed at the University of Notre Dame's Hessert Center. The relaminarization test facility has been constructed in the 1.5m x 1.5m (5ft x 5 ft) atmospheric wind tunnel and generates a Re(theta)=4694 turbulent boundary layer in nominally zero-pressure gradient before it is exposed to the Case #1 pressure gradient (K approximately equal to 4.2 x 10(exp -6), which is believed to be sufficient to achieve relaminarization. Future work to be conducted will include measuring the response of the turbulent boundary layer to the favorable pressure gradients created in the test facility and documenting this response in order to understand the underlying flow physics responsible for relaminarization. It is the goal of this research to have a better understanding of accelerated turbulent boundary layers which will aid in the development of future flow diagnostic utilities to be implemented in applied aerodynamic research.

  14. Measurement of density and temperature in a hypersonic turbulent boundary layer using the electron beam fluorescence technique. Ph.D. Thesis. Final Report, 1 Oct. 1969 - 1 Sep. 1972

    NASA Technical Reports Server (NTRS)

    Mcronald, A. D.

    1975-01-01

    Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.

  15. Numerical Study of Pressure Fluctuations due to High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Wu, Minwei

    2012-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data and previously published simulations of turbulent boundary layers under similar flow conditions. Spectral analysis shows that the acoustic fluctuations outside the boundary layer region have much lower energy content within the high-frequency region. The space-time correlations reflect the convective nature of the pressure field both at the wall and in the freestream, which is characterized by the downstream propagation of pressure-carrying eddies. Relative to those at the wall, the pressure-carrying eddies associated with the freestream signal are larger and convect at a significantly lower speed. The preliminary DNS results of a Mach 6 boundary layer show that the pressure rms in the freestream region is significantly higher than that of the lower Mach number case.

  16. In-Flight Capability for Evaluating Skin-Friction Gages and Other Near-Wall Flow Sensors

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Pipitone, Brett J.; Krake, Keith L.; Richwine, Dave (Technical Monitor)

    2003-01-01

    An 8-in.-square boundary-layer sensor panel has been developed for in-flight evaluation of skin-friction gages and other near-wall flow sensors on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture (FTF). Instrumentation on the sensor panel includes a boundary-layer rake, temperature sensors, static pressure taps, and a Preston tube. Space is also available for skin-friction gages or other near-wall flow sensors. Pretest analysis of previous F-15B/FTF flight data has identified flight conditions suitable for evaluating skin-friction gages. At subsonic Mach numbers, the boundary layer over the sensor panel closely approximates the two-dimensional (2D), law-of-the-wall turbulent boundary layer, and skin-friction estimates from the Preston tube and the rake (using the Clauser plot method) can be used to evaluate skin-friction gages. At supersonic Mach numbers, the boundary layer over the sensor panel becomes complex, and other means of measuring skin friction are needed to evaluate the accuracy of new skin-friction gages. Results from the flight test of a new rubber-damped skin-friction gage confirm that at subsonic Mach numbers, nearly 2D, law-of-the-wall turbulent boundary layers exist over the sensor panel. Sensor panel data also show that this new skin-friction gage prototype does not work in flight.

  17. Numerical simulations of the stratified oceanic bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.

  18. The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    van Stratum, Bart J. H.; Stevens, Bjorn

    2015-06-01

    The influence of poorly resolving mixing processes in the nocturnal boundary layer (NBL) on the development of the convective boundary layer the following day is studied using large-eddy simulation (LES). Guided by measurement data from meteorological sites in Cabauw (Netherlands) and Hamburg (Germany), the typical summertime NBL conditions for Western Europe are characterized, and used to design idealized (absence of moisture and large-scale forcings) numerical experiments of the diel cycle. Using the UCLA-LES code with a traditional Smagorinsky-Lilly subgrid model and a simplified land-surface scheme, a sensitivity study to grid spacing is performed. At horizontal grid spacings ranging from 3.125 m in which we are capable of resolving most turbulence in the cases of interest to grid a spacing of 100 m which is clearly insufficient to resolve the NBL, the ability of LES to represent the NBL and the influence of NBL biases on the subsequent daytime development of the convective boundary layer are examined. Although the low-resolution experiments produce substantial biases in the NBL, the influence on daytime convection is shown to be small, with biases in the afternoon boundary layer depth and temperature of approximately 100 m and 0.5 K, which partially cancel each other in terms of the mixed-layer top relative humidity.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bingyu; Zheng, Liancun, E-mail: liancunzheng@ustb.edu.cn; Chen, Shengting

    This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.

  20. Losses in Channels with Increased External Turbulence

    NASA Technical Reports Server (NTRS)

    Zaryankin, A. Y.; Soloveva, G. S.

    1986-01-01

    An approximate method for determining the effect of the level of turbulence on the aerodynamic characteristics of convergent and diffuser channels is examined. A momentum equation for the boundary layer is in the method, introducing external flow turbulence on the basis of experimental values of the coefficient of friction and the form factor. It is found that at significant levels of external turbulence, losses must be considered not only in the boundary layer but also in the central region of the channel.

  1. Calculation of laminar heating rates on three-dimensional configurations using the axisymmetric analogue

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II

    1980-01-01

    A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.

  2. Investigation of the Development of Laminar Boundary-Layer Instabilities along a Blunted Cone

    DTIC Science & Technology

    1988-12-01

    taps, having approximate diameters of 0.064 in., were connected by tubing either to one-psid Druck ® or 2.5-psid ESP transducers of the Tunnel B...surveys of the model boundary layer using a 15-psid Druck transducer calibrated for 10- psid fu l l scale. The small size of the pi tot probe (Section...of freedom greater than 3D . Estimates of the measured data uncertainties for this test, including the basic hot-wire anemometer measurements

  3. Navier-Stokes and viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Steger, Joseph L.; Vandalsem, William R.

    1989-01-01

    Some considerations toward developing numerical procedures for simulating viscous compressible flows are discussed. Both Navier-Stokes and boundary layer field methods are considered. Because efficient viscous-inviscid interaction methods have been difficult to extend to complex 3-D flow simulations, Navier-Stokes procedures are more frequently being utilized even though they require considerably more work per grid point. It would seem a mistake, however, not to make use of the more efficient approximate methods in those regions in which they are clearly valid. Ideally, a general purpose compressible flow solver that can optionally take advantage of approximate solution methods would suffice, both to improve accuracy and efficiency. Some potentially useful steps toward this goal are described: a generalized 3-D boundary layer formulation and the fortified Navier-Stokes procedure.

  4. Shuttle Damage/Repair from the Perspective of Hypersonic Boundary Layer Transition - Experimental Results

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Berger, Karen T.; Buck, Gregory M.; Liechty, Derek S.; Schneider, Steven P.

    2006-01-01

    An overview is provided of the experimental wind tunnel program conducted at the NASA Langley Research Center Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for Return-to-Flight. The effect of an isolated protuberance and an isolated rectangular cavity on hypersonic boundary layer transition onset on the windward surface of the Shuttle Orbiter has been experimentally characterized. These experimental studies were initiated to provide a protuberance and cavity effects database for developing hypersonic transition criteria to support on-orbit disposition of thermal protection system damage or repair. In addition, a synergistic experimental investigation was undertaken to assess the impact of an isolated mass-flow entrainment source (simulating pyrolysis/outgassing from a proposed tile repair material) on boundary layer transition. A brief review of the relevant literature regarding hypersonic boundary layer transition induced from cavities and localized mass addition from ablation is presented. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth and simulated tile damage or repair (protuberances) of varying height. Cavity and mass addition effects were assessed at a fixed location (x/L = 0.3) along the model centerline in a region of near zero pressure gradient. Cavity length-to-depth ratio was systematically varied from 2.5 to 17.7 and length-to-width ratio of 1 to 8.5. Cavity depth-to-local boundary layer thickness ranged from 0.5 to 4.8. Protuberances were located at several sites along the centerline and port/starboard attachment lines along the chine and wing leading edge. Protuberance height-to-boundary layer thickness was varied from approximately 0.2 to 1.1. Global heat transfer images and heating distributions of the Orbiter windward surface using phosphor thermography were used to infer the state of the boundary layer (laminar, transitional, or turbulent). Test parametrics include angles-of-attack of 30 deg and 40 deg, sideslip angle of 0 deg, freestream Reynolds numbers from 0.02x106 to 7.3x106 per foot, edge-to-wall temperature ratio from 0.4 to 0.8, and normal shock density ratios of approximately 5.3, 6.0, and 12 in Mach 6 air, Mach 10 air, and Mach 6 CF4, respectively. Testing to simulate the effects of ablation from a proposed tile repair concept indicated that transition was not a concern. The experimental protuberance and cavity databases highlighted in this report were used to formulate boundary layer transition correlations that were an integral part of an analytical process to disposition observed Orbiter TPS damage during STS- 114.

  5. Air-Sea Interaction in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Friehe, C. A.; Melville, W. K.

    2007-05-01

    Measurements of meteorological fields and turbulence were made during gap wind events in the Gulf of Tehuantepec using the NSF C-130 aircraft. The flight patterns started at the shore and progressed to approximately 300km offshore with low-level (30m) tracks, stacks and soundings. Parameterizations of the wind stress, sensible and latent heat fluxes were obtained from approximately 700 5 km low-level tracks. Structure of the marine boundary layer as it evolved off-shore was obtained with stack patterns, aircraft soundings and deployment of dropsondes. The air-sea fluxes approximately follow previous parameterizations with some evidence of the drag coefficient leveling out at about 20 meters/sec with the latent heat flux slightly increasing. The boundary layer starts at shore as a gap wind low-level jet, thins as the jet expands out over the gulf, exhibits a hydraulic jump, and then increases due to turbulent mixing.

  6. Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.

    PubMed Central

    Schumaker, M F; Kentler, C J

    1998-01-01

    We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651

  7. The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Blackwell, B. F.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.

  8. Turbulent mixing layers in the interstellar medium of galaxies

    NASA Technical Reports Server (NTRS)

    Slavin, J. D.; Shull, J. M.; Begelman, M. C.

    1993-01-01

    We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.

  9. High-Area-Ratio Rocket Nozzle at High Combustion Chamber Pressure: Experimental and Analytical Validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Smith, Timothy D.; Pavli, Albert J.

    1999-01-01

    Experimental data were obtained on an optimally contoured nozzle with an area ratio of 1025:1 and on a truncated version of this nozzle with an area ratio of 440:1. The nozzles were tested with gaseous hydrogen and liquid oxygen propellants at combustion chamber pressures of 1800 to 2400 psia and mixture ratios of 3.89 to 6.15. This report compares the experimental performance, heat transfer, and boundary layer total pressure measurements with theoretical predictions of the current Joint Army, Navy, NASA, Air Force (JANNAF) developed methodology. This methodology makes use of the Two-Dimensional Kinetics (TDK) nozzle performance code. Comparisons of the TDK-predicted performance to experimentally attained thrust performance indicated that both the vacuum thrust coefficient and the vacuum specific impulse values were approximately 2.0-percent higher than the turbulent prediction for the 1025:1 configurations, and approximately 0.25-percent higher than the turbulent prediction for the 440:1 configuration. Nozzle wall temperatures were measured on the outside of a thin-walled heat sink nozzle during the test fittings. Nozzle heat fluxes were calculated front the time histories of these temperatures and compared with predictions made with the TDK code. The heat flux values were overpredicted for all cases. The results range from nearly 100 percent at an area ratio of 50 to only approximately 3 percent at an area ratio of 975. Values of the integral of the heat flux as a function of nozzle surface area were also calculated. Comparisons of the experiment with analyses of the heat flux and the heat rate per axial length also show that the experimental values were lower than the predicted value. Three boundary layer rakes mounted on the nozzle exit were used for boundary layer measurements. This arrangement allowed total pressure measurements to be obtained at 14 different distances from the nozzle wall. A comparison of boundary layer total pressure profiles and analytical predictions show good agreement for the first 0.5 in. from the nozzle wall; but the further into the core flow that measurements were taken, the more that TDK overpredicted the boundary layer thickness.

  10. Ray-theory approach to electrical-double-layer interactions.

    PubMed

    Schnitzer, Ory

    2015-02-01

    A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.

  11. Investigation of Low-Pressure Turbine Endwall Flows: Simulations and Experiments (Postprint)

    DTIC Science & Technology

    2015-01-01

    direction) minor semiaxis of 0.0417Cx (0.25in). Measured in the axial direction, the flat plate leading edge was located at x=-3.958Cx (23.75in) where...for public release; distribution unlimited. plate boundary layer is δ∗ = 1.721s/Re0.5s . For s = 4.833Cx, Reδ∗ = 1.721 √ s/CxRe = 1, 200. At this...boundary which was located at x=-1.4Cx. The following approximations hold for a turbulent flat plate boundary layer: δ99 = 0.37s Re0.2s , δ∗ = 0.046s

  12. Highly mobile type II twin boundary in Ni-Mn-Ga five-layered martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sozinov, A.; Lanska, N.; Soroka, A.

    2011-09-19

    Twin relationships and stress-induced reorientation were studied in Ni{sub 2}Mn{sub 1.14}Ga{sub 0.86} single crystal with five-layered modulated martensite crystal structure. Very low twinning stress of about 0.1 MPa was found for twin boundaries which deviated a few degrees from the (011) crystallographic plane. However, twin boundaries oriented exactly parallel to the (011) plane exhibited considerably higher level of twinning stress, above 1 MPa. X-ray diffraction experiments and calculations based on approximation of the martensite crystal lattice as a tetragonal lattice with a slight monoclinic distortion identified the two different kinds of twin interfaces as type II and type I twinmore » boundaries.« less

  13. Calculation of unsteady transonic flows with mild separation by viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Howlett, James T.

    1992-01-01

    This paper presents a method for calculating viscous effects in two- and three-dimensional unsteady transonic flow fields. An integral boundary-layer method for turbulent viscous flow is coupled with the transonic small-disturbance potential equation in a quasi-steady manner. The viscous effects are modeled with Green's lag-entrainment equations for attached flow and an inverse boundary-layer method for flows that involve mild separation. The boundary-layer method is used stripwise to approximate three-dimensional effects. Applications are given for two-dimensional airfoils, aileron buzz, and a wing planform. Comparisons with inviscid calculations, other viscous calculation methods, and experimental data are presented. The results demonstrate that the present technique can economically and accurately calculate unsteady transonic flow fields that have viscous-inviscid interactions with mild flow separation.

  14. Optimal control of singularly perturbed nonlinear systems with state-variable inequality constraints

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Corban, J. E.

    1990-01-01

    The established necessary conditions for optimality in nonlinear control problems that involve state-variable inequality constraints are applied to a class of singularly perturbed systems. The distinguishing feature of this class of two-time-scale systems is a transformation of the state-variable inequality constraint, present in the full order problem, to a constraint involving states and controls in the reduced problem. It is shown that, when a state constraint is active in the reduced problem, the boundary layer problem can be of finite time in the stretched time variable. Thus, the usual requirement for asymptotic stability of the boundary layer system is not applicable, and cannot be used to construct approximate boundary layer solutions. Several alternative solution methods are explored and illustrated with simple examples.

  15. Hypersonic Laminar Boundary Layer Velocimetry with Discrete Roughness on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Bathel, Brett; Danehy, Paul M.; Inman, Jennifer A.; Watkins, A. Neal; Jones, Stephen B.; Lipford, William E.; Goodman, Kyle Z.; Ivey, Christopher B.; Goyne, Christopher P.

    2010-01-01

    Laminar boundary layer velocity measurements are made on a 10-degree half-angle wedge in a Mach 10 flow. Two types of discrete boundary layer trips were used to perturb the boundary layer gas. The first was a 2-mm tall, 4-mm diameter cylindrical trip. The second was a scaled version of the Orbiter Boundary Layer Transition (BLT) Detailed Test Objective (DTO) trip. Both 1-mm and 2.5-mm tall BLT DTO trips were tested. Additionally, side-view and plan-view axial boundary layer velocity measurements were made in the absence of these tripping devices. The free-stream unit Reynolds numbers tested for the cylindrical trips were 1.7x10(exp 6)/m and 3.3x10(exp 6)/m. The free-stream unit Reynolds number tested for the BLT DTO trips was 1.7x10(exp 6)/m. The angle of attack was kept at approximately 5-degrees for most of the tests resulting in a Mach number of approximately 8.3. These combinations of unit Reynolds numbers and angle of attack resulted in laminar flowfields. To study the precision of the measurement technique, the angle of attack was varied during one run. Nitric-oxide (NO) molecular tagging velocimetry (MTV) was used to obtain averaged axial velocity values and associated uncertainties. These uncertainties are as low as 20 m/s. An interline, progressive scan CCD camera was used to obtain separate images of the initial reference and shifted NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond sequential acquisition of both images. The maximum planar spatial resolution achieved for the side-view velocity measurements was 0.07-mm in the wall-normal direction by 1.45-mm in the streamwise direction with a spatial depth of 0.5-mm. For the plan-view measurements, the maximum planar spatial resolution in the spanwise and streamwise directions was 0.69-mm by 1.28-mm, respectively, with a spatial depth of 0.5-mm. Temperature sensitive paint (TSP) measurements are provided to compliment the velocity data and to provide further insight into the behavior of the boundary layers. The experiments were performed at the NASA Langley Research Center 31-Inch Mach 10 Air tunnel.

  16. Internal hypersonic flow. [in thin shock layer

    NASA Technical Reports Server (NTRS)

    Lin, T. C.; Rubin, S. G.

    1974-01-01

    An approach for studying hypersonic internal flow with the aid of a thin-shock-layer approximation is discussed, giving attention to a comparison of thin-shock-layer results with the data obtained on the basis of the imposition theory or a finite-difference integration of the Euler equations. Relations in the case of strong interaction are considered together with questions of pressure distribution and aspects of the boundary-layer solution.

  17. The Ekman Layer and Why Tea Leaves Go to the Center of the Cup

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Dapp, Rachel M.

    2010-01-01

    Consider a transparent, cylindrical container filled with water and sitting in the center of a record player turntable. When the turntable is started suddenly, the container rotates with the turntable, but the bulk of the fluid initially remains at rest. A thin ([approximately]1 mm) viscous boundary layer (Ekman layer) forms almost immediately at…

  18. Double absorbing boundaries for finite-difference time-domain electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu

    We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.

  19. Transitional and turbulent boundary layer with heat transfer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2010-08-01

    We report on our direct numerical simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80-1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number Pr=1. Skin-friction coefficient and other boundary layer parameters follow the Blasius solutions prior to the onset of turbulent spots. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cf deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Mean velocity and Reynolds stresses agree with experimental data over an extended turbulent region downstream of transition. Normalized rms wall-pressure fluctuation increases gradually with the streamwise growth of the turbulent boundary layer. Wall shear stress fluctuation, τw,rms'+, on the other hand, remains constant at approximately 0.44 over the range, 800

  20. Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Duck, Peter W.

    1996-01-01

    We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.

  1. Boundary Layer Transition in the Leading Edge Region of a Swept Cylinder in High Speed Flow

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.

    1998-01-01

    Experiments were conducted on a 76 degree swept cylinder to establish the behavior of the attachment line transition process in a low-disturbance level, Mach number 1.6 flow. For a near adiabatic wall condition, the attachment-line boundary layer remained laminar up to the highest attainable Reynolds number. The attachment-line boundary layer transition under the influence of trip wires depended on wind tunnel disturbance level, and a transition onset condition for this flow is established. Internal heating raised the surface temperature of the attachment line to induce boundary layer instabilities. This was demonstrated experimentally for the first time and the frequencies of the most amplified disturbances were determined over a range of temperature settings. Results were in excellent agreement to those predicted by a linear stability code, and provide the first experimental verification of theory. Transition onset along the heated attachment line at an R-bar of 800 under quiet tunnel conditions was found to correlate with an N factor of 13.2. Increased tunnel disturbance levels caused the transition onset to occur at lower cylinder surface temperatures and was found to correlate with an approximate N factor of 1 1.9, so demonstrating that the attachment-line boundary layer is receptive to increases in the tunnel disturbance level.

  2. Atmospheric Turbulence Estimates from a Pulsed Lidar

    NASA Technical Reports Server (NTRS)

    Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.

    2013-01-01

    Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.

  3. Boundary-layer and wake measurements on a swept, circulation-control wing

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.

    1987-01-01

    Wind-tunnel measurements of boundary-layer and wake velocity profiles and surface static pressure distributions are presented for a swept, circulation-control wing. The model is an aspect-ratio-four semispan wing mounted on the tunnel side wall at a sweep angle of 45 deg. A full-span, tangential, rearward blowing, circulation-control slot is located ahead of the trailing edge on the upper surface. Flow surveys were obtained at mid-semispan at freestream Mach numbers of 0.425 and 0.70. Boundary-layer profiles measured on the forward portions of the wing are approximately streamwise and two dimensional. The flow in the vicinity of the jet exit and in the near wake is highly three dimensional. The jet flow near the slot on the Coanda surface is directed normal to the slot. Near-wake surveys show large outboard flows at the center of the wake. At Mach 0.425 and a 5-deg angle of attack, a range of jet-blowing rates was found for which an abrupt transition from incipient separation to attached flow occurs in the boundary layer upstream of the slot. The variation in the lower-surface separation location with blowing rate was determined from boundary-layer measurements at Mach 0.425.

  4. Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Grosser, Wendy I.

    1997-01-01

    When a total pressure probe is used for measuring flows with transverse total pressure gradients, a displacement of the effective center of the probe is observed (designated Delta). While this phenomenon is well documented in incompressible flow and supersonic laminar flow, there is insufficient information concerning supersonic turbulent flow. In this study, three NASA Lewis Research Center Supersonic Wind Tunnels (SWT's) were used to investigate pitot probe centerline displacement in supersonic turbulent boundary layers. The relationship between test conditions and pitot probe centerline displacement error was to be determined. For this investigation, ten circular probes with diameter-to-boundary layer ratios (D/delta) ranging from 0.015 to 0.256 were tested in the 10 ft x 10 ft SWT, the 15 cm x 15 cm SWT, and the 1 ft x 1 ft SWT. Reynolds numbers of 4.27 x 10(exp 6)/m, 6.00 x 10(exp 6)/in, 10.33 x 10(exp 6)/in, and 16.9 x 10(exp 6)/m were tested at nominal Mach numbers of 2.0 and 2.5. Boundary layer thicknesses for the three tunnels were approximately 200 mm, 13 mm, and 30 mm, respectively. Initial results indicate that boundary layer thickness, delta, and probe diameter, D/delta play a minimal role in pitot probe centerline offset error, Delta/D. It appears that the Mach gradient, dM/dy, is an important factor, though the exact relationship has not yet been determined. More data is needed to fill the map before a conclusion can be drawn with any certainty. This research provides valuable supersonic, turbulent boundary layer data from three supersonic wind tunnels with three very different boundary layers. It will prove a valuable stepping stone for future research into the factors influencing pitot probe centerline offset error.

  5. Study of boundary-layer transition using transonic cone Preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Abu-Mostafa, A.

    1982-01-01

    Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.

  6. SALLY LEVEL II- COMPUTE AND INTEGRATE DISTURBANCE AMPLIFICATION RATES ON SWEPT AND TAPERED LAMINAR FLOW CONTROL WINGS WITH SUCTION

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1994-01-01

    The computer program SALLY was developed to compute the incompressible linear stability characteristics and integrate the amplification rates of boundary layer disturbances on swept and tapered wings. For some wing designs, boundary layer disturbance can significantly alter the wing performance characteristics. This is particularly true for swept and tapered laminar flow control wings which incorporate suction to prevent boundary layer separation. SALLY should prove to be a useful tool in the analysis of these wing performance characteristics. The first step in calculating the disturbance amplification rates is to numerically solve the compressible laminar boundary-layer equation with suction for the swept and tapered wing. A two-point finite-difference method is used to solve the governing continuity, momentum, and energy equations. A similarity transformation is used to remove the wall normal velocity as a boundary condition and place it into the governing equations as a parameter. Thus the awkward nonlinear boundary condition is avoided. The resulting compressible boundary layer data is used by SALLY to compute the incompressible linear stability characteristics. The local disturbance growth is obtained from temporal stability theory and converted into a local growth rate for integration. The direction of the local group velocity is taken as the direction of integration. The amplification rate, or logarithmic disturbance amplitude ratio, is obtained by integration of the local disturbance growth over distance. The amplification rate serves as a measure of the growth of linear disturbances within the boundary layer and can serve as a guide in transition prediction. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on a CDC CYBER 70 series computer with a central memory requirement of approximately 67K (octal) of 60 bit words. SALLY was developed in 1979.

  7. Analysis of the electromagnetic scattering from an inlet geometry with lossy walls

    NASA Technical Reports Server (NTRS)

    Myung, N. H.; Pathak, P. H.; Chunang, C. D.

    1985-01-01

    One of the primary goals is to develop an approximate but sufficiently accurate analysis for the problem of electromagnetic (EM) plane wave scattering by an open ended, perfectly-conducting, semi-infinite hollow circular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a simple termination inside. The less difficult but useful problem of the EM scattering by a two-dimensional (2-D), semi-infinite parallel plate waveguide with an impedance boundary condition on the inner walls was chosen initially for analysis. The impedance boundary condition in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the otherwise perfectly-conducting interior waveguide walls. An approximate but efficient and accurate ray solution was obtained recently. That solution is presently being extended to the case of a moderately thick dielectric/ferrite coating on the walls so as to be valid for situations where the impedance boundary condition may not remain sufficiently accurate.

  8. An Investigation of a Thermal Ice-Prevention System for a C-40 Cargo Airplane. 1 - Analysis of the Thermal Design for Wings, Empennage and Windshield

    DTIC Science & Technology

    1945-02-01

    flights wore made at a nreesure alt engine- power setting to approximate plane, and the pressure dlstrlbutlo stations of the wing and the horlso...allowed to reach equilibrium, photographed to record the readings ar thermal ice-croventIon satisfactory assumed de- ngine power for maximum 000 feet...boundary-layer thickness, feet X constant dependent on shape of boundary-layer velocity profile •pP» 5 ! _,’ -55 - •* •• —« ’ . "T^nsea ’A

  9. Görtler instability of the axisymmetric boundary layer along a cone

    NASA Astrophysics Data System (ADS)

    ITOH, Nobutake

    2014-10-01

    Exact partial differential equations are derived to describe Görtler instability, caused by a weakly concave wall, of axisymmetric boundary layers with similar velocity profiles that are decomposed into a sequence of ordinary differential systems on the assumption that the solution can be expanded into inverse powers of local Reynolds number. The leading terms of the series solution are determined by solving a non-parallel version of Görtler’s eigenvalue problem and lead to a neutral stability curve and finite values of critical Görtler number and wave number for stationary and longitudinal vortices. Higher-order terms of the series solution indicate Reynolds-number dependence of Görtler instability and a limited validity of Görtler’s approximation based on the leading terms only. The present formulation is simply applicable to two-dimensional boundary layers of similar profiles, and critical Görtler number and wave number of the Blasius boundary layer on a flat plate are given by G2c = 1.23 and β2c = 0.288, respectively, if the momentum thickness is chosen as the reference length.

  10. The reservoir of ozone in the boundary layer of the eastern United States and its potential impact on the global tropospheric ozone budget

    NASA Technical Reports Server (NTRS)

    Vukovich, F. M.; Fishman, J.; Browell, E. V.

    1985-01-01

    An analysis of available ozone data in the eastern two-thirds of the United States indicates that a substantial reservoir of ozone is present in the summertime. Five-year mean concentrations range from 40 to 65 ppbv. The reservoir covered an area of several million square kilometers and extends vertically from the surface to 1 to 2 km. The vertical distribution of ozone in the reservoir during midday supports a transport of additional ozone from the boundary layer to the free troposphere. Data are presented demonstrating the potential effect of transport by convective clouds and by the sea breeze circulation - mechanisms by which ozone may be transported out of the boundary layer into the free troposphere. The potential impact of this reservoir on the tropospheric ozone budget is discussed. It is shown that if less than half of the ozone mass in this reservoir is transported to the free troposphere, then the amount of ozone transported out of the boundary layer approximates the amount of ozone transported downward during a tropopause fold event.

  11. Interplanetary boundary layers at 1 AU. [magnetic field measurements from Explorer 34

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lemaire, J. F.; Turner, J. M.

    1976-01-01

    The structure and nature of discontinuities in the interplanetary magnetic field at 1 AU in the period March 18, 1971 to April 9, 1971, is determined by using high-resolution magnetic field measurements from Explorer 34. The discontinuities that were selected for this analysis occurred under a variety of interplanetary conditions at an average rate of 0.5/hr. This set does not include all discontinuities that were present, but the sample is large and it is probably representative. Both tangential and rotational discontinuities were identified, the ratio of TD's to RD's being approximately 3 to 1. Tangential discontinuities were observed every day, even among Alfvenic fluctuations. The structure of most of the boundary layers was simple and ordered, i.e., the magnetic field usually changed smoothly and monotonically from one side of the boundary layer to the other.

  12. Aeroheating Predictions for X-34 Using an Inviscid-Boundary Layer Method

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Kleb, William L.; Alter, Steven J.

    1998-01-01

    Radiative equilibrium surface temperatures and surface heating rates from a combined inviscid-boundary layer method are presented for the X-34 Reusable Launch Vehicle for several points along the hypersonic descent portion of its trajectory. Inviscid, perfect-gas solutions are generated with the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upper Relaxation (DPLUR) code. Surface temperatures and heating rates are then computed using the Langley Approximate Three-Dimensional Convective Heating (LATCH) engineering code employing both laminar and turbulent flow models. The combined inviscid-boundary layer method provides accurate predictions of surface temperatures over most of the vehicle and requires much less computational effort than a Navier-Stokes code. This enables the generation of a more thorough aerothermal database which is necessary to design the thermal protection system and specify the vehicle's flight limits.

  13. Unsteady laminar boundary-layer calculations on oscillating configurations including backflow. Part 1: Flat plate, oscillating in its own plane

    NASA Technical Reports Server (NTRS)

    Geissler, W.

    1983-01-01

    A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.

  14. Numerical investigation of supersonic turbulent boundary layers with high wall temperature

    NASA Technical Reports Server (NTRS)

    Guo, Y.; Adams, N. A.

    1994-01-01

    A direct numerical approach has been developed to simulate supersonic turbulent boundary layers. The mean flow quantities are obtained by solving the parabolized Reynolds-averaged Navier-Stokes equations (globally). Fluctuating quantities are computed locally with a temporal direct numerical simulation approach, in which nonparallel effects of boundary layers are partially modeled. Preliminary numerical results obtained at the free-stream Mach numbers 3, 4.5, and 6 with hot-wall conditions are presented. Approximately 5 million grid points are used in all three cases. The numerical results indicate that compressibility effects on turbulent kinetic energy, in terms of dilatational dissipation and pressure-dilatation correlation, are small. Due to the hot-wall conditions the results show significant low Reynolds number effects and large streamwise streaks. Further simulations with a bigger computational box or a cold-wall condition are desirable.

  15. The Sensitivity of Large-Eddy Simulation to Local and Nonlocal Drag Coefficients at the Lower Boundary

    NASA Technical Reports Server (NTRS)

    Schowalter, D. G.; DeCroix, D. S.; Lin, Y. L.; Arya, S. P.; Kaplan, M. L.

    1996-01-01

    It was found that the homogeneity of the surface drag coefficient plays an important role in the large scale structure of turbulence in large-eddy simulation of the convective atmospheric boundary layer. Particularly when a ground surface temperature was specified, large horizontal anisotropies occurred when the drag coefficient depended upon local velocities and heat fluxes. This was due to the formation of streamwise roll structures in the boundary layer. In reality, these structures have been found to form when shear is approximately balanced by buoyancy. The present cases, however, were highly convective. The formation was caused by particularly low values of the drag coefficient at the entrance to thermal plume structures.

  16. Observations of the Nocturnal Boundary Layer and Morning Transitional Periods in Houston, Texas during the TexAQS II Campaign

    NASA Astrophysics Data System (ADS)

    Day, B. M.; Clements, C. B.; Rappenglueck, B.

    2007-12-01

    High-temporal resolution tethersonde profiles taken during the TexAQS II field campaign in Houston were used to study the overnight development and progression of the nocturnal boundary layer (NBL) and the evolution of the convective boundary layer after sunrise. The measurements were made at the University of Houston campus, located approximately 4 km southeast of the downtown Houston central business district, and consisted of vertical profiles of potential temperature, water vapor mixing ratio, wind speed, wind direction, and ozone concentration. Profile heights averaged 250 m AGL with a few reaching 400 m AGL. Profiles were taken at approximately 30 min intervals throughout 4 nights during Intensive Observational Periods (IOPs), including both the evening and morning transitional periods. Tethersonde experiments also were performed during several additional morning break-up periods during the campaign. Preliminary results from the overnight experiments of Sept 7-8 and Sept 14-15, 2006 showed different NBL evolutions. Sept 7-8 exhibited a stronger and deeper inversion compared with Sept 14-15 when the inversion was weak with a fairly constant height throughout the night. The Sept 7-8 profiles showed elevated bluff-like structures in the virtual potential temperature profiles between 0300-0400 CDT, indicating neutral stability within the 40-90 m AGL level. And, just before sunrise a neutral layer with constant potential temperature developed between the surface and 75 m AGL reflecting horizontal cold air advection. Further analyses will be presented for other vertical profiles taken during the campaign, including the additional overnight profiles as well as the profiles taken during the morning transition to the convective boundary layer.

  17. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In the observations, several strong temperature inversion layers are also found in the surface layer and the middle part of the boundary layer, which lead to the suppression of the vertical mixing of the air pollutants. The jet stream occurring in the boundary layer also contributes to the prevention of the vertical dissipation of the air pollutants. It is also observed that the temporal and spatial evolution of the air pollutants and the hygroscopic growth of the aerosols in the boundary layer are heavily dependent on the humidity of the air.

  18. Spacing of bending-induced fractures at saturation: Numerical models and approximate analytical solution

    NASA Astrophysics Data System (ADS)

    Schöpfer, Martin; Lehner, Florian; Grasemann, Bernhard; Kaserer, Klemens; Hinsch, Ralph

    2017-04-01

    John G. Ramsay's sketch of structures developed in a layer progressively folded and deformed by tangential longitudinal strain (Figure 7-65 in Folding and Fracturing of Rocks) and the associated strain pattern analysis have been reproduced in many monographs on Structural Geology and are referred to in numerous publications. Although the origin of outer-arc extension fractures is well-understood and documented in many natural examples, geomechanical factors controlling their (finite or saturation) spacing are hitherto unexplored. This study investigates the formation of bending-induced fractures during constant-curvature forced folding using Distinct Element Method (DEM) numerical modelling. The DEM model comprises a central brittle layer embedded within weaker (low modulus) elastic layers; the layer interfaces are frictionless (free slip). Folding of this three-layer system is enforced by a velocity boundary condition at the model base, while a constant overburden pressure is maintained at the model top. The models illustrate several key stages of fracture array development: (i) Prior to the onset of fracture, the neutral surface is located midway between the layer boundaries; (ii) A first set of regularly spaced fractures develops once the tensile stress in the outer-arc equals the tensile strength of the layer. Since the layer boundaries are frictionless, these bending-induced fractures propagate through the entire layer; (iii) After the appearance of the first fracture set, the rate of fracture formation decreases rapidly and so-called infill fractures develop approximately midway between two existing fractures (sequential infilling); (iv) Eventually no new fractures form, irrespective of any further increase in fold curvature (fracture saturation). Analysis of the interfacial normal stress distributions suggests that at saturation the fracture-bound blocks are subjected to a loading condition similar to three-point bending. Using classical beam theory an analytical solution is derived for the critical fracture spacing, i.e. the spacing below which the maximum tensile stress cannot reach the layer strength. The model results are consistent with an approximate analytical solution, and illustrate that the spacing of bending-induced fractures is proportional to layer thickness and a square root function of the ratio of layer tensile strength to confining pressure. Although highly idealised, models and analysis presented in this study offer an explanation for fracture saturation during folding and point towards certain key factors that may control fracture spacing in natural systems.

  19. Photon migration in non-scattering tissue and the effects on image reconstruction

    NASA Astrophysics Data System (ADS)

    Dehghani, H.; Delpy, D. T.; Arridge, S. R.

    1999-12-01

    Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.

  20. Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.; Meneveau, Charles

    2016-01-01

    The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.

  1. Turbulence modeling for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.; Coakley, T. J.

    1989-01-01

    Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.

  2. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  3. Drag characteristics of circular cylinders in a laminar boundary layer at supersonic free-stream velocities

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.; Lamb, M.; Howell, D. T.

    1973-01-01

    Drag measurements were obtained with circular cylinders attached to a flat-plate surface with their longitudinal axes perpendicular to the plate surface. When more than one cylinder was tested, they were alined in a spanwise row perpendicular to the free-stream velocity vector. The drag measurements were obtained through a range of Mach numbers from 2.3 to 4.6, cylinder heights ranging from approximately 0.4 to 3 times the undisturbed laminar boundary-layer thickness, and cylinder height-to-diameter ratios of 1.0 and approximately 2. Included in the paper is a complete presentation in figure form of the experimental results and a discussion of the more significant findings. An attempt is made to select the most appropriate parameters for correlating the experimental results and, where possible, these results are compared with theoretical calculations.

  4. A complex-lamellar description of boundary layer transition

    NASA Astrophysics Data System (ADS)

    Kolla, Maureen Louise

    Flow transition is important, in both practical and phenomenological terms. However, there is currently no method for identifying the spatial locations associated with transition, such as the start and end of intermittency. The concept of flow stability and experimental correlations have been used, however, flow stability only identifies the location where disturbances begin to grow in the laminar flow and experimental correlations can only give approximations as measuring the start and end of intermittency is difficult. Therefore, the focus of this work is to construct a method to identify the start and end of intermittency, for a natural boundary layer transition and a separated flow transition. We obtain these locations by deriving a complex-lamellar description of the velocity field that exists between a fully laminar and fully turbulent boundary condition. Mathematically, this complex-lamellar decomposition, which is constructed from the classical Darwin-Lighthill-Hawthorne drift function and the transport of enstrophy, describes the flow that exists between the fully laminar Pohlhausen equations and Prandtl's fully turbulent one seventh power law. We approximate the difference in enstrophy density between the boundary conditions using a power series. The slope of the power series is scaled by using the shape of the universal intermittency distribution within the intermittency region. We solve the complex-lamellar decomposition of the velocity field along with the slope of the difference in enstrophy density function to determine the location of the laminar and turbulent boundary conditions. Then from the difference in enstrophy density function we calculate the start and end of intermittency. We perform this calculation on a natural boundary layer transition over a flat plate for zero pressure gradient flow and for separated shear flow over a separation bubble. We compare these results to existing experimental results and verify the accuracy of our transition model.

  5. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows

    PubMed Central

    Saarenrinne, Pentti

    2016-01-01

    ABSTRACT The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s−1 (N=6) in an experimental flow channel (Reynolds number, Re=4×105) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, lx=71±8 mm, N=3, and lx=110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner−Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (lx=163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. PMID:27815242

  6. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    PubMed

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  7. Boundary layer transition detection on the X-15 vertical fin using surface-pressure-fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Lewis, T. L.; Banner, R. D.

    1971-01-01

    A flush-mounted microphone on the vertical fin of an X-15 airplane was used to investigate boundary layer transition phenomenon during flights to peak altitudes of approximately 70,000 meters. The flight results were compared with those from wind tunnel studies, skin temperature measurements, and empirical prediction data. The Reynolds numbers determined for the end of transition were consistent with those obtained from wind tunnel studies. Maximum surface-pressure-fluctuation coefficients in the transition region were about an order of magnitude greater than those for fully developed turbulent flow. This was also consistent with wind tunnel data. It was also noted that the power-spectral-density estimates of the surface-pressure fluctuations were characterized by a shift in power from high frequencies to low frequencies as the boundary layer changed from turbulent to laminar flow. Large changes in power at the lowest frequencies appeared to mark the beginning of transition.

  8. The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Cohen, Clarence B; Reshotko, Eli

    1956-01-01

    An approximate method for the calculation of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient, based on Thwaites' correlation concept, is presented. With the definition of dimensionless shear and heat-transfer parameters and an assumed correlation of these parameters in terms of a momentum parameter, a complete system of relations for calculating skin friction and heat transfer results. Knowledge of velocity or temperature profiles is not necessary in using this calculation method. When the method is applied to a convergent-divergent, axially symmetric rocket nozzle, it shows that high rates of heat transfer are obtained at the initial stagnation point and at the throat of the nozzle. Also indicated are negative displacement thicknesses in the convergent portion of the nozzle; these occur because of the high density within the lower portions of the cooled boundary layer. (author)

  9. Flight-determined characteristics of an air intake system on an F-111A airplane

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Johnson, H. J.

    1972-01-01

    Flow phenomena of the F-111A air intake system were investigated over a large range of Mach number, altitude, and angle of attack. Boundary-layer variations are shown for the fuselage splitter plate and inlet entrance stations. Inlet performance is shown in terms of pressure recovery, airflow, mass-flow ratio, turbulence factor, distortion factor, and power spectral density. The fuselage boundary layer was found to be not completely removed from the upper portion of the splitter plate at all Mach numbers investigated. Inlet boundary-layer ingestion started at approximately Mach 1.6 near the translating spike and cone. Pressure-recovery distribution at the compressor face showed increasing distortion with increasing angle of attack and increasing Mach number. The time-averaged distortion-factor value approached 1300, which is near the distortion tolerance of the engine at Mach numbers above 2.1.

  10. The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor; Springston, Stephen; Delgadillo, Rodrigo; Zhang, Jianhao; Aiken, Allison C.; Koontz, Annette; Muradyan, Paytsar

    2018-05-01

    Observations from June to October 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. The rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass are approximately double that calculated from black carbon in lab studies. A spectrally-flat absorption angstrom exponent suggests most of the light absorption is from lens-coated black carbon. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly means of 0.78 ± 0.02 (August), 0.81 ± 0.03 (September), and 0.83 ± 0.03 (October) at the green wavelength. Boundary layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August 2016, is investigated further. Backtrajectories that indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.

  11. Nonlinear evolution of the first mode supersonic oblique waves in compressible boundary layers. Part 1: Heated/cooled walls

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1993-01-01

    The nonlinear stability of an oblique mode propagating in a two-dimensional compressible boundary layer is considered under the long wave-length approximation. The growth rate of the wave is assumed to be small so that the concept of unsteady nonlinear critical layers can be used. It is shown that the spatial/temporal evolution of the mode is governed by a pair of coupled unsteady nonlinear equations for the disturbance vorticity and density. Expressions for the linear growth rate show clearly the effects of wall heating and cooling and in particular how heating destabilizes the boundary layer for these long wavelength inviscid modes at O(1) Mach numbers. A generalized expression for the linear growth rate is obtained and is shown to compare very well for a range of frequencies and wave-angles at moderate Mach numbers with full numerical solutions of the linear stability problem. The numerical solution of the nonlinear unsteady critical layer problem using a novel method based on Fourier decomposition and Chebychev collocation is discussed and some results are presented.

  12. Geochemical evidences for two chondritic-like cometary or asteroidal impacts before and at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Liu, Y.-G.; Schmitt, R. A.

    1993-01-01

    A number of geological and palaeontological evidences support multiple impacts of cometary showers within a short time (approximately 1-3 Ma) and their connection with mass extinctions. Observations include clustered crater ages, stratigraphic horizons of impact ejecta closely spaced in time, and evidence for stepwise mass extinctions spanning intervals of 1-3 Ma. For the K/T boundary, three candidates, Popigai, Manson, and Yucatan, have been proposed as impact craters. Two distinct strata at the K/T boundary in western North America have been interpreted as evidence for two sequential impacts. If multiple impacts occurred within a time span of about 1 Ma then multiple Ir enrichments should be observed. DSDP Hole 577B on the Shatsky Plateau in the northern Pacific at K/T time is the first site. Samples contain approximately greater than 97 percent CaCO3, which exhibit clear chemical signals associated with asteroidal/cometary impact. Ir, Fe, and Cr data are presented. From the Th-normalized data, two satellite peaks below the major peak at 78 cm and 81 cm of 577B-1-4 are clearly shown. The major Ir peak (K/T boundary) is at 72 cm. Fe and Cr, from C1-like impactor ejecta fallout, also show two peaks at the same positions. For hole 738C on the southern Kerguelen Plateau, Ir values reach a peak concentration of 18 ppb in the clay layer at 96.0-96.2 cm in section 20R-5, and gradually tail off. In the sample 115 cm above the boundary, Ir concentrations have still not reached background levels. From the Ir peak downward to the lowermost sample analyzed at 102 cm, the Ir concentration is still as high as 1.7 ppb. From the Th-normalized data, we observe a small Ir/Th peak at 100-101 cm. Though this peak is within the error margin, the trend is clear. Fe and Cr exhibit the same pattern. The third case is Hole 690C on the Queen Maud Ridge. Again, the Ir/Th plot indicates the strong possibility of satellite peaks at approximately 52 cm. The main peak is at 39-40 cm. For the Stevns Klint K/T boundary layers, the stratification of trace elements appears threefold with peak concentrations in sublayers A1, A3, and B2 for different element groups, including Ir. C1 ratios for many siderophile elements found in combined layers III and IV, corresponding to layers A, B, C, and D, strongly support the impact hypothesis. Also, multiple Ir anomalies in the K/T section at Lattengebirge, Bavarian Alps are reported. Recent works on Ni-rich spinels and Ir at the K/T boundaries clearly establish cometary/asteroidal impacts at the K/T boundary. Lastly, cometary showers can explain the enhanced Ir contents over approximately a 1 Ma interval in Gubbio shales.

  13. Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.

    1989-01-01

    The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.

  14. Parallel inhomogeneity and the Alfven resonance. 1: Open field lines

    NASA Technical Reports Server (NTRS)

    Hansen, P. J.; Harrold, B. G.

    1994-01-01

    In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.

  15. Comparison of a simulated velocity profile of a turbulent boundary layer with measurements obtained by Femtosecond Laser Electronic Excitation Tagging (FLEET)

    NASA Astrophysics Data System (ADS)

    New-Tolley, Matthew; Zhang, Yibin; Shneider, Mikhail; Miles, Richard

    2017-11-01

    Accurate velocimetry measurements of turbulent flows are essential for improving our understanding of turbulent phenomena and validating numerical approaches. Femtosecond Laser Electronic Excitation Tagging (FLEET) is an unseeded molecular tagging method for velocimetry measurements in flows which contain nitrogen. A femtosecond laser pulse is used to ionize and dissociate nitrogen molecules within its focal zone. The decaying plasma fluoresces in the visible and infrared spectrum over a period of microseconds which allows the displacement of the tagged region to be photographed to determine velocity. This study compares the experimental and numerical advection of the tagged region in a turbulent boundary layer generated by a supersonic flow over a flat plate. The tagged region in the simulation is approximated as an infinitely thin cylinder while the flow field is generated using the steady state boundary layer equations with an algebraic turbulence model. This approximation is justified by previous computational analyses, using an unsteady three-dimensional Navier-Stokes solver, which indicate that the radial perturbations of the tagged region are negligible compared to its translation. This research was conducted with government support from the Air Force Office of Scientific Research under Dr. Ivett Leyva and the Army Research Office under Dr. Matthew Munson.

  16. Equations for normal-mode statistics of sound scattering by a rough elastic boundary in an underwater waveguide, including backscattering.

    PubMed

    Morozov, Andrey K; Colosi, John A

    2017-09-01

    Underwater sound scattering by a rough sea surface, ice, or a rough elastic bottom is studied. The study includes both the scattering from the rough boundary and the elastic effects in the solid layer. A coupled mode matrix is approximated by a linear function of one random perturbation parameter such as the ice-thickness or a perturbation of the surface position. A full two-way coupled mode solution is used to derive the stochastic differential equation for the second order statistics in a Markov approximation.

  17. Static Performance of a Fixed-Geometry Exhaust Nozzle Incorporating Porous Cavities for Shock-Boundary Layer Interaction Control

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.

  18. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Parlange, M. B.; Calaf, M.

    2017-02-01

    The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

  19. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  20. On the relationship between image intensity and velocity in a turbulent boundary layer seeded with smoke particles

    NASA Astrophysics Data System (ADS)

    Melnick, M. Blake; Thurow, Brian S.

    2014-02-01

    Simultaneous particle image velocimetry (PIV) and flow visualization measurements were performed in a turbulent boundary layer in an effort to better quantify the relationship between the velocity field and the image intensity typically observed in a classical flow visualization experiment. The freestream flow was lightly seeded with smoke particles to facilitate PIV measurements, whereas the boundary layer was densely seeded with smoke through an upstream slit in the wall to facilitate both PIV and classical flow visualization measurements at Reynolds numbers, Re θ , ranging from 2,100 to 8,600. Measurements were taken with and without the slit covered as well as with and without smoke injection. The addition of a narrow slit in the wall produces a minor modification of the nominal turbulent boundary layer profile whose effect is reduced with downstream distance. The presence of dense smoke in the boundary layer had a minimal effect on the observed velocity field and the associated proper orthogonal decomposition (POD) modes. Analysis of instantaneous images shows that the edge of the turbulent boundary layer identified from flow visualization images generally matches the edge of the boundary layer determined from velocity and vorticity. The correlation between velocity deficit and smoke intensity was determined to be positive and relatively large (>0.7) indicating a moderate-to-strong relationship between the two. This notion was extended further through the use of a direct correlation approach and a complementary POD/linear stochastic estimation (LSE) approach to estimate the velocity field directly from flow visualization images. This exercise showed that, in many cases, velocity fields estimated from smoke intensity were similar to the actual velocity fields. The complementary POD/LSE approach proved better for these estimations, but not enough to suggest using this technique to approximate velocity measurements from a smoke intensity image. Instead, the correlations further validate the use of flow visualization techniques for determining the edge and large-scale shape of a turbulent boundary layer, specifically when quantitative velocity measurements, such as PIV, are not possible in a given experiment.

  1. Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan

    The synthesis of new measurement technologies with advances in high performance computing provides an unprecedented opportunity to advance our understanding of the atmosphere, particularly with regard to the complex flows in the atmospheric boundary layer. To assess current measurement capabilities for quantifying features of atmospheric flow within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment design, highlight novel approaches to boundary-layer measurements, and quantify measurement uncertainties associated with these experimental methods. Line-of-sight velocities measured bymore » scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or dual radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes,conducted with rapid lidar scans, agree with those from scanning radars, enabling assessment of spatial variability. Microwave radiometers provide temperature profiles within and above the boundary layer with approximately the same uncertainty as operational remote sensing measurements. Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. Finally, we highlight cases that could be useful for validation of large-eddy simulations or mesoscale numerical weather prediction, providing information on accessing the archived dataset. We conclude that modern remote Lundquist et al. XPIA BAMS Page 4 of 81 sensing systems provide a generational improvement in observational capabilities, enabling resolution of refined processes critical to understanding 61 inhomogeneous boundary-layer flows such as those found in wind farms.« less

  2. The Granular Blasius Problem: High inertial number granular flows

    NASA Astrophysics Data System (ADS)

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2017-11-01

    The classical Blasius problem considers the formation of a boundary layer through the change at x = 0 from a free-slip to a no-slip boundary beneath an otherwise steady uniform flow. Discrete particle model (DPM) simulations of granular gravity currents show that a similar phenomenon exists for a steady flow over a uniformly sloped surface that is smooth upstream (allowing slip) but rough downstream (imposing a no-slip condition). The boundary layer is a region of high shear rate and therefore high inertial number I; its dynamics are governed by the asymptotic behaviour of the granular rheology as I -> ∞ . The μ(I) rheology asserts that dμ / dI = O(1 /I2) as I -> ∞ , but current experimental evidence is insufficient to confirm this. We show that `generalised μ(I) rheologies', with different behaviours as I -> ∞ , all permit the formation of a boundary layer. We give approximate solutions for the velocity profile under each rheology. The change in boundary condition considered here mimics more complex topography in which shear stress increases in the streamwise direction (e.g. a curved slope). Such a system would be of interest in avalanche modelling. EPSRC studentship (Tsang) and Royal Society Dorothy Hodgkin Fellowship (Vriend).

  3. Modelling sheet-flow sediment transport in wave-bottom boundary layers using discrete-element modelling.

    PubMed

    Calantoni, Joseph; Holland, K Todd; Drake, Thomas G

    2004-09-15

    Sediment transport in oscillatory boundary layers is a process that drives coastal geomorphological change. Most formulae for bed-load transport in nearshore regions subsume the smallest-scale physics of the phenomena by parametrizing interactions amongst particles. In contrast, we directly simulate granular physics in the wave-bottom boundary layer using a discrete-element model comprised of a three-dimensional particle phase coupled to a one-dimensional fluid phase via Newton's third law through forces of buoyancy, drag and added mass. The particulate sediment phase is modelled using discrete particles formed to approximate natural grains by overlapping two spheres. Both the size of each sphere and the degree of overlap can be varied for these composite particles to generate a range of non-spherical grains. Simulations of particles having a range of shapes showed that the critical angle--the angle at which a grain pile will fail when tilted slowly from rest--increases from approximately 26 degrees for spherical particles to nearly 39 degrees for highly non-spherical composite particles having a dumbbell shape. Simulations of oscillatory sheet flow were conducted using composite particles with an angle of repose of approximately 33 degrees and a Corey shape factor greater than about 0.8, similar to the properties of beach sand. The results from the sheet-flow simulations with composite particles agreed more closely with laboratory measurements than similar simulations conducted using spherical particles. The findings suggest that particle shape may be an important factor for determining bed-load flux, particularly for larger bed slopes.

  4. A new momentum integral method for approximating bed shear stress

    NASA Astrophysics Data System (ADS)

    Wengrove, M. E.; Foster, D. L.

    2016-02-01

    In nearshore environments, accurate estimation of bed stress is critical to estimate morphologic evolution, and benthic mass transfer fluxes. However, bed shear stress over mobile boundaries in wave environments is notoriously difficult to estimate due to the non-equilibrium boundary layer. Approximating the friction velocity with a traditional logarithmic velocity profile model is common, but an unsteady non-uniform flow field violates critical assumptions in equilibrium boundary layer theory. There have been several recent developments involving stress partitioning through an examination of the momentum transfer contributions that lead to improved estimates of the bed stress. For the case of single vertical profile observations, Mehdi et al. (2014) developed a full momentum integral-based method for steady-unidirectional flow that integrates the streamwise Navier-Stokes equation three times to an arbitrary position within the boundary layer. For the case of two-dimensional velocity observations, Rodriguez-Abudo and Foster (2014) were able to examine the momentum contributions from waves, turbulence and the bedform in a spatial and temporal averaging approach to the Navier-Stokes equations. In this effort, the above methods are combined to resolve the bed shear stress in both short and long wave dominated environments with a highly mobile bed. The confluence is an integral based approach for determining bed shear stress that makes no a-priori assumptions of boundary layer shape and uses just a single velocity profile time series for both the phase dependent case (under waves) and the unsteady case (under solitary waves). The developed method is applied to experimental observations obtained in a full scale laboratory investigation (Oregon State's Large Wave Flume) of the nearbed velocity field over a rippled sediment bed in oscillatory flow using both particle image velocimetry and a profiling acoustic Doppler velocimeter. This method is particularly relevant for small scale field observations and laboratory observations.

  5. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization: 2. Seepage of saltwater through semi-confining layers

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a generalized basic study that addresses practical needs for an understanding of the major mechanisms involved in the mineralization of groundwater in the Great Bend Prairie aquifer in south- central Kansas. This Quaternary alluvial aquifer and associated surface waters are subject to contamination by saltwater, which in some areas seeps from the deeper Permian bedrock formation into the overlying freshwater aquifer through semiconfining layers. A simplified conceptual model is adopted. It incorporates the freshwater aquifer whose bottom is comprised of a semiconfining layer through which a hydrologically minor but geochemically important saline water discharge seeps into the aquifer. A hierarchy of approximate approaches is considered to analyze the mineralization processes taking place in the aquifer. The recently developed top specified boundary layer (TSBL) approach is very convenient to use for the initial characterization of these processes, and is further adapted to characterization of head-driven seepage through semi-confining layers. TSBL calculations indicate that the seeping saline water may create two distinct new zones in the aquifer: (1) a completely saline zone (CSZ) adjacent to the semiconfining bottom of the aquifer, and (2) a transition zone (TZ) which develops between the CSZ and the freshwater zone. Some possible scenarios associated with the various mineralization patterns are analyzed and discussed.

  6. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  7. Antiphase Boundaries in the Turbostratically Disordered Misfit Compound (BiSe)(1+δ)NbSe2.

    PubMed

    Mitchson, Gavin; Falmbigl, Matthias; Ditto, Jeffrey; Johnson, David C

    2015-11-02

    (BiSe)(1+δ)NbSe2 ferecrystals were synthesized in order to determine whether structural modulation in BiSe layers, characterized by periodic antiphase boundaries and Bi-Bi bonding, occurs. Specular X-ray diffraction revealed the formation of the desired compound with a c-axis lattice parameter of 1.21 nm from precursors with a range of initial compositions and initial periodicities. In-plane X-ray diffraction scans could be indexed as hk0 reflections of the constituents, with a rectangular basal BiSe lattice and a trigonal basal NbSe2 lattice. Electron micrographs showed extensive turbostratic disorder in the samples and the presence of periodic antiphase boundaries (approximately 1.5 nm periodicity) in BiSe layers oriented with the [110] direction parallel to the zone axis of the microscope. This indicates that the structural modulation in the BiSe layers is not due to coherency strain resulting from commensurate in-plane lattices. Electrical transport measurements indicate that holes are the dominant charge carrying species, that there is a weak decrease in resistivity as temperature decreases, and that minimal charge transfer occurs from the BiSe to NbSe2 layers. This is consistent with the lack of charge transfer from the BiX to the TX2 layers reported in misfit layer compounds where antiphase boundaries were observed. This suggests that electronic considerations, i.e., localization of electrons in the Bi-Bi pairs at the antiphase boundaries, play a dominant role in stabilizing the structural modulation.

  8. Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects.

    PubMed

    Chebakov, R; Kaplunov, J; Rogerson, G A

    2016-02-01

    The dynamic response of a homogeneous half-space, with a traction-free surface, is considered within the framework of non-local elasticity. The focus is on the dominant effect of the boundary layer on overall behaviour. A typical wavelength is assumed to considerably exceed the associated internal lengthscale. The leading-order long-wave approximation is shown to coincide formally with the 'local' problem for a half-space with a vertical inhomogeneity localized near the surface. Subsequent asymptotic analysis of the inhomogeneity results in an explicit correction to the classical boundary conditions on the surface. The order of the correction is greater than the order of the better-known correction to the governing differential equations. The refined boundary conditions enable us to evaluate the interior solution outside a narrow boundary layer localized near the surface. As an illustration, the effect of non-local elastic phenomena on the Rayleigh wave speed is investigated.

  9. Stability of hypersonic boundary-layer flows with chemistry

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.; Stuckert, Gregory K.; Haynes, Timothy S.

    1993-01-01

    The effects of nonequilibrium chemistry and three dimensionality on the stability characteristics of hypersonic flows are discussed. In two-dimensional (2-D) and axisymmetric flows, the inclusion of chemistry causes a shift of the second mode of Mack to lower frequencies. This is found to be due to the increase in size of the region of relative supersonic flow because of the lower speeds of sound in the relatively cooler boundary layers. Although this shift in frequency is present in both the equilibrium and nonequilibrium air results, the equilibrium approximation predicts modes which are not observed in the nonequilibrium calculations (for the flight conditions considered). These modes are superpositions of incoming and outgoing unstable disturbances which travel supersonically relative to the boundary-layer edge velocity. Such solutions are possible because of the finite shock stand-off distance. Their corresponding wall-normal profiles exhibit an oscillatory behavior in the inviscid region between the boundary-layer edge and the bow shock. For the examination of three-dimensional (3-D) effects, a rotating cone is used as a model of a swept wing. An increase of stagnation temperature is found to be only slightly stabilizing. The correlation of transition location (N = 9) with parameters describing the crossflow profile is discussed. Transition location does not correlate with the traditional crossflow Reynolds number. A new parameter that appears to correlate for boundary-layer flow was found. A verification with experiments on a yawed cone is provided.

  10. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Pavli, Albert J.; Smith, Tamara A.

    1987-01-01

    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15 percent of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120 percent higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like.

  11. Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Pavli, Albert J.; Smith, Tamara A.

    1987-01-01

    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15% of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120% higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like.

  12. Laminar film condensation along a vertical plate embedded in an anisotropic porous medium with oblique principal axes

    NASA Astrophysics Data System (ADS)

    Degan, Gérard; Sanya, Arthur; Akowanou, Christian

    2016-10-01

    This work analytically investigates the problem of steady film condensation along a vertical surface embedded in an anisotropic porous medium filled with a dry saturated vapor. The porous medium is anisotropic in permeability whose principal axes are oriented in a direction which is oblique to the gravity vector. On the basis of the generalized Darcy's law and within the boundary layer approximations, similar solutions have been obtained for the temperature and flow patterns in the condensate. Moreover, closed form solutions for the boundary layer thickness and heat transfer rate have been obtained in terms of the governing parameters of the problem.

  13. STAYLAM: A FORTRAN program for the suction transition analysis of a yawed wing laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Carter, J. E.

    1977-01-01

    A computer program called STAYLAM is presented for the computation of the compressible laminar boundary-layer flow over a yawed infinite wing including distributed suction. This program is restricted to the transonic speed range or less due to the approximate treatment of the compressibility effects. The prescribed suction distribution is permitted to change discontinuously along the chord measured perpendicular to the wing leading edge. Estimates of transition are made by considering leading edge contamination, cross flow instability, and instability of the Tollmien-Schlichting type. A program listing is given in addition to user instructions and a sample case.

  14. Amplified crossflow disturbances in the laminar boundary layer on swept wings with suction

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. R.

    1981-01-01

    Solution charts of the Orr-Sommerfeld equation for stationary crossflow disturbances are presented for 10 typical velocity profiles on a swept laminar flow control wing. The critical crossflow Reynolds number is shown to be a function of a boundary layer shape factor. Amplification rates for crossflow disturbances are shown to be proportional to the maximum crossflow velocity. A computer stability program called MARIA, employing the amplification rate data for the 10 crossflow velocity profiles, is constructed. This code is shown to adequately approximate more involved computer stability codes using less than two percent as much computer time while retaining the essential physical disturbance growth model.

  15. Enriched reproducing kernel particle method for fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam

    2018-06-01

    The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.

  16. Influence of collision on the flow through in-vitro rigid models of the vocal folds

    NASA Astrophysics Data System (ADS)

    Deverge, M.; Pelorson, X.; Vilain, C.; Lagrée, P.-Y.; Chentouf, F.; Willems, J.; Hirschberg, A.

    2003-12-01

    Measurements of pressure in oscillating rigid replicas of vocal folds are presented. The pressure upstream of the replica is used as input to various theoretical approximations to predict the pressure within the glottis. As the vocal folds collide the classical quasisteady boundary layer theory fails. It appears however that for physiologically reasonable shapes of the replicas, viscous effects are more important than the influence of the flow unsteadiness due to the wall movement. A simple model based on a quasisteady Bernoulli equation corrected for viscous effect, combined with a simple boundary layer separation model does globally predict the observed pressure behavior.

  17. Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1973-01-01

    The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.

  18. Turbulence stress measurements in a nonadiabatic hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Mikulla, V.; Horstman, C. C.

    1975-01-01

    Turbulent shear stress and direct turbulent total heat-flux measurements have been made across a nonadiabatic, zero pressure gradient, hypersonic boundary layer by using specially designed hot-wire probes free of strain-gauging and wire oscillation. Heat-flux measurements were in reasonably good agreement with values obtained by integrating the energy equation using measured profiles of velocity and temperature. The shear-stress values deduced from the measurements, by assuming zero correlation of velocity and pressure fluctuations, were lower than the values obtained by integrating the momentum equation. Statistical properties of the cross-correlations are similar to corresponding incompressible measurements at approximately the same momentum-thickness Reynolds number.

  19. Vertical ozone characteristics in urban boundary layer in Beijing.

    PubMed

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  20. A Low-Speed Experimental Investigation of the Effect of a Sandpaper Type of Roughness on Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E; Horton, Elmer A

    1958-01-01

    An investigation was made in the Langley low-turbulence pressure tunnel to determine the effect of size and location of a sandpaper type of roughness on the Reynolds number for transition. Transition was observed by means of a hot-wire anemometer located at various chordwise stations for each position of the roughness. These observations indicated that when the roughness is sufficiently submerged in the boundary layer to provide a substantially linear variation of boundary-layer velocity with distance from the surface up to the top of the roughness, turbulent "spots" begin to appear immediately behind the roughness when the Reynolds number based on the velocity at the top of the roughness height exceeds a value of approximately 600. At Reynolds numbers even slightly below the critical value (value for transition), the sandpaper type of roughness introduced no measurable disturbances into the laminar layer downstream of the roughness. The extent of the roughness area does not appear to have an important effect on the critical value of the roughness Reynolds number.

  1. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization 1. Direct contact between fresh and saltwater

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a basic study in generalized terms that originates from two needs: (1) to understand the major mechanisms involved in the mineralization of groundwater of the Great Bend Prairie aquifer of Kansas by saltwater originating from a deeper Permian bedrock formation, and (2) to develop simple, robust tools that can readily be used for local assessment and management activities in the salt-affected region. A simplified basic conceptual model is adopted, incorporating two horizontal layers of porous medium which come into contact at a specific location within the model domain. The top layer is saturated with freshwater, and the bottom layer is saturated with saltwater. The paper considers various stages of approximation which can be useful for simplified simulation of the build-up of the transition zone (TZ) between the freshwater and the saltwater. The hierarchy of approximate approaches leads to the development of the top specified boundary layer (TSBL) method, which is the major tool used in this study for initial characterization of the development of the TZ. It is shown that the thickness of the TZ is mainly determined by the characteristic dispersivity. The build-up of the TZ is completed after a time period equal to the time needed to advect a fluid particle along the whole extent of the TZ. Potential applications and the effects of natural recharge and pumpage on salinity transport in the domain are discussed and evaluated in the context of demonstrating the practicality of the TSBL approach.

  2. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    NASA Technical Reports Server (NTRS)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  3. Sudden stretching of a four layered composite plate

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    An approximate theory of laminated plates is developed by assuming that the extensioral and thickness mode of vibration are coupled. The mixed boundary value crack problem of a four layered composite plate is solved. Dynamic stress intensity factors for a crack subjected to suddenly applied stress are found to vary as a function of time and depend on the material properties of the laminate. Stress intensification in the region near the crack front can be reduced by having the shear modulus of the inner layers to be larger than that of the outer layers.

  4. Coupled electromechanical response of composite beams with embedded piezoelectric sensors and actuators

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Heyliger, P. R.

    1994-01-01

    Unified mechanics are developed with the capability to model both sensory and active composite laminates with embedded piezoelectric layers. A discrete-layer formulation enables analysis of both global and local electromechanical response. The mechanics include the contributions from elastic, piezoelectric, and dielectric components. The incorporation of electric potential into the state variables permits representation of general electromechanical boundary conditions. Approximate finite element solutions for the static and free-vibration analysis of beams are presented. Applications on composite beams demonstrate the capability to represent either sensory or active structures and to model the complicated stress-strain fields, the interactions between passive/active layers, interfacial phenomena between sensors and composite plies, and critical damage modes in the material. The capability to predict the dynamic characteristics under various electrical boundary conditions is also demonstrated.

  5. Effect of concentration boundary layers on passive solute flows in a system of two polymeric membranes positioned in vertical planes.

    PubMed

    Slezak, Andrzej; Jasik-Slezak, Jolanta; Dworecki, Kazimierz

    2003-01-01

    The results of studies of influence of concentration boundary layers on passive diffusive transport in a double-membrane osmo-diffusive cell, containing a series of two (Ml and M(r)) vertically positioned, flat, microporous and symmetric polymer membranes (Nephrophane and Cellulose IMP-1) are presented in this paper. The membranes separated three compartments (l, m, r) containing binary, heterogeneous and non-ionic solutions (aqueous solutions of glucose or ethanol) or ternary non-electrolyte solutions (glucose solutions in 0.75 mol.l-1 solution of ethanol or ethanol solutions in 0.1 mol.l-1 aqueous solution of glucose). Solution concentrations fulfilled the condition C(k)l > C(k)m > C(k)r. The intermembrane compartment (m) was an infinitesimal solution layer. The volume of the m compartment and the volumes of the external (l and r) compartments fulfilled the condition Vl = Vr approximately 170 Vm. The tests were performed for configurations A and B of a double-membrane osmo-diffusive cell. In configuration A, the solution was located behind the M(r) membrane, and water was placed behind the Ml membrane, while in configuration B this sequence was reversed. The results obtained during experiment were interpreted in the categories of convective instability, which increased the value of diffusive permeability coefficient of the system: concentration boundary layer/membrane/concentration boundary layer.

  6. Experimental plasma studies

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.

    1972-01-01

    The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.

  7. An experimental study of three-dimensional shock wave/boundary layer interactions generated by sharp fins

    NASA Technical Reports Server (NTRS)

    Lu, F. K.; Settles, G. S.; Bogdonoff, S. M.

    1983-01-01

    The interaction between a turbulent boundary layer and a shock wave generated by a sharp fin with leading edge sweepback was investigated. The incoming flow was at Mach 2.96 and at a unit Reynolds number of 63 x 10 to the 6th power 0.1 m. The approximate incoming boundary layer thickness was either 4 mm or 17 mm. The fins used were at 5 deg, 9 deg and 15 deg incidence and had leading edge sweepback from 0 deg to 65 deg. The tests consisted of surface kerosene lampblack streak visualization, surface pressure measurements, shock wave shape determination by shadowgraphs, and localized vapor screen visualization. The upstream influence lengths of the fin interactions were correlated using viscous and inviscid flow parameters. The parameters affecting the surface features close to the fin and way from the fin were also identified. Essentially, the surface features in the farfield were found to be conical.

  8. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  9. Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions

    NASA Astrophysics Data System (ADS)

    Monty, J. P.; Allen, J. J.; Lien, K.; Chong, M. S.

    2011-12-01

    A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of `superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements.

  10. Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.

  11. The effects of a uniform axial magnetic field on the global stability of the rotating-disk boundary-layer

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Thomas, Christian

    2006-11-01

    Following on from the earlier discovery by Lingwood (1995) that the rotating-disk boundary-layer is absolutely unstable, Jasmine & Gajjar (2005) have shown that the application of a uniform axial magnetic field can raise the critical Reynolds number for the onset of absolute instability. As with Lingwood's analysis, a parallel-flow' type of approximation is needed in order to derive this locally-based stability result. The approximation amounts to a freezing out' of the underlying radial variation of the mean flow. Numerical simulations have been conducted to investigate the behaviour of linearized disturbances in the genuine rotating disk boundary layer, where the radial dependence of the mean flow is fully accounted for. This extends the work of Davies & Carpenter (2003), who studied the more usual rotating-disk problem, in the absence of any magnetic field. The simulation results suggest that globally unstable behaviour can be promoted when a uniform axial magnetic field is applied. Impulsively excited disturbances were found to display an increasingly rapid growth at the radial position of the impulse, albeit without any selection of a dominant frequency, as would be more usual for an unstable global mode. This is very similar to the behaviour to that was observed in a recent investigation by Davies & Thomas (2005) of the effects of mass transfer, where suction was also found to promote global instability.

  12. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  13. Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan, M.

    2014-01-01

    Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.

  14. Solution of linear systems by a singular perturbation technique

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1976-01-01

    An approximate solution is obtained for a singularly perturbed system of initial valued, time invariant, linear differential equations with multiple boundary layers. Conditions are stated under which the approximate solution converges uniformly to the exact solution as the perturbation parameter tends to zero. The solution is obtained by the method of matched asymptotic expansions. Use of the results for obtaining approximate solutions of general linear systems is discussed. An example is considered to illustrate the method and it is shown that the formulas derived give a readily computed uniform approximation.

  15. Decay of the zincate concentration gradient at an alkaline zinc cathode after charging

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.; May, C. E.

    1979-01-01

    The transport of the zincate ion to the alkaline zinc cathode was studied by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The concentrations were calculated from polarization voltages. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. From the linear dependence of the half life on the thickness the boundary layer thickness was found to be about 0.010 cm when the cathode was at the bottom of the cell. No significant dependence of the boundary layer thickness on the viscosity of electrolyte was observed. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. When the cathode was at the top of the cell, the boundary layer thickness was found to be roughly 0.080 cm. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.

  16. Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Hou, Xuewei; Zhu, Bin; Kang, Hanqing; Gao, Jinhui

    2014-09-01

    The ozone (O3) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O3 data agree well with observed values. O3 budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O3 differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the northwestern Pacific Ocean, advective flux was found to drive the seasonal variation of O3 concentrations. The large latitudinal gradient in O3 with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O3 was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O3 export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.

  17. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  18. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  19. Computational analysis of semi-span model test techniques

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Chokani, Ndaona

    1996-01-01

    A computational investigation was conducted to support the development of a semi-span model test capability in the NASA LaRC's National Transonic Facility. This capability is required for the testing of high-lift systems at flight Reynolds numbers. A three-dimensional Navier-Stokes solver was used to compute the low-speed flow over both a full-span configuration and a semi-span configuration. The computational results were found to be in good agreement with the experimental data. The computational results indicate that the stand-off height has a strong influence on the flow over a semi-span model. The semi-span model adequately replicates the aerodynamic characteristics of the full-span configuration when a small stand-off height, approximately twice the tunnel empty sidewall boundary layer displacement thickness, is used. Several active sidewall boundary layer control techniques were examined including: upstream blowing, local jet blowing, and sidewall suction. Both upstream tangential blowing, and sidewall suction were found to minimize the separation of the sidewall boundary layer ahead of the semi-span model. The required mass flow rates are found to be practicable for testing in the NTF. For the configuration examined, the active sidewall boundary layer control techniques were found to be necessary only near the maximum lift conditions.

  20. Analysis of Ground Effects on Aerodynamic Characteristics of Aerofoils Using Boundary Layer Approximation

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuji; Kikuchi, Masanori; Hirano, Kimitaka

    A study of a new high-speed zero-emission transportation “Aerotrain” is being carried out in Tohoku University and the University of Miyazaki. Because the aerotrain utilizes the ground effect, research on the aerofoil section, which can harness the ground effect effectively, is important. The aerotrain moves along a U-shaped guideway, which has a ground and sidewalls, so it has many viscous interference elements. In an analysis of the ground effects on the aerodynamic characteristics of aerofoils, the boundary layers on the aerofoil surface must be considered. At first, velocity distributions on the surfaces of aerofoils in potential flows are computed using the vortex method, then the momentum integration equations of the boundary layer are solved with experimental formulas. This procedure has the following advantages: modifications of the aerofoil section are easy because it is not necessary to make complicated computational grids, boundary layer transition and separation can be predicted using empirical procedures. The aerodynamic characteristics of four types of aerofoil sections are investigated to clarify the relationship between aerofoil sections and ground effects. Computational results are compared with experimental results obtained using a towing wind tunnel to verify computational precisions. In addition, aerofoil characteristics at an actual cruise speed are analyzed.

  1. A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers

    NASA Technical Reports Server (NTRS)

    Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.

    1987-01-01

    A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.

  2. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.

    PubMed

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  3. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction

    PubMed Central

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-01-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors’ knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced. PMID:29104418

  4. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction

    NASA Astrophysics Data System (ADS)

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  5. Computer program for calculating laminar, transitional, and turbulent boundary layers for a compressible axisymmetric flow

    NASA Technical Reports Server (NTRS)

    Albers, J. A.; Gregg, J. L.

    1974-01-01

    A finite-difference program is described for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain the factors of arbitrary Reynolds number, free-stream Mach number, free-stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile.

  6. Low temperature simulation of subliming boundary layer flow in Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Chen, C. J.

    1976-01-01

    A low-temperature approximate simulation for the sublimation of a graphite heat shield under Jovian entry conditions is studied. A set of algebraic equations is derived to approximate the governing equation and boundary conditions, based on order-of-magnitude analysis. Characteristic quantities such as the wall temperature and the subliming velocity are predicted. Similarity parameters that are needed to simulate the most dominant phenomena of the Jovian entry flow are also given. An approximate simulation of the sublimation of the graphite heat shield is performed with an air-dry-ice model. The simulation with the air-dry-ice model may be carried out experimentally at a lower temperature of 3000 to 6000 K instead of the entry temperature of 14,000 K. The rate of graphite sublimation predicted by the present algebraic approximation agrees to the order of magnitude with extrapolated data. The limitations of the simulation method and its utility are discussed.

  7. Accounting For Compressibility In Viscous Flow In Pipes

    NASA Technical Reports Server (NTRS)

    Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.

    1991-01-01

    Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.

  8. Planetary Boundary Layer Patterns, Height Variability and their Controls over the Indian Subcontinent with respect to Monsoon

    NASA Astrophysics Data System (ADS)

    Sathyanadh, A.; Karipot, A.; Prabhakaran, T.

    2016-12-01

    Planetary boundary layer (PBL) height and its controlling factors undergo large variations at different spatio-temporal scales over land regions. In the present study, Modern Era Retrospective analysis for Research and Applications (MERRA) data products are used to investigate variations of PBL height and its controls in relation to different phases of Indian monsoon. MERRA PBL height validations carried out against those estimated from radiosonde and Global Positioning System Radio Occultation atmospheric profiles revealed fairly good agreement. Different PBL patterns are identified in terms of maximum height, its time of occurrence and growth rate, and they vary with respect to geographical locations, terrain characteristics and monsoon circulation. The pre-monsoon boundary layers are the deepest over the region, often exceeding 4 km and grow at a rate of approximately 400 m hr-1. Large nocturnal BL depths, possibly related to weakly convective residual layers, are another feature noted during dry conditions. Monsoon BLs are generally shallower, except where rainfall is scanty. The break-monsoon periods have slightly deeper BLs than the active monsoon phase. The controlling factors for the observed boundary layer behaviour are investigated using supplementary MERRA datasets. Evaporative fraction is found to have dominant control on the PBL height varying with seasons and regions. The characteristics and controls of wet and dry boundary layer regimes over inland and coastal locations are different. The fractional diffusion (ratio of non-local and total diffusion) coefficient analyses indicated that enhanced entrainment during monsoon contributes to reduction in PBLH unlike in the dry period. The relationship between controls and PBLH are better defined over inland than coastal regions. The wavelet cross spectral analysis revealed temporal variations in dominant contributions from the controlling factors at different periodicities during the course of the year.

  9. Possible effects of free convection on fire behavior - laminar and turbulent line and point sources of heat

    Treesearch

    S. Scesa; F. M. Sauer

    1954-01-01

    The transfer theory is applied to the problem of atmospheric diffusion of momentum and heat induced by line and point sources of heat on the surface of the earth. In order that the validity of the approximations of the boundary layer theory be realized, the thickness of the layer in which the temperatures and velocities differ appreciably from the values at...

  10. Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, W.; Austin, J. M.

    2013-10-01

    We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.

  11. Sensitivity of nocturnal boundary layer temperature to tropospheric aerosol surface radiative forcing under clear-sky conditions

    NASA Astrophysics Data System (ADS)

    Nair, Udaysankar S.; McNider, Richard; Patadia, Falguni; Christopher, Sundar A.; Fuller, Kirk

    2011-01-01

    Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilization. A 1-D version of the Regional Atmospheric Modeling System is used to examine the sensitivity of the nocturnal boundary layer temperature to the surface longwave radiative forcing (SLWRF) from urban aerosol loading and doubled atmospheric carbon dioxide concentrations. The analysis is conducted for typical midlatitude nocturnal boundary layer case days from the CASES-99 field experiment and is further extended to urban sites in Pune and New Delhi, India. For the cases studied, locally, the nocturnal SLWRF from urban atmospheric aerosols (2.7-47 W m-2) is comparable or exceeds that caused by doubled atmospheric carbon dioxide (3 W m-2), with the surface temperature response ranging from a compensation for daytime cooling to an increase in the nocturnal minimum temperature. The sensitivity of the NBL to radiative forcing is approximately 4 times higher compared to the daytime boundary layer. Nighttime warming or cooling may occur depending on the nature of diurnal variations in aerosol optical depth. Soil moisture also modulates the magnitude of SLWRF, decreasing from 3 to 1 W m-2 when soil saturation increases from 37% to 70%. These results show the importance of aerosols on the radiative balance of the climate system.

  12. The behavior of plasma with an arbitrary degree of degeneracy of electron gas in the conductive layer

    NASA Astrophysics Data System (ADS)

    Latyshev, A. V.; Gordeeva, N. M.

    2017-09-01

    We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.

  13. Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a western boundary current

    NASA Astrophysics Data System (ADS)

    Schaeffer, A.; Roughan, M.; Wood, J. E.

    2014-08-01

    Western boundary currents strongly influence the dynamics on the adjacent continental shelf and in particular the cross-shelf transport and uplift through the bottom boundary layer. Four years of moored in situ observations on the narrow southeastern Australian shelf (in water depths of between 65 and 140 m) were used to investigate bottom cross-shelf transport, both upstream (30°S) and downstream (34°S) of the separation zone of the East Australian Current (EAC). Bottom transport was estimated and assessed against Ekman theory, showing consistent results for a number of different formulations of the boundary layer thickness. Net bottom cross-shelf transport was onshore at all locations. Ekman theory indicates that up to 64% of the transport variability is driven by the along-shelf bottom stress. Onshore transport in the bottom boundary layer was more intense and frequent upstream than downstream, occurring 64% of the time at 30°S. Wind-driven surface Ekman transport estimates did not balance the bottom cross-shelf flow. At both locations, strong variability was found in bottom water transport at periods of approximately 90-100 days. This corresponds with periodicity in EAC fluctuations and eddy shedding as evidenced from altimeter observations, highlighting the EAC as a driver of variability in the continental shelf waters. Ocean glider and HF radar observations were used to identify the bio-physical response to an EAC encroachment event, resulting in a strong onshore bottom flow, the uplift of cold slope water, and elevated coastal chlorophyll concentrations.

  14. A method for calculating aerodynamic heating on sounding rocket tangent ogive noses.

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1973-01-01

    A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN IV for an IBM 360/91 computer.

  15. A method for calculating aerodynamic heating on sounding rocket tangent ogive noses

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1972-01-01

    A method is presented for calculating the aerodynamic heating and shear stresses at the wall for tangent ogive noses that are slender enough to maintain an attached nose shock through that portion of flight during which heat transfer from the boundary layer to the wall is significant. The lower entropy of the attached nose shock combined with the inclusion of the streamwise pressure gradient yields a reasonable estimate of the actual flow conditions. Both laminar and turbulent boundary layers are examined and an approximation of the effects of (up to) moderate angles-of-attack is included in the analysis. The analytical method has been programmed in FORTRAN 4 for an IBM 360/91 computer.

  16. Experimental validation of a quasi-steady theory for the flow through the glottis

    NASA Astrophysics Data System (ADS)

    Vilain, C. E.; Pelorson, X.; Fraysse, C.; Deverge, M.; Hirschberg, A.; Willems, J.

    2004-09-01

    In this paper a theoretical description of the flow through the glottis based on a quasi-steady boundary layer theory is presented. The Thwaites method is used to solve the von Kármán equations within the boundary layers. In practice this makes the theory much easier to use compared to Pohlhausen's polynomial approximations. This theoretical description is evaluated on the basis of systematic comparison with experimental data obtained under steady flow or unsteady (oscillating) flow without and with moving vocal folds. Results tend to show that the theory reasonably explains the measured data except when unsteady or viscous terms become predominant. This happens particularly during the collision of the vocal folds.

  17. A law of the wall for turbulent boundary layers with suction: Stevenson's formula revisited

    NASA Astrophysics Data System (ADS)

    Vigdorovich, Igor

    2016-08-01

    The turbulent velocity field in the viscous sublayer of the boundary layer with suction to a first approximation is homogeneous in any direction parallel to the wall and is determined by only three constant quantities — the wall shear stress, the suction velocity, and the fluid viscosity. This means that there exists a finite algebraic relation between the turbulent shear stress and the longitudinal mean-velocity gradient, using which as a closure condition for the equations of motion, we establish an exact asymptotic behavior of the velocity profile at the outer edge of the viscous sublayer. The obtained relationship provides a generalization of the logarithmic law to the case of wall suction.

  18. The measurement of shear stress and total heat flux in a nonadiabatic turbulent hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Mikulla, V.; Horstman, C. C.

    1975-01-01

    Turbulent shear stress and direct turbulent total heat-flux measurements have been made across a nonadiabatic, zero pressure gradient, hypersonic boundary layer by using specially designed hot-wire probes free of strain-gauging and wire oscillation. Heat-flux measurements were in reasonably good agreement with values obtained by integrating the energy equation using measured profiles of velocity and temperature. The shear-stress values deduced from the measurements, by assuming zero correlation of velocity and pressure fluctuations, were lower than the values obtained by integrating the momentum equation. Statistical properties of the cross-correlations are similar to corresponding incompressible measurements at approximately the same momentum-thickness Reynolds number.

  19. On the instability of hypersonic flow past a flat plate

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Cowley, Stephen; Hall, Philip

    1990-01-01

    The instability of hypersonic boundary-layer flows over flat plates is considered. The viscosity of the fluid is taken to be governed by Sutherland's law, which gives a much more accurate representation of the temperature dependence of fluid viscosity at hypersonic speeds than Chapman's approximate linear law; although at lower speeds the temperature variation of the mean state is less pronounced so that the Chapman law can be used with some confidence. Attention is focussed on the so-called (vorticity) mode of instability of the viscous hypersonic boundary layer. This is thought to be the fastest growing inviscid disturbance at hypersonic speeds; it is also believed to have an asymptotically larger growth rate than any viscous or centrifugal instability. As a starting point the instability of the hypersonic boundary layer which exists far downstream from the leading edge of the plate is investigated. In this regime the shock that is attached to the leading edge of the plate plays no role, so that the basic boundary layer is non-interactive. It is shown that the vorticity mode of instability of this flow operates on a significantly different lengthscale than that obtained if a Chapman viscosity law is assumed. In particular, it is found that the growth rate predicted by a linear viscosity law overestimates the size of the growth rate by O(M(exp 2). Next, the development of the vorticity mode as the wavenumber decreases is described, and it is shown that acoustic modes emerge when the wavenumber has decreased from it's O(1) initial value to O(M (exp -3/2). Finally, the inviscid instability of the boundary layer near the leading edge in the interaction zone is discussed and particular attention is focussed on the strong interaction region which occurs sufficiently close to the leading edge. It is found that the vorticity mode in this regime is again unstable, and that it is concentrated in the transition layer at the edge of the boundary layer where the temperature adjusts from its large, O(M(exp 2), value in the viscous boundary layer, to its O(1) free stream value. The existence of the shock indirectly, but significantly, influences the instability problem by modifying the basic flow structure in this layer.

  20. NCAR Integrated Sounding System Observations during the SOAS / SAS Field Campaign

    NASA Astrophysics Data System (ADS)

    Brown, W. O.; Moore, J.

    2013-12-01

    The National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) deployed an Integrated Sounding Systems (ISS) for the SOAS (Southern Oxidant and Aerosol Study) field campaign in Alabama in the summer of 2013. The ISS was split between two sites: a former NWS site approximately 1km from the main SOAS chemistry ground site near Centerville AL, and about 20km to the south at the Alabama fish hatchery site approximately 1km from the flux tower site near Marion, AL. At the former-NWS site we launched 106 radiosonde soundings, operated a 915 MHz boundary layer radar wind profiler with RASS (Radio Acoustic Sounding System), ceilometer and various surface meteorological sensors. At the AABC site we operated a Lesosphere WIndcube 200S Doppler lidar and a Metek mini-Doppler sodar. Other NCAR facilities at the AABC site included a 45-m instrumented flux tower. This poster will present a sampling observations made by these instruments, including examples of boundary layer evolution and structure, and summarize the performance of the instrumentation.

  1. Asymptotic theory of circular polarization memory.

    PubMed

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  2. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of Mexico, with a special focus on the relationship among measured and modeled energy fluxes and other oceanographic and atmospheric conditions.

  3. Estimating amplitude ratios in boundary layer stability theory: a comparison between two approaches

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rama; Narasimha, R.

    2001-07-01

    We first demonstrate that, if the contributions of higher-order mean flow are ignored, the parabolized stability equations (Bertolotti et al. 1992) and the ‘full’ non-parallel equation of Govindarajan & Narasimha (1995, hereafter GN95) are both equivalent to order R[minus sign]1 in the local Reynolds number R to Gaster's (1974) equation for the stability of spatially developing boundary layers. It is therefore of some concern that a detailed comparison between Gaster (1974) and GN95 reveals a small difference in the computed amplitude ratios. Although this difference is not significant in practical terms in Blasius flow, it is traced here to the approximation, in Gaster's method, of neglecting the change in eigenfunction shape due to flow non-parallelism. This approximation is not justified in the critical and the wall layers, where the neglected term is respectively O(R[minus sign]2/3) and O(R[minus sign]1) compared to the largest term. The excellent agreement of GN95 with exact numerical simulations, on the other hand, suggests that the effect of change in eigenfunction is accurately taken into account in that paper.

  4. Time-evolution of uniform momentum zones in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Laskari, Angeliki; Hearst, R. Jason; de Kat, Roeland; Ganapathisubramani, Bharathram

    2016-11-01

    Time-resolved planar particle image velocimetry (PIV) is used to analyse the organisation and evolution of uniform momentum zones (UMZs) in a turbulent boundary layer. Experiments were performed in a recirculating water tunnel on a streamwise-wall-normal plane extending approximately 0 . 5 δ × 1 . 8 δ , in x and y, respectively. In total 400,000 images were captured and for each of the resulting velocity fields, local peaks in the probability density distribution of the streamwise velocity were detected, indicating the instantaneous presence of UMZs throughout the boundary layer. The main characteristics of these zones are outlined and more specifically their velocity range and wall-normal extent. The variation of these characteristics with wall normal distance and total number of zones are also discussed. Exploiting the time information available, time-scales of zones that have a substantial coherence in time are analysed and results show that the zones' lifetime is dependent on both their momentum deficit level and the total number of zones present. Conditional averaging of the flow statistics seems to further indicate that a large number of zones is the result of a wall-dominant mechanism, while the opposite implies an outer-layer dominance.

  5. The evaporatively driven cloud-top mixing layer

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2010-11-01

    Turbulent mixing caused by the local evaporative cooling at the top cloud-boundary of stratocumuli will be discussed. This research is motivated by the lack of a complete understanding of several phenomena in that important region, which translates into an unacceptable variability of order one in current models, including those employed in climate research. The cloud-top mixing layer is a simplified surrogate to investigate, locally, particular aspects of the fluid dynamics at the boundary between the stratocumulus clouds and the upper cloud-free air. In this work, direct numerical simulations have been used to study latent heat effects. The problem is the following: When the cloud mixes with the upper cloud-free layer, relatively warm and dry, evaporation tends to cool the mixture and, if strong enough, the buoyancy reversal instability develops. This instability leads to a turbulent convection layer growing next to the upper boundary of the cloud, which is, in several aspects, similar to free convection below a cold horizontal surface. In particular, results show an approximately self-preserving behavior that is characterized by the molecular buoyancy flux at the inversion base, fact that helps to explain the difficulties found when doing large-eddy simulations of this problem using classical subgrid closures.

  6. Numerical Study of Nonlinear Structures of Locally Excited Marangoni Convection in the Long-Wave Approximation

    NASA Astrophysics Data System (ADS)

    Wertgeim, Igor I.

    2018-02-01

    We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.

  7. An analytic study of nonsteady two-phase laminar boundary layer around an airfoil

    NASA Technical Reports Server (NTRS)

    Hsu, Yu-Kao

    1989-01-01

    Recently, NASA, FAA, and other organizations have focused their attention upon the possible effects of rain on airfoil performance. Rhode carried out early experiments and concluded that the rain impacting the aircraft increased the drag. Bergrum made numerical calculation for the rain effects on airfoils. Luers and Haines did an analytic investigation and found that heavy rain induces severe aerodynamic penalties including both a momentum penalty due to the impact of the rain and a drag and lift penalty due to rain roughening of the airfoil and fuselage. More recently, Hansman and Barsotti performed experiments and declared that performance degradation of an airfoil in heavy rain is due to the effective roughening of the surface by the water layer. Hansman and Craig did further experimental research at low Reynolds number. E. Dunham made a critical review for the potential influence of rain on airfoil performance. Dunham et al. carried out experiments for the transport type airfoil and concluded that there is a reduction of maximum lift capability with increase in drag. There is a scarcity of published literature in analytic research of two-phase boundary layer around an airfoil. Analytic research is being improved. The following assumptions are made: the fluid flow is non-steady, viscous, and incompressible; the airfoil is represented by a two-dimensional flat plate; and there is only a laminar boundary layer throughout the flow region. The boundary layer approximation is solved and discussed.

  8. Optimal control of energy extraction in LES of large wind farms

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay; Munters, Wim

    2014-11-01

    We investigate the use of optimal control combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large ``infinite'' wind farms and in finite farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with an actuator-disk representation of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in the actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. In a first infinite wind-farm case, we find that farm power is increases by approximately 16% over one hour of operation. This comes at the cost of a deceleration of the outer layer of the boundary layer. A detailed analysis of energy balances is presented, and a comparison is made between infinite and finite farm cases, for which boundary layer entrainment plays an import role. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Govern.

  9. Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Djenidi, Lyazid; Antonia, Robert A.; Talluru, Murali K.; Abe, Hiroyuki

    2017-06-01

    Hot-wire measurements are carried out in turbulent boundary layers over smooth and rough walls in order the assess the behavior of the skewness (S ) and flatness (F ) factors of the longitudinal velocity derivative as y , the distance from the wall, increases. The measurements are complemented by direct numerical simulations of a smooth wall turbulent channel flow. It is observed that, as the distance to the wall increases, S and F vary significantly before approaching a constant in the outer layer of the boundary layer. Further, S and F exhibit a nontrivial dependence on the Taylor microscale Reynolds number (Reλ). For example, in the region below about 0.2 δ (δ is the boundary layer thickness) where Reλ varies significantly, S and F strongly vary with Reλ and can be multivalued at a given Reλ. In the outer region, between 0.3 δ and 0.6 δ , S , F , and Reλ remain approximately constant. The channel flow direct numerical simulation data for S and F exhibit a similar behavior. These results point to the ambiguity that can arise when assessing the Reλ dependence of S and F in wall shear flows. In particular, the multivaluedness of S and F can lead to erroneous conclusions if y /δ is known only poorly, as is the case for the atmospheric shear layer (ASL). If the laboratory turbulent boundary layer is considered an adequate surrogate to the neutral ASL, then the behavior of S and F in the ASL is expected to be similar to that reported here.

  10. Interaction of viscous and inviscid instability modes in separation-bubble transition

    NASA Astrophysics Data System (ADS)

    Brinkerhoff, Joshua R.; Yaras, Metin I.

    2011-12-01

    This paper describes numerical simulations that are used to examine the interaction of viscous and inviscid instability modes in laminar-to-turbulent transition in a separation bubble. The results of a direct numerical simulation are presented in which separation of a laminar boundary-layer occurs in the presence of an adverse streamwise pressure gradient. The simulation is performed at low freestream-turbulence levels and at a flow Reynolds number and pressure distribution approximating those typically encountered on the suction side of low-pressure turbine blades in a gas-turbine engine. The simulation results reveal the development of a viscous instability upstream of the point of separation which produces streamwise-oriented vortices in the attached laminar boundary layer. These vortices remain embedded in the flow downstream of separation and are carried into the separated shear layer, where they are amplified by the local adverse pressure-gradient and contribute to the formation of coherent hairpin-like vortices. A strong interaction is observed between these vortices and the inviscid instability that typically dominates the shear layer in the separated zone. The interaction is noted to determine the spanwise extent of the vortical flow structures that periodically shed from the downstream end of the separated shear layer. The structure of the shed vortical flow structures is examined and compared with the coherent structures typically observed within turbulent boundary layers.

  11. The Influence of Low Wall Temperature on Boundary-Layer Transition and Local Heat Transfer on 2-Inch-Diameter Hemispheres at a Mach Number of 4.95 and a Reynolds Number per Foot of 73.2 x 10(exp 6)

    NASA Technical Reports Server (NTRS)

    Cooper, Morton; Mayo, Edward E.; Julius, Jerome D.

    1960-01-01

    Measurements of the location of boundary-layer transition and the local heat transfer have been made on 2-inch-diameter hemispheres in the Langley gas dynamics laboratory at a Mach number of 4.95, a Reynolds number per foot of 73.2 x 10(exp 6), and a stagnation temperature of approximately 400 F. The transient-heating thin-skin calorimeter technique was used, and the initial values of the wall-to-stream stagnation- temperature ratios were 0.16 (cold-model tests) and 0.65 (hot-model test). During two of the four cold tests, the boundary-layer flow changed from turbulent to laminar over large regions of the hemisphere as the model heated. On the basis of a detailed consideration of the magnitude of roughness possibly present during these two cold tests, it appears that this destabilizing effect of low wall temperatures (cooling) was not caused by roughness as a dominant influence. This idea of a decrease in boundary-layer stability with cooling has been previously suggested. (See, for example, NASA Memorandum 10-8-58E.) For the laminar data obtained during the early part of the hot test, the correlation of the local-heating data with laminar theory was excellent.

  12. Examining Dynamic Stall for an Oscillating NACA 4412 Hydrofoil

    NASA Astrophysics Data System (ADS)

    McVay, Eric; Lang, Amy; Gamble, Lawren; Bradshaw, Michael

    2013-11-01

    Dynamic stall is unsteady separation that occurs when a hydrofoil pitches through the static stall angle while simultaneously experiencing a rapid change in angle of attack. The NACA 4412 hydrofoil was selected for this research because it has strong trailing edge turbulent boundary layer separation characteristics. General dynamic stall angle of attack for approximately symmetric airfoils has been recorded to occur at 24 degrees, with separation beginning at about 16 degrees. It is predicted that the boundary layer will stay attached at a higher angle of attack because of the cambered geometry of the hydrofoil. It is also hypothesized that the boundary layer separation occurs closer to the trailing edge and that the dynamic stall angle of attack occurs somewhere between 24 and 28 degrees for the oscillating NACA 4412 hydrofoil. This research was conducted in a water tunnel facility using Time Resolved Digital Particle Image Velocimetry (TR-DPIV). The hydrofoil was pitched up from 0 to 30 degrees at Reynolds numbers of 60,000, 80,000 and 100,000. Flow characteristics, dynamic stall angles of attack, and points of boundary layer separation were compared at each velocity with both tripped and un-tripped surfaces. Follow-on research will be conducted using flow control techniques from sharks and dolphins to examine the potential benefits of these natural designs for separation control. Support for this research by NSF REU Grant #1062611 and CBET Grant #0932352 is gratefully acknowledged.

  13. Characterization of the Boundary Layer on Full-Scale Bluefin Tuna

    NASA Astrophysics Data System (ADS)

    Amaral, Brian; Cipolla, Kimberly; Henoch, Charles

    2014-11-01

    The physics that enable tuna to cross large expanses of ocean while feeding and avoiding predators is not presently understood, and could involve complex control of turbulent boundary layer transition and drag reduction. Typical swimming speeds of Bluefin tuna are 1-2 m/s, but can be higher during strong accelerations. The goal of this work is to experimentally determine the approximate lateral location at which transition to turbulence occurs on the tuna for various speeds. The question is whether laminar flow or an advanced propulsion mechanism (or both) allows them to swim at high speeds. Uncertainties include the surface roughness of the skin, local favorable and adverse pressure gradients, and discontinuities such as the open mouth or juncture at the fins. Historically, much of the fluid mechanics work in the area of fish locomotion has focused on vortex shedding issues rather than the boundary layer. Here, the focus is obtaining information on the boundary layer characteristics of a rigid tuna model. A full scale model of a Pacific Bluefin tuna was fabricated using a mold made from an actual deceased tuna, preserving the surface features and details of the appendages. The model was instrumented with 32 wall pressure sensors and experiments performed in a tow tank. Results from flow visualization, drag and wall pressure measurements over a range of speeds and varying angles of attack will be presented.

  14. An Immersed-Boundary Method for Fluid-Structure Interaction in the Human Larynx

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steven

    2006-11-01

    We describe a novel and accurate computational methodology for modeling the airflow and vocal fold dynamics in human larynx. The model is useful in helping us gain deeper insight into the complicated bio-physics of phonation, and may have potential clinical application in design and placement of synthetic implant in vocal fold surgery. The numerical solution of the airflow employs a previously developed immersed-boundary solver. However, in order to incorporate the vocal fold into the model, we have developed a new immersed-boundary method that can simulate the dynamics of the multi-layered, viscoelastic solids. In this method, a finite-difference scheme is used to approximate the derivatives and ghost cells are defined near the boundary. To impose the traction boundary condition, a third-order polynomial is obtained using the weighted least squares fitting to approximate the function locally. Like its analogue for the flow solver, this immersed-boundary method for the solids has the advantage of simple grid generation, and may be easily implemented on parallel computers. In the talk, we will present the simulation results on both the specified vocal fold motion and the flow-induced vocal fold vibration. Supported by NIDCD Grant R01 DC007125-01A1.

  15. Effects of local and global mechanical distortions to hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Flaherty, William P.

    The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.

  16. Mean turbulence statistics in boundary layers over high-porosity foams

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christoph; Luhar, Mitul

    2018-04-01

    This paper reports turbulent boundary layer measurements made over open-cell reticulated foams with varying pore size and thickness, but constant porosity ($\\epsilon \\approx 0.97$). The foams were flush-mounted into a cutout on a flat plate. A Laser Doppler Velocimeter (LDV) was used to measure mean streamwise velocity and turbulence intensity immediately upstream of the porous section, and at multiple measurement stations along the porous substrate. The friction Reynolds number upstream of the porous section was $Re_\\tau \\approx 1690$. For all but the thickest foam tested, the internal boundary layer was fully developed by $<10 \\delta$ downstream from the porous transition, where $\\delta$ is the boundary layer thickness. Fully developed mean velocity profiles showed the presence of a substantial slip velocity at the porous interface ($>30\\%$ of the free stream velocity) and a mean velocity deficit relative to the canonical smooth-wall profile further from the wall. While the magnitude of the mean velocity deficit increased with average pore size, the slip velocity remained approximately constant. Fits to the mean velocity profile suggest that the logarithmic region is shifted relative to a smooth wall, and that this shift increases with pore size until it becomes comparable to substrate thickness $h$. For all foams, the turbulence intensity was found to be elevated further into the boundary layer to $y/ \\delta \\approx 0.2$. An outer peak in intensity was also evident for the largest pore sizes. Velocity spectra indicate that this outer peak is associated with large-scale structures resembling Kelvin-Helmholtz vortices that have streamwise length scale $2\\delta-4\\delta$. Skewness profiles suggest that these large-scale structures may have an amplitude-modulating effect on the interfacial turbulence.

  17. On the possibility of control restoration in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.

  18. Interaction of an Artificially Thickened Boundary Layer with a Vertically Mounted Pitching Airfoil

    NASA Astrophysics Data System (ADS)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2011-11-01

    Wind energy represents a large portion of the growing market in alternative energy technologies and the current landscape has been dominated by the more prevalent horizontal axis wind turbine. However, there are several advantages to the vertical axis wind turbine (VAWT) or Darrieus type design and yet there is much to be understood about how the atmospheric boundary layer (ABL) affects their performance. In this study the ABL was simulated in a wind tunnel through the use of elliptical shaped vortex generators, a castellated wall, and floor roughness elements as described in the method of Counihan (1967) and then verified its validity by hot wire measurement of the mean velocity profile as well as the turbulence intensity. The motion of an blade element around a vertical axis is approximated through the use of a pitching airfoil. The wake of the airfoil is investigated through hot wire anemometry in both uniform flow and in the simulated boundary layer both at Re = 1 . 37 ×105 based on the chord of the airfoil. Sponsored by Hopewell Wind Power (Hong Kong) Limited.

  19. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-01-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  20. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Astrophysics Data System (ADS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-02-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  1. Optimal Growth in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  2. Convection of Plasmaspheric Plasma into the Outer Magnetosphere and Boundary Layer Region: Initial Results

    NASA Technical Reports Server (NTRS)

    Ober, Daniel M.; Horwitz, J. L.

    1998-01-01

    We present initial results on the modeling of the circulation of plasmaspheric-origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X= -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes.

  3. Supersonic flow visualization of a nacelle in close proximity to a simulated wing

    NASA Technical Reports Server (NTRS)

    Biber, Kasim; Ellis, David R.

    1993-01-01

    A flow visualization study was made in the 9 x 9 inch supersonic wind tunnel at Wichita State University to examine shock and boundary layer flow interaction for a nacelle in close proximity to the lower surface of a simulated wing. The test matrix included variations of angle of attack from -2 degrees to +4 degrees, nacelle-wing gap from 0.5 to 3-nacelle inlet diameter (0.12 inch), and Reynolds number based on nacelle length (1.164 inch) from 1.16 x 10(exp 6) to 1.45 x 10(exp 6) at a nominal Mach number of 2. Schlieren pictures of wing and nacelle flowfield were recorded by a video camera during each tunnel run. Results show that the nacelle inlet shock wave remains attached to the inlet lip and its impingement does not significantly affect the wing boundary layer. At the nacelle trailing edge location, the wing boundary layer thickness is approximately one nacelle inlet diameter at alpha = 0 degrees and it decreases with increase of angle of attack.

  4. Model of skin friction enhancement in undulatory swimming

    NASA Astrophysics Data System (ADS)

    Ehrenstein, Uwe; Eloy, Christophe

    2012-11-01

    To estimate the energetic cost of undulatory swimming, it is crucial to evaluate the drag forces originating from skin friction. This topic has been controversial for decades, some claiming that animals use ingenious mechanisms to reduce the drag and others hypothesizing that the undulatory motion induces a drag increase because of the compression of the boundary layers. In this paper, we examine this latter hypothesis, known as the ``Bone-Lighthill boundary-layer thinning hypothesis''. Considering a plate of section s moving perpendicular to itself at velocity U⊥ and applying the boundary-layer approximation for the incoming flow, the drag force per unit surface is shown to scale as √{U⊥ / s }. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 to 100%, depending on the geometry and the motion. M.J. Lighthill, Proc. R. Soc. Lond. B 179, 125 (1971).

  5. The First in situ Observation of Kelvin-Helmholtz Waves at High-Latitude Magnetopause during Strongly Dawnward Interplanetary Magnetic Field Conditions

    NASA Technical Reports Server (NTRS)

    Hwang, K.-J.; Goldstein, M. L.; Kuznetsova, M. M.; Wang, Y.; Vinas, A. F.; Sibeck, D. G.

    2012-01-01

    We report the first in situ observation of high-latitude magnetopause (near the northern duskward cusp) Kelvin-Helmholtz waves (KHW) by Cluster on January 12, 2003, under strongly dawnward interplanetary magnetic field (IMF) conditions. The fluctuations unstable to Kelvin-Helmholtz instability (KHI) are found to propagate mostly tailward, i.e., along the direction almost 90 deg. to both the magnetosheath and geomagnetic fields, which lowers the threshold of the KHI. The magnetic configuration across the boundary layer near the northern duskward cusp region during dawnward IMF is similar to that in the low-latitude boundary layer under northward IMF, in that (1) both magnetosheath and magnetospheric fields across the local boundary layer constitute the lowest magnetic shear and (2) the tailward propagation of the KHW is perpendicular to both fields. Approximately 3-hour-long periods of the KHW during dawnward IMF are followed by the rapid expansion of the dayside magnetosphere associated with the passage of an IMF discontinuity that characterizes an abrupt change in IMF cone angle, Phi = acos (B(sub x) / absolute value of Beta), from approx. 90 to approx. 10. Cluster, which was on its outbound trajectory, continued observing the boundary waves at the northern evening-side magnetopause during sunward IMF conditions following the passage of the IMF discontinuity. By comparing the signatures of boundary fluctuations before and after the IMF discontinuity, we report that the frequencies of the most unstable KH modes increased after the discontinuity passed. This result demonstrates that differences in IMF orientations (especially in f) are associated with the properties of KHW at the high-latitude magnetopause due to variations in thickness of the boundary layer, and/or width of the KH-unstable band on the surface of the dayside magnetopause.

  6. A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions

    NASA Astrophysics Data System (ADS)

    Parand, Kourosh; Mahdi Moayeri, Mohammad; Latifi, Sobhan; Delkhosh, Mehdi

    2017-07-01

    In this paper, a spectral method based on the four kinds of rational Chebyshev functions is proposed to approximate the solution of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet. First, by using the quasilinearization method (QLM), the model which is a nonlinear ordinary differential equation is converted to a sequence of linear ordinary differential equations (ODEs). By applying the proposed method on the ODEs in each iteration, the equations are converted to a system of linear algebraic equations. The results indicate the high accuracy and convergence of our method. Moreover, the effects of the Eyring-Powell fluid material parameters are discussed.

  7. The numerical calculation of laminar boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.; Steger, J. L.

    1974-01-01

    Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.

  8. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  9. Assessment of Turbulent CFD Against STS-128 Hypersonic Flight Data

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.; Hyatt, Andrew J.

    2010-01-01

    Turbulent CFD simulations are compared against surface temperature measurements of the space shuttle orbiter windward tiles at reentry flight conditions. Algebraic turbulence models are used within both the LAURA and DPLR CFD codes. The flight data are from temperature measurements obtained by seven thermocouples during the STS-128 mission (September 2009). The flight data indicate boundary layer transition onset over the Mach number range 13.5{15.5, depending upon the location on the vehicle. But the boundary layer flow appeared to be transitional down through Mach 12, based upon the flight data and CFD trends. At Mach 9 the simulations match the flight data on average within 20 F/11 C, where typical surface temperatures were approximately 1600 F/870 C.

  10. Standard deviation of vertical two-point longitudinal velocity differences in the atmospheric boundary layer.

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1971-01-01

    Statistical estimates of wind shear in the planetary boundary layer are important in the design of V/STOL aircraft, and for the design of the Space Shuttle. The data analyzed in this study consist of eleven sets of longitudinal turbulent velocity fluctuation time histories digitized at 0.2 sec intervals with approximately 18,000 data points per time history. The longitudinal velocity fluctuations were calculated with horizontal wind and direction data collected at the 18-, 30-, 60-, 90-, 120-, and 150-m levels. The data obtained confirm the result that Eulerian time spectra transformed to wave-number spectra with Taylor's frozen eddy hypothesis possess inertial-like behavior at wave-numbers well out of the inertial subrange.

  11. Fluid signatures of rotational discontinuities at Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.

    1983-01-01

    Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.

  12. An analysis for high Reynolds number inviscid/viscid interactions in cascades

    NASA Technical Reports Server (NTRS)

    Barnett, Mark; Verdon, Joseph M.; Ayer, Timothy C.

    1993-01-01

    An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena such as viscous-layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction in turbomachinery blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis is described. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid region is assumed to be potential, and that in the inner or viscous-layer region is governed by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares, finite-difference approximation, the viscous-layer solution using an inverse, finite-difference, space-marching method which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer separation and other strong-interaction phenomena. Results are presented for three cascades, with a range of inlet flow conditions considered for one of them, including conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions and experimental data are also given.

  13. Approximate method for calculating convective heat flux on the surface of bodies of simple geometric shapes

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.; Ryzhkov, S. V.

    2017-02-01

    The paper formulated engineering and physical mathematical model for aerothermodynamics hypersonic flight vehicle (HFV) in laminar and turbulent boundary layers (model designed for an approximate estimate of the convective heat flow in the range of speeds M = 6-28, and height H = 20-80 km). 2D versions of calculations of convective heat flows for bodies of simple geometric forms (individual elements of the design HFV) are presented.

  14. The terminal area simulation system. Volume 1: Theoretical formulation

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.

    1987-01-01

    A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.

  15. Magnetic field reversals, polar wander, and core-mantle coupling.

    PubMed

    Courtillot, V; Besse, J

    1987-09-04

    True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.

  16. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  17. Thermodynamic and Turbulence Characteristics of the Southern Great Plains Nocturnal Boundary Layer Under Differing Turbulent Regimes

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.

    2015-12-01

    The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative flux divergence also contributes to this increase in stability.

  18. Boundary layer turbulence in transitional and developed states

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Wallace, James M.; Wu, Xiaohua; Moin, Parviz

    2012-03-01

    Using the recent direct numerical simulations by Wu and Moin ["Transitional and turbulent boundary layer with heat transfer," Phys. Fluids 22, 85 (2010)] of a flat-plate boundary layer with a passively heated wall, statistical properties of the turbulence in transition at Reθ ≈ 300, from individual turbulent spots, and at Reθ ≈ 500, where the spots merge (distributions of the mean velocity, Reynolds stresses, kinetic energy production, and dissipation rates, enstrophy and its components) have been compared to these statistical properties for the developed boundary layer turbulence at Reθ = 1840. When the distributions in the transitional regions are conditionally averaged so as to exclude locations and times when the flow is not turbulent, they closely resemble the distributions in the developed turbulent state at the higher Reynolds number, especially in the buffer layer. Skin friction coefficients, determined in this conditional manner at the two Reynolds numbers in the transitional flow are, of course, much larger than when their values are obtained by including both turbulent and non-turbulent information there, and the conditional averaged values are consistent with the 1/7th power law approximation. An octant analysis based on the combinations of signs of the velocity and temperature fluctuations, u, v, and θ shows that the momentum and heat fluxes are predominantly of the mean gradient type in both the transitional and developed regions. The fluxes appear to be closely associated with vortices that transport momentum and heat toward and away from the wall in both regions of the flow. The results suggest that there may be little fundamental difference between the nonlinear processes involved in the formation of turbulent spots that appear in transition and those that sustain the turbulence when it is developed. They also support the view that the transport processes and the vortical structures that drive them in developed and transitional boundary layer turbulence are, in many dynamically important respects, similar.

  19. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ exhibits a prominent spatiotemporal behaviour. The residence time of the CVP is estimated as the jet duration time, while the maximum extent of the affected flow in the three coordinate directions (x, y, and z) is approximately 32D, 8.5D, and 10D, respectively. An extremely high level of turbulent kinetic energy production is shown in the jet shear-layer, front vortex ring, and CVP, of which the contribution of the streamwise Reynolds normal stress is dominant. Finally, a conceptual model of the interaction between the PSJ and the TBL is proposed.

  20. A variable vertical resolution weather model with an explicitly resolved planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1981-01-01

    A version of the fourth order weather model incorporating surface wind stress data from SEASAT A scatterometer observations is presented. The Monin-Obukhov similarity theory is used to relate winds at the top of the surface layer to surface wind stress. A reasonable approximation of surface fluxes of heat, moisture, and momentum are obtainable using this method. A Richardson number adjustment scheme based on the ideas of Chang is used to allow for turbulence effects.

  1. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    NASA Astrophysics Data System (ADS)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  2. Theoretical model for VITA-educed coherent structures in the wall region of a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Landahl, Marten T.

    1988-01-01

    Experiments on wall-bounded shear flows (channel flows and boundary layers) have indicated that the turbulence in the region close to the wall exhibits a characteristic intermittently formed pattern of coherent structures. For a quantitative study of coherent structures it is necessary to make use of conditional sampling. One particularly successful sampling technique is the Variable Integration Time Averaging technique (VITA) first explored by Blackwelder and Kaplan (1976). In this, an event is assumed to occur when the short time variance exceeds a certain threshold multiple of the mean square signal. The analysis presented removes some assumptions in the earlier models in that the effects of pressure and viscosity are taken into account in an approximation based on the assumption that the near-wall structures are highly elongated in the streamwise direction. The appropriateness of this is suggested by the observations but is also self consistent with the results of the model which show that the streamwise dimension of the structure grows with time, so that the approximation should improve with the age of the structure.

  3. Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Steinwolf, Alexander

    2005-01-01

    The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.

  4. Compressible turbulence measurements in a supersonic boundary layer including favorable pressure gradient effects

    NASA Astrophysics Data System (ADS)

    Miller, Raymond S.

    1994-12-01

    The effect of a favorable pressure gradient on the turbulent flow structure in a Mach 2.9 boundary layer (Re/m approximately equal to 1.5 x 10(exp 7)) is investigated experimentally. Conventional flow and hot film measurements of turbulent fluctuation properties have been made upstream of and along an expansion ramp. Upstream measurements were taken in a zero pressure gradient boundary layer 44 cm from the nozzle throat in a 6.35 cm square test section. Measurements are obtained in the boundary layer, above the expansion ramp, 71.5 cm from the nozzle throat. Mean flow and turbulent flow characteristics are measured in all three dimensions. Comparisons are made between data obtained using single and multiple-overheat cross-wire anemometry as well as conventional mean flow probes. Conventional flow measurements were taken using a Pitot probe and a 10 degree cone static probe. Flow visualization was conducted via imaging techniques (Schlieren and shadowgraph photographs). Results suggest that compressibility effects, as seen through the density fluctuations in the Reynolds shear stress, are roughly 10% relative to the mean velocity and are large relative to the velocity fluctuations. This is also observed in the total Reynolds shear stress; compressibility accounts for 50-75% of the total shear. This is particularly true in the favorable pressure gradient region, where though the peak fluctuation intensities are diminished, the streamwise component of the mean flow is larger, hence the contribution of the compressibility term is significant in the Reynolds shear.

  5. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone

    USGS Publications Warehouse

    Thatcher, W.; England, P.C.

    1998-01-01

    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now inactive strands of the San Andreas system can explain the breadth of the heat flux anomaly across central California.

  6. Observations of transitional tidal boundary layers and their impact on sediment transport in the Great Bay, NH

    NASA Astrophysics Data System (ADS)

    Koetje, K. M.; Foster, D. L.; Lippmann, T. C.

    2017-12-01

    Observations of the vertical structure of tidal flows obtained in 2016 and 2017 in the Great Bay Estuary, NH show evidence of transitional tidal boundary layers at deployment locations on shallow mudflats. High-resolution bottom boundary layer currents, hydrography, turbidity, and bed characteristics were observed with an acoustic Doppler current profiler (ADCP), an acoustic Doppler velocimeter (ADV), conductivity-depth-temperature (CTD) sensors, optical backscatter sensors, multibeam bathymetric surveys, and sediment grab samples and cores. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak flows ranged from 10 cm/s to 30 cm/s and were primarily driven by the tides. A downward-looking ADCP captured the velocity profile over the lowest 1 m of the water column. Results consistently show a dual-log layer system, with evidence of a lower layer within 15 cm of the bed, another layer above approximately 30 cm from the bed, and a transitional region where the flow field rotates between that the two layers that can be as much as 180 degrees out of phase. CTD casts collected over a complete tidal cycle suggest that the weak thermohaline stratification is not responsible for development of the two layers. On the other hand, acoustic and optical backscatter measurements show spatial and temporal variability in suspended sediments that are dependant on tidal phase. Current work includes an examination of the relationship between sediment concentrations in the water column and velocity profile characteristics, along with an effort to quantify the impact of rotation and dual-log layers on bed stress.

  7. Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.

    Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.

  8. Indeterminacy of drag exerted on an arrow in free flight: arrow attitude and laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Matsumoto, T.; Ando, R.; Ortiz, J.; Sugiura, H.

    2017-11-01

    The aerodynamic properties of an arrow (A/C/E; Easton) were investigated in an extension of our previous work, in which the laminar-turbulent transition of the boundary layer on the arrow shaft was found to take place in the Re number range of 1.2 × 104 < Re < 2.0 × 104. In this paper, we focus on the influence of the arrow’s attitude on the transition. Two types of vane (Spin Wing vane and Gas Pro vane) are fletched, and their stabilizing effects are compared. Two support-interference-free tests are performed to provide aerodynamic properties such as the drag, lift and pitching moment coefficients. The static aerodynamic properties are measured in a wind tunnel with JAXA’s 60 cm magnetic suspension and balance system. When the arrow is aligned with the flow, the boundary layer remains laminar for Re < 1.5 × 104, and the drag coefficient is approximately 1.5 for 1.0 × 104 < Re < 1.5 × 104. If the arrow has an angle of attack of 0.75 ° with the flow, the transition to turbulence takes place at approximately Re = 1.1 × 104, and the drag coefficient increases to approximately 3.1. In addition, free flight experiments are performed. The arrow’s velocity and angular velocity are recorded using five high-speed video cameras. By analysing the recorded images, we obtain the initial and final velocities from which the drag coefficient is determined. The trajectory and attitude of the arrow in free flight are computed numerically by integrating the equations of motion for a rigid body using the initial data obtained from the video images. The laminar-turbulent transition of the boundary layer is shown to take place, if the maximum angle of attack exceeds about 0.4° at Re = 1.75 × 104. The crucial influence of the initial angular velocity on the angle of attack is also examined.

  9. Bubble dynamics in a compressible liquid in contact with a rigid boundary

    PubMed Central

    Wang, Qianxi; Liu, Wenke; Zhang, A. M.; Sui, Yi

    2015-01-01

    A bubble initiated near a rigid boundary may be almost in contact with the boundary because of its expansion and migration to the boundary, where a thin layer of water forms between the bubble and the boundary thereafter. This phenomenon is modelled using the weakly compressible theory coupled with the boundary integral method. The wall effects are modelled using the imaging method. The numerical instabilities caused by the near contact of the bubble surface with the boundary are handled by removing a thin layer of water between them and joining the bubble surface with its image to the boundary. Our computations correlate well with experiments for both the first and second cycles of oscillation. The time history of the energy of a bubble system follows a step function, reducing rapidly and significantly because of emission of shock waves at inception of a bubble and at the end of collapse but remaining approximately constant for the rest of the time. The bubble starts being in near contact with the boundary during the first cycle of oscillation when the dimensionless stand-off distance γ = s/Rm < 1, where s is the distance of the initial bubble centre from the boundary and Rm is the maximum bubble radius. This leads to (i) the direct impact of a high-speed liquid jet on the boundary once it penetrates through the bubble, (ii) the direct contact of the bubble at high temperature and high pressure with the boundary, and (iii) the direct impingement of shock waves on the boundary once emitted. These phenomena have clear potential to damage the boundary, which are believed to be part of the mechanisms of cavitation damage. PMID:26442148

  10. Observations From the Coupled Boundary Layer Air-Sea Transfer Experiment in Hurricanes

    NASA Astrophysics Data System (ADS)

    Black, P. G.

    2006-12-01

    The CBLAST field program conducted from 2002-2004 has shown that the wind speed range for which turbulent momentum and moisture exchange coefficients have been derived based upon direct flux measurements has been extended by 30 and 60 percent, respectively, from airborne observations in Hurricanes Fabian and Isabel in 2003. The drag coefficient (CD) values derived from CBLAST momentum flux measurements show CD becoming invariant with wind speed near a 23 ms-1 threshold rather than a hurricane-force threshold near 33 ms-1. Values above 23 ms-1 are lower than previous open ocean measurements. The Dalton number estimates (CE) derived from CBLAST moisture flux measurements are shown to be invariant with wind speed to 30 ms-1, in approximate agreement with previous measurements at lower winds. These observations imply a CE/CD ratio of approximately 0.7, suggesting that additional energy sources are necessary for hurricanes to achieve their maximum potential intensity. Two such additional mechanisms for augmented moisture flux in the boundary layer might be 1) augmented wave breaking by short-crested, fetch limited waves suggested by whitecap aerial coverage measurements, and 2) sea spray at high winds suggested by laboratory spray source function measurements. Linear coherent features in the hurricane boundary layer are a third mechanism, observed during CBLAST 2002 aircraft measurements, to have wavelengths of 0.9 to 1.2 km. Linear features of the same wavelength range were observed in nearly-concurrent RADARSAT Synthetic Aperture Radar (SAR) imagery. Arrays of drifting buoys and subsurface floats were successfully deployed ahead of Hurricanes Fabian (2003) and Frances (2004): 16 (6) and 38 (14) drifters (floats). Two types of surface drifters and three types of floats provided observations of surface and subsurface oceanic currents, temperature, salinity, gas exchange, bubble concentrations and surface wave spectra to a depth of 200 m on a continuous basis before, during and after storm passage. Float observations indicated deepening of the mixed layer from 40 to 120 m in approximately 8 hr with a corresponding decrease in SST in the right-rear quadrant of 3.2 ºC in 11 hr, roughly one-half inertial period. Strong inertial currents with a peak amplitude of 1.5 ms-1 were observed. Vertical structure showed the critical Richardson number was reached sporadically during the mixed-layer deepening event, suggesting shear-induced mixing as a prominent mechanism during storm passage.

  11. Frequency-domain prediction of broadband trailing edge noise from a blunt flat plate

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Se; Cheong, Cheolung

    2013-10-01

    The aim of this study is to develop an efficient methodology for frequency-domain prediction of broadband trailing edge noise from a blunt flat plate where non-zero pressure gradient may exist in its boundary layer. This is achieved in two ways: (i) by developing new models for point pressure spectra within the boundary layer over a flat plate, and (ii) by deriving a simple formula to approximate the effect of convective velocity on the radiated noise spectrum. Firstly, two types of point pressure spectra-required as input data to predict the trailing edge noise in the frequency domain-are used. One is determined using the semi-analytic (S-A) models based on the boundary-layer theory combined with existing empirical models. It is shown that the prediction using these models show good agreements with the measurements where zero-pressure gradient assumption is valid. However, the prediction show poor agreement with that obtained from large eddy simulation results where negative (favorable) pressure gradient is observed with the boundary layer. Based on boundary layer characteristics predicted using the large eddy simulations, new model for point wall pressure spectra is proposed to account for the effect of favorable pressure gradient over the blunt flat plate on the wall pressure spectra. Sound spectra that were predicted using these models are compared with measurements to validate the proposed prediction scheme. The advantage of the semi-analytic model is that it can be applied to problems at Reynolds numbers for which the empirical model is not available. In addition, it is expected that the current models can be applied to the cases where favorable pressure gradient exists in the boundary layer over a blunt flat plate. Secondly, in order to quantitatively analyze contributions of the pressure field within the turbulent boundary layer on the flat plate to trailing edge noise, total pressure over the surface of airfoil is decomposed into its two constituents: incident pressure generated in the boundary layer without a trailing edge and the pressure formed by the scattering of the incident pressure at the trailing edge. The predictions made using each of the incident and scattered pressures reveal that the convective velocity of turbulence in the boundary layer dominantly affects the radiated sound pressure spectrum, both in terms of the gross behavior of the overall acoustic pressure spectrum through the scattered pressure and in terms of the narrow band small fluctuations of the spectrum through the incident pressure. The interaction term between the incident and the scattered is defined and the incident is shown to contribute to the radiated acoustic pressure through the interaction term. Based on this finding, a simple model to effectively compute the effects of convection velocities of the turbulence on the radiated sound pressure spectrum is proposed. It is shown that the proposed method can effectively and accurately predict the broadband trailing edge noise from the plate with considering both the incident and the scattered contributions.

  12. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell

    PubMed Central

    Livermore, Philip W.; Bailey, Lewis M.; Hollerbach, Rainer

    2016-01-01

    We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E1/2, where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1 m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E−1/2 or E−1). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth’s core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤ 10−5. PMID:26980289

  13. A first summary of the Layered Atlantic Smoke Interactions with Clouds (LASIC) campaign in the remote southeast Atlantic

    NASA Astrophysics Data System (ADS)

    Zuidema, P.; Adebiyi, A. A.; Aiken, A. C.; Blanchard, Y.; Castro, V.; Chiu, C.; Cunha, B.; Delgadillo, R.; Flynn, C. J.; Hardin, J. C.; Isom, B. M.; Muradyan, P.; Nitschke, K. L.; Ramajiguru, L.; Ryczek, M. R.; Sedlacek, A. J., III; Springston, S. R.; Viagas, J.; Uin, J.; Zhang, J.

    2017-12-01

    From June 1, 2016 through October 31, 2017, a DOE ARM Mobile Facility characterized the aerosol and cloud structure during two biomass-burning aerosol seasons to unprecedented detail over Ascension Island (14W, 8S), in the remote southeast Atlantic. The site is subject to the outflow of biomass-burning aerosol from continental Africa, over 1500 km away, from approximately July to November and is located within warm ocean waters that encourage deep boundary layers. Early findings indicate that smoke reaches the surface more often than not, at times reaching black carbon mass concentrations similar to those near fire sources on land, alternating occasionally with very clean surface conditions. The surface aerosol loading is not necessarily well-correlated with that in the free-troposphere, indicating distinct aerosol transport pathways. Aerosol layering is apparent in micropulse lidar data, with free-tropospheric aerosol, when present, typically in contact with the uppermost cloud layer. First estimates of the single-scattering-albedo, of approximately 0.85, appear to be remarkably consistent with estimates from airborne campaigns made elsewhere in the southeast Atlantic. The boundary layer is deeper when smoke is present near the surface and more well-mixed, with a stronger diurnal cycle in potential temperature indicating shortwave absorption. Cloudiness near the trade-wind inversion increases when smoke is present, while cloudiness changes at the lifting condensation level may reflect coincident meteorological changes. In summary the new observations indicate an aerosol-cloud regime that is extensive and with the potential to demonstrate unanticipated aerosol-cloud interactions.

  14. Heat Transfer Through Turbulent Friction Layers

    NASA Technical Reports Server (NTRS)

    Reichardt, H.

    1943-01-01

    The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.

  15. Effect of nose shape on three-dimensional stagnation region streamlines and heating rates

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Dejarnette, Fred R.; Zoby, E. V.

    1991-01-01

    A new method for calculating the three-dimensional inviscid surface streamlines and streamline metrics using Cartesian coordinates and time as the independent variable of integration has been developed. The technique calculates the streamline from a specified point on the body to a point near the stagnation point by using a prescribed pressure distribution in the Euler equations. The differential equations, which are singular at the stagnation point, are of the two point boundary value problem type. Laminar heating rates are calculated using the axisymmetric analog concept for three-dimensional boundary layers and approximate solutions to the axisymmetric boundary layer equations. Results for elliptic conic forebody geometries show that location of the point of maximum heating depends on the type of conic in the plane of symmetry and the angle of attack, and that this location is in general different from the stagnation point. The new method was found to give smooth predictions of heat transfer in the nose region where previous methods gave oscillatory results.

  16. An approximate viscous shock layer technique for calculating chemically reacting hypersonic flows about blunt-nosed bodies

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. Mcneil; Dejarnette, Fred R.

    1991-01-01

    An approximate axisymmetric method was developed which can reliably calculate fully viscous hypersonic flows over blunt nosed bodies. By substituting Maslen's second order pressure expression for the normal momentum equation, a simplified form of the viscous shock layer (VSL) equations is obtained. This approach can solve both the subsonic and supersonic regions of the shock layer without a starting solution for the shock shape. The approach is applicable to perfect gas, equilibrium, and nonequilibrium flowfields. Since the method is fully viscous, the problems associated with a boundary layer solution with an inviscid layer solution are avoided. This procedure is significantly faster than the parabolized Navier-Stokes (PNS) or VSL solvers and would be useful in a preliminary design environment. Problems associated with a previously developed approximate VSL technique are addressed before extending the method to nonequilibrium calculations. Perfect gas (laminar and turbulent), equilibrium, and nonequilibrium solutions were generated for airflows over several analytic body shapes. Surface heat transfer, skin friction, and pressure predictions are comparable to VSL results. In addition, computed heating rates are in good agreement with experimental data. The present technique generates its own shock shape as part of its solution, and therefore could be used to provide more accurate initial shock shapes for higher order procedures which require starting solutions.

  17. Unsteady separation in sharp fin-induced shock wave/turbulent boundary layer interaction at Mach 5

    NASA Technical Reports Server (NTRS)

    Schmisseur, J. D.; Dolling, D. S.

    1992-01-01

    Fluctuating wall-pressure measurements are made in shock-wave/turbulent-boundary-layer interactions generated by sharp/unswept fins at angles of attack of 16, 18, 20, 22, 24, 26, and 28 degrees at Mach 5. The experiment was conducted under approximately adiabatic wall temperature conditions. The mean and rms pressure distributions can be collapsed in conical coordinates. The wall-pressure signal near separation is intermittent for all angles of attack (16-28 deg) and is qualitatively similar to that measured in unswept flows. However, the shock frequencies are higher - about 5 kHz compared to 0.5-1 kHz. Over the range of sweepbacks examined, from 25-55 deg, the spectral content of the fluctuating pressures does not change. Thus, the increase in separation-shock frequency from 1 to 5 kHz occurs at lower interaction sweepback and is not a continuous process with increasing sweepback. Power spectra at the position of maximum rms in the intermittent region for interactions in different incoming boundary layers have the same center frequency. The maximum rms in the intermittent region correlates with interaction sweepback, not with overall inviscid pressure rise.

  18. Incompressible boundary-layer stability analysis of LFC experimental data for sub-critical Mach numbers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Berry, S. A.

    1986-01-01

    An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.

  19. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers.

    PubMed

    Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun

    2017-11-01

    The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.

  20. Detecting the chaotic nature in a transitional boundary layer using symbolic information-theory quantifiers

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun

    2017-11-01

    The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.

  1. Novel Aerodynamic Design for Formula SAE Vehicles

    NASA Astrophysics Data System (ADS)

    Sentongo, Samuel; Carter, Austin; Cecil, Christopher; Feier, Ioan

    2017-11-01

    This paper identifies and evaluates the design characteristics of a novel airfoil that harnesses the Magnus Effect, applying a moving-surface boundary-layer control (MSBC) method to a Formula SAE Vehicle. The MSBC minimizes adverse pressure gradient and delays boundary layer separation through the use of a conveyor belt that interacts with the airfoil boundary layer. The MSBC allows dynamic control of the aerodynamic coefficients by variation of the belt speed, minimizing drag in high speed straights and maximizing downforce during vehicle cornering. A conveyer belt wing measuring approximately 0.9 x 0.9m in planform was designed and built to test the mechanical setup for such a MSBC wing. This study follows the relationship between inputted power and outputted surface velocity, with the goal being to maximize speed output vs. power input. The greatest hindrance to maximizing speed output is friction among belts, rollers, and stationary members. The maximum belt speed achieved during testing was 5.9 m/s with a power input of 48.8 W, which corresponds to 45.8 N of downforce based on 2D CFD results. Ongoing progress on this project is presented. United States Air Force Academy.

  2. Turbulent heat transfer prediction method for application to scramjet engines

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1974-01-01

    An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.

  3. Analytical Studies of Boundary Layer Generated Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Howe, M. S.; Shah, P. L.

    1997-01-01

    An analysis is made of the "interior noise" produced by high, subsonic turbulent flow over a thin elastic plate partitioned into "panels" by straight edges transverse to the mean flow direction. This configuration models a section of an aircraft fuselage that may be regarded as locally flat. The analytical problem can be solved in closed form to represent the acoustic radiation in terms of prescribed turbulent boundary layer pressure fluctuations. Two cases are considered: (i) the production of sound at an isolated panel edge (i.e., in the approximation in which the correlation between sound and vibrations generated at neighboring edges is neglected), and (ii) the sound generated by a periodic arrangement of identical panels. The latter problem is amenable to exact analytical treatment provided the panel edge conditions are the same for all panels. Detailed predictions of the interior noise depend on a knowledge of the turbulent boundary layer wall pressure spectrum, and are given here in terms of an empirical spectrum proposed by Laganelli and Wolfe. It is expected that these analytical representations of the sound generated by simplified models of fluid-structure interactions can used to validate more general numerical schemes.

  4. Assessing sea wave and spray effects on Marine Boundary Layer structure

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George

    2017-04-01

    Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.

  5. Stability Of Oscillatory Rotating-Disk Boundary Layers

    NASA Astrophysics Data System (ADS)

    Morgan, Scott; Davies, Christopher

    2017-11-01

    The rotating disk boundary layer has long been considered as an archetypal model for studying the stability of three-dimensional boundary-layer flows. It is one of the few truly three-dimensional configurations for which there is an exact similarity solution of the Navier-Stokes equations. Due to a crossflow inflexion point instability, the investigation of strategies for controlling the behaviour of disturbances that develop in the rotating disk flow may prove to be helpful for the identification and assessment of aerodynamical technologies that have the potential to maintain laminar flow over swept wings. We will consider the changes in the stability behaviour which arise when the base-flow is altered by imposing a periodic modulation in the rotation rate of the disk surface. Following similar work by Thomas et al., preliminary results indicate that this modification can lead to significant stabilising effects. Current work encompasses linearised DNS, complemented by a local in time analysis made possible by imposing an artificial frozen flow approximation. This is deployed together with a more exact global treatment based upon Floquet theory, which avoids the need for any simplification of the temporal dependency of the base-flow.

  6. A new flux-conserving numerical scheme for the steady, incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    1994-01-01

    This paper is concerned with the continued development of a new numerical method, the space-time solution element (STS) method, for solving conservation laws. The present work focuses on the two-dimensional, steady, incompressible Navier-Stokes equations. Using first an integral approach, and then a differential approach, the discrete flux conservation equations presented in a recent paper are rederived. Here a simpler method for determining the flux expressions at cell interfaces is given; a systematic and rigorous derivation of the conditions used to simulate the differential form of the governing conservation law(s) is provided; necessary and sufficient conditions for a discrete approximation to satisfy a conservation law in E2 are derived; and an estimate of the local truncation error is given. A specific scheme is then constructed for the solution of the thin airfoil boundary layer problem. Numerical results are presented which demonstrate the ability of the scheme to accurately resolve the developing boundary layer and wake regions using grids which are much coarser than those employed by other numerical methods. It is shown that ten cells in the cross-stream direction are sufficient to accurately resolve the developing airfoil boundary layer.

  7. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    NASA Technical Reports Server (NTRS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  8. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  9. Hydrogeology and Simulation of Ground-Water Flow near Mount Pleasant, South Carolina--Predevelopment, 2004, and Predicted Scenarios for 2030

    USGS Publications Warehouse

    Petkewich, Matthew D.; Campbell, Bruce G.

    2007-01-01

    Heavy water use from the Cretaceous Middendorf aquifer in South Carolina has created a large, regional cone of depression in the potentiometric surface of the Middendorf aquifer in Charleston and Berkeley Counties, South Carolina. Water-level declines of up to 249 feet have been observed in wells over the past 125 years and are a result of ground-water use for public-water supply, irrigation, and private industry. To address the concerns of users of the Middendorf aquifer, the U.S. Geological Survey, in cooperation with Mount Pleasant Waterworks, updated an existing ground-water flow model to incorporate additional data that have been compiled since 1989. The updated ground-water flow model incorporates water-level data collected from 349 wells in 2004, baseflow data measured at 17 streams, hydraulic property data from 265 wells, and water-use data compiled for more than 2,700 wells for the period between the early 1900s to 2004. The ground-water flow system of the Coastal Plain physiographic province of South Carolina and parts of Georgia and North Carolina was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000. The model was vertically discretized into nine layers to include the five aquifers of the surficial, the combined Floridan aquifer system and Tertiary sand aquifer, Black Creek, Middendorf, and Cape Fear, separated by four intervening confining units. Specified-head boundary conditions were used at the lateral boundaries of the model and for the lower Coastal Plain part of the surficial aquifer; no-flow boundary conditions were used at the updip and downdip extent of the model layers and at the base of the Cape Fear aquifer. Ground-water conditions for predevelopment and 2004 were simulated using steady-state and transient approximations, respectively. Simulated water levels generally matched the observed conditions, plus or minus a 20-foot calibration target, with 56.4 and 64.8 percent of the simulated values approximating the measured values for predevelopment and 2004 hydrologic conditions, respectively. The root-mean-square error of the water-level residuals for the various model layers varied between 20.2 and 34.4 feet for predevelopment and 18.2 and 36.7 feet for 2004. The general goodness of fit also was apparent in the calculation of the ratio of standard deviation of residuals to range of observations for each modeled aquifer layer. The calculated ratios for the predevelopment and 2004 hydrologic conditions were less than 0.10 for all model layers except for the Cape Fear aquifer in both predevelopment and 2004 simulations. The Mount Pleasant model was most sensitive to changes in simulated specific storage of most model layers, vertical anisotropy of the confining units above and below the Middendorf aquifer, hydraulic conductivity of the confining units, and the specified-head boundary conditions for the surficial aquifer. The model also is sensitive to horizontal hydraulic conductivity of the Floridan aquifer system and Tertiary sand aquifer and the Black Creek and Middendorf aquifers. Simulated water budgets indicate that the primary sources of water to the model are recharge and the specified-head boundaries in layers 1 and 3. More than 88 percent of the water that discharges from the model discharges from layers 1-3 through specified-head boundaries and rivers. Approximately 11 percent of the water budget was discharged through wells for the 2004 budget. In 2004, 8.11 million gallons of water per day was discharged from wells in the Mount Pleasant area. Water to these wells is provided predominantly by lateral flow within the Middendorf aquifer. Additional water is provided from aquifer storage and leakage from confining units located above and below the Middendorf aquifer. Downward flow through the Middendorf confining unit is a reversal of the predevelopment flow direction. Five predictive water-management scenarios were simulated to determine the effects on the

  10. Universal single level implicit algorithm for gasdynamics

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.; Venkatapthy, E.

    1984-01-01

    A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.

  11. Laboratory-based observations of capillary barriers and preferential flow in layered snow

    NASA Astrophysics Data System (ADS)

    Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C.

    2015-12-01

    Several evidences are nowadays available that show how the effects of capillary gradients and preferential flow on water transmission in snow may play a more important role than expected. To observe these processes and to contribute in their characterization, we performed observations on the development of capillary barriers and preferential flow patterns in layered snow during cold laboratory experiments. We considered three different layering (all characterized by a finer-over-coarser texture in grain size) and three different water input rates. Nine samples of layered snow were sieved in a cold laboratory, and subjected to a constant supply of dyed tracer. By means of visual inspection, horizontal sectioning and liquid water content measurements, the processes of ponding and preferential flow were characterized as a function of texture and water input rate. The dynamics of each sample were replicated using the multi-layer physically-based SNOWPACK model. Results show that capillary barriers and preferential flow are relevant processes ruling the speed of liquid water in stratified snow. Ponding is associated with peaks in LWC at the boundary between the two layers equal to ~ 33-36 vol. % when the upper layer is composed by fine snow (grain size smaller than 0.5 mm). The thickness of the ponding layer at the textural boundary is between 0 and 3 cm, depending on sample stratigraphy. Heterogeneity in water transmission increases with grain size, while we do not observe any clear dependency on water input rate. The extensive comparison between observed and simulated LWC profiles by SNOWPACK (using an approximation of Richards Equation) shows high performances by the model in estimating the LWC peak over the boundary, while water speed in snow is underestimated by the chosen water transport scheme.

  12. The effect of compliant walls on three-dimensional primary and secondary instabilities in boundary layer transition

    NASA Astrophysics Data System (ADS)

    Joslin, R. D.

    1991-04-01

    The use of passive devices to obtain drag and noise reduction or transition delays in boundary layers is highly desirable. One such device that shows promise for hydrodynamic applications is the compliant coating. The present study extends the mechanical model to allow for three-dimensional waves. This study also looks at the effect of compliant walls on three-dimensional secondary instabilities. For the primary and secondary instability analysis, spectral and shooting approximations are used to obtain solutions of the governing equations and boundary conditions. The spectral approximation consists of local and global methods of solution while the shooting approach is local. The global method is used to determine the discrete spectrum of eigenvalue without any initial guess. The local method requires a sufficiently accurate initial guess to converge to the eigenvalue. Eigenvectors may be obtained with either local approach. For the initial stage of this analysis, two and three dimensional primary instabilities propagate over compliant coatings. Results over the compliant walls are compared with the rigid wall case. Three-dimensional instabilities are found to dominate transition over the compliant walls considered. However, transition delays are still obtained and compared with transition delay predictions for rigid walls. The angles of wave propagation are plotted with Reynolds number and frequency. Low frequency waves are found to be highly three-dimensional.

  13. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    NASA Astrophysics Data System (ADS)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  14. Near-optimal energy transitions for energy-state trajectories of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Bowles, J. V.; Terjesen, E. J.; Whittaker, T.

    1992-01-01

    A problem of the instantaneous energy transition that occurs in energy-state approximation is considered. The transitions are modeled as a sequence of two load-factor bounded paths (either climb-dive or dive-climb). The boundary-layer equations associated with the energy-state dynamic model are analyzed to determine the precise location of the transition.

  15. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm

    PubMed Central

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Owen, C. J.; Petrukovich, A. A.; Yao, Z.; Nakamura, T. K. M.; Kubyshkina, M. V.; Sotirelis, T.; Burch, J. L.; Genestreti, K. J.; Vörös, Z.; Andriopoulou, M.; Gershman, D. J.; Avanov, L. A.; Magnes, W.; Russell, C. T.; Plaschke, F.; Khotyaintsev, Y. V.; Giles, B. L.; Coffey, V. N.; Dorelli, J. C.; Strangeway, R. J.; Torbert, R. B.; Lindqvist, P.‐A.; Ergun, R.

    2017-01-01

    Abstract During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high‐energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X‐line was located relatively close to the Earth, approximately at 16–18 RE. PMID:29399431

  16. Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm

    NASA Astrophysics Data System (ADS)

    Varsani, A.; Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Owen, C. J.; Petrukovich, A. A.; Yao, Z.; Nakamura, T. K. M.; Kubyshkina, M. V.; Sotirelis, T.; Burch, J. L.; Genestreti, K. J.; Vörös, Z.; Andriopoulou, M.; Gershman, D. J.; Avanov, L. A.; Magnes, W.; Russell, C. T.; Plaschke, F.; Khotyaintsev, Y. V.; Giles, B. L.; Coffey, V. N.; Dorelli, J. C.; Strangeway, R. J.; Torbert, R. B.; Lindqvist, P.-A.; Ergun, R.

    2017-11-01

    During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 RE.

  17. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-10-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  18. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-09-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  19. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2017-11-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  20. Theoretical and experimental studies of reentry plasmas

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.; Kang, S.

    1973-01-01

    A viscous shock-layer analysis was developed and used to calculate nonequilibrium-flow species distributions in the plasma layer of the RAM vehicle. The theoretical electron-density results obtained are in good agreement with those measured in flight. A circular-aperture flush-mounted antenna was used to obtain a comparison between theoretical and experimental antenna admittance in the presence of ionized boundary layers of low collision frequency. The electron-temperature and electron-density distributions in the boundary layer were independently measured. The antenna admittance was measured using a four-probe microwave reflectometer and these measured values were found to be in good agreement with those predicted. Measurements were also performed with another type of circular-aperture antenna and good agreement was obtained between the calculations and the experimental results. A theoretical analysis has been completed which permits calculation of the nonequilibrium, viscous shock-layer flow field for a sphere-cone body. Results are presented for two different bodies at several different altitudes illustrating the influences of bluntness and chemical nonequilibrium on several gas dynamic parameters of interest. Plane-wave transmission coefficients were calculated for an approximate space-shuttle body using a typical trajectory.

  1. Parametric Excitation of Marangoni Instability in a Heated Thin Layer Covered by Insoluble Surfactant

    NASA Astrophysics Data System (ADS)

    Mikishev, Alexander B.; Nepomnyashchy, Alexander A.

    2018-05-01

    The paper presents the analysis of the impact of vertical periodic vibrations on the long-wavelength Marangoni instability in a liquid layer with poorly conducting boundaries in the presence of insoluble surfactant on the deformable gas-liquid interface. The layer is subject to a uniform transverse temperature gradient. Linear stability analysis is performed in order to find critical values of Marangoni numbers for both monotonic and oscillatory instability modes. Longwave asymptotic expansions are used. At the leading order, the critical values are independent on vibration parameters; at the next order of approximation we obtained the rise of stability thresholds due to vibration.

  2. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  3. Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando

    2013-02-01

    Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12-15 °C and heating up the test section floor to 73-75 °C. The freestream wind speed was set at about 2.5 m s-1, resulting in a bulk Richardson number of -0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2-3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2-20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that in the undisturbed CBL inflow. This study represents the first controlled wind-tunnel experiment to study the effects of the CBL on wind-turbine wakes. The results on decreased velocity deficit and increased turbulence in wind-turbine wakes associated with atmospheric thermal stability are important to be taken into account in the design of wind farms, in order to reduce the impact of wakes on power output and fatigue loads on downwind wind turbines.

  4. The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow

    NASA Astrophysics Data System (ADS)

    Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.

    2018-02-01

    In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.

  5. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer.

    PubMed

    Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin

    2017-02-01

    The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized " n -diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter [Formula: see text] introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.

  6. A novel investigation of a micropolar fluid characterized by nonlinear constitutive diffusion model in boundary layer flow and heat transfer

    PubMed Central

    Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin

    2017-01-01

    The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized “n-diffusion theory,” which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system. PMID:28344433

  7. Wave interactions in a three-dimensional attachment line boundary layer

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Mackerrell, Sharon O.

    1988-01-01

    The 3-D boundary layer on a swept wing can support different types of hydrodynamic instability. Attention is focused on the so-called spanwise contamination problem, which occurs when the attachment line boundary layer on the leading edge becomes unstable to Tollmien-Schlichting waves. In order to gain insight into the interactions important in that problem, a simplified basic state is considered. This simplified flow corresponds to the swept attachment line boundary layer on an infinite flat plate. The basic flow here is an exact solution of the Navier-Stokes equations and its stability to 2-D waves propagating along the attachment can be considered exactly at finite Reynolds number. This has been done in the linear and weakly nonlinear regimes. The corresponding problem is studied for oblique waves and their interaction with 2-D waves is investigated. In fact, oblique modes cannot be described exactly at finite Reynolds number so it is necessary to make a high Reynolds number approximation and use triple deck theory. It is shown that there are two types of oblique wave which, if excited, cause the destabilization of the 2-D mode and the breakdown of the disturbed flow at a finite distance from the leading edge. First, a low frequency mode related to the viscous stationary crossflow mode is a possible cause of breakdown. Second, a class of oblique wave with frequency comparable with that of the 2-D mode is another cause of breakdown. It is shown that the relative importance of the modes depends on the distance from the attachment line.

  8. Boundary Layer Transition During the Orion Exploration Flight Test 1 (EFT-1)

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.

    2016-01-01

    Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.

  9. Effect of nonzero surface admittance on receptivity and stability of compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    The effect of small-amplitude short-scale variations in surface admittance on the acoustic receptivity and stability of two-dimensional compressible boundary layers is examined. In the linearized limit, the two problems are shown to be related both physically and mathematically. This connection between the two problems is used, in conjunction with some previously reported receptivity results, to infer the modification of stability properties due to surface permeability. Numerical calculations are carried out for a self-similar flat-plate boundary layer at subsonic and low supersonic speeds. Variations in mean suction velocity at the perforated admittance surface can also induce receptivity to an acoustic wave. For a subsonic boundary layer, the dependence of admittance-induced receptivity on the acoustic-wave orientation is significantly different from that of the receptivity produced via mean suction variation. The admittance-induced receptivity is generally independent of the angle of acoustic incidence, except in a relatively narrow range of upstream-traveling waves for which the receptivity becomes weaker. However, this range of angles is precisely that for which the suction-induced receptivity tends to be large. At supersonic Mach numbers, the admittance-induced receptivity to slow acoustic models is relatively weaker than that in the case of the fast acoustic modes. We also find that purely real values for the surface admittance tend to have a destabilizing effect on the evolution of an instability wave over a slightly permeable surface. The limits on the validity of the linearized approximation are also assessed in one specific case.

  10. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Huang, Junji; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    The acoustic radiation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube is simulated using Direct Numerical Simulations (DNS), with the flow conditions falling within the operational range of the Mach 6 Hypersonic Ludwieg Tube, Braunschweig (HLB). The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate's correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The rms pressure fluctuation P'(rms)/T(w) plateaus in the freestream core of the nozzle. The intensity of the freestream noise within the nozzle is approximately 20% higher than that radiated from a single at pate with a similar freestream Mach number, potentially because of the contributions to the acoustic radiation from multiple azimuthal segments of the nozzle wall.

  11. Model of formation of droplets during electric arc surfacing of functional coatings

    NASA Astrophysics Data System (ADS)

    Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.

    2016-01-01

    The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.

  12. A discussion of cone and flat-plate Reynolds numbers for equal ratios of the laminar shear to the shear caused by small velocity fluctuations in a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal

    1957-01-01

    By use of the linear theory of boundary-layer stability and Schlichting's formula for the maximum amplification of a disturbance, an approximate relation is derived between the Reynolds number on a cone and the Reynolds number on a flat plate for equal closeness to transition. The indication is that the ratio of the cone Reynolds number for transition, based on the distance to the cone apex, to the plate Reynolds number for transition, based on the distance to the leading edge, is not in general equal to 3, as has been suggested by other investigators, but varies from 3 when transition occurs at the minimum critical Reynolds number to unity when transition occurs at a large multiple of the critical Reynolds number.

  13. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  14. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  15. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  16. Effect of curvature on stationary crossflow instability of a three-dimensional boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Ray-Sing; Reed, Helen L.

    1993-01-01

    An incompressible three-dimensional laminar boundary-layer flow over a swept wing is used as a model to study both the wall-curvature and streamline-curvature effects on the stationary crossflow instability. The basic state is obtained by solving the full Navier-Stokes (N-S) equations numerically. The linear disturbance equations are cast on a fixed, body-intrinsic, curvilinear coordinate system. Those nonparallel terms which contribute mainly to the streamline-curvature effect are retained in the formulation of the disturbance equations and approximated by their local finite difference values. The resulting eigenvalue problem is solved by a Chebyshev collocation method. The present results indicate that the convex wall curvature has a stabilizing effect, whereas the streamline curvature has a destabilizing effect. A validation of these effects with an N-S solution for the linear disturbance flow is provided.

  17. Differences between radiosonde and dropsonde temperature profiles over the Arctic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skony, S.M.; Kahl, J.D.W.; Zaitseva, N.A.

    1994-10-01

    The boundary layer structure measured by 402 pairs of approximately collocated radiosonde and dropsonde temperature profiles over the Arctic Ocean during the period 1957-1961 is examined. The radiosonde profiles were obtained at the Russian drifting ice camps `North Pole 7` and `North Pole 8,` and the dropsonde profiles were measured during the United States Air Force `Ptarmigan` series of weather reconnaissance flights. The boundary layer structure is characterized by the features of the low-level tropospheric temperature inversion. The results indicate that the dropsonde soundings, although containing relatively few measurement levels, contain sufficient vertical resolution to characterize the temperature inversion. Systematicmore » differences were noted in wintertime inversion features and near-surface temperatures as measured by dropsondes and radiosondes. These differences are attributed to contrasting temperature lag errors accompanying ascending and descending sensors.« less

  18. Aerodynamic characteristics of NACA RM-10 missile in 8- by 6-foot supersonic wind tunnel at Mach numbers from 1.49 to 1.98 I : presentation and analysis of pressure measurements (stabilizing fins removed)

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W; Simon, Paul C

    1950-01-01

    Experimental investigation of flow about a slender body of revolution (NACA RM-10 missile) aligned and inclined to a supersonic stream was conducted at Mach numbers from 1.49 to 1.98 at a Reynolds number of approximately 30,000,000. Boundary-layer measurements at zero angle of attack are correlated with subsonic formulations for predicting boundary-layer thickness and profile. Comparison of pressure coefficients predicted by theory with experimental values showed close agreement at zero angle of attack and angle of attack except over the aft leeward side of body. At angle of attack, pitot pressure measurements in plane of model base indicated a pair of symmetrically disposed vortices on leeward side of body.

  19. Investigation of Low-Reynolds-Number Rocket Nozzle Design Using PNS-Based Optimization Procedure

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Moin; Korte, John J.

    1996-01-01

    An optimization approach to rocket nozzle design, based on computational fluid dynamics (CFD) methodology, is investigated for low-Reynolds-number cases. This study is undertaken to determine the benefits of this approach over those of classical design processes such as Rao's method. A CFD-based optimization procedure, using the parabolized Navier-Stokes (PNS) equations, is used to design conical and contoured axisymmetric nozzles. The advantage of this procedure is that it accounts for viscosity during the design process; other processes make an approximated boundary-layer correction after an inviscid design is created. Results showed significant improvement in the nozzle thrust coefficient over that of the baseline case; however, the unusual nozzle design necessitates further investigation of the accuracy of the PNS equations for modeling expanding flows with thick laminar boundary layers.

  20. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Pröbsting, Stefan; Dwight, Richard P.; van Oudheusden, Bas W.; Scarano, Fulvio

    2016-04-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the vorticity transport equation. The vorticity field calculated from the measured instantaneous velocity is advanced over a single integration time step using the vortex-in-cell (VIC) technique to update the vorticity field, after which the temporal derivative and material derivative of velocity are evaluated. The pressure in the measurement volume is subsequently evaluated by solving a Poisson equation. The procedure is validated considering data from a turbulent boundary layer experiment, obtained with time-resolved tomographic PIV at 10 kHz, where an independent surface pressure fluctuation measurement is made by a microphone. The cross-correlation coefficient of the surface pressure fluctuations calculated by the single-snapshot pressure method with respect to the microphone measurements is calculated and compared to that obtained using time-resolved pressure-from-PIV, which is regarded as benchmark. The single-snapshot procedure returns a cross-correlation comparable to the best result obtained by time-resolved PIV, which uses a nine-point time kernel. When the kernel of the time-resolved approach is reduced to three measurements, the single-snapshot method yields approximately 30 % higher correlation. Use of the method should be cautioned when the contributions to fluctuating pressure from outside the measurement volume are significant. The study illustrates the potential for simplifying the hardware configurations (e.g. high-speed PIV or dual PIV) required to determine instantaneous pressure from tomographic PIV.

  1. A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers

    NASA Astrophysics Data System (ADS)

    Bassett, Gene Marcel

    1993-01-01

    Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low resolution simulations this entrainment process is impeded by numerical viscosity. The three-dimensional jet simulations behave similarly to two-dimensional jet runs with the same grid resolutions.

  2. Variable Thermal-Force Bending of a Three-Layer Bar with a Compressible Filler

    NASA Astrophysics Data System (ADS)

    Starovoitov, E. I.; Leonenko, D. V.

    2017-11-01

    Deformation of a three-layer elastoplastic bar with a compressible filler in a temperature field is considered. To describe the kinematics of a pack asymmetric across its thickness, the hypothesis of broken line is accepted, according to which the Bernoulli hypothesis is true in thin bearing layers, and the Timoshenko hypothesis is valid for a filler compressible across the its thickness, with a linear approximation of displacements across the layer thickness. The work of filler in the tangential direction is taken into account. The physical stress-strain relations correspond to the theory of small elastoplastic deformations. Temperature variations are calculated from a formula obtained by averaging the thermophysical properties of layer materials across the bar thickness. Using the variational method, a system of differential equilibrium equations is derived. On the boundary, the kinematic conditions of simply supported ends of the bar are assumed. The solution of the boundary problem is reduced to the search for four functions, namely, deflections and longitudinal displacements of median surfaces of the bearing layers. An analytical solution is derived by the method of elastic solutions with the use of the Moskvitin theorem on variable loadings. Its numerical analysis is performed for the cases of continuous and local loads.

  3. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  4. Free Vibration Study of Anti-Symmetric Angle-Ply Laminated Plates under Clamped Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Viswanathan, K. K.; Karthik, K.; Sanyasiraju, Y. V. S. S.; Aziz, Z. A.

    2016-11-01

    Two type of numerical approach namely, Radial Basis Function and Spline approximation, used to analyse the free vibration of anti-symmetric angle-ply laminated plates under clamped boundary conditions. The equations of motion are derived using YNS theory under first order shear deformation. By assuming the solution in separable form, coupled differential equations obtained in term of mid-plane displacement and rotational functions. The coupled differential is then approximated using Spline function and radial basis function to obtain the generalize eigenvalue problem and parametric studies are made to investigate the effect of aspect ratio, length-to-thickness ratio, number of layers, fibre orientation and material properties with respect to the frequency parameter. Some results are compared with the existing literature and other new results are given in tables and graphs.

  5. Diffusion in coronas around clinopyroxene: modelling with local equilibrium and steady state, and a non-steady-state modification to account for zoned actinolite-hornblende

    NASA Astrophysics Data System (ADS)

    Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.

    1992-01-01

    Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in P- T conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.

  6. Nonequilibrium thermodynamics and boundary conditions for reaction and transport in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Kapral, Raymond

    2018-05-01

    Nonequilibrium interfacial thermodynamics is formulated in the presence of surface reactions for the study of diffusiophoresis in isothermal systems. As a consequence of microreversibility and Onsager-Casimir reciprocal relations, diffusiophoresis, i.e., the coupling of the tangential components of the pressure tensor to the concentration gradients of solute species, has a reciprocal effect where the interfacial currents of solutes are coupled to the slip velocity. The presence of surface reactions is shown to modify the diffusiophoretic and reciprocal effects at the fluid-solid interface. The thin-layer approximation is used to describe the solution flowing near a reactive solid interface. Analytic formulas describing the diffusiophoretic and reciprocal effects are deduced in the thin-layer approximation and tested numerically for the Poiseuille flow of a solution between catalytic planar surfaces.

  7. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  8. Turbulent boundary layer separation over a rearward facing ramp and its control through mechanical excitation

    NASA Technical Reports Server (NTRS)

    Mckinzie, Daniel J., Jr.

    1991-01-01

    A vane oscillating about a fixed point at the inlet to a two-dimensional 20 degree rearward facing ramp has proven effective in delaying the separation of a turbulent boundary layer. Measurements of the ramp surface static pressure coefficient obtained under the condition of vane oscillation and constant inlet velocity revealed that two different effects occurred with surface distance along the ramp. In the vicinity of the oscillating vane, the pressure coefficients varied as a negative function of the vane's trailing edge rms velocity; the independent variable on which the rms velocity depends are the vane's oscillation frequency and its displacement amplitude. From a point downstream of the vane to the exit of the ramp; however, the pressure coefficient varied as a more complex function of the two independent variables. That is, it was found to vary as a function of the vane's oscillation frequency throughout the entire range of frequencies covered during the test, but over only a limited range of the trailing edge displacement amplitudes covered. More specifically, the value of the pressure coefficient was independent of increases in the vane's displacement amplitude above approximately 35 inner wall units of the boundary layer. Below this specific amplitude it varied as a function of the vane's trailing edge rms velocity. This height is close to the upper limit of the buffer layer. A parametric study was made to determine the variation of the maximum static pressure recovery as a function of the vane's oscillation frequency, for several ramp inlet velocities and a constant displacement amplitude of the vane's trailing edge. The results indicate that the phenomenon producing the optimum delay of separation may be Strouhal number dependent. Corona anemometer measurements obtained in the inner wall regions of the boundary layer for the excited case reveal a large range of unsteadiness in the local velocities. These measurements imply the existence of inflections in the profiles, which provide a mechanism for resulting inviscid flow instabilities to produce turbulence in the near wall region, thereby delaying separation of the boundary layer.

  9. Thermal Analysis of a Metallic Wing Glove for a Mach-8 Boundary-Layer Experiment

    NASA Technical Reports Server (NTRS)

    Gong, Leslie; Richards, W. Lance

    1998-01-01

    A metallic 'glove' structure has been built and attached to the wing of the Pegasus(trademark) space booster. An experiment on the upper surface of the glove has been designed to help validate boundary-layer stability codes in a free-flight environment. Three-dimensional thermal analyses have been performed to ensure that the glove structure design would be within allowable temperature limits in the experiment test section of the upper skin of the glove. Temperature results obtained from the design-case analysis show a peak temperature at the leading edge of 490 F. For the upper surface of the glove, approximately 3 in. back from the leading edge, temperature calculations indicate transition occurs at approximately 45 sec into the flight profile. A worst-case heating analysis has also been performed to ensure that the glove structure would not have any detrimental effects on the primary objective of the Pegasus a launch. A peak temperature of 805 F has been calculated on the leading edge of the glove structure. The temperatures predicted from the design case are well within the temperature limits of the glove structure, and the worst-case heating analysis temperature results are acceptable for the mission objectives.

  10. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  11. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  12. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  13. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  14. Turbulent Combustion Study of Scramjet Problem

    DTIC Science & Technology

    2015-08-01

    boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and

  15. Self-similarity of a Rayleigh–Taylor mixing layer at low Atwood number with a multimode initial perturbation

    DOE PAGES

    Morgan, B. E.; Olson, B. J.; White, J. E.; ...

    2017-06-29

    High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less

  16. An overview of the diurnal cycle of the atmospheric boundary layer during the West African monsoon season: results from the 2016 observational campaign

    NASA Astrophysics Data System (ADS)

    Kalthoff, Norbert; Lohou, Fabienne; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Babić, Karmen; Dione, Cheikh; Ajao, Adewale; Amekudzi, Leonard K.; Aryee, Jeffrey N. A.; Ayoola, Muritala; Bessardon, Geoffrey; Danuor, Sylvester K.; Handwerker, Jan; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas; Fink, Andreas H.; Knippertz, Peter

    2018-03-01

    A ground-based field campaign was conducted in southern West Africa from mid-June to the end of July 2016 within the framework of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project. It aimed to provide a high-quality comprehensive data set for process studies, in particular of interactions between low-level clouds (LLCs) and boundary-layer conditions. In this region missing observations are still a major issue. During the campaign, extensive remote sensing and in situ measurements were conducted at three supersites: Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). Daily radiosoundings were performed at 06:00 UTC, and 15 intensive observation periods (IOPs) were performed during which additional radiosondes were launched, and remotely piloted aerial systems were operated. Extended stratiform LLCs form frequently in southern West Africa during the nighttime and persist long into the following day. They affect the radiation budget and hence the evolution of the atmospheric boundary layer and regional climate. The relevant parameters and processes governing the formation and dissolution of the LLCs are still not fully understood. This paper gives an overview of the diurnal cycles of the energy-balance components, near-surface temperature, humidity, wind speed and direction as well as of the conditions (LLCs, low-level jet) in the boundary layer at the supersites and relates them to synoptic-scale conditions (monsoon layer, harmattan layer, African easterly jet, tropospheric stratification) in the DACCIWA operational area. The characteristics of LLCs vary considerably from day to day, including a few almost cloud-free nights. During cloudy nights we found large differences in the LLCs' formation and dissolution times as well as in the cloud-base height. The differences exist at individual sites and also between the sites. The synoptic conditions are characterized by a monsoon layer with south-westerly winds, on average about 1.9 km deep, and easterly winds above; the depth and strength of the monsoon flow show great day-to-day variability. Within the monsoon layer, a nocturnal low-level jet forms in approximately the same layer as the LLC. Its strength and duration is highly variable from night to night. This unique data set will allow us to test some new hypotheses about the processes involved in the development of LLCs and their interaction with the boundary layer and can also be used for model evaluation.

  17. Effect of blood flow on near-the-wall mass transport of drugs and other bioactive agents: a simple formula to estimate boundary layer concentrations.

    PubMed

    Rugonyi, Sandra

    2008-04-01

    Transport of bioactive agents through the blood is essential for cardiovascular regulatory processes and drug delivery. Bioactive agents and other solutes infused into the blood through the wall of a blood vessel or released into the blood from an area in the vessel wall spread downstream of the infusion/release region and form a thin boundary layer in which solute concentration is higher than in the rest of the blood. Bioactive agents distributed along the vessel wall affect endothelial cells and regulate biological processes, such as thrombus formation, atherogenesis, and vascular remodeling. To calculate the concentration of solutes in the boundary layer, researchers have generally used numerical simulations. However, to investigate the effect of blood flow, infusion rate, and vessel geometry on the concentration of different solutes, many simulations are needed, leading to a time-consuming effort. In this paper, a relatively simple formula to quantify concentrations in a tube downstream of an infusion/release region is presented. Given known blood-flow rates, tube radius, solute diffusivity, and the length of the infusion region, this formula can be used to quickly estimate solute concentrations when infusion rates are known or to estimate infusion rates when solute concentrations at a point downstream of the infusion region are known. The developed formula is based on boundary layer theory and physical principles. The formula is an approximate solution of the advection-diffusion equations in the boundary layer region when solute concentration is small (dilute solution), infusion rate is modeled as a mass flux, and there is no transport of solute through the wall or chemical reactions downstream of the infusion region. Wall concentrations calculated using the formula developed in this paper were compared to the results from finite element models. Agreement between the results was within 10%. The developed formula could be used in experimental procedures to evaluate drug efficacy, in the design of drug-eluting stents, and to calculate rates of release of bioactive substances at active surfaces using downstream concentration measurements. In addition to being simple and fast to use, the formula gives accurate quantifications of concentrations and infusion rates under steady-state and oscillatory flow conditions, and therefore can be used to estimate boundary layer concentrations under physiological conditions.

  18. Aero-Heating of Shallow Cavities in Hypersonic Freestream Flow

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Berger, Karen T.; Merski, N. R., Jr.; Woods, William A.; Hollingsworth, Kevin E.; Hyatt, Andrew; Prabhu, Ramadas K.

    2010-01-01

    The purpose of these experiments and analysis was to augment the heating database and tools used for assessment of impact-induced shallow-cavity damage to the thermal protection system of the Space Shuttle Orbiter. The effect of length and depth on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These rapid-response experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated immediately prior to the launch of STS-114, the initial flight in the Space Shuttle Return-To-Flight Program, and continued during the first week of the mission. Previously-designed and numerically-characterized blunted-nose baseline flat plates were used as the test surfaces. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process and the two-dimensional flow assumptions used for the data analysis. The experimental boundary layer state conditions were inferred using the measured heating distributions on a no-cavity test article. Two test plates were developed, each containing 4 equally-spaced spanwise-distributed cavities. The first test plate contained cavities with a constant length-to-depth ratio of 8 with design point depth-to-boundary-layer-thickness ratios of 0.1, 0.2, 0.35, and 0.5. The second test plate contained cavities with a constant design point depth-to-boundary-layer-thickness ratio of 0.35 with length-to-depth ratios of 8, 12, 16, and 20. Cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary results indicate that the floor-averaged Bump Factor (local heating rate nondimensionalized by upstream reference) at the tested conditions is approximately 0.3 with a standard deviation of 0.04 for laminar-in/laminar-out conditions when the cavity length-to-boundary-layer thickness is between 2.5 and 10 and for cavities in the depth-to-boundary-layer-thickness range of 0.3 to 0.8. Over this same range of conditions and parameters, preliminary results also indicate that the maximum Bump Factor on the cavity centerline falls between 2.0 and 2.75, as long as the cavity-exit conditions remain laminar. Cavities with length-to-boundary-layer-thickness ratio less than 2.5 can not be easily classified with this approach and require further analysis.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, B. E.; Olson, B. J.; White, J. E.

    High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less

  20. The complex variable boundary element method: Applications in determining approximative boundaries

    USGS Publications Warehouse

    Hromadka, T.V.

    1984-01-01

    The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.

  1. Flight-measured pressure characteristics of aft-facing steps in high Reynolds number flow at Mach numbers of 2.20, 2.50, and 2.80 and comparison with other data

    NASA Technical Reports Server (NTRS)

    Powers, S. G.

    1978-01-01

    The YF-12 airplane was studied to determine the pressure characteristics associated with an aft-facing step in high Reynolds number flow for nominal Mach numbers of 2.20, 2.50, and 2.80. Base pressure coefficients were obtained for three step heights. The surface static pressures ahead of and behind the step were measured for the no-step condition and for each of the step heights. A boundary layer rake was used to determine the local boundary layer conditions. The Reynolds number based on the length of flow ahead of the step was approximately 10 to the 8th power and the ratios of momentum thickness to step height ranged from 0.2 to 1.0. Base pressure coefficients were compared with other available data at similar Mach numbers and at ratios of momentum thickness to step height near 1.0. In addition, the data were compared with base pressure coefficients calculated by a semiempirical prediction method. The base pressure ratios are shown to be a function of Reynolds number based on momentum thickness. Profiles of the surface pressures ahead of and behind the step and the local boundary layer conditions are also presented.

  2. Modeling of Diffuse-Diffuse Photon Coupling via a Nonscattering Region: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hoon; Kim, Seunghwan; Kim, Youn Tae

    2004-06-01

    It is well established that diffusion approximation is valid for light propagation in highly scattering media, but it breaks down in nonscattering regions. The previous methods that manipulate nonscattering regions are essentially boundary-to-boundary coupling (BBC) methods through a nonscattering void region based on the radiosity theory. We present a boundary-to-interior coupling (BIC) method. BIC is based on the fact that the collimated pencil beam incident on the medium can be replaced by an isotropic point source positioned at one reduced scattering length inside the medium from an illuminated point. A similar replacement is possible for the nondiffuse lights that enter the diffuse medium through the void, and it is formulated as the BIC method. We implemented both coupling methods using the finite element method (FEM) and tested for the circle with a void gap and for a four-layer adult head model. For mean time of flight, the BIC shows better agreement with Monte Carlo (MC) simulation results than BBC. For intensity, BIC shows a comparable match with MC data compared with that of BBC. The effect of absorption of the clear layer in the adult head model was investigated. Both mean time and intensity decrease as absorption of the clear layer increases.

  3. Modeling of diffuse-diffuse photon coupling via a nonscattering region: a comparative study.

    PubMed

    Lee, Jae Hoon; Kim, Seunghwan; Kim, Youn Tae

    2004-06-20

    It is well established that diffusion approximation is valid for light propagation in highly scattering media, but it breaks down in nonscattering regions. The previous methods that manipulate nonscattering regions are essentially boundary-to-boundary coupling (BBC) methods through a nonscattering void region based on the radiosity theory. We present a boundary-to-interior coupling (BIC) method. BIC is based on the fact that the collimated pencil beam incident on the medium can be replaced by an isotropic point source positioned at one reduced scattering length inside the medium from an illuminated point. A similar replacement is possible for the nondiffuse lights that enter the diffuse medium through the void, and it is formulated as the BIC method. We implemented both coupling methods using the finite element method (FEM) and tested for the circle with a void gap and for a four-layer adult head model. For mean time of flight, the BIC shows better agreement with Monte Carlo (MC) simulation results than BBC. For intensity, BIC shows a comparable match with MC data compared with that of BBC. The effect of absorption of the clear layer in the adult head model was investigated. Both mean time and intensity decrease as absorption of the clear layer increases.

  4. Design and Evaluation of a New Boundary-Layer Rake for Flight Testing

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Oates, David L.; Gonsalez, Jose C.

    2000-01-01

    A new boundary-layer rake has been designed and built for flight testing on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture. A feature unique to this rake is its curved body, which allows pitot tubes to be more densely clustered in the near-wall region than conventional rakes allow. This curved rake design has a complex three-dimensional shape that requires innovative solid-modeling and machining techniques. Finite-element stress analysis of the new design shows high factors of safety. The rake has passed a ground test in which random vibration measuring 12 g rms was applied for 20 min in each of the three normal directions. Aerodynamic evaluation of the rake has been conducted in the NASA Glenn Research Center 8 x 6 Supersonic Wind Tunnel at Mach 0-2. The pitot pressures from the new rake agree with conventional rake data over the range of Mach numbers tested. The boundary-layer profiles computed from the rake data have been shown to have the standard logarithmic-law profile. Skin friction values computed from the rake data using the Clauser plot method agree with the Preston tube results and the van Driest II compressible skin friction correlation to approximately +/-5 percent.

  5. Application of the order-of-magnitude analysis to a fourth-order RANS closure for simulating a 2D boundary layer

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana V.

    2013-11-01

    Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.

  6. Utilization of the computational technique to improve the thermophysical performance in the transportation of an electrically conducting Al2O3 - Ag/H2O hybrid nanofluid

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.

    2017-12-01

    In this study, we analyzed the induced magnetic field effect on stagnation-point flow of a Al2O3-Ag/water hybrid nanofluid over a stretching sheet. Hybrid nanofluid, a new type of conventional fluid has been used for enhancement of heat transfer within boundary layer flow. It is notable here that only 1% to 5% contribution of nanoparticles enhance thermal conductivity of water. Nonlinear governing equations are simplified into boundary layer equations under boundary layer approximation assumption. A coupled system of nonlinear partial differential equation is transformed into a nonlinear system of ordinary differential equation by implementing suitable similarity conversions. Numerical analysis is performed by means of Keller box scheme. Effects of different non-dimensional governing parameters on velocity, induced magnetic field and temperature profiles, along with skinfriction coefficient and local Nusselt number, are discussed and presented through graphs and tables. Hybrid nanofluid is considered by keeping the 0.1% volumetric fraction of silver. From this study it is observed that the heat transfer rate of hybrid nanofluid (Al2O3-Ag/water) is higher than nanofluid (Ag/water). Novel results computed are useful in academic studies of hybrid nanofluids in engineering and industry.

  7. Category 5: Sound Generation In Viscous Problems. Problem 2: Sound Generation By Flow Over a Cavity

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.

    2004-01-01

    The discrete frequency sound produced by the flow of air at low subsonic speeds over a deep cavity was investigated. A long aspect ratio rectangular cavity with a leading edge overhang that cut off of the cavity opening was placed flush with the top surface of a wind tunnel. The approach flow velocity was maintained at 50 m/s for the benchmark problem although results are also presented for other conditions. Boundary layer measurements conducted with a single element hotwire anemometer indicated that the boundary layer thickness just upstream of the cavity was equal to 17 mm. Sound pressure level measurements were made at three locations in the cavity: the center of the leading edge wall, the center of the cavity floor, and the center of the trailing edge wall. Three discrete tones were measured at all three locations with corresponding Strouhal numbers (based on cavity opening length and approach flow velocity) equal to 0.24, 0.26, and 0.41. The amplitudes of each tone were approximately equal at each measurement location in the cavity. Measurements made at other approach flow conditions indicated that the approach flow velocity and the boundary layer thickness affected the frequency characteristics of the discrete tones.

  8. Polycyclic aromatic hydrocarbons in mountain soils of the subtropical Atlantic.

    PubMed

    Ribes, A; Grimalt, J O; Torres García, C J; Cuevas, E

    2003-01-01

    Surface soil samples from various altitudes on Tenerife Island, ranging from sea level up to 3400 m above mean sea level, were analyzed to study the distribution of 26 polycyclic aromatic hydrocarbons (PAHs) in a remote subtropical area. The stable atmospheric conditions in this island define three vertically stratified layers: marine boundary, trade-wind inversion, and free troposphere. Total PAH concentrations, 1.9 to 6000 microg/kg dry wt., were high when compared with those in tropical areas and in a similar range to those in temperate areas. In the marine boundary layer, fluoranthene (Fla), pyrene (Pyr), benz [a]anthracene (BaA), and chrysene (C + T) were largely dominant. The predominance of Fla over Pyr may reflect photo-oxidative processes during atmospheric transport, although coal combustion inputs cannot be excluded. The PAHs found in higher concentration in the soils from the inversion layer were benzo[b + j]fluoranthene (BbjF) + benzo[k]fluoranthene (BkF) > benzo[e]pyrene (BeP) approximately indeno[1,2, 3-cd]pyrene (Ind) > benzo[a]pyrene (BaP) approximately benzo[ghi]perylene (Bghi) > coronene (Cor) approximately dibenz[a,h]anthracene (Dib), reflecting that high temperatures and insolation prevent the accumulation of PAHs more volatile than BbjF in significant amounts. These climatic conditions involve a process of standardization that prevents the identification of specific PAH sources such as traffic, forest fires, or industrial inputs. Only soils with high total organic carbon (TOC) (e.g., 10-30%) preserve the more volatile compounds such as phenanthrene (Phe), methylphenanthrenes (MPhe), dimethylphenanthrenes (DMPhe), and retene (Ret). However, no relation between PAHs and soil TOC and black carbon (BC) was found. The specific PAH distributions of the free tropospheric region suggest a direct input from pyrolytic processes related to the volcanic emission of gases in Teide.

  9. Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy.

    PubMed

    Rümpker, Georg; Ryberg, Trond; Bock, Günter

    2003-10-02

    Lithospheric-scale transform faults play an important role in the dynamics of global plate motion. Near-surface deformation fields for such faults are relatively well documented by satellite geodesy, strain measurements and earthquake source studies, and deeper crustal structure has been imaged by seismic profiling. Relatively little is known, however, about deformation taking place in the subcrustal lithosphere--that is, the width and depth of the region associated with the deformation, the transition between deformed and undeformed lithosphere and the interaction between lithospheric and asthenospheric mantle flow at the plate boundary. Here we present evidence for a narrow, approximately 20-km-wide, subcrustal anisotropic zone of fault-parallel mineral alignment beneath the Dead Sea transform, obtained from an inversion of shear-wave splitting observations along a dense receiver profile. The geometry of this zone and the contrast between distinct anisotropic domains suggest subhorizontal mantle flow within a vertical boundary layer that extends through the entire lithosphere and accommodates the transform motion between the African and Arabian plates within this relatively narrow zone.

  10. An efficient solution technique for shockwave-boundary layer interactions with flow separation and slot suction effects

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Mcrae, D. Scott

    1991-01-01

    An efficient method for computing two-dimensional compressible Navier-Stokes flow fields is presented. The solution algorithm is a fully-implicit approximate factorization technique based on an unsymmetric line Gauss-Seidel splitting of the equation system Jacobian matrix. Convergence characteristics are improved by the addition of acceleration techniques based on Shamanskii's method for nonlinear equations and Broyden's quasi-Newton update. Characteristic-based differencing of the equations is provided by means of Van Leer's flux vector splitting. In this investigation, emphasis is placed on the fast and accurate computation of shock-wave-boundary layer interactions with and without slot suction effects. In the latter context, a set of numerical boundary conditions for simulating the transpiration flow in an open slot is devised. Both laminar and turbulent cases are considered, with turbulent closure provided by a modified Cebeci-Smith algebraic model. Comparisons with computational and experimental data sets are presented for a variety of interactions, and a fully-coupled simulation of a plenum chamber/inlet flowfield with shock interaction and suction is also shown and discussed.

  11. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  12. Heat and mass transfer in combustion - Fundamental concepts and analytical techniques

    NASA Technical Reports Server (NTRS)

    Law, C. K.

    1984-01-01

    Fundamental combustion phenomena and the associated flame structures in laminar gaseous flows are discussed on physical bases within the framework of the three nondimensional parameters of interest to heat and mass transfer in chemically-reacting flows, namely the Damkoehler number, the Lewis number, and the Arrhenius number which is the ratio of the reaction activation energy to the characteristic thermal energy. The model problems selected for illustration are droplet combustion, boundary layer combustion, and the propagation, flammability, and stability of premixed flames. Fundamental concepts discussed include the flame structures for large activation energy reactions, S-curve interpretation of the ignition and extinctin states, reaction-induced local-similarity and non-similarity in boundary layer flows, the origin and removal of the cold boundary difficulty in modeling flame propagation, and effects of flame stretch and preferential diffusion on flame extinction and stability. Analytical techniques introduced include the Shvab-Zeldovich formulation, the local Shvab-Zeldovich formulation, flame-sheet approximation and the associated jump formulation, and large activation energy matched asymptotic analysis. Potentially promising research areas are suggested.

  13. Hubble Space Telescope observations of the dwarf Nova Z Chamaeleontis through two eruption cycles

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Wood, Janet H.; Bless, R. C.; Clemens, J. C.; Dolan, J. F.; Elliot, J. L.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.

    1995-01-01

    We have obtained the first high-speed photometry of the eclipsing dwarf nova Z Cha at ultraviolet wavelengths with the Hubble Space Telescope (HST). We observed the eclipse roughly every 4 days over two cycles of the normal eruptions of Z Cha, giving a uniquely complete coverage of its outburst cycle. The accretion disk dominated the ultraviolet light curve of Z Cha at the peak of an eruption; the white dwarf, the bright spot on the edge of the disk, and the boundary layer were all invisible. We were able to obtain an axisymmetric map of the accretion disk at this time only by adopting a flared disk with an opening angle of approximately 8 deg. The run of brightness temperature with radius in the disk at the peak of the eruption was too flat to be consistent with a steady state, optically thick accretion disk. The local rate of mass flow through the disk was approximately 5 x 10(exp -10) solar masses/yr near the center of the disk and approximately 5 x 10(exp -9) solar masses/yr near the outer edge. The white dwarf, the accretion disk, and the boundary layer were all significant contributors to the ultraviolet flux on the descending branches of the eruptions. The temperature of the white dwarf during decline was 18,300 K less than T(sub wd) less than 21,800 K, which is significantly greater than at minimum light. Six days after the maximum of an eruption Z Cha has faded to near minimum light at ultraviolet wavelenghts, but was still approximately 70% brighter at minimum light in the B band. About one-quarter of the excess flux in the B band came from the accretion disk. Thus, the accretion disk faded and became invisible at ultraviolet wavelengths before it faded at optical wavelenghts. The disk did, however, remain optically thick and obscured the lower half of the white dwarf at ultraviolet and possibly at optical wavelenghts for 2 weeks after the eruption ended. By the third week after eruptiuons the eclipse looked like a simple occultation of an unobscured, spherical white dwarf by a dark secondary star. The center of the accretion disk was, therfore, optically thin at ultraviolet wavelenghts and the boundary layer was too faint to be visible.

  14. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  15. Dynamics of the outgoing turbulent boundary layer in a Mach 5 unswept compression ramp interaction

    NASA Technical Reports Server (NTRS)

    Gramann, Richard A.; Dolling, David S.

    1990-01-01

    Wall pressure fluctuations have been measured under the unsteady separation shock and on the ramp face in an unswept Mach 5 compression ramp interaction. The freestream Reynolds number was 51.0 x 10 to the 6th/m, and the incoming turbulent boundary layer developed on the tunnel floor under approximately adiabatic wall temperature conditions. Standard data-acquisition methods, as well as real-time and posttest conditional sampling techniques were used. The results show that the mean and rms pressure levels are strong functions of separation shock position. At all stations on the ramp, from the corner to where the pressure reaches the theoretical inviscid value, the pressure signals have two dominant components: a low frequency component characteristic of the global unsteadiness, which correlates with the separation shock motion, and a higher frequency component associated with turbulence. The former is the major contributor to the overall signal variance.

  16. Computation of the turbulent boundary layer downstream of vortex generators

    NASA Astrophysics Data System (ADS)

    Chang, Paul K.

    1987-12-01

    The approximate analysis of three-dimensional incompressible turbulent boundary layer downstream of vortex generators is presented. Extensive numerical computations are carried out to assess the effectiveness of single-row, counter-rotating vane-type vortex generators to alleviate flow separation lines. Flow separation downstream of the vortex generators on a thick airfoil are determined in terms of size, location, and arrangement of the vortex generators. These lines are compared with the separation line without the vortex generators. High efficiency is obtained with the moderately slender rectangular blade of the generator. The results indicate that separations is alleviated more effectively in the region closer to the symmetry axis of the generator than in the outer region of the symmetry axis. No optimum conditions for the alleviation of flow separation are established in this investigation, and no comparisons are made with other analytical results and experimental data.

  17. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    PubMed

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  18. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  19. Computation of turbulent flow in a thin liquid layer of fluid involving a hydraulic jump

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1991-01-01

    Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-epsilon model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow was found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.

  20. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  1. Day and night profiles of tropospheric nitrous oxide

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Connors, Vickie S.; Levine, Joel S.; Edahl, Robert A., Jr.

    1986-01-01

    Daytime and nighttime vertical profiles of the tropospheric trace gas N2O were determined from grab sample collections off the Atlantic and Gulf coasts of Florida. The grab samples were collected during the week of October 7-13, 1984, from a Lear jet during descent spirals over an altitude range of 12.5-0.3 km in approximately 1.2-km intervals. During this period there were two distinct airflow regimes sampled: (1) the surface boundary layer (less than 2 km), in which the wind direction was typically easterly; and (2) the regime above the boundary layer, which was predominantly characterized by westerly flow. N2O mixing ratios, normalized to dry air, were determined from 148 daytime and nighttime samplings. N2O was found to be uniformly mixed at all altitudes at 301.9 + or - 2.4 parts per billion by volume.

  2. Turbulence in the presence of internal waves in the bottom boundary layer of the California inner shelf

    NASA Astrophysics Data System (ADS)

    Allen, Rachel M.; Simeonov, Julian A.; Calantoni, Joseph; Stacey, Mark T.; Variano, Evan A.

    2018-05-01

    Turbulence measurements were collected in the bottom boundary layer of the California inner shelf near Point Sal, CA, for 2 months during summer 2015. The water column at Point Sal is stratified by temperature, and internal bores propagate through the region regularly. We collected velocity, temperature, and turbulence data on the inner shelf at a 30-m deep site. We estimated the turbulent shear production ( P), turbulent dissipation rate ( ɛ), and vertical diffusive transport ( T), to investigate the near-bed local turbulent kinetic energy (TKE) budget. We observed that the local TKE budget showed an approximate balance ( P ≈ ɛ) during the observational period, and that buoyancy generally did not affect the TKE balance. On a finer resolution timescale, we explored the balance between dissipation and models for production and observed that internal waves did not affect the balance in TKE at this depth.

  3. Plasma regimes in the deep geomagnetic tail - ISEE 3

    NASA Astrophysics Data System (ADS)

    Bame, S. J.; Anderson, R. C.; Asbridge, J. R.; Baker, D. N.; Feldman, W. C.; Gosling, J. T.; Hones, E. W., Jr.; McComas, D. J.; Zwickl, R. D.

    1983-09-01

    The spacecraft remained close to or within a previously unexplored part of the distant (60-220 earth radii) geomagnetic tail nearly continuously from January 1 to March 30, 1983. Analysis of the data reveals that all of the plasma regimes identified previously with near-earth measurements (plasma sheet, low-latitude boundary layer, plasma mantle, lobe, and magnetosheath) remain recognizable in the distant tail. These regimes, however, are found to be intermingled in a more chaotic fashion than near the earth. Within the plasma sheet at approximately 200 earth radii, typical flow velocities are about 500 km/s tailward, considerably higher than in the near-earth plasma sheet. Earthward flow within the plasma sheet is observed occasionally, indicating the temporary presence of a neutral line beyond 220 earth radii. Also found are strong bidirectional electron anisotropies throughout much of the distant plasma sheet, boundary layer, and magnetosheath.

  4. Experimental Investigation of Aerodynamic Noise Generated by a Train-Car Gap

    NASA Astrophysics Data System (ADS)

    Mizushima, Fumio; Takakura, Hiroyuki; Kurita, Takeshi; Kato, Chisachi; Iida, Akiyoshi

    To investigate the mechanism of noise generation by a train-car gap, which is one of a major source of noise in Shinkansen trains, experiments were carried out in a wind tunnel using a 1/5-scale model train. We measured velocity profiles of the boundary layer that approaches the gap and confirmed that the boundary layer is turbulent. We also measured the power spectrum of noise and surface pressure fluctuations around the train-car gap. Peak noise and broadband noise were observed. It is found that strong peak noise is generated when the vortex shedding frequency corresponds to the acoustic resonance frequency determined by the geometrical shape of the gap, and that broadband noise is generated at the downstream edge of the gap where vortexes collide. It is estimated that the convection velocity of the vortices in the gap is approximately 45% of the uniform flow velocity.

  5. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  6. Blunt trauma to large vessels: a mathematical study

    PubMed Central

    Ismailov, Rovshan M; Shevchuk, Nikolai A; Schwerha, Joseph; Keller, Lawrence; Khusanov, Higmat

    2004-01-01

    Background Blunt trauma causes short-term compression of some or all parts of the chest, abdomen or pelvis and changes hemodynamics of the blood. Short-term compression caused by trauma also results in a short-term decrease in the diameter of blood vessels. It has been shown that with a sudden change in the diameter of a tube or in the direction of the flow, the slower-moving fluid near the wall stops or reverses direction, which is known as boundary layer separation (BLS). We hypothesized that a sudden change in the diameter of elastic vessel that results from compression may lead not only to BLS but also to other hemodynamic changes that can damage endothelium. Methods We applied Navier-Stokes, multiphase and boundary layer equations to examine such stress. The method of approximation to solve the BL equations was used. Experiments were conducted in an aerodynamic tube, where incident flow velocity and weight of carriage with particles before and after blowing were measured. Results We found that sudden compression resulting from trauma leads to (1) BLS on the curved surface of the vessel wall; (2) transfer of laminar boundary layer into turbulent boundary layer. Damage to the endothelium can occur if compression is at least 25% and velocity is greater than 2.4 m/s or if compression is at least 10% and velocity is greater than 2.9 m/s. Conclusion Our research may point up new ways of reducing the damage from blunt trauma to large vessels. It has the potential for improvement of safety features of motor vehicles. This work will better our understanding of the precise mechanics and critical variables involved in diagnosis and prevention of blunt trauma to large vessels. PMID:15153246

  7. PANTHER Data from SOLVE-II Through CR-AVE: A Contrast Between Long and Short Lived Compounds.

    NASA Astrophysics Data System (ADS)

    Moore, F. L.; Dutton, G. S.; Elkins, J. W.; Hall, B. D.; Hurst, D. F.; Nance, J. D.; Thompson, T. M.

    2006-12-01

    PANTHER (PAN and other Trace Hydrohalocarbons ExpeRiment) is an airborne 6-channel gas chromatograph that measures approximately 20 important atmospheric trace gases whose changing burdens impact air quality, climate change and both stratospheric and tropospheric ozone. In this presentation we will contrast measurements of the long-lived compounds against the short-lived compounds. The long-lived compounds tend to have well-defined troposphere boundary conditions and develop spatial gradients due to stratospheric processing. These measurements have played a major role in quantifying stratospheric transport, stratosphere- troposphere exchange, and ozone loss. In contrast the short-lived species develop spatial and temporal gradients in the tropical tropopause layer (TTL), due to variations in the surface boundary layer concentrations and the coupling of this surface boundary layer to the TTL via convective processes. Deep convection acts like a "conveyor belt" between the source region in the boundary layer and the relatively stable TTL region, often bypassing the free troposphere where scavenging of these short lived species takes place. Loss rates due to reaction with OH and thermal decomposition are reduced in the cold, dry air of the TTL, resulting in longer survival times. Isolation of the TTL region from the free troposphere can last from days to over a month. Significant amounts of these short-lived compound and their byproducts can therefore be transported into the lower stratosphere (LS). Of particular interest are compounds that contain bromine, iodine, and sulfur, not only because of their intrinsic harmful effects in the atmosphere, but also because they have unique source and sink regions that can help to de- convolve transport.

  8. Application of Shark Skin Flow Control Techniques to Airflow

    NASA Astrophysics Data System (ADS)

    Morris, Jackson Alexander

    Due to millions of years of evolution, sharks have evolved to become quick and efficient ocean apex predators. Shark skin is made up of millions of microscopic scales, or denticles, that are approximately 0.2 mm in size. Scales located on the shark's body where separation control is paramount (such as behind the gills or the trailing edge of the pectoral fin) are capable of bristling. These scales are hypothesized to act as a flow control mechanism capable of being passively actuated by reversed flow. It is believed that shark scales are strategically sized to interact with the lower 5% of a boundary layer, where reversed flow occurs at the onset of boundary layer separation. Previous research has shown shark skin to be capable of controlling separation in water. This thesis aims to investigate the same passive flow control techniques in air. To investigate this phenomenon, several sets of microflaps were designed and manufactured with a 3D printer. The microflaps were designed in both 2D (rectangular) and 3D (mirroring shark scale geometry) variants. These microflaps were placed in a low-speed wind tunnel in the lower 5% of the boundary layer. Solid fences and a flat plate diffuser with suction were placed in the tunnel to create different separated flow regions. A hot film probe was used to measure velocity magnitude in the streamwise plane of the separated regions. The results showed that low-speed airflow is capable of bristling objects in the boundary layer. When placed in a region of reverse flow, the microflaps were passively actuated. Microflaps fluctuated between bristled and flat states in reverse flow regions located close to the reattachment zone.

  9. Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: The XPIA field campaign

    DOE PAGES

    Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan; ...

    2017-03-07

    To assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of windsmore » over volumes from scanning lidars and radars are in close agreement, enabling assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipitation events, but they struggle at times to provide data during periods with limited atmospheric scatterers. In contrast, for the deployment geometry tested here, the lidars have slower scan rates and less range, but provide more data during non-precipitating atmospheric conditions. Microwave radiometers provide temperature profiles with approximately the same uncertainty as Radio-Acoustic Sounding Systems (RASS). Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. As a result, we highlight cases for validation of mesoscale or large-eddy simulations, providing information on accessing the archived dataset. We conclude that modern remote sensing systems provide a generational improvement in observational capabilities, enabling resolution of fine-scale processes critical to understanding inhomogeneous boundary-layer flows.« less

  10. Supersonic Wind Tunnel Tests of a Half-axisymmetric 12 Deg-spike Inlet to a Rocket-based Combined-cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.

    2001-01-01

    Results of an isolated inlet test for NASA's GTX air-breathing launch vehicle concept are presented. The GTX is a Vertical Take-off/ Horizontal Landing reusable single-stage-to-orbit system powered by a rocket-based combined-cycle propulsion system. Tests were conducted in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel during two entries in October 1998 and February 1999. Tests were run from Mach 2.8 to 6. Integrated performance parameters and static pressure distributions are reported. The maximum contraction ratios achieved in the tests were lower than predicted by axisymmetric Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD). At Mach 6, the maximum contraction ratio was roughly one-half of the CFD value of 16. The addition of either boundary-layer trip strips or vortex generators had a negligible effect on the maximum contraction ratio. A shock boundary-layer interaction was also evident on the end-walls that terminate the annular flowpath cross section. Cut-back end-walls, designed to reduce the boundary-layer growth upstream of the shock and minimize the interaction, also had negligible effect on the maximum contraction ratio. Both the excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls were identified as possible reasons for the discrepancy between the CFD predictions and the experiment. It is recommended that the centerbody spike and throat angles be reduced in order to lessen the induced pressure rise. The addition of a step on the cowl surface, and planar end-walls more closely approximating a plane of symmetry are also recommended. Provisions for end-wall boundary-layer bleed should be incorporated.

  11. Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: The XPIA field campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan

    To assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of windsmore » over volumes from scanning lidars and radars are in close agreement, enabling assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipitation events, but they struggle at times to provide data during periods with limited atmospheric scatterers. In contrast, for the deployment geometry tested here, the lidars have slower scan rates and less range, but provide more data during non-precipitating atmospheric conditions. Microwave radiometers provide temperature profiles with approximately the same uncertainty as Radio-Acoustic Sounding Systems (RASS). Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. As a result, we highlight cases for validation of mesoscale or large-eddy simulations, providing information on accessing the archived dataset. We conclude that modern remote sensing systems provide a generational improvement in observational capabilities, enabling resolution of fine-scale processes critical to understanding inhomogeneous boundary-layer flows.« less

  12. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  13. A Study of the Physical Processes of an Advection Fog Boundary Layer

    NASA Astrophysics Data System (ADS)

    Liu, Duan Yang; Yan, Wen Lian; Yang, Jun; Pu, Mei Juan; Niu, Sheng Jie; Li, Zi Hua

    2016-01-01

    A large quantity of advection fog appeared in the Yangtze River delta region between 1 and 2 December 2009. Here, we detail the fog formation and dissipation processes and the background weather conditions. The fog boundary layer and its formation and dissipation mechanisms have also been analyzed using field data recorded in a northern suburb of Nanjing. The results showed the following: (1) This advection fog was generated by interaction between advection of a north-east cold ground layer and a south-east warm upper layer. The double-inversion structure generated by this interaction between the cold and warm advections and steady south-east vapour transport was the main cause of this long-lasting fog. The double-inversion structure provided good thermal conditions for the thick fog, and the south-east vapour transport was not only conducive to maintaining the thickness of the fog but also sustained its long duration. (2) The fog-top altitude was over 600 m for most of the time, and the fog reduced visibility to less than 100 m for approximately 12 h. (3) The low-level jet near the lower inversion layer also played a role in maintaining the thick fog system by promoting heat, momentum and south-east vapour transport.

  14. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  15. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  16. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  17. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  18. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  19. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  20. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  1. Flow separation of currents in shallow water

    USGS Publications Warehouse

    Signell, Richard P.

    1989-01-01

    Flow separation of currents in shallow coastal areas is investigated using a boundary layer model for two-dimensional (depth-averaged) tidal flow past an elliptic headland. If the shoaling region near the coast is narrow compared to the scale of the headland, bottom friction causes the flow to separate just downstream of the point where the pressure gradient switches from favoring to adverse. As long as the shoaling region at the coast is well resolved, the inclusion of eddy viscosity and a no-slip boundary condition have no effect on this result. An approximate analytic solution for the pressure gradient along the boundary is obtained by assuming the flow away from the immediate vicinity of the boundary is irrotational. On the basis of the pressure gradient obtained from the irrotational flow solution, flow separation is a strong function of the headland aspect ratio, an equivalent Reynolds number, and a Keulegan-Carpenter number.

  2. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  3. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  4. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  5. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    NASA Astrophysics Data System (ADS)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of growing particles that moved over the measurement site. The particles of the regional event as well as the particles of the plume were uniformly distributed in the vertical direction and showed a similar growth rate of approximately 2 nm/h. The plume caused sharp discontinuities in the number size distribution of the growing particle mode. These kinds of discontinuities are seen quite often on SMEAR II data during NPF events and it is likely that they are caused by inhomogeneous NPF in the horizontal direction (possibly narrow long plumes). This work is supported by European Commission under the Framework Programme 7 (FP7-ENV-2010-265148) and by the Academy of Finland Centre of Excellence program (project no. 1118615). The Zeppelin is accompanied by an international team of scientists and technicians. They are all warmly acknowledged. References [1] Kulmala, M., et al., (2013), Direct Observations of Atmospheric Aerosol Nucleation, Science, 339, 943-946 [2] Kulmala, M., et al., (2012), Measurement of the nucleation of atmospheric aerosol particles, Nature Protocols, 7, 1651-1667

  6. A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1996-11-01

    Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.

  7. Mass transport at rotating disk electrodes: effects of synthetic particles and nerve endings.

    PubMed

    Chiu, Veronica M; Lukus, Peter A; Doyle, Jamie L; Schenk, James O

    2011-11-01

    An unstirred layer (USL) exists at the interface of solids with solutions. Thus, the particles in brain tissue preparations possess a USL as well as at the surface of a rotating disk electrode (RDE) used to measure chemical fluxes. Time constraints for observing biological kinetics based on estimated thicknesses of USLs at the membrane surface in real samples of nerve endings were estimated. Liposomes, silica, and Sephadex were used separately to model the tissue preparation particles. Within a solution stirred by the RDE, both diffusion and hydrodynamic boundary layers are formed. It was observed that the number and size of particles decreased the following: the apparent diffusion coefficient excluding Sephadex, boundary layer thicknesses excluding silica, sensitivity excluding diluted liposomes (in agreement with results from other laboratories), limiting current potentially due to an increase in the path distance, and mixing time. They have no effect on the detection limit (6 ± 2 nM). The RDE kinetically resolves transmembrane transport with a timing of approximately 30 ms. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Gas Near a Wall: Shortened Mean Free Path, Reduced Viscosity, and the Manifestation of the Knudsen Layer in the Navier-Stokes Solution of a Shear Flow

    NASA Astrophysics Data System (ADS)

    Abramov, Rafail V.

    2018-06-01

    For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.

  9. Changes in Flat Plate Wake Characteristics Obtained With Decreasing Plate Thickness

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for four different Reynolds numbers based on plate thickness (D) and at constant plate length. The value of ?/D varies by a factor of approximately 20 in the computations (? being the boundary layer momentum thickness at the trailing edge). The separating boundary layers are turbulent in all the cases. One objective of the study is to understand the changes in wake characteristics as the plate thickness is reduced (increasing ?/D). Vortex shedding is vigorous in the low ?/D cases with a substantial decrease in shedding intensity in the largest ?/D case (for all practical purposes shedding becomes almost intermittent). Other characteristics that are significantly altered with increasing ?/D are the roll-up of the detached shear layers and the magnitude of fluctuations in shedding period. These effects are explored in depth. The effects of changing ?/D on the distributions of the time-averaged, near-wake velocity statistics are discussed.

  10. Control of vortical separation on conical bodies

    NASA Technical Reports Server (NTRS)

    Mourtos, Nikos J.; Roberts, Leonard

    1987-01-01

    In a variety of aeronautical applications, the flow around conical bodies at incidence is of interest. Such applications include, but are not limited to, highly maneuverable aircraft with delta wings, the aerospace plane and nose portions of spike inlets. The theoretical model used has three parts. First, the single line vortex model is used within the framework of slender body theory, to compute the outer inviscid field for specified separation lines. Next, the three dimensional boundary layer is represented by a momentum equation for the cross flow, analogous to that for a plane boundary layer; a von Karman Pohlhausen approximation is applied to solve this equation. The cross flow separation for both laminar and turbulent layers is determined by matching the pressure at the upper and lower separation points. This iterative procedure yields a unique solution for the separation lines and consequently for the position of the vortices and the vortex lift on the body. Lastly, control of separation is achieved by blowing tangentially from a slot located along a cone generator. It is found that for very small blowing coefficients, the separation can be postponed or suppressedy completely.

  11. Flight test results for the Daedalus and Light Eagle human powered aircraft

    NASA Technical Reports Server (NTRS)

    Sullivan, R. Bryan; Zerweckh, Siegfried H.

    1988-01-01

    The results of the flight test program of the Daedalus and Light Eagle human powered aircraft in the winter of 1987/88 are given. The results from experiments exploring the Light Eagle's rigid body and structural dynamics are presented. The interactions of these dynamics with the autopilot design are investigated. Estimates of the power required to fly the Daedalus aircraft are detailed. The system of sensors, signal conditioning boards, and data acquisition equipment used to record the flight data is also described. In order to investigate the dynamics of the aircraft, flight test maneuvers were developed to yield maximum data quality from the point of view of estimating lateral and longitudinal stability derivatives. From this data, structural flexibility and unsteady aerodynamics have been modeled in an ad hoc manner and are used to augment the equations of motion with flexibility effects. Results of maneuvers that were flown are compared with the predictions from the flexibility model. To extend the ad hoc flexibility model, a fully flexible aeroelastic model has been developed. The model is unusual in the approximate equality of many structural natural frequencies and the importance of unsteady aerodynamic effects. the Gossamer Albatross. It is hypothesized that this inverse ground effect is caused by turbulence in the Earth's boundary layer. The diameters of the largest boundary layer eddies (which represent most of the turbulent kinetic energy) are proportional to altitude; thus, closer to the ground, the energy in the boundary layer becomes concentrated in eddies of smaller and smaller diameter. Eventually the eddies become sufficiently small (approximately 0.5 cm) that they trip the laminar boundary layer on the wing. As a result, a greater percentage of the wing area is covered with turbulent flow. Consequently the aircraft's drag and the pow er required both increase as the aircraft flies closer to the ground. The results of the flight test program are examined critically, especially with respect to future applications. Maneuvers that allow the observation of stability derivatives for flexible aircraft are detailed. Considerations for the design of autopilots for future human power aircraft and high-altitude RPV's are discussed. Techniques useful in estimating the power required to fly aircraft of very high lift to drag ratio are described.

  12. Thermo-Osmotic Flow in Thin Films.

    PubMed

    Bregulla, Andreas P; Würger, Alois; Günther, Katrin; Mertig, Michael; Cichos, Frank

    2016-05-06

    We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.

  13. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  14. Development of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    The numerical simulation of many aerodynamic non-periodic flows of practical interest involves discretized computational domains that often must be artificially truncated. Appropriate boundary conditions are required at these truncated domain boundaries, and ideally, these boundary conditions should be perfectly "absorbing" or "nonreflecting" so that they do not contaminate the flow field in the interior of the domain. The proper specification of these boundaries is critical to the stability, accuracy, convergence, and quality of the numerical solution, and has been the topic of considerable research. The need for accurate boundary specification has been underscored in recent years with efforts to apply higher-fidelity methods (DNS, LES) in conjunction with high-order low-dissipation numerical schemes to realistic flow configurations. One of the most popular choices for specifying these boundaries is the characteristics-based boundary condition where the linearized flow field at the boundaries are decomposed into characteristic waves using either one-dimensional Riemann or other multi-dimensional Riemann approximations. The values of incoming characteristics are then suitably modified. The incoming characteristics are specified at the in flow boundaries, and at the out flow boundaries the variation of the incoming characteristic is zeroed out to ensure no reflection. This, however, makes the problem ill-posed requiring the use of an ad-hoc parameter to allow small reflections that make the solution stable. Generally speaking, such boundary conditions work reasonably well when the characteristic flow direction is normal to the boundary, but reflects spurious energy otherwise. An alternative to the characteristic-based boundary condition is to add additional "buffer" regions to the main computational domain near the artificial boundaries, and solve a different set of equations in the buffer region in order to minimize acoustic reflections. One approach that has been used involves modeling the pressure fluctuations as acoustic waves propagating in the far-field relative to a single noise-source inside the buffer region. This approach treats vorticity-induced pressure fluctuations the same as acoustic waves. Another popular approach, often referred to as the "sponge layer," attempts to dampen the flow perturbations by introducing artificial dissipation in the buffer region. Although the artificial dissipation removes all perturbations inside the sponge layer, incoming waves are still reflected from the interface boundary between the computational domain and the sponge layer. The effect of these refkections can be somewhat mitigated by appropriately selecting the artificial dissipation strength and the extent of the sponge layer. One of the most promising variants on the buffer region approach is the Perfectly Matched Layer (PML) technique. The PML technique mitigates spurious reflections from boundaries and interfaces by dampening the perturbation modes inside the buffer region such that their eigenfunctions remain unchanged. The technique was first developed by Berenger for application to problems involving electromagnetic wave propagation. It was later extended to the linearized Euler, Euler and Navier-Stokes equations by Hu and his coauthors. The PML technique ensures the no-reflection property for all waves, irrespective of incidence angle, wavelength, and propagation direction. Although the technique requires the solution of a set of auxiliary equations, the computational overhead is easily justified since it allows smaller domain sizes and can provide better accuracy, stability, and convergence of the numerical solution. In this paper, the PML technique is developed in the context of a high-order spectral-element Discontinuous Galerkin (DG) method. The technique is compared to other approaches to treating the in flow and out flow boundary, such as those based on using characteristic boundary conditions and sponge layers. The superiority of the current PML technique over other approaches is demonstrated for a range of test cases, viz., acoustic pulse propagation, convective vortex, shear layer flow, and low-pressure turbine cascade flow. The paper is structured as follows. We first derive the PML equations from the non{linear Euler equations. A short description of the higher-order DG method used is then described. Preliminary results for the four test cases considered are then presented and discussed. Details regarding current work that will be included in the final paper are also provided.

  15. Resonances and vibrations in an elevator cable system due to boundary sway

    NASA Astrophysics Data System (ADS)

    Gaiko, Nick V.; van Horssen, Wim T.

    2018-06-01

    In this paper, an analytical method is presented to study an initial-boundary value problem describing the transverse displacements of a vertically moving beam under boundary excitation. The length of the beam is linearly varying in time, i.e., the axial, vertical velocity of the beam is assumed to be constant. The bending stiffness of the beam is assumed to be small. This problem may be regarded as a model describing the lateral vibrations of an elevator cable excited at its boundaries by the wind-induced building sway. Slow variation of the cable length leads to a singular perturbation problem which is expressed in slowly changing, time-dependent coefficients in the governing differential equation. By providing an interior layer analysis, infinitely many resonance manifolds are detected. Further, the initial-boundary value problem is studied in detail using a three-timescales perturbation method. The constructed formal approximations of the solutions are in agreement with the numerical results.

  16. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  17. Investigation of the Conjugate Heat and Mass Transfer at Ignition and Subsequent Nonstationary Erosion Combustion of Powders Under Conditions Close to Those of Firing a Shot

    NASA Astrophysics Data System (ADS)

    Rusyak, I. G.; Lipanov, A. M.

    2016-11-01

    The laws of combustion of powders under conditions close to those of firing an artillery shot have been investigated. A solid-state local heat ignition model was used, and the process of powder combustion was simulated on the basis of the notions of the Belyaev-Zel'dovich thermal combustion theory. The complete formulation of the combustion problem includes the nonstationary processes of heat propagation and chemical transformation in the k-phase, as well as the quasi-stationary processes in the chemically reacting two-stage turbulent boundary layer near the combustion surface related to the characteristics of the averaged nonstationary flow by the boundary conditions at the outer boundary of the boundary layer. The features of the joint solution of the equations of the thermal combustion theory and the equations of internal ballistics have been analyzed. The questions on the convergence of the conjugate problem have been considered. The influence of various factors on the rate of combustion of powder has been investigated. The investigations conducted enabled us to formulate an approximate method for calculating the nonstationary and erosion rates of combustion of artillery powders at a shot on the basis of the Lenouard-Robillard-Karakozov approach.

  18. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  19. Detecting Hydrogen Chloride (HCl) in the Polluted Marine Boundary Layer Using Cavity Ring-Down Spectroscopy (CRDS)

    NASA Astrophysics Data System (ADS)

    Furlani, T.; Dawe, K.; VandenBoer, T. C.; Young, C.

    2017-12-01

    Oxidation initiated with chlorine atoms yields more ozone than oxidation initiated with hydroxyl radicals. Reasons for this are not fully understood, but the implications for mechanisms of oxidation chemistry are significant.1,2 Chlorine atoms have not been directly measured to date in the atmosphere and its abundance is usually inferred through steady-state approximations from all known formation and loss processes. A major reservoir for chlorine in the troposphere is by proton abstraction of organic compounds to form HCl.3 HCl can also be formed heterogeneously via acid displacement reactions with ubiquitously-found sodium chloride (NaCl) on solid surfaces with nitric acid (HNO3). The majority of the available chloride in the marine boundary layer comes from the sea salt in and around marine derived sea-spray aerosols. HCl is not a perfect sink and can react with hydroxyl radicals or be photolyzed to form chlorine atoms. The balance between loss and formation processes of chlorine atoms from HCl is highly dependent on many external factors, such as the wet and dry deposition rate of HCl. Measuring HCl in the gas and aerosol phase is important to the understanding of chlorine chemistry in the polluted marine boundary layer. HCl levels in the polluted marine boundary layer are typically between 100pptv-1ppbv,3 requiring the sensitive and selective detection capabilities of cavity ring-down spectroscopy (CRDS).4 We measured HCl using a Picarro CRDS in the polluted marine boundary layer for the first time. Measurements were conducted during April and May of 2017 in St. John's, Newfoundland and Labrador. The performance of the instrument will be discussed, as well as observations of HCl in the context of local conditions. References1Osthoff, H. D. et al. Nat. Geosci 1, 324-328 (2008). 2Young, C. J. et al. Atmos. Chem. Phys. 14, 3427-3440 (2014). 3Crisp, T. a et al. J. Geophys. Res. Atmos. 6897-6915 (2014). 4Hagen, C. L. et al. Atmos. Meas. Tech. 7, 345-357 (2014).

  20. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  1. Prediction of turbulent shear layers in turbomachines

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1974-01-01

    The characteristics of turbulent shear layers in turbomachines are compared with the turbulent boundary layers on airfoils. Seven different aspects are examined. The limits of boundary layer theory are investigated. Boundary layer prediction methods are applied to analysis of the flow in turbomachines.

  2. Particle Detectors and Data Analysis for Cusp Transient Features Campaign

    NASA Technical Reports Server (NTRS)

    Sharber, James R.

    1998-01-01

    On December 3, 1997, a rocket payload (36.152) was launched from Ny Alesund into the dark cusp at 0906:00 U (1206:00 LT) during an interval of southward B(sub Z), and positive B(sub y). Launch occurred during a time interval of northeastward moving auroral forms observed between 0845 and 0945 UT by ground-based meridian scanning photometers. Ground photometric measurements during the flight show that the payload passed over the poleward portion of the most intense 6300 A emissions of the dayside cusp/cleft region. Electrons of energy up to a few hundred eV were detected immediately upon instrument turn-on at an altitude of 205 km and throughout the flight until the payload reached an altitude of approximately 197 km on the downleg. Electron spectra were either quasithermal with peak energies approximately 100 eV or showed evidence of acceleration along the magnetic field line by potentials of 100-200 V. Precipitating ions were observed throughout much of the flight. Their spectra were broadly peaked in energy with the peak energy decreasing from approximately 500 eV to approximately 250 eV as the payload flew approximately westward over the dayside precipitationregion. Structure(spatial or temporal intensity variation) was observed between T + 180 s and T + approximately 400 s. At the rocket altitudes(less than 450km) the ions were observed to be precipitating. During the flight, the DMSPF-13 satellite passed through the all-sky imager field-of-view just poleward of the brightest dayside emissions enabling the identification of plasma sheet and boundary layer regions along the orbit. We thus conclude that particle fluxes detected by the rocket flight were either cusp plasma or boundary layer/mantle plasmajust poleward of the dayside cusp/cleft. Further investigation of the particle characteristics and their relationship to ionospheric convection patterns is continuing.

  3. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  4. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  5. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  6. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  7. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  8. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  9. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  10. Skin-Friction Measurements at Subsonic and Transonic Mach Numbers with Embedded-Wire Gages

    DTIC Science & Technology

    1981-01-01

    Model ................................... 17 9. Boundary-Layer Rake Installation on EBOR Model...boundary-layer total pressure rake eliminates this bulky mechanism and the long data acquisition time, but it introduces interferences which affect the...its construction. Further, boundary-layer rakes are restricted to measurements in thick boundary layers. Surface pressure probes such as Stanton tubes

  11. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  12. Three dimensional flow field inside compressor rotor, including blade boundary layers

    NASA Technical Reports Server (NTRS)

    Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.

    1982-01-01

    The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.

  13. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  14. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  15. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  16. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  17. Towards a General Turbulence Model for Planetary Boundary Layers Based on Direct Statistical Simulation

    NASA Astrophysics Data System (ADS)

    Skitka, J.; Marston, B.; Fox-Kemper, B.

    2016-02-01

    Sub-grid turbulence models for planetary boundary layers are typically constructed additively, starting with local flow properties and including non-local (KPP) or higher order (Mellor-Yamada) parameters until a desired level of predictive capacity is achieved or a manageable threshold of complexity is surpassed. Such approaches are necessarily limited in general circumstances, like global circulation models, by their being optimized for particular flow phenomena. By building a model reductively, starting with the infinite hierarchy of turbulence statistics, truncating at a given order, and stripping degrees of freedom from the flow, we offer the prospect a turbulence model and investigative tool that is equally applicable to all flow types and able to take full advantage of the wealth of nonlocal information in any flow. Direct statistical simulation (DSS) that is based upon expansion in equal-time cumulants can be used to compute flow statistics of arbitrary order. We investigate the feasibility of a second-order closure (CE2) by performing simulations of the ocean boundary layer in a quasi-linear approximation for which CE2 is exact. As oceanographic examples, wind-driven Langmuir turbulence and thermal convection are studied by comparison of the quasi-linear and fully nonlinear statistics. We also characterize the computational advantages and physical uncertainties of CE2 defined on a reduced basis determined via proper orthogonal decomposition (POD) of the flow fields.

  18. Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel

    NASA Astrophysics Data System (ADS)

    Yin, Cun-hong; Liang, Yi-long; Jiang, Yun; Yang, Ming; Long, Shao-lei

    2017-11-01

    The microstructures of 20CrNi2Mo steel underneath the contact surface were examined after dry sliding. Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), Electron Backscattered Diffraction (EBSD) and an ultra-micro-hardness tester were used to characterize the worn surface and dry sliding wear-induced layer. Martensite laths were ultra-refined due to cumulative strains and a large strain gradient that occurred during cyclic loading in wear near the surface. The microstructure evolution in dominant abrasive wear differs from that in adhesive wear. In dominant abrasive wear, only bent martensite laths with high-density deformation dislocations were observed. In contrast, in dominant adhesive wear, gradient structures were formed along the depth from the wear surface. Cross-sectional TEM foils were prepared in a focused ion beam (FIB) to observe the gradient structures in a dry sliding wear-induced layer at depths of approximately 1-5 μm and 5-20 μm. The gradient structures contained nano-laminated structures with an average thickness of 30-50 nm and bent martensite laths. We found that the original martensite laths coordinated with the strain energy and provided origin boundaries for the formation of gradient structures. Geometrically necessary boundaries (GNBs) and isolated dislocation boundaries (IDBs) play important roles in forming the nano-laminated structures.

  19. Development of a defect stream function, law of the wall/wake method for compressible turbulent boundary layers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wahls, Richard A.

    1990-01-01

    The method presented is designed to improve the accuracy and computational efficiency of existing numerical methods for the solution of flows with compressible turbulent boundary layers. A compressible defect stream function formulation of the governing equations assuming an arbitrary turbulence model is derived. This formulation is advantageous because it has a constrained zero-order approximation with respect to the wall shear stress and the tangential momentum equation has a first integral. Previous problems with this type of formulation near the wall are eliminated by using empirically based analytic expressions to define the flow near the wall. The van Driest law of the wall for velocity and the modified Crocco temperature-velocity relationship are used. The associated compressible law of the wake is determined and it extends the valid range of the analytical expressions beyond the logarithmic region of the boundary layer. The need for an inner-region eddy viscosity model is completely avoided. The near-wall analytic expressions are patched to numerically computed outer region solutions at a point determined during the computation. A new boundary condition on the normal derivative of the tangential velocity at the surface is presented; this condition replaces the no-slip condition and enables numerical integration to the surface with a relatively coarse grid using only an outer region turbulence model. The method was evaluated for incompressible and compressible equilibrium flows and was implemented into an existing Navier-Stokes code using the assumption of local equilibrium flow with respect to the patching. The method has proven to be accurate and efficient.

  20. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  1. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  2. Boundary-Layer Phenomena in the Vicinity of an Isolated Mountain: A Climatography Based on an Operational High-Resolution Forecast System

    NASA Astrophysics Data System (ADS)

    Serafin, S.; De Wekker, S.; Knievel, J. C.

    2013-12-01

    Granite Peak, located in the Dugway Proving Ground (DPG) in western Utah, is an isolated mountain rising ~800 m above the surrounding terrain. It has an approximately ellipsoidal shape oriented in the NNW-SSE direction and its main axes are respectively ~10- and ~6-km long. A flat dry lake (playa) lies west and northwest of the peak, while a NW-sloping plain covered by herbaceous vegetation extends to the eastern part of DPG. Because of these topography and land-use features, a variety of different flow phenomena are expected to occur over and around Granite Peak. These include upslope and drainage winds, local breeze systems, gap flows, dynamically accelerated downslope winds and potentially boundary layer separation and the formation of wakes. Consequently, the area is an ideal location for studying the interaction between mountain flows and the atmospheric boundary layer. Since the 1990s, DPG has used a continuously operating meso-gamma-scale analysis and forecast system (4DWX) developed by the NCAR's Research Applications Laboratory (RAL). The system is based on WRF, runs with a grid spacing of 1.1-km in its innermost domain, applies observational nudging in a three-hour cycle, and provides weather analyses and forecasts at hourly intervals. In this study, model output from the 4DWX system is used to build a short-term climatography (2010-2012) of the prevailing boundary layer flow regimes in DPG. Measurements from the network of Surface Area Mesonet Stations (SAMS) operative at DPG are used to verify the quality of 4DWX simulations and their ability to reproduce the dominant flow patterns. The study then focuses on boundary-layer separation (BLS) events: near-surface wind, temperature and pressure fields from 4DWX are analysed in order to identify the most favorable regions for the onset of separation. A limited set of events, identified by means of an objective procedure, is then studied in detail in order to understand the preferred conditions for the development of the phenomenon. S-SW flows with considerable near-surface veering and an embedded low-level jet are found to be the most common scenario leading to leeside boundary-layer separation. Example of a BLS event in the lee of Granite Peak (near gridpoints x=12, y=15). Near-surface wind speed (in m/s) and vectors are displayed on the 4DWX model grid (Δx: 1.1 km).

  3. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    PubMed

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for subcritical transition due to TS waves.

  4. A 3-D Navier-Stokes CFD study of turbojet/ramjet nozzle plume interactions at Mach 3.0 and comparison with data

    NASA Technical Reports Server (NTRS)

    Chang, Ing; Hunter, Louis G.

    1995-01-01

    Advanced airbreathing propulsion systems used in Mach 4-6 mission scenarios, usually consist of a single integrated turboramjet or as in this study, a turbojet housed in an upper bay with a separate ramjet housed in a lower bay. As the engines transition from turbojet to ramjet, there is an operational envelope where both engines operate simultaneously. One nozzle concept under consideration has a common nozzle, where the plumes from the turbojet and ramjet interact with one another as they expand to ambient conditions. In this paper, the two plumes interact at the end of a common 2-D cowl, when they both reach an approximate Mach 3.0 condition and then jointly expand to Mach 3.6 at the common nozzle exit plane. At this condition, the turbojet engine operated at a higher NPR than the ramjet, where the turbojet overpowers the ramjet plume, deflecting it approximately 12 degrees downward and in turn the turbojet plume is deflected 6 degrees upward. In the process, shocks were formed at the deflections and a shear layer formed at the confluence of the two jets. This particular case was experimentally tested and the data used to compare with the PARC3D code with k-kl two equation turbulence model. The 2-D and 3-D centerline CFD solutions are in good agreement, but as the CFD solutions approach the outer sidewall, a slight variance occurs. The outer wall boundary layers are thin and do not present much of an interaction, however, where the confluence interaction shocks interact with the thin boundary layer on the outer wall, strong vortices run down each shock causing substantial disturbances in the boundary layer. These disturbances amplify somewhat as they propagate downstream axially from the confluence point. The nozzle coefficient (CFG) is reduced 1/2 percent as a result of this sidewall interaction, from 0.9850 to 0.9807. This three-dimensional reduction is in better agreement with the experimental value of 0.9790.

  5. Modeling and stabilization results for a charge or current-actuated active constrained layer (ACL) beam model with the electrostatic assumption

    NASA Astrophysics Data System (ADS)

    Özer, Ahmet Özkan

    2016-04-01

    An infinite dimensional model for a three-layer active constrained layer (ACL) beam model, consisting of a piezoelectric elastic layer at the top and an elastic host layer at the bottom constraining a viscoelastic layer in the middle, is obtained for clamped-free boundary conditions by using a thorough variational approach. The Rao-Nakra thin compliant layer approximation is adopted to model the sandwich structure, and the electrostatic approach (magnetic effects are ignored) is assumed for the piezoelectric layer. Instead of the voltage actuation of the piezoelectric layer, the piezoelectric layer is proposed to be activated by a charge (or current) source. We show that, the closed-loop system with all mechanical feedback is shown to be uniformly exponentially stable. Our result is the outcome of the compact perturbation argument and a unique continuation result for the spectral problem which relies on the multipliers method. Finally, the modeling methodology of the paper is generalized to the multilayer ACL beams, and the uniform exponential stabilizability result is established analogously.

  6. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less

  7. Rapid Changes in Water Properties on a Shallow Reef in the Chesapeake Bay due to a Wind Driven Internal Seiche

    NASA Astrophysics Data System (ADS)

    Kilbourne, B.

    2016-12-01

    The Chesapeake Bay Interpretive Buoy System has collected oceanographic and meteorological observations in Chesapeake Bay from 2007 to the present. The relatively long and well resolved time series of wind, current, and salinity data provided by this array creates an opportunity to better understand the many finescale circulation pathways in Chesapeake Bay. The mean vertical structure of Chesapeake Bay is approximated by a three layer system: a well-mixed surface boundary layer from 1 to 8 m depth, a stratified transition layer from 8 to 15 m depth, and a well-mixed bottom boundary layer from 15 m to the bottom (typically < 30 m). The conditions in the surface and bottom boundary layers can be strikingly different with the bottom layer being saltier, lower in pH, and lower in dissolved oxygen than the surface layer. The Gooses Reef station of this array is located on `Gooses Reef', a shallow bar just 10 m in depth, dividing the Choptank River basin from the main channel of the Chesapeake Bay. This shallow bar provides habitat for oysters, a keystone species in the Chesapeake Bay, and is both commercially and ecologically critical to the region. These shallow habitats are threatened when anoxic (< 0.5 mg l-1 O2) conditions exist in the upper 10 m of the water column. The Gooses Reef station is unique in the array due to the addition of a bottom mounted sensor package; data from August 2012 show rapid changes in the salinity (11 to 17 PSU), dissolved oxygen (6 to 0.05 mg l-1) , and pH (8.3 to 7.7) at the bottom. Investigations of wind and current data before these rapid changes show along channel wind stress oscillations near the M2 tidal frequency. Current profiles from the buoy ADCP show low-frequency along-channel baroclinic oscillations. Observed currents appear to be an internal seiche, forced by resonance between the along-channel wind and diurnal tide. At the Gooses Reef bar, this internal seiche forced the bottom boundary layer up and over the bar, causing the sudden shift in water properties. These observations highlight the strong physical controls on local water conditions in the Chesapeake Bay and similar estuaries.

  8. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  9. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  10. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  11. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  12. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  13. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  14. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  15. A nonperturbing boundary-layer transition detector

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-11-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels. The boundary-layer transition detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Data which depict boundary-layer transition from laminar to turbulent flow are presented to provide comparisons of the BLTD with other measurement methods. Spectra from the BLTD reveals the presence of a high-frequency peak during transition which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  16. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  17. The effect of wall temperature distribution on streaks in compressible turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Tao, Yang; Xiong, Neng; Qian, Fengxue

    2018-05-01

    The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.

  18. Observations and simulations of the bottom nepheloid layer in the Lafourche Trough, Louisiana Continental Shelf

    NASA Astrophysics Data System (ADS)

    Jolliff, J.; Jarosz, E.; Penko, A.; Smith, T.

    2017-12-01

    The "Lafourche Trough" is a mud/silt -dominated, elongate seafloor depression located between transgressive sandy shoals approximately 50 km south of Cocodrie, Louisiana. These irregular bathymetric features are relicts of the abandoned Lafourche delta complex that still have an impact upon coupled sediment-hydrodynamic processes occurring today. Repeated optical and physical oceanographic surveys conducted during the spring of 2015 and winter 2017 reveal persistent bottom nepheloid layers (BNLs) characterized by extreme optical turbidity (beam attenuation 10 m-1, 532 nm). The manifestation and persistence of cohesive sediment BNLs in this area appears to result from a complex interplay between tidal currents, bathymetry, and frontal dynamics along the edge of the Mississippi River plume. Numerical experiments were performed using the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS), an integrated air-sea-wave operational forecasting tool, that includes a simplified numerical sediment resuspension and transport scheme in order to simulate the nepheloid layer observations through the trough. The model results suggest that the wave-current bottom boundary layer is a critical factor in BNL development, and thusly, without wave model integration into COAMPS the system struggles to replicate the observations. Future modeling work will need to explore the potential suppression of physical mixing due to density perturbations along the BNL to fluid mud continuum within the bottom boundary layer.

  19. Computational fluid dynamics applications at McDonnel Douglas

    NASA Technical Reports Server (NTRS)

    Hakkinen, R. J.

    1987-01-01

    Representative examples are presented of applications and development of advanced Computational Fluid Dynamics (CFD) codes for aerodynamic design at the McDonnell Douglas Corporation (MDC). Transonic potential and Euler codes, interactively coupled with boundary layer computation, and solutions of slender-layer Navier-Stokes approximation are applied to aircraft wing/body calculations. An optimization procedure using evolution theory is described in the context of transonic wing design. Euler methods are presented for analysis of hypersonic configurations, and helicopter rotors in hover and forward flight. Several of these projects were accepted for access to the Numerical Aerodynamic Simulation (NAS) facility at the NASA-Ames Research Center.

  20. Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.

    2005-02-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.

  1. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  2. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  3. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  4. Vertically resolved measurements of nighttime radical reservoirs in Los Angeles and their contribution to the urban radical budget.

    PubMed

    Young, Cora J; Washenfelder, Rebecca A; Roberts, James M; Mielke, Levi H; Osthoff, Hans D; Tsai, Catalina; Pikelnaya, Olga; Stutz, Jochen; Veres, Patrick R; Cochran, Anthony K; VandenBoer, Trevor C; Flynn, James; Grossberg, Nicole; Haman, Christine L; Lefer, Barry; Stark, Harald; Graus, Martin; de Gouw, Joost; Gilman, Jessica B; Kuster, William C; Brown, Steven S

    2012-10-16

    Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.

  5. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat balance. Diurnal and seasonal scale heat budget imbalances were found. We suggest that unmeasured surface heat storage may be responsible for some of the observed imbalance. The presence of the unexplained residual in this and other studies of energy balance over forests casts a note of caution on the interpretation of energy balance components obtained using heat residual methods.

  6. Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow

    NASA Astrophysics Data System (ADS)

    Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.

    2018-03-01

    We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0

  7. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    AFRL-AFOSR-CL-TR-2016-0011 Towards natural transition in compressible boundary layers Marcello Faraco de Medeiros FUNDACAO PARA O INCREMENTO DA...to 29-03-2016 Towards natural transition in compressible boundary layers FA9550-11-1-0354 Marcello A. Faraco de Medeiros Germán Andrés Gaviria...unlimited. 109 Final report Towards natural transition in compressible boundary layers Principal Investigator: Marcello Augusto Faraco de Medeiros

  8. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  9. Predictions of spray combustion interactions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1984-01-01

    Mean and fluctuating phase velocities; mean particle mass flux; particle size; and mean gas-phase Reynolds stress, composition and temperature were measured in stationary, turbulent, axisymmetric, and flows which conform to the boundary layer approximations while having well-defined initial and boundary conditions in dilute particle-laden jets, nonevaporating sprays, and evaporating sprays injected into a still air environment. Three models of the processes, typical of current practice, were evaluated. The local homogeneous flow and deterministic separated flow models did not provide very satisfactory predictions over the present data base. In contrast, the stochastic separated flow model generally provided good predictions and appears to be an attractive approach for treating nonlinear interphase transport processes in turbulent flows containing particles (drops).

  10. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  11. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  12. Interaction of a Boundary Layer with a Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low Reynolds number, as a consequence of the high level of the free-stream perturbation. An instantaneous flow visualization for that case is shown. A detailed examination of flow statistics in the transitional and turbulent regions, including the evolution of the turbulent kinetic energy (TKE) budget and frequency spectra showed the formation and evolution of turbulent spots characteristic of the bypass transition mechanism. It was also observed that the turbulent eddies achieved an equilibrium, fully developed turbulent states first, as evidenced by the early agreement achieved by the terms in the TKE budget with those observed in turbulent flows. Once a turbulent Reynolds stress profile had been established, the velocity profile began to resemble a turbulent one, first in the inner region and later in the outer region of the wall layer. An extensive comparison of the three cases, including budgets, mean velocity and Reynolds stress profiles and flow visualization, is included. The results obtained are also presented.

  13. Effects of Waves on the Boundary Layer of a Surface-Piercing Body

    DTIC Science & Technology

    1985-05-01

    piercing bodies have been performed. Furthermore, all of these investigations have been of an approximate nature and none have properly accounted for...equation wall-turbulence model to account for the influence of the free surface. Lastly, in Section VII, a summary of the results from the present...requires V . In order to evaluate V correctly it was necessary to account for the grid nonorthogonality in the marching direction. Specifically, in

  14. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  15. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  16. Pitot-probe displacement in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  17. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  18. Development of n+-in-p planar pixel sensors for extremely high radiation environments, designed to retain high efficiency after irradiation

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Yajima, K.; Yamauchi, Y.; Hirose, M.; Homma, Y.; Jinnouchi, O.; Kimura, K.; Motohashi, K.; Sato, S.; Sawai, H.; Todome, K.; Yamaguchi, D.; Hara, K.; Sato, Kz.; Sato, Kj.; Hagihara, M.; Iwabuchi, S.

    2016-09-01

    We have developed n+-in-p pixel sensors to obtain highly radiation tolerant sensors for extremely high radiation environments such as those found at the high-luminosity LHC. We have designed novel pixel structures to eliminate the sources of efficiency loss under the bias rails after irradiation by removing the bias rail out of the boundary region and routing the bias resistors inside the area of the pixel electrodes. After irradiation by protons with the fluence of approximately 3 ×1015neq /cm2, the pixel structure with the polysilicon bias resistor and the bias rails removed far away from the boundary shows an efficiency loss of < 0.5 % per pixel at the boundary region, which is as efficient as the pixel structure without a biasing structure. The pixel structure with the bias rails at the boundary and the widened p-stop's underneath the bias rail also exhibits an improved loss of approximately 1% per pixel at the boundary region. We have elucidated the physical mechanisms behind the efficiency loss under the bias rail with TCAD simulations. The efficiency loss is due to the interplay of the bias rail acting as a charge collecting electrode with the region of low electric field in the silicon near the surface at the boundary. The region acts as a "shield" for the electrode. After irradiation, the strong applied electric field nearly eliminates the region. The TCAD simulations have shown that wide p-stop and large Si-SiO2 interface charge (inversion layer, specifically) act to shield the weighting potential. The pixel sensor of the old design irradiated by γ-rays at 2.4 MGy is confirmed to exhibit only a slight efficiency loss at the boundary.

  19. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  20. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  1. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  2. Fluctuating pressures measured beneath a high-temperature, turbulent boundary layer on a flat plate at Mach number of 5

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Albertson, Cindy W.

    1989-01-01

    Fluctuating pressures were measured beneath a Mach 5, turbulent boundary layer on a flat plate with an array of piezoresistive sensors. The data were obtained with a digital signal acquisition system during a test run of 4 seconds. Data sampling rate was such that frequency analysis up to 62.5 kHz could be performed. To assess in situ frequency response of the sensors, a specially designed waveguide calibration system was employed to measure transfer functions of all sensors and related instrumentation. Pressure time histories were approximated well by a Gaussian prohibiting distribution. Pressure spectra were very repeatable over the array span of 76 mm. Total rms pressures ranged from 0.0017 to 0.0046 of the freestream dynamic pressure. Streamwise, space-time correlations exhibited expected decaying behavior of a turbulence generated pressure field. Average convection speed was 0.87 of freestream velocity. The trendless behavior with sensor separation indicated possible systematic errors.

  3. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe 2

    DOE PAGES

    Barja, Sara; Wickenburg, Sebastian; Liu, Zhen-Fei; ...

    2016-04-18

    Here, We provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries (MTBs) of single-layer semiconducting MoSe 2. Such MTBs have been previously observed by transmission electron microscopy and have been predicted to be metallic in MoSe 2 and MoS 2. Our low-temperature scanning tunnelling microscopy/spectroscopy measurements revealed a substantial bandgap of 100 meV opening at the Fermi energy in the otherwise metallic one-dimensional structures. We found a periodic modulation in the density of states along the MTB, with a wavelength of approximately three lattice constants. In addition to mapping the energy-dependent densitymore » of states, we determined the atomic structure and bonding of the MTB through simultaneous high-resolution non-contact atomic force microscopy. Density functional theory calculations based on the observed structure reproduced both the gap opening and the spatially resolved density of states.« less

  4. Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    This communication explores magnetohydrodynamic (MHD) boundary-layer flow of Jeffrey nanofluid over a nonlinear stretching surface with active and passive controls of nanoparticles. A nonlinear stretching surface generates the flow. Effects of thermophoresis and Brownian diffusion are considered. Jeffrey fluid is electrically conducted subject to non-uniform magnetic field. Low magnetic Reynolds number and boundary-layer approximations have been considered in mathematical modelling. The phenomena of impulsing the particles away from the surface in combination with non-zero mass flux condition is known as the condition of zero mass flux. Convergent series solutions for the nonlinear governing system are established through optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the temperature and concentration distributions are affected by distinct physical flow parameters. Skin friction coefficient and local Nusselt and Sherwood numbers are also computed and analyzed. Our findings show that the temperature and concentration distributions are increasing functions of Hartman number and thermophoresis parameter.

  5. Numerical prediction of pollutant dispersion and transport in an atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zeoli, Stéphanie; Bricteux, Laurent; Mech. Eng. Dpt. Team

    2014-11-01

    The ability to accurately predict concentration levels of air pollutant released from point sources is required in order to determine their environmental impact. A wall modeled large-eddy simulation (WMLES) of the ABL is performed using the OpenFoam based solver SOWFA (Churchfield and Lee, NREL). It uses Boussinesq approximation for buoyancy effects and takes into account Coriolis forces. A synthetic eddy method is proposed to properly model turbulence inlet velocity boundary conditions. This method will be compared with the standard pressure gradient forcing. WMLES are usually performed using a standard Smagorinsky model or its dynamic version. It is proposed here to investigate a subgrid scale (SGS) model with a better spectral behavior. To this end, a regularized variational multiscale (RVMs) model (Jeanmart and Winckelmans, 2007) is implemented together with standard wall function in order to preserve the dynamics of the large scales within the Ekman layer. The influence of the improved SGS model on the wind simulation and scalar transport will be discussed based on turbulence diagnostics.

  6. Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility

    NASA Technical Reports Server (NTRS)

    Mcdevitt, J. B.; Okuno, A. F.

    1985-01-01

    The supercritical flows at high subsonic speeds over a NACA 0012 airfoil were studied to acquire aerodynamic data suitable for evaluating numerical-flow codes. The measurements consisted primarily of static and dynamic pressures on the airfoil and test-channel walls. Shadowgraphs were also taken of the flow field near the airfoil. The tests were performed at free-stream Mach numbers from approximately 0.7 to 0.8, at angles of attack sufficient to include the onset of buffet, and at Reynolds numbers from 1 million to 14 million. A test action was designed specifically to obtain two-dimensional airfoil data with a minimum of wall interference effects. Boundary-layer suction panels were used to minimize sidewall interference effects. Flexible upper and lower walls allow test-channel area-ruling to nullify Mach number changes induced by the mass removal, to correct for longitudinal boundary-layer growth, and to provide contouring compatible with the streamlines of the model in free air.

  7. Analysis of turbulent heat and momentum transfer in a transitionally rough turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Doosttalab, Ali; Dharmarathne, Suranga; Tutkun, Murat; Adrian, Ronald; Castillo, Luciano

    2016-11-01

    A zero-pressure-gradient (ZPG) turbulent boundary layer over a transitionally rough surface is studied using direct numerical simulation (DNS). The rough surface is modeled as 24-grit sandpaper which corresponds to k+ 11 , where k+ is roughness height. Reynolds number based on momentum thickness is approximately 2400. The walls are isothermal and turbulent flow Prandtl number is 0.71. We simulate temperature as passive scalar. We compute the inner product of net turbulent force (d (u1ui) / dxi) and net turbulent heat flux (d (ui θ / dxi)) in order to investigate (i) the correlation between these vectorial quantities, (II) size of the projection of these fields on each other and (IIi) alignment of momentum and hear flux. The inner product in rough case results in larger projection and better alignment. In addition, our study on the vortices shows that surface roughness promotes production of vortical structures which affects the thermal transport near the wall.

  8. Review and assessment of the HOST turbine heat transfer program

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.

    1988-01-01

    The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena occurring in high-performance gas turbine engines and to assess and improve the analytical methods used to predict the fluid dynamics and heat transfer phenomena. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. Therefore, a building-block approach was utilized, with research ranging from the study of fundamental phenomena and analytical modeling to experiments in simulated real-engine environments. Experimental research accounted for 75 percent of the project, and analytical efforts accounted for approximately 25 percent. Extensive experimental datasets were created depicting the three-dimensional flow field, high free-stream turbulence, boundary-layer transition, blade tip region heat transfer, film cooling effects in a simulated engine environment, rough-wall cooling enhancement in a rotating passage, and rotor-stator interaction effects. In addition, analytical modeling of these phenomena was initiated using boundary-layer assumptions as well as Navier-Stokes solutions.

  9. Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian

    2016-01-01

    Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.

  10. Nonlinear zero-sum differential game analysis by singular perturbation methods

    NASA Technical Reports Server (NTRS)

    Sinar, J.; Farber, N.

    1982-01-01

    A class of nonlinear, zero-sum differential games, exhibiting time-scale separation properties, can be analyzed by singular-perturbation techniques. The merits of such an analysis, leading to an approximate game solution, as well as the 'well-posedness' of the formulation, are discussed. This approach is shown to be attractive for investigating pursuit-evasion problems; the original multidimensional differential game is decomposed to a 'simple pursuit' (free-stream) game and two independent (boundary-layer) optimal-control problems. Using multiple time-scale boundary-layer models results in a pair of uniformly valid zero-order composite feedback strategies. The dependence of suboptimal strategies on relative geometry and own-state measurements is demonstrated by a three dimensional, constant-speed example. For game analysis with realistic vehicle dynamics, the technique of forced singular perturbations and a variable modeling approach is proposed. Accuracy of the analysis is evaluated by comparison with the numerical solution of a time-optimal, variable-speed 'game of two cars' in the horizontal plane.

  11. DLVO Approximation Methods for Predicting the Attachment of Silver Nanoparticles to Ceramic Membranes.

    PubMed

    Mikelonis, Anne M; Youn, Sungmin; Lawler, Desmond F

    2016-02-23

    This article examines the influence of three common stabilizing agents (citrate, poly(vinylpyrrolidone) (PVP), and branched poly(ethylenimine) (BPEI)) on the attachment affinity of silver nanoparticles to ceramic water filters. Citrate-stabilized silver nanoparticles were found to have the highest attachment affinity (under conditions in which the surface potential was of opposite sign to the filter). This work demonstrates that the interaction between the electrical double layers plays a critical role in the attachment of nanoparticles to flat surfaces and, in particular, that predictions of double-layer interactions are sensitive to boundary condition assumptions (constant charge vs constant potential). The experimental deposition results can be explained when using different boundary condition assumptions for different stabilizing molecules but not when the same assumption was assumed for all three types of particles. The integration of steric interactions can also explain the experimental deposition results. Particle size was demonstrated to have an effect on the predicted deposition for BPEI-stabilized particles but not for PVP.

  12. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  13. Inventory of File gfs.t06z.smartguam15.tm00.grib2

    Science.gov Websites

    hour fcst Visibility [m] 014 planetary boundary layer WDIR 15 hour fcst Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND 15 hour fcst Wind Speed [m/s] 016 planetary boundary layer RH 15 hour fcst Relative Humidity [%] 017 planetary boundary layer DIST 15 hour fcst Geometric

  14. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  15. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  16. Automated estimation of seabed properties from acoustic recordings by an autonomous moving system

    NASA Astrophysics Data System (ADS)

    Dosso, Stan; Dettmer, Jan; Holland, Charles; Mandolesi, Eric

    2016-04-01

    This work develops an automated Bayesian method to infer fluid seabed properties as a function of depth along tracks that are surveyed by an autonomous underwater vehicle (AUV). The AUV tows an acoustic source and a 32-element array. The source bandwidth is from 950 to 3000 Hz and frequency-modulated signals are emitted at regular intervals ('pings') as the AUV moves along the track. The recordings of each ping are processed to account for source directionality and reflection coefficients as a function of frequency and grazing angle are extracted by taking the ratio of time-windowed direct and bottom-interacted paths. Each ping provides one data set. This process results in large data volumes with an information content that is much higher than for traditional seismic profiling. However, extracting interpretable results about the lateral and vertical spatial variability of the seabed requires sophisticated and efficient inversion methods. The seabed is approximated as a horizontally stratified, lossy fluid for each ping. Each layer is homogeneous and parametrized by a thickness, velocity, density and attenuation. Since both source and array are towed close to the seabed, a plane-wave approximation is not sufficient to model these data and spherical reflection coefficients must be computed to predict data. Therefore, for each specular angle at each frequency, the Sommerfeld integral is solved efficiently by massively parallel implementation of Levin integration on a graphics processing unit (GPU). The inverse problem is strongly non-linear and requires application of Bayesian sampling to quantify parameter uncertainties. To account for the unknown number of layers in the seabed at each ping, the seabed is parametrized by a trans-dimensional (trans-D) model which treats the number of layers as unknown. To constrain model complexity and improve efficiency, we apply a Poisson prior with even-numbered order statistics to the number of layers. The trans-D model is sampled with a reversible-jump algorithm and efficiency is addressed by parallel tempering. The method is applied to data acquired along a 14-km track on the Malta Plateau with water depths from 144 to 152 m. The reflection coefficient data are sensitive to the upper 7 m of the seabed. Data sets are available at 4-m spacing along this track which is currently still intractable. Therefore, we apply ping averaging and consider data at 40-m spacing. A total of 340 inversions were carried out employing 8 K80 GPUs for approximately 2 weeks of computing time. The results resolve layering along the track with previously unreported complexity and detail. An erosional boundary with rough topography is clearly resolved as a high-velocity, high-density layer. This boundary appears rougher and is buried deeper in more shallow water. Depressions along this boundary are filled in with lower velocity material along the shallow parts of the track. In addition, attenuation is well constrained in a thick low-velocity wedge. [Work supported by ONR and SERDP.

  17. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  18. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  19. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  20. Studies on the influence on flexural wall deformations on the development of the flow boundary layer

    NASA Technical Reports Server (NTRS)

    Schilz, W.

    1978-01-01

    Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.

  1. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  2. Effect of aspect ratio on sidewall boundary-layer influence in two-dimensional airfoil testing

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1986-01-01

    The effect of sidewall boundary layers in airfoil testing in two-dimensional wind tunnels is investigated. The non-linear crossflow velocity variation induced because of the changes in the sidewall boundary-layer thickness is represented by the flow between a wavy wall and a straight wall. Using this flow model, a correction for the sidewall boundary-layer effects is derived in terms of the undisturbed sidewall boundary-layer properties, the test Mach number and the airfoil aspect ratio. Application of the proposed correction to available experimental data showed good correlation for the shock location and pressure distribution on airfoils.

  3. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  4. Numerical investigation of an internal layer in turbulent flow over a curved hill

    NASA Technical Reports Server (NTRS)

    Kim, S-W.

    1989-01-01

    The development of an internal layer in a turbulent boundary layer flow over a curved hill is investigated numerically. The turbulence field of the boundary layer flow over the curved hill is compared with that of a turbulent flow over a symmetric airfoil (which has the same geometry as the curved hill except that the leading and trailing edge plates were removed) to study the influence of the strongly curved surface on the turbulence field. The turbulent flow equations are solved by a control-volume based finite difference method. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. Computational results for the mean flow field (pressure distributions on the walls, wall shearing stresses and mean velocity profiles), the turbulence structure (Reynolds stress and turbulent kinetic energy profiles), and the integral parameters (displacement and momentum thicknesses) compared favorably with the measured data. Computational results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall-bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner of the hill, merges with the external boundary layer, and develops into a new fully turbulent boundary layer as the fluid flows in the downstream direction. For the flow over the symmetric airfoil, the boundary layer began to form from almost the same location as that of the curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow.

  5. MESSENGER and Mariner 10 Flyby Observations of Magnetotail Structure and Dynamics at Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian Jay; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gold, Robert E.; Ho, George C.; Imber, Suzanne M.; Korth, Haje; Krimigis, Stamatios, M.; hide

    2012-01-01

    The first (M1), second (M2), and third (M3) MESSENGER flybys of Mercury traversed the planet's magnetotail from 1.25 to 3.25 RM downstream of the planet, where R(sub M) is Mercury's radius (2440 km). The encounters took place under northward, southward, and variable-polarity interplanetary magnetic field (IMF), respectively. The magnetic field strength B in Mercury's magnetotail follows a power law decrease with increasing antisunward distance |X|, B approximately |X|(sup G), with G varying from -5.4 for northward to -1.6 for southward IMF. Low-latitude boundary layers (LLBLs) containing strong northward magnetic field were detected at the tail flanks during two of the flybys. The observed thickness of the LLBL was 33% and 16% of the radius of the tail during M1 and M3, respectively, but the boundary layer was completely absent during M2. Clear signatures of tail reconnection are evident in the M2 and M3 magnetic field measurements. Plasmoids and traveling compression regions were observed during M2 and M3 with typical durations of approximately 1-3 s, suggesting diameters of approximately 500-1500 km. Overall, the response of Mercury's magnetotail to the steady southward IMF during M2 appeared very similar to steady magnetospheric convection events at Earth, which are believed to be driven by quasi-continuous reconnection. In contrast, the M3 measurements are dominated by tail loading and unloading events that resemble the large-scale magnetic field reconfigurations observed during magnetospheric substorms at Earth.

  6. Evidence of neutron leakage at the Fukushima nuclear plant from measurements of radioactive 35S in California

    PubMed Central

    Priyadarshi, Antra; Dominguez, Gerardo; Thiemens, Mark H.

    2011-01-01

    A recent earthquake and the subsequent tsunami have extensively damaged the Fukushima nuclear power plant, releasing harmful radiation into the environment. Despite the obvious implication for human health and the surrounding ecology, there are no quantitative estimates of the neutron flux leakage during the weeks following the earthquake. Here, using measurements of radioactive 35S contained in sulfate aerosols and SO2 gas at a coastal site in La Jolla, California, we show that nearly 4 × 1011 neutrons per m2 leaked at the Fukushima nuclear power plant before March 20, 2011. A significantly higher activity as measured on March 28 is in accord with neutrons escaping the reactor core and being absorbed by the coolant seawater 35Cl to produce 35S by a (n, p) reaction. Once produced, 35S oxidizes to and and was then transported to Southern California due to the presence of strong prevailing westerly winds at this time. Based on a moving box model, we show that the observed activity enhancement in is compatible with long-range transport of the radiation plume from Fukushima. Our model predicts that , the concentration in the marine boundary layer at Fukushima, was approximately 2 × 105 atoms per m3, which is approximately 365 times above expected natural concentrations. These measurements and model calculations imply that approximately 0.7% of the total radioactive sulfate present at the marine boundary layer at Fukushima reached Southern California as a result of the trans-Pacific transport. PMID:21844372

  7. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  8. Observing the Vertical Extent of the Urban Boundary Layer Over Jersey City, NJ: A Diurnal and Seasonal Analysis

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.

    2015-12-01

    The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).

  9. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    PubMed

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  10. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less

  11. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  12. A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.

    2017-12-01

    The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

  13. Spatial variability of the Arctic Ocean's double-diffusive staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N. C.; Timmermans, M.-L.; Carpenter, J. R.; Toole, J. M.

    2017-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure overlying the Atlantic Water Layer that can be attributed to the diffusive form of double-diffusive convection. The staircase consists of multiple layers of O(1) m in thickness separated by sharp interfaces, across which temperature and salinity change abruptly. Through a detailed analysis of Ice-Tethered Profiler measurements from 2004 to 2013, the double-diffusive staircase structure is characterized across the entire Arctic Ocean. We demonstrate how the large-scale Arctic Ocean circulation influences the small-scale staircase properties. These staircase properties (layer thicknesses and temperature and salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio spanning the staircase stratification. We show that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (approximately 3-4) on the Eurasian side and higher density ratio (approximately 6-7) on the Canadian side. We find that the Eurasian Basin staircase is characterized by fewer, thinner layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin layers and the absence of a well-defined staircase. A double-diffusive 4/3 flux law parametrization is used to estimate vertical heat fluxes in the Canadian Basin to be O(0.1) W m-2. It is shown that the 4/3 flux law may not be an appropriate representation of heat fluxes through the Eurasian Basin staircase. Here molecular heat fluxes are estimated to be between O(0.01) and O(0.1) W m-2. However, many uncertainties remain about the exact nature of these fluxes.

  14. Temporal structure of thermal inversions in Łeba (Poland)

    NASA Astrophysics Data System (ADS)

    Czarnecka, Małgorzata; Nidzgorska-Lencewicz, Jadwiga; Rawicki, Kacper

    2018-03-01

    This study presents the detailed characteristics of thermal inversions based on a 10-year aerological measurement series (2005-2014) conducted in Łeba (Poland). The analyses included surface-based inversions (SBIs) and elevated inversions (ELIs) in the atmospheric layer up to 3000 m. In the case of SBIs, this layer extended directly from the ground level to an altitude above which the air temperature decreases with altitude, whereas for ELIs, which have a base above ground level, only the lowermost inversion layer was taken into consideration. The results of the monthly and seasonal variations in the selected parameters for air temperature inversions (thickness—ΔZ, strength—ΔT, base—ZB) were analysed separately at night-time (00 UTC) and daytime (12 UTC). The thermal structure of the boundary layer up to 3000 m was primarily determined by ELIs, which occurred at a frequency of approximately 70% at both times during the 24-h period. The SBIs showed a pronounced temporal structure that occurred every second night throughout the year and from April to September, with a frequency similar to that of the ELI (approximately 60%). The worst vertical air exchange conditions, which resulted from the simultaneous occurrence of SBIs and ELIs, were found in 30% of nights from April to October. Elevated inversions generally formed in a layer from approximately 820 to 1200 m, which was the lowermost ELI in winter and the highest ELI in summer; however, in all seasons, the lowest base height was characteristic of daytime inversions. Both surface-based and elevated inversion layers were distinguished by comparable thicknesses, particularly for those occurring at night-time (generally within the range of 150-200 m). From November to March, greater thicknesses were identified in ELIs with lower occurrences, whereas SBIs were identified in the remaining months of the year.

  15. Vortex dynamics of collapsing bubbles: Impact on the boundary layer measured by chronoamperometry.

    PubMed

    Reuter, Fabian; Cairós, Carlos; Mettin, Robert

    2016-11-01

    Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425μm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effective slip identities for viscous flow over arbitrary patterned surfaces

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Six, Pierre

    2012-11-01

    For a variety of applications, most recently microfluidics, the ability to control fluid motions using surface texturing has been an area of ongoing interest. In this talk, we will develop several identities relating to the construction of effective slip boundary conditions for patterned surfaces. The effective slip measures the apparent slip of a fluid layer flowing over a patterned surface when viewing the flow far from the surface. In specific, shear flows of tall fluid layers over periodic surfaces (surfaces perturbed from a planar no-slip boundary by height and/or hydrophobicity fluctuations) are governed by an effective slip matrix that relates the vector of far-field shear stress (applied to the top of the fluid layer) to the effective slip velocity vector that emerges from the flow. Of particular note, we will demonstrate several general rules that describe the effective slip matrix: (1) that the effective slip matrix is always symmetric, (2) that the effective slip over any hydrophobically striped surface implies a family of related results for slip over other striped surfaces, and (3) that when height or hydrophobicity fluctuations are small, the slip matrix can be approximated directly using a simple formula derived from the surface pattern.

  17. Effects of K and Ca doping on twin boundary energy of cupperate superconductors

    NASA Astrophysics Data System (ADS)

    Khoshnevisan, Bahram; Mohammadi, Mahnaz

    2016-04-01

    Ab-initio calculations under GGA approximation have been employed to find out the effect Ba substitution by K and Ca on the structural and electronic properties twined and untwined YBCO system. In this regard, the twin boundary energy, γ, and impact of the substitution on the boundary's charge distribution have been of special consideration. Our results show that despite the structural changes the presence of K (Ca) modifies substantially density of levels at the Fermi level, which could be responsible for empirical reports of decreasing the critical temperature (Tc) by increasing the K(Ca) content. Although, the K doping reduces the γ value in YBa2-xKxCu3O7 system, after calcium doping it remains more or less unchanged. In addition, reduction of the carrier density occurs at twin boundary in CuO2 layer for the substituted system with respect to the untwined YBCO system. Our results would be noticeable in conjunction with the experimentally reported twinned and alkali substituted superconductive properties of the YBCO samples.

  18. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less

  19. Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1983-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.

  20. Turbulent boundary layers with secondary flow

    NASA Technical Reports Server (NTRS)

    Grushwitz, E.

    1984-01-01

    An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.

Top